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Abstract
Several plausible theories of the neural implementation of speed/accuracy trade-off (SAT),

the phenomenon in which individuals may alternately emphasize speed or accuracy during the perfor-

mance of cognitive tasks, have been proposed, and multiple lines of evidence point to the involve-

ment of the pre-supplemental motor area (pre-SMA). However, as the nature and directionality of

the pre-SMA's functional connections to other regions involved in cognitive control and task proces-

sing are not known, its precise role in the top-down control of SAT remains unclear. Although recent

advances in cross-sectional path modeling provide a promising way of characterizing these connec-

tions, such models are limited by their tendency to produce multiple equivalent solutions. In a sample

of healthy adults (N = 18), the current study uses the novel approach of Group Iterative Multiple

Model Estimation for Multiple Solutions (GIMME-MS) to assess directed functional connections

between the pre-SMA, other regions previously linked to control of SAT, and regions putatively

involved in evidence accumulation for the decision task. Results reveal a primary role of the pre-SMA

for modulating activity in regions involved in the decision process but suggest that this region

receives top-down input from the DLPFC. Findings also demonstrate the utility of GIMME-MS and

solution-reduction methods for obtaining valid directional inferences from connectivity path models.
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1 | INTRODUCTION

The strategies people use to complete cognitive tasks not only have

implications for task performance but also reflect individual and

contextual differences in the brain and behavior. In a common example,

people can adjust their performance to meet task demands by either

emphasizing accurate responding at the cost of speed or increasing the

speed of responding at the cost of accuracy. The ability to implement

this type of strategy adjustment, known as speed/accuracy trade-off

(SAT), has been found to be of high relevance for applied research in

areas as diverse as normative aging (Forstmann et al., 2011; Ratcliff,

Thapar, & McKoon, 2004), attention problems in childhood (Mulder

et al., 2010; Weigard & Huang-Pollock, 2014) and obsessive-

compulsive disorder (Erhan et al., 2017).

Numerous explanations for the neural implementation of SAT

have been posited and supported by a burgeoning literature involving

computational modeling, cellular recording in nonhuman primates, and

human neuroimaging (for a thorough review, see: Standage, Blohm, &

Dorris, 2014). Of these theories, we focus herein on explanations of

this phenomenon that are rooted in formal “bounded accumulator”

models (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010;

Rae, Heathcote, Donkin, Averell, & Brown, 2014), as these models are

commonly used in neuroimaging studies on the roles of human brain

regions in SAT. Such models frame choice response time (RT) tasks as

a race between accumulators that gather noisy evidence for each

response over time and assume that a response is initiated when one

of the accumulators reaches a predetermined threshold of evidence

(Bogacz et al., 2010). Lowering the distance the accumulator must

travel to surpass the threshold leads to faster, but more error-prone

responding, and raising this distance has the opposite effect. Within

this framework, a “cortical” theory (Van Veen, Krug, & Carter, 2008)

of SAT holds that, under speed-emphasis, brain regions involved in
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top-down control (e.g., the dorsolateral prefrontal cortex; DLPFC)

send a nonselective excitatory signal to regions involved in the accu-

mulation or integration of sensory evidence, increasing their baseline

activity and reducing the accumulators' distance-to-threshold (van

Veen et al., 2008). A distinct, “striatal” theory holds that, under speed-

emphasis, excitatory input to motor regions, mediated by top-down

connections from the pre-supplemental motor area (pre-SMA) to the

striatum, effectively lowers the threshold for response initiation,

which would also lead to distance-to-threshold reductions (Forstmann

et al., 2008, 2010, 2011).

Several additional lines of work have posited distinct explanations

for the behavioral changes observed in SAT. First, recent empirical

research involving both cognitive modeling (Rae et al., 2014) and

single-cell recordings (Heitz & Schall, 2012) has provided evidence

that speed emphasis causes changes to the rate of evidence accumu-

lation in addition to distance-to-threshold reductions. Furthermore,

other theoretical accounts challenge the assumption that distance-to-

threshold changes are the primary driver of SAT. Specifically, work

using attractor network models, which replicate features of neural

circuits putatively responsible for decision making, has suggested that

a common excitatory input to decision circuit controls SAT by altering

the strength of network dynamics, rather than through the modulation

of thresholding (Furman & Wang, 2008; Roxin & Ledberg, 2008;

Standage, Wang, & Blohm, 2014). However, Standage, Blohm, and

Dorris (2014) proposed that a “unifying” account, in which top-down

excitatory signals project to both decision-making attractor networks

and to thresholding circuitry, is plausible given the current state of

evidence in the SAT literature.

Hence, although current theories disagree about how specific

decision processes change in SAT, most share the assumption that

regions widely believed to be involved in sensory evidence accumula-

tion or motor thresholding receive an excitatory input under speed

emphasis, and that this input is provided by regions involved in the

top-down control of strategy adjustment (Standage, Blohm, & Dorris,

2014; Standage, Wang, & Blohm, 2014). Prior human neuroimaging

work aimed at testing the “cortical” and “striatal” accounts of SAT has

suggested that several regions previously found to be involved in cog-

nitive control processes, including the dorsolateral prefrontal cortex

(DLPFC: van Veen et al., 2008), the pre-SMA (Forstmann et al., 2010,

2011), and the anterior cingulate cortex (ACC; van Maanen et al.,

2011), may be the source of such control signals. Of these regions,

the pre-SMA has arguably received the most support for playing a

central role in the coordination of SAT. Neural activity in the pre-SMA

as measured by functional magnetic resonance imaging (fMRI) and the

integrity of white matter connections between this region and stria-

tum have both been found to display a correlational relationship with

individual differences in SAT-related distance-to-threshold changes,

as measured by parameters from bounded accumulator models

(Forstmann et al., 2008, 2010, 2011; Mansfield, Karayanidis, Jamadar,

Heathcote, & Forstmann, 2011). Furthermore, transcranial magnetic

stimulation of the right pre-SMA has been repeatedly demonstrated

to experimentally alter the same parameters (Berkay, Eser, Sack,

Çakmak, & Balcı, 2018; Georgiev et al., 2016; Tosun, Berkay, Sack,

Çakmak, & Balcı, 2017). However, a comprehensive understanding of

the pre-SMA's role in SAT is currently lacking, in part because the

strength and directionality of functional connections between this

region and other regions believed to be involved in the control of

SAT, as well as with those linked to evidence accumulation and motor

thresholding, is currently unclear.

Previous work on neural connectivity between regions putatively

involved in SAT has either employed measures of structural connec-

tions (e.g., white matter tract strength; Forstmann et al., 2010, 2011)

or psychophysiological interactions (PPI: van Veen et al., 2008; Green,

Biele, & Heekeren, 2012). Although these methods both have distinct

advantages, they do not provide straightforward evidence of the

directionality of connectivity between regions. Furthermore, previous

studies have typically offered a limited window into connections

between this set of regions, such as only exploring connectivity

between the pre-SMA and striatum (Forstmann et al., 2010, 2011) or

clarifying the DLPFC's connections with other structures, but not con-

nectivity between those structures (van Veen et al., 2008). Without a

comprehensive description of directional connections between

regions putatively involved in the control of SAT, and others puta-

tively involved in more basic decision processes, crucial questions

remain about the source of the hypothesized top-down control signal

and how the functional role of the pre-SMA differs from that of other

regions. For example, it remains unclear whether the pre-SMA and

DLPFC play distinct roles in implementing SAT strategy changes

(e.g., by influencing separate regions involved in decision processing),

or whether the pre-SMA coordinates strategy changes in response to

a control signal from the DLPFC.

Thus, a region-of-interest based directed connectivity analysis is

needed to characterize directional relationships between these

regions at the network level during SAT. However, fMRI network

modeling methods have displayed mixed success in establishing the

directionality of connections. In a landmark simulation/recovery study,

Smith et al. (2011) found that methods designed to do so, such as

Granger causality and the Bayes net algorithms available at the time,

generally performed poorly; directional connections were identified

with only 65–78% accuracy under ideal conditions. There have, how-

ever, been subsequent advances in preprocessing steps (the use high

pass filters) and in the development of novel network algorithms

which have produced several methods with great promise for identify-

ing the directionality of connections using fMRI data (Mumford &

Ramsey, 2014).

Group iterative multiple model estimation (GIMME; Gates &

Molenaar, 2012), which implements unified structural equation

models (uSEM; Gates, Molenaar, Hillary, Ram, & Rovine, 2010) to

characterize both sample- and individual-level directed connectivity

patterns, is one such method. By accounting for contemporaneous

and time-lagged relationships between regions of interest (ROIs) in a

data-driven manner, uSEMs allow researchers to make person-specific

inferences about the presence and directionality of functional connec-

tions between multiple ROIs that are unbiased by sequential depen-

dencies found in fMRI time series data (Gates et al., 2010). They do

this by integrating SEMs to estimate contemporaneous connections

between ROIs and vector autoregressions (VARs) to estimate lagged

connections. GIMME, in turn, provides a method for fitting these

models to sample-level data with the goal of establishing which

connections are common to a group, while also allowing for
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substantial heterogeneity between the connectivity maps of individ-

uals (Gates & Molenaar, 2012). The combination of uSEM and GIMME

methods was able to correctly identify the presence and directionality

of roughly 90% of connections in Smith et al. (2011) simulation data

set, demonstrating a marked improvement over other methods

(Gates & Molenaar, 2012). Due to the accuracy and efficacy of these

methods, they have previously been used to investigate directional

connectivity in the domains of brain injury (Hillary et al., 2011), tobacco

cessation (Zelle, Gates, Fiez, Sayette, & Wilson, 2017) and changes in

brain functioning associated with alcohol use in college students (Beltz

et al., 2013). Thus, they are ideal for clarifying directional connections

between the numerous regions that are putatively involved in SAT.

Despite this impressive performance, however, uSEMs, and thus,

GIMME are subject to the multiple solutions problem common to all

cross-sectional path analyses; there is often more than one possible

network that fits the data well (Beltz & Molenaar, 2016; MacCallum,

Wegener, Uchino, & Fabrigar, 1993). This is most likely to occur when

contemporaneous relationships are stronger than lagged relationships,

causing the data-driven search process to decide between bi-

directional contemporaneous paths that, without the modeling of

lagged relationships, would produce equivalent improvements to

model fit. To address this issue, Beltz and Molenaar (2016) created

GIMME for multiple solutions (GIMME-MS) that estimates all possible

solution sets; they also validated selection procedures for selecting

the optimal model in a simulation study. Although GIMME-MS has

been previously applied to behavioral time series data (Beltz, Wright,

Sprague, & Molenaar, 2016), it has not been previously applied to

functional connectivity analyses.

In the current study, we apply these state-of-the-art methods to

fMRI time series data collected while participants were asked to

implement SAT during a perceptual decision task. We aim to accom-

plish two interrelated goals. First, the methodological goal of the study

is to determine whether the application of GIMME-MS to this fMRI

data set provides evidence of equivalent solutions, and, if this is the

case, to use the multiple solution-reduction procedures validated by

Beltz and Molenaar (2016) to find an optimal set of models. Second,

the substantive goal of the study is to use these models to investigate

the presence and directionality of connections between regions that

are putatively involved in the control of SAT and those putatively

involved in more basic decision-making processes, such as evidence

accumulation (e.g., parietal areas) or motor thresholding (e.g., the stria-

tum). Although we had no strong or preregistered predictions of our

own, we sought to assess whether the results of this analysis were

consistent with what would be expected given previous theories of

SAT. We were most interested in whether the analysis would reveal

strong positive connections from one or more of the former regions

(the DLPFC, ACC, or pre-SMA) to one or more of the latter, which

may reflect the top-down excitatory signal that is posited by several

theories. Although the pre-SMA is arguably the region most heavily

implicated in playing a role in the control of SAT (at least from studies

using a bounded accumulator model framework), we also sought to

determine whether this region receives top-down input from a dis-

tinct region (e.g., the DLPFC), potentially reflecting a higher-order

control signal. In this way, we address gaps in the previous literature

on the connectivity of brain regions associated with SAT and demon-

strate the utility of uSEM and GIMME-MS for doing so.

2 | METHOD

2.1 | Participants

Eighteen healthy adults (6 males, Mean age = 24.22, SD = 6.04),1 who

were recruited from an undergraduate student and community

sample, participated in the study. All participants were required to

(a) be right-handed, (b) report no history of traumatic brain injury,

neurological disease, or major medical conditions, (c) be native English

speakers, and (d) display no contraindications to MRI procedures. No

participants needed to be excluded for exceeding the cutoff for exces-

sive motion (>3 mm movement in any direction within a run).

2.2 | Behavioral task and paradigm timing

Participants completed a numerosity discrimination task, a paradigm

well-described by evidence accumulation models (Ratcliff & McKoon,

2008), in which they were presented with an array of asterisks in a

box and were asked to decide whether the stimulus contained “many”

or “few” asterisks. “Many” stimuli were boxes (289 × 289 pixels)

presented as black on a white background containing 56–60 asterisks,

distributed at random on an invisible 10 × 10 grid, while “few” stimuli

contained 41–45 asterisks. Participants' responses were made by

pressing buttons on a button box that was placed under their right

hand in the scanner; they pressed the button under their index finger

for “many” and the button under their middle finger for “few”.

The timing of the experimental paradigm (Figure 1) was similar to

that used by Forstmann et al. (2008), which allowed the neural

responses associated with speed/accuracy strategy changes to be

modeled as distinct from neural responses associated with the actual

decision-making process. Prior to each trial, participants saw a

4,000 ms verbal cue that indicated whether they should emphasize

speed (“FAST”) or accuracy (“ACC”) in the coming decision. This cue

was followed by a jittered period, in which a fixation cross was pre-

sented for either 0, 2,000, or 4000 ms (selected at random) before the

presentation of the numerosity discrimination stimulus. The stimulus

was presented for 1,500 ms, followed by a 500 ms “feedback” period

and another jittered period, in which a fixation cross was presented

for either 0, 2,000, or 4,000 ms (selected at random) before the

presentation of the next instructional cue. The “feedback” period was

the same length of time for all trials and conditions, and typically

involved only the presentation of a fixation cross, but other stimuli

were occasionally presented during this time to encourage strategy

use. Specifically, in the Accuracy-emphasis condition, participants

1Although this sample size may be considered low-powered for a univariate

fMRI analysis, we note that, as GIMME fits connectivity models at the single-

subject level, it primarily derives power from the length of the fMRI time series.

As each subject in the current study contributed a time series of 950 observa-

tions, this analysis has high power to detect functional connections between

ROIs at the individual subject level. Simulation studies have demonstrated that

accurate results can be obtained at the group level in samples with at least

10 subjects and at least 200 time points per subject (Gates & Molenaar, 2012).
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were informed that their response was incorrect if they made an error

(“INCORRECT”, presented in red lettering). In the Speed-emphasis

condition, participants were informed that their performance was not

fast enough if their response was longer than 700 ms (“TOO SLOW”,

presented in red lettering). The 700 ms deadline was selected based

on earlier pilot testing of the task, which indicated that this deadline

was effective at encouraging SAT without reducing participants' accu-

racy rates in Speed-emphasis condition to near-chance levels. Trials

with RTs greater than this deadline (20.3% of the trials in the Speed-

emphasis condition) were included in all behavioral and model-based

analyses, as removing them would make RT distributions in the

Speed-emphasis condition difficult to compare to those in the

Accuracy-emphasis condition, and would force the formal model of

behavioral data (see below) to be fit to truncated distributions.

Participants completed five functional imaging runs of the task,

each of which contained 17 trials in each of the two conditions, lead-

ing to a total sample of 170 trials per person. The presentation order

of the Speed- and Accuracy-emphasis cues was varied pseudoran-

domly from trial to trial (i.e., a given trial may have the same type of

cue as the trial that preceded it, or a cue for the alternate condition,

with equal probability). Given the fast pace of the task, two “null” trial

periods were also pseudorandomly interspersed in each run to com-

pensate for the overlap of neural responses between adjacent trials.

These “null” trials were simply periods of fixation cross-presentation

that lasted anywhere between 6 and 14 s, varying in increments of

2 s and with an average duration of 10 s. In addition, a fixation cross

was presented for 10 s at the beginning and end of each run to

improve estimates of baseline neural activity.

2.3 | MRI data acquisition

Participants were scanned with a Siemens Trio 3-T MRI scanner,

using a 12-channel head coil. Prior to functional imaging, a whole-

brain, high-resolution T1-weighted structural image was collected

(TR = 1,650 ms, TE = 2.03 ms, flip angle = 9�, 160 sagittal slices,

1 mm slice thickness, 256 field of view, 1 mm isotropic voxels) for

inter-subject spatial normalization. Each functional imaging run

included 190 T2*-weighted MR images, collected using an echopla-

nar imaging (EPI) sequence (TR = 2000 ms, TE = 25, flip angle = 80�,

34 axial slices, 3 mm slice thickness, 192 field of view, 3 mm isotro-

pic voxels).

2.4 | Model-based analysis of behavioral data

Correct and error response time data were fit to the linear ballistic

accumulator model (LBA; Brown & Heathcote, 2008) in dynamic

models of choice (DMC; Heathcote, Lin, Strickland, Gretton, &

Matzke, 2018; Heathcote, Lin, & Gretton, 2017, https://osf.io/

pbwx8/), a free set of functions for fitting evidence accumulation

models in a hierarchical Bayesian framework with the R language

(R Core Team, 2013). The LBA model frames decisions as a race

between two or more accumulators that gather evidence at a linear,

deterministic rate over time for each response. The average rate of

evidence accumulation for each accumulator is defined by the “drift

rate” parameter (v). In a typical implementation, the average rate of

accumulation for the correct response on a given trial (vc) is estimated

separately from the average rate of accumulation for erroneous

responses (ve). When one of the two accumulators reaches the

threshold for a response, determined by a “threshold” parameter (b),

the corresponding response is initiated. The model also contains

parameters for between-trial variability in the rate of evidence accu-

mulation (distributed normally: sv), between-trial variability in the start

point of the accumulation process (distributed uniformly: A), and the

time in an RT that is taken up by peripheral processes unrelated to the

decision (t0). For the current model fit, vc and ve were allowed to vary

by stimulus type (many/few) and b was allowed to vary by response

type (many/few) to address any potential stimulus or response biases.

To identify the model, sv for the error accumulator, only, was fixed at

1 as a scaling parameter (Donkin, Brown, & Heathcote, 2009).

Although a large body of work, reviewed in the introduction,

has found that thresholds (b) are lower under Speed- than under

Accuracy-emphasis, more recent work has provided evidence that

drift rates (vc, ve: Rae et al., 2014) also differ by SAT condition.

Furthermore, it is also possible that Speed-emphasis reduces non-

decision time (t0), as suggested by earlier neuroimaging evidence

(Rinkenauer, Osman, Ulrich, Müller-Gethmann, & Mattes, 2004).

Therefore, in order to select an optimal set of LBA parameters to

vary by SAT condition, we conducted a small model-selection anal-

ysis in which five models (named Models A through E) were esti-

mated, and each allowed different sets of parameters to vary by

SAT: (a) threshold only, (b) threshold and drift rates, (c) threshold

and nondecision time, (d) threshold, drift rates, and nondecision

time, and (e) a “null” model in which none of the parameters were

allowed to vary by SAT. For all models, a hierarchical Bayesian

version of the LBA was implemented to estimate posterior distribu-

tions over individual-level model parameter values and group-level

parameter values, which assumed that the individual-level parame-

ter values fell in normal distributions described by a mean (μ) and a

standard deviation (σ) parameter (Turner, Sederberg, Brown, &

Steyvers, 2013). Specific details of the estimation procedure and

priors are reported in Supporting Information. Two standardized

indices of relative fit for Bayesian models, the Watanabe–Akaike

information criterion (WAIC; Watanabe, 2010) and deviance infor-

mation criterion (DIC; Spiegelhalter, Best, Carlin, & Linde, 2014),

both indicated that Model B, which only allowed threshold (b) and

drift rate (vc, ve) parameters to vary by SAT, provided the best fit

(Supporting Information Table S1), consistent with the findings of

Rae et al. (2014). Model B was therefore used for all subsequent

analyses. Although this model selection procedure addressed

the relative fit of models with different parameter constraints, we

also ensured that the model displayed good absolute fit by

FIGURE 1 Schematic of the behavioral task and fMRI paradigm

timing
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assessing how well it described primary effects in the behavioral

data using posterior predictive plots (Gelman, Meng, & Stern,

1996), as described in section 3.

Inference about parameter value differences between conditions

was conducted by calculating posterior difference distributions of μ

parameter values, counting the proportion of samples for which one

value was greater than the other, and using these proportions to

calculate odds ratios (ORs) to quantify evidence for effects. An OR of

5:1, for example, indicates that there is a 5 to 1 chance that the differ-

ence distribution supports the hypothesis that a difference exists.

As ORs provide a continuous measure of the degree of evidence

for effects (in contrast to significance tests), we followed prior

work (Winkel et al., 2016) by adopting interpretation guidelines similar

to those used by Jeffreys' (1961) in the context of Bayes factors

for categories of evidence: positive evidence (OR > 3:1), substantial

evidence (OR > 10:1), strong evidence (OR > 30:1), and decisive

evidence (OR > 100:1). Effects with very weak evidence (OR < 3:1)

were not interpreted.

2.5 | fMRI preprocessing, GLM analysis, and ROI
selection

fMRI analyses were primarily conducted using Statistical Parametric

Mapping (SPM8: http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)

but also involved the use of several individual programs from the

Analysis of Functional Neuroimages (AFNI; Cox, 1996) software pack-

age, as noted below. Pre-processing involved the following proce-

dures performed using SPM8 programs: (a) slice timing correction

(interpolation to the first slice in the series), (b) realignment with the

first image in the time series to adjust for subject motion (least-

squares rigid-body transformation; quality = .99, separation = 4,

smoothing = 5.65), (c) co-registration of the functional and high-

resolution anatomical images (maximization of normalized mutual

information), (d) spatial normalization of the functional data to the T1

MNI template using the high-resolution anatomical image to estimate

transformation parameters (12-parameter affine registration followed

by a nonlinear discrete cosine transform; nonlinear iterations = 16,

nonlinear regularization = 1, nonlinear frequency cutoff = 25, 3 mm

isotropic voxels), and (e) spatial smoothing with a 5.65 mm FWHM

Gaussian kernel.

Initial single-subject general linear model (GLM) analyses were

conducted to facilitate functional ROI selection. Four regressors of

interest, convolved with the canonical hemodynamic response func-

tion (HRF), were included: (a) speed-emphasis preparatory cues,

(b) accuracy-emphasis preparatory cues, (c) speed-emphasis trials,

and (d) accuracy-emphasis trials. In addition, motion realignment

parameters were included as nuisance regressors, a standard high-

pass filter (128 s) was applied to address low-frequency drift, and

the AR(1) estimate was used to address global autoregressive noise.

Following model estimation, statistical maps of parameter estimates

for three contrasts of interest were calculated at the individual level:

(a) a contrast to identify regions that displayed greater activity during

preparation for speed-emphasis trials (Speed Cue > Accuracy Cue),

(b) a contrast to identify regions that displayed greater activity dur-

ing preparation for Accuracy-emphasis trials (Accuracy Cue > Speed

Cue), and (c) a contrast to identify regions that were primarily

involved in the decision process itself, rather than in the neural

response to the preparatory cue (Trials > Cues).

As GIMME-MS estimates several features of the data, the number

of multiple solutions and difficulty with model convergence increases

exponentially with the number of ROIs; the method is best suited to

models involving 6–10 regions (Beltz & Gates, 2017). Although some

alternative connectivity analysis methods permit the inclusion of many

more ROIs (e.g., simple correlation, principal components analysis),

these methods are limited in their ability to test temporal or direc-

tional effects, which are of key interest in the current study. Hence,

we used previous research to select a number of ROIs within the opti-

mal range for GIMME models. Two broad categories of ROIs

(Supporting Information Table S2) were included: (a) regions which

had been previously linked to the top-down control of SAT and to

motor thresholding by prior research, and (b) regions putatively

involved in evidence accumulation for the numerosity decision task

used in the current study. For the former type of ROI, we conserva-

tively selected a handful of regions, taking coordinates from prior

research to directly extend a previous line of work on the pre-SMA-

linked control of SAT and to facilitate generalization (e.g., avoid

making inferences unique to the current sample's characteristics).

Regions previously found to be involved in strategy adjustment for

Speed-emphasis, specifically the right pre-SMA and right striatum

(Forstmann et al., 2008) and the left and right DLPFC (Van Veen et al.,

2008), were defined as 10 mm radius spheres centered about

Talairach coordinates from the original studies, transformed to MNI

coordinates using the procedure proposed by Lancaster et al. (2007).

Of note, although these regions were selected a priori, analyses

of task-related activity drawn from them (reported in Supporting

Information Materials) replicated previous findings; consistent with

Forstmann et al. (2008), the pre-SMA and striatum, but not the

DLPFC, were more active during Speed- than Accuracy-emphasis

cues. A functional ROI (Accuracy Cue > Speed Cue) corresponding

to the anterior cingulate cortex (ACC) was also selected because

van Maanen et al. (2011) provided evidence that this region is

involved in trial-to-trial response threshold adjustments during

Accuracy-emphasis.

For the latter type of ROI, we combined a priori knowledge with a

data-driven approach to identify regions involved in evidence accumu-

lation during the specific decision task used in our experimental para-

digm. We first inspected the array of regions that were active during

decisions (the Trials > Cues contrast, which had greater power due to

the increased number of events in each condition) and selected those

for which there was a strong reason to believe they were involved in

evidence accumulation, based on evidence from prior research. The

right insula was selected because a prior study implicated this region

in the domain-general accumulation of sensory evidence for percep-

tual decisions (Ho, Brown, & Serences, 2009). The right intraparietal

sulcus (IPS) was selected due to an abundance of evidence that this

region encodes information about numerosity (Chochon, Cohen, Van

De Moortele, & Dehaene, 1999; Dormal, Dormal, Joassin, & Pesenti,

2012; Piazza, Pinel, Le Bihan, & Dehaene, 2007) and is also involved

in evidence accumulation (Kühn et al., 2011; Shadlen & Newsome,
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2001). Additional details on ROI definition and validation are reported

in Supporting Information Materials.

2.6 | Connectivity analysis with GIMME-MS

2.6.1 | Extraction of ROI time series

As a goal of the study was to determine whether differences between

Speed- and Accuracy-emphasis could be detected in connectivity rela-

tionships between the preidentified regions, we sought to fit two

uSEM models that would primarily reflect connectivity in each condi-

tion. Although an approach in which connectivity during the cues and

decision trials within each condition could also be dissociated may

have provided insight into changes in connectivity during different

processing stages, we were more interested in relationships which

we expected to persist throughout the cue and decision period

(i.e., top-down connections that increased baseline activity in putative

evidence accumulation regions). Therefore, we collapsed cues and tri-

als from the same SAT conditions in our analysis in order to maximize

statistical power to detect these relationships and to allow us to iden-

tify lagged relationships which may begin during the cue phase and

end during the trial phase. First, a GLM was fit with methods that

were identical to those described above, except that the task regres-

sors for cues and trials in the Speed-emphasis condition were left out

of the model. As the residual images from this model contained

variance from the un-modeled Speed-emphasis condition but did not

contain variance explained by the Accuracy-emphasis condition or

nuisance regressors, this time series was used to probe connectiv-

ity specific to the Speed-emphasis condition. Similarly, a second

GLM was fit in which only the task regressors for the cues and

trials in the Accuracy-emphasis condition were left out of the

model, and the residual time series that resulted was used to probe

connectivity specific to the Accuracy-emphasis condition. Residual

data, averaged within each ROI mask, was extracted from both

residual time series using AFNI's 3dmaskave program and entered

into GIMME-MS separately to create a Speed-emphasis model and

an Accuracy-emphasis model.

2.6.2 | Search algorithm and solution reduction

GIMME-MS, a free software that is programmed in MATLAB

(MathWorks, 2010) and calls LISREL (Jöreskog & Sörbom, 1993),

uses a data-driven search approach to fit uSEM models with con-

temporaneous (at a given time point t) and time-lagged (e.g., t + 1)

relationships between ROIs in several steps. GIMME-MS estimates

lagged relationships at the t + 1 order, which was reasonable for

these data (i.e., relationships at the t + 2 order were unlikely to be

systematically meaningful) because first-order models are thought

to be sufficient to explain relationships in task-based fMRI data

(Beltz & Molenaar, 2015).

By estimating a model that includes paths relevant to the entire

group, and subsequently using this model as the starting point for

individual-level searches, GIMME's search method has been demon-

strated to produce results that are both representative of homoge-

neous effects that are common to the group and of heterogeneity

between subjects (Beltz & Gates, 2017; Gates & Molenaar, 2012).

As the estimation of directional contemporaneous relationships can

produce multiple equivalent solutions (e.g., those in which ROI A

predicts ROI B at the same time point vs. the reverse effect),

GIMME-MS offers an improvement on the previous version of

GIMME by generating all possible equivalent solutions for compari-

son (Beltz & Molenaar, 2016).

First, as in the original GIMME program (Gates & Molenaar,

2012), GIMME-MS fits a “null” model to the single-subject covariance

matrices, and uses Lagrange multiplier tests (Sörbom, 1989) to deter-

mine which one of the possible contemporaneous or lagged relation-

ships, if estimated, would improve model fit the most for the sample

overall (in this case, for 100% of participants). A new model that con-

tains the selected path is estimated, and Lagrange multiplier tests are

again used to select the remaining path that would best improve

model fit for the group. This search procedure is repeated until

Lagrange multiplier tests indicate that the model fit for the group

would no longer be significantly improved by the addition of any

remaining paths. In the event that two paths would produce equiva-

lent improvements in fit at a given step, which most frequently occurs

when a contemporaneous path has a large Lagrange multiplier

test early in the search process (Beltz & Molenaar, 2016), GIMME-MS

estimates two separate models in which each direction of the path is

estimated in a separate model before the search process continues for

each model. This procedure is repeated for each instance of equiva-

lent solutions during the search process, leading to the generation

of multiple group-level models. Third, a “trimming” procedure is

employed to remove paths that may have become nonsignificant dur-

ing the search process.

Finally, an individual-level search process is enacted that follows a

procedure parallel to the group procedure. The search begins with a

model that only includes the group-level paths, and Lagrange multi-

plier tests are again used to free paths that would best improve model

fit for the individual until fit would no longer be significantly improved

by the estimation of any remaining paths. Instances in which two

paths produce equivalent improvements in fit at the individual level

are dealt with in the same way as those at the group level: both solu-

tions are estimated and parallel search processes are conducted until

the fit for all possible individual-level solutions can no longer be

improved. Finally, after all, individual-level models were estimated for

all group-level model solutions that were previously identified, models

were checked to ensure that the trimming process was successful and

that the estimation of model parameters was accurate, in accordance

with common practices for time series analysis (Lütkepohl, 2005). The

best individual-level solutions for each group-level solution were

selected using AIC (Beltz et al., 2016). Following this, the AIC was

averaged across participants for each group-level solution for compar-

ison (displayed in Supporting Information Table S3) and used to select

the best-fitting model.

2.6.3 | Summary analyses of connectivity maps

After the best-fitting models were selected for each Speed-/Accuracy-

emphasis condition, several analyses were conducted to meet the

study's goals. First, to identify major directed connections of regions

putatively involved in the control of SAT and those putatively involved

in evidence accumulation for the decision, group frequency maps

1834 WEIGARD ET AL.



(Hillary et al., 2011), which represent paths that are present for vari-

ous proportions of the sample, were generated for each condition.

Second, to investigate whether the between-condition differences in

individual-level paths shown on these maps were statistically mean-

ingful, McNemar's mid-p test for binary matched-pairs data

(Fagerland, Lydersen, & Laake, 2013) was applied to determine

whether a path was present for a larger proportion of the sample in

one of the two conditions. Finally, to determine the importance of

the pre-SMA relative to other regions in the network, we calculated

the total edges, a network metric which was simply defined as the

total number of contemporaneous and lagged connections (excluding

autoregressive paths) in any direction, for each region. This metric

was entered into repeated measures ANOVAs to quantify differ-

ences between ROIs and Speed/Accuracy conditions. Regions with a

greater number of connections in the network were assumed to play

an outsized role in the modulation of SAT. Therefore, we expected

that the pre-SMA would show the highest number of total edges and

that individual differences in total edges for this region would corre-

late with SAT-related changes in relevant LBA model parameters

(e.g., b and v).

2.7 | Brain-behavior correlations

We conducted a between-subjects correlation analysis to identify

relationships between changes in LBA model parameters (i.e.,

response threshold and drift rate) and connectivity metrics. To com-

pare our results to those reported by Forstmann et al. (2008), we also

examined correlations between LBA parameter changes and univari-

ate effects within the striatum and pre-SMA ROIs. However, as the

small sample of participants in the current study may lead to Type II

errors or unstable estimates of correlation coefficients, we note that

these results should be interpreted with some caution.

Individual-level parameter estimates from hierarchical models are

not independent, making them inappropriate for entry into traditional

correlational tests (Boehm, Marsman, Matzke, & Wagenmakers,

2018), and our sample was relatively small for correlational analyses.

Therefore, a “plausible values” analysis (Ly et al., 2017; Marsman,

Maris, Bechger, & Glas, 2016), implemented with functions in DMC,

was conducted to estimate posterior distributions of the population's

correlation coefficient (Pearson's r) for the relationship between

changes in LBA model parameters and neural covariates. This analysis

first calculates the posterior distribution for the sample's correlation

coefficient by assessing the correlation between the neural covariate

and each individual-level posterior sample and then follows methods

outlined by Ly, Marsman, and Wagenmakers (2018) and Ly et al.

(2017) to estimate posterior distributions for the population. Calcula-

tion of the population posterior used a uniform prior, spanning

r values from −1 to 1. Similar to our tests of parameter value differ-

ences between conditions, we used ORs to make inferences about

the level of evidence for correlational relationships. These ORs were

calculated by comparing the proportions of the posterior density that

were above, vs. below, 0, and were interpreted using the same criteria

outlined above for strength of evidence (e.g., >3:1 = “positive”).

3 | RESULTS

3.1 | Behavioral and LBA model results

Behavioral summary statistics demonstrated that participants success-

fully implemented a speed/accuracy trade-off in response to the

experimental manipulation. In accuracy rate, there were main effects

of Stimulus, F(1,17) = 15.88, η2 = 0.48, p < 0.001, in which individuals

were more accurate on “many” trials, and of Speed/Accuracy condi-

tion, F(1,17) = 23.82, η2 = 0.58, p < 0.001, in which individuals were

more accurate in the Accuracy-emphasis condition. In mean RT, main

effects of Stimulus, F(1,17) = 24.02, η2 = 0.59, p < 0.001, and Speed/

Accuracy condition, F(1,17) = 15.40, η2 = 0.48, p = 0.001, were also

detected; individuals had faster responses to “many” stimuli and had

faster responses in the Speed-emphasis condition.

Joint cumulative distribution function plots (Figure 2a) suggested

that the LBA model provided a good description of differences in the

accuracy and latency of responses between SAT conditions, on aggre-

gate. The most apparent misfit occurred for the longest quantiles of

error trials. Assessments of how well the model accounted for the

data at the individual level (Supporting Information Materials) con-

firmed that the model provided a good description of SAT-related

increases in RT and accuracy for every participant in the sample.

Hence, data from all participants were retained for model-based

analyses.

Posterior distributions for group μ LBA parameters of interest are

displayed in Figure 2 as violin plots, which contain a box plot of the

samples displayed within a kernel density plot, to demonstrate the

uncertainty in parameter estimates and degree of overlap. As

expected, there was decisive evidence for reductions in response

boundary (b) in the Speed-, relative to Accuracy-emphasis, condition

(OR > 1,000:1). There was also strong evidence for a response bias in

b (OR = 43.4:1), where b for “many” was lower than b for “few”, and

positive evidence for an interaction effect (OR = 3.8:1), in which this

bias appeared to be more pronounced in the Speed-emphasis condi-

tion. There was decisive evidence for slower accumulation of correct

information (vc) in the Speed-, relative to Accuracy-emphasis, condi-

tion (OR = 136.4:1). There was also strong evidence for a stimulus

bias (OR = 38.7:1), with faster vc for “many”, relative to “few” stimuli,

and positive evidence for an interaction (OR = 5.9:1), suggesting this

bias was also more pronounced under Speed-Emphasis. There was

weak evidence for a Speed/Accuracy condition effect (OR = 1.7:1) or

interaction effect (OR = 1.7:1) in ve, but decisive evidence for a stimu-

lus bias (OR = 151.5:1), with faster ve for “few”, relative to “many”

stimuli. In sum, the model-based analyses indicate that the SAT effects

in behavioral summary statistics can be explained by both lower b and

slower vc, consistent with the findings of Rae et al. (2014).

3.2 | Directed functional connectivity analysis

3.2.1 | Model comparison and selection

The search algorithm produced four group-level solutions (hereafter

denoted as S1–S4) for each Speed-/Accuracy-emphasis condition and

multiple solutions for almost all individual-level models derived from

these group-level solutions (ranging up to 35 per person). All group-
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level solutions had relatively few paths (Figure 3a), and all of these

paths involved only the right DLPFC, left DLPFC, pre-SMA, and IPS

ROIs. Inspection of the group paths revealed that the group-level

solutions were mostly identical between Speed/Accuracy conditions,

with the exception of S3 in the Speed-emphasis condition, which con-

tains a lagged path from the IPS to pre-SMA that is not present in S3

for the Accuracy-emphasis condition. However, AIC suggested that

there were substantial differences in how well each of these group-

level solutions fit the data from each condition (Supporting Information

Table S3); S4 was preferred by AIC for the Speed-emphasis condition,

while S1 was preferred for the Accuracy-emphasis condition. These

models were therefore selected for further analysis.

3.2.2 | Frequency and between-condition differences in
major directed connections

Figure 3b displays group frequency maps for the selected model in

each condition, which denote paths that were statistically significant

(p < 0.05) for the proportion of individuals noted in the map. As uSEM

models are, fundamentally, individual-level models, statistical signifi-

cance testing occurs at the level of individual participants. Group

frequency maps, therefore, provide an estimate of the proportion of

individuals in the population that display these significant relation-

ships. We interpreted all group-level paths, which were statistically

significant for every individual in our sample, and all “majority paths”,

which were significant for at least 50% of the group, as these paths

would be most likely to generalize to other groups of subjects from

the same population as our sample.

The group frequency maps indicated several notable findings. First,

the right and left DLPFC do not display major direct inputs to either the

IPS or insula, and appear to be relatively isolated from most other

regions in the network. However, the DLPFC does communicate with

the rest of the network through the right DLPFC's direct input to the

pre-SMA. The pre-SMA, in turn, provides major input to both the IPS

(contemporaneous) and insula (lagged). Inspection of the standardized

beta weights of these input paths in both the Speed- and Accuracy-

emphasis conditions (Supporting Information Table S4) revealed that

they were positive for the vast majority of participants, suggesting that

these connections were excitatory. Second, the ACC receives input

from another putative top-down control region, the pre-SMA, but also

receives input from the IPS and displays a lagged output to the insula.

Third, despite previous evidence that greater structural connectivity

between the pre-SMA and the striatum predicts more effective control

of SAT (Forstmann et al., 2010), there were no directed functional

connections between these two structures that were consistently

present among most members of the group. Closer inspection of indi-

vidual models revealed that connections between these structures

FIGURE 2 Plots illustrating model fit and posterior distributions of LBA parameter values. (a) Cumulative probability of a response plotted against RT

for five main RT quantiles (dots: .10, .30, .50, .70, .90) and for smaller, 1% quantiles (lines), for each speed/accuracy condition and type of stimulus:
Gray = empirical data, black = posterior predictive data from the LBA model, solid lines = “few” responses, dotted lines = “many” responses. (b) Violin
plots, which display box plots of posterior samples within kernel density plots of the same samples, of group μ estimates of the b parameter for “few”
and “many” responses. For all violin plots: Dark gray = speed-emphasis, light gray = accuracy-emphasis. (c) Violin plots of group μ estimates of the vc
parameter for “few” and “many” stimuli. (d) Violin plots of group μ estimates of the ve parameter for “few” and “many” stimuli
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were, in fact, common; the majority of individuals displayed at least one

contemporaneous or lagged connection between the pre-SMA and stria-

tum in both conditions (94% in Accuracy-emphasis, 83% in Speed-

emphasis). Therefore, the present results suggest that these structures

display functional connectivity with each other during the control of

SAT, but the lack of a majority path between them indicates that the

directionality and temporal characteristics (contemporaneous vs. lagged)

of these connections are heterogeneous.

For group-level paths, the only clear difference between Speed-

emphasis and Accuracy-emphasis conditions was the change in direc-

tionality of the connection between the left and right DLPFC. For

individual-level paths, no p values from McNemar's tests of SAT

condition-related differences survived correction for multiple comparisons

using the Benjamini–Hochberg method (Benjamini & Hochberg, 1995).

3.2.3 | Total edges and network hubs

When the total edges of each participant were entered into an ROI by

Speed/Accuracy condition ANOVA, there was a significant main effect of

ROI, F(6,102) = 8.42, η2 = 0.33, p < 0.001, but there was no main effect

of Speed/Accuracy condition or interaction between the two factors.

Inspection of Figure 4 indicates that the effect of ROI was primarily driven

by the pre-SMA, which displayed several more connections, on average,

than the other ROIs, suggesting that this region is a major hub of the

network. To further probe this effect, and ensure that the pre-SMA

was a hub for the majority of the sample (i.e., that the effect is not

driven by a few participants), individuals' hubs were defined as the

region, or regions, that displayed the most total edges for that individ-

ual. Consistent with the group result, the pre-SMA was the most com-

mon hub (Supporting Information Table S5); this region, either by itself

or in combination with the ACC, served as a network hub for the major-

ity of participants in both the Speed-emphasis (56% of participants) and

Accuracy-emphasis (67% of participants) conditions. Of note, the ACC

appeared to be the next most common hub in both conditions (29% in

Speed, 23% in Accuracy), consistent with the relatively large number of

edges it displays compared to most other regions (Figure 4). Thus,

results suggest that the pre-SMA, and, to a much lesser extent, the

ACC, appear to act as major hubs of the network of regions investi-

gated in the current study.

FIGURE 3 Group-level path modeling results from GIMME-MS. (a) Multiple group-level solutions for the Speed- and Accuracy-emphasis

connectivity models. Black lines denote contemporaneous paths while gray lines denote lagged paths. Only the four ROIs, out of seven total, that
were involved in the relatively sparse group models are shown. (b) Group frequency maps of all contemporaneous (black) and lagged (gray) group-

level paths and majority individual-level paths (present in >50% of the sample) for the best-fitting models of the Speed- and Accuracy-emphasis
conditions. Returning arrows indicate autoregressive paths. LDPC = left DLPFC; RDPC = right DLPFC, pSMA = pre-SMA; ACC = anterior
cingulate; INS = insula; Str = striatum; IPS = intraparietal sulcus
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3.3 | Brain-behavior correlations

Changes in the response threshold (b) and correct drift rate (vc)

parameters, which were both reduced under Speed-emphasis, were

used to investigate brain-behavior correlations. Posterior distributions

from the Speed-emphasis condition for each parameter were averaged

and subtracted from the average of those from the Accuracy-emphasis

condition, and the resulting change distributions were entered into the

plausible values analysis. Thus, a positive correlation would indicate that

larger values of the neural covariate predict a larger change in b or vc

between Speed- and Accuracy-emphasis conditions. On the basis of the

substantive results described above, several covariates were used. First,

we examined whether the current study's fMRI data set replicates results

reported by Forstmann et al. (2008), in which univariate activation within

the striatum and pre-SMA correlates with changes in the b parameter.

Second, given the apparent importance of the pre-SMA as a hub region,

individuals' total edges for this region (averaged between conditions)

were used as a covariate.

Use of these covariates revealed several relationships for which

there was at least positive (OR > 3:1) evidence (Figure 5). Similar to find-

ings of Forstmann et al. (2008), the magnitude of decreases in the

b parameter appeared to be positively related to Speed Cue > Accuracy

Cue univariate contrast values for both the pre-SMA (OR = 5.1:1) and

striatum (OR = 12.8:1). However, there was little evidence that univari-

ate fMRI effects in either region were related to changes in the vc param-

eter (all ORs < 3:1). There was moderate evidence that individuals' total

number of edges for the pre-SMA was positively related to the magni-

tude of change in the vc parameter (OR = 4.8:1), but little evidence for

the same relationship with change in b (OR = 1.4:1). Hence, greater com-

plexity of the pre-SMA's connectivity, between subjects, predicts greater

reductions in the quality of evidence under Speed-emphasis.

4 | DISCUSSION

The current study revealed directional connections between brain

regions involved in SAT by applying GIMME-MS (Beltz & Molenaar,

2016) to fMRI time series data collected while participants were

instructed to alternately emphasize speed or accuracy during a numer-

osity decision task. A behavioral analysis using the LBA model

(Brown & Heathcote, 2008) demonstrated that the experimental para-

digm was effective at reducing response thresholds and the quality of

decision evidence in the speed-emphasis condition, consistent with

previous research on SAT (Rae et al., 2014). ROIs consisted of regions

found to be involved in the control of SAT and motor thresholding in

prior studies (DLPFC, pre-SMA, striatum, and ACC; Forstmann et al.,

2008; Van Veen et al., 2008; van Maanen et al., 2011), as well as

regions previously found to be involved in evidence accumulation

for decisions (IPS, right insula; Ho et al., 2009, Kühn et al., 2011;

Shadlen & Newsome, 2001).

GIMME-MS produced a large number of equivalent solutions at

the group and individual levels, likely reflecting the substantial time-

locked (i.e., contemporaneous) connections between ROIs that occur

during the completion of a directed task. Using validated procedures

(Beltz & Molenaar, 2016), these solutions were subsequently pared

down to an optimal set, and used for inference. Although it is not pos-

sible to establish a precise level of confidence for the choice of these

solutions, we note that the simulation study conducted by Beltz and

Molenaar (2016) demonstrated that AIC was able to recover the cor-

rect model in all cases in which it was used and that the true model

parameters from the simulations were within the 95% confidence

intervals of model parameters recovered in the AIC-selected model.

Thus, GIMME-MS was vital to making accurate and informed infer-

ences about directed functional connectivity. This is a unique strength

of this method in applications where estimates of directionality are

needed, as most connectivity approaches do not consider directional-

ity, let alone produce sets of models to verify it (Smith et al., 2011).

The most noteworthy findings from this analysis concerned the

respective roles of the DLPFC and pre-SMA. Although previous work

had found increased connectivity between the DLPFC and a broad set

of regions involved in decision processing during speed emphasis (van

Veen et al., 2008), the uSEM analyses implemented in GIMME-MS

suggested that the DLPFC shows few direct connections with other

FIGURE 4 The total number of edges of each region for Speed-emphasis and Accuracy-emphasis conditions. Triangles represent the values of

each individual. Circles represent the group mean, with error bars indicating 95% confidence intervals. LDPC = left DLPFC; RDPC = right DLPFC,
PSMA = pre-SMA; ACC = anterior cingulate; INS = insula; STRI = striatum; IPS = intraparietal sulcus
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putatively related ROIs. Rather, it appears to influence other ROIs

through its top-down influence on the pre-SMA, which, in turn, shows

directional connections to regions thought to be involved in evidence

accumulation (the IPS and insula) and others involved in top-down

control (the ACC). These connections appeared to be top-down in

nature, with the exception of a time-lagged path from the IPS to the

pre-SMA, which may serve as a “feedback” process for the contempo-

raneous path in the opposite direction. Furthermore, analyses of a

graph theoretical metric (total edges) indicated that the pre-SMA, but

not the DLPFC, is a major hub in the network of SAT-associated

regions, as demonstrated by its disproportionate number of connec-

tions and hub status for the majority of individuals.

Taken together, this pattern of findings suggests that the pre-

SMA serves as the primary region involved in the coordination of SAT,

consistent with previous research using univariate fMRI (Forstmann

et al., 2008, 2010, 2011; Mansfield et al., 2011) and transcranial mag-

netic stimulation (Berkay et al., 2018; Georgiev et al., 2016; Tosun

et al., 2017). It makes a crucial extension of this work by being the

first directed functional connectivity analysis to provide evidence that

the pre-SMA implements adjustments to SAT by sending top-down

control signals to an array of other regions, and coordinates SAT in

response to a higher-order control signal from the DLPFC. The finding

that beta weights of the pre-SMA's top-down connections to regions

putatively involved in gathering evidence for the decision (IPS, insula)

were positive for most individuals is consistent with numerous theo-

ries positing that a nonselective excitatory signal modulates baseline

neural activity in evidence accumulation regions (Furman & Wang,

2008; Roxin & Ledberg, 2008; Standage, Blohm, & Dorris, 2014; van

Veen et al., 2008). Although the assumed status of the pre-SMA as a

“motor region” may cast doubt on the idea that it controls areas

thought to be involved in sensory processing, the pre-SMA has been

previously implicated in a variety of nonmotor functions, including

mental rotation and sequence processing (Cona, Marino, & Semenza,

2017; Cona & Semenza, 2017; Leek, Yuen, & Johnston, 2016). We did

not directly assess structural connections between the regions used in

our connectivity analysis to demonstrate their biological plausibility,

but doing so is a crucial next step for future work.

Notably, the current data are not necessarily inconsistent with

the original “cortical” hypothesis (Bogacz et al., 2010; van Veen et al.,

2008) that the DLPFC, due to its role in context processing (Miller &

Cohen, 2001), is the source of signals controlling SAT. Rather, they

suggest that the pre-SMA may mediate top-down signals from the

DLPFC to the rest of the cortex. The previous connectivity study by

van Veen et al. (2008) revealed that the DLPFC's connections with

the pre-SMA and other regions involved in decision making were

stronger under speed-emphasis. However, as the analysis was limited

to connections between the DLPFC and other regions, and did not

address their directionality, it would not have been able to uncover

evidence for a mediating role of the pre-SMA. Thus, the ROI-based

directed connectivity analysis approach used in the current study pro-

vides complementary information to this previous analysis and reveals

distinct mechanistic roles for the DLPFC and pre-SMA in the control

of SAT that would not have been uncovered otherwise.

Furthermore, the between-subjects correlation analyses revealed

an intriguing distinction between univariate and connectivity mea-

surements of pre-SMA activity, as it relates to LBA model parameter

changes in SAT. Univariate activation estimates in the pre-SMA

appeared to be related to the magnitude of individuals' reductions in

response threshold (b), consistent with previous research (Forstmann

et al., 2008), but individuals' number of connections with the pre-SMA

was only related to reductions of evidence quality (vc) in the speed-

emphasis condition. In the context of theories that implicate reduced

distance-to-threshold as the primary mechanism of SAT, this dissocia-

tion may be interpreted as indicating that the pre-SMA's broad

excitatory influence on other regions plays a crucial role in speed-

emphasis, but that it may have a negative effect on decision-making

processes if the influence is too broad. If the pre-SMA interacts with a

wider array of structures in some individuals than in others, it may

generate more neural noise under speed emphasis in these individuals,

leading to less efficient processing of decisions. Given that other

models and empirical studies suggest that speed emphasis both

reduces distance-to-threshold and impacts the rate of evidence accu-

mulation (Heitz & Schall, 2012; Rae et al., 2014), the dissociation may

provide clues as to the neural correlates of changes in these distinct

features of accumulator models.

FIGURE 5 Scatterplots with the mean of individuals' posterior

distributions of changes in LBA parameter values (Accuracy–Speed)
on the y-axis and neural covariates on the x-axis for all relationships
with at least positive (OR > 3:1) evidence. Density plots to the right
of each scatterplot represent the posterior distribution of the
Pearson's r value for each relationship
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The current findings also have implications for the “striatal” the-

ory of SAT, which holds that the striatum receives a top-down signal

from a control region, such as the pre-SMA, under speed emphasis

that causes the basal ganglia to release broad inhibitory influence over

the cortex, lowering the threshold for motor responding (Forstmann

et al., 2008). In apparent contradiction with work that found a rela-

tionship between individuals' changes in response thresholds and the

structural integrity of connections between the pre-SMA and striatum

(Forstmann et al., 2010), we found no major directional connections

between these two structures. The vast majority of subjects displayed

at least one contemporaneous or lagged connection between the pre-

SMA and striatum, but the temporal characteristics and directionality of

the connection differed between subjects. Thus, functional connectivity

between these structures may be heterogeneous between participants,

potentially reflecting strategy differences in the implementation of SAT

(e.g., a sub-group of individuals may increase activity in thresholding

circuitry via the striatum, but other individuals may use strategies that

do not involve the striatum). Another possibility is that the functional

relationship between these structures changes dynamically over the

course of the task (e.g., shifting between excitatory and inhibitory influ-

ences at different processing stages). Modifications to uSEM's applica-

tion would be required to test those hypotheses because the method

assumes stationarity (i.e., that the character of relationships between

ROIs does not change over time) for each time series. Finally, as the

current analysis was limited to a subset of a priori ROIs, we cannot rule

out the possibility that effects that are consistent with the striatal

account of SAT may have become apparent had more motor regions

been included in the analysis (e.g., primary motor cortex).

In addition to providing insights about the neural mechanisms of

SAT, the current results have two major implications for studies

employing connectivity analyses, both in the SAT literature and else-

where. First, the results demonstrate the utility of the uSEM and

GIMME methods for both providing insights into the directionality of

connections and revealing connectivity characteristics that are com-

mon to the group vs. unique to individuals. The former strength of

these methods allowed for a compelling account of the cascade of

top-down regulation in the network of regions involved in SAT. The

latter allowed for analyses that assessed how parameters from a for-

mal cognitive model relate to individual differences in connectivity, in

line with recent calls for a “model-based” cognitive neuroscience

(Forstmann & Wagenmakers, 2015). It also allowed heterogeneous

relationships between ROIs (e.g., between the striatum and pre-SMA)

to be characterized as such. Second, the findings of multiple equiva-

lent solutions at both the group and individual levels strongly suggest

that GIMME-MS and solution-reduction strategies should be imple-

mented when using uSEM to infer directional connectivity from fMRI

data. The use of these strategies is particularly important when the

direction of connections is highly relevant to the research question, as

in the current case. Furthermore, as the majority of paths in the study

were contemporaneous, and as previous simulations demonstrated

that this feature is likely to lead to multiple solutions (Beltz &

Molenaar, 2016), our findings underscore the need to explicitly

address multiple solutions in situations where contemporaneous con-

nections are dominant.

Although the current study focused on SAT-related connectivity

during both cues and trials, a pressing question for future work is

whether connectivity properties differ between these distinct pro-

cesses. A related question is whether trial-to-trial adjustments in

response thresholds that occur for reasons beyond experimental

manipulations of SAT (e.g., posterror increases in thresholds; Dutilh

et al., 2012) can be linked to distinct connectivity patterns. Future

studies may be able to investigate these questions by integrating

methods which explicitly model stimulus input, such as extended-

unified SEM (euSEM; Gates, Molenaar, Hillary, & Slobounov, 2011)

with GIMME-MS. Models that include stimulus input may also be able

to address whether features of the input HRF beyond magnitude

(e.g., onset time or duration) influence connectivity. However, given

that these extensions increase the complexity of already-complex

uSEM models, implementing them would require careful consideration

of model identifiability and, likely, the inclusion of a relatively small

number of ROIs.

The current findings are compelling, but some special consider-

ations and limitations are relevant to their interpretation. First, the

sample of participants was relatively small. However, as the time

series data used in our analysis had many more observations than time

series data previously used to validate the GIMME/uSEM method

(60–200 time points, vs. the 950 time points used in the current

study; Gates & Molenaar, 2012; Lane, Gates, Pike, Beltz, & Wright,

2018), this analysis likely had relatively high power to detect func-

tional connections between ROIs at the individual subject level. As

accurate recovery of connections present in a group can be obtained

with as few as 10 subjects (Gates & Molenaar, 2012), we can be rea-

sonably confident that the path counts reported in the group fre-

quency maps closely approximate the true number of connections in

the sample. Second, as the sample was two-thirds female, it is possible

that results may not generalize well to other samples with more male

participants. Third, the between-subjects correlation analyses were

unable to identify strong links between connectivity metrics and

LBA model parameters, potentially due to the relatively small partici-

pant sample size. Fourth, although the time series data entered into

the analysis were not deconvolved with the HRF, there is some indi-

cation that consideration of the HRF may impact inferences drawn

from similar connectivity analysis methods (e.g., Granger causality;

Wu et al., 2013). Although the implications of this work for GIMME/

uSEM-based methods are unclear, it underscores the need for future

systematic exploration of how deconvolution may alter results from

these methods. Fifth, the procedure used to investigate changes in

connectivity between speed and accuracy conditions did not reveal

many differences. This was surprising, because cues that encourage

speed-emphasis, relative to accuracy-emphasis, have been found to

increase univariate activation of the pre-SMA in both previous work

(Forstmann et al., 2008) and the current study (see Supporting Infor-

mation Materials), suggesting that the top-down relationship

between the DLPFC and pre-SMA should become stronger in this

condition. However, two methodological details may explain this

apparent discrepancy. It is possible that the level of pre-SMA acti-

vation detected by univariate methods does not reflect the pre-

SMA's covariation with other ROIs. Moreover, given that uSEM

uses information from the entire time series, rather than just that
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associated with specific events, the directed connections it reveals

may be those that are most stable across the time series, rather

than context-specific connections associated with these events.

Thus, as outlined above, data from this study should be interpreted

together with complementary work that used methods of assessing

context-specific connectivity in SAT (Van Veen et al., 2008). Sixth,

we relied on previous fMRI research on SAT to select a small number

of ROIs for our connectivity analysis rather than taking a full-brain

data-driven approach agnostic to prior findings. As a result, the

regions we included almost certainly represent only a small portion

of the regions that are essential to complete the decision task, and

our results may have been different had we used a connectivity anal-

ysis approach which allowed inclusion of more ROIs. Our current

approach allowed us to directly assess whether patterns of connec-

tivity were consistent with previous theories of the neural basis of

SAT, but it also risked the possibility of entrenching these theories

by restricting the ROIs included in the analysis. As this trade-off

between specificity in providing tests of existing theories and sensitivity

to detecting patterns that may inform alternative theories is inherent in

the scientific process, this issue must be addressed by future work which

complements ours by taking a large-scale network-based or exploratory

approach. Seventh, the numerosity task used in this study is different

from decision tasks used in prior work on SAT; several previous studies

have used the “moving dots” task, in which participants decide whether a

cloud of dots, some of which are moving at random while a subset

moves in a single direction, appears to move to the left or right

(Forstmann et al., 2008, 2010, 2011; Ivanoff, Branning, & Marois, 2008;

van Maanen et al., 2011), and Van Veen et al. (2008) used a modified

version of the Simon task, in which participants had to respond as to the

color of a square presented to the right or left of a fixation point.

Although we assumed herein that brain regions involved in cognitive

control during our numerosity task overlapped with those identified in

prior studies, it is possible that different systems may be involved, requir-

ing replication of our findings in other decision paradigms.

Finally, as our analysis focused heavily on explanations for SAT that

adopt an accumulate-to-threshold framework, it may be difficult to

extend our inferences to theories of SAT rooted in attractor models

(Furman & Wang, 2008; Roxin & Ledberg, 2008; Standage, Blohm, &

Dorris, 2014; Standage, Wang, & Blohm, 2014). Relatedly, our results do

not address another leading theory of SAT, which posits that the subtha-

lamic nucleus (STN), in response to a control signal from the ACC or pre-

SMA, raises response thresholds under accuracy-emphasis by inhibiting

motor circuitry (Bogacz et al., 2010; Frank et al., 2015; Frank, Scheres, &

Sherman, 2007). We did not include the STN in this analysis because of

evidence that the spatial resolution provided by a 3-Tesla MRI scanner is

not high enough to effectively distinguish STN activity from that of sur-

rounding subcortical structures (de Hollander, Keuken, & Forstmann,

2015). However, a recent study using ultra-high-resolution (7-Tesla)

MRI found evidence of functional connectivity between the ACC and

STN (Keuken et al., 2015). Although the current analysis did not reveal

a clear role for the ACC, this prior work suggests that the ACC may be

involved in shifting response thresholds under accuracy emphasis

through its influence on the STN. Thus, future work integrating ultra-

high-resolution functional imaging with connectivity analyses may be

able to assess the role of the STN in the larger network.

In sum, we used a state-of-the-art combination of the uSEM and

GIMME connectivity analysis methods (Gates & Molenaar, 2012), and

novel approaches for selecting optimal solutions among models

(Beltz & Molenaar, 2016), to provide an informative account of direc-

tional relationships between brain regions involved in the control of

SAT, and the pre-SMA in particular. This analysis both demonstrated

the need for multiple solution-reduction procedures when assessing

cross-sectional path models of fMRI connectivity, as these procedures

provide a potent tool for establishing evidence for the directionality

of functional connections, and allowed us to make several substan-

tive discoveries. We found evidence that the pre-SMA is the primary

region involved in the top-down coordination of SAT through its

influence on a broad set of other brain areas, but that this region

may receive higher-order top-down control signal from the DLPFC

to trigger strategy changes. Combined with findings suggesting that

increases in striatal output under speed emphasis may also drive

SAT, the results are consistent with the unifying account of Stan-

dage, Blohm, and Dorris (2014), who posit that SAT may be gov-

erned by the modulation of activity in both evidence accumulation

and thresholding circuitry. Finally, as GIMME-MS allowed us to

obtain a formal group-level model that putatively explains directional

relationships between the DLPFC, pre-SMA and IPS during SAT, this

model can now be fit to other data sets in confirmatory analyses that

can both test whether our results are robust and extend them to

answer new questions. In this way, GIMME-MS provides a model-

based approach to directional connectivity analysis that can explicitly

contribute to the growth of cumulative knowledge about SAT and

other cognitive phenomena.
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