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6.2 A: Work flow of a machine learning classifier. The feature matrix X
and the classifications Y for a known set of data are used to train the
classifier. Once a classifier has been trained, it can be applied to new
data to produce classifications. B: Cartoon of k-nearest neighbor
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ABSTRACT

Epithelia, quasi-two-dimensional sheets of cells, are important in molding organs

into their correct final shape and size during animal development. Epithelia are active

materials that are capable of both generating and reacting to mechanical forces, in a

manner that depends on the organization of their cells. Cells in an epithelium may

divide, exchange neighbors, or otherwise remodel their packing topology, thereby

creating a complex feedback loop between tissue topology and mechanical forces. A

full theory of the interplay between mechanical forces and cellular arrangement has

not yet been developed. Here we work towards developing such a theory using a

vertex model framework, which represents complex biological processes as an active

network of cell-cell interactions. We consider several specific problems:

We carefully derive the forces acting on vertices, places where three or more cells

meet, with special attention to fourfold vertices. This work results in a mathematical

proof of the criterion for stabilizing fourfold vertices, which places theoretical limits

on the types of tissues that can support stable fourfold vertices.

Continuous supra-cellular actomyosin cables are capable of generating large forces

to either resist external stress or drive cell motion. These cables have been exten-

sively studied in isolation, but there has been little work on the effect of multiple

parallel cables on tissue mechanics. Here we show that these cables prevent cells

from becoming elongated or misshapen under large stress anisotropies and can only

arise in certain favorable topologies. We develop two measures of the favorability of

a disordered packing to forming cables, a quality we call cableness, and show that

passive cell flow reduces cableness whereas oriented cell divisions increase cableness.

A large anisotropic stress is applied to the Drosophila pupal notum for a few

hours during its development, at which time it develops internal apical actomyosin

fibers. We present a toy model incorporating these fibers into the network of cell-cell

interactions, based on the assumption that these fibers form in order to resist the

applied stress, and validate predictions of the model against experimental data.

We also summarize the computational methods that are the foundation of our

scientific results. We present the design philosophy for our highly modular vertex

model, as well as the algorithms we developed to correctly implement T1 transitions.

xix



We also discuss our use of automated image analysis techniques in the context of

fluorescent imaging, including both morphological operations and machine learning

algorithms.
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CHAPTER I

Introduction

tenssion from edges

pressure from cell

A B

adherens junction

actomyosin

Figure 1.1: A cartoon of an epithelium. Adherens junctions keep cells in contact
with each other. An apical band of actomyosin provides a contractile force in the cell.
B Physicists model of the epithelium as a two dimensional network of contractile edge
tensions balanced by cell pressures.

Not many physicists think about why they don’t have an eyeball growing out of

the bottom of their foot, but maybe more of them should. After all, it is quite amazing

that from a single initial cell, all the cells in your body are directed to their correct final

locations, ensuring that that you grow exactly two eyes placed symmetrically in the

front of your head. The whole developmental process would seem quite miraculous if

it didn’t happen every day. Physicists generally study systems at or near equilibrium,

but there is a treasure trove of interesting questions to be asked about systems far

from equilibrium, and the biological world provides many examples.

Development is generally thought of as being composed of four major processes:

morphogenesis, differentiation, growth, and region specification. This thesis will focus
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exclusively on morphogenesis, the process by which tissues develop their shape. We

restrict ourselves to epithelial tissues, which form the outer surfaces of many organs,

such as the kidney, stomach and intestines, and therefore play a large role in sculpting

organs into their proper size and shape [1, 2, 3, 4, 5].

An epithelium is a quasi-two-dimensional sheet of cells whose membranes are

bound together by protein complexes at sites called adherens junctions, as shown in

figure 1.1 [6, 7, 8]. Each cell has a ring of actin filaments bound together by adhe-

sion molecules, which attach to the ahderens junctions. Myosin and other molecular

motors walk along the actin filaments, creating a contractile force that drives cell

rearrangement [9, 10]. Epithelia are capable of both generating and reacting to me-

chanical forces in a manner that depends on the organization of their cells. Therefore,

understanding how the structure of the cell-cell network effects the physical properties

of epithelia is an important part of understanding morphogenesis. This thesis aims

to develop a theory of the interplay between mechanical forces and cellular arrange-

ment in epithelia by representing complex biological processes as an active network

of cell-cell interactions.

Three topological changes drive epithelial morphogenesis. The first two processes

are inverses of each other: apoptosis and mitosis. In apoptosis, cells are extruded

from the epithelial layer. Their neighboring cells move in to fill the space left by the

extruded cell, preventing gaps in the tissue. During mitosis, a cell rounds up and

divides along its long axis, creating two cells from one [11, 12]. Mitosis often drives

an increases in size of a tissue, but oriented divisions can also have more subtle effects

on the tissue shape and properties, which we will discuss in chapter IV.

The third process, called a T1 transition, swaps neighboring cells, as shown in

figure 1.2. One of the most notable instances of large scale T1 transitions in nature is

during the process of germ-band extension in Drosophila, in which the initially square

germ-band tissue undergoes a series of T1 transitions that dramatically narrow the

tissue along the dorsal-ventral axis causing it to wrap around the posterior of the

embryo [13, 14]. We will discuss T1 transitions and their intermediary state, a fourfold

vertex, in greater detail in chapter II.

There have been two well known attempts to quantify the total tissue shape change

in terms of these fundamental topological processes as well as cell shape change by

both the Jülicher and Bell̈ıache labs [16, 17]. They quantify the total contribution

to the final shape from T1 transitions, mitosis, apoptosis, cell shape changes, and so

forth. Both of these systems work on movies of epithelia in which the outline of every

cell is tracked through time and space.
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A

B

Figure 1.2: A Cartoon of a T1 transition. An edge shrinks to form a fourfold
vertex and then elongates in the perpendicular direction causing neighbor exchange.
B Cartoon of convergent extension. Vertical edges undergo T1 neighbor exchange
causing the tissue to elongate.

The broader question of morphogenesis fits squarely into the realm of biology.

However, physicists have an important role to play in understanding tissue mechanics

and more broadly in biological modeling. There is a growing push to incorporate

the tools and methods of understanding from physics and engineering to biological

problems [18, 19, 20, 21, 22]. This framework is often referred to as systems biology,

which began gaining prominence as a field around 20 years ago. Physical modeling

allows us to synthesize large amounts of data and make testable predictions about

how a system will respond based on you hypothesis of how it works.

We approach morphogenisis at the cellular scale, and for the most part ignore

signaling pathways, focusing on mechanical behaviors without regard to what exactly

underlies the mechanical properties. Recent advances in computational power have

allowed for the computational modeling of epithelia at the cellular scale. Three major

categories of computational models are in common use: vertex models, cellular Potts

models, and finite element models [20]. Cellular Potts models are generalizations

of the Ising model, in which each cell is represented by a different state and the

Hamiltonian is structured to include adhesion energies and volume constraints [23, 24].

Although these models can correctly reproduce some cell behavior, they can also be

difficult to interpret. Finite element models split each cell into multiple finite elements

[25]. In this thesis we focus exclusively on vertex models, in which the epithelium is

described by a network structure of edges that represent the cell boundaries. Edges

have a contractile force that is offset by pressure in the cells. The model works by

integrating the equations of motion of the vertices as they are pushed and pulled on
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by edge and cellular forces. Chapters II and III discuss the technical details of these

models.

Vertex models are highly flexible, and can also be used to study a number of

different phenomena. Much work is focused on creating models that recreate the

behavior of a specific experimental system. The goal of these models is to capture

the large scale behavior of the system with as few parameters as possible. The

model helps synthesize what is known about individual proteins into an understanding

of their function. Vertex models are also used to understand the basic properties

of cell sheets from a condensed matter perspective. For example, some groups are

interested in what parameters govern the transition between liquid-like and solid-like

phases [26, 27, 28], while others study the effects of cell division on tissue level stress

anisotropies [29].

This thesis is divided into three parts. The first part covers the vertex model

of epithelial mechanics and spans chapters II-III. Chapter II discusses the stability

of fourfold vertices in the vertex model framework. Vertex models are based on

models of dry foams, in which it is well established that fourfold vertices are always

unstable. In computational vertex models, it is generally assumed that all of the edges

are straight, rather than unconstrained as in the foam model. This simplification

introduces direct pressure effects on vertices. The effect of these pressure effects on

the stability of fourfold vertices was unknown prior to our work. We proved that

in the most basic case, in which all edges are assumed to have the same constant

tension, fourfold vertices remain unstable. However, when edges with orientationaly

dependent tensions are allowed, fourfold vertices may be stabilized. This stability

is important because fourfold vertices are an intermediate step in the T1 process,

one of the fundamental topology changing processes in morphogenesis. Although

fourfold vertices were once thought to always be unstable, there is mounting evidence

of fourfold vertices that are stable over long time scales in various biological systems

[30, 31, 32, 33, 34].

We discuss some of the more subtle details of the implementation of the vertex

model designed for the Lubensky lab in chapter III. Beyond assisting future genera-

tions of graduate students in understanding the large code base we have established,

we hope that this chapter will encourage others to write down how their vertex models

are implemented, which is unfortunately rare in the field today [35].

The second part of the thesis spans chapters IV-VI and covers the mechanics of

tissues under stress, with an emphasis on the collaboration between the Lubensky

and Bell̈ıache labs on the role of epithelial stress fibers.
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In chapter IV we will define cableness as a measure of how agreeable a tissue’s

topology is to forming supra-cellular actomyosin cables. Such cables are formed when

the edges that divide cells align with one another to form a straight line capable

of resisting or inducing large tissue stresses. We originally conceived of the concept

of cableness in the context of the Drosophilia pupal notum. This tissue appears to

change topology from an initially disordered state to one in which the cells align into

columns. Although we first became aware of the role topology plays in forming cables

in the notum, the feature applies more generally to all tissues that form many parallel

cables. We take all of chapter IV to develop a quantitative understanding of cables

more broadly.

In chapter V, we return our attention to the Drosophilia pupal notum. During

an approximately eight hour period in pupal development, cells in a specific section

of the notum develop internal apical actomyosin fibers. Such fibers are a standard

feature of cells in isolation [36, 37, 38, 39], but had not been previously observed

in epithelia, where cells are in constant contact with one another. Along with our

experimental collaborators in the Bel̈ıache lab, we have been working to understand

the role that these fibers play in morphogenesis from both a signaling and mechanical

perspective.

We developed a simple theoretical model that incorporates internal fibers into the

vertex model by representing them as internal edges. The model predicts that larger

cells require more fibers to resist elongation, which matches with the experimental

data. We also predict that tissues that are in a more cable-friendly orientation require

fewer fibers to resist elongation, as the cables formed by the edges already serve

the function of resisting stress. Using the cableness measures developed in chapter

IV, we show that the tissue becomes more cabley over time, coinciding with the

disappearance of the fibers.

The data analysis in chapter V relies on automated image processing of large

amounts of data. Chapter VI is intended as a review of the common techniques

in modern image processing, including the recent use of machine learning for image

categorization. As an illustrative example, we will cover the process we use to auto-

matically identify cells from florescent images, as well as our unsuccessful attempt to

automatically identify fibers using machine learning algorithms.

The third part of the thesis stands apart from the first two, focusing on the mathe-

matical properties of a vertex model inspired network. In chapter VII, we calculate the

percolation thresholds, a measure of a networks connectivity, of honeycomb lattices

in which some edges have been swapped in a T1 process that introduces disorder in
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the system. We find that the percolation threshold increases with increasing defects,

which is consistent with known lattices of the same class.

Understanding animal development is a huge undertaking. Recent advances in

gene editing and imaging have allowed us to collect more data than ever on the move-

ment of various proteins and other biological material through the developmental

process. However, it is not enough to simply record and diagram an ever increas-

ing web of protein interactions; we need physical models to help us synthesize our

knowledge and produce testable predictions that will move us towards a theory of

development. Physical models, like the vertex model, allow us to bypass exact knowl-

edge of molecular motors and filaments, by using physical laws to determine what

forces these molecules must exert. Models of epithelia are especially important, be-

cause epithelia are so ubiquitous in our bodies and they set the final shape of many

of our organs and other tissues. In this thesis we broaden our knowledge of the

implications imbedded in vertex models governing the stability of fourfold vertices,

and offer algorithms for better implementing the vertex model. We also investigate

the role that newly discovered internal stress fibers play in resisting stress and cell

elongation in epithelia, by developing a mechanical model that we validate against

experimental data. Overall this thesis represents a step along the path of bringing a

physical understanding to development.
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CHAPTER II

Vertex stability and topological transitions in

vertex models of foams and epithelia

Notes: Adapted from Spencer, Meryl A., Jabeen, Zahera, and Lubensky, David K.,

“Vertex stability and topological transitions in vertex models of foams and epithelia,”

Eur. Phys. J. E, vol. 40, no. 1, p. 2, 2017.

2.1 Introduction

From the lining of the gut to the surface of the skin, epithelial tissues are one

of the essential building blocks of animal organs. The motion of epithelial cells over

time correspondingly drives many aspects of animal development and morphogenesis,

and understanding this movement is thus a central problem in quantitative biology.

Although there has been remarkable progress in identifying and imaging the proteins

involved in the development of specific epithelia [1, 2, 3, 4, 5, 6], it remains a major

challenge to translate this molecular knowledge into a higher level picture of how the

organization of epithelial cells emerges from local mechanical interactions. Computa-

tional modeling represents an important tool to address this question, and it is hence

essential to have well-understood models available to describe epithelia. In this chap-

ter, we begin to address this need by deriving some general results on the stability of

fourfold vertices in a widely-used class of vertex models [7, 8, 9, 10, 11].

A simple epithelium is a quasi-two-dimensional sheet of cells characterized by

strong inter-cellular adhesion [12, 13]. This adhesion occurs primarily at a belt of

adherens junctions, composed largely of cadherins, which hold the adjacent cell mem-

branes together. Additionally, each cell has a band of contractile cortical acto-myosin

running along the inside of the adherens junctions. The combination of adherens

junction and contractile actin ring leads to an effective line tension along cell-cell
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Figure 2.1: A: Cartoon of cells in an epithelial sheet. A single cell is shaded blue.
The interface between two cells forms an edge (one edge is highlighted by the bold
green line). The red dot indicates a vertex, defined as a point at which three or more
cells touch. We treat the epithelium as a two-dimensional sheet, focusing on the level
of the adherens junctions near the apical (top) surface. B: Cartoon of epithelial cells
undergoing a T1 topological transition (viewed from above). An edge shrinks down
until a fourfold vertex is formed, then a new edge elongates in a roughly perpendicular
direction. As a result, the cells exchange neighbors, altering the topology of the cell
packing. The middle panel shows the moment at which a fourfold vertex (light green
dot) appears. The fourfold vertex has four neighboring cells and four neighboring
edges and could in principle either be stable or resolve into either of the two different
topologies shown to the left and right.

junctions which the cell can modulate by targeting adhesion molecules or myosin and

their regulators. Thus, for example, the tension can be made to vary as a function

of junctional orientation as a result of regulation by the planar cell polarity pathway

[1, 2, 3, 4, 5, 6] (as seen, e.g., in Drosophila germ band extension [12]).

When viewed as a two dimensional sheet of tightly packed cells, the epithelium

strongly resembles a dry soap film. Indeed, interfacial tension plays a central role in

the physics of both systems, and foam-inspired models are thus frequently used to

describe epithelia. The standard model for the mechanics of a dry foam, which we

here refer to as the Plateau model, goes back to the work of Plateau in the 1800s [14].

It posits that the final shape of a group of bubbles is determined by minimizing a

surface tension energy proportional to the total bubble surface area (in 3 dimensions)

or the total length of the interfaces between bubbles (in two dimensions).

Many recent computational descriptions of epithelia have been based on so-called

vertex models [7, 8, 9, 10, 11], a class of simplified variants of the Plateau model that

have been applied to systems including epithelia, foams, and metal grains [7, 15, 16,

17, 18]. The two models share the basic feature of an energy that grows with the

total length of the bubble-bubble or cell-cell interfaces. They differ in that, whereas
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the Plateau model allows the interfaces between bubbles or cells to take arbitrary

shapes, vertex models impose that (in two dimensions) these interfaces must always

be straight lines, which we refer to as edges. (Extensions which allow for curved edges

[19, 20, 21, 22] and for three-dimensional cells [23] have been proposed but are beyond

the scope of this work.) The major degrees of freedom in vertex models are then the

positions of the vertices where three or more cells meet and which are joined by edges

to form polygonal cells (fig. 7.1A).

A fourfold vertex occurs whenever a vertex has four neighboring cells and edges as

opposed to the much more common three. Fourfold vertices generally resolve into two

threefold vertices by pairing the edges of the fourfold vertex and growing a new edge

between them. There are two different ways to pair the edges, resulting in two different

final cell arrangements (fig. 7.1B). Cellular rearrangements that switch between these

two topologies, through the intermediate of a fourfold vertex, allow the epithelial sheet

to change shape and enable cells of specific types to find their correct location and

morphology. Indeed, this process, known as a T1 transition, has been shown to play

a central role in morphogenetic movements like tissue elongation [24, 25, 26]. Though

fourfold vertices usually break up, tissues in which fourfold vertices remain stable

over a relatively long timescale have also recently been observed [27, 28, 29, 30, 31].

Although vertex models (proposed by Honda in the 1980s [15, 32, 33]) clearly

ignore many features of real cell shape, they are thought to capture the essential

physics when cells are close to polygonal, and they have been applied successfully

to study many features of epithelial morphogenesis [7, 10, 34, 35]. Moreover, they

have the advantage of being both simple and straightforwardly extensible to include

effects ranging from the dynamics of proteins localized at the edges to buckling into

the third dimension [20, 35, 36]. Despite their increasing popularity, however, some of

these models’ fundamental theoretical properties are poorly understood [37, 38]. Most

notably, in the Plateau model of dry foams which inspired vertex models, fourfold

vertices (fig. 7.1B) are always unstable, breaking up into two threefold vertices [14].

Because vertex models demand that cell-cell junctions remain straight, cell pressure

plays a somewhat different role in them from their role in the Plateau model (where

edges can take on any shape), and the standard arguments leading to this instability

cannot be taken over directly from the Plateau model. It is thus unclear whether

the instability is likewise always present in vertex models. Here, we show that the

vertex model does not allow for stable fourfold vertices at mechanical equilibrium

when all edges have the same tension. In contrast, we find that introducing a simple

dependence of tensions on edge orientation is sufficient to stabilize fourfold vertices.
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Figure 2.2: Cartoon of a cell with vertices at positions r0, r1 and r2. Movement of
vertex r0 affects the lengths of the adjacent edges l1 and l2 and the area of the shaded
triangle bounded by these edges. We assume that the face of the cell is in the x-y
plane of a standard right-handed coordinate system with the ẑ axis projecting out of
the plane . The area of the shaded region is then 1

2
ẑ · (l1 × l2).

This result may help to explain the observation of long-lived fourfold vertices in

some biological systems [16, 24, 27, 28, 29, 30, 31, 39]. Moreover, our examination

of the dynamics of fourfold vertices suggests an improved algorithm for treating T1

transitions in simulations which removes the potential for spurious oscillations and

incorrect resolutions present in some prior ad hoc approaches. This procedure will

be especially useful as we develop more complex models of epithelia that couple cell

shape and the dynamics of junctional proteins [20].

In the remainder of this chapter, we investigate the stability of fourfold vertices

and dynamics near topological transitions in vertex models. We begin with a full

description of the model, and we then proceed to develop equations describing the

dynamics near fourfold vertices. In section 2.3, we state the conditions under which a

fourfold vertex is stable. The subsequent two sections then show that it is impossible

to satisfy all of the stability conditions simultaneously for stationary vertices with

equal tensions, demonstrating that the model does not admit stable fourfold states

in this case. In section 2.6, we argue that stable fourfold vertices do become possible

when the assumptions of mechanical equilibrium or of equal tensions are relaxed,

potentially shedding light on why fourfold vertices are observed in some biological

systems. We conclude by touching on the implications of our results for the design

of algorithms to simulate vertex models.
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2.2 The vertex model

2.2.1 Definition

Although we will eventually consider generalizations where the forces on vertices

cannot be derived from an energy, the vertex model is most commonly stated in terms

of an effective energy that is a function of the vertex positions; the final tissue shape

is then given by a minimum of the energy function. The form of this energy differs

slightly between authors, but a basic version is [33],

E =
∑
i

Γili +
K

2

∑
α

(Aα − A0α)2. (2.1)

The first term describes the interfacial tension along the edges and combines the

effects of both cell-cell adhesion and actomyosin contractility in the adherens band

[12, 13]. The sum over i runs over all edges, with edge i having tension Γi and length

li. The second term describes the energy cost of deforming cells from their preferred

area. The sum over α runs over all of the cells in the tissue. A0α is the preferred

area of cell α, Aα is the cell’s actual area, and the constant K parameterizes cells’

resistance to area changes. A common further simplification is to assume that all

edges have the same properties so that Γi = Γ for all i; we will call this assumption

the equal tension vertex model.

From eq. 2.1 we can immediately find the force on a vertex by taking the derivative

with respect to the vertex position,

Fr0 = − ∂E
∂r0

, (2.2)

where r0 is the position of the vertex in the two-dimensional plane of the epithelium.

We evaluate this force using eq. 2.1:

∂E

∂r0
= K

∑
[α]

(Aα − A0α)
∂Aα
∂r0

+
∑
[i]

Γi
∂li
∂r0

. (2.3)

The movement of a single vertex only effects the lengths and areas of its neighboring

cells and edges, so the sums over all edges i and cells α become sums over neighboring

edges [i] and cells [α]. In order to work out the derivatives it is helpful to introduce

some new notation. Let li = ri − r0 be the edge between the vertex at r0 and the

adjacent vertex at position ri, as shown in fig. 2.2. The cell is taken to be in the

two-dimensional x-y plane, with z normal to its surface. The change in the edge
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length is
∂li
∂r0

= −l̂i, (2.4)

where l̂i is a unit vector which points out from r0 along edge li. The only change to

the area of the adjacent cells comes from the triangle made by the two edges adjacent

to the vertex (shown as the shaded region in fig. 2.2). The change in the area of this

triangle is given by

∂A

∂r0
=

∂

∂r0

[
1

2
ẑ · (l1 × l2)

]
=

1

2
ẑ × (l2 − l1). (2.5)

The change in the energy from a small movement of one vertex is then given by:

∂E

∂r0
=
K

2

∑
[α]

(Aα − A0α)
[
ẑ × (lα2 − lα1)

]
+
∑
[i]

−Γil̂i, (2.6)

where lα1 and lα2 are the two edges which are neighbors of both vertex r0 and cell α,

ordered such that ẑ · (lα1 × lα2) > 0. Let the pressure in cell α be given by Pα. By

definition,

Pα = − ∂E

∂Aα
= −K(Aα − A0α). (2.7)

Therefore the total force on any vertex r0 is given by

Fr0 =
∑
[α]

Pα
2

[
ẑ × (lα2 − lα1)

]
+
∑
[i]

Γil̂i. (2.8)

Note that the direction of the pressure force from a given cell on a given vertex

depends on the lengths of the two edges that the cell and vertex share; the force

vector does not in general bisect the angle between the two edges. The second term

gives the force from the tension on the neighboring edges.

Although we have derived eq. 2.8 from a particular energy function, its physical

interpretation, in which each vertex is directly affected by the pressures of the sur-

rounding cells and the tensions of the surrounding edges, suggests a wider validity.

In fact, we can take eq. 2.8 to define a broader class of vertex models in which the

pressure Pα in cell α and the tension Γi on edge i are given functions of variables that

could include edge length and orientation, cell shape, cell types, protein concentra-

tions, and so on. This class includes as a special case models that posit variants of

the energy of eq. 2.1, like those that include a term quadratic in cell perimeter [10];
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the pressures and tensions are then given as Pα = −∂E/∂Aα and Γi = ∂E/∂li. A

vertex model defined directly in terms of the force on a vertex, however, also encom-

passes models that cannot be derived from any underlying global energy, including

examples in which tensions depend on the protein concentration on an edge [20] or on

edge orientation. In the remainder of this section and in section 2.3, we will formulate

vertex dynamics and the conditions for local stability of fourfold vertices in terms of

arbitrary pressures Pα and tensions Γi; starting in section 2.4, we will then turn to

consider what our stability conditions imply for some specific, simple choices of the

Γi.

2.2.2 Dynamics

To determine the motion of the vertices we make the common assumption that

the vertices experience a drag force proportional to their velocity, so that

Fr0 = µṙ0 (2.9)

where µ is the drag constant. (Other assumptions about the form of dissipation have

also been proposed [40] but will not be considered here.) An arbitrary vertex then

moves according to

dr0
dt

=
1

µ

∑
[α]

Pα
2

[
ẑ × (lα2 − lα1)

]
+
∑
[i]

Γil̂i

 . (2.10)

The sum over the neighboring cells [α] includes taking the difference between neigh-

boring edges, which also appear in the second sum over the neighboring edges [i]. By

expressing the forces in terms of the pressure difference across an edge, we can com-

bine these sums into a single sum over neighboring edges [41]. To illustrate how the

sums are merged let us consider an arbitrary vertex, which happens to be fourfold,

with cells L, M, N, O, and edges 1, 2, 3, 4 as shown in fig. 2.3A. Explicitly writing

out the force on the vertex from eq. 2.8 gives

Fr0 = Γ1l̂1 + Γ2l̂2 + Γ3l̂3 + Γ4l̂4

+
PL
2
ẑ × (l4 − l1) +

PM
2

ẑ × (l1 − l2)

+
PN
2
ẑ × (l2 − l3) +

PO
2
ẑ × (l3 − l4). (2.11)
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Figure 2.3: A : Cartoon of a fourfold vertex with neighboring cells L, M , N , O and
edges l1, l2, l3, l4. Note that the direction of the edges is outward from the vertex, and
the edges are numbered clockwise. B : Cartoon showing eight different forces acting
on the fourfold vertex, two associated with each edge (eq. 2.15). The four edges
produce a tension Γil̂i. The effect of the pressures from the four cells can be written
in terms of the pressure differences across the edges; if pi is the pressure difference
across edge i, we can view the pressures as exerting a force pi

2
(ẑ× li) perpendicular to

each edge. C : Cartoon of two threefold vertices which share an edge lδ. As its length
lδ shrinks to zero, the vertices ra and rb will merge to form a single fourfold vertex.
D : Cartoon of the resolution of a fourfold vertex. The fourfold vertex (center) can
break apart into two threefold vertices in either of two topologies (left, right). In
each case, we can associate a told force fi with each edge i that includes tension and
pressure jump contributions. In Topology 1 (left), forces f3 and f4 act one of the new
vertices and forces f1 and f2 act on the other new vertex, so that the net force trying
to extend the new edge lδ is f1 + f2− f3− f4; this is counteracted by the tension Γδ
on the new edge (eq. 2.18). The situation is the same in Topology 2 (right), but with
the edges paired differently.
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We regroup the terms so that each term contains only one edge.

Fr0 = Γ1l̂1 + Γ2l̂2 + Γ3l̂3 + Γ4l̂4

+
PL − PO

2
(ẑ × l4) +

PM − PL
2

(ẑ × l1)

+
PN − PM

2
(ẑ × l2) +

PO − PN
2

(ẑ × l3) (2.12)

We can further simplify this expression by introducing the notation

pi = Pα − Pα′ , (2.13)

where α and α′ are the cells on either side of edge i, so that pi represents the difference

in pressure across an edge taken counterclockwise around the vertex. For example in

the configuration show in fig. 2.3B, p1 = PM − PL. In this simplified notation the

force on our fourfold vertex is

Fr0 = Γ1l̂1 +
p1
2

(ẑ × l1) + Γ2l̂2 +
p2
2

(ẑ × l2)

+ Γ3l̂3 +
p3
2

(ẑ × l3) + Γ4l̂4 +
p4
2

(ẑ × l4). (2.14)

In general we can write the force on any vertex r0 as

Fr0 =
∑
[i]

[
Γil̂i +

pi
2

(ẑ × li)
]
. (2.15)

2.3 Fourfold vertex stability

In this section we will work out the criteria which a fourfold vertex must satisfy

in order to be stable. As preparation, we first in section 2.3.1 examine the dynamics

of neighboring threefold vertices as the length of their shared edge approaches zero.

When the edge length reaches zero, a fourfold vertex can be formed; once formed, it

can either persist as a fourfold vertex, or it can resolve into threefold vertices in one

of two possible topologies (fig. 2.3D). We call a fourfold vertex stable if, when it is

broken apart into two threefold vertices separated by a small shared edge lδ, the forces

on the two threefold vertices push them back together, causing the edge lδ to shrink

to zero; this condition must hold for both possible resolution topologies. Section 2.3.2

makes this notion of stability more precise and addresses some technical questions

that it raises. Finally, in section 2.3.3 we work out the criterion for a fourfold vertex

to be stable against resolving in one topology. The criterion for the other topology
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then follows immediately, and combining the two gives us our final set of stability

conditions.

2.3.1 Dynamics of a small edge

Consider the dynamics of a pair of threefold vertices ra and rb which share an

edge as shown in fig. 2.3C. Define the shared edge lδ as lδ = ra − rb. This edge

evolves according to

l̇δ = ṙa − ṙb =
1

µ
(Fra − Frb) , (2.16)

where Fra and Frb are the forces on the two vertices given by eq. 2.15. This equation

uses the conventions that the direction of li is taken outward from the vertex and

that the pressures pi are taken counterclockwise around the vertex. As we are now

dealing with two vertices, we modify these conventions slightly to (arbitrarily) take

vertex a as the reference vertex, so that the contribution from the tension on lδ is

positive in the force on vertex a and negative in the force on vertex b. Similarly, we

define the pressure difference pδ across lδ to be taken counterclockwise around ra;

because both pδ and lδ then flip signs when forces on the vertex rb are considered,

the pressure difference across the shared edge contributes with the same sign to the

forces on both vertices. Substituting,

l̇δ =
1

µ

[
Γ1l̂1 +

p1
2

(ẑ × l1)

+ Γ2l̂2 +
p2
2

(ẑ × l2)− Γδ l̂δ +
pδ
2

(ẑ × lδ)

]
− 1

µ

[
Γ3l̂3 +

p3
2

(ẑ × l3)

+ Γ4l̂4 +
p4
2

(ẑ × l4) + Γδ l̂δ +
pδ
2

(ẑ × lδ)

]
, (2.17)

where Γδ is the tension of the shared edge.

Define fi as the contribution to the force associated with edge i, fi = Γil̂i+
pi
2

(ẑ×
li). Then the shared edge follows the equation of motion

µl̇δ = f1 + f2 − f3 − f4 − 2Γδ l̂δ. (2.18)

The forces f1 through f4 can in general depend on lδ, and indeed on the positions

of all the other vertices. Importantly, however, all four forces generically approach a

finite, nonzero limit as lδ → 0. (This contrasts with the situation in a standard linear
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stability problem in which forces would go to zero linearly with lδ.) As we discuss

in more detail in the next section, when looking at vertex stability we will always be

interested in the limit of small lδ. To leading order in this limit, f1 through f4 can

thus be evaluated at lδ = 0 and treated as constants. Our subsequent development

always assumes that this limit has been taken.

2.3.2 Defining fourfold vertex stability

To think about vertex stability, we would like to imagine, informally, that the

fourfold vertex is constantly subject to noise or other small perturbations and that,

from time to time, these perturbations cause it to break up into a pair of barely

separated threefold vertices, with more or less random topology and orientation. If,

for small enough perturbations, the fourfold vertex always re-forms, then we should

call it stable. On the other hand, if the vertex dynamics ever tend to move the

two newly formed threefold vertices apart, we would like to call the fourfold vertex

unstable. Thus, to define stability more carefully, we ask what happens if, at some

instant, a fourfold vertex is replaced by two threefold vertices whose separation lδ

is infinitesmally small (and whose average position is at most infinitesmally different

from the position of the original fourfold vertex). The separation lδ is then allowed

to evolve according to eq. 2.18. If, when the magnitude lδ = |lδ| of the separation

between the two vertices is small enough, its time derivative dlδ/dt is always negative,

for both possible resolution topologies and for any choice of orientation l̂δ, then the

fourfold vertex is stable. If there is any choice of separation orientation l̂δ and topology

for which dlδ/dt remains positive for arbitrarily small lδ, then the vertex is unstable.

Finally, if, as lδ goes to zero, dlδ/dt approaches zero for one or more choices of l̂δ but is

otherwise negative, then the fourfold vertex is either marginally stable or marginally

unstable, and the calculation must be pursued to higher order in lδ than we consider

here.

Several aspects of this definition of stability deserve further comment. First, the

positions of vertices, and hence the forces in eq. 2.18 and the stability of a given

fourfold vertex, may change with time. Thus, vertex stability is an instantaneous

notion, and we should really talk about the stability or instability of a vertex at some

time t0; in particular, in the most general case it is possible for a fourfold vertex to be

stable at time t0 but then, because of the natural time evolution of the cell packing

and without any change in system parameters, to go unstable at some later time

t1 > t0. (Of course, often we will be interested in cell packings that have reached a

local mechanical equilibrium and are no longer changing with time, in which case these
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concerns do not apply.) Second, to determine stability at some time t0 in practice,

we evaluate the forces in eq. 2.18 as if both new vertices were located exactly at the

position of the fourfold vertex in question and all other vertices were frozen at their

positions at time t0. This is appropriate because of the observation that all of the force

terms in eq. 2.18 generically have finite, nonzero limits as lδ approaches zero at fixed

orientation l̂δ. Except in the marginal case described in the preceding paragraph, for

small enough lδ these finite terms must dominate any corrections due to infinitesmal

deviations of vertices from their positions at time t0. Finally, the same reasoning

explains why we can focus exclusively on the dynamics of the separation lδ and can

ignore the possibility of collective instability modes that involve the motion of many

vertices: As long as dlδ/dt is finite and nonzero as lδ → 0, infinitesmal perturbations

to other vertex positions can change its magnitude infinitesmally, but cannot affect

its sign.

2.3.3 Stability conditions

In accordance with the notion of stability described in the previous section, we

now imagine that the fourfold vertex momentary splits into two infinitesimally close

threefold vertices as shown in fig. 2.3D. In order for the vertex to be stable we want

the vertex dynamics to force the two vertices back together. We know that in general

the vertices’ shared edge evolves according to eq. 2.18. Let F = f1 + f2 − f3 − f4,

and let θ be the angle between F and the edge lδ. The time derivatives of the length

lδ and direction θ of the newly formed edge are given by

lδθ̇ = −F
µ

sin θ (2.19)

l̇δ =
F
µ

cos θ − 2Γδ
µ
, , (2.20)

where F = |F |. From eq. 2.20, we conclude that the shared edge grows the fastest

when θ = 0. Therefore it is sufficient to look at new edges which form along the line

of force F to prove stability. In this case eq. 2.20 reduces to

l̇δ =
F − 2Γδ

µ
. (2.21)

The edge shrinks whenever

Γδ >
F
2
. (2.22)

We note in passing that when the forces are derived from an energy, we can also
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see that eq. 2.22 must be the stability criterion by looking at the energy. The change

in energy to lowest order in lδ is δE = −F · lδ + 2Γδ|lδ|, so that the change in energy

is positive whenever Γδ >
F ·lδ
2lδ

. The right hand side is minimized when F is in the

direction of the new edge, and so the vertex is stable whenever Γδ >
F
2

.

It is important to remember that the vertex can resolve in two different topologies

(fig. 2.3D) which have different F . Therefore, for the vertex to be stable, both of the

following conditions must be met:

Γδ ≥
|f1 + f2 − f3 − f4|

2
(2.23)

Γδ ≥
|f2 + f3 − f1 − f4|

2
(2.24)

The condition in eq. 2.23 ensures that the fourfold vertex is stable against resolution

into two threefold vertices in topology 1 (fig. 2.3D), by enforcing the stability criterion

derived in eq. 2.22. Similarly, condition 2.24 ensures that the vertex is stable against

resolution in topology 2 (fig. 2.3D).

Except in section 2.6.1, we will primarily be interested in what follows in the

stability of fourfold vertices that are in mechanical equilibrium—that is, on which

the net force is zero. (Because of our assumption of local dissipation at the vertex,

eq. 2.9, mechanical equilibrium of a vertex is equivalent to its being stationary.) If

this additional condition holds, then f1 + f2 + f3 + f4 = 0, and one can replace

−f3− f4 by f1 + f2 and −f1− f4 by f2 + f3 in eqs. 2.23–2.24 (thereby removing all

dependence on f4 in both inequalities). The two inequalities can then be rewritten

explicitly in terms of the pi and Γi as

Γδ ≥ |Γ1l̂1 +
p1l1
2

(ẑ × l̂1) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)| (2.25)

Γδ ≥ |Γ3l̂3 +
p3l3
2

(ẑ × l̂3) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)|. (2.26)

Similarly, the equation of mechanical equilibrium takes the form

0 = Γ1l̂1 +
p1l1
2

(ẑ × l̂1) + Γ2l̂2 +
p2l2
2

(ẑ × l̂2)

+ Γ3l̂3 +
p3l3
2

(ẑ × l̂3) + Γ4l̂4 +
p4l4
2

(ẑ × l̂4). (2.27)

A physical interpretation of these stability conditions is that eq. 2.25 and eq. 2.26

require that the tension on the new edge is high enough that it counteracts the forces

from the tensions and pressure differences across the edges. This stops the vertex from
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Figure 2.4: A : The two angles ∠(l1l3)l2 and ∠(l1l3)l4 between the non-adjacent edges
l1 and l3 are shown. The quantities ∠(lilj)lk are defined as the unsigned magnitudes
of the angles, so ∠(lilj)lk = ∠(ljli)lk . The angles ∠(l1l3)l2 and ∠(l1l3)l4 together make
a full circle, implying ∠(l1l3)l2 + ∠(l1l3)l4 = 2π. B : The angles θ1 and θ3 are defined
in the usual manner as the signed angles between the positive x axis (which here
coincides with l2) and, respectively, l1 and l3. Hence, as drawn, θ1 > 0 and θ3 < 0.

resolving in either of the possible topologies. Equation 2.27 constrains the vertex to

be in mechanical equilibrium.

2.4 No stable, stationary fourfold vertices exist in Plateau’s

model

In section 2.5 we will show that there are no stable, stationary fourfold states

under the condition that all of the edges have the same tension, and in section 2.6

we will give some examples of stable fourfold vertices that arise when we lift this

requirement. In this section, we first work through the simplest special case of eqs.

2.25-2.27 to give the reader some intuition about the main proof presented in section

2.5. We will use the same structure for our proof in both sections.

The simplest possible situation is one in which pi = 0 and Γi = Γ. This is
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equivalent to Plateau’s model of a dry foam, because in Plateau’s model the pressure

does not affect the motion of the vertices directly but instead changes the angle of

vertices’ neighboring edges. (Equivalently, changes to cell areas when a new edge

is created are higher order in δ than are changes in edge lengths and thus can be

neglected in calculations of vertex stability in Plateau’s model [14].)

To begin the proof that stationary vertices cannot be stable in this case we first

rewrite the criteria for stability from eqs. 2.25-2.27. After dividing by Γ, we have

1 ≥ |l̂1 + l̂2| (2.28)

1 ≥ |l̂3 + l̂2| (2.29)

0 = l̂1 + l̂2 + l̂3 + l̂4. (2.30)

As in fig. 2.3A, we label the edges in the clockwise direction from 1 through 4, and

we assume that each pair of successively numbered edges bounds a single cell: cell M

lies between l1 and l2, cell N lies between l2 and l3, and so on. For our model to be

physically reasonable we cannot have two or more cells occupying the same space, so

we must reject any configurations in which edge 1 moves through edge 2 in such a way

that cell M inverts and partially overlaps cell N . In order to avoid such unphysical

overlap, we require that the ordering of the edges around the vertex remain fixed,

and thus in particular that the labels 1 through 4 always appear in increasing order

in the clockwise direction.

As shown in fig. 2.4A, the non-adjacent edges 1 and 3 are separated by two angles,

one encompassing edge 2 and the other encompassing edge 4, which together make

up a full circle. We call the (necessarily positive) magnitudes of these two angles

∠(l1l3)l2 and ∠(l1l3)l4 ; more generally, we refer to the magnitude of the angle between

non-adjacent edges li and lj that encompasses lk as ∠(lilj)lk .

To show that a fourfold vertex cannot be stable in the Plateau model, begin by

taking an arbitrary pair of non-adjacent edges li and lj. Either ∠(lilj)lk ≤ π or

∠(lilj)lm ≤ π (where lk and lm are the other two edges at the vertex); we choose

without loss of generality to label the edges so that ∠(lilj)lk ≤ π. We may then apply

a rotation followed by (if needed) a reflection to the fourfold vertex and relabel the

edges so that ∠(lilj)lk becomes ∠(l1l3)l2 and l̂2 = x̂ (fig. 2.5 and section 2.5.2). Let θi

be the signed angle between edge i and the x axis, as shown in fig 2.4B. Then θ1 > 0

and θ3 < 0. (Note also that because ∠(l1l3)l2 ≤ π by assumption, neither θ1 nor θ3

can have magnitude larger than π.) We will continue to use this convention in section

2.5.
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The next step is to convert eqs. 2.28 and 2.29 to polar coordinates,

1 ≥ (cos θ1 + 1)2 + (sin θ1)
2 (2.31)

1 ≥ (cos θ3 + 1)2 + (sin θ3)
2 , (2.32)

and to solve the system of inequalities. In this case we can immediately deduce that,

for these conditions to hold and the vertex to be stable, we must have θ1 ≥ 2π/3 and

θ3 ≤ −2π/3. It follows that ∠(l1l3)l2 = θ1 − θ3 ≥ 4π/3, which contradicts our initial

assumption that ∠(l1l3)l2 ≤ π. Hence, the vertex must be unstable.

Our proof that there are no stable states in the equal tension vertex model will

follow the same basic structure. First we will express the conditions 2.25-2.26 in polar

coordinates. We will solve the resulting system of inequalities to get bounds on the

angle between any two non-adjacent edges ∠(lilj)lk . We will then show that the given

bounds lead to a contradiction.

2.5 No stable, stationary fourfold vertices exist in the equal

tension vertex model

Throughout section 2.5 we will work with a special case of the vertex model,

which we call the equal tension vertex model, which shares important features with

the Plateau model of foams. In the equal tension vertex model, as in the Plateau

model, every edge has the same tension Γi = Γ; unlike the Plateau model, however,

the equal tension vertex model does not put any restrictions on the cell pressures

Pα. In this section, we consider only fourfold vertices that are stationary and in

mechanical equilibrium.

Our argument that such fourfold vertices can never be stable in the equal tension

model proceeds as follows: In section 2.5.1 we introduce the variables ρi, which are

dimensionless ratios of an edge’s length, tension, and pressure difference. This reduces

the number of variables in the problem to eight (four edge directions and four ρi). In

section 2.5.2, we express the stability conditions 2.25-2.26 in polar coordinates and

use the symmetries of the problem to reduce the number of free variables to seven. In

section 2.5.3 we analyze the resulting system of inequalities, concluding that fourfold

vertices are unstable unless ∠(lilj)lk = π for any choices of non-adjacent edges li and

lj and intervening edge lk. Finally, in section 2.5.4 we show that if ∠(lilj)lk = π

for all pairs of non-adjacent edges, it is impossible to satisfy all three stability and

equilibrium conditions 2.25-2.27. Thus, no stable, stationary fourfold vertices are

25



lî
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Figure 2.5: Cartoon of the procedure in section 2.5.2 to exploit the symmetries of
the problem in order to reduce the number of free variables. An arbitrary angle
∠(lilj)lk between non adjacent edges can be transformed under rotations such that
lk lies on the positive x axis; if needed, a reflection through the x axis ensures that
ρk(ẑ× l̂k) lies on the positive y axis and thus that ρk ≥ 0. (Note that ρk changes sign
under reflections.) Finally, the edges can be renumbered from 1 to 4 in the clockwise
direction. θ1 and θ3 are the signed angles that l̂1 and l̂3 make with the positive x axis,
as shown, so that the magnitude of the angle between l̂1 and l̂3 is ∠(l1l3)l2 = θ1− θ3.
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possible in the equal tension model.

2.5.1 Streamlining notation

We begin by writing a more compact version of the general stability conditions

given in eqs. 2.25 - 2.26. Let

ρi =
pi|li|
2Γ

, (2.33)

be a scalar which is proportional to the force exerted by the pressure difference across

edge i. Recall that the pressure difference is taken counterclockwise around vertex ra

(fig. 2.3C), so the sign of ρ depends on which neighboring cell has the higher pressure.

The stability criteria can then be expressed as

1 ≥ |l̂1 + ρ1(ẑ × l̂1) + l̂2 + ρ2(ẑ × l̂2)| (2.34)

1 ≥ |l̂3 + ρ3(ẑ × l̂3) + l̂2 + ρ2(ẑ × l̂2)| (2.35)

0 = l̂1 + ρ1(ẑ × l̂1) + l̂2 + ρ2(ẑ × l̂2)

+ l̂3 + ρ3(ẑ × l̂3) + l̂4 + ρ4(ẑ × l̂4). (2.36)

By absorbing the lengths of the edges into the coefficients ρi, the problem is now

poised entirely in terms of unit vectors. The problem is reduced to eight variables:

the four angles of the edges with respect to the x-axis θ1, θ2, θ3, θ4, and the four ρ

coefficients.

As an aside, if we further assume the pressures have the simple form of eq. 2.7

and express the ρi in terms of the areas of the cells,

ρi =
pili
2Γ

=
(Pα − Pα′) li

2Γ

=
Kli [(Aα′ − Aα) + (A0α − A0α′)]

2Γ
, (2.37)

it becomes clear that the preferred area A0α of the cells does not affect the stability

in the common case in which A0α is the same for all cells.

2.5.2 Exploiting symmetries

The stability criteria 2.34 and 2.35 both contain terms with edge two. We would

like to use the symmetries of the problem to fix this shared edge and reduce the
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Topology 1 Topology 2

Figure 2.6: Cartoon of the unphysical resolution of a fourfold vertex due to large
pressure effects. In the left topology the two resulting threefold vertices are pushed
through each other by the pressure of the neighboring cells. This creates a physically
impossible state in which cells overlap.

number of free variables. The problem has rotation and reflection symmetry as well

as arbitrary edge labels.

Let us look at an arbitrary pair of non-adjacent edges li and lj (fig. 2.5, top).

Either ∠(lilj)lk ≤ π or ∠(lilj)lm ≤ π, since the two angles together make up a full

circle. Without loss of generality, label the edges so that ∠(lilj)lk ≤ π. We can then

use the problem’s rotational symmetry to impose l̂k = x̂. It will be useful later in the

proof to place restrictions on the sign of ρk. If ρk is initially negative we can reflect

the system about the x axis, as shown in fig. 2.5. This reflection has the effect of

changing the sign of ρk, so that we can impose that ρk ≥ 0. We are free to relabel lk

as l2 and to relabel the rest of the edges in order clockwise from 1 to 4. Since we can

perform this procedure starting from any pair of non-adjacent edges li and lj, our

arguments in the remainder of this section hold for all pairs of non-adjacent edges.

2.5.3 Bounds on the angle between non-adjacent edges

We next turn to the central problem of determining the implications of the stability

criteria of eqs. 2.34 and 2.35 for the angles between edges. Let θi be the signed angle

between an edge and the x-axis, where θ1 is positive and θ3 is negative due to the

clockwise labeling of edges as shown in fig. 2.5. The stability conditions can be

written in terms of the θi and ρi as

1 ≥ 2 + ρ21 + ρ22 + 2(1 + ρ1ρ2) cos θ1 + 2(ρ2 − ρ1) sin θ1 (2.38)

1 ≥ 2 + ρ23 + ρ22 + 2(1 + ρ3ρ2) cos θ3 + 2(ρ2 − ρ3) sin θ3. (2.39)
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Our goal is to put a lower bound on the angle ∠(l1l3)l2 = θ1 − θ3. An important

property of our system of inequalities is that the conditions on θ1 are completely

independent of the value of θ3 and vice versa. Neither variable depends on the other,

but they both depend on ρ2. This allows us to break the overall optimization problem

of finding the minimum value of θ1 − θ3 into two separate sub-problems: finding the

minimum value of θ1 as a function of ρ2 and finding the maximum value of θ3 as a

function of ρ2.

For our first optimization problem, we would like to find the minimum value of

θ1 that can be obtained by varying ρ1 for an arbitrary, fixed value of ρ2 and subject

to the constraint of eq. 2.38. Due to the inequality constraint we cannot use the

method of Lagrange multipliers to solve this optimization problem. Instead, we use

its generalization to the case where the optimum can occur either on the boundary

of a region or within that region, the Karush-Kuhn-Tucker conditions [42, 43]. Let

the function to be maximized be h(θ1, ρ1) = −θ1 and the constraining function be

g(θ1, ρ1) = 1 + ρ21 + ρ22 + 2(1 + ρ1ρ2) cos θ1 + 2(ρ2 − ρ1) sin θ1 ≤ 0. The optimality

conditions are then

∇h(θ1, ρ1)− λ∇g(θ1, ρ1) = 0 (2.40)

λ[g(θ1, ρ1)− 0] = 0 (2.41)

g(θ1, ρ1) ≤ 0 (2.42)

λ ≥ 0, (2.43)

where the gradient is taken with respect to the variables θ1 and ρ1, and λ ∈ R is the

the Karush-Kuhn-Tucker multiplier. This produces the system of equations

0 = −1 + 2λ [(1 + ρ1ρ2) sin θ1 + (ρ1 − ρ2) cos θ1)] (2.44)

0 = −2λ (ρ1 + ρ2 cos θ1 − sin θ1) (2.45)

0 = λg(θ1, ρ1) (2.46)

0 ≥ g(θ1, ρ1) (2.47)

0 ≤ λ (2.48)

In section 2.5.2, we showed that we can use symmetry operations to make ρ2 positive

without loss of generality. We also chose to focus on the smaller of the two angles

between a pair of non-adjacent edges, so that ∠(l1l3)l2 ≤ π, and we numbered the

edges clockwise as show in fig. 2.5 (bottom). This gives additional constraints on the
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solution:

0 ≤ ρ2, (2.49)

0 < θ1 ≤ π, (2.50)

where θ1 cannot be zero because edges must be separated by cells of non-zero area.

The solution to the full system of equations is

θ1 = arctan [−ρ2, 1] . (2.51)

where arctan [x, y] is the angle whose tangent is y/x and that lies the quadrant is

given by the signs of x and y.

We may now independently optimize θ3 for an arbitrary value of ρ2. Let the func-

tion to be maximized be h(θ3, ρ3) = θ3 and the constraining function be g(θ3, ρ3) =

1 + ρ23 + ρ22 + 2(1 + ρ3ρ2) cos θ3 + 2(ρ2 − ρ3) sin θ3 ≤ 0. The optimality conditions are

the same as eqs. 2.40-2.43, which produces the system of equations:

0 = 1 + 2λ [(1 + ρ3ρ2) sin θ3 + (ρ3 − ρ2) cos θ3] (2.52)

0 = −2λ (ρ3 + ρ2 cos θ3 − sin θ3) (2.53)

0 = λg(θ3, ρ3) (2.54)

0 ≥ g(θ3, ρ3) (2.55)

0 ≤ λ (2.56)

We have an additional two constraints given by the way we set up the problem:

0 ≤ ρ2, (2.57)

0 > θ3 ≥ −π. (2.58)

This system of equations has two real solutions:

θ3 = arctan

[
−2− ρ2

√
ρ22 − 3

1 + ρ22
,
−2ρ2 +

√
ρ22 − 3

1 + ρ22

]
, (2.59)

θ3 = arctan [ρ2,−1] . (2.60)

For all ρ2 ∈ [0,
√

3], the solution of eq. 2.60 is greater than that of eq. 2.59, and

elsewhere the solution given by eq. 2.59 has a non-zero imaginary part, so the true

maximum θ3 is given by the solution in eq. 2.60. Subtracting our two independently
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optimized solutions we have that the minimum possible value of the angle ∠(l1l3)l2 is

∠(l1l3)l2 = θ1 − θ3
≥ arctan [−ρ2, 1]− arctan [ρ2,−1]

= π, (2.61)

where the last identity holds for all nonnegative ρ2. As we began by choosing

∠(l1l3)l2 ≤ π, either ∠(l1l3)l2 = π or the fourfold vertex is unstable. Moreover,

because ∠(l1l3)l2 + ∠(l1l3)l4 = 2π, stability then also implies that ∠(l1l3)l4 = π. The

same holds for any pair of nonadjacent edges, by the argument in section 2.5.2. In

other words, the fourfold vertex is unstable unless l̂1 = −l̂3 and l̂2 = −l̂4. In the next

section, we show that under these assumptions it is impossible to satisfy all three

stability conditions 2.34-2.36.

2.5.4 Finding a contradiction when non-adjacent edges have 180◦ separa-

tion

Suppose that l̂1 = −l̂3 and l̂2 = −l̂4. It is easy to show that condition 2.36

(mechanical equilibrium) is then only satisfied when ρ1 = ρ3 and ρ2 = ρ4. Since

∠(l1l3)l2 = θ1 − θ3 = π, θ3 = θ1 − π. Substituting this equality and ρ3 = ρ1 into eqs.

2.38 and 2.39 yields

0 ≥ 1 + ρ21 + ρ22 + 2(1 + ρ1ρ2) cos θ1 + 2(ρ2 − ρ1) sin θ1 (2.62)

0 ≥ 1 + ρ21 + ρ22 − 2(1 + ρ1ρ2) cos θ1 − 2(ρ2 − ρ1) sin θ1. (2.63)

Together these two conditions imply

0 ≥ 1 + ρ21 + ρ22, (2.64)

which is a contradiction because the right-hand side is always greater than one. Thus,

there can be no stable, stationary fourfold vertices in the equal tension vertex model.

Before moving on from the stationary, equal tension case, we should finally note

that, strictly speaking, our proof of instability applies to a vertex model that allows

cell overlap. Although such a situation is not common in practice, it can occur that

pressure differences between cells are large enough that they overwhelm the tensions

and cause the fourfold vertex to try to resolve by pushing the cells through each other

as shown in fig. 2.6. If such resolution with overlap is forbidden, the vertex’s stability
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increases, and we cannot at the moment rigorously rule out the possibility that in

this case fourfold vertices could become stable in the equal tension model. In reality,

of course, if cell overlap is a concern then there is a good chance the model is being

studied in a pathological parameter regime.

2.6 Examples of modifications that allow for stable fourfold

vertices

It was already known that Plateau’s model of soap foams, on which the vertex

model is based, does not allow for stable fourfold vertices. In the last section we

gave a proof that, even with the addition of pressure effects which arise in vertex

models with straight edges, there are still no stable fourfold vertices. Given that

fourfold vertices are seen in various epithelial tissues [16, 27, 28, 29, 30], one might

naturally wonder what extensions of the model would allow stable fourfold vertices

to form. One well-studied example occurs in the avian oviduct epithelium, where two

different types of cells are arranged in a checkerboard pattern with edges between

like cell types having higher tension [16]. In this section we will give two examples

of modifications which allow for stable fourfold vertices in epithelia even when only a

single cell type is present. This gives us some insight into what additional biological

mechanisms might exist in epithelia which are not present in simple foams and which

could lead to higher order vertices.

2.6.1 Vertices not in mechanical equilibrium

So far we have only considered fourfold vertices which are in mechanical equi-

librium. If the vertex is moving relative to the epithelial tissue, eq. 2.27 no longer

holds, and the forces associated with the four edges can become very unbalanced.

It turns out that the vertex model then does admit stable fourfold vertices. An

example of such a stable state is given in fig. 5.3. The observation that moving four-

fold vertices tend to be more stable than their stationary counterparts might explain

why they have been observed to persist in tissues undergoing rapid morphogenetic

movements [44, 29].

2.6.2 Anisotropic tension

In previous sections, we investigated vertex stability in a model in which all edges

have the same tension. Unlike foams, however, cells can regulate their tensions so
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Figure 2.7: Situations in which fourfold vertices can become stable. A–B : Example
of a fourfold vertex stabilized through movement. All Γi = Γ = 1, so that the
tension force from each edge is 1. The vertex is then stable for the quoted values
of the pressure differences A : The fourfold vertex and adjacent cells. B : The force
from the pressure differences across each edge ρi(ẑ × l̂i) is shown as a dashed line.
The magnitudes are to scale. C : Solid black arrows represent the two values of F
corresponding to the two possible resolution topologies. D : All of the forces on the
vertex are shown. Solid colored arrows represent the edges, which contribute a force
of l̂i. The dashed colored arrows represent the force from the pressure across each
edge ρi(ẑ × l̂i). Solid black arrows are the two values of F , and the dashed black
arrow is the velocity vector. Values of ρi, F and the total force are given on the right.
Note that both solid black arrows are shorter than the four arrows giving the edge
tensions, indicating that |F| < Γ < 2Γ, amply satisfying the stability conditions of
eqs. 2.22–2.24. E− F : Parameter space in which fourfold vertices with anisotropic
edge tensions are stable. E : Stability for symmetric vertices; γ gives the strength of
the anisotropy in the tension and θ gives the angle of the edges with respect to the
x-axis (inset). The region of parameter space in which fourfold vertices are stable is
shown in green. F : Stability for asymmetric vertices with paired edges; γ gives the
strength of the anisotropy in the tension, θ gives the angle of l̂1 with respect to the x
axis, and ϕ gives the angle between l̂1 and l̂2 (inset). The region of parameter space
in which fourfold vertices are stable is shown in green.
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that these differ from one edge to the next. One example of this is the anisotropic

edge tensions produced through the planar cell polarity pathway [1, 2, 3, 4, 5, 6, 30]

(which breaks rotational symmetry by defining a preferred direction in the plane of

the epithelium).

A very simple model of planar cell polarity is to assume that tension regulating

proteins (such as myosin) are recruited to edges based on the edges’ angle with the

overall polarity orientation, so that edges have an anisotropic tension given (in appro-

priate dimensionless units) by Γi = 1 + γ cos 2θi, where γ ∈ [0, 1] gives the strength

of the anisotropy, and θi is the angle between the edge and the planar polarity axis

(which we will always take to be the x axis) [5, 45, 46]. We will make the further

assumption that there is some time lag for proteins to move onto the newly forming

edge, so that the new edge tension will not depend on the angle, but instead will

simply be the unit tension Γδ = 1. In order to further simplify the model we will

also assume that effects from pressure are negligible. The force on a fourfold vertex

is then described by five variables: γ and the four angles θi between the edges and

the polarity axis.

With the additional effects of polarization some stable fourfold states exist. We

begin our examination of the stable states by looking only at states which are sym-

metric about both the x and y axes (fig. 5.3E, inset). Let θ be the angle between the

high tension x-axis and the edges. From the conditions given in eqs. 2.25-2.26 it is

easy to show that the vertex is stable if it satisfies both:

1 > 2(1 + γ cos 2θ) cos θ (2.65)

1 > 2(1 + γ cos 2θ) sin θ. (2.66)

The solutions to this series of inequalities are shown in fig. 5.3E. In general we have

stable fourfold vertices when the strength of the polarization is fairly high and θ is

near π
2
. This makes intuitive sense because this represents all of the edges being near

the low tension axis and the strength of the tension being relatively low.

We now lift the restriction of symmetry in order to look for more general instances

of stability. We will assume that the edges come in equal and opposite pairs (l̂1 = −l̂3
and l̂2 = −l̂4), so that mechanical equilibrium is ensured and the number of free

parameters is still low. (With this restriction, we still cannot explore all possible

states of the model, but the variety of available vertex geometries is large enough

to clearly demonstrate how polarized tensions can lead to stability.) We now have

three free parameters. Let θ be the angle between the high tension axis (the x-axis)
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and the first edge, ϕ be the angle between the first and second edges, and γ be the

strength of the polarization. We then have that θ1 = θ, θ2 = θ + ϕ, θ3 = θ + π, and

θ4 = θ + ϕ+ π. In order to have stability the following two inequalities must hold.

1 >

(
(1 + γ cos 2θ) cos θ

+
[
1 + γ cos 2(θ + φ)

]
cos(θ + φ)

)2

+

(
(1 + γ cos 2θ) sin θ

+
[
1 + γ cos 2(θ + φ)

]
sin(θ + φ)

)2

(2.67)

1 >

(
(1 + γ cos 2θ) cos θ

+
[
1 + γ cos 2(θ + φ− π)

]
cos(θ + φ− π)

)2

+

(
(1 + γ cos 2θ) sin θ

+
[
1 + γ cos 2(θ + φ− π)

]
sin(θ + φ− π)

)2

(2.68)

The solution to this series of inequalities is shown in fig. 5.3F. This is reasonable

because more angles are stable as the amount of polarization increases and once

again these angles represent the edges placed near the low tension axis.

Stable fourfold vertices are seen in some systems with planar cell polarity [27, 28,

30]. The stability of these vertices may be due to the decreased tension on edges

along the low tension axis.

2.7 Implications for computational models

Although vertex models are widely used to simulate epithelial dynamics, there

is currently no standard procedure for dealing with T1 transitions in such simula-

tions. Some naive implementations can resolve fourfold vertices in ways that produce

unphysical behavior. For example, approaches that automatically perform a T1 tran-

sition whenever an edge becomes too small, or more generally that assume that a

fourfold vertex must always break up into two threefold vertices, can lead to spu-

rious oscillations when the fourfold vertex should in fact be stable; importantly, as

we showed in the preceding section, moving vertices can become stable even when
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all tensions are equal, so this issue can in principle arise in almost all vertex model

simulations. Something similar can occur when a fourfold vertex is resolved into two

threefold vertices with a separation lδ that is not parallel to F (though this phe-

nomenon can be avoided—see below—if |lδ| is chosen small enough). In this section

we briefly describe a method, based on the theoretical developments of the previous

sections, that carries out T1 transitions in a consistent fashion and so avoids these and

similar difficulties. Complete pseudo-code for this algorithm appears in the appendix.

The essential idea of our algorithm is that T1 transitions must be dealt with in

two steps: First, an edge whose length is below a chosen cutoff is removed and the

two threefold vertices joined by that edge are merged into a single fourfold vertex.

Then, one checks the stability of the fourfold vertex against breaking in both allowed

topologies (recognizing, as shown in Sec. 2.6, that the fourfold vertex could be sta-

ble). This requires creating temporary threefold vertices, with zero separation, and

corresponding edges, so that the forces on the two new vertices can be calculated in

each topology. Depending on the stability of the fourfold vertex, three outcomes are

possible: 1) The fourfold vertex is found to be stable and allowed to persist. (In this

case, the vertex could still become unstable at some later time, so one must continue

to monitor its stability as the simulation progresses.) 2) The fourfold vertex resolves

into two threefold vertices in the same topology as the original threefold vertices. One

thus effectively rejects the proposed T1 transition even though the initial edge length

is less than the cutoff. If one observes a series of such events involving the same edge,

one can conclude that the dynamics is trying to drive the edge towards a nonzero

length less than the cutoff length, and thus that the cutoff has been chosen too large

for the system being studied. (One can readily imagine schemes to dynamically up-

date the cutoff length in such circumstances, or even to assign different cutoff lengths

to different edges, but for simplicity we do not include them in our pseudocode.) 3)

The fourfold vertex resolves into two threefold vertices in the new topology, and a T1

transition occurs.

Once it has been determined that a fourfold vertex is unstable one needs to make a

new edge of finite length, which raises the question of the most appropriate orientation

for the new edge. From eq. 2.19 the new edge rotates at a rate

θ̇ = − F
µlδ

sin θ, (2.69)
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and its length changes according to

l̇δ =
F
µ

cos θ − 2Γδ
µ
. (2.70)

The edge orientation must clearly relax to θ = 0 as long as F remains approximately

constant over the relaxation timescale. Because θ̇ diverges like 1/lδ, it is reasonable

to guess that this will be the case if the initial edge length l0δ is chosen small enough.

More precisely, one can estimate that the edge relaxes to θ = 0 on a timescale
µl0δ
F . Over that time, the change in edge length will be of order l0δ. Thus, the

fractional change in the new edge’s length during the relaxation process is of order

one. Nonetheless, if l0δ is small compared to the scale, typically of order a cell size,

over which F changes appreciably, then the variation in F over the time it takes θ to

rotate to zero can still be neglected. We thus conclude that if they are short enough,

new edges will always quickly rotate to become parallel with F , whatever their initial

orientation. It is then reasonable in simulations simply always to create new edges

with θ = 0.

2.8 Discussion

Vertex models are important tools to study the interplay between local cell me-

chanics and global tissue shape and motion. One aspect of this interaction during

tissue remodeling and development is the T1 transition, in which a fourfold vertex

is formed as an intermediary stage. More generally, the local behavior of fourfold

vertices affects cell shape and mechanics, and thereby morphogenesis at larger scales.

Here, we have introduced a formulation of the stability of fourfold vertices in

vertex models with straight edges that holds for arbitrary edge tensions and cell

pressures (whether or not derived from an underlying energy function). Using this

formulation, we have given the first proof that, in the simplest case of equal edge

tensions and vertices in mechanical equilibrium—analogous to the conditions in a dry

foam—fourfold vertices are never stable in vertex models, just as they are not in the

Plateau model of foams.

We have also shown that if either of the assumptions of equal edge tensions or

mechanical equilibrium is relaxed, fourfold vertices can become stable. Interestingly,

long-lived fourfold and higher order vertices have been observed in epithelia moving

relative to the surrounding fluid [29, 44] and in tissues where junctional tensions

are influenced by planar cell polarity [27, 28, 30], suggesting that both stabilization
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scenarios may have biological relevance.

Lastly, our treatment of vertex stability has clear implications for the simulation

of vertex models and especially for the implementation of T1 transitions in compu-

tational modeling (see appendix A). Moreover, whereas our analytic results apply

to models that in principle allow for cell overlap, in computational formulations this

problem can be addressed by checking for overlap after T1 transitions. Disallowing

overlap may stabilize some fourfold vertices in the limit where the force on the vertex

from the cell pressure dominates over the tension on the edges (though such parame-

ter regimes are not those thought to be physically relevant in most studies of vertex

models, and in particular one could question whether it is a good approximation to

force edges to remain straight when pressures are high enough). Our discussion in

this chapter has been limited to fourfold vertices, but higher order vertices, like the

rosettes seen during Drosophila germband extension [25], can be investigated in an

entirely analogous manner, by checking whether the vertex is stable against breaking

up into every possible combination of two lower order vertices; of course, the number

of stability conditions will increase rapidly with the order of the vertex.

Although the relatively simple models for determining pressures and edge ten-

sions that we have adopted here capture many aspects of the behavior of real ep-

ithelia, certain systems clearly require more sophisticated descriptions. For example,

in the pupal dorsal notum of Drosophila pten mutants, vertices are seen to undergo

oscillatory T1 transitions that appear to be driven by disparities in the timescales

for transport of different proteins to newly formed edges [28, 47]. Our description

of vertex stability can readily be extended to include many effects along these lines.

In particular, as long as the new edge is much shorter than the existing edges, the

stability problem can still be expressed in terms of the dynamics of the new edge lδ,

which in turn are determined by the—now possibly time-dependent—tensions and

pressures of the surrounding edges and cells. Similarly, our formalism can encom-

pass buckling of the epithelial sheet into the third dimension [35, 36] without any

significant modifications, because even a bent epithelium appears locally flat when lδ

is much less than the sheet’s radius of curvature, as it must be immediately after a

fourfold vertex has broken up.

On the other hand, our formalism assumes that vertex stability is solely a conse-

quence of local edge tensions and cell pressures; it does not include the effects of other

phenomena that might be relevant in some biological systems and that would require

more substantial changes to our basic model. For example, it is possible that in some

circumstances cells could recruit proteins specifically to fourfold vertices to stabilize
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or destabilize them. Similarly, the models studied here neglect effects associated with

the fluid dynamics of molecular transport to and from vertices [48] and include inter-

actions between the epithelium and its substrate only in the coarsest fashion, as one

of the sources of the local friction force on vertices. Our calculations thus represent

only an initial step towards understanding the rich physics of topology changes and

vertex stability in epithelia and planar foams.
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[6] E. Assémat, E. Bazelliéres, E. Pallesi-Pocachard, A. L. Bivic, and D. Massey-
Harroche, “Polarity complex proteins,” (BBA) - Biomembranes, vol. 1778, no. 3,
pp. 614–630, 2008.

[7] A. G. Fletcher, M. Osterfield, R. E. Baker, and S. Y. Shvartsman, “Vertex Models
of Epithelial Morphogenesis,” Biophys. J., vol. 106, pp. 2291–2304, Jun 2014.

[8] A. G. Fletcher, J. M. Osborne, P. K. Maini, and D. J. Gavaghan, “Implementing
vertex dynamics models of cell populations in biology within a consistent com-
putational framework,” Progress in Biophysics & Molecular Biology, vol. 113,
pp. 299–326, Nov 2013.

[9] S. Schilling, M. Willecke, T. Aegerter-Wilmsen, O. A. Cirpka, K. Basler, and
C. von Mering, “Cell-Sorting at the A/P boundary in the Drosophila wing pri-

39



mordium: a computational model to consolidate observed non-local effects of Hh
signaling,” PLOS Comp. Bio., vol. 7, Apr 2011.
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CHAPTER III

Implementing the vertex model

Notes: I wrote the majority of the vertex model code with contributions from Jeremy

Hadidjojo (primarily the visual representation in Matlab and input/output handling)

and Hayden Nunley (primarily the numerical integrator and mitosis implementation).

3.1 Introduction

In every chapter in this thesis, software implementing the vertex model is hiding

in the background. The code used to implement the vertex model is often glossed

over in favor of highlighting the science produced with it. Although the code is just a

tool to assist us in our scientific endeavors, its development was nontrivial, and some

of the problems we encountered while developing the code are interesting in and of

themselves.

This chapter highlights some of the important choices that we made to ensure that

the algorithms driving our computational model correctly reflected the theoretical

model itself. We also hope that this chapter will be useful to other scientists as

they build upon the robust central core of the code for their own projects. For this

reason, we will spend some time discussing practical aspects of implementing the

code for one’s own work. We assume that the reader is already familiar with the

theory behind computational vertex models. For those unfamiliar, we recommend

the recent reviews [1, 2, 3]. The notation used here is consistent with the notation

defined in chapter III which also defines the model. Because the vertex model allows

for topological changes in the the network structure implementing the model is not

as simple as integrating a large number of ODEs. It is necessary to keep track of the

connections between edges, cells, and vertices, and update the equations of motion

as these connections change.

44



3.2 Overview

InitialConditions_*.m
VertexModel.exe 

Constants.h

CellClass.h

EdgeClass.h

VertexClass.h

TissueClass.h

VectClass.h

CreateMovie.m

Formated txt �le 

Global:

CURRENTTIME 0

...

Vertices

id x y

40 83.0  32.8

...

Edges

id v1 v2 x�ag y�ag

1  165  163  0   0 

...

Formated txt �le 

Global:

CURRENTTIME 0

...

Vertices

id x y

40 83.0  32.8

...

Edges

id v1 v2 x�ag y�ag

1  165  163  0   0 

...

Main.cpp

CellClass.cpp

EdgeClass.cpp

VertexClass.cpp

TissueClass.cpp

VectClass.cpp

Figure 3.1: Cartoon of the work flow of the vertex model simulation. Initial pack-
ings can either be regular hexagons by using InitialConditions Honeycomb.m, or
Voronoi tessellation using InitialConditions Voronoi.m .

The vertex model code is split into three sections which are run in different pro-

grams. A cartoon of the workflow is given in figure 3.1. First the user creates an

initial packing (generally a Voronoi tessellation or a regular hexagonal packing) and

chooses all parameter values. This is done in a single Matlab script. For more infor-

mation on choosing parameter values, see section 3.3. The output of the script is a

text file containing all the parameter values and the locations and connectivity of all

of the cells, edges, and vertices. For further information on input/output handling,

see section 3.4.

The second stage is a C++ executable which numerically integrates the equations

of motion. This stage contains the core functionality. It is made up of six header

files which contain the definitions of the cell, edge, vertex, tissue and vector classes

as well as global constants. There are six associated source files, one for each class

plus a main file.

It should be noted that C++11 has a built in class called vector which is not

a mathematical vector but instead an array class with built in memory handling.

45



We have defined our own class Vect which performs the standard operations on two

dimensional vectors. The Cell, Edge, and Vertex classes all contain the data and

functions that define their basic properties as well as functions to retrieve pointers to

their neighbors. For a more in depth discussion of these class structures, see section

3.5. The Tissue class contains all of the functions governing the tissue evolution

as well as the master lists of all cells, edges, and vertices. The main file handles

input/output and initialization of the class objects.

The final stage is a set of Matlab scripts which produce movies of the evolution

of the tissue in time.

3.3 Standard assumptions and parameter set

The base class of the vertex model contains a number of assumptions regarding the

form of the model. These assumptions can be changed by implementing subclasses of

any or all of the objects, which override the standard behavior (see section 3.8). The

base class assumes that the tissue lives in a box of dimensions Lx × Ly with periodic

boundary conditions. The box may or may not be under external stress. The form

of the cell pressure is given by

P = K
(
A− A0

)
. (3.1)

All edges have the same constant contractile force γ0.

The user must specify the number of cells and the values of γ0, K, A0, Lx, Ly,

αm, and αT as defined in chapter II. When determining the value of the parameters,

it is important to note that there are three independent units of measure in the

vertex model equations: length, time, and force. For historical reasons we define our

standard units as:

l0 = 25, (3.2)

γ0 = 10, (3.3)

t0 = 1, (3.4)

where l0 is the average length of an edge, γ0 is the magnitude of the edge tension,

and t0 is an arbitrary unit of time. The value of l0 and the number of initial cells set

the initial box size. In these units, a tissue relaxes to its equilibrium state in about

10 time units. Table 6.3.2 gives the standard parameter values in terms of these base
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parameter value notes

Lx 1.5l0
√
Ncells Length of the tissue

Ly 1.5l0
√
Ncells Height of the tissue

A0 LxLy/Ncells Cells’ preferred area
K 3.3 γ0/l0 Sets the pressure effects to 1/3 of the tension
αm γ0t0/l0 Drag parameter; sets the timescale
αT 10αm Box evolution timescale
dt t0/500 initial stepsize

Table 3.1: Standard set of parameter values used.

units. Any parameter set can be used in our vertex model, but we recommend using

these parameters as a starting guide. Parameter values can be changed in the Matlab

initialization file or in the main file according to user preference. Any unassigned

global variables are set to their default values as specified in the main file.

3.4 Input-output

In order to save the network of cells, edge, and vertices for future use, we created

a standard input-output text file format that interfaces with both the C++ code and

the Matlab visualization scripts. An example of this standard formatting appears in

figure 3.1. Input file has contain only the state of the network at the initial timepoint.

Output files contain many timepoints which are concatenated in one file and read in

sequence to produce movies of the tissue evolution.

The programs begin reading the files at the line Global:. This allows the user to

write un-formatted notes above this line. Between the lines Global: and endGlobal,

every global variable is defined. Any new global variables should be added here.

The line Vertices denotes the beginning of the list of vertices. Immediately

following this line is a list of the recorded vertex characteristics. By default we record

the vertex id and x and y location. Each vertex is listed on its own line until the line

Edges is reached. Edges and cells are recorded in the same way. The default edge

characteristics are the id, vertices, xflag and yflag, where the flags denote an edge that

passes through the boundary. The default cell characteristics are the id, A0, cell type,

number of edges, and list of edges. More characteristics can be recorded by adding

the name of the characteristic to the first line after the object name and adding the

value of the characteristic to each line representing an object of the appropriate type
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separated from the other characteristics by a tab. The function ReadInputData is

responsible for parsing the input file and reconstructing the network as C++ objects

with pointers to their neighbors.

3.5 Defining the cell, edge, and vertex classes

In this section, we will discuss the Cell, Edge, and Vertex objects. Before we get

into a detailed discussion of the object classes, we will take a moment to discuss the

paradigm we used to guide our object creation. In computer science one often speaks

of optimization in terms of scaling laws of the runtime of algorithms. However, there

are other axes to optimize over, such as clarity of code or ease of adapting existing code

to new situations. The driving force in developing our code base was to write clear,

highly modular code that was easy to debug, often at the expense of optimal runtime.

For this project development and testing of new code is more time-consuming than

the total run time of a simulation (which is often less than a day). We also intend for

the code to be accessible to undergraduate and first-year graduate students, many of

whom have little to no coding experience.

All objects in C++ are made of two components, data members and object func-

tions. Data members are any variables, such as scalars, lists, or strings. Object

functions are any functions that describe operations on the object, such as finding

the center of a cell. In general, most information about cells, vertices, or edges can be

defined either in terms of data members or object functions. For example, we might

define a double length which stores the length of an edge, or a function GetLength

which calculates the length of the edge given its vertex positions.

In designing our objects, we chose to keep only the minimal set of data which is

needed to reconstruct the tissue, where as others have chosen to keep multiple copies

of all data in order to optimize compute time using multiple cores [4]. We avoid

having two copies of the same information in multiple places to avoid potentially

storing conflicting copies. This choice was made to support the ideal that the code

should be easy to debug. As an example, take a list of cells neighboring cell C. One

way to record this data is to create a data member of the Cell object which is a list

of its neighboring cells. When we write the T1 function we must explicitly remember

to update the list of neighboring cells for each cell involved in the T1. If we forget

to do so, the code will not crash when it reaches a T1 function, but continue to run.

Problems caused by this mistake may only manifest many time steps later, perhaps

when one of the affected cells undergoes mitosis. We might now reasonably believe
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that there is some problem in the mitosis function, leading to significant delay in

finding the actual bug.

Instead of recording the neighboring cells of cell C as a data member, we write an

object function GetNeighboringCells which fetches this information anytime it is

needed. This allows us to avoid the previous problem. By keeping only the minimum

data set, it is more difficult to introduce errors later on, and easier to fix them

when they happen. Each object in our code contains only the minimal data needed

to reconstruct the tissue, with the exception of data named SavedInfoForEvolve*,

which we will discuss in section 3.7.

A cartoon showing the organization of the objects, and their object functions is

given in fig 3.2. The first category of functions are necessary fundamental functions

for defining objects in C++, such as the constructor and destructor. The second

category of functions finds properties of the objects, such as the length of an edge

or the perimeter of the cell. We have listed all of these functions in figure 3.2. The

third category functions fetch pointers to neighboring objects and are listed in figure

3.2. The arrows in figure 3.2 show the connectivity of objects by either member

data or object functions. Solid arrows represent lists of neighboring objects stored

as member data, whereas dashed arrows represent the existence of functions that

retrieve neighboring objects when necessary. Many of these functions contain the

same guts such as determining the clockwise ordering of vertices. All of the shared

guts are defined in helper functions, which new users of the code should not need to

update. The fifth class of functions is a small miscellaneous class.

3.6 Anatomy of the tissue class

helper functions 

edges              edgeIDs

cells                  cellIDs

verticies          vertexIDs

ForceLX           ForceLY

LXold                LYold

topological changes
Mitosis()

Apoptosis()

T1()

ResolveVerticies()

create/destroy objects

CreateVertex(r,edges)

DestroyVertex(vertex)

CreateEdges(subclass, ...)

DestroyEdge(edge)

CreateCell(edges)

DestroyCell(cell)

data

Tissue Object

fundamental functions

evolution

Evolve(interval, dt)

ForceFunction()

IntegrateEuiler(dt)

Integrate_RK4(dt)

Integrate_RK4_Adaptive(dt, ...)

CalculateTissueStressX(ypos)

CalculateTissueStressY(xpos)

I/O handling
ReadInputData(!le)

WriteOutputDataAppend(!le)

Figure 3.3: Cartoon of the organization of the tissue object.
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The final class of user-defined objects is the tissue class. The tissue class serves

as a container which holds all the other objects and which performs the numerical

integration (see section 3.7). Figure 3.3 shows a cartoon of the tissue object. The

tissue class contains linked lists of every edge, cell, and vertex in the tissue. We

use linked lists because they can efficiently remove elements from their interior. It

also contains a list of every ID used. When objects are removed from the tissue,

they are removed from the linked list, but their IDs remain in the list of IDs so that

IDs are not reused when new objects are created. This allows us to track individual

cells, or edges in time. IDs are used exclusivly for I/O purposes, within the code

objects are identified by pointers. There are four main types of functions in the tissue

class in addition to the fundamental functions and helper functions. The first type of

function creates or destroys objects from the tissue. These functions ensure that when

an object is deleted, it is removed from both the linked list and from any other objects’

data. The second type of function deals with I/O handling; for more information, see

section 3.4. The third type function numerically integrates the vertex dynamics. A

more thorough discussion of these functions is given in section 3.7. The final type of

function implements topological changes in the tissue. A detailed description of the

mathematics and algorithms used for the T1 transition is given in chapter 1.

3.7 Evolution in time

The dynamics of the vertex model are implemented within the tissue class. Pseudo-

code for the major high level functions is given in figure 3.4. The evolve function

integrates the differential equations forward in time by dt, including making any nec-

essary topological changes. Various integrators have been implemented by Hayden

Nunley including fixed and variable step-size Euler and forth order RungeKutta inte-

gration schemes. The name of the integration scheme to be used is a global variable

set in the input file. For more information, see Nunley’s forthcoming thesis.

The form of the force function used is specified in the function ForceFunction.

In the base class, the force on every vertex is a combination of the force from pressure

in the neighboring cells and the tensions on the edges as described in chapter II.

To use a different force function, for example one with noise in the vertex position,

the user should define a subclass tissue with its own virtual implementation of the

ForceFunction function.

At every timestep, the force function loops over all cells to compute their pressure.

In order to compute the pressure the cell must retrieve all of its vertices and put them
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in clockwise order since the pressure relies on calculating the cell area which in turn

requires a clockwise list of vertex positions. This is a time consuming operation and

it scales linearly with both the number of cells and the number of integration steps

taken. This created a major bottleneck in the run time of the code. For this reason

we chose to add a data member to the cell class which stores a list of its clockwise

vertices; an exception to our design principals discussed in section 1.5. The only time

a cell can change the clockwise ordering of it’s vertices is when the tissue changes

topology. We set a reinitialize flag any time a topological change occurs and only

recalculate the list of clockwise vertices when the flag has been triggered.

3.7.1 Implementing external stress

l

l l’

L L’

x x

x x

σ σx x

Figure 3.5: Physical constraints on the evolution of the box size. Given the same
external stress σxx we want the smaller box to evolve as if it was embedded in a
larger tissue.

The addition of an external stress is not given in the energy equation that de-

fines the vertex model. There are a number of different approaches to implementing

stress (see [3, 5]). Unfortunately, the way in which stress and box size changes are

implemented is often omitted from the literature, which leads to difficulty replicating

previous results. Here we will derive the implementation of external stress that we

use in our vertex model starting from the energy equation:

E =
∑
i

(γili) +
K

2

∑
j

(Aj − A0)
2. (3.5)

By definition, the total stress in the tissue in the x dimension is the average of

the force along a vertical cut through the tissue for all such cuts. In a tissue in
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perfect mechanical equilibrium, the force along any vertical cut must be independent

of the line of the cut; otherwise there would be a stress imbalance. Therefore we

can approximate the stress everywhere by looking at only one cut through the tissue

at tech time point, as long as we randomize the position of the cut and use a small

enough step size. The force per unit length along a single cut is given by

σIxx =
1

Ly

(∑
i

FT i +
∑
j

FPj

)
, (3.6)

where σIxx denotes the internal stress of the tissue along the x-axis, and FT is the force

along the cut from the tension on the edges, and FP is the force from the pressure in

the cells. The factor of Ly comes from the fact that a vertical cut has length Ly.

The force from the edge tensions is is simply the magnitude of the tension per-

pendicular to the cut, ∑
i

FT i =
∑
i

γi cos(θi), (3.7)

where θi is the angle that the ith edge makes with the horizontal. The force exerted

by the cell pressure is equal to the pressure times the length of the cut,∑
j

FPj =
∑
j

hjPj, (3.8)

where hj is the length of the cut through cell j and Pj is the cell pressure. Therefor,

the internal stress in the x dimension is given by

σIxx =
1

Ly

(∑
i

γi cos(θi) +
∑
j

hjPj

)
. (3.9)

Likewise, the internal stress in the y dimension is

σIyy =
1

Lx

(∑
i

γi sin(θi) +
∑
j

hjPj

)
. (3.10)

Having determined how to calculate the internal stress of the tissue, we require

a unified way of handling the changes in both the vertex position and box size due

to the effects of both the mechanical force and the stress. Let R be the collection of

vertex positions R = {~r1, ~r2, ...~rn} and Γ be the collection of all the edge tensions.
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Ultimately we want a set of four differential equations

αT L̇x = f1(Lx, Ly, F
E
x , F

E
y , R,Γ) (3.11)

αT L̇y = f2(Lx, Ly, F
E
x , F

E
y , R,Γ) (3.12)

αmẋi = f3(Lx, Ly, F
E
x , F

E
y , R,Γ) (3.13)

αmẏi = f4(Lx, Ly, F
E
x , F

E
y , R,Γ) (3.14)

which completely and consistently describe the evolution of the tissue over time. Here

FE
x and FE

y are external forces applied to the box. The functions governing the motion

in the x and y dimension are equivalent, so we will drop the equations of motion in

the y dimension from here on. The value of f has units of force, so α has units of

(time · force)/length.

We begin by looking at two illuminating special cases; a tissue where their is no

net force on the box, and a tissue with in mechanical equilibrium. In a tissue with

no net force on the box, the box size remains constant in time and the vertices move

inside the box according to the local forces. Let Fm be the mechanical force on a

vertex given by the pressure and tension. The equations of motion for the box and

vertices are given by

αT L̇x = 0 (3.15)

αmẋ = Fmx (3.16)

In a tissue in mechanical equilibrium, changes in vertex position are solely based

on changes in box size. To have a physically reasonable system, we require that two

edges that are initially the same length and direction before a change in box size to

remain the same length and direction after a change in box size, regardless of their

positions in the box. Stated mathematically, we require

~r1 − ~r2 = ~r3 − ~r4 =⇒ ~r′1 − ~r′2 = ~r′3 − ~r′4 (3.17)

where the primes are the vertex positions under a transformation of the box from

{Lx, Ly} to {L′x, L′y}. Let x̄ = x
Lx

be the relative x position of a vertex. If the tissue

transforms by holding the relative positions constant so that x̄ = x̄′ then

x
L′x
Lx

= x′, (3.18)
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and it is easy to see that 3.17 holds. This implies that dx
dLx

= x̄ and x evolves in time

according to

ẋ =
dx

dLx

dLx
dt

= x̄L̇x. (3.19)

We are now left with determining how the box size should scale. Physically, we want

to apply the same stress to two boxes, one imbedded inside the other, and have them

evolve consistently together as shown in fig. 3.5. The internal stress felt by the two

tissues is the same. In the larger tissue twice as many cells and edges contribute to

the stress, but the tissue is twice as long, so the effect cancels out. Let lx = 1
2
Lx. We

require that

lx + dlx =
1

2
(Lx + dLx), (3.20)

which implies that

dlx =
1

2
dLx. (3.21)

Therefore, for the definition of L̇x to make physical sense it must scale with Lx. For

simplicity we take αT L̇x = (F
E
x

Ly
− σIxx)Lx. The full set of equations of motion in the

state of no net mechanical force are given by

αT L̇x =

(
FE
x

Ly
− σIxx

)
Lx (3.22)

αmẋi =
αm
αT

xi

(
FE
x

Ly
− σIxx

)
(3.23)

The most straightforward way to create a set of equations of motion that satisfy

our two special cases is through a simple linear combination

αT L̇x =

(
FE
x

Ly
− σIxx

)
Lx, (3.24)

αmẋi = Fmx +
αm
αT

xi

(
FE
x

Ly
− σIxx

)
. (3.25)

The ratio αm
αT

determines the speed at which the box moves relative to the vertices.

Unfortunately, there is no particularly obvious value for this ratio. If αT
αm

= 1 the

box moves too fast, violating our assumption that vertices generally reorganize on a

timescale much faster than the tissue changes shape. On the other hand, set the ratio

too high and the simulation may take too long to run to be of any practical use. In

our experience ratios of 10-100 tend to work well.
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3.8 Extending the base code through the use of polymor-

phism

There are many different variants of the vertex model and many different problems

of interest. Our code is built to be a flexible base on which to build different and more

complex vertex models. We can have many different vertex models operating at once

by creating different subclasses that implement problem-specific behavior. In C++ a

subclass inherits all of the object data and object functions from its parent class, and

can be given additional data and functions and can override the behavior of parent

class functions. As an example, the energy function that defines the vertex model is

sometimes written with an additional perimeter term which gives more rounded cells

[6]. In this case the energy is given by

E =
∑
i

(γili) +
K

2

∑
j

(Aj − A0)
2 +

Λ

2

∑
j

(Pj − P0)
2, (3.26)

where Pj is the perimeter of cell j, P0 is the cells’ prefered perimeter and Λ is the

relative strength of the force induced by changing the cell perimeter. The tension on

a vertex from an edge l has additional terms

F =
[
γ + Λ (P1 − P0) + Λ (P2 − P0)

]
l̂, (3.27)

where P1 and P2 are the perimeters of it’s adjacent cells, corresponding to the perime-

ter deformations of its adjacent cells.

We might wish to create a spin-off model that uses this energy, while keeping

our standard model intact. We can do this easily by creating sub-classes of the cell

and edge objects which have additional or modified behavior. We define a subclass

of the cell Cell Perim which contains one additional data member P0, the preferred

perimeter of the cell. We also define an new edge subclass Edge Perim which overites

the standard GetTension Magnitude() function with one that returns the value γ0 +

Λ (P1 − P0) + Λ (P2 − P0).

Using the subclass objects allows us to quickly modify the behavior of the model

without overriding previous behavior or making copies of the code, which can in-

troduce errors and bugs. The many different variations of the vertex model used in

chapter IV were produced using this method.
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CHAPTER IV

Multicellular actomyosin cables in epithelia under

external anisotropic stress

Notes: Adapted from M.A. Spencer, J. Lopez-Gay, H. Nunley, Y. Bellache, and D.K.

Lubensky, “Multicellular actomyosin cables in epithelia under external anisotropic

stress,” arXiv:1809.04569 [q-bio.TO]. Sep 2018.

4.1 Introduction

We have spent the last two chapters developing the physical framework that we

use to understand the mechanics of epithelia. With this framework fully established,

we now turn our attention to biological systems under anisotropic mechanical stress.

In the next two chapters, we will focus on multicellular actomyosin cables formed

either along the junctions and associated cortex of cells, or through internal apical

fibers.

The long range organization and patterning of cells in an epithelium helps drive the

morphogenesis of tissues [1, 2, 3, 4]. One such pattern is the alignment of the junctions

and associated cortex of multiple cells to form a continuous assembly of actomyosin,

which we refer to as a cable (Fig 4.1A). The appearance and role of isolated cables, for

example, at compartment boundaries, and during wound healing and dorsal closure,

has been well studied [4, 5, 6, 7, 8]. However, the role of multiple parallel cables

within a single tissue in morphogenesis remains less well understood. A number of

different tissues contain such parallel actomyosin cables, including the the Drosophila

wing imaginal disk [9, 10], pupal wing blade [11, 12], and ventral epidermis [13], as

well as the mouse heart [14]. These cables are presumed to have large contractile

tensions, and thus to maintain anisotropic mechanical stresses. Although there is

some knowledge of the molecular events driving the formation of these cables in
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some cases, little attention has been paid to the role of cell packing in aligning these

junctions. Here we begin the work of understanding what role cell packing topology

plays in cable formation.

An actomyosin cable forms when the junctional actomyosin across multiple cells

aligns and assembles into a supra-cellular structure. It is currently unclear exactly how

this continuity is achieved, although it is assumed that modified adherens junctions

could link the ends of cables between adjacent cells, allowing forces to be transmitted

along the cable [15]. Actomyosin cables were first identified in wound healing where

they were called ‘actin purse-strings’ [7]. They have since been discovered in a number

of different systems [5]. There appear to be different pathways involved in cable

formation that are system dependent. For example, the planar cell polarity proteins

Frizzled and Flamingo are upstream activators of actin and myosin on the cable at the

leading edge of dorsal closure in Drosophila, whereas Notch signaling is the upstream

activator of cable formation at the dorsal-ventral compartment boundary [16, 17, 18].

Independently of the nature of the signaling pathway contributing to their formation,

cables are defined by the up-regulation of myosin leading to increased tension along

the affected junctions [5, 19, 10]. If the increase in tension is in response to an

externally imposed mechanical stress, the cables are relatively stable, as in the pupal

wing blade [11]. If the stress anisotropy is instead internally generated, the cables

are short lived, collapsing to form multicellular rosettes and driving tissue flow, as in

convergent extension and neural tube closure [20, 21].

There are many interesting questions to ask about the relationship between me-

chanical stress and tissue topology [22, 23, 24, 25]. When an external stress is applied

to an epithelium it may react by selectively increasing its internal tension at the

junctions and associated cortex, by up-regulating myosin along the axis of stress

[26, 27, 28, 29, 30]. Here we show that this up-regulation will lead to the formation of

parallel cables only when the initial cell arrangement is favorable. This is easy to see

in the cartoons in Fig. 4.1 where we show two perfectly ordered tissues in the ‘cable

forming orientation’ (CFO) and the ‘non-cable forming orientation’ (NCFO). These

two orientations behave differently under stress. As the stress anisotropy increases,

cells in the CFO become brick shaped and cables from along the columns of cells.

Because the brick-like packing contains lines of perfectly vertical junctions, cells in

the CFO can in principal support any vertical stress without collapsing (provided,

of course, that they can upregulate the tension on the cables sufficiently). Cells in

the NCFO, in contrast, become highly elongated under an imposed stress anisotropy;

they eventually collapse down to zero area as the applied stress increases. These cells
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are unable to form cables, because their high tension vertical edges cannot align un-

less the cells shrink to nothing. Previous studies have used the number of neighboring

high tension vertical edges to identify cables [26].

Importantly, although the CFO and NCFO are related by an overall 30o rotation,

most epithelia are constrained at their boundaries such that they cannot rigidly rotate.

Thus, shifting between the CFO and NCFO requires changing the cellular packing

topology. In this chapter we focus on the formation of multiple parallel cables, as

opposed to single isolated cables, such as those that form at compartment boundaries

[5, 31]. For the duration of the thesis we always define the vertical axis to have higher

stress, such that cables only form parallel to the y-axis.

Although the difference between the CFO and the NCFO can easily be understood

from a few pictures, it is far less obvious how this distinction translates to a more

realistic, disordered cell packing that is intermediate between the two limiting cases.

Our ultimate aim is to understand how cell packing topology affects cable formation

in just such disordered tissue. As a first step towards this larger goal, here we devise

ways of quantifying how favorable a tissue topology is to forming cables in a given

direction, a quality which we will refer to as cableness. Fig. 4.1C shows cell packings

we would intuitively like to define as having different cableness in both their stress

free and anisotropically stressed states. Those with high cableness form many parallel

cables under anisotropic stress, whereas those with low cableness form few to no

cables. Additionally, the cells in tissues with low cableness are more likely to become

highly deformed under stress than cells in tissues with high cableness. In tissues with

high cableness, the high tension edges align to form continuous cables, so that the

force is evenly distributed through the tissue. In tissues with low cableness, most

high tension edges are not connected to one another. Few cables form and lines of

force frequently branch. Below we translate these qualitative ideas into quantitative

measures of cableness. We define cableness to be a measure of a cell packing topology’s

potential to form cables under applied stress, so that a tissue has the same cableness

before and after an applied stress (assuming it does not change topology). Therefore,

the cableness of a tissue is a function solely of its topology and not of the presence

or absence of cables at any given time (Fig. 4.1C).

As always, we will base our understanding of mechanical forces in an epithelium on

the vertex model framework [32, 33, 34]. We will begin with a brief description of our

computational implementation of the vertex model, including some relevant structural

choices we made. We will then define a stretching procedure to computationally add

anisotropic stress to tissues, which we will use to determine their cableness. Next
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we define two different cableness measures based on the geometry and distribution

of tension in stretched tissues. Using these two measures we will investigate how the

cableness of a tissue changes as cells undergo both oriented T1 topological changes

[32] and oriented divisions. Finally, we will apply our measures to data taken from

the Drosophila pupa notum, where we will find that the cell arrangement changes

over time to increase the tissue’s cableness in response to an applied stress.

4.2 Materials and methods

In this section we will give a description of the vertex model, which is the theo-

retical and computational model we use to understand the physics of an epithelium.

There are many different variations of the vertex model, each of which has different

properties and is best used in different situations. In this section we define the vari-

ants of the vertex model used in this chapter; subsequent sections explain why we’ve

chosen one or the other. We also define the stretching procedure which we use when

calculating a tissue’s cableness.

4.2.1 Theoretical framework: vertex model

Vertex models are a common way of understanding the physics of simple epithelia

at the level of cellular scale mechanical forces [2, 32, 35, 33, 34]. They describe an

epithelium as a quasi-two-dimentional sheet composed of cells, edges, and vertices.

Edges describe the cortex at the level of the adherens junctions. A vertex is defined

as any place three or more edges meet. Both cells and edges push and pull on vertices

through mechanical forces. The mechanical force on a vertex is given by

~F =
∑

edges i

γil̂i +
∑
cells j

Pj
2
ẑ ×

(
~lj1 −~lj2

)
, (4.1)

where ~l represents the length and orientation of an edge pointing out from the vertex,

and ẑ is perpendicular to the plane of the epithelium [32]. The first term describes

the force from the edges on the vertex. The sum runs over all edges connected to the

vertex. The strength of the force on each edge is given by its tension γi. The second

term describes the force from the vertex’s neighboring cells. Each cell has a pressure

Pj determined by its deformation from its preferred area and acting in the direction

of ẑ ×
(
~lj1 −~lj2

)
where ~lj1 and ~lj2 are the edges of cell j adjacent to the vertex taken

clockwise. Vertex motion is assumed to be over-damped so that the velocity ~vk of a
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vertex k is proportional to the force acting on it.

α~vk = ~Fk, (4.2)

where Fk is the force on vertex k given by Eq 4.1. From some initial placement of

cells, edges, and vertices the equation of motion for every vertex is integrated forward

in time to model the dynamics of the tissue.

4.2.1.1 Choices in the vertex model

There are a number of choices to be made when implementing a vertex model.

Because we use many different forms of the vertex model, we will briefly cover the

choices that need to be made and their implications. These choices are summarized

in Fig.4.2.

boundary 

conditions:

pressure:

tension 

dynamics:

o�

freeperiodic

o� on

constant sti� spring dynamic

external 

stress:

on

Figure 4.2: Cartoon of some of the options available to customize a vertex model.
The tissue can have free or periodic boundary conditions. Cells may or may not
have pressure, and edge tensions may be constant and identical for all edges or evolve
according to different rules. Different colored edges in the cartoon represent edges
with different tensions. The tissue can experience anisotropic stresses or not. As
discussed in the text, anisotropic stress can be implemented in different ways. Each
of these choices can be made independently of the others.

Choice 1: boundary conditions We use two different boundary conditions,

free and periodic. When using free boundary conditions the equations of motion of

the vertices are given by Eq 4.2. The major upside to using free boundary conditions

is that the vertex model can be seeded using skeletonizations of experimental images.

The downside is that one must specify the behavior of boundary cells. When using

periodic boundary conditions the cells live in a rectangular box of size Lx by Ly.

One could hold Lx and Ly fixed, but we generally want to be in a constant tension
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ensemble so we let the box size evolve in time according to the algorithms in S1

Appendix. In the limit of a large tissue we expect the boundary conditions to be

irrelevant.

Choice 2: cell pressure Vertex models may or may not include pressure forces.

Including cell pressures gives a more realistic simulation, and pressures are essential

when edge tensions are contractile. However, pressures can be dispensed with in other

contexts, which generally decreases simulation runtime.

Choice 3: form of edge tension Every edge has some tension γi. We often

assume that every edge has the same tension γ, which corresponds to the case in which

edge tension is slow to respond to imposed stress. We will also use length dependent

edge tensions so that edges resist compression and expansion while rotating freely.

When edges respond quickly to stress we choose a simple form of

βγ γ̇i =
(
~Fa − ~Fb

)
· l̂i, (4.3)

where ~Fa and ~Fb are the forces on the vertices of edge i, as in [36]. We also sometimes

allow the tension on every edge to act like a stiff spring, so that

γ = κ(l − l0). (4.4)

Choice 4: external stresses. We generally want to set stresses in the simula-

tions and let the tissue size vary based on this applied stress. When including external

stress on a tissue with periodic boundary conditions the box size changes according

to the difference between internal and external stress, as described in S1 Appendix.

When including external stresses in tissues with free boundary conditions a constant

force is applied to every boundary vertex, which we take to be any vertex with only

two edges. The same total force is applied to the top and bottom row of vertices.

We distribute this force evenly amongst all the vertices on one boundary to prevent

large torques. We choose this procedure, rather than introducing a rigid boundary

to which we apply a force, because we want to ensure that stress is reasonably evenly

distributed across the tissue.

4.2.2 Stretching procedure

In order to develop measures of cableness we will look at the behavior of disordered

cell packings under highly anisotropic stress. We thus want a standardized way

to impose anisotropic stress that captures whether a given packing can align its
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edges into cables. To this end, we introduce a stretching procedure that allows the

edges in any cell packing to rotate and increase their tension in a simple way in

response to a strong, uniaxial stress while maintaining a constant topology. We

expect the behavior of cells in this model to qualitatively but not quantitatively

reflect behavior under more involved rules more directly inspired by specific biological

systems. Fig. 4.3 shows the variants of the vertex model we used. First an input

topology is created through a variety of methods which we will discuss later. Then the

stretching procedure is applied to the input topology. Free boundary conditions were

chosen so that the method can be easily applied to skeletonizations of experimental

images of epithelia. Cells do not exert any pressure on their surrounding vertices; this

cuts down on the number of free parameters in the model and helps to exaggerate

cell deformations. We expect that the pressure does not play a large role in the real

behavior of cells highly anisotropic under stress, as isotropic cell pressures can never

counteract anisotropic stresses. The tension on every edge acts like a stiff spring:

γ = κ(l − l0), (4.5)

where κ represents the spring constant and l0 is the initial length of the edge. We

make this choice because it is the simplest version of feedback on the edge tension

in response to mechanical stretching. A fixed, external stress is applied and the

tissue relaxes to its equilibrium state which we refer to as the stretched state. We

do not allow any topological changes since we are looking to measure the cable-

ness of the initial topology. When looking at properties of the stretched state we

always restrict measures to the middle 50% of cells to avoid any boundary effects.

A network of threefold-coordinated vertices without any cell pressures is generically

under-constrained, and we expect it to be able to undergo a finite deformation with-

out generating any internal stress by rotating its edges at constant length. At some

point as it is stretched, it will undergo a transition from this floppy state to a stiff

state where the vertices are aligned so as to support a nonzero tension in the edges

[37, 38, 39]. The final state of mechanical equilibrium in our stretching procedure is

above this stiffening transition. In general, this state could depend on the magnitude

of the stress we impose in a way that reflects the nonlinear network elasticity beyond

the transition. In practice, however, we use a large value of κ (S3 Table) so that edge

length depends very weakly on edge tension. In this limit, the spatial arrangement

of vertices in the final state of self stress is essentially independent of the imposed

stress, which serves only to set an overall scale for the edge tensions.

66



O
n

O
�

Fo
rc

e
d

O
n

O
�

O
�

O
�

O
�

 
o

w

o
ri

e
n

te
d

 

d
iv

is
io

n
s

p
re

-

st
re

ss
e

d
 

 
o

w

O
n

O
�

st
re

tc
h

in
g

 

p
ro

ce
d

u
re

st
re

tc
h

e
d

e
q

u
ili

b
ru

m
 

in
p

u
t 

to
p

o
lo

g
y

g
e

n
e

ra
te

 s
ta

ti
st

ic
a

l e
n

sa
m

b
le

 o
f 

in
p

u
t 

to
p

o
lo

g
ie

s

F
ig

u
re

4.
3:

C
ar

to
on

of
th

e
m

a
jo

r
ve

rt
ex

m
o
d
el

op
ti

on
s

u
se

d
to

in
ve

st
ig

at
e

ca
b
le

n
es

s.
S
ta

ti
st

ic
al

en
se

m
b
le

s
of

in
p
u
t

to
p

ol
og

ie
s

ar
e

cr
ea

te
d

in
th

re
e

d
iff

er
en

t
w

ay
s.

F
lo

w
to

p
ol

og
ie

s
ar

e
cr

ea
te

d
b
y

ex
er

ti
n
g

a
la

rg
e

an
is

ot
ro

p
ic

st
re

ss
on

p
ac

k
in

gs
w

it
h

p
re

ss
u
re

eff
ec

ts
an

d
co

n
st

an
t

ed
ge

te
n
si

on
s.

N
o

ce
ll

d
iv

is
io

n
s

ar
e

al
lo

w
ed

an
d

T
1s

h
ap

p
en

w
h
en

en
er

ge
ti

ca
ll
y

fa
vo

ra
b
le

.
O

ri
en

te
d

d
iv

is
io

n
to

p
ol

og
ie

s
ar

e
cr

ea
te

d
b
y

d
iv

id
in

g
ea

ch
ce

ll
ex

ac
tl

y
on

ce
in

a
ti

ss
u
e

w
it

h
p
re

ss
u
re

eff
ec

ts
an

d
co

n
st

an
t

ed
ge

te
n
si

on
s.

T
1s

h
ap

p
en

w
h
en

en
er

ge
ti

ca
ll
y

fa
vo

ra
b
le

.
P

re
-s

tr
es

se
d

fl
ow

to
p

ol
og

ie
s

ar
e

se
ed

ed
w

it
h

th
e

to
p

ol
og

y
cr

ea
te

d
b
y

th
e

fl
ow

p
ro

ce
d
u
re

.
A

sm
al

l
an

is
ot

ro
p
ic

st
re

ss
is

ap
p
li
ed

to
th

e
ti

ss
u
e,

w
h
ic

h
h
as

p
re

ss
u
re

eff
ec

ts
an

d
d
y
n
am

ic
al

ly
ch

an
gi

n
g

ed
ge

te
n
si

on
s.

N
ei

th
er

d
iv

is
io

n
s

n
or

T
1s

ar
e

al
lo

w
ed

.
T

h
e

st
re

tc
hi

n
g

pr
oc

ed
u

re
is

a
ve

rt
ex

m
o
d
el

w
h
er

e
an

is
ot

ro
p
ic

st
re

ss
is

ap
p
li
ed

to
a

ti
ss

u
e

w
it

h
fr

ee
b

ou
n
d
ar

y
co

n
d
it

io
n
s,

n
o

p
re

ss
u
re

eff
ec

ts
,

an
d

st
iff

-s
p
ri

n
g

ed
ge

te
n
si

on
s.

W
e

re
fe

r
to

th
is

fi
n
al

st
at

e
of

m
ec

h
an

ic
al

eq
u
il
ib

ri
u
m

af
te

r
st

re
tc

h
in

g
as

th
e

st
re

tc
he

d
eq

u
il

ib
ri

u
m

.
A

ll
to

p
ol

og
ic

al
ch

an
ge

s
ar

e
su

p
p
re

ss
ed

.
T

h
e

re
su

lt
in

g
st

re
tc

h
ed

eq
u
il
ib

ri
u
m

p
ac

k
in

g
is

u
se

d
to

m
ea

su
re

ca
b
le

n
es

s.

67



4.3 Results

We have split our results into three sections. In the first section we will describe

how we measured cableness in disordered tissues. In the second section we will use

our new cableness measures to show that oriented cell divisions promote cableness. In

the third section we will discuss data from the Drosophila pupa notum which suggests

that the notum becomes more cably after a round of oriented cell divisions.

4.3.1 Defining measures of cableness

We would like to produce a measure of cableness that corresponds to our intuitive

notion of cableness (e.g., Fig. 4.1C) and that can be applied not only to simulation

results but also directly to skeletonized images of real cell packings in order to deter-

mine the cableness of real tissues. This means the measure should depend solely on

edge orientation and length which can be determined from images. Additionally the

measure should work on pre-stressed as well as unstressed cell packings, as tissues

observed in experiments will not typically be stress-free. Recall that our definition of

cableness depends on a tissue’s potential to form cables and is therefore a function

solely of its topology, not of the presence or absence of cables at any given time.

Before we look for a measure that will work on disordered tissues we will look

for insights from our toy model tissues the CFO and NCFO (Fig. 4.1B). An obvious

difference between the CFO and NCFO is the edge orientation as measured by the

average of cos(6θ), where θ is the angle of the edge to the horizontal axis, which is 1

for the CFO and -1 for the NCFO. In fact this and closely related measures have been

used before to quantify orientational order[11, 40, 41]. However, this measure only

works in stress free tissues, and does not correctly distinguish cableness in geometries

under stress. For example 〈cos(6θ)〉 for the CFO under high stress anisotropy is

−1/3. Moreover, it’s not clear that 〈cos(6θ)〉 necessarily predicts with cableness

in disordered packings. Below we define alternate metrics that correlate well with

〈cos(6θ)〉 in unstressed tissues but that behave better under stress and correspond

more directly to intuitive notions of cableness.

4.3.1.1 Creating control packings through cell flow

As we move from our toy models to disordered tissues we need to generate a

statistical ensemble of disordered packings that we have independent reason to believe

are more or less cably. It is well established that flowing tissues experience oriented T1

topological transitions, in which an edge shrinks to a fourfold vertex and then grows
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in the perpendicular direction causing cells to exchange neighbors [32] (S1 Figure).

When edge tensions are constant tissues under large external stress anisotropy will

flow [42, 43, 44]. These oriented T1 transitions change the value of 〈cos(6θ)〉 in the

tissue, and thus we expect the cableness to change as well (Fig. 4.4A). It is notable that

vertical flow induces oriented T1 transitions from horizontal to vertical edges which

pushes the tissue into a less cably direction. Therefore a tissue’s passive response to

stress inhibits the tissue’s ability to form cables.
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<cos(6θ)>

Normalized 

number of T1s

Figure 4.4: A The average edge orientation of tissues as measured by the average
of cos 6θ (where θ is the angle of the edge from the horizontal) is shown for our
statistical ensemble of flow based packings. Each point represents data from the
central region of one packing of 1000 cells (approximately 500 cells in the central
region). Negative values on the x-axis indicate tissues that flowed perpendicular to
the axis of cableness. B (B’) Resulting packing from flowing cells perpendicular
(parallel) to the cableness axis with 60 percent of edges undergoing a T1 transition.
C (C’) Stretched equilibrium packing, color indicates cell convexity as given by
(P −H)/H, where P is the perimeter and H is the convex hull. D (D’) Stretched
equilibrium packing, color indicates edge tension, where Γ is the average force applied
to boundary vertices. E (E’) Same as D (D’) with only high tension edges shown.

To generate packings with varying cableness we thus induced flow in a vertex

model. We measured the extent of the flow, and thus the expected cableness, by

counting the number of T1 transitions. A cartoon of the vertex model we used to

generate these packings is given in Fig. 4.3 in the panel labeled ‘flow’. The simulation

is seeded with a Voronoi tessellation of randomly placed points in the plane and relaxes

from this initial condition under isotropic stress. Once it has relaxed an external

anisotropic stress of σyy = 2γ
√
Nc/A, σxx = γ

√
Nc/(2A) (where Nc is the number of

cells and A is the total area of the tissue) is applied and the tissue is allowed to flow
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until a specified number of T1 transitions is reached. Once the desired number of T1s

has been reached the tissue again relaxes under isotropic stress. Periodic boundary

conditions are used for convenience. Pressure effects from cells are turned on to give

a more realistic simulation. Edge tensions are constant to allow for cells to flow. We

created tissues of 1000 cells each by inducing various levels of flow in both the vertical

and horizontal directions. We then applied the stretching procedure.

4.3.1.2 Initial cableness measures

In order to define measures of cableness that correspond to physical properties of

tissues under stress, we began by looking at the qualitative behavior of our statistical

ensemble of flowing tissues in their stretched state (Fig. 4.4B-E). The primed panels

represent a tissue which flowed parallel to the axis of cableness, expected to be less

cably, whereas unprimed frames correspond to a tissue that flowed perpendicular to

the axis of cableness, expected to be more cably.

Fig. 4.4C shows the convexity of cells in the stretched equilibrium as measured

by the normalized difference between the perimeter and convex hull. There is a clear

difference in the number of highly concave cells in the two tissues. Our first measure

of cableness C is defined as

C =
1

Ncells

∑
cells

Θ

(
P −H
H

− ε
)
, (4.6)

where Θ is the Heaviside step function, P is the perimeter, H is the convex hull and

ε is a small, positive cutoff. This essentially measures the fraction of concave cells in

the tissue, disregarding cells that are only barely concave. Thus, small values of C
correspond to high cableness. We require the cutoff ε because the brick shaped cells

in the highly cably packings are often slightly very slightly concave, to an extent that

is neither apparent to the naked eye nor likely to be biologically meaningful. We use

an ε of 0.01 because it is roughly an order of magnitude larger than the numerical

error of our simulation.

A second measure of cableness comes from the distribution of tensions in the

equilibrium state after pulling. Fig. 4.4E shows the difference in behavior of the load

bearing edges between a cably and non-cably tissue. The tissue with higher cableness

has more evenly spaced cables with moderate tensions, whereas the tissue with low

cableness has few unevenly spaced cables with high tensions. We create a quantitative

scalar measure T that describes the difference in the way the tension is distributed

between cably and non-cably packings.
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mulative sum h(x) as a function of normalized distance x across the horizontal cut
shown in A, A’ (dashed line). The value of T is given by the area of the shaded region
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To get T we look at a horizontal cut through the tissue as shown in Fig. 4.5A(A′).

Let

h(x) =

∑x
0 γi cos θi∑1
0 γi cos θi

(4.7)

be the normalized cumulative sum of the vertical component of the edge tension of

every edge which intersects the cut up to normalized distance x along the cut. In a

cably tissue, where there are many lines of high tension roughly evenly spaced, h(x)

will be approximately linear. In the non-cably tissue, where there are only a few lines

of high tension in clusters throughout the tissue, h(x) will be step-like. The integral

of the difference between the unit linear function and h(x) (blue shaded reigon in

4.5B(B′) ) should be low for cably packings and high for non-cably packings. We

define Th as

Th =
1

N

∫ 1

0

dx

√[
x− h(x)

]2
, (4.8)

where N is the number of edges intersecting the cut. In order to remove boundary

effects from starting the cumulative sum h(x) at the left edge of the tissue, we cal-

culate Th starting at every edge and wrapping around the tissue and always take the

minimum value Th,min. The cableness measure T is the median of Th,min over 50 evenly

spaced horizontal cuts through the tissue. Fig. 4.6 shows the result of applying our

two cableness measures to the topologies generated by flow. Both measures decrease

with increasing 〈cos(6θ)〉, and are in good agreement with one another. However, the

values of cableness at no flow are higher than we would expect from the overall trend.

We will investigate the reason for this bump in the next section.
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Figure 4.6: A Result of applying the cell convexity based cableness measure C to the
packings generated by flow. Each point represents data from the central region of one
packing of 1000 cells (approximately 500 cells in the central region). Negative values
on the x-axis indicate flow parallel to the cableness axis. B Result of applying the
tension based cableness measure T to the packings generated by flow. Each point
represents data from the central region of one packing of 1000 cells (approximately
500 cells in the central region). Negative values on the x-axis indicate flow parallel
to the cableness axis. C Cableness measures C (red) and T (blue) as a function of
the edge orientation. Smaller values of C and T correspond to higher cableness.

Cableness along a single axis depends on the level of tissue disorder

We want to understand why there is a bump in both of our cableness measures

at no flow. One difference between the tissues which have minimal flow and tissues

which do not flow is the level of disorder as measured by the standard deviation in

the number of edges per cell, which has been used as a measure of topological order

in tissues [45]. We created three ensembles of packings with〈cos(6θ)〉 ' 0, which

we might naively expect to have the same cableness. The first was identical to the

ensemble used as the initial conditions for the flow simulations (see previous section).

The second ensemble was created by inducing random cell divisions in an initially

isotropic packing. From an initially isotropic packing cells were chosen at random

to divide along a random axis until every cell divided exactly once. To create the

third ensemble we began with a hexagonal packing and randomly selected half of the

vertical edges to undergo T1 transitions.

We measured the cableness in these tissues and found that the values of C and T
are linearly correlated with the edge number disorder (Fig. 4.7). Increasing disorder

decreases the cableness of tissues along a given axis. However, when we take the

differences Cy−Cx or Ty−Tx in the cableness along the y and x axis we find that the

difference does not depend on the disorder. Taking the difference in cableness along

perpendicular axis has the additional benefit of centering the cableness of isotropic

tissues at zero. We will use these modified measures as our definitions of cableness

for the rest of the thesis.
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Figure 4.7: Input topologies with 〈cos(6θ)〉 ' 0 were created through three different
methods. In the first method cells underwent divisions at a random orientation. In
the second method half of the vertical edges in an initially hexagonal packing were
forced to undergo T1 transitions. In the final method the set of tissues with no
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cell throughout the tissue. Each point corresponds to one independently generated
packing of 1000 cells. A C is strongly correlated with disorder. B T is more weakly
correlated with disorder. C, D Taking the difference in cableness between the x and
y axis centers the data at 0 and removes most of the dependence on disorder. E
The difference measure Cy − Cx has the same trend between relaxed and pre-stressed
tissues, with a vertical offset. F The difference measure Ty − Tx is decreased slightly
by pre-stressing the tissue.

4.3.1.3 Validating cableness measures on pre-stressed tissues

Up to this point we have always applied our cableness measures to stress free

tissues. However, we would like to apply our measures to experimental data, which is

frequently from tissues subject to applied stress. In order to verify that our measures

hold on pre-stressed data we applied a stress anisotropy to the input topology packings

generated by flow. We let the tensions on the edges evolve according to

βγ γ̇i =
(
~Fa − ~Fb

)
· l̂i, (4.9)

where ~Fa and ~Fb are the forces on the vertices of edge i and βγ is a characteristic

relaxation time. We did not allow any topological changes to occur. This process more

closely resembles the behavior of cells under anisotropic stress than the stretching
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procedure which we use to determine cableness. Fig. 4.7E,F shows the results of

applying our two cableness measures to both the pre-stressed and relaxed packings.

Pre-stressing the tissue decreases the value of Cy − Cx slightly without changing the

overall trend, and had no noticeable effect on the tension based cableness measure.

In introducing the idea of cableness we said that it is a property of a cell packing

topology independent of its state of stress. These results show that our cableness

measures satisfy this criterion to a good approximation. (It is worth underlining that

this is not true of all conceivable measures of cableness; for example, an intuitively

appealing measure based on cell elongation which fails this test is described in S2

Appendix.)

4.3.2 Oriented cell divisions promote cableness

Given that passive cell flow in the direction of applied stress decreases the cableness

of a tissue in that direction, we would like to find a fundamental topology-changing

process that increases cableness. Here we show that oriented divisions are one such

process. Elongated cells are known to divide preferentially perpendicular to their long

axis which in turn tends to align with the applied stress [10, 46, 12, 14, 47, 48, 49]. A

cartoon of the vertex model used to create a statistical ensemble of packings derived

from oriented divisions is given in Fig. 4.3 panel labeled ‘oriented divisions’. The

simulation has periodic boundary conditions, constant edge tensions, and pressure

forces from cells. The initial packing is a Voronoi tessellation of random points in the

plane which has been isotropically relaxed allowing for topological changes. Every cell

divides exactly once in a random order. For simplicity and consistency we directly

impose the orientation of the cleavage plane. The cleavage plane is either horizontal,

vertical, or at a random unbiased angle. It should be noted that this increases the

internal stress in the tissue in agreement with [50]. The cableness of each tissue in this

ensemble of packings was determined and the results are shown in Fig. 4.8. Tissues

in which the cells divide with a horizontal cleavage plane (as would be expected for a

vertical applied stress) are more cably than tissues in which the cells divide vertically

or in a random orientation.

4.3.3 Example: Drosophila epithelium

In the previous two sections we have established several measures of cableness and

shown that cableness increases in the direction of applied tension when cells divide

perpendicular to the applied tension. In this section we will give an example of how we

74



-0.5

0

0.5

vertical

divisions

random

divisions

horizontal

divisions

<
c
o
s(
6
θ
)>

vertical

divisions

random

divisions

horizontal

divisions

C
C

y
   

  x
-

vertical

divisions

random

divisions

horizontal

divisions

T
T

y
   

  x
-

-0.1

-0.05

0

0.05

0.1

-1

-0.5

0

0.5

1
***

***

***

***

***

**
**

**
*

A B C
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Result of applying the cell convexity based cableness measure Cy−Cx to the packings
generated by oriented cell divisions. C Result of applying the tension based cableness
measure Ty − Tx to the packings generated by oriented cell divisions.

can apply our measure to biological data. We looked at the Drosophila pupa notum

at 18 and 32 hours after pupa formation (APF). This system is of interest because

it is known to undergo a wave of oriented divisions along with an increase in stress

anisotropy over this time period, leading us to hypothesize that the tissue should

increase its cableness between 18 and 32 hAPF [51]. Fig. 4.9A,B gives an example

tissue at 18 and 32 hAPF. The images are skeletonized and used as the input topology

for the stretching procedure. Image acquisition and segmentation were carried out as

described in [51].

Fig. 4.9C,D show the qualitative results of the stretching procedure applied both

perpendicular and parallel to the midline. At 18 hAPF the tissue’s response to the

stretching procedure is the same along both the vertical and horizontal axis. By 32

hAPF the tissue’s response to the stretching procedure is highly dependent on the

axis of stretch. When stretched perpendicular to the midline most cells remain convex

and edges form many cables which rarely branch. In contrast when stretched parallel

to the AP axis the cells are forced into highly irregular shapes, and the lines of force

through the tissue frequently branch. The quantitative cableness measures agree with

our prediction that the tissue becomes more cably in the vertical direction in time.

Thus in this system mechanical stress orients cell divisions and these divisions allow

the system to become more cably in the direction of stress. This more cably tissue

can then form actomyosin cables to oppose the applied stress and prevent further
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tissue elongation.

4.4 Conclusion

Multiple parallel actomyosin cables can only form in tissues if they have a fa-

vorable topology, which we call cableness. In a cartoon model of a tissue, cableness

corresponds to the average edge orientation as measured by 〈cos(6θ)〉. However, it

is unclear whether 〈cos(6θ)〉 remains a good predictor of cableness in realistic, dis-

ordered tissues, and it is obviously of less use in tissues with few hexagonal cells, or

in tissues in which the cells are elongated. Here we defined two cableness measures

Cy −Cx and Ty −Tx, which quantify intuitive notions of whether a tissue does a good

job of forming cables. We find that these measures correlate well with 〈cos(6θ)〉 in

unstressed, statistically isotropic tissues with low topological disorder, but also re-

flect a physically and biologically meaningful idea of cableness in more disordered or

pre-stressed tissues.

The convexity measure Cy − Cx describes the geometry of cably tissues. When

a tissue has high cableness its cells form a brick-like structure, whereas tissues with

low cableness tend to have highly elongated cells which become concave and overlap

when disorder is introduced to the system. These properties may also shed light on

the role of cableness in morphogenesis. We expect that tissues with high cableness

will react better to anisotropic stresses, distributing the force evenly throughout the

tissue while maintaining relatively round cells.

The tension based measure Ty−Tx describes the extent to which forces are spread

evenly through the tissue. In disordered tissues that lack cableness only one or a few

cables form in the tissue, whereas in tissues with high cableness many parallel cables

form when the tissue is stressed. We expect that one could also define cableness

measures based on the network properties of the stretched packings along the lines

of network measures of force chains, and we hope that this work inspires additional

work along these lines [52, 53, 54].

In order to maintain high cableness along one axis tissues must give up the ability

to form cables along the perpendicular axis. However, tissues with a greater level of

disorder also have lower cableness along a single axis. This suggests that cableness

along a single axis is a function both of the orientational order of the cells and the

total level of disorder in the tissue.

Passive cell flow along the axis of higher stress in an epithelium has the effect of

reducing the cableness in that direction. Unlike the well know alignment of liquid
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crystals due to flow, in this case the natural direction of the flow serves to disrupt

the alignment of cells into a cably orientation [42, 43, 44]. Sugimura and Ishihara

made note of this in the Drosophila pupal wing from around 24 to 32 hours after

pupa formation. During this time there is cell flow along the proximal-distal (PD)

axis and the cells become less cably in that direction as measured by 〈cos(6θ)〉 of

hexagonal cells [11]. Therefore, the only way for cells to align in the CFO through T1

transitions is if the T1 transitions shrink edges parallel to the high stress axis. This

requires some amount of overshoot in the tension on these edges, so that they constrict

under stress rather than elongating. This appears to happen in the Drosophila pupal

wing prior to cell flow [12] and in the Drosophila notum [51]. When cell flow is driven

by internal stress we predict that cables will collapse into multi-cellular rosettes as

seen in Drosophila intercalating cells [26].

A second process that increases the cableness of a tissue is oriented cell divisions.

It has been well established for centuries that cells tend to divide along their long axis

[49, 47]. Therefore, in a tissue under high vertical stress, cells will elongate vertically

and tend to divide with a horizontal cleavage plane, thus increasing the cableness

of the tissue in the vertical direction. It has previously been argued that oriented

divisions can relax stress by elongating tissue in the direction of the imposed pulling

[48, 55]. Here, we report a complementary role: they also cause packing topology to

change so that cells are better able to form oriented cables and resist deformation

by external stress. Both multicellular myosin cables and oriented divisions along the

high stress axis are seen in tissues including the Drosophila larval wing and the mouse

heart [9, 10, 14].

Studies of multicellular actomyosin cables have to date focused largely on isolated

cables that form at well-defined boundaries, for example between two different tissues

or compartments. Here we hope to spark interest in the role of in morphogenesis of

collections of parallel cables within a single tissue. Whereas a single cable can form

in almost any arrangement of cells, we have argued here that arrays of parallel cables

are feasible only in cell packings that are sufficiently cably. Moreover, because the

natural cell flow in the direction of applied stress tends to ’undo’ cableness, anywhere

that multiple cables are seen one must ask the question: how did the cells arrange

themselves to allow cables to form? Here we have shown that one natural mechanism

for increasing a tissue’s ability to form cables is oriented cell divisions.

We have proposed two initial ways of quantifying a tissue’s ability to form cables.

While these methods have many promising features, we believe that further study of

cables, perhaps from a network standpoint, may yield even better ways of quantifying
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cableness. We have argued that any measure of cableness must work on both relaxed

and stressed tissues since cableness, as we define it, is a property of a cell packing

topology, not a measure of edge alignment.
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Yap, A. S. Fanning, and M. Peifer, “Remodeling the zonula adherens in response
to tension and the role of afadin in this response,” The Journal of Cell Biology,
vol. 213, no. 2, pp. 243–260, 2016.

[31] D. M. Sussman, J. M. Schwarz, M. C. Marchetti, and M. L. Manning, “Soft yet
sharp interfaces in a vertex model of confluent tissue,” Physical Review Letters,
vol. 120, no. 5, p. 6, 2018.

[32] Spencer, Meryl A., Jabeen, Zahera, and Lubensky, David K., “Vertex stability
and topological transitions in vertex models of foams and epithelia,” Eur. Phys.
J. E, vol. 40, no. 1, p. 2, 2017.

[33] A. G. Fletcher, J. M. Osborne, P. K. Maini, and D. J. Gavaghan, “Implementing
vertex dynamics models of cell populations in biology within a consistent com-
putational framework,” Progress In Biophysics & Molecular Biology, vol. 113,
pp. 299–326, Nov 2013.

[34] A. G. Fletcher, M. Osterfield, R. E. Baker, and S. Y. Shvartsman, “Vertex Models
of Epithelial Morphogenesis,” Biophysical Journal, vol. 106, pp. 2291–2304, Jun
2014.

[35] S. Schilling, M. Willecke, T. Aegerter-Wilmsen, O. A. Cirpka, K. Basler, and
C. von Mering, “Cell-Sorting at the A/P Boundary in the Drosophila Wing Pri-
mordium: A Computational Model to Consolidate Observed Non-Local Effects
of Hh Signaling,” PLOS Computational Biology, vol. 7, Apr 2011.

81



[36] N. Noll, M. Mani, and S. J. S. B. I. Heemskerk, Idseand Streichan, “Active
tension network model suggests an exotic mechanical state realized in epithelial
tissues,” Nature Physics, 2017.

[37] J. C. Feng, H. Levine, X. M. Mao, and L. M. Sander, “Nonlinear elasticity of
disordered fiber networks,” Soft Matter, vol. 12, no. 5, pp. 1419–1424, 2016.

[38] A. Sharma, A. J. Licup, K. A. Jansen, R. Rens, M. Sheinman, G. H. Koenderink,
and F. C. MacKintosh, “Strain-controlled criticality governs the nonlinear me-
chanics of fibre networks,” Nature Physics, vol. 12, no. 6, 2016.

[39] M. F. J. Vermeulen, A. Bose, C. Storm, and W. G. Ellenbroek, “Geometry and
the onset of rigidity in a disordered network,” Physical Review E, vol. 96, no. 5,
p. 053003, 2017.

[40] G. K. Xu, Y. Liu, and B. Li, “How do changes at the cell level affect the mechani-
cal properties of epithelial monolayers?,” Soft Matter, vol. 11, no. 45, pp. 8782–8,
2015.

[41] D. Y. Chen, W. Y. Aw, D. Devenport, and S. Torquato, “Structural charac-
terization and statistical-mechanical model of epidermal patterns,” Biophysical
Journal, vol. 111, no. 11, pp. 2534–2545, 2016.

[42] L. Archer and R. Larson, “A molecular theory of flow-alignment and tum-
bling in sheared nematic liquid-crystals,” Journal Of Chemical Physics, vol. 103,
pp. 3108–3111, Aug 1995.

[43] M. Lukaschek, D. Grabowski, and C. Schmidt, “Shear-induced alignment of a
hexagonal lyotropic liquid-crystal as studied by rheo-NMR,” Langmuir, vol. 11,
pp. 3590–3594, Sep 1995.
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CHAPTER V

Mechanics of actomyosin fibers in the Drosophila

pupal notum

Notes: This chapter will be incorporated into a forthcoming paper combining

experimental and theoretical results on the appearance of fibers in the Drosophila

pupal notum with lead author Jesus Lopez-Gay.

5.1 Introduction

In the last chapter we discussed the formation of cables along the cell junctions

and cortex. In this chapter, we will use this understanding to give us insight into the

role of apical actomyosin fibers in the Drosophila pupal notum, which we believe play

a similar role.

As we previously discussed, actomyosin networks localized to the cortex of ep-

ithelia are known to play a role in force generation and mechanosensing [1, 2, 3, 4].

Internal actomyosin chains called stress fibers have also be extensively studied in

single cells [5, 6, 7, 8, 9]. However, apical internal actomyosin fibers, which peel off

from the cortex have not previously been observed in epithelia. The epithelium of the

Drosophila pupal notum is an exciting system due to the presence of internal apical

actomyosin fibers in cells in the region between the macrochaetae during the period

of 20-35 hours after pupa formation (APF), see figure 5.1. During this time the tissue

is elongates slightly as it is pulled perpendicular to the midline, and their is some cell

flow twards the anterior near the midline [10].

Figure 5.2 shows the evolution of our region of interest over this time period. The

central bright region in the images is the midline. Florescent cadherin is used to

mark the cell cortex. Myosin is also florescently tagged, reveling both cortex-bound

and internal myosin. Figure 5.2B′,C ′ give an enlarged view of cells with multiple

84



Figure 5.1: Region of interest of the Drosophila pupal notum. Left: full pupa. Right:
region of interest is defined by the gray box. In all following images the posterior is
on the left. Image provided by Jesus Lopez-Gay .

actomyosin fibers.

An anisotropic stress perpendicular to the midline grows during 22-26 hours APF,

after which the stress remains constant. The cells undergo a wave of divisions which

begins at 20h APF and ends at 28h APF. Figure 5.2 shows the total number of fibers

within the region of interest between 18-36h APF. The total number of fibers in the

tissue spikes to around 600 fibers at 26 hAFP after which it decreases until only

approximately 100 fibers remain by 36h APF.

There are many questions we would like to ask about the role of fibers in mor-

phogenesis; we will answer a few basic questions here, but due to the novel nature

of this work there is much we still do not understand. This chapter represents only

the beginning of what we expect will be a long term project. Since the appearance of

fibers corresponds to an increasing vertical stress in the tissue, we hypothesize that

the fibers are a response to the stress that help cells resist elongation. Our first goal

is to devise a simple mechanical model that is consistent with this hypothesis, and

see if it generates any testable predictions. Our second goal is to develop a theory

that explains the loss of fibers around 32 hAPF despite the continued high stress

anisotropy.

In section 5.2, we develop a toy model that captures the essential physics of fibers

in epithelia. We describe the predictions of the model in section 5.4 and test the fiber

scaling predictions against the experimental data. Finally, in sections 5.5 - 5.4 we

will investigate the role that cell orientation plays in the need for fibers and develop
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a hypothesis about why fibers disappear.

5.2 The toy model

Φ

l

l4

3

l
1

l2

θ

CFO NCFO

Figure 5.3: Two toy models of a regular hexagonal epithelium with fibers in blue. We
assume that each tissue is under anisotropic external stress which is greater in the
vertical direction. Each model is defined by six variables: two edge lengths li, two
edge tensions γi, the tension on the fiber γf and the angle between the edges θ or φ.

In order to understand the mechanical implications of actomyosin fibers in cells

under anisotropic stress, we created a simple mathematical model. We assume that

the physics of the epithelium is well described by simple vertex model. Each edge has

some contractile tension γ, which provides resistance against external stresses. For

simplicity, we assume that every cell is an identical hexagon, so that the geometry of

the tissue is completely described by two edge lengths and the angle of an edge with

the horizontal, as shown in figure 5.3. In a tissue under vertical stress, there are two

different fundamental cell orientations, which correspond to the cable forming and

non-cable forming orientations described in chapter IV. We examine the behavior of

cells in both orientations.

As long as fibers are vertically aligned with another fiber or edge to form a con-

tinuous line, we believe that there is no mechanical difference between a cell with

three fibers and the cell with one fiber with three times the tension. For this reason,

we place only a single fiber in every cell and assume that a single fiber with a large

tension corresponds to the presence of a few fibers in the biological system. Although

our model simplifies the complex dynamics of fibers, we believe that it captures the

essential physics of the system.

For each cell orientation we can describe the tissue in terms of six variables: two
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edge lengths li, two edge tensions γi, the tension on the fiber γf and the angle between

the edges θ or φ. There are four physical constraints on the system. We assume that

the cells are incompressible with a constant area

A = 2l1 sin θ (l2 + l1 cos θ) (CFO)

A = 2l4 cosφ (l3 + l4 sinφ) . (NCFO)
(5.1)

In order for the tissue to be in mechanical equilibrium, we require that

cos θ =
γ2
2γ1

(CFO)

sinφ =
γ3 − γf

2γ4
. (NCFO)

(5.2)

We assume that the tension on each edge is proportional to the concentration of

myosin and that the total amount of myosin λ is fixed. This gives the constraint

λ = 2γ1l1 + γ2l2 + γf (2l1 sin θ) (CFO)

λ = 2γ4l4 + γ3l3 + γf (l3 + 2l4 sinφ) . (NCFO)
(5.3)

Finally, the difference between the vertical and horizontal stress σD = σyy − σxx is

given by

σD =
γ1 sin θ + γf
l2 + l1 cos θ

− γ2
2l1 sin θ

(CFO)

σD =
γ3 + γf
2l4 cosφ

− γ4 cosφ

l3 + l4 sinφ
. (NCFO)

(5.4)

Given our six parameters and four constraints, we have two free parameters in the

model, which we generally take to be the tension on the fiber and the tension on one

edge.

The value of S = P/
√
A, where P is the perimeter is a measure of elongation.

Larger values of S imply that a polygon is more elongated. Using our four physical

constraints, we can solve for the value of S as a function of the tension on the fiber

and the tension on one of the edges. For cells in the cable forming orientation,

S(γ2, γf , σD, A, λ) =
λ− AσD√

Aγ2
+

λ+ AσD√
A(tan θ + 2γf )

(
2− cos θ

sin θ

)
where tan θ =

λ2 − A2σ2
D

2γ22A
− 2

γf
γ2
.

(5.5)
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For cells in the non-cable forming orientation,

S(γ3, γf , σD, A, λ) =

(
2

cosφ
− tanφ

)(
(λ− AσD) tanφ

(γ3 − γf )
√
A

)
+

λ+ AσD

(γ3 + γf )
√
A

where tanφ =
2A(γ23 − γ2f )
λ2 − A2σ2

D

.

(5.6)

The maximum value of the stress anisotropy allowed in our model is σDmax = λ/A.

This is a consequence of having restricted both the area and the total amount of

myosin, which effectively restricts the tension per unit length allowed in the system.

5.3 Model predictions

By minimizing S(γi, γf , σD, A) with respect to the value of the tension on the

high tension edge γi, we can determine the minimum cell elongation as a function of

the stress anisotropy and the tension on the fiber. Figure 5.4A gives the minimum

elongation of a cell as a function of the stress anisotropy and the tension on the fiber

for cells in either orientation. For cells in the CFO, the cell elongation is always

small no matter the strength of the fiber tension. Cells in the NCFO become highly

elongated at large stress anisotropies when the fiber tension is low. Figure 5.4B

compares the elongation of a cell in the CFO to a cell in the NCFO with varying

fiber tensions. Figure 5.4C,D gives cartoons of cells under different stresses and fiber

tensions. The width of an edge represents the tension on the edge. Increasing fiber

tensions are represented by the presence of more fibers in the cell. Given that cells

prefer to be round, cells in the NCFO benefit more from redistributing cortex bound

myosin to the fiber than cells in the CFO.

In both orientations and for any allowable stress anisotropy, there is always some

distribution of myosin between the edges and fiber such that the cell is a regular

hexagon. The tension on the fiber in this state is given by the white dashed line in

figure 5.4A. At the minimum cell elongation we can exploit the additional geometric

constraints
l1 = l2 and θ = π/3

or

l3 = l4 and φ = π/6

(5.7)

to find an analytic solution to the distribution of tension between the edges and the
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fiber. In the NCFO

γ3 =

√√3

6

 λ√
A

γfNCFO =

√√3

6

√AσD γ4 = γ3 − γfNCFO. (5.8)

and in the CFO

γ1 = γ2 =

√√3

6

 λ− AσD√
A

γfCFO =

√√3

2

√AσD (5.9)

In both cases the tension on the fiber scales like
√
AσD, so that at the same stress

anisotropy we expect larger cells to have more fibers.

In summery our toy model gives three predictions:

1. At constant area and stress, cells with no fibers will be less elongated in the

CFO than in the NCFO.

2. At constant area, stress, and orientation, cells with more fibers are less elon-

gated.

3. At constant stress and minimum cell elongation, larger cells will have more

fibers.

5.4 Model predictions: relations between area elongation

and fiber number

Since our tissue of interest has some amount of disorder, we can’t apply the

predictions from the toy model directly to experimental data. However, we can check

some of the broader claims made by the model. Redistributing myosin from the edges

to the fiber results in less elongated cells in both orientations and over all stresses.

Therefore, we expect that cells with fewer fibers will be more elongated on average.

Figure 5.5 gives the elongation density for all cells with the same number of fibers at

each time point. Cells with more fibers are on average less elongated than cells with

fewer fibers. This holds true if cell elongations are binned pupa by pupa as well (data

not shown).

In order to remain minimally elongated, the tension on the fiber must scale with

the square root of the area. This is physically intuitive because when cells are perfect

hexagons the edges must contribute isotropically to the stress, and so any anisotropic
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Figure 5.5: Histograms of the cell elongation by time and number of fibers. Cells
with more fibers are less elongated. Color represents histogram density; black line is
the mean.

stress must come from the fibers. Cells which are twice as large, are wider by a factor

of
√

2. Since stress is a measure of force per length, the large cells must compensate

for the greater distance between their edges by increasing the tension on the fiber

by a factor of
√

2. Even though the real tissue is disordered, we expect the general

principal to hold and for larger cells to have more fibers. Figure 5.6 confirms that

this is the case.

5.5 Model prediction: fiber alignment and cell orientation

So far we have tested predictions 2 and 3 from our toy model without examining

the cell orientation. In this section we will use physical intuition gleaned from the toy

model to make predictions about fiber placement in the data, and present a possible

reason for the disappearance of fibers after 31 hours.

5.5.1 Physical intuition: why are fibers more helpful in the NCFO?

From figure 5.4C,D we can see that cells in the CFO respond to the stress

anisotropy by placing almost all of their myosin on their four near-vertical edges,

which creates a brick like structure with relatively non-elongated cells. There is less
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Figure 5.6: Histograms of apical cell area by time and number of fibers. Larger cells
have more fibers. Color represents histogram density; black line is the mean.

need for fibers because the cell edges are able to form straight lines of tension on their

own as described in chapter IV.

Cells in the NCFO are not able to use this strategy because, as they put more

and more tension on their two vertical edges, the angle between the high and low

tension edges must increase to preserve force balance. Cells in the NCFO lack the

ability to form strait multicellular myosin chains along their edges and therefore have

no way to support large stress anisotropies without becoming highly elongated. The

addition of fibers keeps the cells round by creating vertical lines of tension running

from fiber to cell edge to fiber. Adding fibers to the NCFO allows the tissue to form

multicellular actomyosin cables where they would otherwise be prohibited. If our

model is correct, we expect that, in a disordered tissue, fibers would assist in the

formation of multicellular cables by aligning with vertical edges or other fibers in

order to create vertical cables. We will test this hypothesis in the next section.

5.5.2 Data analysis: fiber alignment

We measured fiber alignment by examining the effect of fiber location on the

minimum path through the network of cell edges and fibers. We assume that all

fibers to be vertically oriented. The tissue can be represented as a digraph in which

each edge represents a single cell-cell junction and associated cortex or fiber in the

tissue. All edges are directed downward, as shown in figure 5.7. Each edge of the
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Figure 5.7: Minimum paths from each starting node to any ending node are high-
lighted. No fibers are present.

Table 5.1: Probability of having fiber alignment better than real alignment. Fibers are
either randomly placed throughout the tissue or within their original cell. Time
is measures in hours after pupa formation. For pupa where the normalized mean
minimum path was lower than any value in the 100 trials a p-value of 0.01 was used.

time ptissue combined p
24 0.02 0.01 0.01 0.01 0.35 0.01 0.01 0.01 0.02 0.01 1.722 E-09
26 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 4.611 E-13
28 0.02 0.08 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 1.052 E-10
30 0.08 0.18 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.03 0.12 0.01 0.12 5.250 E-10
32 0.57 0.13 0.01 0.06 0.67 0.06 0.85 0.02 0.26 0.88 0.43 1.300 E-02

time pcell combined p
24 0.30 0.33 0.05 0.16 0.45 0.01 0.12 0.04 0.02 0.02 1.439 E-04
26 0.03 0.01 0.01 0.01 0.07 0.04 0.06 0.06 0.04 0.05 0.02 0.05 1.437 E-08
28 0.01 0.67 0.32 0.26 0.03 0.01 0.01 0.05 0.11 0.01 0.01 8.833 E-07
30 0.38 0.29 0.06 0.01 0.19 0.10 0.27 0.02 0.01 0.02 0.03 0.01 0.37 2.480 E-06
32 0.85 0.26 0.12 0.49 0.56 0.01 0.36 0.23 0.14 0.62 0.47 1.091 E-01

digraph is given a weight proportional to its length in the tissue. Because every edge is

oriented from a vertex closer to the top of the tissue to a vertex closer to the bottom,

our digraph has a clear set of starting and ending nodes (nodes with either zero in or

out degree). We can calculate the minimum path length from every starting node to

any ending node as shown in figure 5.7. We calculate the normalized mean minimum

path (NMMP) by taking the mean of the minimum paths and normalizing by the

height of the tissue. Nodes near the edge of the tissue are disregarded in order to

prevent boundary effects. Lower values of the normalized minimum path (NMMP)

imply that many vertical edges are aligned with each other. The minimum value of

the NMMP is one.

For each pupa, we calculate the NMMP of the digraph representing the true
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placement of fibers in the tissue. In order to determine how well the fibers are

positioned to form vertical cables, we then compare the true NMMP with the NMMP

of 100 test tissues with the same edge locations but with randomized fiber placements.

Fibers are either placed randomly throughout the tissue or randomly within their

original cell. This allows us to calculate the probability that a fiber is placed with the

same or better vertical alignment would happen by chance. It is important to use the

same number of fibers in our test tissues because the deletion of an edge from a digraph

will either increase the NMMP or leave it unchanged. The results are given in table

5.1, further results are given in appendix C. A p-value of 0.01 was assigned to any

pupa in which the NMMP was lower than any value in the test tissues. A combined

p-value for each time point was calculated using a Fisher’s combined probability test,

which is commonly used to combine p-values in mata-analysis studies [11, 12, 13].

The test combines multiple p-values into a single combined value P by

X = −2
k∑
i=1

ln(pi)

P = 1− χ2(X, 2k).

(5.10)

The test is valid as long as the original p values are independent and equally trust-

worthy.

The results show that the fibers are much more aligned than can be explained

by chance at all times except 32 hAPF, when their are few enough fibers that their

placement has very little effect on the vertical alignment of the tissue. This result sup-

ports our hypothesis that fibers play a role in resisting stress by creating multicellular

actomyosin cables.

5.5.3 Data analysis: cell orientation

Given that the fibers do indeed align to form vertical multicellular cables, a po-

tential explanation for the reduction in fibers over time despite the sustained stress is

that the tissue may rearrange to become more cabley. Using the metrics developed in

chapter IV, we determined the cableness of the tissues. The tissues show a mild in-

crease in cableness between 24 and 32 hours APF, see 5.8. This increase in cableness

could help explain the disappearance of the fibers.
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Figure 5.8: Cableness measures applied to the Drosophila pupal notum. A Cells have
no orientational order in 〈cos(6θ)〉. B, C Both cableness measures decrease over time
implying that the tissue rearranges to form cables.

5.6 Conclusion

The appearance of stress fibers in epithelia is a new discovery by the Bell̈ıache

lab, and we do not fully understand how and why they form. We hypothesize that

fibers form in response to an applied stress anisotropy and serve to keep cells from

elongating. We developed a simple model that describes how redistributing myosin

from the cortex to a central fiber can decrease the elongation of cells.

This model predicts that larger cells require more fibers to stay round, which

agrees with our experimental data. It also implies that fibers keep cells round by

creating multicellular cables where they would otherwise be prohibited by the cell

packing topology. We confirm that fibers align with each other and with vertical

sections of the cortex to create multicellular cables.

Although the reasons for the disappearance of fibers after 34 hAPF are still poorly

understood, the increase in cableness of the tissue and the decrease in the average

cell area are likely to contribute to fiber loss.
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CHAPTER VI

Image analysis and machine learning

6.1 Introduction

In chapter V, we developed a model for the mechanical role of fibers in epithelia.

We based our model on observations of fluorescent images of the Drosophila pupal

notum taken by the Belläıche lab. In this chapter, we will discuss the technical aspects

of working with florescent image data. Fluorescence microscopy is frequently used to

image sub-cellular processes [1, 2, 3, 4, 5]. Modern techniques make it easy to collect

more images than can be analyzed by hand, which creates a need for tools that can

analyze florescent images in an automated or partially-automated manner. In this

chapter we give an overview of some standard techniques in image processing as well

as the progress we made in creating an automated fiber detection program.

We begin the chapter with an overview of classical image segmentation techniques,

followed by a discussion of modern machine learning algorithms for feature classifica-

tion. We will then discuss the our attempt to develop an algorithm to automatically

segment fibers, including the progress we made and the barriers to our success.

6.2 Background: image segmentation

In this section we give a review of the current state of image classification, covering

both traditional algorithms and applications of modern machine learning algorithms.

Most of the algorithms we discuss come built in to the currently available scientific

image editing software. The program ImageJ is widely used in the biological com-

munity because it is designed to work with multichannel three-dimensional images,

making it especially easy to navigate through thee dimensional movies [6, 7]. It has

an intuitive GUI that automatically updates images, and it allows for simple Java
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based scripting. Both Matlab and Python have standard machine learning libraries;

Python’s skimage, and sklearn packages are particularly powerful and flexible [8, 9].

A multi-slice florescent image is composed of three-dimensional pixels called vox-

els. Each voxel is assigned a number corresponding to the level of florescence at that

point in space. For the rest of this chapter, we will assume that the 3D image has

been flattened to a two-dimensional 8-bit image. A common flattening procedure is

to take the maximal z-projection of the stack where each pixel in the transformed

image I has the values of the maximum voxel in the original image I ′ for all voxels

with the same x and y coordinates,

I(x, y) = maxz
[
I ′(x, y, z)

]
. (6.1)

Maximal z-projection is easy to understand and computationally efficient. However,

it has drawbacks for use in florescent imaging. Any bright spots that are located

above or below the pane of interest will be captured by a maximal z-projection. If

the reigon of interest is located in only a few z levels this can be avoided by first

cropping the image in the z-dimention. However, if the tissue was mounted at a tilt

more advanced methods must be used to remove unwanted signal from above and

below the level of interest. For the fiber data used in this chapter a more complicated

algorithm developed in the Bell̈ıache lab was used to flatten the stack that attempts

to find the z-level with the best signal for each pixel [Guirao and Rigaud unpublished].

This allows us to avoid noise from bright spots from above or below our region of

interest.

6.2.1 Classical algorithms

There are numerous filters and convolutions that can be applied to images (just

look at Instagram). Here we will focus on some of the most used filters and algorithms

for creating labeled images in which every pixel is assigned to some group (such as

cell1, cell2, or background).

Morphological operations apply some non-linear function of a neighborhood of

pixels (called the structuring element) to each pixel of the original image [10]. The

most basic operations are erosion and dilation of binary images, in which the center

pixel is replaced by the largest or smallest value of all pixels in the neighborhood.

When applied to grayscale images, this process is called minimum or maximum fil-

tering. The application of a maximum filter followed by a minimum filter (called

morphological closing) closes holes in images as shown in figure 6.1A. Morphological
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Figure 6.1: Image processing tools. Original images are on the left with processed
images on the right. A: Demonstration of the effects of morphological opening on
an image of a circle with gaps in the signal. First a maximum filter is applied,
followed by a minimum filter. Each filter uses a 3 × 3 square structuring element.
B: Demonstration of the effect of background subtraction. C: Demonstration of the
effect of CLAHE local contrast enhancement. D: Segmentation by the watershed
method is shown. E: The hessian transform of the original image is shown.

closing is especially useful for filling in gaps in the signal when imaging the cortex of

epithelia.

Florescent images often have significant amounts of background noise, and differ-

ent levels of contrast over different parts of the image. Background subtraction evens

out the average intensity, and removes low levels of noise. In the most basic form

of background subtraction, the mean value of all pixels in a structuring element is

subtracted from the central pixel,

I(x, y) = I(x, y)−mean
[
I ′(x′, y′)

]
, (x′, y′) ∈ strelm(x, y). (6.2)

If there is a large enough contrast between the foreground and background, back-

ground subtraction causes all low valued pixels to be set to zero, reducing the noise

in the image. More complicated background subtraction schemes weight pixels ac-

cording to their distance from the center of the structuring element [11].

For images in which the contrast differs across the image, an algorithm called

Contrast Limited Adaptive Histogram Equalization (CLAHE) can be used to equalize

the contrast by changing the pixel intensity based on the local histogram [12]. In

simple histogram equalization image contrast is improved by flattening the histogram
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of pixel values such that the cumulative distribution function of the histogram is

linear. In images where their are different levels of contrast in different parts of the

image simple histogram equalization will not improve contrast in riegons with lovw

contrast that are either much lighter or much darker than the rest of the image.

CLAHE fixes this problem by calculating the equalized histogram for pixels within a

structuring element smaller than the original image. This will produce good results in

the low contrast reigons of high or low intensity, but will also amplify noise. CLAHE

limits the extent of the noise amplification by limiting the difference between a pixels

original and transformed intensity.

Background subtraction and CLAHE are especially important tools when process-

ing movie frames, as florescent proteins degrade as a result of the imaging process,

leading to decreasing image contrast, in a process called photobleaching [13, 14]. It is

important to consider photobleaching when designing florescent imaging experiments,

as it leads to a trade-off between the number of images taken and the image quality.

The ultimate goal of automated image processing is to identify features in an

image, called image segmentation. A common method of image segmentation is the

creation of a new image, with the same dimensions as the original, in which the

value of each pixel represents a label for the feature. For example, we might give

all background pixels a label of 0 and then label each individual cell with a different

positive integer.

The watershed algorithm produces a labeled image in which each region contains

one local minimum [15, 16]. We use this algorithm to label cells in images where

the cell-cell boundaries are marked. The algorithm works by first identifying all local

minima of the image within some noise tolerance. Each minimum represents the

source of a different region. Each region is ’flooded’ by adding neighboring pixels

to the region, starting with pixels with the lowest intensity, until the regions collide.

The watershed algorithm works well for finding the barrier between regions of low

signal; however, it does not perform well when the local minima are shallow and the

barrier between the regions contains gaps.

Another method of identifying edges between two regions in an image is through

the hessian transformation,

H =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

]
. (6.3)

In order to approximate the derivative in a discreet system Gaussian smoothing with

a specifies length scale is first applied, and then the dirivitive is calculated as a finite

difference. Let the largest eigenvalue of H evaluated at (x, y) be λ1. The transformed

101



image is given by

T (x, y) =

−λ1 λ1 < 0

0 λ1 ≥ 0
(6.4)

Regions of high intensity in the hessian transformed image correspond to regions in

the original image in which there is high signal along one axis that decays like a

Gaussian in the perpendicular axis. The hessian transformation is useful because it

is able to identify edges, even when they contain gaps.

6.2.2 Machine learning based classification
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Figure 6.2: A: Work flow of a machine learning classifier. The feature matrix X and
the classifications Y for a known set of data are used to train the classifier. Once a
classifier has been trained, it can be applied to new data to produce classifications. B:
Cartoon of k-nearest neighbor classification. The data is plotted in a k-dimensional
feature space. New data is classified according to the majority classification of existing
data within a k-sphere of some radius. C: Cartoon of support vector machine (SVM)
classification. The classifier attempts to separate the data in phase space. SMV can
be linear, quadratic, or based on a more complex partitioning of feature space. D:
Cartoon of a decision tree classifier. Decision trees attempt to split data one feature
at a time.
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A recent development in automated feature detection is the use of machine learning

for classification of features. Most classifiers follow the same broad work flow (the

most notable exception being neural networks which are beyond the scope of this

chapter). A cartoon of the work flow is show in figure 6.2D. First, a human identifies

features of the data likely to be useful in classifying it. For example, a researcher

looking to classify different fruits might choose the color, shape, weight, and number

of seeds as features. For each data point, the values of the features are recorded in

a matrix X. Additionally, the classification of all of the data is recorded in a vector

Y . Together, X and Y are used to train the chosen classifier. Once the classifier has

been trained, it can be used to classify new data points as long as their features have

been recorded. The accuracy of the classifier can be determined by using it to classify

a set of known data and examining the error rate.

There are numerous machine learning classifiers, each of which has many variants.

We will briefly cover three different types of classifiers: k-nearest neighbor, support

vector, and decision trees. Each of these classification algorithms requires initial

human intervention to segment the image and determine an appropriate feature set.

Each data point corresponds to one region of the segmented image. Common features

for image analysis include the: size and shape of the region as well as the pixel

intensity.

Both k-nearest neighbor and support vector machine (SVM) classification use the

location of the data in the k-dimensional feature space to classify the data, where k

is the number of features. In k-nearest neighbor classification, new data is assigned

a class based on the majority classification of all previously classified data within a

k-sphere of a given radius. The radius of the sphere is a hyperparameter - a parameter

of the classification algorithm itself. Classifiers are governed by a number of hyper-

parameters. The best way to set these hyperparameters is a wide open question, in

which randomly sampling from the parameter space remains one of the best options

[17].

SVM classification attempts to partition feature space into compact regions each

of which contains one class of data, see figure 6.2. The partitions can be linear,

quadratic, or use a more complex partitioning of feature space [10].

Decision tree classifiers generate a tree structure which partitions the data one

feature at a time, see figure 6.2D. Decision trees have the advantage of being easy to

interpret, with the drawback that they are not generally as accurate. The accuracy of

decision trees can be increased by using an ensemble of trees called a random forest

[10].
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Figure 6.3: Images showing different stages in the pre-processing of the cadherin and
myosin signal. a: Subtract the background from the original image. b: Calculate
the hessian and and apply CLAHE to the hessian image. c: Add the hessian back
into the processed image. Apply another round of background subtraction, and blur
the image to close gaps in the signal. d: Increase the contrast by CLAHE. e: Apply
morphological closing to the image. α: Subtract the background from the original
image. Additionally multiply the image by a highly blurred version of the image to
remove areas with low signal. β: Calculate the hessian of the processed image.

6.3 Automated fiber detection

Our goal was to segment and label all of the fibers from the data we collected. This

segmentation is especially challenging as we do not know of any protein that is only

localized on the fibers. Therefore any time we image fibers, we will pick up unwanted

signal from the actomyosin cortex which we must remove. The fiber-cortex system

was marked with triple tagged gfp myosin, a molecular motor. We took multichannel

images in which we marked both the adherens junctions and the cortex-fiber system

with the goal of using the adherens junction signal to remove unwanted actomyosin

cortex signal from the myosin channel. The cells were marked by cadherin-mKate, a

cell adhesion molecule that localizes at the adherens junctions.

We developed a two stage pipeline for fiber segmentation. The first stage segments

both the myosin and cadherin channels and subtracts them to obtain an image with

segmented fibers. The second stage we uses machine learning algorithms to remove

any misidentified fibers from the result of the first stage. In the next two sections, we

will describe this procedure in more detail.
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Figure 6.4: Images of different stages in the post-processing of the cadherin and
myosin signal. a: Cadherin signal is segmented by watershed algorithm. b: Dilation
of the image to match the thickness of the cortex. c: The myosin signal is thresholded.
d: The myosin and cadherin signal are multiplied to remove unwanted signal from
cortex bound myosin. e: Image is skeletonized. f: Overlay: cadherin is magenta,
myosin is green, and potential fibers are yellow.
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feature mean ± std (true fibers) mean ± std (false fibers)
length 32.3 ± 21.8 18.6 ± 9.9
extended length 52.2 ± 53.9 49.2 ± 71.9
orientation 0.13 ± 0.11 0.18 ± 0.18
curvature 5.5 ± 12.5 2.8 ± 3.7
mean signal 1.23 ± 0.11 1.14 ± 0.12
std signal 0.15 ± 0.05 0.13 ± 0.06
extended mean signal 1.2 ± 0.1 1.1 ± 0.1
extended std signal 0.16 ± 0.06 0.16 ± 0.08
distance to cortex 6.9 ± 3.8 4.4 ± 4.4
cell size 2.1 ± 1.1 2.1 ± 1.3

Table 6.1: Features used in machine learning based classification. All values are in
arbitrary units. True fibers represents the set of fibers that were true-positives and
identified by the classical segmentation.

6.3.1 Stage one: segment potential fibers

Before segmenting the images, we first preprocess them to remove the effects of

noise and incomplete signal. Figure 6.3 shows the major steps in the pre-processing

procedure. Noise in the cadherin signal is removed by background subtraction. Gaps

in the edges between cells are filled in by adding the hessian of the image to itself.

Since the hessian is brightest along tube-like structures this helps smooth out the cell-

cell boundaries. We then increase the contrast by CLAHE and apply a morphological

closing to further fill in gaps. For the myosin signal we apply a background subtraction

and then take the hessian of the image.

Once the images have been preprocessed, they are segmented. This process is

shown in figure 6.4. The cadherin signal is segmented using a watershed algorithm

and then dilated by a structuring element with the same width as the cortex. The

myosin signal is thresholded to produce a binary image. The cadherin and myosin

binary images are multiplied to remove the cortex from the myosin signal. Finally,

the image is skeletonized; each connected component is replaced by a line. Figure

6.4f shows the result of this procedure overlaid on the original signal. At this point

in the process, our goal is to identify every fiber even if we also identify many false

positives, since we will remove the false positives with our machine learning classifier.

6.3.2 Stage two: remove misidentified fibers through machine learning

classification
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Table 6.3.2 lists the ten features we used in our classifiers. We used both the initial

segmentation of the fiber and a version of the segmentation in which we extended all

fibers to the cortex. The following results are from one pupa with 759 fibers as

identified by hand. Our classical segmentation yielded 1150 potential fibers 532 of

which corresponded to true fibers. The classical segmentation failed to find 227 fibers,

some of which were too close to the cell-cell boundary and cut off by the mask, and

some of which had poor signal. The number of unidentified fibers could be decreased

by decreasing the threshold with the trade off that more false positives would be

identified.

Figure 6.5 gives the confusion matrix for the best classifier that we found within

each type of major classifier. The classifiers were trained in Matlab’s classifica-

tion learner application. Results did not differ significantly for classifiers trained

in python’s sklearn environment.

The initial results were not promising. No single classifier preformed better than

80% accuracy for any metric. It is possible that increasing the volume of the data

would increase the classifier accuracy. However, their is greater variation between

pupa than within pupa, so it is plausible that additional data would decrease the

classifier accuracy. It is highly time consuming to create labeled data, both in terms

of human and computational time. Because we were not confident of achieving any

significant increase in classifier accuracy with more data, we decided to focus our

efforts on classifying fibers by hand.
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Figure 6.5: Confusion matrices for the best hyper-parameters we found for each type
of classifier. Classifiers were trained on 75% of the data and validated on the 25%
holdout. The support vector classifier has the best false positive rate at 21%. The
(RUS boosted) decision tree has the best false negative rate at 21%. All classifiers
had unsatisfactory performance.
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6.4 Discussion

There is a growing use of image processing software to assist in data analysis of

biological images [6, 18, 19]. Classical morphological operations and segmentation

algorithms are frequently used to identify objects in images. More recently, machine

learning algorithms have been adapted to help classify biological data that is too

large to be classified by hand [20]. Here we described our work in developing an

algorithm for automated fiber detection that was ultimately unsuccessful. We were

very successful at segmenting the cell-cell boundaries through classical algorithms.

We were able to identify a set of potential fibers by using the cortex signal to mask

out cortex bound myosin. However, we were unable to produce a machine learning

classifier capable of removing the false positives from our set of potential fibers with

a high enough accuracy to be useful.

A possible explanation for the poor performance of our classifier is that fibers are

difficult to classify in isolation, even for humans. When we looked at cropped images

of potential fibers in isolation, the scientists in our lab were not able to determine the

true fibers with any accuracy. This suggests that humans identify fibers on the basis

of larger structural properties of the image, which were not included in the feature set

passed to the classifiers. Neural networks are good at identifying structural properties

of images and are especially useful when an appropriate feature set is unclear as they

identify the appropriate features autonomously. Greater accuracy could be achievable

with a neural network classifier, although these classifiers do not remove the need for

initial segmentation of the image as they determine only whether a feature is present,

not the location of the feature.
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CHAPTER VII

Honeycomb Lattices with Defects

Notes: Adapted from Spencer, Meryl A., Ziff, Robert M., “Honeycomb lattices with

defects,” Phys. Rev. E, 93, 042132, 2016.

7.1 Introduction

Figure 7.1: Two examples of defective honeycomb (DHC) lattices. Each lattice has
16 tiles and periodic boundary conditions. Red tiles are rectangles, yellow tiles are
pentagons, blue tiles are hexagons, green tiles are heptagons, and purple tiles are
octagons. Left: Example of a DHC lattice with standard deviation in degree of the
dual σ = 0.5. Right: Example of a DHC lattice with σ = 1.658.

In the final chapter of this thesis, we will turn our attention away from biophysical

questions and study the mathematical structure of epithelial networks. In the lowest

energy state every cell in a vertex model is a hexagon, the generic term for this lattice

structure is honeycomb. Honeycomb lattices are extremely widespread, forming the

structure of many natural and artificial objects. Atoms in graphene and other crystals

are arranged in a honeycomb pattern, as are the bubbles that form in thin foams
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[1]. Consequently condensed matter and materials science researchers have a great

interest in the properties of this lattice. Biologists study cells in epithelial sheets,

which arrange themselves into honeycomb lattices [2], not to mention the lattice’s

namesake, the beehive. The lattice is common in art and architecture too; you might

even be sitting in a room with a honeycomb-tiled floor at this very moment!

The ideal honeycomb lattice used in art, architecture and math has been well

studied (i.e., [3, 4, 5]), but naturally occurring systems are rarely perfect. Physical

systems will almost always contain some defects which cause the systems to vary from

the ideal lattice to some degree. Some random lattices already exist to model these

situations. One of the most well known is the Poisson-Voronoi tessellation, which

is generated by randomly placing a points on a two-dimensional surface in a Pois-

son distribution and then placing bonds equidistant between each neighboring point.

Though this lattice is a good general approximation for many three-coordinated phys-

ical systems, the variance of the number of faces per tile is always approximately 1.314

for large graphs [6] , though physical systems may have a different variance. Our goal

is to create a graph with the same general features of the Poisson-Voronoi, but whose

variance in the number of faces per tile is a parameter, which can be tuned to more

closely match the variance found in the natural system being studied.

We present a new lattice network which we call the Defective Honeycomb lattice

(DHC) formed by systematically swapping bonds in the honeycomb lattice, as shown

in figure 7.1. The purpose of this lattice to model planar three-coordinated systems

with a range of distributions of faces per tile. An example of such a system is the bonds

between atoms in a material in an amorphous glass solid such as SiO2. The atoms form

a regular hexagonal pattern in the crystalline lattice and a more disordered pattern

in the glassy phase [7]. Another example of a system with a changing level of defects

comes from biological networks. The planar cells in epithelia can be modeled as tiles

on a lattice. As tissues undergo development the cells more relative to one another

which changes the properties of the network. Eaton and Julicher [8] have shown

that the average number of neighbors of the cells in the Drosophila wing epithelium

changes significantly between different phases of development. Percolation is relevant

to understanding transport of morphogens though the tissue. Our lattice is also useful

in describing natural systems with fixed defects whose variance in number of faces

per tile is much higher or lower than the variance of the Poisson-Voronoi.

In this chapter we will describe how the basic properties of the lattice change as

more bonds are flipped, as well as giving an algorithm for computationally creating

such lattices. The percolation threshold describes the connectivity of a lattice. If
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sites or bonds are occupied with some probability p, the percolation threshold is the

minimum value of p at which there is a connected path from one side of the lattice to

the other, in the limit of an infinite system [9]. The percolation thresholds are known

for many lattices, including the honeycomb lattice for bond percolation. In this

chapter we will compare the percolation thresholds of several known two-dimensional

three-coordinated lattices with our DHC lattices, which are also three coordinated.

We will show that there is a strong relationship between the percolation threshold

and the variance in the number of faces in the polygons, equivalent to the degree of

vertices on the lattice duals.

7.2 Defective Honeycomb (DHC) Lattice

Many naturally occurring biological systems, including cells in epithelial tissues,

are approximate honeycomb lattices [8, 10, 11], but there is little understanding of

the formal properties of these lattices. Understanding how defects in these lattices

affects their properties will give us a more accurate picture of how naturally occurring

honeycomb networks behave.

7.2.1 Definition

The inspiration for the DHC lattice is the T1 topological process in foams [1]. In

the T1 process one edge separating two bubbles shrinks down to a point and then

regrows in a perpendicular direction. This has the effect of swapping which bubbles

are neighbors, and the number of neighbors of the four bubbles involved. When

viewed as a lattice this process is equivalent to rearranging the five bonds between

six neighboring vertices connected in an H shape as shown in figure 7.2.

The DHC lattice is a honeycomb lattice in which a certain number of the lattice

bonds have been flipped. The DHC lattice is defined by two parameters: n, the

number of hexagonal tiles per row in the original n×n hexagonal lattice as arranged

in figure 7.3 (top left), and F , the number of bonds which are flipped. To generate

the lattice F bonds are chosen uniformly at random; the same bond may be chosen

more than once. The order in which the bonds are flipped matters, as flipping bond

a–b and then b–c is not equivalent to flipping bond b–c and then a–b.

In order to consistently describe lattices of different size we will specify f =

F/(3n2), the fraction of edges flipped, instead of F , to characterize the number of

flipped bonds in the lattice.
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Figure 7.2: Pictorial representation of the flip of bond a–b in the DHC lattice. The
bonds between vertices 1, 2, 3, 4, a, and b, are rearranged such that tiles C and D
become neighbors instead of A and B. Top: Correct flip. The bond 2–a becomes
2–b and the bond 4–b becomes 4–a. The lattice remains planar and the bond a–b
separates two new tiles. Bottom: Incorrect flip. There is no way to arrange sites a
and b in the plane such that none of the bonds cross.
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Figure 7.3: Pictures of the generation of an n = 4, f = 10/48 = 0.21 lattice. Ten
distinct edges are flipped one at a time to generate the final lattice. Each panel shows
the state of the lattice after each edge flip. The flipped edge is highlighted in red.
The sites and tiles are labeled in blue and red respectively as described in apendix D.

7.2.2 Example

Figure 7.3 shows the generation of a 4×4 lattice with 10 flips, so f = 10/48 ≈ 0.21.

In the first panel none of the edges have been flipped and the system is the original

honeycomb configuration. In the second panel the first bond chosen, bond 9–10

shown in red, has been flipped. This has the effect of creating two pentagonal tiles

and two heptagonal tiles in the otherwise unperturbed honeycomb lattice, increasing

the standard deviation in the number of edges per tile, σ. As the edges are flipped

the lattice becomes more and more deformed and σ increases to 1.50. The quantity

σ, which is the same as the standard deviation in the coordination number of sites

on the dual lattice, is important since it gives a quantitative measure of the extent of

the difference between the new lattice and the original honeycomb. It is defined as

σ =

√
1

n2

∑
i

(zi − 6)2 (7.1)

where zi is the number of edges of the i-th polygon face, equal to the number of

neighbors of the i-th vertex in the dual lattice. The number 6 represents the mean

value of zi, which follows from Euler’s formula, vertices−edges+faces = 2, assuming
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n is large, and also from the fact that with each flip, the total number of bonds, tiles,

and vertices is unchanged from the original honeycomb values. We also consider the

variance v = σ2.

7.2.3 Properties

There are several important properties of the DHC lattice. The lattice is two

dimensional, so the percolation critical exponents of the system are known [9]. When

a bond is flipped, four tiles are affected. Two of them (tiles A and B in figure 7.2)

lose a bond and go from n-gons to (n−1)-gons, while the other two (tiles C and D in

figure 7.2) go from n-gons to (n+1)-gons. Therefore the average number of edges per

tile (equivalently the average degree on the dual lattice) remains constant at 6. As

bonds are flipped the standard deviation in the number of edges per tile changes. The

flipping of a bond changes the connection between sites, but each site continues to

have exactly 3 neighbors. Equivalently the dual lattice remains fully triangulated. We

will use these properties to define a class of planar lattices, the honeycomb variant

class, where each lattice is two-dimensional, three-coordinated and has an average

dual degree of six. We will compare the percolation thresholds of the DHC to the

rest of the honeycomb variant class of lattices in section 7.5.

7.3 Generation of Lattices

In the remainder of this chapter we will determine additional properties of the

DHC lattices through computational simulation. The process of generating the lat-

tices is mostly straightforward, however there are a few non-trivial components of the

algorithm which we will address here.

For physical reasons, we would like our lattice to remain planar. Furthermore, for

percolation, the critical exponents have different values in different dimensions, and

may change if the lattice is non-planar. As we flip bonds we need a way to guarantee

that our lattice stays planar. The specific coordinates of the sites are not relevant,

but for an acceptable bond flip there must exist some arrangement of the sites on

the plane for which none of the bonds cross. It turns out that the need for a planar

representation of the lattice specifies a unique exchange of bonds for any flip trial.

Figure 7.2 shows the two topologically distinct ways to flip bond a–b. In both resulting

lattices tiles A and B lose bond a–b and tiles C and D gain bond a–b; however they

differ in the reconnection of the bonds between sites 1, 2, 3 and 4, and the flipped

sites a and b. In the top picture bond 2–a is broken and replaced by bond 2–b and
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bond 4–b is broken and replaced by bond 4–a. In the bottom picture bond 1–a is

replaced by bond 1–b and bond 4–b is replaced by 4–a. The first set of reconnections

are correct because the lattice has a planar representation which is shown. In the

bottom case there is no planar representation on the lattice—no matter where sites a

and b are located there will be some bonds that cross each other—therefore we need

to be careful when reconnecting the bonds after a flip to preserve the planar nature

of the lattice.

Lattices are often stored on computers as simple neighbor lists, however here a

neighbor list would not be able to determine which of the two distinct ways to flip

bond a–b would result in a planar representation. In each case sites a and b exchange

one neighbor with each other, but without knowledge of which neighbors belong to

which tiles it is impossible to determine if sites 2 and 4 should be exchanged or sites 1

and 3. In order to solve this problem we stored our lattices as a list of all of the sites

that make up each tile. The sites were stored in clockwise order to further simplify

the flipping algorithm. For example tilelist[3] = [1, 5, 2, 18, 7] denotes that the tile

with ID of 3 is a pentagon made of the sites 1, 2, 5, 7, 18, and bonds 1–5, 5–2, 2–18,

18–7 and 7–1. Storing the lattice in this way makes the algorithm given in algorithm

1 for flipping bond a–b simple. It is also easy to translate into the standard neighbor

list as the three neighbors of site 2 are all of the IDs immediately following 2 in the

entire tile list.

In order to use algorithm 1 to flip bonds in the lattice we must start with the

lattice as lists of clockwise sites in every cell. We used the labeling method shown

in figure 7.3 to determine tile and site IDs. Tiles are initially labeled 0 to n2 − 1 in

order by row and then column. The top site of each hexagon initially has an ID of

IDsite = 2(IDtile) and the next clockwise site has IDsite = 2(IDtile) + 1. This produces

a label for every site and tile in the lattice. The lattice is then initialized according

to the algorithm given in appendix D.

7.4 Relationship between flips and defects

The DHC lattice is characterized by the number of bonds flipped, and we would

like to know how the lattice transforms in the process. We flip the bonds randomly, so

we will look at the average behavior over many lattices. To quantify the ‘defectiveness’

of an individual lattice we calculate the σ of the degree of the dual lattice (7.1). We

created a set of independent DHC lattices of three different sizes, n = 128, 512 and

1500 and compared the number of flips the lattice had undergone to the standard
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Figure 7.4: Relationship between the variance in the number of edges per tile and the
fraction of bonds flipped f . Top: Blue circles represent the variance found in 200
independently generated 128× 128 tile lattices. Orange circles represent the variance
found in 50 independently generated 512× 512 tile lattices. Purple circles represent
the 8 1500 × 1500 tile lattices used to find the percolation thresholds in section 7.5.
The data can be fit by the function v = −4.835f 2 + 11.92f + 0.0681. Bottom:
Average distribution of polygons over ten independent 128× 128 lattices at different
flipping fractions. As more bonds are flipped a greater percentage of the tiles are
triangles and many-sided polygons.
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Algorithm 1: Flip Bond a-b

1 A=tile with site list ...a,b,... . Find the four tiles involved in the

flip

2 B=tile with site list ...b,a,...
3 C=tile with site list ...a,...
4 D=tile with site list ...b,...
5 A → delete(b) . Change the bonds

6 B → delete(a)
7 C → insert(b) before a
8 D → insert(a) before b

deviation of defects σ. The results are shown in figure 7.4. There is a very strong

relationship between the extent of defects as characterized by the variance v and the

normalized number of bonds flipped, described approximately by v = −4.835f 2 +

11.92f + 0.0681. This equation allows us to generate lattices for systems of a given

variance.

We also want to characterize the qualitative behavior of the system as the number

of flipped bonds increases. We measured the probability of a tile having n sides as

a function of f . At small f the tiles are almost all hexagons, with a few pentagons

and heptagons. As more of the bonds are flipped the percent of hexagonal tiles in

the lattice decreases as shown in figure 7.4 (bottom). The long-term behavior of the

system is to create numerous triangular tiles and a few many-sided polygons. The

reason for this long-time behavior is that every time a bond is flipped two tiles lose

an edge and two tiles gain an edge, so as more bonds are flipped the number of bonds

per tile is forced away from the mean of six.

There is an ambiguity in the definition of the lattice when f gets large. If the

next bond to be flipped is part of a triangle it cannot be flipped or a tile with only

two sites would be created and the lattice would become a multi-graph (where two

sites are connected by more than one edge) which is not the behavior we were looking

for. Bonds that are part of triangular tiles should not be flipped, but it is up to us to

define whether choosing an unflippable bond counts as a flip or not. We in fact chose

to count those bonds towards the flip trial count of the lattice.

We were not able to fully determine the long-time behavior of the infinite DHC

system due to a specific finite-size effect. We used finite latices with periodic boundary

conditions to approximate the infinite system. As the bonds in the system are flipped

the tiles which neighbor each other change, and eventually one tile will gain enough

bonds that it will wrap around the finite system and neighbor itself, dividing the
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Table 7.1: Site and bond thresholds for the DHC lattices from simulations on 1500 x
1500 systems

σ psitec pbondc

0.24 0.69770± 0.00025 0.65320± 0.00025
0.55 0.69995± 0.00015 0.65497± 0.00025
0.77 0.70200± 0.00025 0.65715± 0.00025
1.09 0.7078± 0.00004 0.66130± 0.00025
1.28 0.71075± 0.00025 0.66440± 0.00025
1.52 0.71659± 0.00004 0.66860± 0.00025
1.81 0.72380± 0.00004 0.67470± 0.00025
2.10 0.73147± 0.00012 0.68140± 0.00025

Table 7.2: Honeycomb variant (three-coordinated) lattices

Lattice Common Name σ psitec pbondc

(63) honeycomb 0.000 0.697040 [3] 0.652704 [12]
- Poisson-Voronoi 1.314 [6] 0.71410 [13] 0.66693 [13]
(4, 82) bathroom tile 2.061 0.729723 [14] 0.676803 [14]
(4, 6, 12) cross 2.828 0.747801 [14] 0.693731 [14]
3
4
(3, 92) + 1

4
(93) martini 3.000 0.764826 [15] 0.707107[16]

(3, 122) three-twelve 4.235 0.807901 [17] 0.740421 [14]

lattice into two. When this occurred we stopped the simulation as the lattice was no

longer properly defined.

7.5 Determination of pc

We found the percolation thresholds of the DHC computationally using a method

described fully in Appendix D. At the percolation threshold the ratio

y(s, p) =
sP≥s
〈s′≤s〉

(7.2)

reaches a constant value of δ − 1, for large s, where s is the size of a cluster, 〈s′≤s〉
is the expectation value of s for clusters up to size s, P≥s is the probability that a

vertex is in a cluster of at least size s, and δ = 1/(τ − 2) = 91/5 (in two dimensions)

is a critical exponent of percolation. By graphing y(s, p) for different values of the

occupation probability p and finding when it reached 17.2 for large s, we were able

to determine pc with high precision.

To find the thresholds, we carried out 100,000 simulations on lattices of size n =
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1500, for values of σ equal to 0.00, 0.24, 0.55, 0.77, 1.09, 1.28, 1.52, 1.81, and 2.10 for

both site and bond percolation. The details are shown in figure 7.5.

The final results are shown in Figure 7.5, which gives the relationship between the

pc and σ of the lattices. We also include in that plot the known thresholds of the hon-

eycomb variant lattices (other lattices with coordination number 3). As σ increases

both the site and bond percolation thresholds increase in a fairly predictable manner.

The honeycomb variant lattices we used, which were all the three-coordinated ones

where thresholds are known, are summarized in table 7.2.

7.6 Discussion

We introduced the concept of the DHC lattice as a way to better model real-world

lattices which are not perfect honeycombs. The lattices are generated probabilistically

by choosing edges uniformly at random from a honeycomb lattice to ’flip’. This

process creates a new lattice with increasing number of defects as the bonds are

flipped. We can quantify the severity of the defects by measuring σ, the standard

deviation, or v = σ2, the variance in the number of edges per tile. The variance is

linearly proportional to the fraction of edges flipped f for small f . As more edges

are flipped the distribution of polygons in the lattice changes such that most tiles are

triangles or have a large number of edges.

There is a series of well-studied three-coordinated lattices which have many of the

same basic properties of the DHC lattices. We compared the percolation threshold of

these lattices and found that the percolation threshold for all of the lattices increases

linearly in v. This means that the variance is a useful quantity to use to determine

the percolation threshold of this class of lattice. The increase of thresholds as v

increases means that ideal honeycomb lattice is more robust to connecting paths

through the network than its defective counterparts. Patterning in biological systems

takes energy and so we would expect that patterns like the honeycomb should provide

some advantage over disordered lattices in order to be evolutionarily favorable. The

fact that the honeycomb pattern is more robust against site or bond failures than

similar networks with defects may be part of the reason it is so common in the

natural world.
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CHAPTER VIII

Conclusion

In this thesis we have explored ideas about disordered active systems through the

lens of epithelial tissues. Throughout the process of development, epithelial tissues

undergo a series of changes to their morphology. These tissue scale changes are driven

by local cell-cell mechanical interactions. Here we have discussed specific questions

relating to the broader theme of how individual cell-cell interactions drive the self-

assembly of cells into specific structures and patterns.

Throughout this thesis, we have used the vertex model as a mathematical descrip-

tor of epithelial tissues. Although this model has a long history of use in the field

of quantitative biology, some of its most basic features remained unproven until this

work. In chapter II we made a full and careful definition of an energy derived vertex

model, and proved that this model does not support stable fourfold vertices under the

standard assumptions. We also gave a biologically relevant adaptation of the model,

based on planar cell polarity, that supports the formation of stable fourfold vertices.

Additionally, we presented algorithms which correctly implement vertex resolution

for computational models. In chapter III we covered the algorithms and data struc-

tures used to write the computational model used throughout the thesis. We present

this work in the spirit of computational reproducibility, and to highlight solutions to

common problems encountered when designing vertex model code. Thus, chapters II

and III flesh out the details of the theoretical and computational framework that we

then used to answer specific questions about the interplay between cellular packing

and tissue stress.

Chapters IV and V deal with the question of the formation of multicellular acto-

myosin cables in tissues under applied stress. I was initially drawn to the question of

cable formation after seeing the experimental data showing fibers in the Drosophila

pupa notum. These fibers appeared to be aligned with one-another and the cortex

bound actomyosin to create stress-resistant cables. Indeed analysis of the data shows
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that the fibers are more aligned than if they were placed randomly and that cells with

more fibers are less elongated. This raises the question of why fibers disappear in the

notum around 30 hours APF, given that the applied tension remains high. We offer

two explanations for this apparent behavior. First, a toy model of the fiber mechanics

shows that smaller cells require fewer fibers to resist elongation. Secondly, cells in

the cable forming orientation do not require fibers to resist elongation. Analysis of

cellular data reveals that cells in the notum undergo a round of division resulting in

smaller apical areas coinciding with fiber loss. Using the methods developed in chap-

ter IV, we can also say that the tissue rearranges into a more cable-friendly topology

before the loss of fibers. We hypothesize that the combination of these two events

leads to the loss of fibers.

Understanding the role of fibers in the notum involved analyzing data from thou-

sands of cells. In chapter VI, we discuss the technical aspects of working with this

large amount of data. We came to the conclusion that classical image processing algo-

rithms were sufficient for determining cell outlines. However, even with cutting edge

machine learning algorithms, we lacked a large enough data set to train a classifier

to automatically detect fibers in images. Untimely, all fiber data in this thesis was

curated by hand.

Aspects of the work presented in this thesis are applicable to a wide range of fields

from cellular biology to non-linear dynamics. The vertex model has its roots in the

mathematics of graph theory, which describes networks of connected nodes. In the

final chapter we step away from biological questions and study the more abstract

properties of vertex model inspired networks. All vertex models belong to a larger

mathematical class of networks. In chapter VII we show that the number of T1

transitions preformed on an initially honeycomb lattice directly corresponds to the

percolation threshold, and that this relationship holds for the other known networks

in the same class.

The process of development is highly complex, occurring at many different length

scales, and involving chemistry, biology and physics. Physicals models, like the vertex

model, provide a way for us to understand aspects of the general behavior of cell

sheets, even though we lack an understanding of many of the specific small scale

components. In this work, we used the vertex model framework to understand new

experimental data of the appearance and subsequent disappearance of fibers in the

the Drosophila pupal notum. This furthers our understanding of the ways in which

epithelia can react to mechanical stresses in development.

126



APPENDICES

127



APPENDIX A

Pseudo-code for implementing T1 transitions

Algorithms 1-4 give pseudo-code implementing T1 transitions as described in sec-

tion 2.7. The code assumes an object oriented language (such as C++ or Java) with

cell, edge, and vertex objects already defined. We will assume that the edges store

data on their neighboring vertices and cells. The cells and vertices only store data on

their neighboring edges, and functions have been written to get the other neighboring

objects if needed. Objects are referred to in C++ style so that someobject.somedata

refers to the data somedata stored by the object someobject.

The function T1 takes a small edge and replaces it with a new fourfold vertex,

and then calls the function ResolveFourfoldVertex on the new vertex.

The function ResolveFourfoldVertex takes as input a fourfold vertex. It calls

CheckStability on each of the possible resolution topologies to determine their sta-

bility. Once the correct resolution topology has been established the function calls

BreakFourfoldVertex to update the edges, cells, and vertices involved in the T1 tran-

sition.

The function CheckStability takes as input a fourfold vertex and its associated

edges and cells. The cells and edges must be given in clockwise order. The function

will create temporary objects representing breaking the fourfold vertex such that

edges e1 and e2 share a common vertex. The force F is calculated and returned, and

the temporary objects are deleted.

The function BreakFourfoldVertex takes a resolution topology for a fourfold vertex

as input and creates the new edge and correctly resigns the neighboring edges, vertices,

and cells in the new topology.

Including both the CheckStability and BreakFourfoldVertex functions may seem

redundant, but it is vital to have both to deal with the rare but possible case in which
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a fourfold vertex is unstable to breaking up in both topologies. In this case the vertex

should break in the topology in which it is most unstable.
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Algorithm 2: T1

Input: e0 the edge to undergo T1
Output: None. The function will update the effected edges cell and vertices

so they are in the correct locations and have the correct neighbors
following a T1 transition.

1 v1← e0.vertex1
2 v2← e0.vertex2
3 c1← e0.cell1
4 c2← e0.cell2
. Do not T1 edges which neighbor triangles. This would produce

cells with only two sides.

5 if c1.EdgeNumber ≤ 3 or c2.EdgeNumber ≤ 3 then
6 EXIT

. Get the edges which will make the fourfold vertex

7 forall the e ∈ {v1.edges or v2.edges} do
8 if e 6= e0 then
9 list4foldedges← e

. set the next position of the two vertices to the center of the

edge

10 v1.xnext← e0.center
11 v2.xnext← e0.center

. move vertices updating any periodic boundary flags if nessacary

12 MoveVertex(v1)
13 MoveVertex(v2)

. make the new vertex

14 vnew ← e0.center
15 forall the e ∈ list4edges do
16 vnew ← e

. delete two old vertices

17 Delete(v1)
18 Delete(v2)

. Remove e0 from the list of edges in its two neighboring cells

19 for c ∈ {c1, c2} do
20 forall the e ∈ c do
21 if e = e0 then
22 remove e

23 Delete(e0) . delete the central edge e0

24 ResolveFourfoldVertex(vnew) . Resolve the fourfold vertex
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Algorithm 3: ResolveFourfoldVertex

Input: v0 the fourfold vertex to resolve
Output: None
. Make lists of the edges and cells in clockwise order

1 e← v.CWEdges
2 c← v.CWCells
. find the stability of each configuration

3 f1← CheckStability(v, e[0], e[1], e[2], e[3], c[0], c[1], c[2], c[3])
4 f2← CheckStability(v, e[3], e[0], e[1], e[2], c[3], c[0], c[1], c[2])
5 case f1=0 andf2=0
6 EXIT . The vertex is stable so exit

7 case f1 ≥ f2
. The vertex is unstable and should resolve in the first

topology

8 BreakFourfoldVertex(v, e[0], e[1], e[2], e[3], c[0], c[1], c[2], c[3])

9 case f2 > f1
. The vertex is unstable and should resolve in the second

topology

10 BreakFourfoldVertex(v, e[3], e[0], e[1], e[2], c[3], c[0], c[1], c[2])
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Algorithm 4: CheckStability

Input: v, e1, e2, e3, e4, c1, c2, c3, c4
v: the fourfold vertex
e1, e2, e3, e4: the four edges of v in clockwise order such that (e1,e2) will be
neighbors and (e3,e4) will be neighbors when the vertex is split
c1, c2, c3, c4: The four cells of v in clockwise order such that c1 has edges e1,
and e2.
Output: Creates temporary objects representing the vertex splitting such that

edges (e1,e2) and (e3,e4) are paired and cells c2 and c4 are neighbors.
It returns the magnitude of the force pulling the vertices apart. If
the vertex is stable against breaking in this topology it returns 0.

1 CoppyAll v′ ← v, e1′ ← e1, c1′ ← c1, ... . Make temporary objects

. Make the new edge (enew) and vertices (v12, and v34) resulting

from the split into two threefold vertices

2 v12← v.x . the vertex on edges e1’ and e2’

3 v12← {enew, e1′, e2′}
4 v34← v.x . the vertex on edges e3’ and e4’

5 v34← {enew, e3′, e4′}
6 enew.length← 0
7 enew ← {v12, v34}
8 enew ← {c2′, c4′}
9 for e ∈ {e1′, e2′, e3′, e4′} do

10 e delete v . Update the four edges

11 if e ∈ {e1′, e2′} then
12 e← v12

13 else
14 e← v34

15 c2′ ← enew . Update the cells

16 c4′ ← enew
. Calculate F as given in Sect3A. Let e.FindForce(v) return the

force on vertex v from edge e given by Γel̂e + pe
2

(ẑ× le).
17 F ← (e1.FindForce(v12) + e2.FindForce(v12) + e3.FindForce(v34) +

e4.FindForce(v34))/2
18 if F > enew.tension then
19 return magnitude(F)

20 else
21 return 0;
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Algorithm 5: BreakFourfoldVertex

Input: v, e1, e2, e3, e4, c1, c2, c3, c4
v: the fourfold vertex
e1, e2, e3, e4: the four edges of v in clockwise order such that (e1,e2) will be
neighbors and (e3,e4) will be neighbors when the vertex is split
c1, c2, c3, c4: The four cells of v in clockwise order such that c1 has edges e1,
and e2.
Output: None
. Make the new edge (enew) and vertices (v12, and v34) resulting

from the split into two threefold vertices

1 v12← v.x+ (L
2
F̂) . Where L specifies new edge lengths

2 v12← {enew, e1′, e2′}
3 v34← v.x− (L

2
F̂) . Where L specifies new edge lengths

4 v34← {enew, e3′, e4′}
5 enew.length← L
6 enew ← {v12, v34}
7 enew ← {c2, c4}
8 for e ∈ {e1, e2, e3, e4} do
9 e delete v . Update the four edges

10 if e ∈ {e1, e2} then
11 e← v12

12 else
13 e← v34

14 c2← enew . Update the cells

15 c4← enew
16 Delete v
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APPENDIX B

Supplemental information for chapter IV

We created an ensemble of disordered tissues with a range of cableness by inducing

different levels of flow in different tissues. The flow forces a series of oriented T1

neighbor exchanges that change the cableness of the tissue. We also tried a more

controlled version of this process in which we forced oriented T1s to occur even though

they were not energetically favorable, we call this ensemble ‘forced T1’ packings. To

create the packings we began with a ordered hexagonal lattice in the CFO. We then

randomly selected horizontal edges and forced them to undergo the T1 process. Figure

B.1A-E gives representative examples of tissues with increasing percentage of their

edges flipped. This flipping leads to a decrease in the value of the orientational order

parameter 〈cos(6θ)〉, as shown in figure B.1F.

Figure B.2 gives the results of applying our cableness measures to the forced

T1 packings. The tension measure preforms well. However, the convexity measure

preforms very poorly. We believe that this is a result of the underlying crystalline

structure of the forced T1 packings. The cells do not become concave when they

are less cabley because they are so highly ordered. This degree of ordering is not

representative of epithelia, and therefor does not pose an issue for the convexity

measure.

Also included in figure B.2 is the result of applying a third cableness measure E
based on cell elongation. Figure B.3A,B shows the elongation of cells in the stretched

state for both a cabely and non-cabely packing. The tissue with low cableness has

many more highly elongated cells. Figure B.3 gives the histogram of cell elongation

as measured by the ratio of the perimeter to the square root of the area for the forced

T1 packings at different percentages of flipped edges. The less cabely packings have

a much broader histogram. The results are qualitatively the same for the flowing
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Figure B.1: A-E Images of forced T1 packings with 10, 30, 50, 70 and 90 percent
of the edges flipped. F Relationship between the percentage of edges flipped and the
orientational order as measured by 〈cos(6t)〉.
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stretched forced T1 packings for a range of edges flipped. We define this measure of
cableness as the elongation measure E .

packings [data not shown]. We define E to be the percentage of cells with elongation

greater than 5.26, the elongation of a hexagonal cell with constant perimeter that has

half its initial area. Figure B.4A gives the results of applying the elongation based

cableness measure to all of our different tissues. It agrees with both the tension and

convexity based measures for non-pre-stressed tissue. However, for pre-stressed tissues

the elongation measure increases increases, moreover, the magnitude of the difference

between the measure applied to a stress free and pre-stressed tissue depends on the

cableness of the tissue. This makes it difficult to interpret in pre-stressed tissues, and

we therefor discarded it as a measure of cableness. Additionally we expect that it

would not correctly identify elongated brick shaped tissues as cabely.
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APPENDIX C

Fiber alignment

The following graphs give the results of the cumulative probability distribution of

the normalized mean path length through the tissue for 100 randomly placed fibers.

Orange curves are cumulative probability distributions for fibers placed through the

tissue, and blue curves are for fibers placed randomly in the same cell. Vertical lines

mark the standard deviations. The black line represents the normalized mean path

length for the actual fiber positions.
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APPENDIX D

Initializing the DHC Lattice

In order to use algorithm 1 the lattice must be stored as a list of clockwise-ordered

vertices around each cell. There are many different solutions which give unique labels

to every vertex, and working out the proper boundary conditions and determining

the vertices in each tile can be time consuming. We have reproduced our algorithm

here for interested parties wishing to produce their own DHC lattices. We used the

labeling method shown in figure 7.3 to determine tile and site IDs. Tiles are labeled

0 to n2 − 1 in order by row and then column. The top site of each hexagon has id

IDsite = 2(IDtile) and the next clockwise site has IDsite = 2(IDtile) + 1. The following

pseudocode produces a two-dimensional array of n× n hexagons. The ith row of the

array gives the clockwise ID’s of vertices of tile i where the first entry is the top vertex

of the tile.
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Algorithm 6: Initialize Lattice

1 for z=0 to n2 − 1 do

2 α = z−(z (mod n))
n

(mod 2)
3 z′ = 2(z + n (mod n))
4 tiles[z][0] = 2z
5 tiles[z][1] = 2z + 1
6 if α = 1 then
7 tiles[z][2] = z′

8 if z (mod n) = 0 then
9 tiles[z][3] = 2(z + 2n− 1 (mod n)2) + 1

10 tiles[z][4] = 2(z + 2n− 1 (mod n)2)

11 else
12 tiles[z][3] = z′ − 1
13 tiles[z][4] = z′ − 2

14 if z (mod n) = n− 1 then
15 tiles[z][2] = 2z + 2
16 tiles[z][2] = z′ + 2

17 else
18 tiles[z][2] = z′ + 1
19 tiles[z][2] = z′

20 if z (mod n) 6= 0 then
21 tiles[z][5] = 2z − 1

22 else
23 tiles[z][5] = 2(z + n− 1) + 1
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APPENDIX E

Determining percolation thresholds

In section 7.5 we presented data showing the relationship between the percolation

threshold of some DHC lattices with the honeycomb variant lattices. The site and

bond percolation thresholds for the honeycomb variant lattices are known (see Table

7.2). There are many established ways to estimate the percolation threshold of a

lattice using simulations [2, 3], however we found that a novel method based on a

cluster growing algorithm was more practical for our problem. In this section we will

describe the theory behind our method and outline the computational model we used.

The theory behind the method is straightforward. We found a ratio of properties

which we will call y (defined below) that is a constant function of s (for large s) at

the percolation threshold. We can then use a normal cluster growing algorithm to

determine this ratio at different occupation probabilities, and narrow in on the value

of pc.

The following is a short theoretical derivation proving that our ratio y should be

constant for s at the percolation threshold. Let ns be the number of clusters of size

s, and Ps be the probability that any site is in a cluster of size s. It is well known [2]

that at pc the number of clusters of size s, is As−τ , where A is some constant and τ

is the Fisher scaling exponent. From this relationship it follows that the probability

that a site on the lattice belongs to a cluster of size s is given by

Ps = sns ∼ As1−τ . (E.1)

for large s, which implies that the probability a site is in a cluster of at least size s

is given by

P≥s =

∫ ∞
s

Ps′ds
′ ∼
∫ ∞
s

A(s′)1−τds′, (E.2)
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Figure E.1: Example of finding the percolation threshold using our method. We grew
10000 clusters on a honeycomb lattice at various occupation probabilities p. Statistics
on the average P≥s and 〈s′ ≤ s〉 were gathered and the ratio y = sP≥s/〈s′ ≤ s〉 was
plotted versus the cluster size s. At the percolation threshold the resulting curve
should be flat. On the left we get the approximate value of pc for site percolation
on the honeycomb lattice. On the right we narrow in on the exact value. Using
this method we determined that the site percolation threshold was 0.69700± 0.00005
which agrees with the known value of 0.697040 [1].

at pc. The value of τ is between 2 and 2.5 in every dimension so the integral in (E2)

converges and evaluates to

P≥s ∼
As2−τ

τ − 2
. (E.3)

We want our ratio of lattice properties y to be constant at pc, so we incorporated the

average value of the size of all clusters up to size s:

〈s′≤s〉 =

∫ s

1

s′Ps′ ∼
∫ s

1

A(s′)2−τds′ =
As3−τ − 1

3− τ
. (E.4)

It follows that the ratio y, defined as

y =
sP≥s
〈s′≤s〉

∼ 3− τ
τ − 2

=
86

5
. (E.5)

is constant for large s.

In order to use the ratio y to find the value of pc we ran a standard epidemic

cluster growing algorithm with occupation probability p and recorded the number

of sites in each cluster until appropriate statistics had been collected. Clusters were

grown until a preset maximum cutoff smax was hit. Data were binned by log2 s, that

is, bins for s = 1, 2-3, 4-7, 8-15, . . . and those that hit smax, with bins both for the
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number in each bin, and the total s of all the clusters in each bin. Summing these

bins respectively above s and below s allowed us to calculate y for s = 2, 4, 8, . . .,

smax. We have verified that this gives the correct threshold for other two dimensional

systems where the threshold is known exactly.

When the occupation threshold is above pc the curve for f is above 17.2, and

when the occupation threshold is below pc the curve is below 17.2. Therefore, we can

narrow in on the percolation threshold by testing various values of p and graphing

them as shown in figure E.1. First we scan through a range of p values using a

large step size and short simulations to determine the approximate pc. We then run

extensive simulations on just a few values of p near the threshold to get an accurate

value of pc. This method is easy to program and efficient when one is trying to find

just the threshold, and not the behavior of the system for all values of p, in which

case other methods [4, 5] are more efficacious.

For this method to work well, the lattice has to be big enough so that the maximum

cluster size smax could be reached before the boundaries are hit. Then there are no

finite-size effects due to the boundaries. However, there are still finite-size (lattice)

effects for small clusters; these are generally unimportant for s > 1000.

Bibliography

[1] J. L. Jacobsen, “High-precision percolation thresholds and Potts-model critical
manifolds from graph polynomials,” J. Phys. A: Math. Th., vol. 47, 2014.

[2] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. CRC
Press, 1994.

[3] P. L. Leath, “Cluster size and boundary distrabution near percolation threshold,”
Phys. Rev. B, 1976.

[4] M. E. J. Newman and R. M. Ziff, “Efficient Monte Carlo algorithm and high-
precision results for percolation,” Phys. Rev. Lett., vol. 85, pp. 4104–4107, Nov
2000.

[5] M. E. J. Newman and R. M. Ziff, “Fast Monte Carlo algorithm for site or bond
percolation,” Phys. Rev. E, vol. 64, p. 016706, Jun 2001.

151


