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Abstract: Children exposed to mixtures of endocrine disrupting compounds such as phthalates
are at high risk of experiencing significant friction in their growth and sexual maturation. This
paper is primarily motivated by a study that aims to assess the toxicants-modified effects of
risk factors related to the hazards of early or delayed onset of puberty among children living
in Mexico City. To address the hypothesis of potential nonlinear modification of covariate ef-
fects, we propose a new Cox regression model with multiple functional covariate-environment
interactions, which allows covariate effects to be altered nonlinearly by mixtures of exposed toxi-
cants. This new class of models is rather flexible and includes many existing semiparametric Cox
models as special cases. To achieve efficient estimation, we develop the global partial likelihood
method of inference, in which we establish key large-sample results, including estimation consis-
tency, asymptotic normality, semiparametric efficiency, and the generalized likelihood ratio test
for both parameters and nonparametric functions. The proposed methodology is examined via
simulation studies and applied to the analysis of the motivating data, where maternal exposures
to phthalates during the third trimester of pregnancy are found to be important risk modifiers for
the age of attaining the first stage of puberty. The Canadian Journal of Statistics xx: 1–22; 2018
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1. INTRODUCTION

The fundamental hypothesis of “developmental origins” in environmental health
sciences postulates that environmental exposures during fetal and early postnatal
life influence developmental plasticity, thereby altering susceptibility to chronic
diseases later on (Perera & Herbstman, 2011; Vaiserman, 2014; Gluckman et
al., 2008). A key endeavour has concerned the assessment of the potential de-
velopmental and reproductive effects associated with the near ubiquitous envi-
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ronmental exposure to endocrine disrupting compounds (EDCs), such as heavy
metals and phthalates, experienced by women and children during sensitive de-
velopmental periods (Meeker, 2012; Ma & Song, 2015). Analyzing simultaneous
exposures to mixtures of toxic agents is notoriously difficult in the environmen-
tal health sciences, and so far only a few statistical methods have been developed
that are well-suited to this purpose. This article develops a new Cox regression
model that can assess whether or not, and if so, to what extent and in which fash-
ion, mixtures of toxic agents may modify the effects of risk factors related to the
timing of pubertal development.

We consider an example concerning growth that involves the covariate con-
current height, which is known to be a strong predictor of the age of pubertal
development. We are interested in assessing how the effect of a child’s concur-
rent height on the age of attaining the first stage of puberty may be modified by
level of exposure to phthalates. To this end, a statistical analysis needs to ad-
dress three important questions: (i) Whether or not phthalates modify the effect
of a child’s concurrent height on the time to reach pubertal first stage? (ii) If so,
which phthalates, e.g., monobutyl phthalate (MBP), monoethyl phthalate (MEP)
or mono-3-carboxypropyl phthalate (MCPP), are responsible for the modifica-
tion? and (iii) In what form (linear or nonlinear) does the toxicant mixture, i.e.,
a combination of important phthalates, modify the effect of concurrent height on
the timing of pubertal development?

To address these questions, we consider a flexible form of functional covariate
modification to the usual Cox regression model represented by

λ(t) = λ0(t) exp

{
d∑

k=1

βk(X′αk)Zk

}
, (1)

where λ(t) is the hazard at time t, λ0(t) is the baseline hazard and repre-
sents the hazard when all of the covariates, (X, Zk, k = 1, . . . , d), are equal to
zero, X = (X1, . . . , Xq)

′ is a vector of exposed toxicants, αk is an unknown
q-dimensional vector of parameters, which hereafter we call the loading coef-
ficients, some elements of which may be zero, resulting in different types of
mixtures for different covariates Zk. The covariates X and Zk, k = 1, . . . , d may
be correlated. The parameter β(·) = (β1(·), . . . , βd(·))′ is a vector of d unknown
functions that characterize the forms and extents to which modification of a co-
variate effect alters with respect to the level of exposure to a combination of
multiple toxicants encoded in X.

When a function βk(·) varies in different forms, such as zero, constant, lin-
ear or nonlinear, the model specified in Equation (1) allows us to answer if and
how groups of phthalates may modify the effects that a child’s height and ma-
ternal parity exhibit on the age of pubertal development. Recently, Lin, Tan, &
Li (2016) studied a single-index varying coefficient model with homogeneous
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loadings across the covariates, namely, αk ≡ α, k = 1, . . . , d. Compared to the
model we have specified in Equation (1), their model aims merely at dimension
reduction and does not characterize interaction effects at all; see Ma & Song
(2015) for the explanation. Technically, their model may be regarded as a special
case of the model we identified in Equation (1); thus, via hypothesis testing, our
model may be used to justify their assumption of homogeneous loading coeffi-
cients. Furthermore, by using different specifications of β andαk, the model that
we identified in Equation (1) covers many other existing semiparametric models.
Relevant details can be found in the associated Supplementary Material.

In this paper, inference based on the model we have proposed is developed
using the idea of efficient global partial likelihood (GPL); see Chen et al. (2010),
Chen, Lin, & Zhou (2012) and Lin, Tan, & Li (2016). GPL has been considered
previously for a simpler case with a common argument variable, say m, in func-
tions βk(m), which is the case studied by Lin, Tan, & Li (2016). In contrast, the
model we have specified in Equation (1) pertains to a varying-coefficient model
with differentmk = X′αk in βk(·), and represents a much more difficult problem
from the technical perspective. That is, the problem studied by Fan, Lin, & Zhou
(2006) allows for simultaneous estimation of βk, which avoids the problem of
the curse of dimensionality. However, in the model we have proposed different
index variables,mk = X′αk, lead to a high-dimensional setting, in which extend-
ing GPL to the additive Cox model, λ(t) = λ0(t) exp

{∑d
k=1 βk(mk)Zk

}
, is not

a trivial challenge. The reason we use GPL is its very attractive efficiency prop-
erty for nonparametric estimation. In the current literature, such efficiency has
not been widely investigated for the additive Cox model, despite many methods
that have been proposed for nonparametric function estimation, including spline
smoothing (Huang, 1999; Hastie & Tibshirani, 1990a, b; Sleeper & Harrington,
1990), the marginal integration method (Honda, 2005; Linton, Nielsen, & Van
de Geer, 2003) and the backfitting method (Honda, 2005; Mammen, Linton, &
Nielsen, 1999).

To address questions (i)-(iii), we also develop a generalized likelihood ratio
(GLR) test for the model we have proposed. In Cox models, methods of hypoth-
esis testing for nonparametric functions have not been well studied. The GLR
statistic originally proposed by Fan, Zhang, & Zhang (2001) is based on a local
linear estimator which, regrettably, is not directly applicable to the GPL setting
for testing a function βk(·). In effect, the proposed GLR test represents a useful
extension of the classical GLR test investigated in Fan, Zhang, & Zhang (2001).

This paper is organized as follows. Section 2 introduces global partial likeli-
hood estimation; we establish its uniform consistency, asymptotic normality and
semiparametric efficiency. Section 3 outlines the theory of inference for the load-
ing parameters and nonparametric functions. Simulation experiments and data
examples are described in Sections 4 and 5, respectively. Section 6 consists of
some concluding remarks. Some notation and relevant conditions are listed in the
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Appendix. All technical proofs may be found in the associated Supplementary
Material.

2. METHOD OF ESTIMATION

To address the identifiability issue for the model specified in Equation (1), we
follow the conditions of the single-index model (Carroll et al., 1997; Wang et al.,
2010), which are: (i) ‖αk‖2

2 = 1, k = 1, . . . , d and the sign of the first component
in each αk is positive; (ii) covariate X contains no intercept term; (iii) for a
constant Zik, say Zi1 ≡ 1, the corresponding parameter β1(·) is centered and has
mean 0. In the following subsections we provide a brief review of local partial
likelihood (LPL) and then describe our GPL method.

2.1. Local partial likelihood

The independent data replicates are {Ti,∆i,Zi,Xi} from subject i = 1, . . . , n,
where Ti = min(Ti, Ci), Ti and Ci are failure and censoring times, respec-
tively; ∆i is an indicator that equals 1 when Ti is an observed failure time
(Ti = Ti) and 0 otherwise (Ti = Ci). The variable Zi = (Zi1, . . . , Zid)

′ ∈ Rd

is a set of d covariates of interest, which may be time-dependent. Finally,
Xi = (Xi1, . . . , Xiq)

′ ∈ Rq is a vector of toxicant exposures. We assume that Ti
and Ci are conditionally independent, given the covariates (Xi,Zi).

Based on the assumption that Ti follows the model specified in Equation (1),
the partial likelihood of the unknown parameters α = (α′1, . . . ,α

′
d)
′ and β =

(β1, . . . , βd)
′ equals

L(α,β) =
n∏
i=1

[
exp{

∑d
k=1 βk(mik)Zik}∑

j∈R(Ti) exp{
∑d

k=1 βk(mjk)Zjk}

]∆i

, (2)

where mik = X′iαk and R(t) = {i : Ti ≥ t} is the set of individuals at risk of
responding immediately prior to time t. With αk being temporarily fixed, we es-
timate the functions βk(vk), k = 1, . . . , d at a point vk in the range of {X′iαk}ni=1

under the assumption that each βk is continuously first-order differentiable. Thus,
for each given value vk, a Taylor series expansion leads to

βk(mik) ≈ βk(vk) + β̇k(vk)(mik − vk)
def
= ζk + γk(mik − vk) , (3)

wheremik is a certain value in the neighborhood of vk. In this paper, ȧ(·) denotes
the first-order derivative of the function a(·). Replacing β(·) in Equation (2)
by the linear approximation defined in Equation (3), componentwise, gives rise
to a set of parameters ηk = (ζk, γk)

′, k = 1, . . . , d, which are then estimated by
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maximizing the local partial log-likelihood function

n∑
i=1

∆i

(
d∏

k=1

Kik(vk)

){
d∑

k=1

βi(ηk,αk, vk)Zik

− log

 ∑
j∈R(Ti)

(
d∏

k=1

Kjk(vk)

)
exp

(
d∑

k=1

βj(ηk,αk, vk)Zjk

) , (4)

where βi(ηk,αk, vk) = Mi(αk, vk)
′ηk, Mi(αk, vk) = (1,X′iαk − vk)′, and the

local kernel weighting is allocated by Kik(vk) = Khk(mik − vk), Khk(x) =
K(x/hk)/hk, with K being a one-dimensional kernel density function and hk
representing the bandwidth.

It is known that the above local method suffers from the curse of dimen-
sionality when d ≥ 2. The backfitting iterative algorithm (Hastie & Tibshirani,
1990b) is a popular remedy for overcoming this difficulty but establishing its
large-sample theory is notoriously challenging (Yu, Park, & Mammen, 2008).
On the other hand, the existing local scoring backfitting is still based on an LPL
approach (Fan, Gijbels, & King, 1997), which uses data in a neighborhood of
each fixed value of vk to estimate βk(vk). The localization suffers from a poten-
tial loss of efficiency because data outside the neighborhood which may provide
information about βk(·) are not used. To overcome this deficiency, here we adopt
the method of GPL, rather than LPL, to estimate βk(·).

2.2. Global partial likelihood

The GPL approach was first studied by Chen et al. (2010) and Chen, Lin, & Zhou
(2012) for the simple setting of a single nonparametric function, where there is no
curse of dimensionality. In this paper we consider a more general GPL method
in order to estimate multiple nonparametric functions βk(·), k = 1, . . . , d with
different arguments. Denote a neighborhood of a target value vk by Bn(vk). Let
Iik be an indicator that equals 1 if mik ∈ Bn(vk), and 0 otherwise. We consider
a first-order expansion of the function βk(·), namely

βk(mik) ≈ {ζk + γk(X′iαk − vk)}Iik + βk(mik)(1− Iik)
= βi(ηk,αk, vk)Iik + βk(mik)(1− Iik) ,

where the second term βk(mik) remains with no approximation if mik falls out-
side of Bn(vk). Moreover, as suggested by Chen et al. (2010), we replace the
step function Iik by a smooth function hkKhk(mik − vk), thereby obtaining

βk(mik) ≈ βi(ηk,αk, vk)hkKhk(mik − vk) + βk(mik) {1− hkKhk(mik − vk)} .

The right-hand side of this expression represents a global linear approximation,
which we will denote by βgi (ηk,αk, vk). Substituting βgi (ηk,αk, vk) into Equa-
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tion (2), with fixed α, we estimate the parameters ηk, k = 1, . . . , d, by maximiz-
ing the objective function

lg,η(η;α) =
n∑
i=1

∆i

(
d∑

k=1

βgi (ηk,αk, vk)Zik

− log

 ∑
j∈R(Ti)

exp

{
d∑

k=1

βgj (ηk,αk, vk)Zjk

} . (5)

It is worth mentioning that Equation (5) provides the standard full partial like-
lihood estimator, instead of the LPL estimator that results from maximimizing
Equation (4). As a result, the proposed method of estimation based on the use of
Equation (5) has some attractive optimality properties due to suitable choices of
where and how local approximation is implemented. Estimates that rely on the
use of Equation (5) apply the local approximation in the function, whereas the
LPL associated with reliance on Equation (4) imposes the local approximation
directly on the likelihood directly.

To estimate αk, denote ηk by ηik evaluated at X′iαk. With ηik fixed, we pro-
pose to maximize the objective function

lg,α(α;η) =
n∑
l=1

{
f̂αk

(mlk)
}−1

n∑
i=1

∆i

(
d∑

k=1

βgi (ηlk,αk,X′lαk)Zik

− log

 ∑
j∈R(Ti)

exp

{
d∑

k=1

βgj (ηlk,αk,X′lαk)Zjk

} , (6)

which corresponds to a summation of Equation (5) over X′lαk, l = 1, . . . , n,
or the first component of αk being fixed, with ‖a‖ =

√
a′a for a vector. Here

f̂αk
(v) = 1

n

∑n
i=1Khk (X′iαk − v) corresponds to a kernel estimate of the den-

sity function fαk
(v) for X′iαk.

2.3. Implementation

The objective functions identified in Equations (5) and (6) are not explicitly
solvable since the true βk(·), k = 1, . . . , d are unknown. Instead, this maxi-
mization problem may be solved by alternately updating ηik = (ζik, γik)

′ =(
βk(mik), β̇k(mik)

)′
and αk, k = 1, . . . , d. The following constitutes the steps

in this algorithm.
Step 0. Choose suitable initial values η(0)

ik and α(0)
k such that each α(0)

k satisfies
‖α(0)

k ‖ = 1 and its first element is positive, k = 1, . . . , d, i = 1, . . . , n. For ex-
ample, the loading coefficients of the principal components may be used as initial
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values forαk. Then, with these fixed values forαk, a spline smoothing technique
may be used to obtain initial values for the functions βk(·). Our numerical results
show that such choices for the initial values work well; see Section 4 for details
Part 1 of Step s. Find solutions for ηlk to the score equations

n∑
i=1

∆i

$(s−1)
il,k K

(s−1)
il,k Zik −

 ∑
j∈R(Ti)

exp

(
d∑
r=1

ζ
(s−1)
jr Zjr

)
−1 ∑

j∈R(Ti)

$
(s−1)
jl,k

×K(s−1)
jl,k Zjk exp

(
βgj (ηlk,α

(s−1)
k ,m

(s−1)
lk )Zjk +

∑
r 6=k

ζ
(s−1)
jr Zjr

)]
= 0 ,

where $
(s−1)
il,k =

(
1,m

(s−1)
ik −m(s−1)

lk

)′
, K(s−1)

il,k = Khk(m
(s−1)
ik −m(s−1)

lk ),

m
(s−1)
ik = X′iα

(s−1)
k and βgj (ηlk,α

(s−1)
k ,m

(s−1)
lk ) = η′lk$

(s−1)
jl,k hkK(s−1)

jl,k +

ζ
(s−1)
jk

(
1− hkK(s−1)

jl,k

)
. Denote these solutions by η̂

(s)
lk = (ζ̂

(s)
lk , γ̂

(s)
lk )′ for

l = 1, . . . , n and k = 1, . . . , d.
Part 2 of Step s. Update αk by solving the partial score equation

n∑
l=1

{
f̂αk

(m
(s−1)
lk )

}−1
n∑
i=1

∆i

(
γ

(s)
lk X̃ilK(s−1)

il,k Zik

−

 ∑
j∈R(Ti)

exp

(
d∑
r=1

ζ
(s−1)
jr Zjr

)
−1  ∑

j∈R(Ti)

γ
(s)
lk X̃jlK(s−1)

jl,k Zjk

× exp

{
βgj (η

(s)
lk ,αk,X

′
lαk)Zjk +

∑
r 6=k

ζ
(s)
jr Zjr

}])
= 0 ,

where

βgj (η
(s)
lk ,αk,X

′
lαk) = η

(s)′
lk $jl(αk)hkK(s−1)

jl,k + ζ
(s)
jk

(
1− hkK(s−1)

jl,k

)
,

$jl(αk) =
(

1, X̃′jlαk
)′

, and X̃ij = Xi − Xj . Denote the solution by α(s)
k . Then

set α(s)
k = α

(s)
k /‖α(s)

k ‖ with the first element of α(s)
k positive for k = 1, . . . , d.

Part 3. Repeat Step s until convergence is achieved and then collect the output.
As part of this implementation, the bandwidth hk, k = 1, 2, . . . , d must be se-

lected. We adopt the K−fold cross-validation procedure (Tian, Zucker, & Wei,
2005; Efron & Tibshirani, 1993). In particular, we use the adaptive bandwidth
selection method of Brockmann, Gasser, & Herrmann (1993), where the band-
width, hQ(v), for each target point, v say, is defined in such a way that Q percent
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of all the data points is used in the analysis. Following Cai, Fan, & Li (2000) we
choose a value of Q that minimizes the prediction error

PE(Q) =

∫ τ

0

[
Ni(t)− ÊQ{Ni(t)}

]2

d

{
n∑
k=1

Nk(t)

}
, (7)

where ÊQ{Ni(t)} =
∫ t

0
Yi(u) exp{

∑d
k=1 β̂k,Q(α̂′k,QXi)Zik}dΛ̂0,Q(u) is an esti-

mate of the expected number of events up to time t for a fixed Q value, and
Ni(t) = I(Ti ≤ t,4i = 1) is the counting process for the total number of ob-
served responses.

2.4. Large-sample properties

We now establish uniform consistency and asymptotic normality of the GPL esti-
mators derived by maximizing the objective functions identified in Equations (5)
and (6); we denote these by α̂ = (α̂′1, . . . , α̂

′
d)
′ and β̂(·) = (β̂1(·), . . . , β̂d(·))′.

Without loss of generality let the support of X′αk be [0, 1] and assume hk ∼
h, k = 1, . . . , d, namely, all bandwidths have the same asymptotic order. De-
note by α0 and β0(v) = (β10(v1), . . . , βd0(vd))

′ the true values of α and β(·),
respectively. Proofs of the following theorems may be found in the associated
Supplementary Material.

Theorem 1. Under the regularity conditions (C1)-(C7) listed in the Appendix,
as n→∞ we have

(i). ‖α̂−α0‖
p→ 0 and supv∈V ‖β̂(v)− β0(v)‖ p→ 0, where V =

{(v1, . . . , vd)
′ : vk ∈ [0, 1], k = 1, . . . , d}.

(ii). If nh4 → 0, then
√
n (α̂−α0)

d→ N(0,V), where the asymptotic covari-
ance V is specified in Equation (A.1) of the Appendix to the paper.

(iii). (nh)1/2
{
β̂(v)− β0(v)− 1

2
ν2h

2A−1(Ω)(v)
}

d→ N(0,Π(v)), v ∈ V ,

where the pointwise asymptotic covariance Π(v) = ν0

{
A−1(Σ1/2)(v)

}
×
{
A−1(Σ1/2)(v)

}′
, and νr =

∫
xrK2(x)dx, r = 0, 1, 2. Here the linear

operator A and its inverse are the quantities defined in Equation (A.2) of the
Appendix; the functions Σ(v) and Ω(v) are also defined in the Appendix.

When d = 1, Theorem 1 reduces to Theorems 1-3 of Lin, Tan, & Li (2016).
To achieve the parametric convergence rate n−1/2 for the estimator α̂, it is com-
monly required to undersmooth the nonparametric estimation using a kernel
technique (Carroll et al., 1997; Hastie & Tibshirani, 1990b). Part (ii) of Theo-
rem 1 also requires the bandwidth h = o(n−1/4), leading to a scenario of un-
dersmoothing. As usual, the asymptotic normality given in part (iii) of Theorem
1 indicates that the order of the asymptotic bias is O(h2) and the order of the
asymptotic covariance is (nh)−1. Consequently, the theoretical optimal band-
width O(n−1/5) may be assumed to apply for the nonparametric estimation.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:

This article is protected by copyright. All rights reserved.



2018 9

To establish semiparametric efficiency in the sense of Bickel et al. (1993) for
both α̂ and β̂(·), we consider a function φ(v) = (φ′1,φ2(v)′)′, which has contin-
uous second-order derivatives on V . Let φ′1α̂+

∫
V φ
′
2(v)β̂(v)dv be an estimator

of φ′1α0 +
∫
V φ
′
2(v)β0(v)dv, where α̂ and β̂(·) are the proposed GPL estima-

tors.

Theorem 2. Under the regularity conditions (C1)-(C7)
listed in the Appendix, if nh4 → 0 and nh2 →∞, φ′1α̂+∫
V φ
′
2(v)β̂(v)dv is an efficient estimator of φ′1α0 +

∫
V φ
′
2(v)β0(v)dv .

It follows that with a choice of φ2(v) = 0, α̂ is an efficient estimator of α0;
likewise, with a choice of φ1 = 0,

∫
V φ
′
2(v)β̂(v)dv is an efficient estimator of∫

V φ
′
2(v)β0(v)dv .

Given the GPL estimates β̂(·) and α̂, we adopt the method of kernel smooth-
ing described in Fan, Lin, & Zhou (2006) to estimate the baseline hazard function
by λ̂0(t) =

∫
Kb(t− u)dΛ̂0(u), where b is a bandwidth and the estimated cumu-

lative baseline hazard function Λ̂0(t) is

Λ̂0(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

n−1
∑n

j=1 Yj(u) exp{
∑d

k=1 β̂k(X′jα̂k)Zjk}
.

Given the results of Theorem 1, we follow the proof in Fan, Lin, & Zhou (2006)
to show that both λ̂0(t) and Λ̂0(t) are uniformly consistent estimators on (0, τ),
where τ is defined via condition (C2) in the Appendix.

3. INFERENCE

3.1. Inference for the loading coefficients

Utilizing the asymptotic normality described in part (ii) of Theorem 1, we now
construct a Wald statistic to test a null hypothesis H0 : αk1l = · · · = αkrl = 0,
which pertains to a subset, say αl(r) = (αk1l, . . . , αkrl)

′, of the lth vector of
loading coefficients, where (k1, . . . , kr) is a subset of the indices in {2, . . . , q}.
Clearly, the Wald test statistic is χ2

W = (α̂l(r) − 0)′{V̂l(r)}−1(α̂l(r) − 0), where{
V̂l(r)

}−1

is the inverse of the estimated asymptotic covariance matrix corre-

sponding to subvector α̂l(r). Under the null hypothesis H0, the statistic χ2
W has

an asymptotic chi-squared distribution with r degrees of freedom.

3.2. Inference for the nonparametric functions

The estimated value of β(·) helps us understand in which form the effect of
covariate Zk is modified by an exposure mixture mk = X′αk. Such an analysis
simplifies the model specification, say, to a linear interaction model. We now
propose a goodness-of-fit test using a generalized likelihood ratio (GLR) statistic
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for a constant function or a linear function.
In the case of a linear function, we set the null and alternative hypotheses as

follows: H0 : βl(·) is a linear function versus H1 : βl(·) is not a linear function.
Under the alternative H1, we obtain the GPL estimates α̂ and β̂(·) described
above. Under the null H0, the function βl(·) is estimated by β̃l(vl) = θ̂l0 + θ̂l1vl,
with θ̂l0 and θ̂l1 being the conventional partial likelihood estimates, given that all
other parameters α and functions β−l(·) = (βk(·), k 6= l)′ have been estimated
under the alternative H1. Then a GLR statistic is constructed as the difference

λn,l = logLn
(
α̂, β̂l, β̂−l

)
− logLn

(
α̂, β̃l, β̂−l

)
,

where

Ln (α, βl,β−l) =

exp


n∑
i=1

4i

Wi(α, βl,β−l)− log

 ∑
j∈R(Ti)

exp {Wj (α, βl,β−l)}

 ,

and Wi(α, βl,β−l) = βl(X′iαl)Zil +
∑

k 6=l βk(X′iαk)Zik .

Theorem 3. Suppose the regularity conditions (C1)-(C7) listed in the Ap-
pendix hold.

(i). Under H0: βl(vl) follows a linear function form given by θl0 + θl1vl, we
have

γkλn,l
d→ χ2

γkµnl
as n→∞ , (8)

where γk =
{
K(0)− 1

2

∫ 1

−1
K2(t)dt

}
/
∫ 1

−1

{
K(t)− 1

2
K ∗ K(t)

}2
dt ,

µnl = |Dl|h−1
{
K(0)− 1

2
×
∫ 1

−1
K2(t)dt

}
, Dl = {vl : vl = x′αl, fαl

(vl) >

0,αl, x ∈ Rq} and |Dl| is the length of interval Dl. Here “∗” denotes the
operation of convolution.
(ii). Consider H0: βl is a constant vs H1: βl is not a constant. Under this
version of H0, the result specified in Equation (8) continues to hold.

Theorem 3 shows that the asymptotic null distribution of the proposed GLR
statistic is nearly χ2 with a degrees of freedom parameter that does not depend
on the nuisance parameters θl0 and θl1. This aspect is known as the Wilks phe-
nomenon; see Fan, Zhang, & Zhang (2001). With this property, the advantages of
the classical likelihood ratio tests are fully inherited. For additional discussion,
consult Fan, Zhang, & Zhang (2001).

The procedure just described has been implemented as part of an R package
called CoxGPLE that is available via the associated Supplementary Material.
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4. SIMULATION STUDIES

We conducted simulation studies to examine the performance of our pro-
posed GPL method. We evaluated the performance of GPL for the nonpara-
metric estimator β̂(·) by the weighted mean squared error (WMSE), WMSE =

n−1
g

∑d
k=1

∑ng

j=1 wk{β̂k(vj)− βk(vj)}2, where wj is the reciprocal sample vari-
ance of βj(vk) over a set of grid points {vk, k = 1, . . . , ng}. We assessed the
performance of GPL for the parametric estimator α̂ via its bias, empirical stan-
dard deviation (ESE) and the root mean squared error (RMSE). In all the cases
we considered, we used the Epanechnikov kernel, set ng = 100, and calculated
summary statistics based on 200 simulations with sample size n = 500.

We specified a Cox model with three covariates, (1, Z1(t), Z2), and three
exposure variables, (X1, X2, X3), that were defined as follows: λ(t|X,Z) =
λ0(t) exp{η(X,Z)}, where the baseline hazard function was λ0(t) = 4t3 and
the linear predictor was η(X,Z) = β1(X′α1) + β2(X′α2)Z1(t) + β3(X′α3)Z2.
The three coefficient functions were specified as β1(v) = 0.4{exp(2v − 0.5)−
exp(−0.5)}, β2(v) = 1.3v(0.25− v), and β3(v) = sin(2v). In addition, to gen-
erate Z = (Z1(t), Z2)′, with Z1(t) as a time-dependent covariate and Z2 a time-
independent covariate, we first obtained independent observations from a bi-
variate normal distribution, (Z̃1, Z2)′ ∼ N

{
0, 52

(
1 0.5

0.5 1

)}
, and then set Z1(t) =

Z̃1I(t ≤ 1)/4 + Z̃1I(t > 1). The three exposure variables, X = (X1, X2, X3)′,
were sampled independently, where the first two variables were binary from
Bernoulli(0.5) and X3 ∼ Unif(0, 1). The true parameter values were set at
α10 = (2, 2, 2)′/5, α20 = (2, 2,−2)′/3, and α30 = (2, 2,−2)′/3, which all have
norm 1. The censoring variable C, given (Z,X), was simulated uniformly on
the interval (0, u(Z,X)), where the upper limit was specified as u(Z,X) =
c1I(η(Z,X) > η0) + c2I(η(Z,X) ≤ η0); the cutoff η0 was set at 0.52, the mean
function of η(Z,X), c1 = 2, and c2 = 15. The censoring rate was approximately
20%.

To evaluate the proposed GPL method, we focused on its efficiency
loss relative to two comparison models that were close to the true
model. In these two comparison models, the coefficient functions are ei-
ther specified as the true functions or as the same functional forms
as those of the true functions. They were λ1(t) = λ0(t) exp{η1(Z,X;θ1)}
for Model 1 (M1), and λ2(t) = λ0(t) exp{η2(Z,X;θ2)} for Model 2
(M2), where with vk = X′αk, k = 1, 2, 3, η1(Z,X;θ1) = θ11β1(v1) + (θ12v2 +
θ13v

2
2)Z1(t) + θ14β3(v3)Z2, and η2(Z,X;θ2) = {θ21β1(v1) + θ22v1}+ (θ23 +

θ24v2 + θ25v
2
2)Z1(t) + {θ26 + θ27v3 + θ28β3(v3)}Z2. The vectors of parame-

ters in the above parametric linear predictors were θ1 = (θ11, . . . , θ14)′, θ2 =
(θ21, . . . , θ28)′, and clearly these true coefficient functions were parametrically
nested in η1(·) and η2(·), respectively. Both models are correctly specified with
M1 corresponding to a smaller parameter space and M2 representing a larger pa-
rameter space. For models M1 and M2, the loading coefficientsαk in vk = X′αk,
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TABLE 1: Simulation study results for nonparametric estimation of the functions βk(·) using GPL with
bandwith h = 0.3.

Summary Value of index v

Function statistic −0.60 −0.26 0.32 0.90 1.24

Bias 0.274 0.202 0.095 0.003 −0.654

β1(·) ESE 0.279 0.279 0.142 0.170 0.242

RMSE 0.391 0.344 0.171 0.170 0.697

Bias 0.066 −0.023 −0.008 0.062 0.156

β2(·) ESE 0.133 0.069 0.036 0.129 0.267

RMSE 0.148 0.073 0.037 0.143 0.309

Bias 0.108 0.084 −0.083 −0.147 −0.063

β3(·) ESE 0.075 0.043 0.036 0.040 0.058

RMSE 0.131 0.094 0.090 0.152 0.086

k = 1, 2, 3, together with θ1 and θ2 were estimated using conventional partial
likelihood.

Panels (a), (b) and (c) of Figure 1 in the Supplementary Material display the
estimated coefficient functions at bandwidth h = 0.3, together with their em-
pirical pointwise 95% confidence bands based on 200 simulations. It is easy to
see that all estimated curves (denoted by solid lines) are close to the true curves,
which are indicated by dashed lines. Some additional results concerning the GPL
method are summarized in Table 1, including estimation bias and empirical stan-
dard error for functional values at v = −0.60,−0.26, 0.32, 0.90 and 1.24. These
values correspond, approximately, to the 10th, 25th, 50th, 75th and 90th per-
centiles of the distribution of index vk = X′αk for k = 1, 2, 3. Both Figure 1 in
the Supplementary Material and the results summarized in Table 1 indicate that
the GPL method performed well in this simulation setting.

Table 2 reports the summary results from our simulation study concerning
estimation of the loading coefficients αk, k = 1, 2, 3 in the proposed Cox re-
gression model and the two comparison parametric models M1 and M2. These
results include the estimation bias, ESE and RMSE of the GPL method with
bandwidth h = 0.2, 0.3, 0.4 compared to the classical partial likelihood estima-
tion (PLE) method used for the comparison models M1 and M2. Since Model
M1 has the coefficient functions in the linear predictor η1(·) specified as special
parametric forms of the true functions, it is not surprising that the PLE method
with fewer parameters (Model M1) performed the best among the various cases
that we considered. The performance of the GPL method fell between that of the
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TABLE 2: Simulation study results for estimating the loading coefficients αk, k = 1, 2, 3 using either the
proposed GPL method with bandwidth h or classical partial likelihood estimation (PLE) with parametric

models M1 or M2.

Band- Summary Loading coefficients

Method width statistic α12 α13 α22 α23 α32 α33

Bias 0.005 0.037 0.013 −0.022 0.002 −0.006

0.2 ESE 0.106 0.141 0.076 0.088 0.020 0.043

RMSE 0.107 0.146 0.077 0.091 0.020 0.044

Bias 0.009 0.028 0.012 −0.012 0.002 −0.007

GPL 0.3 ESE 0.089 0.123 0.078 0.106 0.020 0.039

RMSE 0.089 0.126 0.079 0.106 0.020 0.040

Bias 0.016 0.028 0.029 −0.030 0.007 −0.009

0.4 ESE 0.098 0.121 0.080 0.087 0.020 0.038

RMSE 0.099 0.125 0.085 0.092 0.021 0.039

PLE Bias 0.009 0.005 0.000 −0.002 −0.002 0.001

with – ESE 0.102 0.109 0.039 0.063 0.015 0.021

M1 RMSE 0.102 0.109 0.039 0.063 0.015 0.022

PLE Bias 0.033 0.040 −0.006 0.001 0.017 −0.020

with – ESE 0.182 0.266 0.043 0.071 0.074 0.084

M2 RMSE 0.186 0.269 0.044 0.071 0.076 0.086

PLE methods for Models M1 and M2, suggesting that there exists a parametric
model with which the proposed nonparametric method would exhibit similar per-
formance. In turn, this observation suggests that the GPL method for estimating
the loading coefficients is parametrically efficient.

Using the same simulations, we also tried to compare the GPL method of
estimation to the local partial likelihood estimation (LPLE) method that we de-
scribed in Section 2.1. However, we encountered numerous instances of failure
to converge numerically. For example, at bandwidth h = 2.5 (a case of excessive
oversmoothing), out of 200 simulations 67.5% failed to achieve the required con-
vergence criterion for LPLE. Such a numerical challenge for the LPLE method is
largely attributable to the curse of dimensionality, since the LPLE method needs
to estimate three nonparametric functions in addition to the loading coefficients
αk, k = 1, 2, 3. In comparison, only 6% of the simulations failed to converge at
h = 0.4 with the proposed GPL method. Because of this numerical instability
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for the LPLE method, we have omitted any details concerning comparison of the
GPL method with the LPLE method.

5. APPLICATION

The height of an adolescent has been reported as an important predictor for the
age of pubertal development (Salsberry, Regan, & Pager, 2009; Karapanou &
Papadimitriou, 2010). Maternal parity (the number of previous pregnancies) has
also been identified as an important predictor of pubertal onset (Ong et al., 2002).
It is known that phthalates may affect the tempo of physical growth during sen-
sitive periods of development in childhood, which in itself is related to chronic
disease risk as well as the timing and tempo of pubertal development (Salazar
et al., 2004). Several studies have shown that exposure to mixtures of reproduc-
tive toxicants may disrupt complex signaling pathways and result in cumulative
effects on a child’s growth (Rider et al., 2010).

This section presents our analysis of the pubertal development data that were
introduced in Section 1. Working through multiple steps of data cleaning and
validation under the guidance of our collaborators, we obtained a sample of 549
children aged 9.8 to 18.1 years for the analysis. The age at which the first stage
of pubic hair developed is treated clinically as the age of attainment for study
participants, or is right-censored at the age of a subject’s last completed assess-
ment. The time to this event was observed during an average follow-up time of
14.3 years, and the rate of right censoring in the study data was 14.6%. Exposure
variables of interest included prenatal exposure to MEP (X1), MBP (X2), and
MCPP (X3), measured during the third trimester of pregnancy. Other covariates
of interest were maternal parity (Z1) and each child’s concurrent height (Z2). We
normalized both exposure variables and covariates in our analysis.

The primary objective of this analysis was to evaluate the functional exposure-
covariate interactions, which would allow us to answer whether or not the early
life exposure in utero to phthalates may modify the effects of maternal parity and
child’s height on the age of pubertal development. We began with a preliminary
analysis that was based on two traditional Cox models:

M1: Model 1 with only main effects

λ(t | X,Z) = λ0(t) exp(α1X1 + α2X2 + α3X3 + β1Z1 + β2Z2) ,

and
M2: Model 2 with linear interactions

λ(t | X,Z) =λ0(t) exp {α11X1 + α12X2 + α13X3 + (α20 + α21X1 + α22X2

+α23X3)Z1 + (α30 + α31X1 + α32X2 + α33X3)Z2} .
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Table 3 reports the results from our analysis of models M1 and M2 using
the R package survival. This preliminary analysis with M1 indicated that the
phthalates MEP, MBP and MCPP were significantly associated with the age of
attaining the first stage of puberty. The results from M2 suggested that the effect
of height on response was modified by a combination of MBP and MCPP (or a
mixture of phthalates), whereas the effect of maternal parity was not modified
linearly by MEP, MBP or MCPP.

It is of great interest to investigate whether these phthalate mixtures may have
modified the other covariate effects in a nonlinear fashion. To proceed, we used
our proposed Cox model with functional covariate-exposure interactions, i.e.,
λ(t | X, Z1, Z2) = λ0(t) exp {β1(X′α1) + β2(X′α2)Z1 + β3(X′α3)Z2} , where
the βk(·) represent unknown, smooth functions and the αk = (αk1, αk2, αk3)′ for
k = 1, 2, 3 denote loading parameters that need to be estimated. The initial val-
ues of both functions and loading parameters were chosen by fitting the model
using regression splines with four knots.

Based on the cross-validation criterion that we specified in Equation (7), we
found Q = 0.5, which was used for the bandwidth selection. The estimates of
the loading coefficients are reported in the lower portion of Table 3, and the
estimated functions are plotted in Figure 1. To calculate standard errors, we used
the method of bootstrap resampling with 500 bootstrap samples, in which each
subject is treated as a resampling unit in order to preserve the inherent features
of the data from individual subjects. The choice of 500 bootstrap samples was
determined by monitoring the stability of the resulting standard error estimates.

To determine whether or not the covariate-exposure interactions were linear,
we considered the hypothesis H0 : βk(·) is linear, i.e., the existence of linear in-
teractions, versus H1 : βk(·) is not linear, k = 1, 2, 3. The p values of the associ-
ated GLR tests were obtained from the χ2 null distribution identified in Theorem
3. They were 0.396 for β1(·), 0.015 for β2(·) and 0.020 for β3(·), respectively.
These results suggest that exposure to a mixture of these phthalates alters the
effects of maternal parity and concurrent height on the response of interest. In
addition, we considered the hypothesis H0 : β1(·) is constant, i.e., the absence of
any main effect, versus H1 : β1(·) is not constant. The corresponding p value of
the GLR test in this case was 0.000. Combining the results from these two tests
concerning β1, we concluded that a linear main effect for exposure adequately
captures the underlying functional form. This finding agrees with the graphical
evidence of linear functions that is displayed in Figure 1.

From the fitted model labelled “Cox” summarized in Table 3, as well as the
estimated coefficient functions plotted in Figure 1, it appears that greater expo-
sure to a combination of phthalates is associated with a delay in attaining the
first stage of puberty. In general, although a taller adolescent is more likely to
reach the first stage of puberty at an older age, the level of exposure to a mix-
ture of maternal phthalates appears to alter, nonlinearly, the relationship between
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TABLE 3: Analysis results for the pubertal development data. Regression parameter estimates from two
proportional hazards models: Model 1 involves only main covariate effects whereas Model 2 incorporates
linear interactions. Also, estimated loading coefficients for phthalate mixtures in our proposed Cox model
(Cox). The standard errors cited for Models 1 and 2 were obtained from the R package survival, whereas

those for the proposed Cox model were derived using 500 bootstrap samples.

Standard

Model Parameter Estimate error p-value

α1 −0.163 0.047 0.001

α2 0.285 0.056 0.000

Model 1 α3 −0.215 0.057 0.000

β1 −0.122 0.047 0.001

β2 −0.449 0.059 0.000

α11 −0.163 0.050 0.001

α12 0.308 0.059 0.000

α13 −0.228 0.060 0.000

α20 −0.117 0.047 0.013

α21 −0.036 0.048 0.453

Model 2 α22 −0.083 0.060 0.167

α23 0.006 0.054 0.920

α30 −0.487 0.060 0.000

α31 0.016 0.060 0.784

α32 −0.172 0.066 0.009

α33 0.146 0.070 0.037

α11 0.386 0.138 0.005

α12 −0.771 0.060 0.000

α13 0.507 0.118 0.000

α21 0.420 0.177 0.018

Cox α22 −0.765 0.153 0.000

α23 −0.488 0.156 0.002

α31 0.359 0.095 0.000

α32 −0.696 0.060 0.000

α33 0.623 0.077 0.000

concurrent height and the age at which the first stage of puberty is attained. Like-
wise, with respect to maternal parity, its effect on response is also modified in a
nonlinear manner by exposure to a mixture of maternal phthalates.
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FIGURE 1: Analyzing the pubertal development study. Estimated coefficient functions (solid curves) and
their corresponding 95% confidence intervals (shaded regions) for βk(·), k = 1, 2, 3, together with the
estimated linear coefficient functions (dashed lines) for an intercept (X1), maternal parity (X2) and a child’s

concurrent height (X3).

Panels (a), (b) and (c) in Figure 2 display estimated survival functions for
the three height groups with the quartiles of exposure to phthalates mixtures
m = α31X1 + α32X2 + α33X3, when maternal parity is fixed at its average value
in the study data. Readers can see that at a fixed quartile level of exposure to the
phthalates mixture and at an average value of maternal parity, a taller adolescent
tends to experience a slower progression to sexual maturation, as measured by
observing the Tanner stage for pubic hair. Notice, also, that more severe exposure
to the phthalates mixture is associated with a longer delay in attaining the first
stage of puberty. Unfortunately, the two parametric models, namely Model 1 and
Model 2, failed to capture these nonlinear interaction effects. Such estimated
patterns and interpretations with respect to the effect of prenatal exposure to the
phthalates mixture and other risk factors, such as maternal parity and concurrent
height, have been detected and estimated via the modeling of nonlinear effects.
In this instance, the insights gained represented meaningful scientific knowledge
for our collaborators.

6. CONCLUDING REMARKS

This paper has focused on developing a new Cox regression model to address
methodological needs in the evaluation of nonlinear interaction effects arising
during studies in the environmental health sciences, where existing methods have
shown that they are unable to provide satisfactory solutions. One advantage of
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FIGURE 2: Analyzing the pubertal development study. Estimated survival functions for the three height
groups with a fixed exposure to mixtures of phthalates mk, k = 1, 2, 3 at the first quartile, median, and
third quartiles of mixture m = α31X1 + α32X2 + α33X3. The height groups correspond to girls with a
height equal to the first quartile (solid line), median (dashed line) or third quartile (dotted line), and an

average value for maternal parity.

the proposed method pertains to the estimating efficiency of the proposed global
partial likelihood method of estimation that uses all the data in both nonpara-
metric and parametric parameter estimation, compared to existing methods such
as the local scoring backfitting method introduced by Buja, Hastie, & Tibshirani
(1989) that uses only local data. We established both estimation consistency and
asymptotic normality as part of our investigation of this new methodology. We
also proposed a generalized likelihood ratio test that enabled us to test for a par-
ticular hypothesized form of functional interaction effects, such as constants and
linear functions. We showed that this test satisfies the Wilks phenomenon that
makes implementing the test straightforward.

In addition, we developed the R package coxphGPLE to implement our pro-
posed methodology. Regularity condition (C6), which is listed in the Appendix
to the paper, is incorporated in our package. Initial values are critically impor-
tant in the search for reliable solutions. Inspecting bootstrap estimates is useful
to check local convexity of the objective functions empirically, which is essential
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for consistent parametric and nonparametric estimation.
Although the methodology that we have proposed is primarily motivated by

modeling functional covariate-environment interactions, the proposed methods,
as well as the corresponding theoretical results, are quite general and should be
applicable to problems from other fields of study. As usual, bandwidth selec-
tion and use of the bootstrap to calculate standard errors are computationally
demanding. To estimate the unknowns in a model with functional interactions
any researcher would certainly need a reasonably large sample size. In addition,
we also assumed that any right censoring of the response was independent, which
may not hold in some applications. An important future project would involve
extending the current model to permit a high-dimensional vector of toxicants in
the formation of mixtures. In this case, the number of loading coefficients would
also be high-dimensional and hard to estimate. We believe that developing a
regularized method of estimation that can accommodate such high-dimensional
situations is well worth exploring.
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APPENDIX
Notation

Let C0 = {δ(v) = (δ1(v1), · · · , δd(vd))′ : v ∈ V , δ(v) is continuous on V}. Let
Θ denote the support of α, f be the density function of the p-dimensional vec-
tor X, fαk

(·) be the density function of mjk = X′jαk, fαk,αr(vk, vr) be the den-
sity function of (mjk,mjr) and gαk

(v) = E(X|X′αk = v). To simplify the nota-
tion, we use fk(v) = fαk

(v), fkr(vk, vr) = fαk,αr(vk, vr) and gk(v) = gαk0
(v).

Denote the survival function by P (t | z, x) = Pr(T > t | Z = z,X = x), and
let [ai]

d
1 = (a1, . . . , ad)

′. DenoteW (α, δ) = δ(α ◦ X)′Z withα ◦ X = [α′lX]dl=1.
Let W = W (α0, δ0), Wi = Wi(α0,β0) = β0(α0 ◦ Xi)

′Zi, and mjk,0 = X′jαk0.
The asymptotic covariance V mentioned in part (ii) of Theorem 1 is

V = Π−1
2

[∫ τ

0

E
{
ξi(t)

⊗2P (t|Zi,Xi) exp (Wi)
}
λ0(t)dt

]
(Π−1

2 )′ , (A.1)

where ξi(t) and Π2 can be found in the corresponding Supplementary Material.
Functions Σ(v) and Ω(v) that appear in the asymptotic expres-

sion given in part (iii) of Theorem 1 are equal to Ω(x) = Σ(x)β̈0(x),

Σ(x) = diag(Ξ1,20(x1), · · · ,Ξd,20(xd)), β̈0(x) =
[
β̈k0(xk)

]d
k=1

, Ξk,ij(v) =

Ξk,ij(α0,β0, v), Ξk,ij(α, δ1, v) =
∫ τ

0
sk,ij(t;α, δ1, v)λ0(t)dt. The linear opera-

tor A in part (iii) of Theorem 1 is equal to

A(φ)(x) =

∫ 1

0

{
(H(x)− E(x)) Π−1

2 S10(v) + (D(x, v)− J (x, v))
}
φ(v)dv ,

(A.2)
for any vector function φ. Let ψ(x) = A−1(Ω)(x), which means ψ(x) is the
solution that satisfies A(ψ)(x) = Ω(x). Additional details concerning notation
can be found in the associated Supplementary Material.

Regularity Conditions

(C1) The kernel function K(x) is a symmetric density function with compact sup-
port [−1, 1] and continuous derivatives.

(C2) The quantity τ is a finite positive value such that Pr(T > τ) > 0 and Pr(C =
τ) > 0.

(C3) (Z,X) are bounded with compact support, and P (C = 0 | Z = z,X = x) < 1.
(C4) α ∈ Θ, where Θ is a bounded compact set.
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(C5) Let gαk
(v) = E(Xj|X′jαk = v). The density function fαk

(v) of X′αk is
bounded away from zero; gαk

(v) and fαk
(v) have continuous second-

order derivatives with respect to v for any αk. The function β(v) and
sk,ij(t;αk,θ, δ1, v) are twice continuously differentiable with respect to v ∈
[0, 1] for any t ∈ [0, τ ], α ∈ Θ, δ1 ∈ C0.

(C6) For k = 1, . . . , d, there exists a unique root (α, δ1) of the following equations:∫ τ

0

{
rk(t;αk,α0,β0, δ2)− rk(t;αk,α, δ1, δ2)

s00(t)

s00(t;α, δ1)

}
λ0(t)dt = 0,∫ τ

0

{
sk,10(t;αk,α0,β0,mik)− sk,10(t;αk,α, δ1,mik)

s00(t)

s00(t;α, δ1)

}
λ0(t)dt = 0,

in δ1 ∈ C0 and α ∈ Θ for any bounded δ2 and mik = X′iαk.
(C7) h2 log(n)→ 0 and nh3 →∞.
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