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Abstract
Atmospheric aerosols are complex mixtures of different chemical species, and individ-
ual particles exist in many different shapes and morphologies. Together these char-
acteristics contribute to the aerosol mixing state. This review provides an overview
of measurement techniques to probe aerosol mixing state, discusses how aerosol mix-
ing state is represented in atmospheric models at different scales, and synthesizes our
knowledge of aerosol mixing state’s impact on climate-relevant properties, such as cloud
condensation and ice nucleating particle concentrations, and aerosol optical properties.
We present these findings within a framework that defines aerosol mixing state along
with appropriate mixing state metrics to quantify it. Future research directions are
identified, with a focus on the need for integrating mixing state measurements and
modeling.

1 Introduction

An aerosol is a population of solid or liquid particles suspended in a gas. The
atmospheric aerosol plays an important role in a number of key processes related to
atmospheric chemistry and physics. Aerosol particles directly scatter and absorb so-
lar radiation [Ravishankara et al., 2015], which impacts the large-scale dynamics of
the atmosphere and climate [Bellouin et al., 2005]. Particles also serve as the nu-
clei for cloud droplets and ice crystals [Andreae and Rosenfeld , 2008; DeMott et al.,
2016, 2010; Farmer et al., 2015], thereby indirectly impact radiative transfer [Penner
et al., 2004]. They also provide surfaces and reaction sites for heterogeneous chem-
istry to occur [George et al., 2015], which impacts both aerosol properties and gas
phase concentrations [Abbatt et al., 2012]. These macroscale impacts are determined
by the distribution of properties across the population of particles that make up the
atmospheric aerosol. Important properties of particles within the atmospheric aerosol
include per-particle composition, per-particle morphology, and the spatial distribution
of chemical species within individual particles. To complicate matters, the chemical
and physical properties of particles with the atmospheric aerosol are dynamic and
constantly evolving during their atmospheric lifetimes. Characterizing this diversity
of particle chemical compositions and physical properties within the particle popula-
tion of the atmospheric aerosol poses a tremendous challenge for both experimental
methods and model development, however, it is necessary to quantify the atmospheric
aerosol’s impact on the Earth’s system.

Individual particles within an aerosol are complex mixtures of different chemical
species [Junge, 1952; Murphy and Thomson, 1997; Prather et al., 2008]. To illustrate
this complexity, a single 100 nm particle is composed of millions of molecules and can
contain hundreds to thousands of distinct chemical species within an attoliter (10−18 L)
volume. These species include both primary species (present in the condensed phase at
the time of emission) and secondary species (formed in the atmosphere). Examples of
primary particles with complex compositions include individual combustion particles
that are mixtures of elemental carbon (a.k.a black carbon or soot), organic carbon, and
metals from unburnt lubricating oils [Toner et al., 2006], and sea spray aerosol particles
that contain sodium chloride and organic carbon from biological material [Barger and
Garrett , 1970; Prather et al., 2013]. Secondary species include nitrate from NOx oxi-
dation, sulfate from SO2 oxidation [Seinfeld and Pandis, 2016], and secondary organic
aerosol (SOA) formed from the oxidation of volatile organic compounds (VOCs) to
low volatility species [Hallquist et al., 2009]. Importantly, within an aerosol each indi-
vidual particle typically contains different mixtures of primary and secondary species,
even over a narrow particle size range. The relative abundance of particles from differ-
ent primary sources that are aged by different secondary processes also changes, both
temporally and with respect to particle size. The variability within the atmospheric
aerosol of composition at the single particle level has been documented by field mea-
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Figure 1. Illustrative example of the impact that aerosol mixing state can have on cloud

droplet formation, specifically the ability of particles to act as cloud condensation nuclei (CCN).

For each of the three example populations (internal mixture, external mixture, and real world

mixture), the six particles summed together consist of 50% ammonium sulfate (gold) and 50%

hydrophobic organic material (blue), with blue and yellow stripes representing a 50%/50% mix-

ture of the two components evenly distributed within a particle. For this example, a hypothetical

size of 100 nm places the particles in the size range where chemical composition impacts CCN

activity. The top distributions show individual particle composition and morphology (e.g., core-

shell), while the bottom distributions show which particles in the distribution would activate act

as CCN and activate at 288 K and 0.3% supersaturation, assuming that ammonium sulfate has

κ = 0.65, and the hydrophobic organic species has κ = 0.01.

surements globally for decades [Ault et al., 2010; Bondy et al., 2018; Casuccio et al.,
2004; Dall’Osto et al., 2010; Gard et al., 1998; Middlebrook et al., 2003; Murphy et al.,
1998a; Pratt and Prather , 2010; Reinard et al., 2007; Sullivan et al., 2007a], but effec-
tively accounting for that complexity within global models remains challenging [Bauer
et al., 2013; Fierce et al., 2017].

The first introduction of the concept of aerosol mixing state was by Winkler
[1973], as a way to account for differences in chemical composition across an aerosol.
According to his definition “internal mixing” is present when the population of parti-
cles within an aerosol consist of the same mixture of chemical species, while “external
mixing” is present when all particles in an aerosol consist of pure chemical species
and have distinct compositions. In reality purely internal or external aerosol mix-
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ing states are rare in the atmosphere [Healy et al., 2014; O’Brien et al., 2015; Bondy
et al., 2018]. Winkler [1973] went on to point out that the “same net composition of
an aerosol can be caused by an infinite variety of different internal distributions of the
various compounds”. Note that the term “mixing state” as originally defined, refers
to a property of the overall particle population within an aerosol, not to the property
of an individual particle. Thus, it is helpful to define some initial terms that will be
explored more rigorously below. Aerosol mixing state is defined as the distribution of
properties across a population of particles within an aerosol. Traditionally discussions
of mixing state have focused on chemical mixing state, which is defined as the distri-
bution of chemical species across individual particles within the particle population of
an aerosol. The addition of physical properties adds a layer of complexity referred to
as the physicochemical mixing state [Ault and Axson, 2017], which can be needed to
fully connect to climate relevant optical or cloud nucleating properties, but is more
challenging to represent and quantify.

Considering the role of aerosol particles as cloud condensation nuclei (CCN),
as ice nucleating particles (INPs), and as scatterers and absorbers of electromagnetic
radiation, it is clear that aerosol mixing state is of great interest since all of these im-
pacts depend on properties such as per-particle composition and particle morphology.
The connection between mixing state and climate-relevant properties is illustrated in
Figure 1, for the example of CCN activity. In this example, each population contains
equal bulk mass fractions of ammonium sulfate (yellow) and a hydrophobic organic
species (blue) of the same size (100 nm), but the distribution of species varies between
and within particles. On the left is an example of a completely internal mixture, where
both species are homogeneously mixed within each particle, indicated by the blue and
yellow striped particles. The middle shows an external mixture, where each particle
consists of either solely ammonium sulfate or the hydrophobic organic species. The
population on the right shows an example that is in between the external and the
internal mixture, while also highlighting that the species can be arranged differently
within the particle (e.g., homogeneous, core-shell, or partially engulfed). This “real
world” example represents the kind of complexity typical of the ambient atmosphere.
The variation in mixing state between these hypothetical examples result in differing
numbers of particles activating as CCN and forming cloud droplets: three for the exter-
nal mixture, six for the internal mixture, and four for the “real world” mixture. Thus,
despite each population having the exact same mass of ammonium sulfate and the
hydrophobic organic species, as well as the same particle size, differences in CCN acti-
vation are observed when comparing the populations. Similar arguments can be made
for the ability of aerosol particles to act as INPs, and for aerosol optical properties.

The continuous evolution of mixing state for an aerosol in the atmosphere is
shown conceptually in Figure 2 and is the result of a number of processes. As an air
parcel containing an internally mixed, background aerosol is advected over an urban
area (1), the population becomes more externally mixed as primary particle emissions
from many different sources (e.g., vehicle combustion, power plants) enter the air
parcel (2). Simultaneously, many processes occur that make the population more
homogeneous, and move it towards a more internally-mixed state (3). These include
the formation of secondary aerosol material in cloud-free air or within cloud droplets,
coagulation amongst different particles, and heterogeneous reactions on the surface of
or within the particles. After the parcel moves over the ocean and sea spray aerosol
(as well as ship) emissions are added, the population becomes more externally mixed
yet again because new particle types are added to the population (4). Further away
from the continent, as the population becomes more and more dominated by sea spray
aerosol, the mixing state moves towards a more internal mixture (5). The degree that
the chemical mixing state is an external or internal mixture can be quantified more
precisely by the mixing state parameter, which will be explained in Section 5.1.

–4–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

wind

wind

VOC
NOx

NH3

SO2

DMS

(1) Background aerosol enters 
urban area

(2) Adding fresh primary emissions 
from urban area

(3) Physical and chemical aging while 
fresh emissions decrease

(4) Aged plume is advected over the ocean, adding 
fresh sea spray emissions to aged plume

(5) Continued addition of sea 
spray emissions

Internally 
mixed

Externally 
mixed

Figure 2. Evolution of aerosol mixing state of an aerosol that is transported in the atmo-

sphere. The line graph at the top illustrates how aerosol mixing state changes qualitatively

between a more or less internally mixed state and how different aerosol processes contribute to

that change. Adding new types of aerosol particles makes the population more externally mixed

(steps 2 and 4), while aerosol aging processes (step 3) or the addition of one dominate particle

type (step 5) moves the population towards a more internally mixed state.
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Along with a wide variety of chemical mixing states based on variation in per-
particle compositions, different physical properties can vary across the particle pop-
ulation of an aerosol [Ault and Axson, 2017], leading to a complex physicochemical
mixing state. For example, while aqueous salt particles are well-approximated by
spheres, soot particles are emitted as fractal-like aggregates [Wentzel et al., 2003; Mof-
fet and Prather , 2009], mineral dust particles are irregularly-shaped [Kalashnikova and
Sokolik , 2002; Moffet et al., 2008], and chemically mixed particles can have various
arrangements of their constituent species [China et al., 2013; Moffet et al., 2016; Li
et al., 2016]. Similar to chemical composition, particle physical structure can also un-
dergo changes during a particle’s lifetime in the atmosphere. Soot aggregates tend
to compact as secondary aerosol species condense on them [Zhang et al., 2008] or as
water evaporates from them [Mikhailov et al., 2001]. Coagulation events can lead to
partially encapsulated particles [China et al., 2015]. Thus, as with chemical mixing
state, physicochemical mixing state is dynamic and constantly evolving.

There is no single instrument that can perfectly characterize all aspects of aerosol
mixing state, but over the past two decades, sophisticated techniques have been de-
veloped that allow us to probe various physicochemical properties of particles and un-
derstand their contribution to the mixing state of an aerosol in increasing detail [Ault
and Axson, 2017; Laskin et al., 2016; Prather et al., 2008; Pratt and Prather , 2012a].
Concurrently, atmospheric models have become sufficiently complex to incorporate
aspects of aerosol mixing state in their predictions [Riemer and West , 2013; Riemer
et al., 2010]. This review compares and contrasts the different approaches regarding
measuring and modeling aerosol mixing state, and synthesizes our knowledge of how
important these details are to understand aerosol impacts on climate.

When defining the scope of this review it is not feasible to fully explore all aspects
of aerosol composition and physical properties that connect to mixing state. Thus, we
list some pertinent reviews with further details on specific instrumentation, sources,
and climate-relevant properties below. For further details on many of the instrumen-
tal methods discussed below, readers are directed to excellent reviews on analysis
of atmospheric aerosol [Laskin et al., 2016; Prather et al., 2008], mass spectrometry
of aerosols [Laskin et al., 2018, 2013; Pratt and Prather , 2012a,b], and spectroscopy
and microscopy of aerosols [Ault and Axson, 2017; Power and Reid , 2014]. Addition-
ally, specific aspects of aerosol composition and processes have been discussed in a
number of reviews, including: brown carbon [Laskin et al., 2015; Yan et al., 2018],
light absorbing carbon (e.g., black carbon) [Bond et al., 2006; Lack et al., 2014], or-
ganic aerosol [Glasius and Goldstein, 2016; Hallquist et al., 2009; Shrivastava et al.,
2017], biomass burning aerosol [Chen et al., 2017b], metal-containing aerosol [Popoola
et al., 2018], bioaerosols [Fröhlich-Nowoisky et al., 2016], sea spray aerosol [Brooks
and Thornton, 2018; Quinn et al., 2015], mineral dust [Cwiertny et al., 2008; Usher
et al., 2003], acidic aerosol [Craig and Ault , 2018], ultrafine and newly formed par-
ticles [Bzdek et al., 2012], phase separations [Freedman, 2017], and particle viscosity
[Power and Reid , 2014; Reid et al., 2018].

Aerosol physicochemical properties and their evolution is a complex and expand-
ing area of research. In this paper, we focus our discussion of physicochemical proper-
ties and mixing state on particle shape and structure, which represent a distribution of
morphologies. Implications for climate of the atmospheric aerosol and its constituent
particles have been discussed in a number of reviews [McNeill , 2017], including CCN
[Farmer et al., 2015; McFiggans et al., 2006], INPs [DeMott et al., 2016; Knopf et al.,
2018], and aerosol optical properties [Bond et al., 2006; Moise et al., 2015]. While
substantial advances have been made in the area of low-cost sensors, this technology
has not yet advanced to the point of providing useful information regarding mixing
state. We therefore will not discuss these techniques further in this review, although
advances in this area would greatly benefit the field of aerosol science. Lastly, aerosols
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have significant impacts on human health globally as one of the largest environmental
risk factors [Pope III and Dockery , 2006]. However, given the complicated nature of
connecting aerosol composition to both climate and health, this review will solely focus
on connecting aerosol composition and mixing state to climate, with readers directed
to detailed reviews relating aerosol composition, air quality, and health [Brook et al.,
2010; Pope III and Dockery , 2006; Von Schneidemesser et al., 2015].

In this review we start in Section 2 with an overview of mixing state terminology,
followed in Section 3 by a review of experimental tools that are used to measure mixing
state. Section 4 summarizes mixing state representations in aerosol models. Section 5
presents our current understanding of mixing state metrics, and then Section 6 summa-
rizes the state of knowledge about the role of mixing state in aerosol-climate impacts.
Section 7 summarizes our main points and outlines future research needs with respect
to aerosol mixing state. A list of abbreviations used in the paper is given in Table 9.

2 Mixing state terminology

To begin the discussion on aerosol mixing state, we will define our terminology
in Sections 2.1 and 2.2, contrasting the terminology used to describe single particles
and particle populations.

2.1 Terminology: Single particles

The extant literature on mixing state uses a variety of sometimes-incompatible
terminologies to describe an aerosol, particles within an aerosol, and particle popula-
tions, so in this review we start by establishing precise definitions for the terminology
used with respect to particles, aerosols, and mixing state. Our approach is based on
the notion that it is useful to distinguish between per-particle properties (described in
this section) and population-level properties (see Section 2.2).

We begin with describing a particle chemically. The chemical composition (or
composition) of a particle is the mass of each chemical species in the particle. A
chemical species is commonly defined as an ensemble of identical molecules. As it is
not feasible to measure or model each of the thousands of chemical species present in
many atmospheric particles, species is often generalized to refer to a group of similar
molecules. This is often determined by the measurement technique (see Section 3 for
more details) or by the level of detail available in the aerosol model representation.
Common examples of how the term species tends to be used in aerosol studies include
ammonium sulfate, ions such as nitrate (often referred to irrespective of its counte-
rion, such as sodium), or more complex mixtures treated as surrogate species, such as
secondary organics to refer to the hundreds or more distinct organic species present
in many individual particles. Ambient particles differ dramatically in the number of
chemical species they contain. That is, they have different compositional diversities.
For example, a freshly emitted combustion particle could be described as containing
just two species, black carbon (i.e., graphitic carbon) and primary organic carbon, so it
would have low diversity. Again we are using primary organic carbon as a generalized
surrogate species for the many of the organic species in the condensed phase at the
time of emission. After some time in the atmosphere this combustion particle might
acquire additional aerosol species as material condenses on it, such as secondary inor-
ganic or organic species, thereby increasing its compositional diversity. The definition
of diversity will be made more precise in Section 5.1 by introducing the concept of the
number of effective species in a particle.

The way these chemical species are arranged spatially within an individual par-
ticle brings us to the definition of particle morphology. The morphology of a particle
is the gross structure and shape of the particle, including the relationship of its com-
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ponents and variation of properties inside the particle. A component of an aerosol
particle is a subset of the particle with distinct properties. These might include chem-
ical composition, phase, or even a unique shape, and will be application dependent.
Figure 3 illustrates the fact that a particle of a given composition can assume many
different morphologies. For example, the particle with the same mass of three different
components could have the components arranged as a spherical core-shell morphology,
as a number of inclusions embedded in a spherical host particle, or as a non-spherical,
fractal aggregate particle. We summarize common metrics for morphology, or mor-
phometrics, for aerosol particles in Section 5.4.

While composition and morphology describe many aspects of a particle, we fre-
quently need more physical or chemical properties to completely quantify the particle
state. The physicochemical properties of a particle include its composition, morphol-
ogy, and any additional features needed to fully characterize the particle. Examples
of additional features include phase and charge and will be application dependent.
Additional properties such as refractive index or hygroscopicity are best regarded as
functions of the particle’s composition and morphology, but in certain situations may
be treated as independent physicochemical properties.

A fundamentally important, but complex, feature of an atmospheric particle is
its size, usually reported as diameter. The diameter of a particle within an aerosol has
traditionally been defined by its behavior while suspended and interacting with the
gas it is suspended in (aerodynamic diameter) or while being acted on by an external
force (electrical mobility diameter). To connect to composition and species, size can
be defined by the diameter of a particle whose volume is determined by summing the
masses of the species present and using the species material densities. However, semi-
volatile species, particularly water, are often difficult to account for in measurements
and models and vary with environmental conditions. Another factor that can impact
the diameter reported for a particle is its morphology, requiring the use of shape
factors and fractal dimensions [DeCarlo et al., 2004]. While in fields such as biology
it is common to regard size as an aspect of morphology [Encyclopædia Britannica,
2018], in atmospheric science and the aerosol community morphology typically only
refers to additional shape descriptions beyond size. In line with the typical usage
of morphology for aerosols, we primarily focus on composition and other physical
properties and readers are directed to a number of other comprehensive overviews of
the definitions and implications of aerosol size [DeCarlo et al., 2004; Friedlander , 1977;
Fuchs, 1964; Hinds, 1999].

2.2 Terminology: Defining an aerosol, particle populations, and mixing
state

Having defined our terminology for single particles in Section 2.1, we now consider
an aerosol, which is a population of particles suspended in a gas. Thus, it is common to
discuss the atmospheric aerosol for a specific location as referring to all of the particles
suspended at that location.

The mixing state of an aerosol is the distribution of properties across the parti-
cles in the population. Analogous to the single-particle properties in Section 2.1, we
distinguish between two different levels that differ in their complexity. We start with
the simpler chemical mixing state and then move to the more detailed physicochemical
mixing state, as shown in Figure 3.

The chemical mixing state of an aerosol is the distribution of chemical species
across the particles in the population [Winkler , 1973]. When describing the chemical
mixing state of a population it is often helpful to think of it as being more or less
internally or externally mixed.
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Figure 3. Illustration of our terminology. We separate the properties that describe single par-

ticles (Section 2.1) from the distribution of these properties across the population (Section 2.2).

It is further useful to separate the aspects that pertain to chemical composition and its distribu-

tion across the population from the aspects that include not only chemical composition but also

morphology and phase, which together constitute the physicochemical properties for individual

particles and the physicochemical mixing state of the population.

An aerosol is a fully-internal mixture if all particles in the population contain
the same species in the same mass fractions. In other words, the per-particle mass
fractions are all equal to the mass fractions of the bulk aerosol. This means that, if
the population is fully internally mixed and we know the bulk composition, we also
know what each particle is made of. Correspondingly, an aerosol contains an external
mixture if every particle contains just one species (or surrogate species, such as primary
organic carbon). Of course, a real-world chemical mixing state will be in between those
two extremes, with both internal and external mixing characteristics. We will more
precisely define the extent to which a population is internally mixed in Section 5.1.

The terms external and internal mixture can also be applied to particle types
within the particle population of an aerosol. By aerosol particle type, we mean sub-
populations of particles within an aerosol, such as particles in the same size range,
particles from the same source, particles with similar composition, or particles with
other similar properties. A common method of determining particle types is through
a mass spectrometry cluster analysis, discussed in Section 3.4.2. As an example of de-
scribing the mixing state of particle types, an external mixture of combustion particles
and sea spray particles means that particles from the two sources exist as separate par-
ticles. The particles of each type can consist of different chemical species, each having
their own diversity. For example, there can be differing amounts of organic material
in sea spray particles, even if that population is distinct from combustion particles. In
contrast, an internal mixture from combustion and sea spray sources means that the
species from combustion and sea spray are combined within individual particles, such
as through coagulation, and present in the same amount in each particle.

Chemical mixing state is agnostic to particle morphology, which we indicate in
Figure 3 by using generic pie charts for each particle. To fully characterize an aerosol
we need to generalize the chemical mixing state to the physicochemical mixing state.
The physicochemical mixing state of an aerosol is the distribution of physicochemical
properties across the particles in the population [Ault and Axson, 2017]. This includes
the chemical mixing state, as well as the distribution of morphology, phase, and any
other particle characteristics of interest. Two populations can have the same chemical
mixing state (e.g., fully internally mixed), but may differ in their physicochemical mix-
ing state due to their distribution of morphologies (e.g., core-shell versus homogeneous
on a molecular level).
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From knowing the full physicochemical mixing state, we can derive the number
and mass size distributions of the particle population. This means that aerosol mixing
state and the size distribution are not independent from each other, even though in
practice we sometimes treat them as such, a point also made by Farmer et al. [2015].
Knowing the full physicochemical mixing state also allows us, at least in principle, to
calculate other per-particle properties, such as the particles’ critical supersaturation or
the absorption and scattering cross sections. From these, population-level quantities
can be derived, e.g., CCN concentrations or absorption and scattering coefficients.
Conversely, it is possible to deduce aspects of mixing state by measuring population-
level quantities in combination with a diagnostic model of the target quantities, which
will be the subject of Section 6.1.

After laying out the concept of individual particle properties on the one hand,
and population-level properties of an aerosol on the other hand, it is evident that
the term “internal mixture” should not be applied to individual particles, but only
to populations. For example, a particle that contains both black carbon and sulfate
is simply a “mixed particle”. Assembled in a population, these particles then form
an “internal mixture” of black carbon and sulfate. Given the complexity of aerosols,
particle populations, and mixing state, it is not uncommon to see the occasional,
incorrect usage of the term “internally mixed” to refer to individual particles with
multiple species. We wish to emphasize that using the terminology of mixing state
and aerosol for populations, as done here and in the prior aerosol literature, will help
alleviate a potential source of confusion.

3 Measurement techniques for aerosol mixing state

To measure aerosol mixing state experimentally, ambient measurements of indi-
vidual particles are typically combined to define the properties of the overall popu-
lation. Thus, it is important to understand the available instrumental methods and
how they can contribute population-level information on aerosol properties to deter-
mine the overall mixing state of an aerosol. Measurements of particle properties that
can be related to an aerosol’s mixing state predate the term “mixing state”, such as
morphology (e.g., asbestos fibers), optical properties (e.g., different colors of smoke or
smog), and water uptake (e.g., haze). The type of information obtained from single
particle measurements (Figure 4) can be roughly grouped into three categories: ele-
mental or oxidation state, functional groups, and molecular composition. Instruments
that generally provide this information are electron/X-ray microscopy (elemental or
oxidation state), vibrational spectroscopy (functional groups), and mass spectrometry
(molecular composition).

Further detail is provided in Tables 1–3, which list specific instrument types (see
Table 9 for a list of abbreviations). These tables list important instrument character-
istics, including the type of information measured, whether the analysis is conducted
at ambient pressure or under vacuum, the coverage of atmospheric species, the level
of chemical detail, the level of quantification, whether spatial distributions of species
within a particle are mapped, and the number of particles typically analyzed in a day,
to give a rough sense of particle statistics). The atmospheric size range measured by
each instrument is also listed. These ranges do not necessarily indicate the absolute
lower limit of the instrument, but rather the range commonly used in aerosol studies.
For some instruments, for example, the online field-based instruments, the upper limit
is often dictated by the sampling of aerosol to the instrument or the inlet when an
aerodynamic lens is used, with coarse particles being more difficult to sample. An
upper limit of 2.0 µm is listed for instruments using an aerodynamic lens, though each
lens will have a different upper limit. For offline analyses, even though coarse parti-
cles are sampled, they can present other challenges related to charging and spreading.
Finally, Tables 1–3 also list the potential of each instrument to calculate the mixing
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state index χ (Sections 5.1 and 5.2), which requires per-particle species masses to be
measured.

To compare the methods in the context of species covered and chemical detail,
as shown in Figure 5, the methods in Tables 1–3 are grouped on the basis of whether
they provide per-particle information about an aerosol or ensemble average (i.e., bulk)
information. To provide a historical perspective on mixing state measurement tech-
niques, notable advances in aerosol particle characterization related to mixing state
are highlighted in Figure 6. A category of instrumentation discussed later (Sections 6.2
and 6.3) are measurements that relate to mixing state indirectly, such as CCN counters,
but which are included in the figures to relate to the chemical measurements.

3.1 Electron microscopy and X-ray spectroscopy

Electron microscopy has been used for over 50 years to study individual atmo-
spheric particles [Heard and Wiffen, 1969; Larner , 1964] and its application to aerosols
has increased in recent years [Ault and Axson, 2017]. See Table 1 for an overview of
microscopy instruments. For both scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM) an electron beam is directed at a sample, typically a
substrate where particles have been collected by inertial impaction, and the interaction
of the electrons with particles produces an image. The electron beam sensitivity of
many submicron aerosol components has traditionally led to SEM being applied to par-
ticles greater than 0.1 µm, while higher resolution TEM has often been used to probe
particles down to ∼20 nm [Ault et al., 2013b; Prather et al., 2013; Utsunomiya et al.,
2004]. Certain detectors used in electron microscopy provide contrast as a function of
atomic number (Z) or Z2, such that heavier elements appear brighter. These include
backscattered electron detectors (BSE) or high angle annular dark field (HAADF)
detectors used during scanning transmission electron microscopy (STEM). These can
give an indication of compositional variability, but do not provide quantifiable data
for mixing state analysis. Electron microscopy has also been used for morphological
analysis of aerosol particles (e.g., soot) and particles taken up into precipitation (rain
water or snow) [Adachi et al., 2007; Axson et al., 2014; Creamean et al., 2016; Katri-
nak et al., 1993; Pósfai et al., 2003]. A traditional limitation of SEM and TEM has
been the high vacuum in which samples are analyzed, leading to losses of semi-volatile
materials. However, recent work has moved towards analyzing even delicate aerosol
particles, such as liquid-liquid phase separations and intact cells, closer to their native
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condition via environmental SEM (ESEM), environmental TEM (E-TEM) and cryo-
TEM [Laskin et al., 2005; Patterson et al., 2016; Semeniuk et al., 2007; Veghte et al.,
2013, 2014; Wise et al., 2007].

Decomposition due to the electron beam and X-ray diffraction were some of the
first approaches used to infer composition [Heard and Wiffen, 1969; Larner , 1964].
Subsequent work gave some of the first examples of particle-to-particle variability and
direct evidence that ambient aerosols are not a pure internal mixture. For example,
the thin film vapor method, which exposed samples to vapors such as copper, barium
(II) chloride, benzidine, or silver nitrate prior to analysis, enabled detection of a range
of compounds at the individual particle level, such as sulfuric acid, sulfates, nitrates,
persulfates, and halides, as reported by Bigg et al. [1974] for ambient particles and
by Mamane and De Pena [1978] for laboratory-generated standard particles. Early
applications of coupling electron microscopy with X-ray spectroscopy for elemental
analysis included fly ash particles from coal-fired power plant plumes and particles
collected in Antarctica [Parungo et al., 1979, 1978]. The analysis of X-rays emitted
from samples during electron microscopy is referred to by many different names, in-
cluding energy dispersive X-ray spectroscopy (EDX), energy dispersive spectroscopy
(EDS), X-ray energy dispersive spectroscopy (XEDS), and energy dispersive X-ray
microanalysis (EDXMA), but will be referred to EDX throughout this paper for con-
sistency. It is the most common chemical analysis associated with electron microscopy,
as EDX can analyze all elements heavier than beryllium (Z = 4) and is well-suited to
higher-Z elements, such as heavy metals. EDX provides atomic percentages for specific
elements and can be used for whole-particle characterization or to map elements spa-
tially within an individual particle. To obtain sufficient statistics, computer-controlled
automation of SEM (CCSEM) was developed and has been applied with EDX analysis
for source apportionment modeling of specific aerosol particle types [Allen et al., 2015;
Ault et al., 2012; Bondy et al., 2018; Casuccio et al., 1983, 2004].

Electron energy loss spectroscopy (EELS) is often coupled with TEM analysis
(though not with SEM). EELS detects inelastically scattered electrons, rather than
X-rays, and, compared to EDX, provides better measurements of certain low-Z ele-
ments, as well as chemical bonding information [Fletcher et al., 2011; Conny et al.,
2014; Laskin et al., 2016; Ault and Axson, 2017]. A limitation of EELS is that it can
only be applied to elements that have an electronic transition in the appropriate energy
window, such as the Carbon 1s (a.k.a. K-edge) transition, as opposed to EDX which
is more universal. When a specific energy window with an EELS spectrum is mapped,
this is referred to as energy filtered TEM (EF-TEM), which has been applied to map
the chemical composition of marine, organic, dust, and metal-containing particles [De-
boudt et al., 2010, 2012; Ault et al., 2013b]. Since both EDX and EF-TEM can be used
to determine the distribution of chemical elements within particles through mapping,
they have the potential to be used to help determine physicochemical mixing state.

A method that provides more detailed electronic structure and bonding infor-
mation than EELS is scanning transmission X-ray microscopy with near edge X-ray
absorption fine structure spectroscopy (STXM-NEXAFS). A highly energy-resolved
X-ray beam, typically at a light source such as the advanced light source (ALS) at
Lawrence Berkeley National Laboratory, is focused into a beam and used to analyze
samples on a TEM grid [Moffet et al., 2010]. STXM-NEXAFS is based on absorp-
tion using a Beer’s Law relationship, which can be used to analyze many electronic
states, such as the Carbon 1s (K-edge), Nitrogen 1s (K-edge), or Sulfur 2p (L-edge).
STXM-NEXAFS was first applied to aerosol particle analysis in the early 2000s [Maria
et al., 2003; Russell et al., 2002] and has been automated to generate the data needed
for mixing state analysis [Moffet et al., 2010]. While only elements whose energies
fall within the available window of the light sources can be probed, STXM-NEXAFS
has been used to analyze a range of sources, including sea spray aerosol [Ault et al.,
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2013b; Kirpes et al., 2018], biomass burning [Fraund et al., 2017] secondary organic
aerosol [Takahama et al., 2007], and soot [Moffet et al., 2013]. For higher-Z elements
(e.g., metals) X-ray absorption near edge spectroscopy (XANES) is also available at
some synchrotrons [De Santiago et al., 2014; Oakes et al., 2012]. Single particle imag-
ing using diffraction from a synchrotron X-ray beam has also been coupled with single
particle mass spectrometry [Bogan et al., 2010; Loh et al., 2012].

When considering methods that have the potential to inform future physico-
chemical mixing state metrics, surface-specific measurements may be useful. X-ray
photoelectron spectroscopy (XPS) is a surface specific technique, using a monochro-
matic x-ray beam to measure the energy of ejected electrons from the surface (due to
the short mean free path of electrons versus photons). XPS probes electronic tran-
sitions, providing oxidation state and bonding information similar to EELS (less res-
olution than STXM-NEXAFS), but typically only provides ensemble information for
bulk samples [Baltrusaitis et al., 2009; Song and Peng , 2009]. XPS has been applied
to provide carbonaceous aerosol signatures for the identification of soot sources [Van-
der Wal et al., 2011]. XPS has also been used to monitor heterogeneous reactions of
sea spray aerosol with nitric acid [Ault et al., 2014]. Through XPS analysis, distinct
elemental and oxidation states at particle surfaces have been observed to vary as a
function of particle size [Guascito et al., 2015; Xu et al., 2016].

Hundreds of studies using electron microscopy and X-ray spectroscopy methods
to investigate aerosol particles have been published over the years, ranging from stud-
ies characterizing the constituents of specific types of aerosol, such as marine, mineral,
dust, and biomass [Pósfai et al., 1994, 2003; Buseck and Pósfai , 1999; Li et al., 2003]
to those focused specifically on characterizing per-particle composition and morphol-
ogy [Pósfai et al., 1999; Deboudt et al., 2010], phase transitions [Wise et al., 2005], hy-
groscopic behavior [Okada, 1985; Semeniuk et al., 2007], phase separation [Ault et al.,
2013a; Freedman, 2017; Losey et al., 2016; O’Brien et al., 2015; You et al., 2012], and
other important aerosol physicochemical properties that impact mixing state. How-
ever, only in the past few years have these methods begun to be used to quantify
aerosol mixing state, the examples of which are discussed later in Section 5.2.

3.2 Vibrational spectroscopy and optical methods

Vibrational spectroscopy techniques use light to excite and detect vibrational
modes, allowing for analysis of specific covalently-bonded molecules (e.g., sulfate, ni-
trate, and ammonium), as well as characterization of functional groups within complex
organic material [Ault and Axson, 2017; Lee and Allen, 2012; Murphy et al., 2014].
This is useful when attempting to measure an aerosol’s mixing state as many species
of interest cannot be differentiated solely based on elemental information, such as for
nitrogen where ammonium, nitrate, and N-containing organic molecules (e.g., amines)
all occur in aerosols. See Table 2 for an overview of instruments based on these analysis
techniques. Infrared spectroscopy (IR), specifically Fourier transform IR (FTIR) has
been used to obtain ensemble average data from bulk samples or large particles since
the early 2000s, when Maria et al. [2002] characterized mixing of African mineral dust
and organic compounds in aerosol samples collected in the Caribbean. However, the
lack of individual particle data limited its application to mixing state. Micro-FTIR,
where an IR spectrometer is coupled to an optical microscope has been used mostly to
study > 5 µm particles. For example, micro-FTIR has been used to study keto-enol
tautomerism and hygroscopic properties of mixed salt and organic particles [Ghorai
et al., 2011, 2014; Liu et al., 2008]. A key limitation for FTIR and mixing state is
that the spatial resolution is low due to the long wavelengths of IR radiation and
the diffraction limit at those wavelengths. Additionally, the spatial resolution changes
with wavelength, causing different resolutions across a spectrum (unlike Raman, dis-
cussed below). Thus, FTIR has traditionally been limited in its ability to study aerosol
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mixing state through measurements of individual particles at atmospherically-relevant
sizes. One approach to gain more detailed information from IR spectroscopy has been
to couple energy probe X-ray microanalysis (EPMA) with attenuated total reflectance
FTIR (ATR-FTIR). EPMA is similar to EDX, but has improved capabilities for lower
atomic number elements. Multiple studies have shown that IR spectra for particles
down to ∼1 µm can be obtained using these techniques [Jung et al., 2014; Ryu and
Ro, 2009; Song et al., 2010].

Another vibrational spectroscopy technique, Raman microspectroscopy, has been
used with increasing frequency since the early 2000s for single aerosol particle anal-
ysis. In contrast to IR, Raman spectroscopy uses a single wavelength, often in the
visible range, resulting in higher spatial resolution and a lower particle size limit of
∼0.8 µm [Ault and Axson, 2017]. Single particle data from Raman spectroscopy has
been used to characterize mixing of species within individual sea spray aerosol [Ault
et al., 2013c; Deng et al., 2014; Ebben et al., 2013; Laskina et al., 2015], mineral dust
[Laskina et al., 2013; Sobanska et al., 2012], organic particles [Gaffney et al., 2015],
along with ambient samples [Baustian et al., 2012; Craig et al., 2017a]. Unlike electron
microscopy, Raman analysis is conducted at atmospheric temperature and pressure
and, as such, has been used to probe challenging properties impacted by semi-volatile
(e.g., water) loss under vacuum, such as aerosol acidity [Bondy et al., 2017a; Craig
et al., 2017b; Rindelaub et al., 2016]. Similar to CCSEM, a few automated methods
for Raman analysis have been developed and used to characterize chemical composi-
tion of both laboratory-generated and ambient aerosol particles, including computer
controlled-Raman (CC-Raman) [Craig et al., 2017a] and the automated aerosol Ra-
man spectrometer [Doughty and Hill , 2017].

To probe smaller particles and improve the potential for Raman spectroscopic
analysis of inter- and intraparticle variation, applications of surface-enhanced Raman
spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) to the study of
aerosols have recently been developed. A SERS method using particles deposited
on nanoparticle-coated substrates to enhance the Raman signal was introduced by
Craig et al. [2015], followed by several variations, such as electrospray SERS (ES-
SERS) and surfaced enhanced resonance Raman spectroscopy (SERRS) [Craig et al.,
2015; Gen and Chan, 2017; Sivaprakasam et al., 2017]. TERS uses an atomic force
microscope (AFM) tip with a noble metal (e.g., silver) nanoparticle tip to generate
enhanced Raman spectra. TERS was first used for aerosol particle analysis by Ofner
et al. [2016] to study the chemical composition of SOA particles during formation and
photochemical aging.

AFM, mentioned above, can provide information regarding particle size, phase,
and height with nanoscale spatial resolution for aerosol particles larger than ∼10 nm
by the use of an oscillating cantilever whose tip interacts with the surface of a material
(i.e., a particle). Early applications of AFM were to study water loss [Pósfai et al.,
1998] and classify aerosol particles as organic, graphitic, or inorganic, as well as obtain
size distributions [Lehmpuhl et al., 1999]. Since then, AFM has been used, most often
in tandem with other analysis techniques, to characterize aerosol mixing state in urban
and marine-influenced urban environments [Vester et al., 2007; Sobanska et al., 2014],
as well as during Chinese wintertime haze events [Chen et al., 2017a]. More recently,
AFM studies have incorporated more detailed analysis of specific properties, such as
surface tension [Lee et al., 2017a,b] and hygroscopicity [Ghorai et al., 2014; Morris
et al., 2016]. An exciting advancement for AFM has been coupling with a scanning IR
laser to conduct photothermal IR spectroscopy [Bondy et al., 2017b; Kwon et al., 2018;
Or et al., 2018]. The operating principle of AFM-IR is that when the tunable IR laser
interacts with the sample at a frequency where it absorbs, the sample expands slightly
causing the oscillation of the cantilever to change, and that signal can be converted
back to an IR spectrum. This has been used for particles down to 90 nm [Bondy
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et al., 2017b; Or et al., 2018], which were previously inaccessible to IR spectroscopic
analysis. The incorporation of IR spectra with AFM have increased the potential for
more detailed direct characterization of mixing state via AFM analysis.

As with the XPS above, surface-selective spectroscopies have also been applied
to aerosol particles, typically for ensemble averages. Sum frequency generation (SFG)
uses two lasers to probe non-centrosymmetric vibrations, which occur at interfaces.
As with other vibrational spectroscopies (and unlike XPS), SFG is conducted at at-
mospheric pressure and temperature. SFG has been used to probe both laboratory
standards and model systems [Jubb et al., 2012; Tang et al., 2010; Xu et al., 2009], as
well as field samples [Ault et al., 2013c; Ebben et al., 2013, 2011, 2012, 2014], providing
information on properties such as chirality [Martinez et al., 2011]. A recent advance
has been the application of sum harmonic generation (SHG) to suspended aerosols,
where a surface selective dye was probed [Wu et al., 2016]. When considering the im-
portance of surface properties, further advancement of methods that are truly surface
selective has the potential to assist with physicochemical mixing state determination.

It should be noted that optical trapping and tweezing coupled with vibrational
spectroscopy techniques have also been used for more detailed characterization of the
chemical and physical properties of single aerosol droplets during dynamic multiphase
processes [Bzdek et al., 2016; David et al., 2015, 2016; Davies and Wilson, 2016; Sul-
livan et al., 2018], such as coagulation and uptake of water or organics [Hopkins et al.,
2004; Mitchem et al., 2006]. With our focus on building a population-level under-
standing of atmospheric particles, these methods are beyond the scope of this review,
though they are providing valuable information towards understanding physicochem-
ical properties of individual particles.

Methods focusing on specific sub-populations, such as soot and bioaerosols, have
seen expanded usage in recent years. The single particle soot photometer (SP2) is
used to study individual soot particles [Gao et al., 2007], but has been expanded to
other absorbing aerosol [Adachi et al., 2016]. Briefly, it measures incandescence after
particle absorption in two wavelength ranges (350–800 nm and 630–800 nm). The has
been used to study coatings on soot particles [Sedlacek et al., 2012; Taylor et al., 2015],
impacts on morphology [Sedlacek et al., 2015], and water uptake [Hersey et al., 2013].
Following a similar principle, an additional approach to soot particles has been the
soot particle aerosol mass spectrometer (SP-AMS) [Onasch et al., 2012]. Fluorescence
spectroscopy is increasingly being used for bioaerosol detection, an early version of
which was the ultraviolet aerodynamic particle sizer (UV-APS) [Kanaani et al., 2007].
Newer methods, including the wide issue bioaerosol spectrometer (WIBS) and a cellular
phone attachment have been used to measure ultraviolet light induced fluorescence for
the detection of biological aerosols [Gabey et al., 2010; Huffman et al., 2016]. Though
chemical speciation is limited in comparison to other spectroscopy methods, studies
have shown regional, seasonal, and diurnal variation in primary biological aerosol
particles (PBAPs), and thus also variation in aerosol mixing state [Gabey et al., 2010;
Toprak and Schnaiter , 2013; Perring et al., 2015]. Fluorescence microscopy has also
been used to detect aerosols emitted from harmful algal blooms (HABs) [May et al.,
2018a].

The use of spectroscopic methods to probe individual aerosols, ensemble aver-
ages, surface properties, and other properties important for mixing state has expanded
considerably in the past decade. Their continued development will provide meaning-
ful information, often at room temperature and ambient pressure for use in aerosol
mixing state calculations and modeling of aerosol behavior sensitive to pressure and
temperature, such as liquid liquid phase separations [Pye et al., 2017].
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3.3 Mass spectrometry methods

The use of mass spectrometry to probe aerosols has revolutionized the under-
standing of aerosol chemical composition through a wide array of instruments cou-
pling a range of ionization sources and mass analyzers, which, as mentioned above,
have been the subject of numerous insightful reviews [Laskin et al., 2018, 2013; No-
ble and Prather , 2000; Pratt and Prather , 2012a,b; Suess and Prather , 1999; Sullivan
and Prather , 2005]. For this review, we focus on single particle mass spectrometers
(SPMSs), which provide individual particle size and chemical composition in real-time.
With respect to composition, SPMSs measure most species, though due to the how
ions are generated species can be fragmented or not ionized well, leading to medium
chemical detail. SPMS data has significant potential for mixing state calculations, as
SPMSs can analyze a large number of particles, providing higher temporal resolution
than microscopy (Section 3.1). See Table 3 for an overview of mass spectrometry
instruments.

The first real-time single particle mass spectrometers (SPMSs) were developed in
the 1970s when particles were introduced into vacuum and collected on a filament, af-
ter which the particle was vaporized and either a magnetic sector or a quadrupole mass
analyzer was used [Davis, 1973; Myers and Fite, 1975]. These methods relied initially
on the intensity of the ion signal for sizing and were stationary, thus suitable only for
laboratory studies. In the 1980s two key steps forward were the introduction of aero-
dynamic sizing and laser desorption ionization (LDI) to a SMPS [Sinha et al., 1982].
The 1990s saw a rapid expansion in the development and use of real-time SPMS, with
the development of rapid single particle mass spectrometry (RSMS) [Carson et al.,
1995], particle analysis by laser mass spectrometry (PALMS) [McKeown et al., 1991],
aerosol time-of-flight mass spectrometry (ATOFMS) [Nordmeyer and Prather , 1994;
Prather et al., 1994], laser mass analysis of particles in the airborne state (LAMPAS)
[Hinz et al., 1994]. Key advancements included the use time-of-flight mass analyzers
[McKeown et al., 1991], coupling time-of-flight sizing with time-of-flight mass spec-
trometry [Prather et al., 1994] and dual polarity mass spectra for individual particles
[Gard et al., 1997; Hinz et al., 1996]. During the 1990s SPMS left the laboratory for
ambient sampling with field deployable instruments [Gard et al., 1997] and a flight
capable instrument being developed [Murphy et al., 1998b]. These field-deployable
instruments have provided single particle size and chemical composition for a wide
range of locations globally [Dall’Osto et al., 2010; Fitzgerald et al., 2015; Guazzotti
et al., 2001a; Murphy et al., 1998c]. Additional developments with relevance to mix-
ing state have included coupling to optical properties [Moffet and Prather , 2009, 2005]
and two-step laser desorption followed by ionization to increase reproducibility of mass
spectra [Morrical et al., 1998; Zelenyuk et al., 2009].

More recently developed SPMSs include the single particle laser ablation time-of-
flight mass spectrometer (SPLAT) [Zelenyuk and Imre, 2005; Zelenyuk et al., 2008a],
Aircraft-based Laser Ablation Mass Spectrometer (ALABAMA) [Brands et al., 2011],
nanoaearosol mass spectrometer (NAMS) [Wang et al., 2006], and light scattering soot
particle AMS (LS-SP-AMS). Given that there are so many different SPMSs it is not
feasible to discuss the details of each instrument, but Murphy [2007] provides a useful
discussion of the instrumental design choices for SPMSs and Pratt and Prather [2012a]
provide a useful review of instruments and capabilities. In Table 3, these methods are
listed together, but each has its own unique capabilities.

In addition, offline analysis of single particles has been conducted with laser
microprobe mass spectrometry (LMMS, LAMMS, or LAMMA) and secondary ion
mass spectrometry [Kaufmann, 1986; Klaus, 1986; Verbueken et al., 1985; Wieser and
Wurster , 1986], though this has decreased in recent years. More recently, time-of-
flight secondary ion mass spectrometry (TOF-SIMS) has been coupled used for in-
dividual particle analysis [Boman et al., 2004; Tervahattu et al., 2002] and coupled
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with many of the electron microscopy and spectroscopy methods listed above [Hop-
kins et al., 2008]. The more recently developed NanoSIMS has also been applied to
atmospheric particles [Pöhlker et al., 2012; Pöschl et al., 2010].

As listed in Table 3, mass spectrometry provides information on the molecular
species and fragments present, but the degree of fragmentation varies widely depending
on the method of ionization and amount of energy input into the molecule. Some rely
on the fragmentation patterns for quantification (e.g., SP-AMS and PALMS), while
others try and minimize fragmentation to observe higher mass-to-charge peaks that
provide more information on the molecules present. Even for two methods using the
same ionization approach, such as laser desorption ionization (LDI), PALMS uses a
193 nm laser that has more energy per photon and leads to greater fragmentation
than the 266 nm laser used by the ATOFMS. In addition, some instruments can use
two-step desorption ionization, which is considerably softer than a single higher energy
laser pulse for LDI. Thus, although Table 3 lists the “measures” column as “molecules
and fragments”, there is great heterogeneity in terms of what each instrument provides.

It is also important to note that, while mass spectrometers conduct the chemical
analysis under vacuum (10−6 to 10−8 Torr), the analysis is typically very rapid (< 1
ms) and occurs before particles equilibrate to the vacuum conditions. In addition, siz-
ing is typically being conducted at higher pressures, so the particles do not experience
high vacuum for very long.

For mixing state the central appeal of mass spectrometers analyzing single par-
ticles is that they measure the size of and chemical species in individual particles. In
addition, they typically have much higher throughput than the electron/X-ray and
vibrational methods above (Sections 3.1 and 3.2), thus generating greater particle
statistics and facilitating a more detailed understanding of the overall particle popu-
lation in the atmospheric aerosol. The challenges with SPMSs is that most rely on
LDI, which makes determining exact mass fractions at the single particle level chal-
lenging due to shot-to-shot variability. However, no other approach can provide as
much single particle data over a comparable time period, making efforts to overcome
the complexity of the data worth pursuing.

3.4 Defining particle types for chemical and physicochemical mixing state

3.4.1 Identifying particle types

Using aerosol particle types as a mechanism for thinking about certain subpopu-
lations is useful as it provides a simplification that can make classifying aerosols from
different sources or that have undergone similar atmospheric aging more manageable.
As an example, in Figure 2 over the urban area the sources of particles, such as min-
eral dust, soot/elemental carbon, primary organic carbon, secondary organic carbon,
and metals-rich particles from industry are often referred to as particle types. This
manner of thinking about aerosol particles is useful for trying to determine the sources
of particles that lead to overall particulate matter (PM) concentrations (e.g., source
apportionment) or the number concentrations of cloud-activating particles (e.g., CCN
or INP).

However, there is not a standard definition of particle types. The challenge of
defining the properties of a particle type results from the fact that it is not as simple
as knowing the source of a particle, since secondary aerosol can form and secondary
species can mix at the individual particle level with particles from different sources.
In source apportionment this is often treated by including a secondary organic aerosol
class in addition to all of the primary sources. However, this does not account for the
fact that particles from the same source often have a range of compositions and have
undergone varying degrees of atmospheric aging, making aging not uniform across all
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particles in a population. To build on the Figure 2 example above, consider a soot
particle emitted from a diesel vehicle’s tailpipe. Initially, the “fresh soot” particle may
be a fractal aggregate with a low mass fraction of secondary species (e.g., sulfate), and
hydrophobic (i.e., a poor CCN). However, over the course of its atmospheric lifetime
that particle may take up secondary species, collapse into a nearly spherical core, and
have a coating of soluble, hygroscopic species form on it (e.g., ammonium sulfate). The
question becomes, is the now “aged soot” particle part of the same particle type as
the “fresh soot”? Both are from the same source, but in terms of their optical (fractal
versus core-shell) and cloud nucleating (hydrophobic versus hygroscopic) properties
they are different.

One approach to handling subpopulation variability is to have distinct subpopu-
lations (e.g., fresh soot and aged soot). However, then a cutoff in time, mass fraction,
or morphology must be established to determine when a fresh particle transitions to
an aged particle [Riemer et al., 2010]. This is somewhat arbitrary as the reality is
more likely a continuum between fresh and aged. Finding a balance between having
a manageable number of particle types, while representing the range of composition
and climate-relevant properties, requires making these types of decisions. This ex-
ample illustrates that even within a single subpopulation or particle type connecting
back to the climate (or health) relevant properties of a subpopulation can necessitate
characterizing the mixing state within a subpopulation.

Having established that there are multiple particle types and that there is vari-
ability within these types, it is important to understand how measurements and models
handle these subpopulations, specifically through particle types. For measurements,
single particle data is often sorted, typically using clustering algorithms, into different
particle types based on mathematical comparisons of the individual particle composi-
tion (or other properties). The types produced from this can be broken down at differ-
ing levels of chemical detail from a broad level (soot, organic carbon, biomass burning,
dust, sea salt, industrial) to a more detailed level (cars versus trucks, metal-containing
particles from different industrial sources, biomass burning enriched in sulfate versus
nitrate, bloom versus non-bloom sea spray aerosol) depending on the scientific ques-
tions being addressed. Section 3.4.2 will discuss some of the methods, including clus-
tering, used to classify individual particle properties into particle types. Section 4.3.3
will discuss how modal models define and handle particles types. As with snowflakes,
each particle is unique and the number of subpopulations, how they are distinguished,
and the degree to which heterogeneity is accounted for is important when evaluating
the impacts of aerosol mixing state.

3.4.2 Clustering and classification approaches for single particle spec-
tra

For ambient measurements of single particles, early classification approaches were
developed for computer controlled scanning electron microscopy coupled with energy
dispersive X-ray spectroscopy (CCSEM-EDX) and typically relied upon user defined
rules that determined which category a particle was assigned to [Casuccio et al., 1983;
Kim et al., 1987]. These data sets often had data for hundreds to thousands of particles
for ∼15–30 elements, data volumes that could still be spot-checked manually. The
development of field deployable real-time single particle mass spectrometry [Hinz et al.,
1994; McKeown et al., 1991; Prather et al., 1994] resulted in more complicated spectra
(hundreds of mass-to-charge, m/z, values per spectrum). These mass spectrometers
also led to increases in data volumes with data sets initially on the order of tens of
thousands of particles, which now are often on the order of millions to tens of millions
of particles. These advancements meant that rules-based classification was no longer
practical for characterizing the volume and breadth of data being generated. Early
on, traditional analytical classification was used, such as principal component analysis
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[Hinz et al., 1996], but the unique nature of single particle data led to the development
of more specialized approaches.

Song et al. [1999a] first applied a neural network approach to classifying single
particle spectra using adaptive resonance theory 2a (ART-2a). The following is a brief
description of the application of ART2a to single particle data from an ATOFMS to
illustrate how clustering is utilized, but each mass spectrometer described above has
its own slightly different approach to cluster analysis. Each mass spectrum from an
ATOFMS is discretized, providing a vector, typically of 350 values for a mass range
of 1–350 m/z or 700 values for dual polarity spectra (both positive and negative
ions) at unit mass resolution (one m/z), though higher m/z can be used [Pratt et al.,
2009a]. An initial set of cluster centroids are chosen randomly from single particles
within the data set and the remaining single particle mass spectra are compared to
the cluster centers to determine if there were similar enough to be included in that
cluster, mathematically known as the vigilance factor [Anderson et al., 2005; Rebotier
and Prather , 2007; Song et al., 1999b]. If a particle did not fit into any cluster, it is
placed in its own cluster. After all particles are either placed in a cluster or a new
cluster is defined, new cluster centroids are determined based on the average spectra
within a cluster. The amount the cluster centroid could move after an iteration through
the assignment process is the learning rate. After generating new cluster centroids,
the assignment process repeats and all particles are assigned to the new centroids.
Clusters can merge or split during this process. The analysis typically involves 20
iterations to reach stable cluster assignments, though could be varied depending on
data set properties. The final product is typically a large number of clusters, with most
particles (80–90%) in the most populated clusters (typically < 50) and a large number
of small clusters with few particles. Data is typically presented for the most abundant
clusters using a threshold, such as 90%, based on the diversity of mass spectra in a
data set.

Building on this clustering approach, Bhave et al. [2001] used ART-2a cluster
analysis results for source apportionment. Additionally, an approach using spectra
from specific sources as “seeds” and then matching the ambient spectra to those seeds
has been used for ambient source apportionment [Toner et al., 2008], distinguishing
cars from trucks (i.e., light duty vehicles from heavy duty diesel vehicles) [Shields
et al., 2007; Song et al., 2001], and other source-specific applications [Ault et al., 2009;
Fitzgerald et al., 2015; Pratt et al., 2009b; Qin and Prather , 2006]. Seed matching has
also been implemented for on-the-fly source apportionment [Pratt et al., 2009a].

Additional clustering algorithms have been tested for single particle mass spec-
tral classification, including k-means and k-medians [Anderson et al., 2005; Rebotier
and Prather , 2007], as well as hierarchical approaches [Rebotier and Prather , 2007].
The key difference for the k-means and k-medians algorithms is that instead of two
user-defined variables (vigilance factor and learning rate), the number of clusters is the
sole variable defined at the beginning of the clustering process. The typical manner
for checking the efficacy of a specific number of clusters is to use different numbers
of clusters and compare the difference between all particles and their cluster centroid
with the distance between all particles and the population (overall) cluster centroid
(effectively the centroid if there is only one cluster). This value decreases with more
clusters approaching an asymptote and the optimal number of clusters can be deter-
mined based on how many it takes to approach that asymptote [Gross et al., 2010].
Either ART2a or k-means/k-medians can be effective if applied correctly, though each
have their strengths and weaknesses. Multiple studies have expanded upon or further
tested clustering of single particle mass spectrometry data, such as ClusterSculptor by
Zelenyuk et al. [2008b].

In addition to single particle mass spectra, other single particle analysis methods
such as CCSEM-EDX have used the single particle clustering algorithms described
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above, particularly k-means. Ault et al. [2012] took the single particle mass spec-
trometry clustering approach and applied it to atomic percentages from EDX and
used it to cluster CCSEM-EDX data sets [Ault et al., 2012; Shen et al., 2016]. There
have been an increasing number of ambient studies with CCSEM-EDX spectra [Ault
et al., 2013b; Axson et al., 2016a,b; Bondy et al., 2018, 2017c; Coz et al., 2010, 2009;
Creamean et al., 2016; Kirpes et al., 2018; May et al., 2018b; Shen et al., 2016], which
has also led to source EDX spectra from a range of studies that could be used as seeds
for matching in the future, analogously to the ATOFMS matching above.

The increased use of Raman microspectroscopy spectra has also led to spec-
tral classification approaches. Craig et al. [2017a] used computer-controlled Raman
microspectroscopy (CC-Raman) to increase throughput and collect hundreds to thou-
sands of spectra, after which hierarchical clustering algorithms were applied to group
spectra by aerosol particle type. Cochran et al. [2017] recently developed a library of
Raman spectra and an approach to look at linear combinations using chi-squared anal-
ysis. This has recently been applied in the Arctic to look at chemical mixing state with
respect to the distribution of sulfate across an particle population, where Kirpes et al.
[2018] found that sulfate is mixed with other species (e.g., sources) across the pop-
ulation and not present as externally population sulfate particles within the aerosol.
Other methods for classifying single particle spectra from different instrumentation
have also been developed [Doughty and Hill , 2017].

3.4.3 Field observations of particle types

Having defined the measurement techniques used to study mixing state, it is use-
ful to briefly discuss what is known about aerosol mixing state in different environments
and locations. With over 2,000 publications on aerosol mixing state it is not practical
to cover all of the literature on the topics, but examples are provided, as are useful
reviews. Going back to the concept of particle types defined in Section 3.4.1, mixing
state is often discussed in terms of the major sources of aerosols within a population.
Common particle types are mostly primary (soot, organic carbon, biomass burning,
mineral dust, sea salt, industrial) [Andreae and Rosenfeld , 2008; Prather et al., 2008].
The exception of SOA, which is commonly present along with ammonium, sulfate, and
nitrate in secondary particles. Typically, accumulation mode particles (80–1,000 nm)
are a mix of combustion particles and secondary particles with a mixture of SOA and
secondary inorganic species (sulfate, nitrate, and ammonium) [Qin et al., 2012]. Par-
ticles larger than 1,000 nm are typically dominated by mechanically generated particle
types, such as mineral dust and sea salt.

Studies characterizing specific sources have long been carried out to under-
stand particle type properties at the point of emission, including light duty vehi-
cles (e.g., cars) [Sodeman et al., 2005; Toner et al., 2008], heavy duty diesel vehi-
cles (e.g., trucks) [Gross et al., 2000; Shields et al., 2007; Toner et al., 2008], ship
emissions [Ault et al., 2010, 2009], biomass burning [Pratt and Prather , 2010; Silva
et al., 1999], industrial processes [Dall’Osto et al., 2012], sea spray aerosol [Ault et al.,
2013b; Frossard et al., 2014; Hawkins and Russell , 2010; Prather et al., 2013], lake
spray aerosol [Axson et al., 2016a; May et al., 2016, 2018b,a], mineral dust [Guazzotti
et al., 2001a; Murphy and Thomson, 1997; Silva et al., 2000], fireworks [Liu et al.,
1997], grass mowing [Drewnick et al., 2008], and many more. Single particle source
characterization approaches are not limited to primary sources either and has been used
to probe SOA [Middlebrook et al., 2003], amines [Pratt et al., 2009b], oxalic acid [Sul-
livan and Prather , 2007], oligomers [Denkenberger et al., 2007], organosulfates [Hatch
et al., 2011a,b], methanesulfonate [Gaston et al., 2010], hydroxymethanesulfonate [Whiteaker
and Prather , 2003], sulfate [Kirpes et al., 2018; Lake et al., 2004], and secondary chlo-
ride [Sullivan et al., 2007b] as a few examples. A challenge when defining primary
sources and mixing state is that in heavily aged areas a particle may have a 100 nm

–24–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

core from a primary sources (e.g., soot) with 500 nm coating of sulfate and SOA. It
is challenging to define whether this is a primary or secondary particle. Pratt and
Prather [2009] studied this through the use of a thermal denuder, which revealed
primary cores at the center of many particles heavily coated with secondary material.

Beyond analyzing the single-particle properties associated with specific sources,
it is valuable to understand how atmospheric aging changes the mixing state of spe-
cific subpopulations. Mixing state studies focused on specific particle types have in-
cluded soot [Adachi et al., 2010; Jacobson, 2001; Moffet and Prather , 2009; Pósfai
et al., 2003; Riemer et al., 2009; Schwarz et al., 2008; Zhang et al., 2008], biomass
burning [Bi et al., 2011; Healy et al., 2013; Moffet et al., 2008; Pósfai et al., 2003;
Spencer et al., 2008], sea spray aerosol [Ault et al., 2009; Gard et al., 1998; Guazzotti
et al., 2001a,b], and mineral dust [Deboudt et al., 2010; Fitzgerald et al., 2015; Geng
et al., 2014; Li et al., 2016; Sobanska et al., 2012; Sullivan et al., 2007a] to name a few.

It is important to characterize the mixing state of particle populations at spe-
cific locations or in different environments. Example studies have probed mixing
state in urban [Qin et al., 2012; Reinard et al., 2007; Toner et al., 2008], marine [Ault
et al., 2009; Decesari et al., 2011; Furutani et al., 2008; Guazzotti et al., 2001b; Mur-
phy et al., 1998a; Spencer et al., 2008], forested [Creamean et al., 2011; Gunsch et al.,
2018], rural [Bondy et al., 2018; Whiteaker et al., 2002], and Arctic locations [Gunsch
et al., 2017]. Specific studies focused on the mixing state during unique events, such as
during strong biomass burning influence [Pratt and Prather , 2010; Qin and Prather ,
2006] or dust transport [Bauer et al., 2013; Creamean et al., 2015; Fitzgerald et al.,
2015]. Beyond the mixing state at different locations, vertical variation in mixing
state is both important and understudied [Creamean et al., 2013; Hudson et al., 2004;
Murphy et al., 2006; Pratt and Prather , 2010].

To summarize, single particle studies focused on mixing state have probed sources,
the distribution secondary species, a range of types of environments, vertical distribu-
tions, and unique conditions (e.g., fires and dust transport). However, despite all of
this information about single particle composition globally, relatively few studies have
connected this single particle composition data to quantifiable mixing state metrics,
as will be discussed in Section 5.2.

4 Representation of mixing state in aerosol models

Concurrent with advances in experimental methods, our modeling tools have
been advanced over the last two decades to better capture the aerosol microphysics
processes, including the evolution of the chemical mixing state of aerosols. In this
section we will first cover the mathematical framework of aerosol composition space
(Section 4.1) and the governing equation (Section 4.2), and then describe existing
modeling approaches (Section 4.3).

4.1 Aerosol composition space

It is common to visualize and analyze aerosols in terms of number distributions or
mass distributions as a function of particle size [Seinfeld and Pandis, 2016, Chapter
8]—after all, particle size is of first-order importance for aerosol impacts on health
and climate. However, for characterizing aerosol mixing state, size distributions are
limiting, since the same size distribution can represent many different mixing states.

An aerosol particle in an population contains mass µa ≥ 0 of species a, for
a = 1, . . . , A, so that the particle composition is described by the A-dimensional com-
position vector ~µ ∈ RA. Each aerosol particle represents therefore a point in the
A-dimensional composition space. Figure 7 illustrates this concept for a particle pop-
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ulation that has a number distribution as shown in Figure 7(a), and consists of two
species (A = 2) with mass distribution as shown in Figure 7(b). Figures 7(c), (d), and
(e) show how particle samples from three possible populations populate the compo-
sition space. The composition space is in this case two-dimensional, so each particle
is represented by a vector ~µ = (µ1, µ2). The broken grey lines are lines of constant
diameter (assuming spherical particles). These populations are all consistent with the
number and mass distribution above, but they differ in their mixing state. Figures 7(c),
(d), and (e) also show corresponding pictorial representations of each population. At
this point we are only concerned with the chemical composition, so the fact that the
particles can have different shapes and structures is not represented, and the particles
are shown as generic piecharts with the size and colors representing particle size and
composition, respectively.

Figure 7(c) depicts the classic “external mixture”, where each particle only con-
tains one of the two species. In the composition space graph, the particles are arranged
along the two axes, and one of the two components of their composition vector is zero.
In contrast, Figure 7(d) shows the classic “fully internal mixture”, where each particle
contains the same mixture of species 1 and 2. These particles are therefore arranged
along a line through the origin in the composition space graph, with slope 3/2, since
the mass ratio of the two species is 3:2 in each particle. Figure 7(e) shows a state in
between, neither fully internally nor externally mixed. Such a population is more akin
ambient aerosols than the extreme cases mentioned above, and mixing state metrics
as presented in Section 5 below will help quantifying this more precisely. In reality the
composition space of an aerosol is high-dimensional, including tens or even hundreds
of different dimensions (one for each chemical species). We will see in Section 4.3 that
common aerosol modeling approaches work with low-dimensional projections of this
high-dimensional space.

Aerosol particles experience continuous transformations during their lifetime in
the atmosphere as a result of coagulation events, the condensation of secondary aerosol
material, and multiphase processes—processes that are often summarized with the
term “aerosol aging” [Rudich et al., 2007]. In other words, particles move in com-
position space due to aerosol processes acting on them. For example, if species 2 in
Figure 7 was semivolatile, we would observe the particles moving parallel to the µ2-axis
as species 2 condenses on the particles or evaporates from the particles. Hence, con-
densation and evaporation can be seen as an advection process in composition space.
In contrast, coagulation is a stochastic, discontinuous jump process that produces a
particle that will be placed according to the sum of the vector components of its par-
ent particles. In summary, aerosol mixing state is a dynamic quantity that changes
continuously as the particles’ compositions change, but also as particles are added to
the population by new particle formation, emissions or transport, or removed from the
population by dry or wet deposition. The impact of these changes on mixing state
can be quantified more precisely by the use of mixing state metrics as explained in
Section 5.

So far we have discussed composition space in the context of chemical composition—
each entry in a particle’s composition vector is the amount of a chemical species. We
can extend this concept by adding more components to the composition vector to
characterize shape and structure. Candidate quantities are the particle’s fractal di-
mension, the particle viscosity, surface tension, or information about the quantity and
location of inclusions within the particle. Note that in industrial applications of aerosol
modeling this is also called the state space [Sander et al., 2009].
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Figure 7. The concept of aerosol composition space for a population consisting of two chem-

ical species. (a) Example of a number size distribution, (b) corresponding mass size distribution,

(c), (d), and (e) are composition space depictions of example particles from populations that are

consistent with the distributions shown in (a) and (b).
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Figure 8. Two-dimensional number distribution (A = 2) in Equation (1), corresponding to

the “real-world” mixture in Figure 7. The arrow indicates that the one-dimensional size distribu-

tions for number and mass can be obtained by projecting the two-dimensional distribution. The

details of how the particles are placed in composition space are lost by this procedure.

4.2 Continuous number distribution and governing equation

It is common to use a continuous number distribution function to represent the
aerosol state, and then use this function to formulate the governing equation that
predicts its evolution. In aerosol science, we are used to formulating this number
distribution as a function of particle size. However, it is important to realize that in
doing so, we project the high-dimensional composition space introduced in Section 4.1
onto one dimension (size), thereby losing critical information, such as about mixing
state.

We therefore introduce here a generalized number distribution as follows. The
cumulative aerosol number distribution at constituent masses ~µ ∈ RA is N(~µ) (m−3),
which is defined to be the number concentration of aerosol particles that contain
less than µa mass of species a, for all a = 1, . . . , A. Considering that the number
distribution also depends on three dimensions of space and one dimension of time, the
full aerosol state is (4 + A)-dimensional. The aerosol number distribution at time t,
location ~x, and constituent masses ~µ ∈ RA is n(~µ, t, ~x) (m−3 kg−A), which is defined
by

n(~µ, t, ~x) =
∂AN(~µ, t, ~x)

∂µ1∂µ2 . . . ∂µA
. (1)

Figure 8 shows the distribution that corresponds to the “real-world mixture” in Fig-
ure 7. The particles in this distribution contain two species (A = 2). The one-
dimensional number and mass distributions shown in the right column of Figure 8 are
projections of this two-dimensional distribution, by relating the diameter D to the
constituent masses µ1 and µ2 and the corresponding densities ρ1 and ρ2, assuming
spherical particles, by (π/6)D3 = µ1/ρ1 + µ2/ρ2.
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The mean evolution of the stochastic particle coagulation process in the limit of a
large number of particles, neglecting fluctuations and correlations between the number
of particles of different sizes [Gillespie, 1972], is the classical Smoluchowski coagulation
equation [von Smoluchowski , 1916a,b], which for a multidimensional aerosol distribu-
tion with gas coupling is

∂n(~µ, t, ~x)

∂t
−∇ · (Kh(t, ~x)∇n(~µ, t, ~x))︸ ︷︷ ︸

turbulent transport

+∇ · (~v(~µ, t, ~x)n(~µ, t, ~x))︸ ︷︷ ︸
advection transport

=
1

2

∫ µ1

0

∫ µ2

0

. . .

∫ µd

0

K(~µ′, ~µ− ~µ′)n(~µ′, t, ~x)n(~µ− ~µ′, t, ~x)dµ′1dµ
′
2 . . . dµ

′
d

︸ ︷︷ ︸
coagulation gain

−
∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

K(~µ, ~µ′)n(~µ, t, ~x)n(~µ′, t, ~x)dµ′1dµ
′
2 . . . dµ

′
d

︸ ︷︷ ︸
coagulation loss

+ ṅemit(~µ, t, ~x)︸ ︷︷ ︸
emission

−
A∑

a=1

∂

∂µi
(Ia(~µ,~g, t)n(~µ, t, ~x))

︸ ︷︷ ︸
gas-particle transfer

+ Jnuc(~g)δ(~µ− ~µnuc)︸ ︷︷ ︸
nucleation

+
1

ρdry(t, ~x)

dρdry(t, ~x)

dt
n(~µ, t, ~x).

︸ ︷︷ ︸
air density change

(2)

In Equation (2), Kh(t, ~x) (m2 s−1) is the diffusion coefficient of heat, ~v(~µ, t, ~x)
(m s−1) is the advection velocity including size-dependent settling, K(~µ1, ~µ2) (m3 s−1)
is the coagulation rate between particles with constituent masses ~µ1 and ~µ2, ṅemit(~µ, t, ~x)
(m−3 kg−A s−1) is the number distribution rate of aerosol emissions, Ia(~µ,~g, t) (mol s−1)
is the condensation or evaporation flux of aerosol species a, Jnuc(~g) (m−3 s−1) is the
formation rate of particles by nucleation, δ is the Kronecker delta function, ~µnuc is the
particle composition vector of each nucleated particle, and ρdry(t, ~x) (kg m−3) is the
density of dry air. Many of the rates, coefficients and functions also depend on the
environmental conditions, but we have not written this dependence explicitly.

Equation (2) must be augmented with appropriate boundary conditions in both
physical and composition space, which are chosen on physical grounds to ensure that
the constituent masses of particles cannot become negative and mass is conserved. As
such, dry deposition is incorporated as a boundary condition.

Water is treated just like any other chemical species in Equation (2). That is, it is
present both in the gas phase and in the condensed (liquid) phase on aerosol particles,
and it transfers between these phases due to condensation and evaporation. In this
setting, cloud and rain droplets are not a distinct type of particle, but are simply large
particles whose composition vectors ~µ are almost entirely water. Wet deposition, in
which aerosol particles are scavenged by cloud or rain drops, is thus modeled by the
coagulation terms between particles.

Having cast the problem in Equation (2), the question arises how to discretize this
equation for the numerical solution. Common methods for population balance equa-
tions are using modal approaches (assuming several overlapping log-normal functions),
method-of-moment approaches, or finite volume (“sectional”) methods. Since these
methods scale exponentially with the number of dimensions in composition space, they
become infeasible as the number of species A exceeds three or four. Therefore, when
using modes or sections, this equation is usually projected down to a low-dimensional
version, which we will formulate in Section 4.3. For reasonably large values of A, a
stochastic particle-resolved approach is suitable, see also Section 4.3.
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Figure 9. Timeline of the use of different modeling techniques to represent mixing state.

4.3 Model approaches

Aerosol models can be categorized by the way they discretize the aerosol number
distribution function, n(~µ, t, ~x). We distinguish bulk models, modal models, moment
models, sectional models and particle-resolved models, as shown in Table 4 and Fig-
ure 9. In this section we present how these main categories of modeling approaches
handle the representation of aerosol mixing state. For distribution-based models, such
as modal and sectional models, rules need to be defined to handle the interactions
of the various subpopulations, which can introduce difficult-to-quantify uncertainties.
Univariate sectional approaches can be expanded to approaches with multi-variate bin
structures using two or three dimensions, however these approaches become quickly
computationally infeasible as their cost scales exponentially with the number of di-
mensions.

Particle-resolved models are suitable for explicitly resolving high-dimensional
composition spaces that are common for atmospheric aerosols, as introduced in Sec-
tion 4.1. They are computationally expensive, but not infeasible, and provide a tool
for benchmarking more simplified, but computationally more efficient, aerosol models
with respect to chemical mixing state. Note that at this point, even particle-resolved
models need to make assumptions regarding the particle morphology, as the informa-
tion about shape, fractal dimension, and the internal structure of the particles is not
tracked. Modeling capabilities exist that explicitly treat mass transport and chemi-
cal reactions within particles, thereby resolving concentration gradients in the particle
bulk [Shiraiwa et al., 2010a, 2012; Couvidat and Sartelet , 2015], but they have not yet
been coupled with a particle-resolved modeling framework that at the same time would
enable the detailed representation of mixing state.

4.3.1 Bulk models

Bulk models can be considered as the “first generation” of aerosol models used
in global climate models [Adams and Seinfeld , 2002] or for applications on regional
scales where computational resources are limited (e.g., the CAMx “coarse-fine” repre-
sentation, which assumes a single diameter for the coarse and fine mode, respectively
[Morris et al., 2005]). These models predict the life cycle of individual aerosol chemical
species by tracking the species mass concentrations, inherently treating the aerosol as
external mixtures of sulfate, black carbon, organic carbon, sea salt, and dust [Schult
et al., 1997; Koch, 2001; Tegen and Miller , 1998; Solmon et al., 2006]. The aerosol
size distributions are prescribed based on climatological data, rather than dynami-
cally predicted based on microphysical processes. This modeling approach has shaped
how the scientific community has been describing aerosol climate impacts for a long
time, namely as if the chemical species exist as external mixtures, independently of
each other [Bauer et al., 2013].

–30–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

Table 4. Overview of model representations
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Figure 10. Representation of a particle population consisting of two species by different

modeling approaches: (a) true population, (b) modal model, (c) sectional model, (d) particle-

resolved model. Left column: number size distribution, middle and right column: representation

in composition space.
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Given this simple representation of the atmospheric aerosol, aspects of mixing
state have been taken into account in the context of carbonaceous aerosol. To better
simulate the lifetime of carbonaceous aerosol, the conversion of fresh (hydrophobic)
to aged (hydrophilic) carbonaceous aerosol is often treated as an exponential decay
process, with a constant half-life [Cooke and Wilson, 1996] ranging from 24 h [Lauer
et al., 2005] to approximately 40 h [Lohmann et al., 1999; Koch, 2001].

While this approach is computationally most efficient, the constant aging half-
life for black carbon introduces significant uncertainties. Koch et al. [2009] performed
sensitivity studies that yielded black carbon lifetimes ranging from 7.6 to 13 days,
depending on the choice of the aging timescale. On the other hand we do know, both
from field observations and from detailed modeling studies, that the aging timescale
depends on the environmental conditions. It can be on the order of only a few hours
in polluted regions where low vapor pressure material is abundant to condense on
aerosols, or it can be several days in remote regions [Riemer et al., 2004; Fierce et al.,
2015, 2017; Wang et al., 2010].

4.3.2 Distribution-based models

Univariate distribution-based aerosol models take a mechanistic approach to pre-
dicting the aerosol size distribution. They solve a one-dimensional version of Equa-
tion (2), i.e., instead of using n(~µ, t, ~x), the governing equation is formulated for
n(v, t, ~x), where the independent variable v is the particle volume. The two variables
n(~µ) and n(v) are related as follows:

n(v) =
∂

∂v

∫
· · ·
∫

{~µ |V (~µ)≤v}

n(~µ)d~µ, (3)

where V (~µ) =
∑
i µi/ρi and ρi are the aerosol material densities corresponding to

µi. The multidimensional evolution Equation (2) then reduces to a one-dimensional
evolution equation:

∂n(v, t, ~x)

∂t
−∇ · (Kh(t, ~x)∇n(v, t, ~x))︸ ︷︷ ︸

turbulent transport

+∇ · (~v(v, t, ~x)n(v, t, ~x))︸ ︷︷ ︸
advection transport

=
1

2

∫ v

0

K(v′, v − v′)n(v′, t, ~x)n(v − v′, t, ~x)dv′

︸ ︷︷ ︸
coagulation gain

−
∫ ∞

0

K(v, v′)n(v, t, ~x)n(v′, t, ~x)dv′

︸ ︷︷ ︸
coagulation loss

+ ṅemit(v, t, ~x)︸ ︷︷ ︸
emission

− ∂

∂v
(I(v,~g, t)n(v, t, ~x))

︸ ︷︷ ︸
gas-particle transfer

+ Jnuc(~g)δ(v − vnuc)︸ ︷︷ ︸
nucleation

+
1

ρdry(t, ~x)

dρdry(t, ~x)

dt
n(v, t, ~x).

︸ ︷︷ ︸
air density change

(4)

Equation (4) can be discretized in different ways, which is the basis for modal, sectional,
and moment-based models, discussed next.

4.3.3 Modal models

The underlying assumption of modal models is that the aerosol can be repre-
sented by several overlapping subpopulations (modes), and each subpopulation can be
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described by a log-normal function of the diameter Dp [Whitby and McMurry , 1997].
The overall number density distribution is then

n(logDp) =

Nmode∑

l=1

Nt,l√
2π log σg,l

exp

(
−

(logDp − logD2
pg,l

2 log2 σg,l

)
, (5)

where Nmode is the number of modes, Nt,l is the total number concentration of mode l,
σg,l is the geometric standard deviation of mode l, and Dpg,l is the geometric mean di-
ameter (equal to the median diameter). The distribution function n(logDp) is related
to n(v) in Equation (4) by n(logDp) = π/2 ln 10D3

pn(v).

Aerosol mixing state can be captured by different overlapping modes having
different average compositions. However, composition diversity of the particles within
a mode is not tracked. This means that the true population is projected as shown in
Figure 10(b). Many global and regional models have adopted this modeling framework
[Liu et al., 2012; Stier et al., 2005; Bauer et al., 2008; Vogel et al., 2009; Binkowski
and Roselle, 2003; Grell et al., 2005]

The choice of number of modes is guided by the different aerosol sources and
properties to be considered, with four to seven modes being a common choice. Choices
also have to be made regarding which chemical species are present in the various modes,
and different models differ in their assumptions. For example, one guiding principle
has been to keep freshly emitted carbonaceous aerosol separately from carbonaceous
aerosol mixed with secondary species. However, the details vary between different
models. For example, in MAM4, BC is emitted with POA into an accumulation
mode, while in MADE3, BC is emitted into Aitken and Accumulation mode, together
with dust. A brief overview of the mode configuration of a selection of current modal
aerosol models is given in Table 5.

The log-normal distribution is determined by the three parameters, Nt,l, σg,l,
and Dpg,l, hence predicting the distribution evolution requires calculating the change
of three size distribution parameters per mode with time. In practice, the geometric
standard deviation of each mode is assumed to be constant, and Nt,l and σg,l are
calculated by formulating prognostic equations for two moments of the distribution,
typically the zeroth moment (equal to Nt,l), and the third moment of the constituent
species in each mode (proportional to the mass concentration). From these, the geo-
metric mean diameter can be calculated. Prognostic equations for the k-th moment
are obtained by multiplying Equation (4) with Dk, and then integrating over D.

The aerosol processes of gas/aerosol partitioning and coagulation make it neces-
sary to define rules how the modes interact [Wilson et al., 2001]. For example, MAM4
reserves one of its four modes for “fresh” carbonaceous aerosol, i.e., carbonaceous
aerosol in this mode is not subject to wet deposition [Liu et al., 2012]. Condensation
of sulfate and SOA on that mode requires moving mass over to the mixed mode ac-
cumulation mode when a critical mass fraction of secondary aerosol is exceeded. This
is often framed as a criterion based on the equivalent number of “monolayers” [Vig-
nati et al., 2004; Liu et al., 2012], although it comes down to a mass fraction [Riemer
et al., 2003]. Transfer terms due to coagulation of particles in different modes can be
calculated analytically based on Binkowski and Shankar [1995], and rules need to be
defined regarding the destination mode after coagulation.

In summary, modal models represent many important aspects of aerosol micro-
physics with the size distributions and mode compositions changing dynamically over
the course of a simulation. The model framework allows for a simplified representa-
tion of mixing state, where the high-dimensional composition space is projected down
onto a sum of one-dimensional modes. Rules need to be defined for the transfer be-
tween modes, and for the set up of destination modes to represent coagulation between
modes, which introduce uncertainty.
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Name Mode types Mode composition

MAM3 1 Aitken,
1 accumulation,
1 coarse

Aitken: Su, SOA, SS;
Accumulation: Su, SOA, POA, BC;
Coarse: Su, Du, SS.

CMAQv5.2 1 Aitken,
1 accumulation,
1 coarse

Aitken: Su, Amm, Nit, POA, BC
Accumulation: Su, Amm, Nit, SOA, POA,
BC, Du;
Coarse: Du, SS, Su, Amm, Nit.

MAM4 1 Aitken,
2 accumulation,
1 coarse

As in MAM3, but the second accumulation
mode is for freshly emitted BC and POA.

MAM7 1 Aitken,
4 accumulation,
2 coarse

As in MAM4, but more detail on dust and
sea salt. Additional accumulation modes for
“fine dust” {Du, Su, Amm}, “fine sea salt”
{SS, Su, Amm}. Coarse modes represent
“coarse dust” {Du, Su, Amm}, and “coarse
sea salt” {SS, Su, Amm}.

ECHAM-
HAM

1 nucleation,
2 Aitken,
2 accumulation,
2 coarse

Nucleation: Su;
The two Aitken modes separate out freshly
emitted BC and POA from {BC, POA, Su};
The two accumulation modes separate out
dust from {Su, BC, POA, SS, Su};
The two coarse modes separate out Du from
{Su, BC, POA, SS, Du}.

MADE3 3 Aitken,
3 accumulation,
3 coarse

In each size range one mode of fully soluble
particles {Su, Amm, Nit, SS, POA}, one
mode of insoluble particles {BC, Du}, and
one mixed mode (soluble and insoluble
components).

COSMO-Art 5 sub-micron,
1 coarse
3 dust modes
3 sea salt modes

The submicron modes separate out 2
BC-free, 2 BC-containing and 1 pure BC
mode. The coarse mode contains PM10
emissions. There are also three modes for SS
and three modes for Du.

MATRIX 16 modes The modes separate out dust-containing,
SS-containing, and BC-containing
populations in the size ranges of Aitken,
accumulation, and coarse modes.

Table 5. Modal model configurations for MAM3 and MAM7 [Liu et al., 2012], MAM4 [Liu

et al., 2016], COSMO-Art [Vogel et al., 2009], MADE3 [Kaiser et al., 2014], ECHAM-HAM [Stier

et al., 2005], and MATRIX [Bauer et al., 2008]. The abbreviations of species names are as fol-

lows: Amm: Ammonium, BC: Black carbon, Du: Dust, Nit: Nitrate, POA: Primary organic

carbon, SOA: Secondary organic aerosol, SS: Sea salt, Su: Sulfate.
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4.3.4 Moment models

The method of moments approach is closely related to modal models in that it
tracks the time evolution of the lower-order moments of the particle size distribution.
In contrast to modal models, however, the method of moments does not require the
knowledge of the distribution function [Hulburt and Katz , 1964]. McGraw [1997] de-
veloped the quadrature method of moment (QMOM) to solve the closure problem,
which otherwise arises in the traditional formulation of the method of moments ap-
proach when particle condensational growth is represented.

The original formulation of QMOM was cast for a univariate aerosol distribution,
and has been applied in that way to multicomponent, internally mixed populations
[McGraw and Wright , 2003]. The method has been generalized to bivariate popu-
lations undergoing coagulation [Wright et al., 2001] and benchmarked with particle-
resolved model results (see Section 4.3.6) [McGraw et al., 2008]. Fierce et al. [2017]
used the QMOM framework to construct an efficient representation (“sparse-particle”)
of a complex particle population with respect to CCN properties, using moments that
are bivariate with respect to dry diameter and hygroscopicity parameter. Benchmark
simulations using particle-resolved simulations show that in order to capture CCN
properties of a particle-resolved data set with 10,000 computational particles of com-
plex mixing state, a sparse set of just eight weighted particles is needed.

4.3.5 Sectional models

While modal models use several overlapping log-normal function within a size
range, sectional models discretize the aerosol size range into a number of sections and
store the total number concentration N` for each section `, given by

N` =

∫ v`

v`−1

n(v) dv, ` = 1 . . . L, (6)

where L is the total number of size sections, and v`−1 and v` are the lower and upper
edges of the size section.

Equation (4) can be solved using this discretization, however it is more common
to solve the corresponding equation for the volume or mass size distribution:

Q` =

∫ v`

v`−1

v n(v) dv, ` = 1 . . . L. (7)

Another variant of this is to track two moments per size section, as done in Adams
and Seinfeld [2002]. Working with one univariate distribution allows tracking of size-
resolved composition [Spracklen et al., 2005]. Figure 10(c) illustrates the projection
of the true composition space that a 1D sectional model imposes. While size-resolved
composition information is provided by this modeling approach, each size bin repre-
sents the average in terms of composition. Due to this averaging, it can be the case
that size bins are positioned in composition space where only few particles reside for
the true population.

Resolving mixing state (i.e., composition differences within a certain size range)
can be accomplished by introducing several, potentially interacting univariate distri-
butions [Jacobson, 2002; Kleeman and Cass, 2001]. Jacobson [2002] uses 18 different
distributions that differ in the chemical species combination (e.g., three BC-containing
distributions with different amounts of non-BC components). Eleven of the 18 distri-
butions arise because of coagulation interactions. This approach is computationally
more expensive than the modal modeling approach, because more variables are tracked
for each distribution. The gain is that, within one distribution, composition can vary
with size. A similar approach is chosen by Kleeman and Cass [2001], however the
emphasis here is on tracking the emission sources of the particle distributions.
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Figure 11. Representation of the particle population shown in Figure 10 by two different vari-

ants of the sectional modeling approach: (a) true population, (b) 1D sectional, multi-distribution,

(c) 2D sectional.

Another possibility is to use a multivariate bin structure [Oshima et al., 2009;
Lu and Bowman, 2010; Matsui et al., 2013, 2014; Zhu et al., 2015]. Common feature
amongst several of these models is that they use a two-dimensional sectional frame-
work to represent black-carbon-containing particles, with one dimension being dry
diameter and the other dimension being black carbon mass fraction. The conceptual
difference between multivariate models and the univariate/multi-distribution models
is shown in Figure 11. Building on previous two-dimensional sectional frameworks, the
MOSAIC-MIX model [Ching et al., 2016] adds an additional dimension to represent
hygroscopicity and shows that this optimizes the calculations of CCN concentrations
and aerosol optical properties. The SCRAM model [Zhu et al., 2015, 2016a], also a
two-dimensional sectional model, uses an alternative discretization based on both size
and composition where composition is tracked by mass fractions of different chemical
groups such as inorganic hydrophilic, organic hydrophilic, organic hydrophobic, black
carbon, and dust.

4.3.6 Particle-resolved models

In contrast to modal and sectional models, particle-resolved models are not
distribution-based. Instead, the particle population is discretized by a sample of in-
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dividual computational particles. With this method of discretization, it is possible to
solve Equation (2) directly.

One can think of each particle as an A-dimensional vector ~µi ∈ RA with compo-
nents (µi1, µ

i
2, . . . , µ

i
A), with µia being the mass of species a in particle i, for a = 1, . . . , A

and i = 1, . . . , Np. The simulation of the aerosol state proceeds by two mechanisms.
First, the composition of each particle can change, changing the components of the
vector ~µi for particle i as species condense from the gas phase and evaporate to it,
for example. Second, the population Π can have particles added and removed, either
by emissions, dilution or coagulation events between particles. Emission, dilution,
nucleation and Brownian coagulation are simulated with a stochastic Monte Carlo ap-
proach. The relative positions of particles within the computational volume are not
tracked.

Applying such a Monte Carlo approach for simulating the evolution of particle
distributions dates back to Gillespie [1975], who developed the exact Stochastic Simu-
lation Algorithm (SSA; see also Gillespie [1976], Gillespie [1977] and Gillespie [1992])
to treat the stochastic collision-coalescence process in clouds. Variants of Gillespie’s
algorithm are widely used in different fields, including simulations of gene regulatory
networks [El Samad et al., 2005], chemical kinetics [Gillespie, 2007], and sintering in
flames [Wells et al., 2006]. For atmospheric aerosol, the approach was first devel-
oped and applied with the PartMC-MOSAIC model [Riemer et al., 2009; Zaveri et al.,
2008]. It is computationally more expensive than modal or sectional approaches, how-
ever the particle-resolved approach directly resolves the composition space, and hence
the chemical mixing state, without any approximating assumptions. With the in-
tegration of PartMC-MOSAIC into the spatially resolved WRF model [Curtis et al.,
2017], it is now possible to conduct particle-resolved simulations for three-dimensional
domains.

To evaluate the ability of other model types, such as modal or section, to represent
mixing state, Zaveri et al. [2010] developed the framework of composition-averaging
for particle-resolved models. This entails calculating a quantity of interest (e.g., CCN
concentrations) using the full output of the particle-resolved simulation. This result
is then compared to a calculation where all particles are assigned the same composi-
tion (equal to the average), while keeping the particle sizes unchanged, mimicing the
assumption of a fully internal mixture. This average can also be done per size bin to
obtain a size-dependent composition assumption. Since this is a post-processing step,
this procedure isolates the the error introduced by the model representation of aerosol
mixing state.

5 Metrics for mixing state in measurements and models

The discussion of mixing state and its impacts is greatly facilitated by appropriate
metrics that enable us to quantify the degree of internal/external mixing for any given
aerosol. Several approaches exist in the literature, starting with Winkler [1973] who
introduced as a metric the standard deviation of the per-particle composition from the
bulk composition, σ. A value of σ = 0 indicates a perfect internal mixture, since the
per-particle composition is the same as the bulk. While Winkler [1973] proposed this
as a scalar quantity, the generalization for many aerosol species would be to use the
covariance matrix, with an overall mixing state described with a summary statistic
such as the trace of the covariance. While simple to define and giving an intuitive
value of zero for an internal mixture, it is less clear how to understand values for fully
external mixtures.

In Section 5.1 we will focus on the metric by Riemer and West [2013] who pro-
posed a framework for chemical mixing state based on “particle diversity” to calculate
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Quantity Meaning
µai mass of species a in particle i

µi =

A∑

a=1

µai total mass of particle i

µa =

N∑

i=1

µai total mass of species a in population

µ =

N∑

i=1

µi total mass of population

pai =
µai
µi

mass fraction of species a in particle i

pi =
µi
µ

mass fraction of particle i in population

pa =
µa

µ
mass fraction of species a in population

Table 6. Aerosol mass and mass fraction definitions and notation. The number of particles in

the population is N , and the number of species is A. This table is taken from Riemer and West

[2013].

an index χ that ranges from 0% (fully-internal mixture) to 100% (fully-external mix-
ture). We will discuss what is known about the χ values of real atmospheric aerosols in
Section 5.2. In Section 5.3 we discuss other mixing state metrics, and we will finish this
section with a discussion of metrics for the morphological mixing state in Section 5.4.

5.1 The entropy-based diversity metric χ for chemical mixing state

Riemer and West [2013] put forward a framework to quantify aerosol chemical
mixing state, which was inspired by diversity metrics used in other disciplines such
as ecology [Whittaker , 1972], economics [Drucker , 2013], neuroscience [Strong et al.,
1998], and genetics [Falush et al., 2007]. The fundamental quantity that is used to
calculate mixing state metrics are the species mass fractions in each particle, as shown
in Table 6. Defining mixing state metrics then includes two distinct aspects: How
complex individual particles are (in terms of being composed of different species), and
how similar different particles are within a population. Both aspects are quantified by
the diversity metrics defined below.

Given a population of N aerosol particles, each consisting of some amounts of A
distinct aerosol species, this concept is based on the knowledge of mass of species a
in particle i, denoted µai , for i = 1, . . . , N , and a = 1, . . . , A. From this quantity, all
other mass-related quantities can be defined, as detailed in Riemer and West [2013]
and here listed in Table 6, and the diversity metrics can be constructed as shown in
Table 7.

The particle diversity Di represents the number of “effective species” in particle
i. For a particle i that consists of A species, the highest possible value for Di is A, and
this occurs when all A species are present in equal mass fractions. Knowing the Di

values for all particles, the population-level quantities Dα and Dγ can be calculated,
with Dα being the average effective number of species in each particle, and Dγ being
the effective number of species in the bulk. Figure 12 illustrates the meaning of Dα

and Dγ . The populations 1 and 2 have the same bulk composition, with four species
present in equal amounts, hence Dγ = 4. However, populations 1 and 2 are different in
that population 1 consists of particles with two species in equal amounts (Dα = 2), but
several different particle types exist with different species combinations. In contrast
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avg. particle diversity Dα = 2

Population 1

avg. particle diversity Dα = 4

Population 2

bulk diversity Dγ = 4

χ = 2−1
4−1 = 33%

bulk diversity Dγ = 4

χ = 4−1
4−1 = 100%

single
particles

bulk
aerosol

Figure 12. The concept of particle diversities Dα and Dγ for two different example popu-

lations. Both populations have the same bulk composition, with four species present in equal

amounts, however the mixing state is distinctly different. The particles in Population 1 have a

lower average diversity than the particles in Population 2. This results in a lower mixing state

index χ for Population 1 compared to Population 2.

population 2 contains only one type of particles, which has the same composition as
the bulk (Dα = 4).

Finally, the mixing state index χ is defined as

χ =
Dα − 1

Dγ − 1
. (8)

The mixing state index χ varies from 0% (a fully externally mixed population) to
100% (a fully internally mixed population. To quantify mixing state, two of the three
metrics (Dα, Dγ , χ) are needed, and the third can be derived. For the two examples
in Figure 12, χ = 33% for Population 1, and χ = 100% for Population 2.

It is instructive to map the mixing state metrics of aerosol populations into a
mixing state diagram (Dα, Dγ), as shown in Figure 13 [Riemer and West , 2013; Healy
et al., 2014]. Particle populations with single-species particles, i.e., “externally mixed”
populations, have Dα = 1 and Dγ between 1 and A. They are therefore mapped onto
the vertical axis (χ = 0%). This applies to populations Π2 and Π3 shown in this
example. Populations consisting of particles with identical mass fractions map onto
the diagonal χ = 100%, which applies here to populations Π5 and Π7. Populations
Π3, Π4, and Π5 have the same bulk composition and are therefore arranged along the
line of constant Dγ . However, their mixing states vary from externally mixed Π3 to
fully internally mixed Π5. Population Π1, consisting of a single species, is a special
case in this framework. Its mixing state index (0/0) is undefined, as it could equally
well be said to be perfectly internally or externally mixed.

The mixing state metric χ has found applications in both modeling and exper-
imental work. Measuring it experimentally requires determining per-particle species
masses, as described in Section 3.3, while modeling it requires one of the mixing-state-
resolving modeling methods, such as particle-resolved models (Section 4.3.6).
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Figure 13. Mixing state diagram to illustrate the relationship between average particle diver-

sity Dα, bulk population diversity Dγ , and mixing state index χ for seven example populations

(Π1 to Π7). Each population consists of six particles, and the colors represent different chemical

species (A = 3). This figure is adapted from Riemer and West [2013].

5.2 Measurements and models of the diversity metric χ

To determine the diversity metric χ from measurements, per-particle mass frac-
tions need to be obtained (Section 5.1). A variety of experimental techniques have
been used to estimate per-particle mass fractions for this purpose. They range from
mass spectrometry with an aerosol time-of-flight mass spectrometer (ATOFMS) [Healy
et al., 2014] or a soot particle aerosol mass spectrometer (SP-AMS) [Ye et al., 2018]
to scanning transmission X-ray microscopy/near edge X-ray absorption fine structure
(STXM/NEXAFS) and scanning electron microscopy/energy dispersive X-ray spec-
troscopy (SEM/EDX) [O’Brien et al., 2015; Fraund et al., 2017].

All currently-available field measurements of χ are summarized in Table 8. From
these studies we learn how chemical mixing state depends on air mass and the time of
the day, or how it varies spatially. Common to all studies is that the extreme values of
0 or 100% are never reached. For the MEGAPOLI winter campaign in Paris, France,
2010, Healy et al. [2014] found χ depending on the air mass that was transported to
the measurement site. Values of χ reached up to 72% during periods when continental
pollution was prevalent, while the lowest values of about 37% were reached when the
air mass was coming from the ocean, and local pollution mixed with relatively clean
air. They also documented a distinct diurnal cycle of χ, with higher values during the
night, when ammonium nitrate formation caused the aerosol to become more internally
mixed. Ye et al. [2018] quantified aerosol mixing state in different neighborhoods of
Pittsburgh, PA, with a mobile measurement platform. The mixing state metric varied
between 36% and 70%, with the lowest values close to an interstate highway, and the
highest value in rural or suburban regions. This study showed for the first time how
mixing state varies on a spatial scale of a city.

Particle diversities and mixing state can be quantified for a subpopulation, as has
been done for the subpopulation of BC-containing particles in O’Brien et al. [2015],
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or within specified size ranges [Healy et al., 2014; O’Brien et al., 2015]. For the MI-
LAGRO campaign in Paris, France, Healy et al. [2014] observed an increase of particle
diversity with size, as primary carbonaceous particles were accumulating secondary
aerosol species, in particular ammonium nitrate.

The mixing state metric χ has also been used to compare model results to mea-
surements, as in Zhu et al. [2016a]. They used the regional mixing-state-resolving
SCRAM model for the modeling domain of Paris, France, and compared to MEGAPOLI
measurements at an urban ground site in Paris [Healy et al., 2014] for the simulation
period of about one month in winter 2010. The comparison showed that the range
of simulated mixing state indices was very similar between observations (37%–72%)
and modeling resuls (23%–90%). The model also reproduced the observed fact that
that the average single particle diversity never exceeded the value of 4 (compared to
3.5 in the observations), even when the bulk population diversity reached close to the
maximum value of 5. This indicates that some degree of external mixture was always
present.

Note that the definition of “species” for calculating the mass fractions depends
on the application. It can refer to operationally-defined chemical species [Riemer
and West , 2013; Healy et al., 2014; Ye et al., 2018; O’Brien et al., 2015] or it can be
based on elemental composition [O’Brien et al., 2015; Fraund et al., 2017]. Table 8
lists the species definition used the individual field studies that reported the mixing
state parameter. It can further refer to species groups, as in Dickau et al. [2016],
who quantified mixing state with respect to volatile and non-volatile components, or
Ching et al. [2017] and Hughes et al. [2018], who quantified mixing state with respect
to hygroscopic and non-hygroscopic species. The latter is useful when exploring the
impact of mixing state on CCN properties. The values of the diversity parameters
and the mixing state indices, and hence the conclusion if a population is internally
or externally mixed, will depend on the exact definition of species. For example,
a population may have relatively low χ values (i.e., appears externally mixed) with
respect to its individual chemical species, but it can appear more internally mixed with
respect to the mixture of hygroscopic and non-hygroscopic species. The relationship
between χ values for the same population determined by different “species” definitions
should be explored in more detail in future work.

5.3 Other mixing state metrics for measurements and models

A detailed comparison of model simulations and measurements with respect to
mixing state has proven challenging, as it can be difficult to find a common metric
between the model and the measurement technique that could form the basis of a
quantitative comparison, beyond the studies using χ described in Section 5.2.

A fairly straightforward match are measurements of BC core sizes and associ-
ated amounts of coating with the SP2 instrument and model results obtained with a
2D sectional modeling approach (Section 4.3.5) that resolves the mass fraction of BC
core and the mass fraction of non-BC aerosol in each size bin [Oshima et al., 2009;
Matsui et al., 2013]. Oshima et al. [2009] compared low-dimensional aggregate model
results using a Lagrangian parcel model version of the MADRID-BC model to aggre-
gated aircraft data from the PEACE-C campaign sampling the outflow from Japanese
anthropogenic sources [Moteki et al., 2007]. The metric used for comparison was the
mass fraction of thickly coated BC particles, with “thickly coated” defined as the par-
ticles with the ratio of total diameter to BC diameter larger than 2. It was shown that
the model was able to capture the general trends found in the observations, which
showed an increase of the mass fraction of thickly coated BC particles with increasing
photochemical age of the air mass.
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Matsui et al. [2013] compared model simulations from a 2D sectional aerosol
model embedded in the regional air quality model WRF-Chem for the regional of
East Asia with SP2 measurements obtained during the A-FORCE campaign in 2009.
They used size-dependent number fractions of BC-containing and BC-free particles
and averaged coating thicknesses as metrics for comparison. Their model simulations
generally reproduced the observed trends, and were able to show with sensitivity sim-
ulations that the thinly coated BC particles are produced by condensation processes,
while coagulation events are needed to produce thickly coated BC particles. Chal-
lenges associated with this comparison include the fact that the SP2 is only sensitive
to particles having BC cores with mass-equivalent diameter of 75–850 nm, and the fact
that the assumed BC refractive index had an appreciable impact on determining the
coating thickness [Matsui et al., 2013].

Comparing a modal model with SP2 data comes with additional challenges be-
cause of the modal structure [Aquila et al., 2011]. The size range of BC cores that is
detectable from SP2 data represents only a slice of the modal model’s BC-containing
accumulation mode. Comparing the mixing state of the entire simulated BC-containing
mode would not be correct, because particles with BC cores outside the SP2 detec-
tion window are represented by the mode. Keeping these caveats in mind, Aquila
et al. [2011] showed a comparison of global model simulation results (EMAC with
MADE-in) with SP2 data during the CR-AVE campaign over Costa Rica [Schwarz
et al., 2008]. The metric of comparison was the vertical profile of number fraction of
internally mixed BC particles. The model results showed higher fractions of internally
mixed BC than the observations, which might mean that the aging process of BC is
too rapid in the model. However Aquila et al. [2011] pointed out that this conclu-
sion should be interpreted with caution, because of the limited comparability between
observations and model results.

Bauer et al. [2013] was the first to compare global model simulation results using
the modal aerosol model MATRIX and ATOFMS field campaign data. To make this
comparison possible, the 16 MATRIX modes needed to be mapped onto the ATOFMS
classes, and then the number fractions in each mode/class were compared. For ex-
ample, the modes that represent mineral dust in the accumulation mode and the
coarse mode with an inorganic mass fraction of less than 5% were both mapped to
the ATOFMS class “Fresh dust”. The two BC-containing modes that contain more
than 5% inorganic material were both mapped onto the “Aged EC” class. The au-
thors concluded that to make a comparison possible between a large scale model and
detailed particle-level measurements, observations should be averaged over a period
of one month to characterize the aerosol that is representative for a given location.
Because of the detection limit of the sizing instrument used for scaling (aerodynamic
particle sizer, APS), only number concentrations above 500 nm could be compared,
which in general tended to be rather aged by condensation and coagulation processes.
It was also not possible to compare mass concentrations, and the authors suggested a
multi-instrument analysis to accomplish this.

A different method of characterizing aerosol mixing state is that of Su et al.
[2010], who developed a framework based on the distribution of the hygroscopicity pa-
rameter κ [Petters and Kreidenweis, 2007]. They use the geometric standard deviation
of the κ distribution, σκ, as a metric to quantify diversity in terms of hygroscopicity.
If two or more subpopulations exist with different hygroscopicites, this indicates that
the population is externally mixed with respect to hygroscopicity. This approach was
used to evaluate mixing state with respect to hygroscopicity by Holmgren et al. [2014]
who sampled aerosols at the high-altitude site Puy de Dôme, France and found three
different hygroscopic modes (less-hygroscopic, hygroscopic, more-hygroscopic). Schill
et al. [2015] used the framework to characterize hygroscopic mixing state for sea spray
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aerosol and show that population-weighted distributions of κ parameters can be re-
trieved from size-resolved CCN measurements.

5.4 Morphometrics

To go beyond chemical mixing state metrics to the full physicochemical mixing
state, it is necessary to quantify the morphology of individual aerosol particles. It is
practical to distinguish between metrics that characterize the overall shape of a particle
and, for particles containing more than one component, metrics that characterize the
spatial arrangement of particle components within the particle.

Regarding the overall shape of the particle, a fundamental quantity is the dy-
namic shape factor, which is defined as the ratio of the particle’s drag force and the
drag force of a sphere that has a diameter equal to the particle’s volume equivalent
diameter [Seinfeld and Pandis, 2016, Ch. 9.7.1]. It is an important quantity for par-
ticle sizing [DeCarlo et al., 2004]. The dynamic shape factor of irregular particles is
usually larger than 1, an exception being certain streamlined shapes [Hinds, 1999]. For
example, the shape factor of a cube is 1.08, and that of a compact cluster consisting
of three spheres is 1.15 [Hinds, 1999, Table 3.2].

Another class of shape descriptors are ratios of two particle size measurements,
such as the aspect ratio, the roundness, or the convexity [Hentschel and Page, 2003].
The aspect ratio is popular for characterizing dust particles [Kandler and Schütz , 2007;
Kandler et al., 2011] and is also common to characterize the habits of ice particles
[Um et al., 2015]. These metrics are typically derived from projected two-dimensional
imaging, even though particle shape is in fact a three-dimensional characteristic. Using
a two-dimensional image, gives rise to the possibility of misinterpretations [Powers
et al., 2007]. Adachi et al. [2007] retrieved the 3D structure of soot aggregates using
electron tomography with a transmission electron microscope and demonstrated that
metrics such as the fractal dimension and the projected area differ greatly from the ones
determined from a 2D analysis. Nevertheless, working with 2D projections is deemed
still useful in practice if it can be assumed that the particle orientation is random and
that the particles are approximately isotropic [Hentschel and Page, 2003].

A special case of irregular particles are aggregates [DeCarlo et al., 2004], which
can be described by a fractal formalism, including the fractal dimension, size of primary
particles, radius of gyration, and the structural coefficient. [Sorensen, 2011; Naumann,
2003]. These metrics have been used to characterize ambient carbonaceous aerosol
China et al. [2013, 2015].

Given that many particles are mixtures, several metrics exist that quantify the
interior arrangement of the particles’ components. Spherical particles that consist of
a host particle with inclusions can generally be described by the number, the size
distribution, the position, and the phase of the inclusions. When considering a large
collective of particles, the mean number of inclusions per particle can be used [Efendiev
and Zachariah, 2002]. A special case of this type of morphology is the core-shell
morphology, where we track core diameter, position of the core, and coating thickness
[Fuller et al., 1999].

A variety of morphologies can be expected in any given environment, so to move
towards characterizing the full physicochemical mixing state as defined in Section 2.2, a
large ensemble of particles needs to be analyzed. Generally, particles contain different
components, are not spherical, and the arrangement of the components is anisotropic
[Scarnato et al., 2013; Adachi et al., 2010], so the selection of metrics varies between
different studies. Kandler et al. [2011] analyzed nearly 50 000 particles in a mineral-
dust-dominated region in Cape Verde, and reported size-resolved distributions of parti-
cle aspect ratio, contrasting dry and wet particles. A combination of metrics has been
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used by Moffet et al. [2016] with scanning transmission X-ray microscopy (STXM)
particle data from the CARES campaign in California in 2010. For a collective of
about 1900 particles, they grouped the particle samples according to their size-resolved
composition maps that map the BC inclusion, the organic dominant regions and the
inorganic dominant regions within individual particles. They further quantified the
size of BC inclusions compared to the overall particle size, the BC inclusion convexity,
as well as the location of BC inclusion within the particle. Based on scanning electron
microscopy imaging, China et al. [2013] classified carbonaceous aerosol particles into
four different categories based on the shape of the BC component and the non-BC
coating.

To summarize, metrics for morphology are not as unified as for the chemical mix-
ing state, but rather dependent on the the system under consideration. An important
issue relates to the use of projected two-dimensional images to determine the various
metrics, which necessarily limits the ability to infer the full 3D morphology. At the
present time, atmospheric aerosol models generally do not resolve particle morphology
with any detail, so the available information we have on environmental physicochemical
mixing state is almost entirely from measurements.

6 Impacts of aerosol mixing state on climate-relevant aerosol prop-
erties

Considering the complexity of aerosol mixing state, the question arises of how
important the knowledge of mixing state is when assessing aerosol impacts on climate.
This question typically focuses on climate-relevant aerosol properties that depend on
individual particle physicochemical properties, such as optical properties for the direct
effect and cloud droplet or ice crystal nucleation for the indirect effect. Do we really
need to know the details of aerosol mixing state to quantify aerosol climate impacts,
or are simplifying assumptions (e.g., assuming a fully external or a fully internal mix-
ture) good enough? Can we determine how large the errors are associated with such
assumptions?

6.1 Methods to assess mixing state impacts

There are several ways to assess the impacts of mixing state. Three of the
most common ways are schematically illustrated in Figure 14. These are: (1) closure
studies for CCN concentrations or optical properties, (2) modeling studies to assess the
sensitivity to parameters related to aerosol mixing state, and (3) error quantification
studies using a benchmark model to quantify the structural uncertainty of mixing state
approximations. We now discuss each of these in turn.

A closure study involves measuring a property of the aerosol (e.g., CCN concen-
trations or one or several of the optical properties in Figure 14a) and then calculating
the property from a diagnostic model that is based on other independently measured
quantities [Quinn and Coffman, 1998]. In many applications, the diagnostic model for
CCN is κ-Köhler theory (Section 6.3.1), and for optical properties it is Mie theory
(Section 6.2).

Closure studies provide an indirect way of determining mixing state, since the
calculations of CCN concentration or optical properties are generally sensitive to mix-
ing state assumptions. The mixing state for which the best closure is achieved is
then identified as the most likely mixing state for a given scenario, and the quality
of closure yields insights into the fidelity of the diagnostic model being used. While
closure studies are a useful approach to infer mixing state in a given environment, it
is important to remember that even if closure is achieved, it does not mean that we
have predictive capabilities for aerosol properties in any given environment. Moreover,

–47–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

since the aerosol composition space is high-dimensional (Section 4.1), many different
mixing states may give reasonable closure for a given set of measurements.

Another way of determining the sensitivity towards mixing state assumptions in-
volves conducting sensitivity studies with a given dynamic aerosol model (Figure 14b).
These studies quantify the parametric model uncertainty by varying a mixing-state-
related parameter and evaluating the change in an impact measures. For example,
to parameterize the aerosol aging process, multi-modal models use certain threshold
criteria to move aerosol mass between modes (Section 4.3.3). Performing sensitiv-
ity simulations where the threshold is varied, and comparing the resulting differences
in CCN concentration or aerosol optical depth, quantifies the parametric uncertainty
with respect to the choice of the threshold parameter [Liu et al., 2012]. This method,
however, does not assess the sensitivity to the model’s structural choices (e.g., for the
example of modal models the fact that a small number of modes are used to represent
the aerosol).

To determine the sensitivity due to structural choices, a higher-detail model is
required that can serve as a benchmark model, as shown in Figure 14c. Particle-
resolved methods provide such benchmark capabilities, and comparisons of this kind
allow the determination of how much error is introduced by the simplified mixing state
representation in the model under study [Fierce et al., 2016].

In the following Sections 6.2 and 6.3 we will see how these three techniques have
been used in attempts to understand how mixing state impacts the calculation of
aerosol optical properties and aerosol-cloud interactions.

6.2 Mixing state and aerosol optical properties

Aerosol optical properties are closely tied to mixing state, since the macroscopic
absorption and scattering of an aerosol population are determined by the absorp-
tion/scattering cross sections of individual particles. In this section we will focus our
discussion on particle populations containing black carbon (BC), although there is
substantial evidence that mixing state is relevant for the optical properties of other
aerosol types as well, such as mineral dust [Merikallio et al., 2011] or brown carbon
[Lack et al., 2012]. Black carbon typically only represents a small fraction of the total
aerosol mass concentration at a given location, but is one of the few aerosol species
that absorb light, acting as a short-lived climate forcer [Jacobson, 2001].

The physicochemical mixing state of BC is very complex. Black carbon-containing
particles (or “soot”) are inherently non-spherical, fractal aggregates, which are found
in the atmosphere at various stages of compaction [Naumann, 2003; Pósfai et al.,
1999; China et al., 2015] and are partially or completely coated with other inorganic
or organic aerosol material [Adachi and Buseck , 2013; Moffet et al., 2016; China et al.,
2013]. Their composition and morphology depend on the fuel type, the burning con-
ditions and on aging processes [Schwarz et al., 2008]. See the review of Bond et al.
[2013] for a comprehensive summary of the current state of knowledge about black
carbon aerosols (and also the reviews of Bond and Bergstrom [2006] and Andreae and
Gelencsér [2006]).

Several approaches exist to calculate aerosol optical properties based on particle-
level composition, size, and shape information. By far the most common approach is
to assume spherical particles, and to apply Mie theory [Mie, 1908]. This requires as
inputs the particle size, the wavelength of the incoming radiation, and the refractive
index of the chemical compound that the particle consists of. For a multi-component
aerosol, assumptions need to be made regarding the mixing state and regarding the
particles’ morphologies, i.e., how the chemical species are arranged within one particle
[Sloane, 1983]. The simplest assumption is that each particle contains only one species,
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i.e., the external mixture assumption, however, we know that this is rarely the case
in the real atmosphere. If the population is internally mixed, different “mixing rules”
can be applied to compute the refractive index of the mixed particles [Chýlek et al.,
2000; Lesins et al., 2002]. Common assumptions are that the particles consist of a
concentric or eccentric core that is coated (core-shell assumption), that the particles
are homogeneously mixed on a molecular level (volume-mixing assumption), or that
the mixture on the particle level can be described by embedded inclusions within
a host particle (effective medium assumption) [Adachi et al., 2010]. These different
assumptions lead to very different results in the particle’s extinction cross section,
single scattering albedo, and phase function [Adachi et al., 2010; Kahnert et al., 2012].

Challenges related to the definition of a chemical species in models add funda-
mentally to uncertainties in the refractive indices used as inputs to any optical model,
particularly in the case of black carbon and organic carbon. The way the refractive
indices of these species are retrieved can lead to large differences in their numerical val-
ues [Saleh et al., 2016]. Stier et al. [2007] showed that the basic assumption regarding
the refractive index of BC plays a key role in the calculation of radiative forcing.

Many studies have explored the parametric uncertainty of different mixing rules
on global climate predictions by performing sensitivity studies [Jacobson, 2000, 2001;
Lesins et al., 2002; Chung and Seinfeld , 2005; Stier et al., 2007]. While the aerosol
model representation differs between these studies, they all found that changing the
mixing rule produces large changes in BC radiative forcing. For example Jacobson
[2000] found that the core-shell assumption results in a 50% higher BC forcing com-
pared to the externally-mixed assumption and in a 40% lower BC forcing compared
to the volume-mixing assumption. If feedbacks of radiation on the meteorology are
included, changes in precipitation patterns and cloud coverage are also documented
[Chung and Seinfeld , 2005].

The optical properties of an aerosol can be determined by measuring their light
scattering or absorption. A nephelometer is the most common instrument for mea-
suring aerosol light scattering and has been primarily used for studies of the direct
effect of aerosols on climate, specifically radiative forcing [Anderson and Ogren, 1998;
Heintzenberg and Charlson, 1996]. For measurements of light absorption, a range of
absorption photometer instrumentation has been developed, such as an aethalometer
[Hansen et al., 1984], photoacoustic spectrometer (PAS) [Arnott et al., 1999], particle
soot absorption photometer (PSAP) [Virkkula et al., 2005], and multiangle absorption
photometer (MAAP) [Petzold et al., 2005].

There is extensive experimental evidence that the absorption of BC-containing
particles can be enhanced by coatings. However, the value of absorption enhance-
ment ranges from 1.05 to 3.5 depending on the experimental conditions, including the
amount and nature of the coating material, the exact particle morphology, and the
size distribution [Schnaiter et al., 2005; Khalizov et al., 2009; Shiraiwa et al., 2010b].
Field observations of absorption enhancement also show a large variability depend-
ing on the environmental conditions, ranging from negligible observed enhancement
[Cappa et al., 2012] to enhancement factors of 1.67 in Detling, UK [Liu et al., 2015], or
up to 2.2 in an urban area of the North China Plain, with a recognizable diurnal pat-
tern that exhibits maximum values in the afternoon and minimum values during the
evening [Chen et al., 2017a]. See Wu et al. [2018] for a compilation of enhancement
values, which vary between 1.06 and 2.25.

Several laboratory studies performed closure studies to test how well Mie the-
ory reproduces the observed optical properties of BC-containing aerosol, including the
absorption enhancement. They found that for thickly coated particles the absorp-
tion enhancement factors are reproduced well by Mie theory assuming a core-shell
morphology [Schnaiter et al., 2005; Shiraiwa et al., 2010b; He et al., 2015]. However,
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Schnaiter et al. [2005] also pointed out that closure for other quantities such as the
single scattering albedo, the Ångström exponent, and the hemispheric backscattering
ratio, was not as successful, especially for thinly coated BC particles.

Field closure studies found that complex partially-internally-mixed assumptions
give the best closure and that the best-fit mixing state varies over the course of the
day, with spatial location [Cheng et al., 2006; Ma et al., 2012; Cheng et al., 2009], with
season [Dey et al., 2008], and with level of pollution [Wehner et al., 2009]. The fact
that a signification variation in enhancement is observed and found to depend on
environmental conditions makes it challenging to develop a predictive capability for
aerosol optical properties on regional and global scales.

Major gaps in our ability to reliably perform successful closure calculations still
exist, as demonstrated by Cappa et al. [2012]. Despite having detailed measurements
of black carbon core distributions and the amounts of coating material, using Mie
calculations consistently overpredicted the measured absorption enhancements during
the 2010 CARES campaign in Sacramento, CA. Multiple possible explanations exist
for this finding. The poor closure could be because in the investigated environment
the BC-containing particles did not exhibit “core-shell” morphologies and therefore
the Mie model was inadequate. While determining morphology from single-particle
microscopy is challenging after impaction and drying, measurements from different
environments do show that the BC component can be at the edge rather than inside
of the host particle [Adachi et al., 2010; China et al., 2015], which would lessen the
lensing effect.

Another explanation was put forward by Fierce et al. [2016] who used particle-
resolved simulations to isolate the effect of the distribution of coatings over a population
of BC cores on absorption enhancement. Note that this particular aspect was not
measured during the campaign. Assuming that the mass fractions of coatings and
cores are constant across all core sizes led to a two-fold overestimation of absorption
enhancement because too much coating material was associated with larger BC cores.
Using the coating distributions from the particle-resolved simulations rectified this
issue and gave absorption enhancements in line with the observations. An important
finding from Fierce et al. [2016] was also that the water content of the aerosol needed
to be included in the estimate of absorption enhancement, something that is difficult
to achieve with measurements. A similar conclusion regarding the role of aerosol water
uptake was reached by Zhu et al. [2016a]. They performed simulations for region of
Paris, France, with a sophisticated mixing-state-aware model (SCRAMS). Different
treatments of chemical mixing state led to differences in aerosol water uptake, causing
differences in aerosol optical depths of up to 70%.

To calculate optical properties of particles with arbitrary shape or anisotropic
composition, methods such as T-Matrix [Mishchenko et al., 1996] or the Discrete
Dipole Approximation (DDA) [Draine and Flatau, 1994; Scarnato et al., 2013] need
to be used. These methods are far more computationally expensive than Mie-theory
calculations, and are therefore typically applied to a small number of reference par-
ticles, which then can be used to benchmark simpler model particles [Kahnert et al.,
2012]. Closure studies for those methods do not yet exist.

Andersson and Kahnert [2016] framed the question of whether particle morphol-
ogy “matters” in terms of a comparison to the impact that aerosol microphysics pro-
cesses have on optical properties (meant here as the processes that contribute to the
evolution of the aerosol size distribution and the chemical aerosol mixing state). They
coupled a sophisticated optical model to a mixing state-representing regional chem-
ical transport model. Externally mixed black carbon was represented as fractal ag-
gregates, and for internally mixed black carbon they used a novel “core-grey-shell”
model, which corrects for the fact that the classical core-shell model underpredicts
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absorption compared to a coated aggregate [Kahnert et al., 2012]. They found that
the impacts from including sophisticated optics are on the same order of magnitude
as the effects of aerosol microphysics. For example, relative differences in aerosol op-
tical depth between the two optics models varied over the modeling domain (Europe)
between −28 and 18%, while the differences caused by the inclusion or omission of the
aerosol-microphysical processes ranged from −50 to 37%.

The above discussion has primarily focused on absorption, but it is worth re-
membering that other optical properties, such as the single scattering albedo, are also
sensitive to the aerosol mixing state [Zaveri et al., 2010]. Quantities important for re-
mote sensing such as the backscattering coefficient, Ångström exponent, and polariza-
tion require more complex knowledge of morphology [Andersson and Kahnert , 2016].
Wang and Martin [2007] systematically investigated the impact of chemical mixing
state on the the accuracy of satellite retrievals of aerosol optical thickness and aerosol
effective radius. For an aerosol consisting of sulfate and black carbon, they found that
assuming an internal or external mixing of the two components significantly affected
the single-scattering albedo and the diagnostic relationship of the Ångström exponent
to the aerosol effective radius, and caused differences in aerosol optical depth of 60%.

In summary, from many different lines of experimental and modeling evidence,
we learn that physicochemical mixing state matters for aerosol optical properties.
There are several aspects to consider, namely the chemical mixing state (i.e., how
different materials are distributed over the population), the morphology (i.e., how
the different materials are distributed within one particle), and as a consequence of
both, the water uptake of the particles. Simplified assumptions of the physicochemical
mixing state of the atmospheric aerosol can introduce substantial errors in simulated
optical properties and radiative fluxes in chemistry-climate models, which then will
propagate into the calculation of direct radiative forcing. A chemical transport model
capability that can reliably predict aerosol optical properties based on the the evolution
of the physicochemical mixing state coupled with a sophisticated optical model does
not yet exist.

6.3 Mixing state and clouds

6.3.1 Mixing state impacts on cloud condensation nuclei (CCN)

The formation of cloud droplets or crystals in supersaturated environments is
intrinsically a single particle process. As discussed for Figure 1, even for a population of
particles with the same bulk aerosol properties (e.g., mass, bulk composition, and size
distribution), without individual particle information, evaluating the climate impact of
an aerosol is challenging. To evaluate the potential impact of aerosol mixing state on
the CCN activity for cloud droplet formation or INP activity for ice crystal formation,
it is necessary to discuss the typical frameworks for studying CCN and INP activity
and how they relates to mixing state.

Since the Earth’s atmosphere never reaches supersaturations high enough for
water droplets to nucleate without a particle, the properties of particles that can act as
CCN is central to determining their climate impacts. The ability of a CCN to activate
and form a cloud droplet is related to a particle’s size, surface tension, composition,
which determines hygroscopicity, as well as the supersaturation of the environment in
which it is suspended. Köhler [1936] theory combines the competing Kelvin effect of
increased equilibrium vapor pressure over a curved surface with the decreased vapor
pressure of a solution via the Raoult effect. The combination of the Kelvin effect and
Raoults law within Köhler theory allows for the determination of the diameter at which
a particle in a given supersaturated environment will undergo spontaneous growth to
form a cloud droplet. This critical supersaturation and diameter, which corresponds
to the maximum on a typical Köhler curve, are considered central to predicting cloud
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Figure 15. Illustration of the effect of mixing state on CCN. (a) Size distribution assuming

internal mixture. At a given environmental supersaturation (here 0.3% as example), a unique

critical diameter exists above which all particles activate, marked with a green star. (b) Size dis-

tribution assuming that the population is externally mixed, consisting of two subpopulations with

different hygroscopicities. This results in two different critical diameters, marked with a yellow

and blue star, respectively. (c) Mapping of the information in (a) and (b) in supersaturation-

diameter space. The yellow, green, and blue stars correspond to the critical diameters in (a) and

(b). Particles above the horizontal line for S = 0.3% are CCN-inactive, while particles below the

line are CCN-active.

formation. The CCN activity of aerosol particles depends most strongly on their size,
but is also significantly affected by their composition and other physical properties.
This means that the size distribution of an aerosol strongly affects the CCN spectrum,
but detailed composition and mixing state knowledge are also needed.

To simplify the incredibly complex physicochemical properties of particles for
modeling CCN activity, Petters and Kreidenweis [2007] introduced the hygroscopicity
parameter κ. For a multicomponent homogeneously mixed particle κ is the volume-
weighted average of the κ values of the constituent species. Neglecting kinetic effects
[Nenes et al., 2001], the CCN concentration is then the number concentration of par-
ticles for whom the environmental supersaturation is higher than their critical super-
saturation. To evaluate the impact of aerosol mixing state on cloud droplet formation
we can use κ-Köhler theory to consider CCN activity or different mixing states.
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Figure 15 illustrates the effect of mixing state on CCN. Using our previous
schematic of internal and external mixtures Figure 15a shows a size distribution as-
sumed to be an internal mixture of ammonium sulfate and a hydrophobic organic.
Based on κ-Köhler theory it is straightforward to determine the critical diameter at
a given supersaturation, above which particles will act as CCN and form droplets.
For the external mixture in Figure 15b, each of the two distinct populations has its
own hygroscopicity, and therefore two different critical diameters exist. Thus, the
hydrophobic particles shown here in blue, will activate only at a larger activation di-
ameter to form CCN, while the hygroscopic ammonium sulfate will activate at a lower
size. This illustrates the differences in CCN activation for the extremes of the aerosol
mixing state range. Figure 15c is typical of how CCN data is presented, with super-
saturation shown as a function of diameter and diagonal lines of constant κ. The κ
values of our example are highlighted as stars along a line of constant supersaturation.

To consider a real world example, Figure 16 shows a number distribution as a
function of supersaturation and diameter for a particle population simulated with a
particle-resolved model (see Section 4.3.6) [Ching et al., 2012]. The population rep-
resents conditions of a polluted urban environment, showing a mixture of fresh and
aged emissions from traffic, meat cooking, and background aerosol. The resulting per-
particle κ values range between close to 0 (for freshly emitted soot particles) and 0.65
(for background particles, consisting of ammonium sulfate). Using 0.3% supersatura-
tion as an example, the overall particle population can be divided into CCN-active (all
particles below the line), and CCN-inactive (all particles above the line). At the given
supersaturation, for particles with low κ (0.01), the diameter must be smaller than
0.12 µm for them to be inactive, while for particles with high κ (0.65), the diameter
must be smaller than 0.06 µm to remain inactive. If all the data were projected onto
the ordinate, we would obtain the number size distribution with a mode of 0.08 µm
for the fresh soot and 0.13 µm for the aged and background particles. This example
illustrates that in the ambient environment different populations with different CCN
activities can exist, and that mixing state will matter for predicting CCN concentration
in such regions.

A critical advance in our ability to understand CCN activity was the development
of the CCN counter [Hudson, 1989; Roberts and Nenes, 2005]. The basic operation of a
CCN counter is that suspended aerosol are exposed to a precisely controlled supersat-
uration (often 0.2–1.0% supersaturation). The fraction of particles that are activated
are then optically detected and compared with the total number of condensation nuclei
(CN), which represents all particles. From this the CCN/CN ratio can be obtained at
a given supersaturation. Since the CCN counter measures the activation of individual
particles, the properties of the aerosol being measured can be used for closure studies.
To perform an aerosol/CCN closure study, the CCN concentration is measured for an
aerosol that is exposed to a particular supersaturation or a set of supersaturations. In-
dependently, the dry particle size distribution and (aspects of) the aerosol composition
are also measured.

Mixing state and its relationship to CCN specifically has been explored by a
number of laboratory and field studies [Sullivan et al., 2009; Vestin et al., 2007; Wang
et al., 2010; Rose et al., 2011; Jurányi et al., 2013; Lance et al., 2013; Leck and Svens-
son, 2015; Maskey et al., 2017; Hatch et al., 2008, 2009; Fofie et al., 2018; Asa-Awuku
et al., 2011, 2015]. Laboratory studies for well-characterized internally mixed aerosol
with single-component, binary mixtures, or tertiary mixtures agree well with Köhler
theory described above [Katz and Kocmond , 1973; Gerber et al., 1977; Cruz and Pan-
dis, 1997; Abbatt et al., 2005]. However, as we will discuss below, closure studies using
ambient aerosol are not as simple and give mixed results [Broekhuizen et al., 2006],
including some cases where closure cannot be obtained with reasonable assumptions.
Reasons for this range from incomplete information about composition, hygroscopic
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Figure 16. Two-dimensional number distribution as a function of particle dry diameter and

critical supersaturation. The black horizontal line indicates a given environmental supersatura-

tion threshold (here 0.3% as an example). Based on this the particles can be categorized as CCN

inactive and CCN active.

properties of organic species and mixing state to measurement uncertainties in CCN
chambers or of particle size distributions.

Intuitively, we expect that assuming internal mixture will result in poor closure
when the sampling occurs close to emission sources or at times of high emission rates.
This has been confirmed by several closure studies over the years. For example, Wang
et al. [2010] and Lance et al. [2013] found a time-of-day dependence for Mexico City
during the MILAGRO campaign, with an external mixture assumption needed during
the morning rush hour, but not at other times of the day. Similarly, from a synthesis
of closure studies at six locations by Ervens et al. [2010], it was found that conditions
close to the emission source warranted more complex assumptions about composi-
tion, i.e., at least information about size-resolved composition or how hygroscopic and
non-hygroscopic species are mixed within a size range. Using measurement of the hy-
groscopic growth of atmospheric aerosols by Kandler and Schütz [2007] and Swietlicki
et al. [2008], Wex et al. [2010] used a closure study to argue that an aerosol is often
externally mixed with respect to hygroscopicity and that using an average value for κ
leads to an overestimation of CCN concentration by up to a factor of two. Cubison
et al. [2008] found that closure was best achieved for the SOAR-1 field campaign in
Riverside when using size-resolved composition, combined with the assumption that
elemental carbon and small-mode organics are externally mixed with respect to the
background population.

When performing closure studies, different studies have considered different pos-
sible mixing state hypotheses. For example, Ervens et al. [2010] explored the impact
of four different composition assumptions, carbonaceous and inorganic fractions ex-
ternally or internally mixed, combined with the assumption of soluble or insoluble
organics. In contrast, Cubison et al. [2008] compared five cases, and Bhattu and Tri-
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pathi [2015] included eight cases. It is important to point out that the “composition
assumptions” that are typically made in closure studies are rather simplistic, and even
though closure may be achieved reasonably well for a certain case, one should not
conclude that the true aerosol really looks like as is assumed for that case, as noted
by [Ervens et al., 2010]. More generally, it is important to separate closure from our
ability to predict aerosol properties. From closure studies we learn how much vari-
ability is introduced by different assumptions, but due to the intrinsically empirical
nature of closure studies, predictive capabilities are not necessarily gained based on
the information obtained.

From these studies one might conclude that external mixing states are only en-
countered in polluted urban environments. However, this can also be the case in remote
locations. Collins et al. [2013] showed that sea spray can consist of two externally-
mixed modes, one consisting of sea salt and organic material and the other consisting
of insoluble organic material. In this case, three different sub-populations with dif-
ferent κ values were needed to explain the data. Similarly, Moore et al. [2011] and
Lathem et al. [2013] found that assuming external mixing provided the best agree-
ment between measured and predicted CCN activity in the Arctic. Meskhidze et al.
[2011] showed that model assumptions on mixing state of marine primary organic mat-
ter impact CCN concentrations. In particular they concluded that treating sea spray
in global climate models as internal mixture of marine primary organic aerosol and
sea salt will lead to an underestimation in CCN concentration, which is not consistent
with observations over biologically active ocean areas.

Composition and mixing state matter least when the aerosol is internally mixed
with a hygroscopic salt as one of the components, because the hygroscopic salt will
dominate the CCN activity of the particle. For example, in Figure 15 particles that
are 50% ammonium sulfate (κ = 0.65) and 50% organic carbon (κ = 0.01) have critical
diameters that are very close to the critical diameter of pure ammonium sulfate, and
very far from the critical diameter of pure organic carbon. That is, the particle’s
CCN activity is largely determined by the hygroscopic salt (ammonium sulfate). For
highly aged aerosol where the particle population is assumed to be internally mixed, a
well-constrained size distribution can thus be sufficient for CCN closure [Broekhuizen
et al., 2006; Dusek et al., 2006; Gunthe et al., 2009].

Regional modeling studies using modal and sectional models are useful for di-
rectly comparing the impact of assuming internal versus external mixing assumptions.
In this context, Lee et al. [2016] used source-oriented WRF/Chem simulations in the
Californian Central Valley and found a decrease in CCN/CN from 94% with an in-
ternal mixture assumption to 80% with a source-oriented mixture. Zhu et al. [2016b]
simulated an episode of several days for the greater Paris Region using the SCRAM
model and found changes of up to 72% in CCN concentrations evaluated at 0.02%
supersaturation in the rural areas surrounding the Paris center.

Zaveri et al. [2010] used a particle-resolved model and a composition-averaging
framework (Section 4.3.6) and found that ignoring mixing state heterogeneity caused
CCN concentrations to be overestimated by up to 40% for conditions that represented
a polluted urban plume. Fierce et al. [2017] used particle-resolved modeling to pro-
vide estimates for the time that an initially externally mixed aerosol must be aged to
become fully internally mixed with respect to CCN activity. This timescale can range
from a few hours for polluted environments to several days for environments with
low production rates of hygroscopic secondary aerosol (e.g., sulfate) that makes them
more CCN active [Ma et al., 2017]. This is consistent with the findings by Dusek et al.
[2006] and Ervens et al. [2010] in that assuming a fully internal mixture is adequate for
simulating CCN concentration of populations away from source regions. However, in
regions where fresh emissions mix with aged aerosol, more detailed mixing state repre-
sentations are required, such as multi-modal approaches or multi-distribution sectional

–56–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

approaches. Also using particle-resolved modeling, Ching et al. [2017] quantified the
error when assuming internal mixture as a function of the mixing state index χ (see
Section 5). They found that CCN concentrations were up to 100% overpredicted
for low-χ populations when internal mixing was assumed, but were well-predicted for
high-χ populations.

The supersaturation at which the CCN activity is being evaluated can determine
whether detailed mixing state information is needed, because different parts of the par-
ticle population are more sensitive at different supersaturations, as shown in Figure 15
above. In general, it might be high or low supersaturations that require more mixing
state information and the effect of neglecting mixing state can have either sign, de-
pending on the details of the aerosol. For example, Bhattu and Tripathi [2015] showed
for measurements in Kanpur, India, that the quality of closure depended on the su-
persaturation at which the CCN concentration was evaluated. This is consistent with
the results by Cubison et al. [2008] and Wex et al. [2010], who found that more de-
tailed mixing state information was needed when the supersaturation was below 0.2%.
The modeling study of Zaveri et al. [2010] also found a dependence on the supersat-
uration cutoff, although there it was the higher supersaturations (around 0.5%) that
required more mixing state information. When modeling the MEGAPOLI campaign,
Zhu et al. [2016b] also found supersaturation-dependence, with an internal mixing as-
sumption reducing CCN concentration at low supersaturations but increasing it at
high supersaturations.

So far we have exclusively discussed the relevance of chemical mixing state for
CCN activity. However, for particles that contain organic and inorganic components,
particle morphology can become important [Facchini et al., 1999; Shulman et al., 1996;
Topping et al., 2007]. If liquid-liquid phase separation occurs, a complete or partial
coating of a hygroscopic particle core by a hydrophobic organic-rich phase will form
[Song et al., 2013], which lowers the surface tension and the critical supersaturation
that is required to activate the aerosol [Ruehl et al., 2016; Ovadnevaite et al., 2017].
Experimentally determining the surface tension of atmospherically relevant systems is
an active topic of research [Boyer and Dutcher , 2017; Petters and Petters, 2016].

To summarize, a full internal mixture across all sizes (submicron and supermi-
cron) is not found in the ambient atmosphere [Bauer et al., 2013]. Even for submicron
particles, complex mixing states can exist, particularly close to aerosol source regions.
Assuming internal mixtures will then incur appreciable errors (on the order of 100%)
in predicting CCN concentration. For these environments, assumptions about the de-
gree of internal versus external mixing within a size range need to be made, but it
is generally a priori unclear exactly which assumptions to make, as this appears to
vary on a case-to-case basis. For these cases, our predictive capability with respect to
CCN activity is limited. In contrast, in locations, where the aerosol is aged and fresh
emissions are not added to the population, assuming an internal mixture with respect
to CCN for submicron sized particles is reasonable for predicting CCN activity. These
tend to be remote regions, but even for those, natural fresh emissions, such as sea
spray, can add heterogeneity to an aerosol, resulting in a mixing state that is not com-
pletely internally mixed. These findings lead to the conclusion that including aerosol
mixing state information in chemical transport models is warranted if the prediction
of CCN concentrations is desired. At the same time, suitable observations are needed
to validate the simulated mixing state.

6.3.2 Mixing state impacts on ice nucleating particles (INPs)

It has long been known that particles, called ice nucleating particles (INPs),
enable the heterogeneous freezing of the droplets at temperatures above those required
for homogeneous freezing [Schaefer , 1949; Dufour , 1862; DeMott et al., 2011]. This

–57–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

process is critical for cloud formation, evolution, lifetime, and precipitation in mixed
phase and ice clouds. However, typically only one in 105 particles is able to act as an
INP [DeMott et al., 2010], which is believed to strongly depend on its physicochemical
properties, such as whether phase state is solid, viscous, or liquid. Thus, the ability
to predict cloud behavior and the impacts on the the hydrological cycle as a whole
depend on connecting ice crystal formation to individual particle properties.

The propensity to form ice at elevated temperatures relative to homogeneous
freezing is usually reported for different particle types and subpopulations of those
types (e.g., different types of mineral dust, soot, or biological particles) [Kanji et al.,
2017]. From field studies using single-particle analysis techniques on ice residuals,
we also know that ice nuclei are mixtures of species [Wise et al., 2012; Schill and
Tolbert , 2014; Wise et al., 2010; Baustian et al., 2012], for example mineral dust and
organic material. Specific particle types observed in clouds include dust and biological
particles, which are also observed in the resulting precipitation [Creamean et al., 2013,
2014, 2015; Pratt et al., 2009c]. Since ice nucleation is a process that depends on the
surface properties of the particles, it is inherently tied to aerosol mixing state [Ault
et al., 2011; Pratt et al., 2009c; Creamean et al., 2013].

Some laboratory studies have shown that coatings on INPs can reduce or inhibit
the ability to nucleate ice in the deposition mode (i.e., ice nucleates from supersatu-
rated vapor with respect to ice directly on an INP) [Cziczo et al., 2009; Sullivan et al.,
2010; Niedermeier et al., 2011; Hoose and Möhler , 2012], where details, such as the
thickness or the completeness of the coating, matter [Cziczo et al., 2009]. However,
ice can still form via the immersion freezing pathway (i.e., ice nucleation initiated by an
INP immersed in an aqueous solution or water droplet via activation of CCN followed
by freezing at supercooled temperatures), which then requires that supersaturation
with respect to water is reached. This means that aerosol mixing state to some extent
governs which freezing pathway is accessed.

Quantifying the ice nucleation rates is expected to depend on the details of the
aerosol composition and morphology, in particular, on which species reside at the sur-
face of the aerosol particle and the properties of that surface [Knopf and Alpert , 2013].
However, in contrast to the process of cloud droplet formation, where Köhler theory
provides us an accurate model, we do not yet have a first-principles understanding
of the process of ice crystal formation, and how it depends on the details of aerosol
composition and morphology [Murray et al., 2012; Knopf et al., 2018]. Unlike with
CCN or optical properties, INP closure studies do not yet exist. While the importance
of mixing state for INPs is well-recognized within the community, its quantification is
hampered by the lack of fundamental process models.

It is currently greatly debated how to best parameterize heterogeneous ice nu-
cleation, even for “simple” (externally mixed) aerosol types [Hoose et al., 2010; Hoose
and Möhler , 2012; Phillips et al., 2008]. The two fundamentally different approaches
are a stochastic description based on classical nucleation theory, which yields a nu-
cleation rate coefficient, and a deterministic (singular) description, which yields the
number of ice nucleation active sites. Within each of these frameworks, different pa-
rameter choices produce diverging results for cloud properties such as the onset of the
Wegener-Bergeron-Findeisen process [Wegener , 1911; Findeisen, 1938], liquid water
and ice water content [Ervens and Feingold , 2012; Wright and Petters, 2013]. Since
INP parameterizations have traditionally been formulated for different particle types,
they intrinsically rely on an understanding of the aerosol mixing state. As parameter-
izations expand to include more types of freezing and multiple particle types Beydoun
et al. [2017], knowledge of the overall aerosol mixing state will be critical for accurate
predictions.
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The modal representation of aerosol in global and regional models (see Sec-
tion 4.3.3) lends itself to a “type-based approach” of representing ice nucleation, where
different ice nucleation propensities are assigned to the various particle types (e.g.,
dust, biological particles, and soot) [Hoose et al., 2010]. Within large-scale modeling
studies, complexities due to morphology and mixing state have been largely not yet
explored, with the exception of INP deactivation by coatings. Overall, while it is
known that it is important to connect aerosol mixing state with primary cloud ice
crystal formation, the ability of models to incorporate both detailed aerosol mixing
state information and INP predictions is currently quite limited.

7 Conclusions and future needs

This review has covered our current understanding of aerosol mixing state and
its impacts. We began in Section 2 with definitions of the chemical mixing state,
which is the distribution of chemical species across the particles in an aerosol, and
the physicochemical mixing state, which also includes the distribution of morphology,
phase, and other particle characteristics. We have emphasized the need to distinguish
between single-particle properties, such as the number of chemical species or the par-
ticle shape, and the mixing state which captures the distribution of these properties
across a population.

Over the past few decades considerable progress has been made in measuring
the composition and physical properties of individual particles necessary to determine
aerosol mixing state and to evaluate its impacts. However, as described in Section 3,
no single instrument is able to completely capture physicochemical mixing state across
all particle sizes. For example, gaps in data can be related to the sizes of particles
measured by a certain instrument (e.g., ultrafine particles might not be captured)
or stem from challenges measuring specific species (e.g., water or refractory material
might not be detected). To characterize aerosol mixing state at a given time or location
therefore necessitates the combination of multiple instruments that simultaneously
sample the same aerosol. This can be challenging, and often a single measurement
is all that is available to determine mixing state from field measurements. Though
not the norm, studies taking an integrative approach have provided useful information
on mixing state and serve as a guide for future efforts [Bondy et al., 2018; Fraund
et al., 2017; Gunsch et al., 2017; Healy et al., 2013; Jung et al., 2014; Li et al., 2016;
May et al., 2018b; Moffet et al., 2010; Murphy et al., 2006; O’Brien et al., 2015; Qin
et al., 2012; Sobanska et al., 2014]. It would be extremely helpful to conduct more
observations in which a complete characterization of aerosol samples is achieved, i.e.,
studies that determine chemical, and morphological properties simultaneously.

The development of new measurement techniques and methodologies represents
an exciting direction of research for improving our understanding of aerosol mixing
state. This includes both sophisticated instrumentation to measure challenging or in-
tegrated properties, simpler measurements that can complement existing approaches,
field-portable versions of laboratory instrumentation, and new approaches for prop-
erties that are currently not measured effectively. As an example of a measurement
that would be valuable, direct determination of aerosol liquid water content at the sin-
gle particle level would complement existing measurements of dry components. New
instrumentation does not need to provide precise mass of each component at the indi-
vidual particle level to be valuable and worth pursuing to improve our understanding
of mixing state in the ambient atmosphere.

Aerosol models used in regional or global climate-chemistry models increasingly
include representations of aerosol mixing state, ranging from comparatively simple
multi-modal approaches (e.g., MAM4 [Liu et al., 2016]) to more sophisticated multi-
dimensional sectional approaches (e.g., SCRAM [Zhu et al., 2015], ATRAS [Matsui
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et al., 2014]) and to very detailed particle-resolved approaches (e.g., WRF-PartMC
[Curtis et al., 2017]). Section 4 laid out how the different modeling approaches rep-
resent the aerosol composition space, and what the tradeoffs are in terms of detail in
representation and computational demands.

A challenge when trying to evaluate the quality of the simulated aerosol mixing
state is the scarcity of measurement data [Stier et al., 2007], which is not surprising,
given that the data suitable for comparisons are mostly complex, expensive, and labor-
intensive to obtain. We are not yet at the point where we can routinely characterize
the mixing state of aerosols with high detail, over large areas, and with high temporal
frequency. Improved measurement capabilities that can provide increased spatial res-
olution or broader time scales than typical field studies are needed. Challenges also
remain around the compatibility of the quantities that models track and the quanti-
ties that are experimentally determined. All mixing-state-aware models are aiming at
predicting the distribution of masses of different model species across the population.
Quantitative information about species masses are challenging to extract from experi-
mental single-particle approaches, and frequently the species tracked in models do not
easily map to the species that are measured.

For any of these modeling approaches, aerosol emission inventories are important
input data. For many significant emission sources, the aerosol already has a complex
mixing state at the time of emission (e.g., car emissions [Willis et al., 2016]). Much
work will be needed to include this information in emission inventories, so that mixing-
state-aware models can make use of it.

To fully allow the representation of not only the chemical mixing state, but the
physicochemical mixing state in models, predictive models of particle morphology are
needed, for example, models that can capture the restructuring of fractal carbonacous
particles as part of the aerosol aging process or models that capture the occurance of
liquid-liquid phase separation. This goes well beyond simply storing morphological in-
formation, as it is the evolution of the morphology which must be accurately captured.
As well as model development, targeted experimental datasets from the lab and field
will be needed to guide the development of truly predictive morphology models.

For studying aerosol mixing state, quantitative metrics of the mixing state are
key tools. Such metrics measure the degree to which an aerosol or subpopulation is
internally or externally mixed, and allow the direct comparison of mixing state from
different instruments or models. The most widespread metric of chemical mixing state
at present is the mixing state index χ described in Sections 5.1 and 5.2, although other
metrics exist that are tailored to specific aerosol features (Section 5.3).

Measuring or modeling the value of χ raises two of our central themes, namely
the need to measure per-particle mass fractions of species, and the need to choose what
constitutes a “species”. Progress on these two items has already enabled comparisons
between the measured and modeled mixing state in several studies and we have some
preliminary quantitative understanding of how the mixing state index relates to errors
in predicted aerosol impacts (Section 5.2).

While the mixing state index χ has provided a framework for quantifying chem-
ical mixing state, we currently lack generally-accepted metrics for the full physico-
chemical mixing state. There are numerous metrics for single-particle morphology
(Section 5.4), but these still need to be integrated into metrics for the morphological
state and variability of an entire particle population. This is important for under-
standing heterogeneous and multiphase reactions, as well as impacts that are sensitive
to particle structure such as optical properties.

Different approaches exist for quantifying the impact of aerosol mixing state on
aerosol optical properties, as well as CCN and INP activity (Section 6). This in-
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cludes closure studies, sensitivity studies that determine parametric uncertainty with
respect to mixing state assumptions, and comparisons to higher detail models that
determine structural uncertainty of models that use a simplified mixing state repre-
sentation. From these studies we learn that to predict these target quantities, mixing
state matters in many conditions. For example, different mixing state assumptions
will introduce errors in CCN concentration predictions by up to 100%, and predictions
of absorption enhancement of black carbon will be overestimated by a factor of two if
the mixing state is oversimplified.

To accurately predict aerosol impacts, it is generally necessary to both predict the
physico-chemical mixing state of the aerosol and to understand how the target quanti-
ties depend on this mixing state. As discussed above, both measurements and models
have made progress in quantifying and predicting mixing state of an aerosol. When it
comes to predicting target quantities from a known mixing state, our understanding
is generally better for CCN (Section 6.3.1) than for optical properties (Section 6.2),
which in turn is significantly better than for INPs (Section 6.3.2). For CCN, κ-Köhler
theory generally gives reasonable results, unless there are surface effects. For optical
properties, Mie theory and core-shell models are physically well-founded when they
apply, but understanding when and how they apply remains an active area of research
(Section 6.2). For INPs, there does not yet exist a consensus on the appropriate phys-
ical models, which results in a current lack of predictive models for INPs in a range of
atmospheric conditions.
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Table 9: List of abbreviations.

Abbreviation Definition
AFM atomic force microscopy
AFM-IR atomic force microscopy with infrared spectroscopy
A-FORCE Aerosol Radiative Forcing in East Asia
ALABAMA aircraft-based laser ablation mass spectrometry
AMS aerosol mass spectrometer
ART-2a adaptive resonance theory 2a
ATOFMS aerosol time-of-flight mass spectrometry
ATRAS Aerosol Two-dimensional bin module for foRmation and Aging

Simulation
ATR-FTIR attenuated total reflectance Fourier transform infrared

spectroscopy
ATTO Amazonia Tall Tower Observatory
BC black carbon
CAMx Community Atmosphere Model
CARES Carbonaceous Aerosol and Radiative Effects Study
CCN cloud condensation nuclei
CC-Raman computer-controlled Raman microspectroscopy
CCSEM computer-controlled scanning electron microscopy
CMAQ Community Multiscale Air Quality Modeling System
COSMO-Art Consortium for Small-scale Modelling-Aerosol and Reactive

Trace gases
CPC condensation particle counter
CR-AVE Costa Rica Aura Validation Experiment
Cryo-TEM transmission electron cryomicroscopy
DDA discrete dipole approximation
DMA differential mobility analyzer
ECHAM comprehensive atmospheric general circulation model developed

at the Max Planck Institute for Meteorology
ECHAM-HAM ECHAM model including an aerosol module
EDX energy dispersive X-ray spectroscopy
EDXMA energy dispersive X-ray microanalysis
EELS electron energy loss spectroscopy
EMAC ECHAM/MESSy Atmospheric Chemistry
EPMA energy probe X-ray microanalysis
ESEM environmental scanning electron microscopy
E-TEM environmental transmission electron microscopy
EF-TEM energy filtered transmission electron microscopy
ES-SERS electrospray surface enhanced Raman spectroscopy
FTIR Fourier transform infrared spectroscopy
HAADF high angle annular dark field detector
HAB harmful algal bloom
HDMPS humidifying differential mobility particle sizer
HH-TDMA high humidity hygroscopic tandem differential analyzer
HTDMA hygroscopic tandem differential analyzer
INP ice nucleating particle
IR infrared
LAMPAS laser mass analysis of particles in the airborne state
LDI laser desorption ionization
LMMS laser microprobe mass spectrometry
LS-SP-AMS light scattering soot particle aerosol mass spectrometer
MAAP multiangle absorption photometer
MADE3 Model Aerosol Dynamics model for Europe
MADE-in modal aerosol dynamics model including insoluble modes
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Abbreviation Definition
MADRID-BC Model of Aerosol Dynamics, Reaction, Ionization, and

Dissolution—Black Carbon
MAM Modal Aerosol Model
MATRIX Multiconfiguration Aerosol Tracker of Mixing State
MEGAPOLI Megacities: emissions, urban, regional and global atmospheric

pollution and climate effects, and Integrated tools for assessment
and mitigation

MESSy Modular Earth Submodel System
Micro-FTIR Fourier transform infrared spectroscopy coupled to optical

microscopy
MILAGRO Megacity Initiative: Local and Global Research Observations
MOSAIC Model for Simulating Aerosol Interactions and Chemistry
MOSAIC MIX mixing-state-resolved sectional aerosol model
MS mass spectrometer
NAMS nanoaerosol mass spectrometry
NanoSIMS nano secondary ion mass spectrometry
PALMS particle analysis by laser mass spectrometry
PartMC particle-resolved Monte Carlo
PAS photoacoustic spectrometer
PBAP primary biological aerosol particle
PEACE-C Pacific Exploration of Asian Continental Emission-C
PM particulate matter
POA primary organic aerosol
PSAP particle soot absorption photometer
QMOM quadrature method of moment
RSMS rapid single particle mass spectrometry
SCRAM Size-Composition Resolved Aerosol Model
SEM scanning electron microscopy
SERS surface enhanced Raman spectroscopy
SERRS surface enhanced resonance Raman spectroscopy
SFG sum frequency generation
SHG sum harmonic generation
SIMS secondary ion mass spectrometry
SMPS scanning mobility particle sizer
SOA secondary organic aerosol
SOAR-1 Study of Organic Aerosol at Riverside
SOAS Southern Oxidant and Aerosol Study
SP2 single particle soot photometer
SP-AMS soot particle aerosol mass spectrometer
SPLAT single particle laser ablation time-of-flight mass spectrometry
SPMS single particle mass spectrometer
SSA stochastic simulation algorithm
STEM scanning transmission electron microscopy
STXM scanning transmission X-ray microscopy
STXM-NEXAFS scanning transmission X-ray microscopy with near edge X-ray

absorption fine structure spectroscopy
TDMPS twin differential mobility particle sizer
TEM transmission electron microscopy
TERS tip-enhanced Raman spectroscopy
TOF-SIMS time-of-flight secondary ion mass spectrometry
UV-APS ultraviolet aerodynamic particle sizer
VOC volatile organic compound
VTDMA volatility tandem differential mobility analyzer
WIBS wide issue bioaerosol spectrometer
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Abbreviation Definition
WRF-Chem Weather and Research Forecasting model coupled with Chemistry
XANES X-ray absorption near edge spectroscopy
XEDS X-ray energy dispersive spectroscopy
XPS X-ray photoelectron spectroscopy
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Mikhailov, E., S. Vlasenko, L. Krämer, and R. Niessner (2001), Interaction of soot
aerosol particles with water droplets: influence of surface hydrophilicity, Journal of
Aerosol Science, 32 (6), 697–711.

Mishchenko, M. I., L. D. Travis, and D. W. Mackowski (1996), T-matrix computa-
tions of light scattering by nonspherical particles: a review, Journal of Quantitative
Spectroscopy and Radiative Transfer, 55 (5), 535–575.

Mitchem, L., J. Buajarern, A. D. Ward, and J. P. Reid (2006), A strategy for char-
acterizing the mixing state of immiscible aerosol components and the formation
of multiphase aerosol particles through coagulation, The Journal of Physical Chem-
istry B, 110 (28), 13,700–13,703.

Moffet, R., and K. Prather (2005), Simultaneous measurements of optical properties,
size and chemical composition on single aerosol particles, in Abstracts of Papers
of the American Chemical Society, vol. 229, pp. U111–U111, Amer. Chemical Soc.
1155 16TH ST, NW, Washington, DC 20036 USA.

–81–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Reviews of Geophysics

Moffet, R. C., and K. A. Prather (2009), In-situ measurements of the mixing state and
optical properties of soot with implications for radiative forcing estimates, Proceed-
ings of the National Academy of Sciences, 106 (29), 11,872–11,877.

Moffet, R. C., X. Qin, T. Rebotier, H. Furutani, and K. A. Prather (2008), Chemically
segregated optical and microphysical properties of ambient aerosols measured in
a single-particle mass spectrometer, Journal of Geophysical Research: Atmospheres,
113 (D12).

Moffet, R. C., T. Henn, A. Laskin, and M. K. Gilles (2010), Automated chemical
analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the
carbon K-edge, Analytical Chemistry, 82 (19), 7906–7914.
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✓
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✓
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✓
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1

Species µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

Species 1 1 2 3 4 5 0 0 0 0 0

Species 2 0 0 0 0 0 1 2 3 4 5

~µ1 =

✓
0.26
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◆
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~µ2 =

✓
1.07
0.93

◆
(20)

. . . (21)

~µ11 =

✓
1.46
1.76

◆
(22)

~µ12 =

✓
2.48
1.27

◆
(23)

2

External mixture: Each particle 
consists of a single species.

Internal mixture: All particles 
contain the same mass fractions 
of species 1 and 2.

Real-world mixture: Mass 
fractions of species 1 and 2 vary 
between particles.

(a) (b)

(c) (d) (e)
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avg. particle diversity Dα = 2
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avg. particle diversity Dα = 4
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Mixing state 
assumption

Measure CCN 
concentration/ 

optical 
properties 

Agreement within 
measurement 
uncertainties?

update

Diagnostic 
Model for CCN/ 

optical 
properties

CCN/optical 
properties 
(measured)

CCN/optical 
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(calculated)
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sample

Mixing state 
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Dynamic 
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properties 1

CCN/optical 
properties 2
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Parametric 
uncertainties

Mixing state 
assumption

Dynamic Aerosol 
Model

Benchmark 
model 

(e.g.Particle
resolved model)

CCN/optical 
properties 1

CCN/optical 
properties 2

Structural
uncertainties

(a) Closure study
Uses Experimental data and a diagnostic model for target quantities
Assesses which mixing state assumption (if any) can reproduce observations  

(b) Within-model parameter variation
Uses a single dynamic aerosol model
Assesses how sensitive a particular model is to different mixing state assumptions

(c) Model benchmarking
Uses two dynamic aerosol models – one to be verified and one to act as a benchmark
Assesses how much error is introduced due to simplified mixing state representation.

Mixing state impact assessment methods

Measure size 
distribution and 

composition
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