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Summary

Joint models for longitudinal and time-to-event data are useful in situations where an association
exists between a longitudinal marker and an event time. These models are typically complicated
due to the presence of shared random effects and multiple submodels. As a consequence, software
implementation is warranted that is not prohibitively time consuming. While methodological
research in this area continues, several statistical software procedures exist to assist in the fitting of
some joint models. We review the available implementation for frequentist and Bayesian models in
the statistical programming languages R, SAS and Stata. A description of each procedure is given
including estimation techniques, input and data requirements, available options for customisation
and some available extensions, such as competing risks models. The software implementations
are compared and contrasted through extensive simulation, highlighting their strengths and
weaknesses. Data from an ongoing trial on adrenal cancer patients are used to study different
nuances of software fitting on a practical example.

Key words: computational approaches; joint model; longitudinal data; software comparison; survival
data; time-to-event data.

1 Introduction

Studies often measure both a longitudinal process and an associated event time. A case in
point is a study of time to AIDS diagnosis and CD4 counts (Huang et al., 2011; Wang & Taylor,
2001; Wulfsohn & Tsiatis, 1997). In cancer, increasing PSA levels are known to be associ-
ated with prostate cancer recurrence (Proust-Lima & Taylor, 2009). Other examples include
study of biomarkers in cancer vaccine trials, quality of life measurements in cancer, time-to-
failure and degradation in engineering applications (Brown & Ibrahim, 2003; Ibrahim et al.,
2010; Lehmann, 2009). In such contexts, separate models for the longitudinal and survival
components that do not take into account the dependence between the longitudinal and sur-
vival processes produce inefficient results and are prone to bias. Using the longitudinal process
as a time-dependent covariate in the survival model requires the unrealistic assumptions that
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the longitudinal measurement has negligible measurement error and that there are observations
at every event time. Traditional two-stage models account for the measurement error in the
survival model by fitting the longitudinal process first and subsequently using the estimated
trajectory as a covariate in the survival model (Tsiatis et al., 1995). However, this strategy
fails to account for the possible informative censoring in the longitudinal process (Mccrink
et al., 2013). A fully specified joint model incorporates the dependence between the longi-
tudinal and survival components properly and provides efficient inference that is less prone
to bias.

Apart from the scenario when the interrelated longitudinal and survival processes are both
of interest, joint models are also useful when the event time causes non-informative censoring
on the observed longitudinal process that may be of primary interest (Rizopoulos, 2012, pp.
51,90). While there are differing approaches to formulate joint models, in this review, we shall
focus on random effects models as the software platform is developed almost exclusively in this
framework.

Early work on joint models dates back to the mid-nineties (De Gruttola & Tu, 1994).
Since then, a body of work has steadily emerged in this area of research (Henderson et
al., 2000; Wang & Taylor, 2001; Wulfsohn & Tsiatis, 1997). Some early Bayesian work on
this topic includes those by Faucett and Thomas (1996), and Brown and Ibrahim (2003).
More recently, there have been several extensions in the directions of dynamic predictions
and prognostic tools (Proust-Lima & Taylor, 2009; Taylor et al., 2013; Rizopoulos et al.,
2014), competing risks (Elashoff et al., 2007; Hu et al., 2009), recurrent events (Liu &
Huang, 2009), multiple longitudinal variables (Li et al., 2007), cure rates (Yu et al., 2004)
and diagnostics (Huang et al., 2009). A comprehensive review of early work on models and
methods related to joint modelling of longitudinal and survival processes has appeared in
Tsiatis and Davidian (2004).

With multiple submodels and shared random effects, joint models can become complicated
and difficult to utilise. This motivates the need for creating an efficient computational plat-
form to fit these models. Due to the complexity of joint models, implementation can be slow
but can still be useful for those wanting to fit relatively simple joint models for data analy-
sis. Major statistical softwares such as R, SAS and Stata include joint modelling functions.
The purpose of this article is to provide a comprehensive review of associated implementa-
tion issues and explore new applications in related software platforms. There has been limited
review of software implementation in the joint modelling literature. Some early reviews listed
softwares available at the time (Gould et al., 2014; Mccrink et al., 2013), utilised a single soft-
ware for data analysis (Rizopoulos, 2012) or compared a couple in the context of analysing a
dataset (Mccrink et al., 2013). Other reviews have compared selected softwares, such as Win-
BUGS and SAS PROC NLMIXED (Guo & Carlin, 2004). Documentation of the %JM macro
in SAS compares the available features of the macro to the JM package in R (Garcia-Hernan-
dez & Rizopoulos, 2015). A recent review of joint modelling literature by Sudell et al. (2016)
discussed the frequency with which each joint modelling software was used. More recently,
Yuen and Mackinnon (2016) compare some of the available software with an application to a
dataset documenting time to psychosis transition.

There are several ways in which our review differs from those in the existing literature. Most
of the reviews focus primarily on the survival component of the joint analysis. By contrast,
we provide findings from simulation that assess simultaneous performance of the time-to-event
and the longitudinal model. Our documentation is also more comprehensive than most reviews
covering specialised topics such as latent classes, competing risks, multiple longitudinal out-
comes and more. Through extensive simulation, we present a comprehensive appraisal of the
different implementations. In addition, the different softwares are contrasted by means of their
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performance when used to fit to data from an ongoing trial on adrenal cancer patients enrolled
in the University of Michigan Comprehensive Cancer Center.

In Section 2, we will review the joint modelling framework and associated estimation
methods along with the computational algorithms. The next section demonstrates the soft-
ware capabilities with an example data analysis. We will discuss software implementation in
Section 4. This includes the JM and joineR packages in R, the %JM macro in SAS and the
stjm command in Stata. In Section 5, we describe our simulations. Section 6 outlines imple-
mentation of a Bayesian joint model by means of the JMbayes package in R. Other models
such as competing risks joint models and some specialised software functions are introduced in
Section 7 and further described in Section S4. In Section 8, we conclude with a discussion of
our findings.

2 Modelling Framework

Joint models are useful within a few different scenarios. The main interest can be in the
longitudinal process with an event causing informative dropout. Interest could be equally on a
longitudinal and a survival process that are associated. A third common scenario occurs when
a time-to-event process is modelled with a longitudinal covariate measured intermittently and
with error. Such data require joint modelling to fully capture the association and reduce bias.

Consider i D 1; : : : ; N subjects with repeated longitudinal measurements and a terminal
event measured. The repeated measurements and event time are assumed to be associated. Each
subject i has ni measurements taken at different times with the intervals between measurements
possibly differing. The total number of measurements is n D

PN
iD1 ni .

2.1 Longitudinal Submodel

Let Yi .t/ denote the longitudinal process for subject i at time t . We assume there is a
true underlying process, or trajectory, mi .t/ from which Yi .t/ is measured with error ei .t/,
Yi .t/ D mi .t/ C ei .t/. In practice, we do not observe the longitudinal process at all times.
Instead for subject i , we observe Yi .t/ at ni times .ti1; : : : ; tini /. Let Yi D .Yi1; : : : ; Yini / D
.Yi .ti1/; : : : ; Yi .tini // be the vector of observations. The trajectorymi .t/ is modelled with fixed
(possibly time dependent) covariates, X1ij and parameter coefficients ˇ and random effects bi
with possibly time-dependent covariates Zij . The longitudinal submodel is shown in (1).

Yij D mi .tij /C ei .tij / D X1ijˇ CZij bi C eij ;

with ei D .ei1; ei2; : : : ; eini / � N.0; �
2Ini�ni /;

bi � N.0; ˙b/; i D 1; : : : ; N; j D 1; : : : ; ni I

(1)

where �2 and †b are the dispersion parameters for the error and the random effects,
respectively.

2.2 Time-to-Event Submodel

Let T �i denote the event time for subject i , Ci the censoring time, Ti D min¹T �i ; Ciº the
observed time and ıi D 1.T �i � Ci / the event indicator. A common time-to-event submodel is
a relative risk model of the form (2).

�i .t jMi .t// D �0.t/exp¹X2i� C ˛mi .t/º; (2)
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where Mi .t/ is the history of the longitudinal process up to t , Mi .t/ D ¹mi .s/; 0 � s < tº.
The matrix of fixed covariates, X2i , can include the same variables as Xi1 in the longitudinal
submodel but they do not necessarily overlap. The trajectorymi .t/ from the longitudinal model
is included to link the two processes and ˛ measures the strength of this association. While
proportional hazards models are common, accelerated failure time and other survival models
have been implemented (Mccrink et al., 2013; Tseng et al., 2005; Rizopoulos, 2012, p. 137).

The model form in (2) will be referred to as the current value form since the association
is through the current value of the longitudinal trajectory, mi .t/, on the right-hand side of the
equation. This form is most often used when the survival time is of interest and the longitudi-
nal process is thought of as a time-dependent covariate measured with error. In (2), �i .t/ is the
event hazard and �0.t/ is the baseline hazard. In ordinary Cox, regression �0.t/ is left unspec-
ified, avoiding restrictions that come from specifying a parametric form for the baseline hazard
(Yuen & Mackinnon, 2016). However if an unspecified hazard is applied in a joint model, it
has been shown that standard errors of the parameter estimates can be underestimated (Hseih
et al., 2006). This can be remedied by estimating the standard errors with an additional method
such as bootstrapping (Rizopoulos, 2010; Yuen & Mackinnon, 2016), profile likelihood (Mur-
phy & van der Vaart, 2000) or numerically differentiating the EM operator (Xu et al., 2014).
To avoid this issue, parametric but flexible functions are often used for �0.t/, such as piecewise
constant or spline models (Rizopoulos, 2012, p. 53). These flexible functions can sufficiently
approximate the baseline hazard and has been noted as the preferred choice for �0.t/ by some
(Rizopoulos, 2010; Yuen & Mackinnon, 2016; Rizopoulos, 2012, p. 53).

Alternatively, the submodels can be linked through a shared parameters model. This is often
used when the longitudinal process is the main interest with informative censoring or when
the focus is on both processes equally. Assuming a longitudinal submodel as in (1), a survival
submodel as shown in (3) is common

�i .t/ D �0.t/exp¹Xi2� C ˛Z2i .t/biº; (3)

where bi is the same vector of random effects as in (1) and ˛ again measures the association.
A typical example is a random coefficients model where Z2i .t/bi D b0i C b1i t with b0i and
b1i correlated, often multivariate normal (Wulfsohn & Tsiatis, 1997). The association can be
generalised so that ˛Z2i .t/bi D ˛0b0iC˛1b1i t and ˛0 need not equal ˛1 (Mccrink et al., 2013).

2.3 Estimation

It is commonly assumed that conditionally given the random effects, the longitudinal and
time-to-event outcomes are independent and so are the longitudinal measurements taken on
a single subject. Denoting the set of all parameters by � D .ˇ; �; ˛/, the log-likelihood
contribution from subject i is

li .�/ D log

Z 0
@ niY
jD1

f .yij jbi I �/

1
A�i .Ti jbi I �/ıiS.Ti jbi I �/f .bi I �/dbi ;

where f .�/ denotes the density function and S.�/ denotes the survival function. There is gener-
ally no closed form solution to the likelihood equations. Numerical integration and optimisation
techniques, such as an Expectation-Maximization (EM) algorithm treating the random effects
as missing data, are used in practice. Due to high-dimensional integration and potential corre-
lation induced by the random effects, the process of convergence can be slow. Other methods
include Newton-type or hybrid-EM and quasi-Newton algorithms (Rizopoulos, 2012, p.64;
Henderson et al., 2000; Hseih et al., 2006; Tsiatis & Davidian, 2004; Wulfsohn & Tsiatis, 1997;
Yu et al., 2004).
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3 An Application

We explore the available software platforms through analysis of a dataset of 176 adrenal
cancer patients at the University of Michigan Comprehensive Cancer Center diagnosed between
1983 and 2011. Multiple measurements of adrenal tumour characteristics were collected from
periodic computed tomography scans. Time until death or last follow-up was also collected.
We selected a single scan measurement as the longitudinal response variable. The longitudinal
outcome chosen was psoas density in Hounsfield units measured using the density of pixels
in the scan (Holcombe et al., 2016). A previous study with similar data describes how psoas
muscle density and size can be measures of patient frailty, and scan measurements can be
associated with survival (Miller et al., 2012). Baseline covariates used were age, cancer stage
and tumour grade. For simplicity, we performed a complete case analysis. There were 160
patients with psoas density measurements and all baseline covariates. There are between 1 and
45 scans for each patient with a mean of 5.5 and median of three scans. In this group, 100
patients died. Time until death or censoring fell between 0.1 and 17.9 years with a median of
2.4 years. Table 1 summarises the relevant variables. Joint models are fit to the data using three
major softwares, namely, R, SAS and Stata. Both the current value (2) and the shared parameter
(3) forms are implemented.

First, a current-value joint model was fit to this data using JM in R, SAS and Stata. The
longitudinal submodel included a random intercept and slope in each software.

PsoasDensityij D mi .tij /C eij D ˇ0 C ˇ1tij C ˇ2Agei C ˇ3Stagei C ˇ4TumourGradeHighi
C ˇ5TumourGradeUnknowni C b0i C b1i tij C eij :

(4)
Survival submodels with flexible baseline hazards were chosen since the true model is

unknown. Stata were unable to fit the data with a flexible baseline hazard so a specific para-
metric (Weibull) hazard was used. Specifically, the softwares fit survival submodels with the
form

�i .t/ D �0.t/ exp.�1Agei C �2Stagei C �3TumourGradeHighi
C �4TumourGradeUnknowni C ˛mi .t//;

(5)

with baseline hazards

R JM PWC: �0.t/ � Piecewise constant function

SAS %JM PWC: �0.t/ � Piecewise constant function

Stata stjm Weib: �0.t/ �Weibull:

Table 1. Description of adrenal cancer data.

Variable Mean or count SD or %

Psoas density 54.4 8.5
Scan time (years) 3.1 3.2
Age 46.1 13.6
Stage 1 or 2 71 44.4%

3 or 4 89 55.6%
Tumour grade Low 79 49.4%

High 58 36.3%
Unknown 23 14.4%
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For SAS and R JM, the program defaults were used to create the flexible baseline hazards.
Both procedures by default use six equally spaced internal knots to partition the observed event
times. For the SAS model, the random effects are assumed uncorrelated because we found
fitting issues with an unstructured matrix (Garcia-Hernandez & Rizopoulos, 2015).

A two-stage model was fit for comparison.

8̂
ˆ̂<
ˆ̂̂:

First: PsoasDensityij D ˇ0 C ˇ1tij C ˇ2Agei C ˇ3Stagei C ˇ4TumourGradeHighi
Cˇ5TumourGradeUnknowni C b0i C b1i tij C eij ;

Then: �i .t/ D �0.t/exp.�1Agei C �2Stagei
C�3TumourGradeHighi C �4TumourGradeUnknowni C ˛ Omi .t//;

�0.t/ unspecified:

(6)

Bootstrapping was used to estimate the coefficients and bias-corrected bootstrapped confi-
dence intervals (Efron & Tibshirani, 1993), as shown in Table 2.

We also fit a shared parameter model as in (3) with joineR, SAS and Stata. The longitudinal
submodel included a random intercept in joineR and Stata, while the default in SAS included
a random slope. The model fit is

PsoasDensityij D ˇ0 C ˇ1tij C ˇ2Agei C ˇ3Stagei C ˇ4TumourGradeHighi
C ˇ5TumourGradeUnknowni C bi C eij

�i .t/ D �0.t/ exp.�1Agei C �2Stagei C �3TumourGradeHighi
C �4TumourGradeUnknowni C ˛bi /;

with baseline hazards

R joineR: �0.t/ Unspecified

SAS %JM PWC: �0.t/ � Piecewise constant function

Stata stjm Weib: �0.t/ �Weibull:

The findings are contrasted with a shared parameter two-stage model similar to that in (6)
but with ˛ Omi .t/ replaced with ˛bi .

Table 2. Current-value joint model parameter estimates and bias-corrected bootstrapped confidence intervals for the adrenal
data.

Variable Two-stage* JM PWC SAS %JM PWC Stata stjm Weib

N 89 87 100 100
Intercept 64.4 (59.5, 68.2) 64.6 (599.2, 68.3) 65.4 (59.8, 69.7) 64.6 (60.6, 68.6)
Time �0.5 (�1.4, �0.1) �0.6 (�1.7, �0.2) �0.9 (�2.7, �0.4) �0.6 (�1.9, �0.3)
Age �0.2 (�0.3, �0.1) �0.2 (�0.3, �0.1) �0.2 (�0.3, �0.1) �0.2 (�0.4, �0.2)
Stages 3 or 4 �0.6 (�1.7, 0.2) �0.6 (�1.7, 0.3) �0.6 (�1.8, 0.05) �0.6 (�2.2, �0.1)
Tumour grade: High �0.6 (�3.8, 2.2) �0.7 (�4.1, 2.1) �0.7 (�4.1, 2.1) �0.7 (�3.6, 2.1)
Tumour grade: unknown �2.9 (�7.5, 0.3) �3.2 (�8.4, �0.6) �3.1 (�8.0, 0.2) �3.1 (�8.5, �0.4)
Surv-age 0.1 (�0.009, 0.6) 0.002 (�0.01, 0.06) �0.009 (�0.03, 0.008) �0.01 (�0.03, 0.001)
Surv-stages 3 or 4 0.7 (�0.06, 3.4) 0.2 (0.02, 0.3) 0.2 (�0.01, 0.3) 0.2 (�0.06, 0.4)
Surv-tumour grade: high 1.3 (�3.6, 4.2) 0.6 (0.004, 1.0) 0.5 (0.06, 1.1) 0.4 (�0.04, 1.1)
Surv-tumour grade: unknown 3.4 (0.4, 12.0) 1.0 (0.3, 1.5) 0.9 (0.2, 1.7) 1.0 (0.2, 1.9)
Association 0.8 (0.1, 3.0) �0.07 (�0.1, -0.04) �0.1 (�0.2, �0.06) �0.09 (�0.1, �0.04)

N is the number of models in 100 bootstraps that successfully converged.
*Two-stage intervals are the 2.5 and 97.5 quantiles of the bootstrapped values, not bias-corrected.
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Comparing Tables 2 and 3, the results are similar for the current-value and shared parameters
models. Nearly all joint models estimate the coefficients of the longitudinal submodel very
similarly. Time has a significant negative value showing that psoas density tends to decrease
over time, which fits with previous knowledge (Miller et al., 2012). Older patients tend to have
less psoas density. Stages 3 or 4 and high tumour grade tend to decrease the average psoas
density compared to lower stages and grade, but these are not significant in any software or
models. There are more differences in the results of the survival submodel since each software
fits the survival model differently. The effects are estimated to be larger in the two-stage current-
value models than in the true joint models. Age does not have much of an effect on death
hazard. Most software and model forms find higher stage to slightly increase the death hazard,
but significance depends on the software. There is a small and significant positive coefficient
for high tumour stage. Finally, each software except the current-value two-stage model found a
small but significant negative association. Log-likelihoods are shown in Table 4 and are similar
for all software and both model forms.

4 Assessment of Implementation Platform

Fitting a joint model can be computationally intensive. As indicated in the data analysis
section, there are a few software packages that are designed to fit such models in an efficient
manner. However, the class of such models is quite large, and the softwares use different itera-
tive algorithms for estimation and integration. It is thus important to compare and contrast the
implementation platforms to assess and appraise the performance of the competing tools. Such
assessment is difficult to make on the basis of fits to few specific datasets. We undertake this

Table 3. Shared parameter joint model parameter estimates and bootstrapped confidence intervals for the adrenal data.

Variable Two-stage* joineR SAS %JM PWC Stata stjm Weib

N 100 100 100 100
Intercept 63.7 (59.5, 67.7) 63.1 (58.3, 67.1) 64.5 (60.0, 68.5) 64.4 (59.5, 68.1)
Time �0.3 (�0.6, �0.08) �0.4 (�0.7, �0.2) �0.6 (�1.4, �0.3) �0.6 (�1.2, �0.3)
Age �0.2 (�0.3, �0.1) �0.2 (�0.3, �0.1) �0.2 (�0.3, �0.1) �0.2 (�0.3, �0.09)
Stage 3 or 4 �0.6 (�1.7, 0.1) �0.7 (�1.6, 0.1) �0.6 (�1.7, 0.09) �0.6 (�2.3, 0.3)
Tumour grade: high �0.6 (�3.6, 2.0) 0.6 (�2.0, 3.7) �0.7 (�3.7, 2.1) �0.6 (�4.0, 2.2)
Tumour grade: unknown �3.2 (�9.1, 1.6) �2.9 (�7.7, 3.3) �3.1 (�8.1, �0.09) �3.2 (�7.5, �0.3)
Surv-age 0.01 (�0.003, 0.03) 0.01 (�0.004, 0.02) 0.01 (�0.003, 0.03) 0.006 (�0.02, 0.02)
Surv-stages 3 or 4 0.2 (0.06, 0.4) 0.2 (0.01, 0.4) 0.2 (0.04, 0.4) 0.2 (�0.02, 0.5)
Surv-tumour grade: high 0.5 (�0.01, 1.0) �0.5 (�1.0, 0.02) 0.6 (0.04, 1.2) 0.4 (�0.04, 1.1)
Surv-tumour grade: unknown 1.1 (0.6, 1.8) 0.7 (�0.2, 1.3) 1.2 (0.4, 1.8) 1.3 (0.4, 2.1)
Association �0.09 (�0.1, �0.06) �0.09 (�0.1, �0.05) �0.1 (�0.1, �0.06 ) �0.09 (�0.1, �0.05)

N is the number of models in 100 bootstraps that successfully converged.
*Intervals are the 2.5 and 97.5 quantiles of the bootstrapped values, not bias-corrected.

Table 4. Log-likelihood values for the adrenal data models.

Current-value Shared parameter

JM PWC �3130.6 NA
joineR NA �3392.1
SAS %JM PWC �3147.5 �3147.0
Stata stjm Weib �3100.9 �3083.3
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evaluation with simulations using various statistical software modules available for fitting joint
models. In order to lay the groundwork for the simulation, we first need to briefly describe the
available software packages. All packages described in this section implement (1) and either
(2) or (3) under a frequentist framework.

4.1 JM Package in R

The JM package in the R language was designed for fitting joint models with the
jointModel() function. A full description of this package and the jointModel()
function are available in the Comprehensive R Archive Network (CRAN) documentation
(Rizopoulos, 2016a).

The main arguments for the jointModel() function include the output from a linear
mixed model (from the R function lme()) (Pinheiro et al., 2016) and the output from a
Cox proportional hazard model (usually from the R function coxph()) (Therneau & Lumley,
2016). Using these separate model fits, jointModel() fits a corresponding current-value
joint model with submodels having the same covariates and forms as in the separate models
and with the additional association added to the survival submodel.

The jointModel() function fits three different model forms using the
parameterisation argument. The default is parameterisation = “value” and
fits the current value model in (2). For parameterisation = “slope”, the survival
submodel is linked to the longitudinal process through the slope of the trajectory as in (7).

�i .t jMi .t// D �0.t/exp¹X2i� C ˛m
0
i .t/º: (7)

The final option is parameterisation = “both” which fits a model with both the
current value and the slope of the trajectory in the survival submodel, namely, �i .t jMi .t// D
�0.t/exp¹X2i� C ˛1mi .t/C ˛2m

0
i .t/º.

The method argument specifies the form of the baseline hazard, the form of the model
and the method of numerical integration. The available options are weibull-PH-aGH,
piecewise-PH-aGH, spline-PH-aGH, weibull-AFT-aGH, Cox-PH-aGH and
ch-Laplace. The method ch-Laplace uses the fully exponential Laplace approximation
described by Rizopoulos et al. (2009). All other options follow a similar format. The first
word describes the baseline hazard: weibull uses a Weibull baseline hazard, piecewise a
piece-wise constant baseline hazard, spline a B-spline approximation and Cox an unspeci-
fied baseline risk. Options with PH fit a proportional hazards survival submodel. There is one
option for an accelerated failure time model using a Weibull baseline (weibull-AFT-GH).
Methods ending in aGH use pseudo-adaptive Gauss–Hermite quadrature for integral approx-
imation, where the quadrature knots are reassigned once after the first iteration (Rizopoulos,
2010). Each method can instead end in GH which uses standard Gauss–Hermite quadrature.
Adaptive quadrature is generally preferred due to a reduced computational load using fewer
quadrature points while still achieving error on the same order of magnitude as with the
standard quadrature (Yuen & Mackinnon, 2016). Quasi-Newton techniques are used if EM
iterations do not achieve convergence quickly. Only EM is used with the unspecified base-
line hazard. Stratification is allowed only with method=“spline-PH-aGH” or method=
“spline-PH-GH”.

The jointModel() function allows for some extensions such as a competing risks model
with the CompRisk argument. Other extensions can be formulated with the interFact and
derivForm options as described in Rizopoulos (2010) and Rizopoulos (2016a).
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4.2 joineR Package in R

The joineR package was created to analyse longitudinal studies, possibly with an event
time causing informative censoring. Full description of this package is in the CRAN documen-
tation (Philipson et al., 2012). The joint() function fits a joint model and requires data in
a specific format that is the output from the function jointdata() in the same package.
The user supplies the joint() function with the data and a formula object specifying the
form for each of the longitudinal and survival submodels. This function fits a shared param-
eter joint model as in (1) and (3) with an unspecified baseline hazard. This function is not
capable of specifying a parametric form for the baseline hazard. The model argument deter-
mines the shared random effects. A random slope and intercept model is the default, whereas
model=“int” specifies a random intercept only, and model=“quad” adds a quadratic
time effect to the intercept and slope. The default settings fit a common association when
there is more than one random effect terms (˛Z2i .t/bi D ˛b0i C ˛b1i t). A separate associ-
ation, as discussed in Section 2.2, can be implemented using the sepassoc=TRUE option
(˛Z2i .t/bi D ˛0b0iC˛1b1i t , ˛0 ¤ ˛1). This function also uses an EM algorithm for estimation
with some options available for control of this approximation. Since not specifying a baseline
hazard may lead to underestimated standard errors, the joineR package includes a separate
function to calculate bootstrap standard errors for the joint model (jointSE()).

4.3 % JM Macro in SAS

The %JM macro in the SAS language was written to fit several joint models in several pos-
sible forms. A full description of the macro was written by Garcia-Hernandez and Rizopoulos
(2015). The %JM macro allows the longitudinal data to be fit to varying outcome types. The
longitudinal data can conform to a normal, binomial or Poisson distribution, corresponding
to continuous, categorical or count outcomes, respectively. These can be specified with the
LongiType option. The longitudinal model can also fit different random effects with the
LongiTimeModel option, including a linear random intercept and slope model and multiple
random splines. There are many options for the baseline hazard of the survival submodel using
the EventModel option, such as exponential, Weibull, piecewise and several spline options.
The survival submodel can include stratification factors using the EventStrata argument.
The association can be set with the SharedParam argument with the options including cur-
rent value as in (2), slope (equivalent to our model (3) with Z2i .t/bi D b0i C b1i t), cumulative
(�i .t jMi .t// D �0.t/exp¹X2i�C˛

R t
0 mi .s/dsº) and ‘coefficients’ in which the user can spec-

ify which random effects from the longitudinal submodel should be included in the survival
submodel. Multiple associations can be used at the same time. The SharedCoefficients
and SharedLongitTerm arguments can be used to create even more joint model parame-
terisations. Estimation is carried out by the PROC NLMIXED procedure which is described in
Section S4.1.

4.4 stjm Command in Stata

In Stata, joint models can be fit with the stjm command. A detailed description is given by
Crowther et al. (2013). A linear mixed model and a proportional hazards model can be fit as the
submodels with several association structures available. The association between submodels
can be of the current value or the current slope form, similar to the JM package in R. The asso-
ciation can also be through shared parameters with or without covariates. Estimation is carried
out by Newton–Ralphson method, and numerical integration is implemented with standard or
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adaptive Gauss–Hermite quadrature. We found Stata to have more difficulties in fitting models
with various parameter values in our simulations.

4.5 Comparison of Software Functionality

In summary, all three major statistical softwares R, SAS and Stata fit joint models with com-
parable functionality. A detailed list of available options is provided in Table 5. All software will

Table 5. Overview of available functionalities for joint modelling in each software; ‘x’ means the software in that column has
the feature in the corresponding row.

JM R joineR R %JM %JMfit stjm Stata JMbayes R
Functionality package package SAS macro SAS macro Command package

Longitudinal submodel
Gaussian linear model x x x x x x
Generalised linear models x x x
Covariance matrix options x x

Survival submodel
Relative risk model x x x x x x
AFT Weibull model x
Unspecified baseline hazard x x
Piecewise baseline hazard x x x
Spline baseline hazard x x x x x

Association
Current value assoc. x x x x
Current slope assoc. x x x x
Random intercept assoc. x x x x x
Random slope association x x x x x
Separate associations x x x
Interactions in associations x x x x x

Model fit options
Lagged effects x x x
Competing risks models x x
Initial value options x x x x
Stratification in survival submodel x x
Piecewise/spline hazard customisation x x x x

Estimation options
EM only x x
Quasi-Newton x x x
Bayesian MCMC x
Number of iteration control x x x x x x
Convergence tolerance control x x x x x
Piecewise/spline knots control x x x x
Quadrature points control x x x x x
Adaptive Gauss–Hermite quadrature x x x
Pseudo-adaptive Gauss–Hermite quadrature x
Laplace approximation x x
Gauss–Kronrod rule x x x

Other options
AIC or BIC x x x
Plotting x x x x
Predictions x x
Approx SE default x x x x
Bootstrap SE option x x x

International Statistical Review (2019), 87, 2, 393–418
© 2019 The Authors. International Statistical Review © 2019 International Statistical Institute.



Computational Approaches for Joint Models 403

fit a Gaussian longitudinal submodel as in (1). Some software will fit a generalised linear model
where the longitudinal outcome Y has a non-Gaussian distribution such as binomial or Pois-
son. Each software will also fit a standard proportional hazards survival submodel modelling
the hazard function as in (2) or (3). Only JM in R will fit a survival model in an accelerated fail-
ure time (AFT) framework. Available association options are listed including current value (2),
random intercept or slope (3) and separate associations like we saw in Section 4.2. Model fit
options describe different forms of the survival submodels that may be available such as a com-
peting risks model, lagged effects or stratification. Estimation options include choices for the
model fitting algorithm and numerical integration. Finally, some other possibly useful options
in the software are listed including built-in AIC or BIC calculations, plotting, predictions and
standard error calculations.

5 Simulations

The joint modelling software were compared through simulation. Data were generated under
three scenarios, namely, a random intercept only and a random intercept and slope model in the
current-value form and a random intercept shared-parameters model. Each scenario includes
N D 500 subjects and 100 simulated datasets. Data were generated in R version 3.2.2 and
simulations were run in Windows 7 on a 3.2 GHz Intel Core i5 processor.

5.1 Scenario 1

Data for the current-value association random intercept only joint model, which we will call
Scenario 1, were generated as follows. The longitudinal data were generated from the model

Yij D mi .tij /C eij D ˇ0 C ˇ1tij C ˇ2X1i C ˇ3X2i C bi C eij : (8)

We have two covariates in our joint model, a binary group indicator X1 and a continuous X2.
Measurement times are between 0 and 3 years. The random effect and measurement error are
normally distributed and independent. Survival times T �i were generated from a relative risk
model.

�i .t/ D exp.�0 C �1X1i C �2X2i C ˛mi .t//: (9)

(See the Section S1 for details on generating the survival times). The parameter values used
are shown thereafter.

X1i � Bernoul li.0:5/;
X2i � N.0; 1/;
.ti1; ti2; : : : ; ti7/ D .0; 0:5; 1; 1:5; 2; 2:5; 3/;
eij � N.0; 4/;
bi � N.0; 2:25/

ˇ0 D 0:6
ˇ1 D 0:2
ˇ2 D �0:1
ˇ3 D 0:4

�0 D �4:4
�1 D 0:07
�2 D 0:2
˛ D 0:5

:

Independent censoring timesCi were drawn from a uniform distribution,Ci � Unif.0; 3:25/,
and the observed time Ti is the minimum, , Ti D min.T �i ; Ci /. Any longitudinal measurements
Yij at times after the observed time Ti (where tij > Ti for subject i ) were dropped.

The R JM, joineR, Stata stjm and two-stage software fit (8) to the longitudinal part. The
SAS macro by default fits a model with a random intercept and slope. The %JM macro has no
built-in option for an intercept only association. Therefore, we fit a misspecified longitudinal
model in SAS, replacing bi with b0iCb1i tij in (8). An unstructured covariance matrix was used
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for the SAS PWC model. For the SAS Weibull model, the default diagonal covariance matrix
was used to achieve convergence.

For the survival part, a current-value association was used if available. The R JM package,
Stata command and the %JM macro in SAS fit a current-value survival submodel as specified
in (9). The joineR package only fits joint models with the shared parameters association
conforming to the structure in (10).

�i .t/ D �0.t/ exp.X1i�
�
1 CX2i�

�
2 C ˛bi /: (10)

This amounts to a re-parameterisation of the current-value model where the coefficients ��1
and ��2 in the joineR survival submodel converge to combinations of the true coefficients
from both submodels, specifically ��1 D �1 C ˛ˇ2 and ��2 D �2 C ˛ˇ3. For all results, the
joineR coefficients will be compared to these combinations. See Section S2 for more on this
reparameterisation.

The baseline hazards used for these software are in (11). Pseudo-adaptive Gauss–Hermite
(GH) quadrature is implemented in R JM Weib, PWC and Spl. For the model with an unspec-
ified baseline hazard (R JM Unspec NA), we used the standard (nonadaptive) GH quadrature,
since we found using the adaptive algorithm led to poor convergence. In order to investi-
gate whether there is a difference in the nonadaptive (NA) versus the pseudo-adaptive GH
quadrature, we also ran models with each of Weibull, piecewise constant and spline based base-
line hazards, using standard GH quadrature, labelled R JM Weib NA, R JM PWC NA and
R JM Spl NA.

R JM Weib: �0.t/ �Weibull

R JM PWC: �0.t/ � Piecewise constant function

R JM Spl: log.�0.t// � B-spline approximation

R JM Unspec NA: �0.t/ unspecified

SAS %JM Weib: �0.t/ �Weibull

SAS %JM PWC: �0.t/ � Piecewise constant function

Stata stjm Weib: �0.t/ �Weibull

R joineR: �0.t/ unspecified

: (11)

A two-stage model is also fit to compare this more simple technique to the true joint models.
The two-stage model is fit as follows.²

First: Yij D ˇ0 C ˇ1tij C ˇ2X1i C ˇ3X2i C bi C eij ;
Then: �i .t/ D �0.t/exp.�1X1i C �2X2i C ˛ Omi .t//:

We used the default options for numerical integration and for defining the flexible baseline
hazard functions. Specifically, the R JM PWC and SAS %JM PWC models both use a baseline
hazard constructed from six equally spaced internal knots that partition the observed event
times with the function being constant in between knots. For the R JM Spl model, the B-spline
approximation is constructed with five internal knots.

Results are shown in Figure 1, plotting the bias of the estimated coefficients compared to
the truth. Coverage probabilities are shown in Table 6. Tables with the bias and MSE for each
parameter and the width of confidence intervals are in Supporting Information. Widths were cal-
culated as the average of confidence interval lengths using a normal approximation, specifically
the average of 2 � 1:96�(standard error). Table 7 shows the run times for each software.

All software except Stata were able to fit models to a majority of the 100 datasets. Stata
were only able to fit around one third of the datasets. Each software had relatively good cover-
age although Stata did not cover the intercept term well. The intervals around the association
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Figure 1. Boxplots showing the bias of the Scenario 1 estimates. Model names abbreviated as: TS = TwoStage, JM W=R
JM Weibull, JM PW = R JM Piece-Wise, JM Sp = R JM Spline, JM Un = R JM Unspecified NA, SAS W = SAS Weibull, SAS
PW=SAS Piece-Wise. Figure 1(h) plots the actual values estimated for the random effect variance with the dotted line at the
true value.

parameter from R JM Unspec NA are narrower than the other R JM models. Stata tend to have
a larger bias but smaller MSE than the other software leading to narrow confidence intervals.
Every software overestimated the random effect variance, with the two-stage and joineR mod-
els being most biased. Despite SAS including an extra random slope term, the random intercept
variance estimates were similar to R JM and Stata. Empirical standard deviations were stable
across software.

Models with a flexible baseline hazard took longer to run, as would be expected. Stata were
exceptionally slow in this scenario. Comparing the models using NA (nonadaptive) quadrature
(e.g. R JM PWC NA) to the corresponding models using pseudo-adaptive quadrature (e.g. R JM
PWC) shows that the nonadaptive versions slightly increased the runtime but otherwise choice
of numerical integration algorithm made very little difference in the results.
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Table 6. Coverage probabilities for Scenario 1 (in %).

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-stage 100 88 94 93 94 97 91 93
R JM Weib 93 86 91 92 96 97 90 98
R JM Weib NA 92 86 91 91 97 97 91 98
R JM PWC 100 87 92 93 96 97 91 97
R JM PWC NA 100 86 92 92 97 97 91 97
R JM Spl 93 86 91 92 96 97 90 97
R JM Spl NA 93 85 91 91 97 97 90 97
R JM Unspec NA 100 86 92 92 96 92 91 79
SAS % JM Weib* 100 87 94 93 96 97 91 97
SAS %JM PWC* 100 83 91 93 96 94 89 92
Stata Weib 33 58 85 82 88 97 91 97
R joineR** 100 85 94 92 92 99 96 89

*The SAS longitudinal model is misspecified, including a random slope not in the data generation model.
**The Surv X1 and Surv X2 estimates are compared to the value to which they converge and standard errors are estimated
through bootstrapping. Details in Section S2.

Table 7. Average runtime for Scenarios 1, 2 and 3.

Average run times (seconds)

Software Scenario 1 Scenario 2 Scenario 3

Two-stage 0.5 1.5 0.1
R JM Weib 3.1 10.9 5.6
R JM Weib NA 5.3 44.5 8.2
R JM PWC 7.8 20.6 11.7
R JM PWC NA 10.5 85.2 15.8
R JM Spl 21.1 28.5 15.4
R JM Spl NA 23.7 104.9 20.6
R JM Unspec NA 6.6 223.8 93.7
SAS %JM Weib 35.6 49.7 10.6
SAS %JM PWC 94.5 392.5 49.3
Stata Weib 1201.3 609.6 661.9
R joineR* 96.9 121.1 48.5

*JoineR run times include estimating bootstrapped standard errors with 50 bootstrapped samples.

5.2 Scenario 2

Our Scenario 2 includes a random intercept and slope joint model, sometimes called the
random coefficients model, generated from the following equations.

Yij D mi .tij /C eij D ˇ0 C ˇ1tij C ˇ2X1i C ˇ3X2i C b0i C b1i tij C eij : (12)

�i .t/ D exp.�0 C �1X1i C �2X2i C ˛mi .t//: (13)

As in Scenario 1, there are two covariates, one binary and one continuous. The random effects
are bivariate normal. The parameter values used are shown thereafter.

X1i � Bernoul li.0:5/;
X2;i � N.0; 1/;
.ti1; ti2; : : : ; ti7/ D .0; 0:5; 1; 1:5; 2; 2:5; 3/;
eij � N.0; 4/;

bi D .b0i ; b1i /
T � N

��
0
0

�
;

�
1 0:5

0:5 1

��
ˇ0 D 1
ˇ1 D 0:2
ˇ2 D �0:1
ˇ3 D 0:4

�0 D �4:4
�1 D 0:1
�2 D 0:25
˛ D 0:5

:
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Figure 2. Boxplots showing the bias of the Scenario 2 estimates. Model names abbreviated as: TS = TwoStage, JM W=R JM
Weibull, JM PW = R JM Piece-Wise, JM Sp = R JM Spline, JM Un = R JM Unspeci?ed NA, SAS W=SAS Weibull, SAS PW
= SAS Piece-Wise. Figures 2(h,i,j) plot the actual values estimated for the random effect variances and covariance with the
dotted line at the true value. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table 8. Coverage probabilities for Scenario 2 (in %).

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-stage 100 98 87 97 89 95 94 97
R JM Weib 88 95 93 97 91 93 90 90
R JM Weib NA 95 98 96 98 91 94 93 92
R JM PWC 87 97 94 98 90 95 92 98
R JM PWC NA 94 97 96 98 91 96 91 95
R JM Spl 83 95 93 95 87 93 92 95
R JM Spl NA 94 97 96 98 91 95 93 96
R JM Unspec NA 85 96 95 98 92 91 92 64
SAS %JM Weib 100 92 91 91 86 88 89 86
SAS %JM PWC 100 98 97 97 91 95 92 89
Stata Weib 99 97 97 97 90 94 93 90
R joineR 25 100 88 100 96 96 80 92

*The Surv X1 and Surv X2 estimates are compared to the value to which they converge and standard
errors are estimated through bootstrapping. Details in Section S2.

We draw independent censoring times Ci � Unif.1:25; 3:25/ and the observed times are
Ti D min.T �i ; Ci /. There was approximately 10% censoring.

Each software, JM, joineR in R, %JM in SAS and stjm in Stata, fits (12) to the longitu-
dinal part of the data. The default covariance structure was used in all models. As in Scenario
1, several survival submodels were evaluated. The R JM package, SAS and Stata fit a current-
value survival submodel as in (13). The shared-parameter model thereafter was fit with joineR
which is a reparameterisation of the current-value model similar to Scenario 1.

�i .t/ D �0.t/ exp
�
��1 X1i C �

�
1 X2i C ˛.b0i C b1i t /

�
:

The baseline hazards are the same as in (11) including models using both adaptive and non-
adaptive (NA) in R JM Weib, PWC and Spl. Default settings were used for the piecewise
constant and spline functions. Finally, a two-stage model was fit for comparison.

Results for Scenario 2 are in Figure 2, and Table 8. Table 7 shows the run times for this
scenario. More results including bias, MSE and confidence interval widths are included in
Supporting Information.

The software were able to fit models to most of the 100 simulated datasets except for
joineR. The joineR models could fit only around a quarter of the datasets. Coverage proba-
bilities were similar for all software with one exception. Coverage for the association parameter
was noticeably lower for R JM Unspec NA. The confidence interval widths were generally very
similar in each software. As in Scenario 1, on average, the confidence intervals around the
association estimate in R JM Unspec NA were considerably tighter.

In the boxplots, we see that all R JM models and Stata estimated the random effect covariance
parameters well. In SAS, the covariance of the random effects was assumed zero according to
the macro defaults, and we see that the variance of the intercept and the slope were overesti-
mated by SAS. The two-stage model estimated the random effect variances well but severely
overestimated the covariance, possibly including additional variance in the longitudinal sub-
model random effects estimates that would be explained by the association with the survival
submodel in a joint model. Empirical standard deviations were consistent in all software. We
see that the random coefficients models in this scenario took longer to run on average than
the models in Scenario 1 for all software except Stata. Using nonadaptive quadrature increased
runtime more compared to Scenario 1.
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5.3 Scenario 3

The final simulation scenario utilised a shared coefficients form as in (3), with a random
intercept only. The data were generated from

Yij D ˇ0 C ˇ1tij C ˇ2X1i C ˇ3X2i C b0i C eij : (14)

�i .t/ D exp.�0 C �1X1i C �2X2i C ˛bi /: (15)

Parameter values are thereafter.

X1i � Bernoul li.0:5/;
X2;i � N.0; 0:5/;
.ti1; ti2; : : : ; ti7/ D .0; 0:5; 1; 1:5; 2; 2:5; 3/;
eij � N.0; 4/;
bi � N.0; 0:7/

ˇ0 D 6
ˇ1 D 0:2
ˇ2 D �0:1
ˇ3 D 0:4

�0 D �4:4
�1 D 0:9
�2 D 1:2
˛ D 0:5

:

For this scenario, independent censoring times were drawn Ci � Unif.1:25; 3:25/. There
was approximately 20% censoring.

A random intercept only shared parameter survival submodel was used since the most soft-
ware could fit the correct model. The R function joineR and Stata fit the same longitudinal
submodel in (14). Again, the default in SAS is to fit a longitudinal model with both a random
intercept and slope as was the case in Scenario 1 which in this case is an misspecified model.
The joineR, SAS and Stata software fit (15) to the survival part. The JM package in R only
fits joint models with a current-value association, which amounts to a reparameterisation of the
shared parameter models. In this scenario, R JM fits the survival submodel in (16). The sur-
vival coefficients will converge to a combination of true parameters, namely, ��1 D �1 � ˛ˇ2

and ��2 D �2 � ˛ˇ3. See Section S2 for details.

�i .t/ D �0.t/ exp.��1 X1i C �
�
2 X2i C ˛mi .t//: (16)

Baseline hazards are listed in (11). Both adaptive and nonadaptive (NA) numerical inte-
gration was again utilised in R JM with Weibull, piecewise constant and spline baseline
hazard functions. We used the default settings to create piecewise constant and spline base-
line hazard functions. A two-stage model was also fit with the survival model being a standard
semi-parametric Cox model.

Figure 3 and Table S3 show the results for Scenario 3. Coverage probabilities are shown in
Tables 9 and 7 which show the run times for all scenarios. Additional results are included in
Supporting Information.

Models could be fit to all or almost all of the 100 simulated datasets by each software in this
scenario. R joineR had a considerably lower coverage probability for the X2 coefficient in the
survival submodel. Nearly all software except R JM Weib (and R JM Weib NA) had relatively
low coverage for the association parameter, with the coverage from R JM Unspec NA being
especially poor. Again, the average width of confidence intervals around the association esti-
mate from R JM Unspec NA was much smaller than all other software. The average confidence
interval widths for X1 and X2 from R JM Spl are much larger than the other software, possibly
due to poor model fitting on the simulated datasets corresponding to the outliers.
R JM and Stata estimated the random intercept variance best although all (except two-stage)

underestimated this value. The two-stage model severely overestimated this value as in the first
two scenarios. Interestingly fitting models to this data with R JM Spl produced estimates with
larger bias for most covariates and considerably smaller MSE for some covariates compared
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Figure 3. Boxplots showing the bias of the Scenario 3 estimates. Model names abbreviated as: TS=TwoStage, JM W = R JM
Weibull, JM PW = R JM Piece-Wise, JM Sp=R JM Spline, JM Un=R JM Unspecified NA, SAS W=SAS Weibull, SAS PW =
SAS Piece-Wise. Figure 3(h) plots the actual values estimated for the random effect variance with the dotted line at the true
value. Note: Outliers in Intercept and Association from JM Sp have been omitted to aid in interpreting the boxplots. [Colour
figure can be viewed at wileyonlinelibrary.com]

to R JM with the other baseline options. We noted that SAS produced survival submodel X2

coefficient estimates with an unusually large MSE. Also, joineR generated more biased esti-
mates for the survival submodel despite fitting a model in the same form as the data generating
model. As in the first two scenarios, empirical standard deviations were very similar across all
software. Lastly, SAS and R joineR ran for notably shorter times than in the first two scenarios.

6 Bayesian Models and Associated Software

Joint modelling from a Bayesian perspective has also been implemented. The full posterior
distribution conforms to the structure
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Table 9. Coverage probabilities for Scenario 3 (in %).

Software n models Intercept Time X1 X2 Surv X1 Surv X2 Assoc.

Two-stage 100 91 94 98 93 97 92 94
R JM Weib 82 95 93 99 91 88 95 95
R JM Weib NA 80 91 90 99 91 96 94 96
R JM PWC 88 95 93 99 93 95 98 82
R JM PWC 89 94 93 98 92 95 97 80
R JM Spl 97 94 95 98 92 97 95 87
R JM Spl NA 100 94 94 98 92 97 95 88
R JM Unspec NA 45 93 89 100 89 93 88 11
SAS %JM Weib 100 87 96 96 94 100 97 84
SAS %JM PWC 100 88 96 96 94 98 100 80
Stata Weib 89 51 85 98 91 99 100 80
R joineR* 100 93 94 95 89 80 51 91

*The SAS longitudinal model is misspecified, including a random slope not in the data generation model.
**The Surv X1 and Surv X2 estimates are compared to the value to which they converge and standard
errors are estimated through bootstrapping. Details in Section S2.

f .�; bjT; ı; y/ /

nY
iD1

.f .yi jbi I �/f .Ti ; ıi jbi I �/f .bi I �// �.�/;

where �.�/ denotes the joint prior for the model parameters. Markov Chain Monte Carlo
(MCMC) techniques such as Gibbs sampling or Metropolis–Hastings algorithm can be used for
inference (Bekele & Shen, 2005; Faucett & Thomas, 1996; Gould et al., 2014; Henderson et
al., 2000; Rizopoulos & Ghosh, 2011; Tsiatis & Davidian, 2004; Yu et al., 2004). The Bayesian
implementation was not compared to the simulations for the maximum likelihood methods in
the last section. Instead, in this section, we will discuss the single option for Bayesian joint
modelling in the software and also use this to analyse the adrenal cancer data.

6.1 JMbayes Package in R

The JMbayes package in R was written to fit joint models in a Bayesian framework
(Rizopoulos, 2016c). The function for fitting joint models is named jointModelBayes().
The arguments for this function are very similar to the jointModel() function in the JM
package in R. A linear mixed model is fit to the longitudinal data unless the user specifies a
different distribution with the desLong argument. A relative risk model is fit for the time-
to-event data. The baseline hazard is estimated using splines, either penalised P-splines (the
default) or regression splines (Rizopoulos, 2016b). The param argument determines the form
of the association between the submodels. The default association is current value as in (2).
Other options are association based on the current slope of the longitudinal trajectory analogous
to the R JM package in (7), both the current value and slope, or shared parameters like in (3).
A final association option is a combination of shared random effects and fixed effects, ˇ�, such
as �i .t jMi .t// D �0.t/exp¹X2i� C ˛.ˇ

� C bi /º. Available functionalities in the JMbayes
package are listed in Table 5. Extra flexibility is available for the association structure since
the user can define any transformation function using the extraForm and transFun argu-
ments. Using this, the association can be defined to be any function of the current value or any
function of the shared random effects.

Estimation is performed using MCMC sampling from the posterior conditional distribu-
tions of the random effects and the parameters. Usually, a random walk Metropolis can be
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Table 10. Parameter estimates and credible intervals for the
joint models fit to the adrenal data with JMbayes.

Variable Estimate

Intercept 62.0 (57.4, 66.5)
Time �0.5 (�0.9, �0.2)
Age �0.2 (�0.24, �0.07)
Stages 3 or 4 �0.4 (�1.4, 0.5)
Tumour grade: high �0.5 (�3.2, 2.2)
Tumour grade: unknown �3.2 (�6.7, 0.4)
Surv-age �0.007 (�0.02, 0.01)
Surv-stage 3 or 4 0.2 (0.01, 0.3)
Surv-tumour grade: high 0.40 (�0.03, 0.9)
Surv-tumour grade: unknown 0.8 (0.2, 1.4)
Association �0.09 (�0.1, �0.06)

used, but in some cases, Metropolis–Hastings or slice sampling are needed (Rizopoulos,
2016c). Initial values can be set using the init argument, but if left unspecified, initial val-
ues are taken from the outputs from the separate models that are included as arguments to the
jointModelBayes() function. Priors can also be specified by the user with the priors
argument. If not specified, standard prior distributions are used: all the fixed parameters from
both submodels as well as the association parameter are given independent diffuse normal pri-
ors, a inverse Wishart prior is assumed for the covariance matrix of the random effects when
fitting a normally distributed longitudinal outcome, and an inverse Gamma prior for the error
variance (Rizopoulos, 2016c). The JMbayes package also includes functions for plotting and
running dynamic predictions (Rizopoulos, 2016b).

6.2 Data Analysis

A joint model with the current value association as in (4) and (5) with a P-spline baseline
hazard is fit to the adrenal cancer data from Section 3 using JMbayes. MCMC is run for 52,000
iterations with a burn-in of 2000. The results are shown in Table 10. The JMbayes estimates
are generally similar to the frequentist current-value results in Table 2, and interpretations of
the covariate effects on psoas density and survival are the same.

7 Extensions and Specialised Joint Models and their Implementation

The growing interest in joint modelling has led to many extensions, such as joint mod-
elling with competing risks, recurrent events or multiple longitudinal processes. The addition
of many software to fit standard joint models has also encouraged the development of more spe-
cialised software. Here, we briefly describe several model extensions and software available for
implementation. See Section S4 for more implementations via software. The extent of software
implementation for specialised joint modelling is likely to increase in the future.

Up until this point, we have focused on longitudinal measurements with a Gaussian dis-
tribution. Yet situations often arise that require a non-Gaussian outcome in the longitudinal
submodel, such as a logistic or Poisson model. The JM and JMbayes software in R as
well as the %JM macro in SAS, described in Section 4, can accommodate non-Gaussian
longitudinal processes. The Jointlcmm() function in the lcmm package in R can imple-
ment different distributions in the longitudinal submodel of a latent class mixed model
(Proust-Lima et al., 2016).
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Joint latent class mixed modelling is an extension that can be used to investigate class-specific
differences. These models typically include three submodels, a multinomial logistic model to
determine the latent class, a class-specific linear (or latent process) mixed model and a class-
specific survival model. The number of latent classes must be set a priori based on knowledge of
the situation from which the data were collected. The lcmm package in R was written for latent
class mixed modelling and includes a function, Jointlcmm(), which fits a joint latent class
mixed model for longitudinal and time-to-event data (Proust-Lima et al., 2016). The baseline
risk can be common or class specific. Choice of initial values is important, and it is preferred
that the user specify initial values with the B argument over using the defaults.

In medical studies, it is likely more than one biomarker is measured for each patient.
This necessitates joint models with multiple longitudinal variables. Hickey et al. (2016)
review developments in multivariate joint models including software implementations. Hickey
et al. mentioned a new package for multivariate joint models, sjmsoft for R, available
from the author’s website (Brown, 2005). Another option is the R package joineRML
(Hickey et al., 2018).

An interesting but currently less studied extension is joint modelling with competing risks.
The longitudinal submodel for a single longitudinal outcome is the same as a single risk joint
model. Literature has almost exclusively focused on a survival submodel with proportional
cause-specific hazards (Armero et al., 2016; Blanche et al., 2015; Elashoff et al., 2007; Hu et
al., 2009; Huang et al., 2010; Williamson et al., 2008). Usually, the survival submodel has the
following form, defining the cause specific hazard �.k/ for cause k D 1; : : : ; K.

�.k/.t IX2i ; bi ; �
.k/; ˛.k// D lim

h!0
h�1P.t � Ti < t C h; ıi D kjTi � t; X2i .t/; bi /

D �
.k/
0 .t/exp

°
X2i .t/�

.k/ C ˛.k/bi

±
:

The parameters are defined similar to those in Section 2.2, X2i are fixed effects which have
possibly cause-specific coefficients � .k/; bi are the random effects for subject i with possibly
cause-specific association ˛.k/, and cause-specific baseline hazard �.k/0 .t/.

Some of the joint modelling software will fit a competing risks model. The JM package in
R has an option CompRisk in the jointModel() function. The joint() function in the
joineR package will fit a cause-specific hazard joint model if the event indicator has multiple
levels, but the documentation states this only works for two causes in addition to censoring, and
no more (Philipson et al., 2012). The SAS macro %JM can also fit a competing risk model with
the option COMPETINGwhich is listed under AdditionalOptions. Documentation for the
stjm Stata command states that extension to the competing risks setting is planned, but there
is no indication that this has been completed (Crowther et al., 2013). There is also no built-in
option for fitting a competing risks model in JMbayes. Recently, a SAS macro called %SPM
was proposed specifically for fitting joint competing risks models (Wang et al., 2017). Finally,
the Jointlcmm() function in lcmm in R can also handle competing risks (Proust-Lima et
al., 2016).

Another common situation is data including recurrent events such as repeated hospitalisa-
tions or time between system breakdown in industry. The R package frailtypack will fit a
standard joint model with function longiPenal and also joint models with longitudinal mea-
surements, a terminal event plus recurrent events using the function trivPenal (Rondeau et
al., 2017; Rondeau et al., 2012).

With the increasing number of studies utilising joint modelling, it may be useful to analyse
the results from multiple studies in a meta-analytic context. A package for joint modelling
in a this context, joineRmeta in R, has been developed which can pool model parameters
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from multiple joint models using standard meta-analysis techniques or analyse the data from
all studies simultaneously (Sudell et al., 2018; Sudell, 2018).

8 Concluding Remarks

Joint modelling is a growing field of statistical research and the available software encour-
ages the use of these complicated models in applications. We have given an overview of joint
modelling methodology and then compiled a comprehensive list of available software. We com-
pared through simulation and data analysis the most common and user-friendly software: JM,
joineR and JMbayes in R, %JM in SAS and stjm in Stata. We also included a short descrip-
tion of extensions to joint modelling such as those that accommodate competing risks, multiple
longitudinal markers or recurrent events. The %JMfit macro developed for SAS, described
in Section S4, includes some goodness-of-fit calculations such as decomposition of AIC, BIC,
�AIC and �BIC (Zhang et al., 2016). Assessing model fit in a joint modelling framework has
had limited study and further development of this area is likely in the future (Zhang et al., 2014).

Our simulations show joint modelling software is preferable to two-stage models when the
longitudinal and survival processes are correlated, as the theoretical work finds. Ours is the
first investigation that explored the performance of regression coefficients on both longitudi-
nal and survival components. The packages in R fit only one type of association while SAS
and Stata include many more options. All software we compared are similar in their perfor-
mance when fitting the longitudinal submodel in simulations. There are more differences in the
survival submodel options and performance. All except joineR included a flexible paramet-
ric baseline hazard which is most applicable to real data when the true model is unknown. A
Cox-type survival submodel using an unspecified baseline hazard is currently available in the
R packages joineR and JM. In each of our simulation scenarios, we found that the average
width of the confidence intervals around the association estimate were smaller than all other
software. This could be evidence of underestimation of standard error. This is similar to what
was found in simulations in Yuen and Mackinnon (2016). Otherwise, we did not see underes-
timation for the other covariates. Still, documentation of the R JM package does not indicate
that any techniques are used to correct for the theoretical underestimation. Hence, this should
be considered when using the R JM package with a Cox type survival submodel. A recently
developed R package JSM fits semiparametric joint models while estimating standard errors
with numerical differentiation in an EM algorithm as described by Xu et al. (2014, 2018). We
found convergence issues when using the adaptive Gauss–Hermite quadrature option only when
using an unspecified baseline hazard in the R JM function. Additionally, we saw in our simu-
lations that using a restrictive parametric baseline risk function that matches the truth does not
aid in estimation but may shorten runtime. Unless there is a compelling reason to use a restric-
tive parametric function, such as Weibull, for the baseline hazard, we would recommend using
a flexible hazard such as piecewise constant or spline based.

In our investigation through simulation, we found that the Stata stjm command can be
very sensitive to the parameter values used in data generation. SAS can also have difficulties
depending on the parameters chosen when using an unstructured covariance matrix, but the
default model assuming uncorrelated random effects was always able to fit the models. The R
functions were always able to fit models to at least some of the datasets, no matter the parameter
values used.

Basic joint modelling capabilities are available in the main statistical programming lan-
guages, R, SAS and Stata, giving the user an option to use the implementation in the language of
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their choice. Each software has good features as well as limitations. Overall, we would recom-
mend R JM or SAS. The SAS macro %JM offers the most functionality, including submodel,
association and estimation options. R JM was consistently the fastest and includes almost as
many options as SAS, so this may be a better option if runtime is a concern. The joineR func-
tion is limited in the type of models it can fit. But if a joint model with a Gaussian longitudinal
response and a shared parameter survival submodel is appropriate for the data, joineR may
be a good option because of its simplicity.

Bayesian models can be very powerful and are gaining traction in joint modelling literature,
but the implementation is relatively limited. Analysing joint models in a general multi-purpose
Bayesian statistical programming language such as OpenBUGS or WinBUGS is possible and
attractive due to its flexibility. Defining a joint model can become complicated in OpenBUGS
due to the lack of closed form for the integrals encountered in estimation. A common simpli-
fying assumption is that the survival process follows a parametric distribution, often Weibull
(Guo, 2003; Guo & Carlin, 2004). Full proportional hazards survival submodels have been
implemented in the literature, and code is available in Supporting Information of Rizopoulos
and Ghosh (2011) for the case of multiple longitudinal outcomes and Andrinopouslou et al.
(2013) for the case of two longitudinal variables and competing risks data. A competing risks
joint model has been implemented in WinBUGS (Deslandes & Chevret, 2010).

Our investigation was focused on giving an overview of the available software and their
features. Our simulations were limited to three scenarios that could be modelled in each com-
mon software. Other simulation scenarios were explored but not every software was able to
fit models to the data. Running more simulations with different data forms and more focus on
time slopes in longitudinal models, different forms of the submodels and various associations
would add to the knowledge of these software. Further development of this group of software
is expected based on the continued research in this field and the applicability of these models.
With increased generalisation in the form of each part (longitudinal and survival submodels,
and the association), the software could accommodate many more types of data. Some software
are currently being developed and released to accommodate useful extensions such as com-
peting risks and multiple longitudinal outcomes as we discussed. Further work on more robust
estimation as well as faster algorithms would be useful. Fitting a simple joint model with only
a few covariates is not prohibitively restrictive on time. The time required will increase with an
increase in the number of covariates or a non-normal longitudinal models, especially if one has
to rely on re-sampling techniques for inference purposes. Such extensions may require creative
enhancements and approximations that would be computationally efficient. An important area
in joint modelling that is largely unexplored is model diagnostics. While some of the software
offer some basic diagnostics (Rizopoulos, 2010; 2016c) and dynamic predictions (Crowther et
al., 2013; Garcia-Hernandez & Rizopoulos, 2015; Rizopoulos, 2010; 2016c), there is room for
further expansion.
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