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Deep learning neural network models such as multilayer perceptron (MLP) and
convolutional neural network (CNN) are novel and attractive artificial intelli-
gence computing tools. However, evaluation of the performance of these meth-
ods is not readily available for practitioners yet. We provide a tutorial for eval-
uating classification accuracy for various state-of-the-art learning approaches,
including familiar shallow and deep learning methods. For qualitative response
variables with more than two categories, many traditional accuracy measures
such as sensitivity, specificity, and area under the receiver operating character-
istic curve are not applicable and we have to consider their extensions properly.
In this paper, a few important statistical concepts for multicategory classifica-
tion accuracy are reviewed and their utilities for various learning algorithms are
demonstrated with real medical examples. We offer problem-based R code to
illustrate how to perform these statistical computations step by step. We expect
that such analysis tools will become more familiar to practitioners and receive
broader applications in biostatistics.
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1 INTRODUCTION

Deep learning methods can be used to design sophisticated neural networks for health care and medical research
applications: from real-time pathology assessment to point-of-care interventions to predictive analytics for clinical
decision-making. These innovations are advancing the future of precision medicine and population health manage-
ment in astonishing ways. In particular, deep learning substantially boosts medical classification tasks. Using this new
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approach, one may construct computational models that are composed of multiple processing layers to learn repre-
sentations of data with high degree of abstraction. These machine learning methods have dramatically improved the
state-of-the-art in scientific and business studies. Despite their popularity, there is little account in the statistical litera-
ture on how to evaluate and report the learning performance of these methods. We will address this issue in this tutorial
and focus specifically on supervised classification tasks.

Statistical classification is needed particularly in clinical settings where the accurate diagnosis of a subject's status is
crucial for proper treatment. An assessment of patient disease conditions and evaluation of the prognosis of patients
can be achieved by analyzing clinical and laboratory data using appropriate learning tools. For two-category classifica-
tion (eg, diseased and nondiseased conditions), receiver operating characteristic (ROC) curves and the area under the
ROC curve (AUC) measure have been widely adopted for evaluating the accuracy of numerical diagnostic tests.1,2 Med-
ical decision-making sometimes may involve more than two categories. In recent decades, many authors contributed
new development to extend standard metrics for multicategory classification, including class-specific correct classifi-
cation probabilities (CCPs),3 hypervolume under the ROC manifold (HUM),4 multicategory integrated discrimination
improvement (IDI),3 multicategory net reclassification improvement (NRI),3 polytomous discrimination index (PDI),5

and R-squared (RSQ).3 These measures complement their counterparts for binary classification and are now available in
statistical packages too. We will review these quantities in the tutorial and illustrate their utility with real examples.

We note that, in a medical classification problem, it is often necessary to involve more than one biomarkers. A statistical
model is learned from a training sample, and using the learned model, one can produce predictive probability for each
individual. For categorical outcome, the traditional learning programs include logistic regression, decision tree, linear
discrimination analysis, and support vector machines (SVMs), among others. These procedures are well known for their
applicability for many small scale problems. However, for more complicated data analysis such as image data or other
massive datasets with huge number of observations and variables, these shallow learning methods may be rather limited.
More complicated learning methods such as multilayer perceptron (MLP) and convolutional neural network (CNN) may
achieve more satisfactory classification results. We will illustrate in this paper how to evaluate learning accuracy for both
shallow and deep learning approaches.

This paper is structured as follows. In Section 2, we selectively review a few modern shallow and deep learning methods,
along with their computer softwares. In Section 3, we review six important accuracy measures to evaluate the performance
of multicategory classifiers. In Section 4, we provide three case studies to illustrate the calculation.

2 CLASSIFICATION MODELS AND METHODS

We first introduce some mathematical notation. Consider a set of predictors Ω = {X1, … ,Xp}, where X𝑗 ∈ ℝ ( j =
1, … , p) is the jth predictor that can be discrete or continuous. Suppose we have a training sample of n subjects with
measurements {xij, i = 1, … ,n; j = 1, … , p} and their class labels {yi, i = 1, … ,n}. Denote xi = (xi1, … , xip) as
the ith subject. Researchers want to make use of the markers to accurately classify or predict the categorical outcome y.
Suppose the multicategory outcome y takes values from  = {1, 2, … ,M}. These categories are known and, in general,
not ordered. Of course, it is also easy to imagine classifying patients into low-, medium-, and high-risk groups, for instance.
We define the binary random variable 𝛿m = I( y = m) and let the prevalence for the mth category be 𝜌m = E(𝛿m) =
P( y = m).

In practice, in order to incorporate multiple markers, we have to construct statistical models and make classification
decision based on the model-based risk prediction. Suppose a model 1 is learned based on a set of predictors Ω1 ⊂ Ω.
Such a model 1 can generate an M-dimensional probability assessment vector pi(1) = (pi1(1), … , piM(1))T for
the ith subject such that

∑M
m=1 pim(1) = 1. Each component pim(1) in the vector is also commonly referred to as the

risk score and indicates the predicted probability of the mth class membership. A greater value of pim(1) suggests by the
model 1 that the ith subject is more likely to be in the mth category. A classifier thus may want to assign the ith subject
into the category corresponding to the greatest value of pim(1). This is a very common take-the-winner classification
rule. Different learning methods, in general, may generate quite different probability assessment vector for the same set
of predictors Ω1 and thus lead to different classification results with varied accuracy.

For the sample of n subjects, we can stack the vectors pi(1) to form an n × p probability assessment matrix p(1) =
[p1(1) … pn(1)]T , which is the input value for the various accuracy evaluation methods in Section 3. In this section,
we first review a few familiar learning approaches that produce p(1) for the sample observations.
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2.1 Shallow learning methods
2.1.1 Multinomial logistic regression
There are abundant research developments to compute the vectors of class probability estimates. Among them, the sim-
plest method perhaps is the multinomial logistic regression model6 by using the multiple category indicator variable as
the response and using the markers involved in Ω1 as the regressor variables. From the fitted model, we may then evaluate
the model-based prediction on the probability scale.

Using the first category as the reference, a multinomial logistic regression model is given by

log
P(𝑦i = m|xi)
P(𝑦i = 1|xi)

= 𝛽m0 + 𝛽T
m1xi, m = 2, … ,M, (1)

where the regression coefficient 𝛽m1 characterizes the dependence of the outcome on the predictor variables. In general,
for a response with M categories, we need M − 1 log-odds equations defined above to formulate the regression model. In
fact, the M − 1 multinomial logit equations contrast each of categories 2, 3, … , M with the reference category 1. Thus,
the model-based risk score can be computed by

pik = P(𝑦i = k|xi) =

{ M∑
m=1

exp
(
𝛽T

mCi
)}−1

exp
(
𝛽T

k Ci
)
, i = 1, … ,M, (2)

where Ci = (1, xT
i )

T , 𝛽k = (𝛽k0, 𝛽
T
k1)

T and 𝛽1 = 0. In practice, the regression coefficients 𝛽k can be estimated from the
maximum likelihood estimation. To implement the multinomial logistic regression, we may use the R package nnet.
Suppose y is the n-dimensional vector of class labels and d is the n × p matrix of predictors. We can use the following
code to obtain a fitted regression model 1.

We may then use the command nnet::predict(M1,type='probs') to yield the probability assessment matrix p(1) for
the whole data set.

Besides logistic regression, other regression methods such as SVMs, linear discriminant analysis (LDA), and classifi-
cation tree are also extended in the literature to address the multicategory response variable. Thus, they can be similarly
adapted to produce suitable classification results.

2.1.2 Support vector machine
The SVMs are based upon the idea of maximizing the margin, ie, maximizing the minimum distance from the separating
hyperplane to the nearest class member.7,8 In addition to nice theoretical properties, SVMs give exceptionally good perfor-
mance on classification tasks. The basic SVM supports only binary classification, but extensions9,10 have been proposed
to handle the multicategory classification as well. In these extensions, additional parameters and constraints are added
to the optimization problem to handle the separation of the different classes.

The solution of an SVM is usually obtained from minimizing a regularized hinge loss function where a tuning parameter
𝜆 determines the trade-off between increasing the margin size and ensuring that the data features xi lie on the correct
side of the margin. The computation can be solved efficiently with existing software. However, there is a nonparametric
form for the estimated risk score based on functional approximation. We usually only focus on the numerical output for
risk prediction from the fitted model.

To implement SVM, we may use the R package e1071. Suppose y is the class label and d is the matrix of predictors. In
SVM, we usually have to specify a kernel function that defines an inner product for the original data. When a radial basis
function is chosen as the kernel, we may use the following code to obtain the fitted model.

We can then use e1071::attr(predict(M1,d,probability = T),"probabilities") to extract the probability assessment
matrix p(1).

SVM can be viewed as a penalization method where the slope coefficients of the basis expansions are shrunk toward
zero. Consider the binary case and code the outcome as yi ∈ {1, −1} and a hyperplane model f (xi) = wT𝜙(xi) + b, where
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𝜙(xi) is a fixed transformation and b is an intercept term. SVM aims to find the vector w that minimizes
n∑

i=1
[1 − 𝑦i𝑓 (xi)]+ + 𝜆||w||2, (3)

where [x]+ represents the positive part of x and 𝜆 is a tuning parameter. In general, other margin maximizing loss functions
can be used to create similar classifiers. One can apply what we introduce in this paper to carry out a similar investigation
on their classification accuracy.

2.1.3 Decision tree
Another well-known classifier is the classification tree11 algorithm. The algorithm usually includes two steps. Firstly,
we grow a large tree T0 via recursive partitioning, stopping the splitting process only when some minimum node size is
reached. Secondly, we conduct a cost-complexity pruning to refine the tree structure.

Algorithms for constructing large decision tree T0 usually work top-down, by choosing a splitting variable and a thresh-
old that best splits the set of items. After that, we find the desired tree T by deleting nodes of the large tree T0 via balancing
misclassification error and tree complexity. The tuning parameters in the actual computing can be set by cross validation.
For a constructed tree model, we can then compute the posterior probability of all the leaf nodes to obtain the risk score
for all the subjects.

To implement the tree method in this paper, we consider the R package rpart. Suppose again y is the label and d is the
matrix of predictors. We can apply the following code to construct a classification tree.

We may then use rpart::predict(fit,type="prob") to obtain the probability assessment matrix p(1).
We note that, in practice, a single tree model may not perform very well with relatively low or moderate accuracy. To

improve the performance, readers may consider random forests, bagging, bootstrapping, adaptive boosting, and other
extended versions. Those advanced classifiers may also be evaluated using the same procedure in this paper.

2.1.4 Linear discriminant analysis
Linear discriminant analysis (LDA)12 is one of the oldest classification approaches and still finds applications in plenty
of real-world problems. LDA seeks a linear combination of predictor variables that best separates two or more classes of
subjects. The resulting combination may be used as a linear classifier.

Typically features xi's in the mth class are assumed to be normally distributed with mean 𝜇m, covariance Σm, and prob-
ability density function 𝜙m(xi). Under such an assumption, we may use the maximum likelihood estimation to estimate
the parameters and then use the Bayes' theorem to derive the posterior probability for the ith subject

pik = P(𝑦i = k|xi) =
𝜌k𝜙k(xi)∑M

m=1 𝜌m𝜙m(xi)
k = 1, … ,M. (4)

To implement LDA, we use the R package MASS in this tutorial. The following code gives the solution of an estimated
LDA model.

We then use MASS::predict(M1)$posterior to obtain the probability assessment matrix.
Like other aforementioned learning approaches, LDA also has various generalized versions such as quadratic discrimi-

nant analysis and robust parameter estimation. These methods are quite fundamental to the traditional ways classification
was done, partially because they are relatively easy to understand and computationally straightforward. However, when p
is large, the sample size required to estimate the parameters reasonably well can be prohibitive. One must consider more
modernized variant of LDA for such problems.

2.2 Deep learning
Artificial neural networks13 (ANNs) are computing systems inspired by the biological neural networks that constitute
animal brains. Deep learning is a special type of ANN and is currently gaining a lot of attention for its utilization with



LI ET AL. 2481

FIGURE 1 Activation functions. A, Sigmod function; B, Tanh function; C, Relu function

big health care data. It is based on a collection of connected units or nodes called artificial neurons or perceptrons. Often,
neurons are organized in layers which consist of connections, each connection transferring the output of a neuron i to
the input of a neuron j.

There are some common components of neural network that are important for setting up the computation works.
First, a so-called activation function f (x) should be nonlinear, differentiable, and monotony. Commonly used activation
functions include the Sigmod function f (x) = 1∕(1 + e−x), the Tanh function f (x) = 2 sigmod (2x) − 1, and the Relu
function f (x) = max(0, x). We display these functions in Figure 1.

Secondly, a loss function l(y, y′) is specified to measure the loss of the true value y and the predicted value y ′ returned
from the function f. For binary category outcome, we usually use the cross entropy14 as the loss function.

l(𝑦, 𝑦′) = −
[
𝑦 log(𝑦′) + (1 − 𝑦) log(1 − 𝑦′)

]
(5)

The model parameters in the networks may be estimated by minimizing the total loss function for all the samples. The
computation can be carried out using the iterative gradient descent algorithms.

We may treat the multinomial logistic regression reviewed earlier as a special kind of deep learning method with only
one layer. From Equation (2), we may find that the activation function for logistic regression is actually a generalization
of the sigmod function, usually called softmax function

𝑓k(x) = softmaxk(x) =
exp

(
𝛽T

k x
)

∑M
m=1 exp

(
𝛽T

mx
) , k = 1, … ,M. (6)

For a general multicategory problem, the cross entropy loss function for a subject may be given as

l(𝑦, 𝑦′) = −
M∑

m=1
𝑦m log 𝑦′m, (7)

where 𝑦′m is the predicted probability that the subject is in the mth class based on the deep learning classifier.
We next consider two specific deep learners that are now incorporated in standard softwares.

2.2.1 Multilayer perceptron
An MLP15 is a class of feedforward ANN where connections between the units do not form a cycle. It can be viewed
as a logistic regression classifier where the input is first transformed using a learned nonlinear transformation f. This
transformation projects the input data into a space where it becomes linearly separable. Figure 2 provides the flow sheet
of this approach.

To take a closer look at the structure, we may ignore the hidden layer and set the dimension of input xi to be p = 3 and
show the single layer computation in Figure 3. Mathematically, a neuron in the (t + 1)th layer x(t + 1) is adjusted from
x(t) via

x(t + 1) = 𝑓 [b(t) + w(t)Tx(t)], (8)

where f is the activation function, b(t)is the so-called bias term at the tth layer, and w(t) is the weight vector of the tth layer.
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FIGURE 2 Flowsheet of multilayer perceptron. Suppose the input is xi = (xi1, … , xi5). Each circle represents a neuron and each arrow is a
connection between layers. The input layer consists of a set of neurons representing the input features. Each neuron in the hidden layer
transforms the values from the previous layer with a weighted linear summation, followed by a nonlinear activation function. The output
layer receives the values from the last hidden layer and such values are transformed into output values. The number of neurons in the output
softmax layer is the same as the category numbers

FIGURE 3 Flowsheet of a simplified multilayer perceptron with one hidden layer. Suppose the input is xi = (xi1, xi2, xi3). The output of
each neuron is calculated by a nonlinear function f of the sum of its input plus a bias b as in Equation (8)

An MLP algorithm repeats the above calculation for a number of layers and stops at the Tth layer. In the output layer
or the Tth layer, class-membership probabilities can be obtained from the softmax function.

The reason why MLP works well in practice is that it learns multiple levels of abstraction of data representations through
multiple processing layers. The goal of representation learning or feature learning is to find an appropriate representation
of data in order to perform a machine learning task. In particular, in MLP, each hidden layer maps its input data to an
inner representation that tends to capture a higher level of abstraction. These learned features are increasingly more
informative through layers toward the machine learning task. The backpropagation algorithm has a great significance
during this process. We introduce a useful notation 𝛿 to represent the derivative of a loss function with respect to a dot
product of weights and neurons. Then, backpropagation formula suggest that the value of 𝛿 for a particular hidden unit
can be obtained by propagating the 𝛿's backwards from units higher up in the network. Consequently, we can recursively
calculate all the derivatives.

To train an MLP, we need to learn all the parameters of the model including the weight w and the bias b. The estimation
is usually carried out under the stochastic gradient descent algorithm with minibatches.16 Evaluating the gradients can be
achieved through the backpropagation algorithm17 (a special case of the chain rule of derivation). Software development
for deep learning has been abundant and is rapidly evolving in the recent decade. In particular, open source libraries
such as mxnet enable nonexperts to easily design, train, and implement deep neural networks. We will carry out all the
computation in this paper usingmxnet since it supports languages such asPython orR and can train quickly on multiple
GPUs. For more information about the software, visit https://mxnet.incubator.apache.org/index.html. We may download
and install mxnet package using the following code. If there is an error about DiagrammeR during the installation, we
recommend to manually install earlier version of DiagrammeR in advance.

https://https://mxnet.incubator.apache.org/index.html
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In practice, the following operational parameters for the MLP need to be tuned by the user:
Layers. Number of layers and number of neurons in each layer. Usually, the number of neurons can be very large while
the number of layers may be relatively moderate or small. The number of neurons in different layers may also differ.
Activation functions. Activation functions in each layer. All three functions in Figure 1 can be used while the Relu
function is usually preferred for the simplicity of computation. For example, if we want to fill in two hidden layers, first
containing 500 nodes and second containing 100 nodes, and choose both of the activation functions to be “Relu,” we can
use the following function series mx.symbol for specification.

Loss function. Loss function in the output layer. Usually, we choose the softmax function defined in
Equation (6).
Number of round or epoch. The number of iterations over the sample data to train the model parameters. Often, we need
very large number of round to achieve satisfactory numeric accuracy, similar to other nonlinear programming problems.
One may specify the option num.round in the software.
Learning rate. The step size in gradient descent method. This tuning parameter can be optimized via the cross validation.
Alternatively, many practitioners recommended to use a small value such as 0.1 or 0.01. One may specify the option
learning.rate in the software.
Initializer. The initialization scheme for parameters, which specifies the unknown weight at the beginning, usually
drawn from a uniform design. One may specify the option initializer in the software.
Array batch size. The batch size used for array training. The whole training data is usually divided into batches to
facilitate the computing. For example, if we set 41 rounds, 40 batch size, 0.08 learning rate, uniform distribution (0.07) as
the initial weight, we may use function mx.model.FeedForward.create to create the following model specification.

Here, we need to encode the first level of y to be 1 and thus denote it as yy and we normalize each column of feature
matrix d to obtain data matrix dd.

We use the previously constructed MLP symbol “softmax” as the input of mx.model.FeedForward.create. It returns
the fitted model M1 from which we can obtain the probability assessment matrix.

There is still limited discussion on how to set all these options to optimize the classification performance. Depending
on the scale of the problem and complexity of the data, settings of real-world examples using MLP need to be addressed
case by case.

After the model architectures are constructed and all the parameters are learned, every input xi can lead to a proba-
bility vector of length M through the softmax loss. After such evaluation for all the n subjects, we obtain the probability
assessment matrix p(1) as in the previous shallow learning methods.

2.2.2 Convolutional neural networks
Convolutional neural networks18 (CNNs) are made up of neuron-like computational connections involving learnable
weights and biases. Though the main hierarchical structures are similar to MLP, we highlight the following key
differences.
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First, the input for CNN are usually images or multidimensional data arrays rather than a vector in MLP. In fact, the
overall learning process of CNN simulates the organization of the animal visual cortex. Thus, the layers of a CNN for
a two-dimensional (2D) colored image typically have neurons arranged in 3 dimensions: width, height, and depth. The
width and height can be the same as the dimension of the input image matrix. On the other hand, the depth would be 3
corresponding to Red, Green, and Blue channels for a colored 2D picture.

Secondly, we need three types of layers to build CNN architectures: the convolutional layer, the pooling layer (not always
necessary to specify), and the fully connected layer that is the same as the hidden layer in MLP. The primary purpose of
a convolutional layer is to detect distinctive local motif-like edges, lines, and other visual elements. Parameters including
number of filters, their spatial extents, and stride should be specified. The pooling layer operates independently on every
depth slice of the input and resizes it spatially, using the maximum (MAX) operation. For example, every MAX operation
would be taking a max over 4 numbers if filter size is 2× 2 with a stride of 2. Parameter such as filters sizes and stride should
be settled at this stage. A CNN architecture contains a list of layers that transform the image volume into a probability
vector. The initial volume stores the raw image pixels and the last volume stores the class risk scores.

To implement CNN, we may use mxnet package as well. There are a few key parameters to be specified by the user. The
number of filters (or kernels) is the number of neurons, since each neuron performs a different convolution on the input
to the layer (more precisely, the neurons' input weights form convolution kernels). Filter spatial extent is size of a filter
(or a kernel). Usually, we use 3 × 3 kernel or 5 × 5 kernel. Every time, we will connect each neuron to a local region that
is the kernel size of the input volume. We specify the stride with which we slide the filter. When the stride is 1, then we
move the filters one pixel at a time. When the stride is 2, then the filters jump 2 pixels at a time as we slide them around,
which will produce smaller output volumes spatially.

For example, suppose we want to fill in two convolution layer ensembles, first containing 20 filters and second con-
taining 50 filters. Both of the activation functions are specified as “tanh.” Also, we use 5 × 5 kernel for convolution, 2 × 2
kernel for max pooling, and 2 × 2 stride for both of ensembles. After constructing convolution layer ensembles, we move
on to construct one single fully connected layer with 500 hidden nodes and “tanh” to activate it. We can use function
series mx.symbol to construct it as follows.

Other modeling options are similar to those for MLP discussed earlier. For example, if we specify 41 rounds, 40
batch size, 0.08 learning rate, uniform distribution (0.07) as the initial weight, we may use function mx.model.
FeedForward.create to create the CNN model as follows.
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We use the previously constructed CNN symbol “lenet” as the input of mx.model.FeedForward.create. It returns the
fitted model M1 that we can use to make classification. Every input xi can lead to a probability vector of length M after the
model architectures are constructed and the parameters are settled and learned. Computing such risk scores for all the n
objects, we may then obtain the probability assessment matrix p(1) for the downstream evaluation.

3 ACCURACY METRICS

All the learning methods reviewed in the preceding section will be examined by the accuracy metrics reviewed in this
section. We provide a conceptual summary for each classification accuracy measure and introduce the associated soft-
ware. These measures were originally proposed to assess the diagnostic accuracy of medical tests and widely adopted in
epidemiology studies. We will see that they are equally applicable to evaluate classification accuracy for various learning
methods.

3.1 Single model evaluation
First, we consider a few measures that are useful to describe the classification performance of a particular statistical
model. For these measures, a greater value indicates a more satisfactory classification performance.

3.1.1 Hypervolume under the manifold
Hypervolume under the ROC manifold (HUM)19 has been proposed as a generalization of AUC1,2 value for multicategory
classification. Unlike the CCP to be defined in the next section, HUM does not depend on the class prevalence and thus
reflects the intrinsic accuracy of the classifier.

We consider extending the definition of 2D ROC curve. Recall that a statistical learning method 1 can generate a
probability assessment vector pi(1) = (pi1(1), … , piM(1))T for the ith subject. To make classification decision, one
may apply the following sequential thresholding rule: If pi1(1) > c1, then classify the ith subject as class 1; otherwise,
if pi2(1) > c2, then classify the subject as class 2; … ; otherwise, if pi,M−1(1) > cM−1, then classify the subject as
class M − 1; otherwise, classify as class M. With M classes, this procedure requires M − 1 thresholds c1, … , cM− 1 and
different threshold values produce different decision rules. At a fixed set of M − 1 thresholds, the probability of correctly
classifying the mth class is denoted by tm(m = 1, … ,M). For example, t1 = P(pi1(1) > c1|𝑦i = 1), t2 = P(pi1(1) ≤
c1, pi2(1) > c2|𝑦i = 2) and so forth. One plots (t1, t2, … , tM) in M-dimensional space for all decision rules (ie, all possible
threshold values) and then connects these points to form an ROC manifold. When M = 2, t1 and t2 are simply the
sensitivity and specificity and the manifold reduces to the familiar ROC curve. When M = 3, the manifold reduces to
the three-dimensional (3D) ROC surface. The ROC manifold itself may not be of much interest when M ≥ 4. A more
relevant quantity is the HUM that summarizes the overall accuracy for the model 1.

Novoselova et al20 developed an R package HUM that can be directly downloaded from CRAN website. The correspond-
ing Shiny web application (https://public.ostfalia.de/klawonn/HUM.htm) allows graphical display of 3D ROC surface.
Figure 4 presents an example, displaying 3D view of three ROC surfaces, where we consider a leukemia data21 to be
described in Section 4.4 and plot the ROC manifolds for three selected genetic markers in the data. Clearly, the volume
for the left panel is much greater than the other two panels, indicating the corresponding marker is a stronger classifier.

The aforementioned geometric definition of HUM may not be directly relevant to numerical evaluation. In fact, there
is an appealing alternative probabilistic definition of HUM. Suppose there is a random sample involving M subjects and
each subject is chosen from one of the M distinct categories. Without loss of generality, we assume that the mth subject is
from the mth category, m = 1, … ,M. Then, HUM for a classification model 1 corresponds to the probability that all
the M subjects are correctly classified by the model 1. When M = 2, we recall that AUC is the probability of correctly
differentiating a pair of randomly chosen diseased and nondiseased subjects. Thus, HUM provides a direct generalization
of AUC for multiple classes. The null value for HUM is 1∕M! and corresponds to a random guess.

The inference procedure for HUM has been discussed for ordered polychotomous responses19,22 with a single marker
(ie, p = 1). The calculation method has been implemented in R package HUM. For the more general case of unordered
polychotomous responses and for model-based multivariate predictors (ie, p > 1), one needs to consider the methods in
the work of Li and Fine.4 The method is available in R package mcca and will be covered with details in this tutorial.

https://public.ostfalia.de/klawonn/HUM.htm


2486 LI ET AL.

FIGURE 4 Three-dimensional receiver operating characteristic surfaces for three gene expressions from leukemia data [Colour figure can
be viewed at wileyonlinelibrary.com]

3.1.2 Correct classification probability
Another very popular multicategory classification accuracy measure is the CCP. To fix the notation, we write �̂�i(1) to
be the predicted class membership for the ith subject using the machine learning model 1. The CCP is thus defined to
be the probability that the predicted class agrees with the true class for the subject

CCP = P(𝑦i = �̂�i(1)). (9)

Using the law of total probability, the equation above can be rewritten as

CCP =
M∑

m=1
P(�̂�i(1) = m|𝑦i = m)P(𝑦i = m) =

M∑
m=1

𝜌mP(�̂�i(1) = m|𝑦i = m), (10)

where the probability P(�̂�i(1) = m|𝑦i = m) can be regarded as a class-specific CCP for the mth category. When M = 2,
the two class-specific CCP values are commonly referred to as the sensitivity and the specificity.1,2 CCP directly assesses
whether the mode-based classification for a subject is identical to his true class status. Its empirical version is simply the
proportion of correctly classified subjects in the sample.

ĈCP = 1
n

n∑
i=1

I(𝑦i = �̂�(1)) (11)

Such a simple formula facilitates the application of CCP in many real problems, especially when M is large. In fact,
the computation time for CCP does not increase as the number of categories increases. CCP and its complement,
misclassification rate, are commonly used in machine learning literature.

Machine classifiers usually output the probability assessment vector p(1) directly and a decision-maker needs to take
one more step to convert the probability into an actual class prediction �̂�(1). In general, we may follow two types of
decision rules to carry out the conversion.

The first type is the thresholding rule introduced in the preceding section. Based on such a rule, we may define the
probability of correctly classifying the mth class to be tm = P(�̂�(1) = m|𝑦 = m), m = 1, … ,M. The overall CCP for a
model 1 is just a prevalence-weighted average

CCP =
M∑

m=1
𝜌mtm. (12)

Besides the thresholding rule, we note that tm may also be defined without using any threshold. In fact, we may consider
the take-the-winner rule: Recall that a classifier 1 generates a probability assessment vector pi(1) = (pi1(1), … ,

piM(1))T for the ith subject. Decision-makers may assign a subject to one of the M categories according to the greatest
component in the probability vector pi(1). Under this rule, we may obtain for the mth class

CCPm = tm = P(pim(1) > pik(1), k ≠ m|𝑦i = m), m = 1, … ,M. (13)

http://wileyonlinelibrary.com
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We note that, when M = 2, thresholding rule and take-the-winner rule yield the same definition of t1 and t2 (sensitivity
and specificity).1,2

Though it provides a straightforward assessment on the performance of a fixed sample, the estimated overall CCP value
is quite sensitive to the distribution of different classes in the particular data sample and thus cannot lend support to
external validity for some studies where prevalence information is unavailable. For example, CCP values obtained for
low-risk disease groups may be dominated by the specificity.

The implementation of CCP is quite easy after a classification is done. We will use the function CCP in R package mcca
in the following illustration.

3.1.3 R-squared value
R-squared (RSQ) value23-26 also called a coefficient of determination, is extensively studied in linear regression and has
been discussed for binary logistic regression models. Simply speaking, the value of R2 is the fraction of the total variance
of the response (continuous or categorical) explained by the model. A greater percentage of RSQ value may indicate that
a higher proportion of the variation of the response may be attributable to the markers included in the model and the
classification based on such a model may thus lead to more meaningful results. The estimated RSQ value, though not
directly rating the accuracy of classification, is still considered an important model evaluation statistic. There is also no
probabilistic interpretation for RSQ value even though it lies between 0 and 1.

For the mth class, the RSQ value3 for a particular model 1 is defined as

R2
m = var(𝛿m) − E(var(𝛿m|1))

var(𝛿m)
=

var(pim)
𝜌m(1 − 𝜌m)

, (14)

where the second equality follows as E(Yi = m|1) = pim(1), and pim is the mth element of the probability vector
pi(1) defined earlier. The overall RSQ value is simply an average of the class-specific RSQ values

RSQ = 1
M

M∑
m=1

R2
m. (15)

The applications of R2 for multicategory classification is not as common as the two measures in the preceding sections
in practice, mainly because it is not widely regarded as an accuracy measure but a model fitting summary statistic. It has
recently attracted more attention from biostatistical researchers due to its close connection to the IDI.3 The computation
of multiclass RSQ is implemented in function RSQ in R package mcca.

3.1.4 Polytomous discrimination index
Polytomous discrimination index (PDI)5,27,28 is a recently proposed diagnostic accuracy measure for multicategory classifi-
cation. Similar to HUM, PDI is also evaluating the probability of an event related to simultaneously classifying M subjects
from M categories. While HUM is pertaining to the event that all M subjects are correctly identified to their correspond-
ing categories, PDI is pertaining to the number of subjects in the set of M subjects that are correctly identified to his/her
category.

To define the PDI, we consider a random sample that involves M subjects and each subject is chosen from one of the M
distinct categories. Without loss of generality, we assume that the ith subject is from the ith category. The classification
decision is achieved via a joint comparison of the M subjects. Using earlier notations, for a classification model 1, we
may denote the probability of placing a subject from category i into category j by pi𝑗(1). A class i subject can be correctly
classified if pii(1) > p𝑗i(1) for all j ≠ i. For a fixed category i, we may define the class-specific PDI to be

PDIi = p(pii(1) > p𝑗i(1) 𝑗 ≠ i|𝑦i = i) (16)

and the overall PDI to be

PDI = 1
M

M∑
m=1

PDIm. (17)
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When M = 2, PDI also reduces to AUC and thus can be viewed as a generalization of AUC for the multiclass problem.
However, when M ≥ 3, PDI value is always greater than HUM for a classifier 1. Models or diagnostic biomarkers with
poor PDI values usually also have poor HUM values. The lower bound for PDI is 1∕M, corresponding to random guess.

PDI is not as widely applied as HUM and CCP to assess the diagnostic and classification accuracy. We suggest its value
should also be reported along with other major accuracy measures. Specifically, we would recommend computing PDI for
big data studies and screen out unnecessary biomarkers whose PDI values are below a satisfactory level. The computation
of PDI is implemented in function PDI in R package mcca.

3.2 Model comparison
When comparing two models used to make prediction or classification for the same data, it is usually not advisable to
only check the difference of a single accuracy measure. For example, it is noted by many authors that the difference of
HUM between two models may not be informative when the baseline model is already quite accurate. We next consider
two more appropriate measures for comparing two models.

We need more notations. Now, suppose that in addition to model 1 introduced earlier, more variable(s) are included
and we construct a model 2 that is based on a set of predictors Ω2 ⊃ Ω1. We use the nested-structure notations as
they are widely discussed in the literature. We note that there are studies where the accuracy improvement occurs among
nonnested models as well. Our proposed methods can apply with slight modification. The newly constructed model 2
generates another probability vector pi(2) = (pi1(2), … , piM(2)) for the ith subject.

3.2.1 Net reclassification improvement
Net reclassification improvement (NRI)29 is a numeric characterizations of accuracy improvement for diagnostic tests or
classification models and were shown to have certain advantage over analyses based on ROC curves.

While ROC-based measures have been widely adopted, it has been argued by many authors30 that such measures may
not be good criteria to quantify improvements in diagnostic or classification accuracy when the added value of a new
predictor to an existing model is of interest. NRI can address these limitations since it essentially calculates the increase
in correct classification between models.

The multicategory NRI from a baseline model 1 to a more complicated model 2 is

NRI =
M∑

m=1
𝜌m{CCPm(2) − CCPm(1)}. (18)

NRI directly reflects how often the new model corrects the incorrectly classified cases in the old model and is therefore very
appealing to practitioners. We note another interpretation for NRI is the difference of Youden's index of the two models.

For additional discussion of these recent developments, we refer the reader to other reference materials.31-34 We note
that these metrics provide different perspectives for accuracy studies and there are also critiques in the literature (see,
for example, the works of Pepe et al,35 Hilden and Gerds,36 and Kerr et al37). In particular, Hilden and Gerds36 pointed
out that NRI sometimes may inflate the prognostic performance of added biomarkers, and Kerr et al37 argued that NRI
may perform poorly under some nonlinear data generating mechanisms. Thus, users of such popular metrics should also
exercise caution in practice.

The computation of multiclass NRI is implemented in function NRI in R package mcca. There are also a few other
packages that allow the calculation of different versions of NRI.

3.2.2 Integrated discrimination improvement
Integrated discrimination improvement (IDI)35 is originally defined as the improvement of the integration for sensitivity
and specificity over all thresholds for binary classification. Recently, it has been extended to multiclass version by noting
its strong connection to RSQ values.23,24,26,29 In fact, IDI may be regarded simply as the increase in R2 defined in (15).
Specifically, we define the multiclass IDI to be

IDI = 1
M

M∑
m=1

(
R2

m(2) − R2
m(1)

)
. (19)
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IDI thus reflects how many more percentage of variation of the multiclass response the new model explains. Unlike NRI,
this metric does not correspond to a probability of a random event and thus has no probabilistic interpretation. However,
the IDI value certainly indicates the added explanation power of the new model relative to the old model and therefore also
widely adopted in biomedical studies. In the literature, IDI has the same critique as the NRI,38 and we suggest practitioners
to use these improvement measures with caution.

The computation of multiclass IDI is implemented in function IDI in R package mcca. There are also a few other
packages that allow the calculation of different versions of IDI.

4 CASE STUDIES

In this tutorial, we use R as the programming language. In order to analyze all the following examples, we need mcca
package that is specifically constructed for multicategory classification accuracy. It contains functions to evaluate the
six accuracy methods introduced in Section 3 for binary and multicategory classifiers. It can be download directly from
CRAN website https://CRAN.R-project.org/package=mcca.

4.1 Guideline
In this section, we provide a step-by-step guideline on how to analyze the classification accuracy for a real data set.

We first consider a single model evaluation. The following is the general procedure.
Single model evaluation:

Step 1 First, we pre-process the raw data. After downloading data to the computer, we clean the data by removing or
imputing missing entries. We then form a data matrix of p + 1 columns including p columns of the predictor
features and 1 column of the M-class response.

Step 2 Then, we may divide the whole dataset randomly into two parts: a training data and a test data. We use the
training data to build the statistical model and the test data to assess the out-of-sample performance.

Step 3 For single model evaluation, we choose one set of predictors Ω1 and build a statistical model based on these
variables. The statistical model can be based on any of the shallow learning methods (multinomial logistic
regression, classification tree, SVM, or LDA) or the deep learning methods (MLP or CNN). Pay attention that
some of the procedures require sophisticated parameters tuning to arrive at a satisfactory model.

Step 4 After the model is built, we apply this model to training and test data, respectively, to obtain the in-sample
and out-of-sample performance assessment. As discussed in Section 2, we may obtain a probability assessment
matrix from the fitted model and make classification decision based on the risk scores. Thus, we may feed this
matrix into the accuracy methods CCP, PDI, RSQ, HUM reviewed in Section 3 and obtain the accuracy metric
values accord ingly.

When the goal is to evaluate the accuracy improvement, we need to consider two models with different degree of
complexity. In this tutorial, we mainly consider two nested models built from the same learning program where the
simpler model can be reduced from the more complex model. In general, our discussion can also be applied to any
two classification models with nonnested structure. We provide a simple guideline on paired model comparison in
the following.

Model comparison:

Step 1 First, we pre-process the data as in the single model evaluation and divide the whole data into training and
test sets. For paired model comparison, we choose two sets of predictors Ω1 and Ω2. We aim to evaluate the
improvement of the model constructed by the two sets of predictors.

Step 2 We then use either a shallow learning or a deep learning method to train the statistical model for both sets of
predictors, separately. Consequently, we arrive at two models 1 and 2, based on Ω1 and Ω2, respectively.

Step 3 After the models are built, we apply the two fitted models to training and test data to obtain the in-sample
and out-of-sample performance assessment. As discussed in Section 2, we may obtain probability assessment

https://CRAN.R-project.org/package=mcca
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matrices for the two models and make classification decision accordingly. We may then compute NRI and IDI
reviewed in Section 3 and interpret the values accordingly.

In the following R illustration, one only needs to specify the two sets Ω1 and Ω2 to acquire the training set accuracy. To
compute the test set accuracy, one needs to explicitly extract the probability matrix from the fitted models and then feed
such a matrix to the R functions.

4.2 Breast cancer
Breast cancer is the most common cancer and the second greatest cause of cancer mortality for women. The diagnostic sys-
tem at University of Wisconsin Hospitals analyzed digital morphometry samples from 569 patients where 212 malignant
cases were identified. We revisit this Wisconsin breast cancer data that is publicly available at the UCI website:

https ∶ ∕∕archive.ics.uci.edu∕ml∕datasets∕.

Features are computed from a digitized image of a fine needle aspirate of a breast mass. These measurements describe
characteristics of the cell nuclei present in the image. The dataset contains 30 real-valued features computed for cell
nucleus. The diagnosis outcome is either malignant or benign. Each input variable represents certain feature of the cell
nucleus such as radius, perimeter, area, smoothness, concavity, and symmetry. These real values are standardized before
the deep learning calculation.

Following the guideline given in the preceding section, we carry out the following step-by-step calculation to
this dataset.

Step 1 Check whether the dataset is appropriate. After we download the dataset from UCI website, we save the file
wpbc.data to the desktop. Then, we assign proper variable names for the data file.

After the above operation, we obtain a data file with 194 observations and 34 variables where the first column is
the binary outcome variable indicating the disease status.

Step 2 We consider a sample with only the first ten variables (Outcome, Time, radius MEAN, texture MEAN,
perimeter MEAN, etc) in the original data file. Then, we randomly split this data frame into training and test
data in a 2 ∶ 1 ratio.

Step 3 Carry out the classification procedure and evaluate the accuracy measures. One may simply choose a func-
tion for the accuracy evaluation methods (hum, ccp, rsq, pdi) with an option method specifying
the classifier used. Available options for method include ˜multinom˜, ˜tree˜, ˜lda˜, ˜svm˜,
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˜prob˜, corresponding respectively to multinomial logistic regression, decision tree, linear discrimination
analysis, SVM, and arbitrary probability assessment matrix obtained externally. The following code is to
evaluate HUM of a multinomial logistic regression and RSQ value of a decision tree for the training
data created before.

In this case, using logistic regression achieves over 79% HUM value, suggesting that the two disease categories
can be differentiated by the markers with a moderately high probability.

The above code computes the standard error and 95% confidence interval for HUM value using the boot-
strap method.
All accuracy measures for the training sample and the test sample are summarized in Table 1 along with their
standard errors and 95% confidence intervals. We notice that in-sample accuracy is usually higher than the
out-of-sample accuracy. In particular, MLP attains the top in-sample accuracy among all classification methods
under all the four evaluation criteria.
To evaluate the accuracy for the test sample, one needs to carry out the model fitting explicitly and generate
the probability assessment matrix for the test sample. The following is an example to obtain the probability
assessment matrix for the test sample when using a multinomial logistic regression model.

TABLE 1 Accuracy for training and test samples for breast cancer data along with their standard
errors (in the parenthesis) and 95% confidence intervals (in the brackets)

CCP
multinom tree svm lda mlp

train 0.81 (0.04) 0.81 (0.02) 0.80 (0.03) 0.80 (0.04) 0.81 (0.03)
[0.72, 0.88] [0.73, 0.91] [0.76, 0.88] [0.74, 0.87] [0.74, 0.86]

test 0.78 (0.05) 0.66 (0.05) 0.80 (0.05) 0.75 (0.05) 0.75 (0.05)
[0.71, 0.88] [0.55, 0.75] [0.71, 0.90] [0.66, 0.83] [0.63, 0.85]

R-squres
multinom tree svm lda mlp

train 0.22 (0.07) 0.25 (0.09) 0.09 (0.10) 0.22 (0.07) 0.49 (0.06)
[0.15, 0.42] [0.27, 0.63] [0.06, 0.45] [0.14, 0.41] [0.39, 0.61]

test 0.25 (0.09) 0.21 (0.07) 0.04 (0.01) 0.22 (0.08) 0.52 (0.13)
[0.16, 0.45] [0.19, 0.49] [0.01, 0.08] [0.13, 0.40] [0.35, 0.82]

HUM (PDI)
multinom tree svm lda mlp

train 0.79 (0.04) 0.80 (0.09) 0.86 (0.03) 0.79 (0.04) 0.89 (0.03)
[0.75, 0.89] [0.70, 0.94] [0.85, 0.96] [0.74, 0.89] [0.82, 0.93]

test 0.76 (0.06) 0.70 (0.13) 0.68 (0.10) 0.76 (0.08) 0.69 (0.09)
[0.66, 0.88] [0.35, 0.83] [0.43, 0.81] [0.64, 0.87] [0.51, 0.86]

Abbreviations: CCP, correct classification probability; HUM, hypervolume under the ROC manifold; PDI, polytomous
discrimination index.
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After the probability assessment matrix pm2_m is obtained, we may then evaluate the accuracy measure such as
the HUM as follows.

The HUM for this model is 0.765 with a standard error 0.062. The 95% confidence interval for HUM is
[0.657, 0.876].
We provide more details on the implementation of MLP method. In this example, we use two hidden lay-
ers with 50 and 10 nodes, respectively. The activation function is chosen to be the Relu function. We specify
learning.rate=0.08, batch.size=40, num.round=40. The following code specifies the necessary symbol for MLP
computing and implements the multilayer model fitting.

After the above model is fitted using MLP method, we may then extract the probability assessment matrix pp
as follows. The accuracy measures such as CCP and HUM can be computed accordingly for the training sample
and the test sample.
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For the test sample, we can feed the fitted model into the predict function to obtain the probability assessment
matrix pm2_mlp and then evaluate the test accuracy using functions such as hum.

In this case M = 2, the ROC manifold is actually a 2D ROC curve for each classifier. We plot the ROC curves of the
five classifiers in Figure 5 for training (top) and test (bottom) data, respectively. We observe that MLP outperforms
other classifiers for the training sample while its performance is not as good as LDA for the test sample.

Step 4 We now consider an accuracy improvement study and compare models based on the above dataset with a larger
data containing from 23rd to 27th variables on top of the first nine markers. We use mydatal to represent the
new dataset in the following.

FIGURE 5 Receiver operating characteristic curve of five classifiers for training (top) and test (bottom) data [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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We may then evaluate the accuracy improvement for the training data. We exemplify the calculation by setting
the shallow learning classifier to be multinomial logistic regression. Other classification methods can be used by
changing the method option in the following nri and idi functions.

The test sample can be similarly evaluated using the following code.

We next consider the deep learning classifier MLP. Using the same model settings as in Step 3, we apply the
following code to obtain the IDI and NRI values for the accuracy improvement using MLP.
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FIGURE 6 Receiver operating characteristic curves for training (top) and test (bottom) data. Curves “multinom” and “mlp” are for the
baseline model and curves “multinom LARGE” and “mlp LARGE” are for the model with additional markers [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) values for all the five machine
learning models to predict the breast cancer outcomes: multinomial logistic regression, tree, support vector machine (SVM), linear
discriminant analysis (LDA), and multilayer perceptron (MLP). The left panel is for the training dataset while the right panel is for the test
dataset. The baseline model contains nine markers and the new model contains five more genes [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 6 plots the ROC curves of small and large dataset using training and test data, respectively. One can observe
that switching from the smaller set to the larger set leads to a slightly higher ROC curve for the multinomial
logistic regression and the MLP method.

Figure 7 compares the NRI and IDI values of both training and test datasets for five machine learning models.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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4.3 Leukemia
We next consider an example with M = 3 categories. Golub et al21 analyzed a leukemia dataset using microarray gene
expression. The data included three types of acute leukemias: acute lymphoblastic leukemia arising from T-cells (ALL
T-cell), acute lymphoblastic leukemia arising from B-cells (ALL B-cell), and acute myeloid leukemia (AML). The dataset
contains 8 ALL T-cell samples, 19 ALL B-cell samples, and 11 AML samples. Each sample contains 3916 gene expression
values obtained from Affymetrix high-density oligonucleotide microarrays. The dataset to be analyzed is downloaded
from http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

The training and test data were prepared by the authors in this case and we will thus use these data directly.

Step 1 Input the training data. In this case, we only consider six gene expression for the simplicity and therefore attain
a training data with 38 subjects and 7 variables. The first column st indicates the three types of disease status
ALLb, ALLt, AML.

Step 2 Input the test data in the same way. These 35 subjects were used by Golub et al as the test samples and we thus
follow the same analysis as the original authors.

Step 3 We construct a baseline model with the first four gene expressions. We used similar R code as in the preceding
section except that we need to set the number of outcome k=3 in all the functions. We use the following code
to compute HUM for a multinomial logistic regression model and RSQ value for a tree model. Other accuracy
measures for all kinds of classifiers can be similarly obtained.

We next illustrate the deep learning computation using MLP. In this case, we set the number output nodes to be
3 for the three-category classification.

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
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After the model is fitted with the above procedure, we may then obtain the probability assessment matrix and
evaluate the accuracy measures using the following code.

Test sample can be similarly evaluated using the following code.

Accuracy measures for all the classifiers are reported in Table 2 along with their standard errors (in the
parenthesis) and 95% confidence intervals (in the brackets). In this example, tree method attains the best
in-sample classification accuracy. For example, applying tree method to the four selected gene expression, we can
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TABLE 2 Accuracy for training and test samples in Leukemia data along with their standard
errors (in the parenthesis) and 95% confidence intervals (in the brackets)

CCP
multinom tree svm lda mlp

train 0.52 (0.12) 0.75 (0.10) 0.61 (0.11) 0.51 (0.09) 0.65 (0.07)
[0.44, 0.86] [0.48, 0.84] [0.50, 0.92] [0.39, 0.76] [0.52, 0.78]

test 0.36 (0.05) 0.44 (0.12) 0.35 (0.05) 0.36 (0.06) 0.35 (0.06)
[0.27, 0.46] [0.18, 0.64] [0.25, 0.44] [0.26, 0.48] [0.23, 0.45]

R-squres
multinom tree svm lda mlp

train 0.18 (0.12) 0.43 (0.13) 0.01 (0.11) 0.16 (0.10) 0.23 (0.03)
[0.14, 0.59] [0.16, 0.62] [0.02, 0.44] [0.11, 0.47] [0.17, 0.29]

test 0.21 (0.04) 0.51 (0.06) 0.04 (0.01) 0.17 (0.03) 0.19 (0.03)
[0.13, 0.27] [0.35, 0.58] [0.02, 0.05] [0.10, 0.23] [0.12, 0.25]

HUM
multinom tree svm lda mlp

train 0.40 (0.14) 0.86 (0.13) 0.04 (0.25) 0.43 (0.12) 0.62 (0.12)
[0.36, 0.85] [0.46, 1.00] [0.09, 0.98] [0.36, 0.79] [0.37, 0.87]

test 0.13 (0.11) 0.41 (0.18) 0.05 (0.04) 0.14 (0.11) 0.20 (0.10)
[0.00, 0.34] [0.04, 0.75] [0.00, 0.12] [0.00, 0.41] [0.06, 0.42]

PDI
multinom tree svm lda mlp

train 0.55 (0.10) 0.61 (0.17) 0.37 (0.17) 0.55 (0.09) 0.73 (0.08)
[0.53, 0.92] [0.21, 0.74] [0.41, 0.99] [0.52, 0.84] [0.56, 0.87]

test 0.29 (0.09) 0.24 (0.11) 0.21 (0.06) 0.30 (0.10) 0.40 (0.11)
[0.14, 0.51] [0.06, 0.48] [0.11, 0.34] [0.15, 0.48] [0.17, 0.62]

Abbreviations: CCP, correct classification probability; HUM, hypervolume under the ROC manifold; PDI, polyto-
mous discrimination index.

differentiate the three types of tumors with a 86% probability according to the reported HUM value. The
out-of-sample performance is much worse for all methods, mainly due to the small sample size.

Step 4 We then compare the above models with more complicated models involving additional markers. To this end,
we include two more genetic biomarkers from the data file.

We first evaluate NRI and IDI for multinomial logistic regression models, comparing the model with four markers
and the model with six markers.
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We next consider evaluating NRI and IDI for deep learning classifier MLP.

4.4 ADHD data
Next, we analyze the attention deficit hyperactivity disorder (ADHD) data from the ADHD-200 Sample Initiative (https://
fcon1000.projects:nitrc:org_indi_adhd200). ADHD is a common childhood disorder and can continue through adoles-
cence and adulthood. Symptoms include difficulty in staying focused and paying attention, difficulty in controlling
behavior, and overactivity. The dataset that we used is part of the ADHD-200 Global Competition datasets and can be
requested from the ADHD website for research purpose. It consists of 406 subjects, with 221 normal controls and 185
combined ADHD subjects.

Resting state fMRIs and T1-weighted images were acquired for each subject. RAVENS methodology is based on a
volume-preserving spatial transformation. Figures 8 and 9 display two typical individuals where the first row is an ADHD
patient and the second row is a normal control. The learning task is then to differentiate the two types of patients using
the complicated neural image data.

In this case, it is infeasible to run any of the shallow learning classifier directly on the image input. The classification
is achieved with CNN introduced earlier. For this example, the input data tensor A is of dimension 160 × 160 × 128,

https://fcon1000.projects.nitrc.org_indi_adhd200
https://fcon1000.projects.nitrc.org_indi_adhd200
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FIGURE 8 Axial, Sagittal, Coronal view at the center of the brain MRI for two selected subjects, one with AD (1st row) and one without
AD (2nd row) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 MRI images for two selected brains, one with AD (1st row) and one without AD (2nd row) [Colour figure can be viewed at
wileyonlinelibrary.com]

which can be viewed as a stack of 160 by 160 size images with channel equal to 128. We apply different kernels of sizes
2 × 2 × 128, 3 × 3 × 128, and 4 × 4 × 128, respectively. The pooling layers in the CNN model are all 2 × 2 Pool2.

The calculation is implemented using the mxnet package in R. First, we need to prepare the data in an appropriate
format to be loaded into the training network. The raw image data are stored in NIfTI form under two folders for AD and
NC, respectively, and can be read in R using f1unction readNIfTI from library oro.nifti.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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We arrive at a list object biglist including both AD and NC subjects. The above code also randomly split the whole data
into a training set (n = 300) and a test set (n = 106). The data to be fed into the CNN algorithm is a four-dimensional
array, with the first three dimensions defining the size of the tensor images and the last dimension being the sample size.
Next, we create the network structure as follows.

The above construction of the network with mxnet in R is lengthy but intuitive, like other deep learning approaches.
Type relu forces all the negative value to zero, providing relatively faster training speed than sigmoid or tanh function.
In the pooling function, we have a parameter stride that defines how the sliding window on each layer is moving on
both horizontal and vertical directions.

We specify the device for the training method to be GPU with device <- mx.gpu() command. Note that, to facil-
itate the graphical computing, the user's graphic card needs to support CUDA and has the CUDA Toolkit installed.
Otherwise, only CPU is supported and this line of code needs to be modified as device <- mx.cpu().

After the model is trained, we may use the trained classifier to predict the test data.

From predictProb, one can obtain the predicted probabilities and we can further calculate accuracy measures such
as HUM and CCR. Such computation can be done in the same manner as in the previous two examples and we do not
repeat the evaluation in this tutorial for space consideration.
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