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22 Abstract  

23 Although populations are phenotypically diverse, the majority of trait-based studies have 

24 focused on examining differences among species. The justification for this broadly applied 

25 approach is based on the assumption that differences among species are always greater than 

26 within species. This is likely true for local communities, but species are often broadly 

27 distributed across a wide range of environments and patterns of intraspecific variation might 

28 surpass differences among species. Therefore, an appropriate interpretation of the functional 

29 diversity requires an assessment of patterns of trait variation across different ecological 

30 scales. In this study, we examine and characterize patterns of leaf trait variation for species 

31 that are broadly distributed along an elevational gradient. We focus on seven leaf traits that 

32 represent a main axis of functional differentiation in plants reflecting the balance between 
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33 photosynthetic efficiency, display, and stomatal conductance. We evaluated patterns of trait 

34 variance across ecological scales (elevation, species, populations, and individuals) and 

35 examined trait covariance at both within species and across species levels, along the elevation 

36 gradient. Our results show three key patterns: (1) intraspecific leaf trait variation for broadly 

37 distributed species is comparable to the inter-specific trait variation, (2) the trait variance 

38 structure is highly variable across species and (3) trait coordination between pairs of leaf 

39 traits is evident across-species along the gradient, but not always within species. Combined, 

40 our results show that trait coordination and covariance are highly idiosyncratic across broadly 

41 distributed and co-occurring species, indicating that species may achieve similar functional 

42 roles even when exhibiting different phenotypes. This result challenges the traditional 

43 paradigm of functional ecology that assumes single trait values as optimal solutions for 

44 environments. In conclusion, patterns of trait variation both across and within species should 

45 be considered in future studies that assess trade-offs among traits over environmental 

46 gradients. 

47 Key words: Intraspecific trait variation, leaf area, leaf carbon content, leaf thickness, plant 

48 functional traits, variance components, specific leaf area, trait covariance.

49 Introduction 

50 A conspicuous characteristic of life is the enormous amount of variation in form and 

51 function. Organisms exhibit complex arrangements of morphological and physiological traits 

52 that do not appear to be the result of pure chance. Instead, this phenotypic variation is likely 

53 the result of ecological factors such as biotic and abiotic interactions, as well as genetic and 

54 evolutionary constraints that operate within and across species. Although many ecological 

55 studies focus on local and relatively homogeneous environments where inter-specific trait 

56 variation typically exceeds intra-species variation, these homogeneous conditions usually do 

57 not represent the entire distribution of a species and might not reflect its actual trait 

58 distribution (Hulshof and Swenson 2010, Messier et al. 2010). Recent literature on 

59 intraspecific trait variation (ITV) suggests that species have the potential to exhibit extensive 

60 intraspecific trait variation (Albert et al. 2011, Siefert et al. 2015, Umaña et al. 2018). 

61 Therefore, understanding how phenotypes vary, not only across species, but also within 

62 broadly distributed species, is fundamental for fostering insights into the potential 

63 mechanisms driving community structure and for determining future species responses under 

64 ongoing climate change.

65 Ecological forces exert a sustained influence on natural communities by selecting 

66 species with particular traits that fit the local abiotic demands (Keddy 1992). For example, 
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67 previous studies have shown that leaf traits exhibit strong variation across plant communities 

68 distributed along environmental gradients (Reich et al. 1999, Wright et al. 2004, Messier et 

69 al. 2010, Swenson et al. 2011). This observed variation in community-level traits across 

70 resource gradients results from variation across species as well as within species (Albert et al. 

71 2010, Messier et al. 2010, Kichenin et al. 2013). In particular, for broadly distributed species, 

72 trait variance across populations or ecotypes (conspecific organisms located at different 

73 portions of environmental gradients) could be comparable in magnitude to the trait variance 

74 across species if differences in biotic and abiotic conditions result in a great phenotypic 

75 variation to cope the local demands (Fajardo and Siefert 2019). Alternatively, if strong 

76 constraints operate at the species level maintaining species identities over their entire range, 

77 trait variation within species should not exceed the variance across species.

78 Trait responses to local conditions might or might not be consistent across species. 

79 The magnitude of trait variation should be related to the strength of trade-offs that operate 

80 among traits (Armbruster and Schwaegerle 1996, Armbruster 2016). For example, if few 

81 fundamental trade-offs operate consistently across species (e.g. biophysical constraints to 

82 achieve a given physiological function), then trait variance at the level of individuals and 

83 populations (across ecological scales) should be consistent across species. However, 

84 alternative explanations propose that co-occurring species might achieve functional 

85 equivalence through different combination of traits resulting in different patterns of variance 

86 structure across species (Marks and Lechowicz 2006, Marks 2007). In this case, traits will be 

87 connected through complex networks of trade-offs that do not necessary result in the same 

88 (obligate) trait combinations across species. In fact, past studies have suggested that variance 

89 structure is highly idiosyncratic for species in temperate forests (Albert et al. 2010, Kumordzi 

90 et al. 2015).

91 Given that the phenotype of an individual is an assemblage of traits that together 

92 achieve the vital functions of organisms (Lewontin 1978), and as a whole, organisms respond 

93 to local environments, it is necessary to understand the multidimensional integration of the 

94 phenotype to predict species responses to climatic changes (Laughlin and Messier 2015). 

95 Covariance in traits has been widely studied in the past (Grime 1979, 1997, Felsenstein 1988, 

96 Armbruster and Schwaegerle 1996, Reich et al. 1998, 1999, Ackerly and Reich 1999, 

97 Santiago et al. 2004b, 2004a, Wright et al. 2004), and, in the case of plants, main trait spectra 

98 have been identified (Westoby 1998, Wright et al. 2004, Chave et al. 2009, Díaz et al. 2015). 

99 For example, the leaf economic spectrum describes a range of strategies that go from 

100 acquisitive to conservative in carbon investment and return and has shown strong correlations 
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101 at worldwide scale across species (Wright et al. 2004) and within species (Martin et al. 2007, 

102 Vasseur et al. 2012, Fajardo and Siefert 2018). However, the generality of this pattern across 

103 spatial scales has been questioned by studies that have found weak or non-existent trait 

104 correlations at local scales (Cornwell and Ackerly 2009, Wright and Sutton-Grier 2012, 

105 Grubb 2016, Messier et al. 2017). These contradictory results suggest that filtering forces 

106 leading to trait correlations along environmental gradients might not determine trait 

107 correlations at other ecological scales. Whether the patterns of trait covariation found along 

108 environmental gradients across species are equally strong within broadly distributed species, 

109 remains understudied (but see, Anderegg et al. 2018).

110 Although trait variation within species is recognized, there is controversy regarding 

111 over whether trait variation within species is comparable in magnitude to that of the species 

112 level, and whether this variation mirrors that found at the community level. Here, we were 

113 interested in characterizing variation in leaf traits for species that are broadly distributed 

114 along an elevation gradient in Puerto Rico. The elevation gradient studied exhibits a 

115 variation in annual rainfall of 1300 mm from the lowest to the highest sampled sites and a 

116 difference in mean annual temperature of 4°C. We examined four ecological scales: 

117 elevation, species, population (group of individuals of the same species at each sampled 

118 elevation) and individuals, and we focused on leaf traits that represent a significant portion 

119 of functional differentiation in plants that reflect resource acquisition strategies, plant 

120 structure and design as well as water transport (Tilman et al. 1997, Westoby et al. 2002, 

121 Wright et al. 2004, Poorter and Rozendaal 2008). The resource acquisition traits are mainly 

122 defined by the leaf economic spectrum (LES) and the N stable isotope ratio (δ15 N). The LES 

123 is described as the range of strategies from low carbon rate acquisition and release to high 

124 carbon rates. The N isotope relates to N availability in soil and is affected by climate and 

125 mycorrhizal fungi (Martinelli et al. 1999, Dawson et al. 2002, Santiago et al. 2004b, Craine et 

126 al. 2009). The architectural design trait is related to leaf display for carbon gain and is 

127 represented by leaf area (Poorter and Rozendaal 2008). The third dimension is related to 

128 water use efficiency and water availability represented by C Isotope (δ13 C). Based on this 

129 varied arrangement of leaf traits, we asked the following questions: (1) is the magnitude of 

130 trait variation across species comparable to that occurring within species broadly 

131 distributed across environmental gradients (i.e. across populations located in different sites 

132 along the gradient or across individuals within the same site)? We predict that if species 

133 adjust to local conditions, then the variance structure at the population- and species-levels 

134 should be comparable. Alternatively, if species traits confer high tolerances to stressful 
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135 conditions along the entire gradient or these traits are not strongly selected across the 

136 elevation, then species would have lower trait variation at the population-level than at the 

137 species-level. (2) Do species have similar trait variance structure? We expect that if species 

138 use similar pathways to adjust to local conditions, we should find similar trait variance 

139 structure across species indicating that fundamental trade-offs operate strongly across 

140 ecological scales. If species achieve functional adjustments through independent 

141 arrangements of traits, then, trait variance structure should be different across species. (3) 

142 How do the strengths of the correlations between pairs of traits vary across and within 

143 broadly distributed species? We propose four different scenarios that describe sets of traits 

144 correlations at gradient- and within-species-levels (Fig. 1). At the gradient level, 

145 differences across species are ignored and we focus on differences across elevation zones. 

146 If environmental factors select similar traits along the gradient of elevation and species are 

147 also coordinated in their responses (either through plastic, genetic or biophysical reasons), 

148 then we should expect to find strong correlations between traits at the gradient and within-

149 species level (Fig. 1A). If there are biophysical constraints that govern trait correlations, but 

150 the environment does not act as a strong selective force on the traits, then we should expect 

151 a strong correlation between traits at the within-species level, but not at the gradient level 

152 (Fig. 1B).  If the environment is a main selective force shaping the functional structure of 

153 communities, but species achieve their functional requirements through alternative 

154 combinations of traits (Marks and Lechowicz 2006), then the correlation between traits 

155 should be significant at the gradient level but not at the within-species level (Fig. C). This 

156 result would indicate that abiotic factors act as a strong filter on the phenotype, but that 

157 species responses to the environment are highly idiosyncratic by modifying a different 

158 combination of traits (Fig. 1C). If the traits are not strongly linked, we should not see 

159 strong correlations at any level (Fig. 1D).

160

161 Methods

162 The study area is located in North Eastern Puerto Rico, in El Yunque National Forest 

163 (18°19.60’ N, 65°49.40’ W). This is a subtropical wet forest that ranges from 250 to 1075 

164 m in elevation. At the lowest elevation, the annual rainfall is 2300 mm, the mean annual 

165 temperature is 24.5°C and the forest is characterized by a premontane rainforest tropical 

166 vegetation dominated by a palm (Prestoea acuminata (Willd.) H.E. Moore) and the tabonuco 

167 tree (Dacryodes excelsa Vahl) (Thompson et al. 2002). At the highest elevation, the annual 

168 precipitation is 3600 mm, the mean annual temperature is 20.0°C and the vegetation is typical 
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169 of a tropical cloud forest. During 2001 and 2002, 16 0.1-ha permanent plots were established 

170 along the elevation gradient from 250 to 1000 m and were separated by 50 m in elevation. 

171 Within each plot, all individuals with a diameter at breast height (DBH) greater than 1 cm 

172 where tagged and 99% of individuals could be identified to species. Despite the short 

173 elevation range, the gradient presents a conspicuous community turnover in traits and species 

174 (Swenson et al. 2011).  

175

176 Species selection

177 Based on the abundance distribution of species found across the 16 permanent plots 0.1-ha in 

178 area, we selected all tree species that were present in at least eight plots and that were 

179 abundant where they appear (more than 10 individuals per 0.1 ha with DBH > than 7cm). A 

180 total of six species met the criteria: Cecropia schreberiana Miq subspecies schreberiana 

181 (Urticaceae) (hereafter referred to as CECSCH), Cordia borinquensis Urb. (Boraginaceae) 

182 (hereafter referred to as CORBOR), Dacryodes excelsa Vahl (Burseraceae) (hereafter 

183 referred to as DACEXC), Henriettea squamulosa (Cogn.) Judd (Melastomataceae) (hereafter 

184 referred to as CALSQU), Micropholis garciniifolia Pierre (Sapotaceae) (hereafter referred to 

185 as MIRGAR) and Sloanea berteroana Choisy ex DC (Elaeocarpaceae) (hereafter referred to 

186 as SLOBER).

187

188 Trait collection

189 For adult individuals of each species at each elevation, we collected branches from the top-

190 half section of the crown. The total number of individuals by species and ranges of elevation 

191 used for this study are shown in Table 1. Most of the individuals collected were present in 

192 the permanent 0.1-ha plots, but some of them were collected from nearby individuals that 

193 were at the same elevation. We measured seven leaf traits on fully expanded and non-

194 senescent leaves, at the distal portion of all branches because these had the greatest 

195 exposure to sunlight. The traits measured were: leaf nitrogen content (LNC, reported on 

196 mass basis) is correlated photosynthetic capacity because nitrogen forms part of the rubisco 

197 enzyme that is involved in the carbon fixation (Schulze et al. 1994). Leaf carbon content 

198 (LCC, reported on mass basis) reflects the investment in leaves’ structure and defense 

199 against herbivory (Bryant et al. 1983, Niinemets 2007). Foliar carbon stable isotope content 

200 (δ13 C, reported relative to V-PDB, ‰) represents the balance between CO2 diffusion 

201 (stomatal conductance) and atmospheric CO2 uptake and is related to water use efficiency 

202 (Farquhar et al. 1989). Foliar nitrogen stable isotope content (δ15 N, reported relative to AIR, 
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203 ‰) is related to high nitrogen availability in the soil and low precipitation (Dawson et al. 

204 2002, Amundson et al. 2003, Santiago et al. 2004b, Ma et al. 2012) . In addition, recent 

205 studies have shown that δ15 N varies with mycorrhizal fungi composition and is an indicator 

206 of nitrogen cycling (Amundson et al. 2003, Craine et al. 2009). Although the mechanisms 

207 underlying these shifts in δ15 N are not well understood, previous literature indicates 

208 significant responses to environmental gradients in tropical systems (Santiago et al. 2004b) 

209 making it of interest  to those studying patterns of trait variation within and across species. 

210 Specific leaf area (SLA, cm2 g-1), calculated as the ratio between leaf area and dry mass is 

211 one of the leaf economic traits (Wright et al. 2004). Leaf thickness (μm) reflects mechanical 

212 resistance and is linked to leaf life-span (Onoda et al. 2011). Leaf area (LA, cm2) is 

213 considered an architectural trait and although it is not directly related to physiological 

214 functions, it reflects leaf light capture strategies and light competition (Poorter and Rozendaal 

215 2008). The measurements of these traits followed standardized methodology (Cornelissen et 

216 al. 2003, Onoda et al. 2011) and for chemical traits, all leaves were analyzed at the Cornell 

217 University Stable Isotope Lab. We log-transformed LA, SLA, and leaf thickness to correct 

218 for skewness.

219

220 Analyses

221 To compare the patterns of variation in traits across ecological levels (question 1) we 

222 calculated how variance was partitioned across 4 nested levels (elevation, species, 

223 population, and tree) for each trait by fitting linear mixed-effects models following the 

224 same procedure described by Messier et al. (2010). The population scale refers to 

225 individuals of the same species within the same elevation. We performed random 

226 resampling of the individuals in the data matrix (700 permutations) and performed the same 

227 analyses to estimate 95% credible intervals. In addition, to address the second question and 

228 to examine whether species exhibit similar variance structure, we calculated variance 

229 partitioning across populations and individuals for each species independently. Next, we 

230 conducted Pearson correlation tests between variances at the population- and individual-

231 level for all species pairs. 

232 To evaluate trait covariance and potential mechanisms constraining trait variation 

233 and to test predictions presented in Fig. 1 (question 3), we performed Pearson correlations 

234 across all pairs of traits at two different levels: across-species along the gradient and 

235 within-species along the gradient (hereafter referred to as the gradient and the within-

236 species levels respectively). For the trait correlations at the gradient-level, we calculated the 
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237 mean trait values per elevation (averaging trait values of all co-occurring individuals of 

238 different species) and then performed Pearson correlations among all pairs of traits. For the 

239 correlations within species, we performed Pearson correlations across all pair of traits for 

240 each species separately (we used individual-level information). Further, we compared the 

241 significance of the correlations and the sign of Pearson’s r across the six species and the 

242 correlation at the gradient level to examine predictions presented in Fig. 1.

243

244 Results

245 In terms of the variance partitioning analyses across the four ecological levels (elevation, 

246 species, population, and individual), we found that elevation explained little variance for 

247 three traits (leaf thickness, δ13 C and only 1% for SLA); that the population- and the species-

248 level variance were comparable for all traits; and for δ13 C, δ15 N and LNC, variance at the 

249 individual-level was similar or higher than at the population-level (Fig. 2, Appendix S1: 

250 Table S1).  In addition, LNC, LCC, and δ15 N had trait variation evenly distributed at the 

251 individual-, population- and species-level (Fig.2, Appendix S1: Table S1). Variance 

252 explained at the elevation- and population-level was similar for leaf thickness and δ13 C, but 

253 at the individual-level, the variance explained was higher for δ13 C than the variance 

254 explained for leaf thickness (Fig. 2, Appendix S1: Table S1). Leaf area had a large 

255 percentage of its variance at the population- and species-level (47%) and a small percentage 

256 at the individual-level (Fig. 2, Appendix S1: Table S1). SLA had the same amount of 

257 explained variance at the species- and population-level (40%), less so at individual-level 

258 (19%) and none due to elevation-level (Fig. 2, Appendix S1: Table S1). 

259 When examining differences in trait variance structure across species by performing 

260 correlations between pairs of species at the population- and individual-level, we found only 

261 one significant correlation (between DACEXC and SLOBER). This indicates that species 

262 show highly independent patterns in trait variation (Fig. 3, Appendix S1: Fig. S1).

263 For trait covariance, we found that eight out of 20 correlations were significant at the 

264 gradient level and three were significant within-species along the gradient (where all the 

265 species consistently showed significant correlations) (Fig. 4, Appendix S1: Tables S2-S3). 

266 The correlation between SLA and LNC was marginal (P = 0.05) and positive at the gradient 

267 level, and only significant for DACEXC and SLOBER (Fig. 4A, Appendix S1: Tables S2-

268 S3). SLA was negatively correlated with leaf thickness and δ13 C at within-species and 

269 gradient levels (Fig. 4B and C, Appendix S1: Tables S2- S3). The correlation between SLA 

270 and δ15 N was negative at the gradient level and at the within-species level, DACEXC, 
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271 MIRGAR, and SLOBER showed positive correlations (Fig. 4D, Appendix S1: Tables S2-S3). 

272 Log-transformed leaf thickness and δ13 C were positively correlated at both levels (Fig. 4E, 

273 Appendix S1: Tables S2-S3). At the gradient level, log-transformed leaf thickness and δ15 N 

274 were positively correlated and at the within-species level, DACEXC, and SLOBER showed 

275 negative correlations (Fig. 4F, Appendix S1: Tables S2-S3). The correlation between log-

276 transformed leaf thickness and LNC was negative at the gradient level and at the within-

277 species level, CORBOR, DACEXC, and SLOBER showed negative correlations (Fig. 4G, 

278 Appendix S1: Tables S2-S3). The correlation between δ15 N and δ13 C was positive at the 

279 gradient level and at within-species level, DACEXC, and MIRGAR showed negative 

280 correlations (Fig. 4H, Appendix S1: Tables S2-S3). The correlation between log-transformed 

281 LA and LNC was positive at the gradient level and at within-species level CECSCH and 

282 SLOBER showed positive correlations, while MIRGAR showed a negative correlation (Fig. 

283 4I, Appendix S1: Tables S2-S3). In summary, our results show that for traits that were 

284 significantly correlated, the most common scenario depicting trait relationships matches Fig. 

285 1C.

286

287 Discussion

288 In this study, we were interested in characterizing intra- and inter-specific variation in leaf 

289 traits for six broadly distributed tree species within a subtropical wet forest. Overall, our 

290 results make evident that patterns of trait variation within species do not necessarily reflect 

291 inter-specific patterns and their interpretations are highly context-dependent. These results 

292 suggest that organisms distributed along different environments have great potential for 

293 adjustment. However, these adjustments are idiosyncratic between species, which results in 

294 the high diversity of forms and functions at local scales, often observed in tropical 

295 communities. Our results question traditional functional approaches that assume a single 

296 optimal phenotype matches a given environment and instead, suggest that multiple 

297 phenotypes may successfully meet the requirements imposed by the environment potentially 

298 due to trait-trait interactions. 

299

300 Substantial intraspecific variation and highly idiosyncratic trait variance structure across 

301 species 

302 The high trait variation at population level suggests that organisms have a substantial level of 

303 adjustment to variable environmental conditions, a pattern that is consistent with previous 

304 community-level studies (Albert et al. 2010, Messier et al. 2010, De Bello et al. 2011, 
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305 Fajardo and Piper 2011, Siefert et al. 2015). This population-level trait variation was 

306 equivalent to the species-level for all traits, indicating that differences in leaf traits across 

307 species might be surpassed by differences within species when broad variation in the 

308 environment is considered. The high intraspecific leaf trait variation is consistent with 

309 previous findings obtained for smaller spatial scales (Hulshof and Swenson 2010, Messier et 

310 al. 2010, 2017) and stresses the context-dependent aspect of leaf traits (see also Messier et al. 

311 2010; Jung et al. 2010; Lepš et al. 2011; Anderegg et al. 2018). Thus, applying averaged leaf 

312 trait values for broadly distributed species should be carefully interpreted when inferring 

313 ecological mechanisms leading community assembly (Ames et al. 2016). 

314 In addition to the population-level variation, our results show a considerable amount 

315 of individual-level variation (Fig. 2) that is likely related to micro-environmental variability 

316 (Albert et al. 2010). These traits are highly sensitive to the local scale variation and could be 

317 important for understanding interactions among co-occurring individuals. For example, leaf 

318 δ15 N is believed to be highly influenced by environmental conditions such as soil and 

319 mycorrhizal composition that often exhibits substantial variation at local scales (Vitousek et 

320 al. 1989, Hobbie and Högberg 2012). However, these interpretations should be considered 

321 carefully since changes in δ15 N could be influenced by additional factors and our mechanistic 

322 understanding of the drivers of δ15 N variation is still underdeveloped (Evans 2001). 

323 Furthermore, this result indicates that local-scale (i.e. within population) environmental 

324 gradients, that frequently go unmeasured, are very important for determining trait 

325 distributions (Fajardo and Siefert 2018, 2019). 

326 At the elevation-level, only leaf thickness, δ13 C and SLA showed sensitivity to this 

327 scale (Fig. 2), suggesting that these traits could be useful for inferring processes operating at 

328 large scales. In agreement with this result, previous studies have found that leaf thickness and 

329 δ13 C vary broadly across environmental gradients (for leaf thickness, Billings and Mooney 

330 1968, Körner and Diemer 1987; for δ13 C, Vitousek et al. 1990, Marshall and Zhang 1994). 

331 Although for SLA, the elevation-level variance was minor (only 1% of the variance was 

332 explained at elevation), previous studies have found high sensitive for large-scale variation 

333 for LMA (inverse of SLA) (Liu et al. 2010, Messier et al. 2017). 

334 In terms of the trait variance structure, we found idiosyncratic patterns across traits 

335 despite that some of these traits should be highly correlated given that participate in common 

336 functions (i.e., LNC and SLA) (Fig. 2). A potential explanation for the lack of similarity in 

337 variance structure across most of the leaf traits is that similarity in the variance structure 

338 across traits might not be tightly related to the strength of the trait correlation, instead, there 
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339 should be a minimum limit in dissimilarity in variance structure for highly correlated traits 

340 (Messier et al. 2017). In other words, dissimilarity in trait variation for highly related traits 

341 should be limited by a minimum but not by a maximum threshold, allowing considerable 

342 independence among traits. In addition, we found that species showed poor consistency in 

343 trait variance patterns (Fig. 3), which suggest that there is a considerable level of 

344 independence in leaf traits that allows species to individualistically fulfill ecological 

345 requirements imposed by the environment through the differential alteration of traits (see also 

346 Albert et al. 2010, Fajardo and Siefert 2018). A further consequence of this is that alternative 

347 arrangements of traits might be good solutions for a given environment (Marks and 

348 Lechowicz 2006; Marks 2007).  

349

350 Within-species trait covariation was highly dependent on the species and generally not 

351 consistent with gradient-level patterns 

352 Most of the trait correlations were not consistent across species (Fig. 4). For instance, the 

353 correlation between log-transformed SLA and δ15 N was positive and significant only for 

354 three species and the trend at the gradient-level was negative. Similarly, the correlation 

355 between log-transformed thickness and δ15 N was negative for two species, but the trend at 

356 the gradient-level was positive and not significant for the other four species. This mismatch 

357 in correlations across ecological scales and across species suggests that species may meet the 

358 physiological requirements imposed by the environment using variable combinations of traits 

359 (Marks and Lechowicz 2006) and that there might be additional traits that exhibit strong 

360 responses to environmental stresses along gradients (i.e. plant height) (Fajardo et al. 2018). In 

361 plants, leaves represent key organs where suits of traits interact in order to satisfy plant’s 

362 water and carbon economies. These traits may interact in different ways that not always 

363 respond to a single trade-off (Marks and Lechowicz 2006). In fact, previous studies have 

364 shown that plant species achieve similar requirements through alternative routes, for 

365 example, while tall species have advantages for capturing light, understory species are more 

366 efficient at using their biomass to capture light (Hirose and Werger 1995). In the case of the 

367 elevational gradient, investing in thicker leaves to avoid damage for high radiation, also 

368 increases costs of construction, therefore, plants may invest in alternative routes to mitigate 

369 effects imposed by high elevation conditions. These results are compatible with the variance 

370 partitioning analyses that show weak associations in trait variance structure across species, 

371 suggesting high independence in species responses to conditions imposed by the 

372 environment. Combined, the distinct phenotypes arrangements of species along 
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373 environmental gradients should result in rugged landscapes instead of typically considered 

374 unimodal landscapes (Laughlin 2018). Unfortunately, in the present study we cannot provide 

375 evidence of demographic performance or fitness. Thus, we cannot fully test the ideas 

376 proposed by previous authors (Marks and Lechowicz 2006, Laughlin 2018) regarding how 

377 different trait combinations can lead to similar performance along an environmental gradient 

378 and we look forward to future work that can address this research gap.

379  A further consequence of the observed idiosyncratic trait covariance patterns across 

380 species is that species would respond differentially to potential climatic changes. Those 

381 species with trait covariance patterns that track the environmental changes would have better 

382 chances to succeed, given that their trait variation will allow them to tolerate broader range of 

383 conditions, while species with a trait covariance that does not follow the climatic changes 

384 will exhibit a more restricted capacity to tolerate climatic changes (see Fajardo and Siefert 

385 2019). Similar ideas have been discussed previously by Laughlin and Messier (2015) as 

386 dynamic adaptive landscapes and these could be readily applied in future studies in 

387 combination with demographic data.

388 In addition, trait covariance within species was usually weak and not significant. This 

389 result is surprising given the known linkage between traits involved in carbon gain (Wright et 

390 al. 2004). For example, SLA and LNC are often tightly correlated across species and 

391 involved in photosynthesis (Reich et al. 1998, Larcher 2003, Wright et al. 2004, Lambers et 

392 al. 2008). However, our results show that although this correlation was significant across the 

393 gradient, the results were not always significant within-species. A similar trend for leaf 

394 economic traits in a soil nutrient gradient in Chile showed that trait correlations within 

395 species tended to be weaker, but still significant, than across species (Fajardo and Siefert 

396 2018). Our findings question the generality of previously reported leaf trait economics and 

397 are in agreement with previous studies that also found weak correlations among LES traits at 

398 local scales (Wright and Sutton-Grier 2012, Funk and Cornwell 2013, Messier et al. 2017, 

399 Anderegg et al. 2018). One reason for these weak correlations could be related to the range of 

400 variation in leaf life-span (Messier et al. 2017, Osnas et al. 2018). Funk and Cornwell (2013) 

401 suggested that the trait covariance for LES traits depends on the variation in leaf lifespan and 

402 that the strength of the correlation among LES traits would be contingent on the range in leaf 

403 life-span values. In our study, the range of variation in leaf lifespan covered by a single 

404 species might not be large enough to make evident the trade-offs between LES traits. Thus, 

405 our results not only emphasize the fact that traditional trait correlation patterns in community-

406 wide studies may not agree with species-level patterns, but that interpretations of trade-offs 
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407 among traits should be carefully considered when evaluating intraspecific patterns. 

408 At the gradient-level, eight trait correlations were significant. Most of these 

409 correlations involve traits that are not tightly biophysically linked (i.e. LA and LNC or leaf 

410 thickness and δ15 N). Thus, we infer from these results that the observed trait correlations may 

411 emerge as a result of strong selective forces exerted by the environment and suggest a key 

412 role of environment in selecting functional composition and structure along variable 

413 conditions (Berg 1960, Armbruster et al. 2014). At both levels, gradient- and within-species-

414 level, only three correlations were significant (Fig. 1A and Fig. 4B, C and E). These 

415 correlations involved SLA, leaf thickness, and δ13 C, three traits that showed sensitivity to 

416 elevation-level scale in the variance partitioning analyses. Although these traits do not 

417 constitute the core of the LES, they all are involved in carbon and water processing (Farquhar 

418 et al. 1989, Reich et al. 1998, Lucas et al. 2000) that usually vary along altitudinal and aridity 

419 gradients (Cordell et al. 1998, Hultine and Marshall 2000, Liu et al. 2010). The strong link 

420 between traits at different ecological scales suggests that environmental and biophysical 

421 constraints simultaneously are responsible for the patterns observed.

422

423 Conclusion

424 In conclusion, we show that species distributed along environmental gradients have the 

425 potential to exhibit considerable variation in leaf traits, equivalent to variation across species. 

426 These results challenge a functional trait paradigm were inter-specific differences should be 

427 more pronounced than intraspecific differences and have consequences on the inferences of 

428 ecological mechanisms and species responses to climate change. In addition, the highly 

429 idiosyncratic trait variation and weak intraspecific trait coordination for most of the traits 

430 implies that species may track environments using different combinations of traits that 

431 ultimately provide equivalent performance outcomes. This result has important implications 

432 in that predictions of species movements with changing climates cannot reliably be made 

433 upon the basis of one, or even a few, trait values and even when multiple traits and their 

434 combinations can be considered, species average trait values may often be misleading 

435 (Laughlin and Messier 2015). In sum, functional trait-based ecology needs to more seriously 

436 consider how many traits interact to determine demographic outcomes on the individual-level 

437 in varying environmental contexts and the degree to which this is achieved via plasticity 

438 versus local adaptation.

439
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669 DATA AVAILABILITY

670 Data are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.6505nf4

671

672 Table 1.  Elevation range for six tree species included in the present study. Species names are 

673 abbreviated as follows: Henriettea squamulosa (Cogn.) Judd (CALSQU), Cecropia 

674 schreberiana Miq subspecies schreberiana (CECSCH), Cordia borinquensis Urb. 

675 (CORBOR), Dacryodes excelsa Vahl (DACEXC), Micropholis garciniifolia Pierre 

676 (MIRGAR), Sloanea berteroana Choisy ex DC (SLOBER).
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Species Range of elevations (m) Total individuals

CALSQU 600-1000 66

CECSCH 600-1000 60

CORBOR 400-900 86

DACEXC 300-650 68

MIRGAR 500-1000 97

SLOBER 250-650 85

678

679 Figure legends

680 Fig. 1. Schematic representation of potential scenarios of trait covariation at various 

681 ecological scales. A) Correlations among traits at the species level mirror those across the 

682 environmental gradient. B) No correlation across the environmental gradient but positive 

683 correlations at the species level. C) Correlations at the environmental gradient and weak and 

684 variable correlations at the species level. D) No significant correlations at any level.

685 Fig. 2. Variance partitioning for seven traits across four nested ecological levels (elevation, 

686 species, population, and individual). See methods’ section for all abbreviations. The numbers 

687 refer to the percentage of variance explain at a given level for each trait. 13C — foliar carbon 

688 stable isotope content; 15N — foliar nitrogen stable isotope content; LCC — leaf carbon 

689 content; LNC — leaf nitrogen content; LA — leaf area; SLA — specific leaf area.

690 Fig. 3. Pairwise correlations of fractions of variance explained at the population-level of leaf 

691 traits for all species pairs. The values refer to the Pearson’s correlation coefficient. Each 

692 square represents a correlation between values of variance explained at the population-level 

693 of all traits for one species with the values of variance explained for another species. The 

694 significance level for all correlations was 5 % (alpha =0.05), all correlations except one 

695 (DACEXC and SLOBER, indicated with *) were non-significant. Species codes are the same 

696 than in Table 1.

697 Fig. 4. Pearson’s correlations between pairs of traits at gradient and within-species levels. 

698 Black dots and lines show the correlations at the gradient level. Color dots and lines show 

699 correlations for each species. Symbols: two black asterisks in the top right corner of each plot 

700 indicate that correlations were significant for the gradient level and all species. Colored 

701 asterisks indicate significant correlation for a given species. Species codes are the same than 

702 in Table 1. 
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