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Abstract
Graph symmetries intervene in diverse applications, from enu-

meration, to graph structure compression, to the discovery of

graph dynamics (e.g., node arrival order inference). Whereas

Erdős-Rényi graphs are typically asymmetric, real networks

are highly symmetric. So a natural question is whether pref-

erential attachment graphs, where in each step a new node

with m edges is added, exhibit any symmetry. In recent work

it was proved that preferential attachment graphs are symmet-

ric for m = 1, and there is some nonnegligible probability

of symmetry for m = 2. It was conjectured that these graphs

are asymmetric when m ≥ 3. We settle this conjecture in the

affirmative, then use it to estimate the structural entropy of

the model. To do this, we also give bounds on the number of

ways that the given graph structure could have arisen by pref-

erential attachment. These results have further implications

for information theoretic problems of interest on preferential

attachment graphs.
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1 INTRODUCTION

Study of the asymptotic behavior of the symmetries of graphs, originally motivated by enumera-

tive combinatorial problems, has recently found diverse applications in problems ranging from graph

compression to discovering interesting motifs to understanding dynamics of growing graphs.
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Let us explore some of these applications in more detail. The basic problem of structural (unlabeled

graph) compression can be formulated as follows: given a probability distribution on labeled graphs,

determine a binary encoding of samples from the induced unlabeled graph distribution so as to mini-

mize expected description length. In [6] the authors studied this problem in the setting of Erdős-Rényi

graphs. They showed that, under any distribution giving equal probability to isomorphic graphs, the

entropy of the induced distribution on graph structures (i.e., isomorphism classes of graphs) is less

than the entropy of the original distribution by an amount proportional to the expected logarithm of

the number of automorphisms. Thus the solution to the above problem is intimately connected with

the symmetries of the random graph model under consideration. We explore this topic in some detail

in Lemma 1 of Section 2.

We mention also a few representative algorithmic motivations for the study of graph symmetries.

The first involves the problem of motif discovery: given a graph G and a pattern graph H, the problem

is to find all subgraphs of G that are isomorphic to H. It has been observed (see, e.g., [19]) that taking

into account the symmetries of H can significantly decrease the time and space complexity of the task.

The same is true for G if it has nontrivial symmetries.

In the area of Markov chains, the paper [5] studies the following problem: given a graph G, the

task is to assign weights to edges of G so as to minimize the mixing time of the resulting Markov

chain. The authors show that symmetries in G may be exploited to significantly reduce the size of

a semidefinite program formulation which solves the problem. Moreover, they point out several ref-

erences to the literature in which symmetry plays a key role in reducing complexity for various

problems.

Study of symmetries is further motivated by their connection to various measures of information

contained in a graph structure. For instance, the topological entropy of a graph, studied in [20, 23], is

a function on graphs that measures the uncertainty in the orbit class (i.e., the set of nodes having the

same long-term neighborhood structure) of a node chosen uniformly at random from the node set of the

graph. Note that, unlike the labeled and unlabeled graph entropies that we study throughout this paper,

the topological entropy is a function of a particular graph, rather than of a probability distribution on

graphs. If the graph is asymmetric, then the topological entropy is maximized: if n is the size of the

graph, then the topological entropy is, to leading order, log n. In general, if the symmetries of the graph

can be characterized precisely, then so can the topological entropy.

The present paper is a step in the direction of understanding symmetries of complex networks and

toward extending graph structure compression results to random graph models other than Erdős-Rényi.

In particular, many real-world graphs exhibit a power-law degree distribution (see [9]). A commonly

studied model for real-world networks is the preferential attachment mechanism introduced in [1], in

which a graph is built one vertex at a time, and each new vertex t makes m choices of neighbors in

the current graph, where it attaches to a given old vertex v with probability proportional to the current

degree of v. We study here a simple variant of the preferential attachment model (see [9] and the

conclusion section for other models), and in the conclusion of this paper we suggest that the symmetry

behavior of other preferential models can be studied using the approach developed here. Our main

result is the following: for the variant of the preferential attachment model under consideration, when

each vertex added to the graph chooses a fixed number m ≥ 3 neighbors, with high probability, there

are no nontrivial symmetries. This is in stark contrast to the many symmetries observed in real-world

networks [15]. As we remark below our statement of Theorem 1, the asymmetry threshold (as well

as the degree sequence power law exponent) changes with other parameters in variants of preferential

attachment, such as affine and nonlinear models, which may explain this discrepancy.

The problem of establishing asymmetry in preferential attachment graphs appears to be difficult,

and literature on it seems to be scarce. We are aware only of [17], which proved that such graphs are
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symmetric for m = 1 and (with asymptotically positive probability) also for m = 2. The authors of

[17] conjectured that preferential attachment graphs are indeed asymmetric for m ≥ 3. In this paper we

first settle this conjecture in the affirmative using different methods than the one applied in [12, 17].

Namely, instead of relying on the graph defect (a measure of asymmetry defined in [12] which is

necessarily bounded in preferential attachment graphs, and hence has poor concentration properties),

we shall observe that symmetry would imply that certain vertices make the same choices with regard

to an initial set of vertices uniquely identifiable by their degrees, which we prove is unlikely to happen

for preferential attachment graphs whenever m ≥ 3.

After settling the asymmetry question for preferential attachment graphs, we use it to address the

issue of structural entropy. We first review an estimate of the labeled graph entropy given in [22],

and then estimate the unlabeled graph entropy (also known as the structural entropy). In Lemma 1 we

relate both entropies. Then, using our asymmetry result from Theorem 1, we estimate the structural

entropy. To derive the structural entropy estimate, we study the characteristics of the directed, acyclic

graph version of the preferential attachment process (culminating in Proposition 1, which may be of

independent interest). In particular, we estimate the number of ways that a given graph could have

arisen according to the preferential attachment mechanism. We additionally estimate the typical height
(i.e., the length of the longest directed path) of this directed version of the graph, which, being a natural

structural quantity, may be of independent interest.

We emphasize that the labeled and unlabeled graph entropies that we study are fundamental, as

they give the minimum achievable expected length of any prefix source code (i.e., compression code)

for these graphs.

Now we review some of the literature on symmetries of random graphs. The study of the asymptotic

behavior of the automorphism group of a random graph started with a paper of Erdős and Rényi [10],

where they showed that G(n,M) (i.e., the uniformly random graph on n vertices with M edges) with

constant density (i.e., when M = Θ(n2)) is asymmetric with high probability, a result motivated by the

combinatorial question of determining the asymptotics of the number of unlabeled graphs on n vertices

for n → ∞. Then Wright [25] proved that G(n,M) whp becomes asymmetric as soon as the number

of isolated vertices in it drops under 1. His result was later strengthened by Bollobás [3], who also

proved asymmetry for r-regular graphs with r ≥ 3. The asymptotic size of the automorphism group of

G(n,M) for small M, where the graph is not connected, was given by Łuczak [13]. As a similar ques-

tion motivated the investigation of symmetry properties of random regular graphs, Bollobás improved

his result from [3] by showing in [2] that unlabeled regular graphs with degree r ≥ 3 are whp asym-

metric as well. Let us note that it is a substantially stronger theorem (see the discussion below after

Theorem 1).

For general models, asymmetry results can be nontrivial to prove, due in part to the fact that asym-

metry is a global property. Furthermore, the particular models considered here present difficulties not

seen in the Erdős-Rényi case: there is significant dependence between edge events, and graph sparse-

ness makes derivation of concentration results difficult. However, settling the symmetry/asymmetry

question opens the door to several other lines of investigation, including, for example, the design of

optimal structural compression schemes and the precise characterization of the limits of inference prob-

lems (see, for example, [16]) for preferential attachment graphs. These applications crucially depend

on our precise understanding of graph symmetry.

The paper is organized as follows. In Section 2 we present our main results regarding the graph

asymmetry and structural entropy. In Section 3, we state and prove several results on the degree

sequence which will be useful in subsequent proofs. We prove the graph asymmetry result in Section 4

and the entropy result, along with the necessary structural results on the directed version of the model,

in Section 5.
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2 MAIN RESULTS

In this section, we state the main problem, introduce the model that we consider, and formulate the

main results. First, we review some standard graph-theoretic terminology and notation.

We start with the notion of structure-preserving transformations between labeled graphs: given two

graphs (possibly with multiple edges between nodes) G1 and G2 with vertex sets V(G1) and V(G2), a

mapping𝜙 ∶ V(G1) → V(G2) is said to be an isomorphism if it is bijective and preserves edge relations;

that is, for any x, y ∈ V(G1), the number of edges (possibly 0) between x and y is equal to the number

of edges in G2 between 𝜙(x) and 𝜙(y). When such a 𝜙 exists, G1 and G2 are said to be isomorphic.

An isomorphism from a graph G to itself is called an automorphism or symmetry of G. The set

of automorphisms of G, together with the operation of function composition, forms a group, which

is called the automorphism group of G, denoted by Aut(G). We then say that G is symmetric if it has

at least one nontrivial symmetry and that G is asymmetric if the only symmetry of G is the identity

permutation.

Our first main goal is to answer, for G distributed according to a preferential attachment model

(defined below), the question of whether with high probability the automorphism group is trivial (i.e.,|Aut(G)| = 1) or not.

We say that a multigraph G on vertex set [n] = {1, 2,… , n} is m-left regular if the only loop of G
is at the vertex 1, and each vertex v, 2 ≤ v ≤ n, has precisely m neighbors in the set [v − 1]. We will

study a variant of the preferential attachment model by giving a probability measure (m; n) on the

set of all m-left regular graphs on n vertices. More precisely, for an integer parameter m ≥ 1 we define

the graph (m; n) with vertex set [n] = {1, 2,… , n} using recursion on n in the following way: the

graph G1 ∼ (m; 1) is a single node with label 1 with m self-edges (these will be the only self-edges

in the graph, and we will only count each such edge once in the degree of vertex 1). Inductively, to

obtain a graph Gn+1 ∼ (m; n + 1) from Gn, we add vertex n + 1 and make m random choices

v1, ..., vm of neighbors in Gn as follows: for each vertex w ≤ n (i.e., vertices in Gn),

P(vi = w|Gn, v1, ..., vi−1) =
degn(w)

2mn
,

where throughout the paper we denote by degn(w) the degree of vertex w ∈ [n] in the graph Gn (in

other words, the degree of w after vertex n has made all of its choices).

As stated above, the model so defined is a variant of preferential attachment, which refers to a class

of similar dynamic random graph models in which new vertices choose m neighbors with probability

proportional to their current degrees. The introduction of this notion is often credited to [1]. Several

different tweaks have been considered: for example, whether or not self-loops are allowed, whether or

not degrees are updated after each choice made by a given vertex, etc. Our results are robust to such

tweaks (in particular, all of our main theorems hold as stated, regardless of the variations mentioned

above). The proofs are similarly robust; however, the proof of our structural entropy result becomes

somewhat more involved if, for example, multiple edges are replaced with single ones (yielding a

simple graph). For this reason, we focus on the model defined above.

We next formulate our first main result regarding asymmetry of (m; n) for m ≥ 3 that we prove

in Section 4.

Theorem 1 (Asymmetry for preferential attachment model) Let G ∼ (m; n) for fixed m ≥ 3.
Then, with high probability as n → ∞,

|Aut(G)| = 1.
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More precisely, for m ≥ 3,

P(|Aut(G)| > 1) = O(n−𝛿), (1)

for some fixed 𝛿 > 0 and large n.

Remark 1 One may wonder if one can strengthen the above statement and claim that for m ≥ 3 we

have E|Aut((m; n))| = 1 + o(1); if this would be the case, then a natural unlabeled version of the

model, which we denote by u(m; n), defined below would be with high probability asymmetric too.

However, somewhat surprisingly, it is not the case.

To make this precise, let us recall that in the case of the uniform random graph model G(n,M),
where we choose a graph uniformly at random from the family of all graphs with n labeled vertices

and M edges, the automorphism group becomes with high probability trivial just above the connec-

tivity threshold; that is, when 2M∕n − log n → ∞; in fact, at this moment the expected size of

Aut(G(n,M)) is 1+ o(1). Moreover, almost precisely at this time the unlabeled uniform random graph

Gu(n,M) which is chosen at random from the family of all unlabeled graphs with n vertices and M
edges becomes asymmetric and, furthermore, the structure of Gu(n,M) is almost identical to the struc-

ture of G(n,M); that is, Gu(n,M) is basically G(n,M) with erased labels (for more information on this

model, see [14]). As we have already mentioned above, the same is true for r-regular random graphs

with r ≥ 3, where the uniform labeled and unlabeled graph models have basically the same asymptotic

properties [2].

Returning to the preferential attachment case, for any m-left regular graph G let S(G) denote the

class of all m-left regular graphs which are isomorphic to G, and let  denote the family containing

all S(G), that is, the family of all “unlabeled m-left regular graphs.” We define the unlabeled graph

distribution u(n;m) as the probability distribution on  , where the probability of each class S(G)
is proportional to the average of the probabilities that a labeled version of S(G) is (m; n), that is,

proportional to

1|S(G)| ∑
H∈S(G)

P(H = (m; n)) .

Note that this is a different distribution from the one that samples a preferential attachment graph and

takes its isomorphism class. Note, also, that Gu(n,M) is defined in the same way, but in that case all

terms in the sum are the same, so each equivalence class is equally likely. Now we can ask whether

the typical structure of u(m; n) is the same, or very close to that of (m; n) (i.e., a preferential

attachment graph with labels removed); in particular whether it is asymmetric. It seems that it is not

this case. To see this, notice that the typical (m; n) is asymmetric and, furthermore, whp it contains

L = Ωm(n) vertices with label at least 3n∕4, such that they are of degree m and have pairwise different

neighborhoods contained in [n∕2] = {1, 2,… , n∕2}. For such a graph G we clearly have |S(G)| ≥

L! = exp(Ωm(n log n)) and so for every H ∈ S(G) we have P(H = (m; n)) ≤ exp(−Ωm(n log n))
(if the neighborhoods are not different, it is hard to get such an S(G)). On the other hand for the

graph H′ such that all vertices of labels 𝓁 ≥ m + 1 has neighbors {1, 2,… ,m} we have P(H′ =
(m; n)) ≥ exp(−Om(n)). Thus, the very asymmetric H′ is much more likely to appear as u(m; n)
than a “typical” graph (m; n).

Here we will not investigate the properties of u(m; n) but rather characterize the information

content of the distribution on unlabeled graphs given by sampling from (m; n) and removing the

labels (i.e., taking the isomorphism class of the sampled graph).
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Remark 2 The particular threshold at m = 3 differs in different variations of the model. For example,

in affine preferential attachment, where at time t a vertex v is chosen with conditional probability

proportional to degt−1(v)+𝛿, for a fixed parameter 𝛿 > −m (and an initial graph with minimum degree

greater than −𝛿), our proof technique shows that we have asymmetry with high probability whenever

m >

√
𝛿2 + 4 − 𝛿 + 2

2
. (2)

Note that when 𝛿 = 0, this gives m > 2, in agreement with our theorem statement. When 𝛿 → ∞, this

translates to m ≥ 2 (i.e., the asymmetry threshold decreases). When 𝛿 < 0, this places a restriction on

m in order for the model to be well-defined: m > −𝛿. Thus, the set of values of m for which our proof

technique does not show asymmetry is of cardinality Θ(1). For instance, when 𝛿 = −2, it is required

that m > 2, and (2) becomes m ≥ 4.

As a direct application of Theorem 1, we estimate the structural entropy H(S(G)). Recall that the

entropy H(G) of the labeled graph G ∼ (m; n) is defined as

H(G) = −
∑

G∈n

P(G) log P(G),

where n denotes the set of graphs on n vertices. The structural entropy H(S(G)) is then simply the

entropy of the isomorphism type of G. Note that these are Shannon entropies, which are functionals

of probability distributions, rather than of fixed graphs. We next show how to find a relation between

these two entropies. By the chain rule for conditional entropy,

H(G) = H(S(G)) + H(G|S(G)). (3)

The second term, H(G|S(G)), measures our uncertainty about the labeled graph if we are given its

structure. We will give a formula for H(G|S(G)) in terms of |Aut(G)| and another quantity, defined

as follows: suppose that, after generating G, we relabel G by drawing a permutation 𝜋 uniformly at

random from Sn, the symmetric group on n letters, and computing 𝜋(G). Then conditioning on 𝜋(G)
yields a probability distribution for possible values of 𝜋−1 = 𝜎. We can write H(G|S(G)) in terms

of H(𝜎|𝜎−1(G)) = H(𝜎|𝜎(G)) and E[log |Aut(G)|] using the chain rule for entropy, resulting in the

following lemma.

Lemma 1 (Structural entropy for preferential attachment graphs) Let G ∼ (m; n) for fixed m ≥ 1,
and let 𝜎 be a uniformly random permutation from Sn. Then we have

H(G) − H(S(G)) = H(𝜎|𝜎(G)) − E[log |Aut(G)|]. (4)

Proof We compute H(G, 𝜎(G), 𝜎|S(G)) in two different ways, by the chain rule.

H(G, 𝜎(G), 𝜎|S(G)) = H(G|S(G)) + H(𝜎(G)|G) + H(𝜎|G, 𝜎(G), S(G))
= H(G|S(G)) + H(𝜎(G)|G) + H(𝜎|G, 𝜎(G)),

where the second equality is because knowing G implies that we know S(G) (so that conditioning

on both G and S(G) is equivalent to conditioning on just G). Since 𝜎 is chosen uniformly at random,

it is a uniformly random isomorphism between G and 𝜎(G). There are always exactly |Aut(G)| such
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isomorphisms, so we have that the third term is H(𝜎|G, 𝜎(G)) = E[log |Aut(G)|]. Thus, our first

expression is

H(G, 𝜎(G), 𝜎|S(G)) = H(G|S(G)) + H(𝜎(G)|G) + E[log |Aut(G)|]. (5)

We evaluate the expression alternatively as

H(G, 𝜎(G), 𝜎|S(G)) = H(𝜎(G)|S(G)) + H(𝜎|𝜎(G), S(G)) + H(G|𝜎, 𝜎(G), S(G))
= H(𝜎(G)|S(G)) + H(𝜎|𝜎(G)). (6)

Here, the last term of the second expression is 0 because G is a deterministic function of the pair

(𝜎, 𝜎(G)). The second term in the same expression simplifies because knowing 𝜎(G) implies that we

also know S(G).
Combining (5) and (6) yields

H(G|S(G)) = H(𝜎|𝜎(G)) − E[log |Aut(G)|] + H(𝜎(G)|S(G)) − H(𝜎(G)|G).

Now, we claim that H(𝜎(G)|S(G)) = H(𝜎(G)|G), which will complete the proof. This is a result of

the fact that, under both conditionings, 𝜎(G) is a uniformly random element of S(G), so that both

conditional entropies must be equal. We thus have

H(G|S(G)) = H(𝜎|𝜎(G)) − E[log |Aut(G)|],
as desired.

Remark 3 In the proof of Theorem 2, we prove an alternative, more combinatorial representation

for H(𝜎|𝜎(G)); see (33).

To estimate the structural entropy H(S(G)) using Lemma 1, we need an expression for the labeled

graph entropy H(G) and to evaluate the two terms on the right-hand side of (4).

A one-term expansion for the labeled entropy of the preferential attachment model is given in

Theorem 1 of [22]:

H(G) = mn log n + Θ(n).

Using refined results on the degree sequence, we are able to give a precise formula for the second term,

resulting in an error term of o(n). In particular, the Θ(n) term is

m (log 2m − 1 − log m! − A) n + o(n),

where

A(m) = A =
∞∑

𝑑=m

log 𝑑

(𝑑 + 1)(𝑑 + 2)
.

However, for the present application, this level of precision is not needed.

Now, we are in the position to complete our computation of the structural entropy.
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Theorem 2 (Structural entropy of preferential attachment graphs) Let m ≥ 3 be fixed. Consider
G ∼ (m; n). We have

H(S(G)) = (m − 1)n log n + R(n), (7)

where R(n) satisfies

Cn ≤ |R(n)| ≤ O(n log log n)

for some nonzero constant C = C(m).

To prove this, we evaluate (4) by relating H(𝜎|𝜎(G)) to a combinatorial parameter of the directed

version of G. We show this derivation in Section 5.

3 RESULTS ON THE DEGREE SEQUENCE

In this section, we present results on the degree sequence of preferential attachment graphs which we

will use in the proofs of our main results in subsequent sections.

First, we denote by degt(s) the degree of a vertex s < t after time t (i.e., after vertex t has made its

choices).

The first result, which specializes Lemma 4 of [4], gives an upper bound on the probability that

two given vertices are adjacent.

Lemma 2 Let w < v. Then the probability that v is adjacent to w is bounded above by Cm√
vw

. In

particular, each two vertices v,w ≥ 𝜖n are adjacent with probability smaller than Cm
𝜖n

.

It is known that for t > s, the expectation of degt(s) is O(
√

t∕s) (see [24], Theorem 8.2). We first

state a simple tail bound to the right of this expectation, which may be found in [11], Lemma 17.2:

Lemma 3 (Right tail bound for a vertex degree at a specific time) Let r < t. Then

P(degt(r) ≥ Aem(t∕r)1∕2(log t)2) = O(t−A)

for any constant A > 0 and any t.

We can prove a similar left tail bound for the random variable degt(s) whenever s ≪ t, as captured

in the following lemma.

Lemma 4 (Degree left tail bound) Let v = O(T1−𝜖) as T → ∞, for some fixed 𝜖 ∈ (0, 1∕2). Then
there exist some C,D > 0 such that

P
(
degT (v) < C

(T
v

)(1−𝜖)2∕(2.0001))
≤ e−D𝜖3 log(T) = T−D𝜖3

. (8)

To prove this, we need the following coarser lemma.
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Lemma 5 Let v < T1−𝜖 , for some fixed 𝜖 > 0. Then there exist constants C,D > 0 independent of 𝜖
such that

P(degvT𝜖 (v) < C𝜖 log T) ≤ T−D𝜖 (9)

for T sufficiently large.

Proof We observe the graph at exponentially increasing time steps: for some 𝛽 > 0, let t0 = v,

tj = (1 + 𝛽)jt0, tk = (1 + 𝛽)kt0 = vT𝜖 (so k = 𝜖 log T
log(1+𝛽)

). Note that degt0 (v) = degv(v) = m.

Let us upper bound the probability pj+1 that no connection to vertex v is made by any vertex in the

subinterval (tj, tj+1]:

pj+1 ≤

(
1 − m

2mtj+1

)m(tj+1−tj)

=
(

1 − 1

2tj+1

)m𝛽tj
, (10)

which is at most some positive constant 𝜌 = 𝜌(m𝛽), uniform in j, satisfying 𝜌 < 1. This follows from

the inequality 1 − x ≤ e−x for all x ∈ R. Thus, the total number of connections to vertex v in all

subintervals can be stochastically lower bounded by a binomial random variable with number of trials

k = Θ(𝜖 log T) and success probability 𝜌(m𝛽): for any 𝑑 ≥ 0,

P(degtk (v) − m ≥ 𝑑) ≥ P(Binomial(k, 1 − 𝜌) ≥ 𝑑). (11)

In particular, as T → ∞, this implies (using the Chernoff bound) that with probability 1 − T−D𝜖 , the

number of subintervals which contribute at least one new edge to v is at least C𝜖 log T , for some C, so

that degvT𝜖 (v) ≥ C𝜖 log T , which completes the proof.

With the previous lemma in hand, we are now ready to prove our left tail bound.

Proof of Lemma 4 Similar to the proof of Lemma 5, we observe the graph at exponentially increasing

times: fix a small 𝛼 > 0, and let t0 = vT𝜖 , tj = (1 + 𝛼)jt0, tk = (1 + 𝛼)kt0 = T , so that k = log(T∕t0)
log(1+𝛼)

.

Denote by 𝑑j = degtj (v) and Δj+1 = 𝑑j+1 − 𝑑j, for each j.
In the interval (tj, tj+1], conditioned on the graph up to time tj, Δj+1 is stochastically lower bounded

by a binomially distributed random variable with parameters (tj+1 − tj)m = 𝛼tjm and pj+1 = 𝑑j

2mtj+1

.

The former parameter is simply the interval length (in terms of number of vertex choices). The latter

parameter comes from the fact that the degree of v at any point in the interval is at least 𝑑j, and the

total degree of the graph is at most 2mtj+1. That is,

Δj+1
||Gtj ⪰st Binomial

(
m𝛼tj,

𝑑j

2tj+1m

)
, (12)

where ⪰st denotes stochastic domination.

This suggests that we define the bad event Bj = [Δj < 𝛼tj−1mpj(1 − 𝜖)], for arbitrary 𝜖 > 0, and

for j ∈ [1, k]. We further define B0 = [𝑑0 < C𝜖 log T], for some constant C > 0.

Conditioning on all of the Bj (for j ∈ {0, ..., k}) failing to hold, we have

P

(⋂
j<k

[
𝑑j+1 ≥ 𝑑j

(
1 + (1 − 𝜖)𝛼

2(1 + 𝛼)

)] || k⋂
j=0

¬Bj

)
= 1, (13)



ŁUCZAK ET AL. 705

recalling that 𝑑j+1 = 𝑑j + Δj+1 by definition. This in particular implies that (still under the same

conditioning)

𝑑k ≥ 𝑑0 ⋅
(

1 + (1 − 𝜖)𝛼
2(1 + 𝛼)

)k

= 𝑑0 exp

⎛⎜⎜⎝log(T∕t0)
log(1 + (1−𝜖)𝛼

2(1+𝛼)
)

log(1 + 𝛼)

⎞⎟⎟⎠ . (14)

Taking 𝛼 close enough to 0, this becomes

𝑑k ≥ 𝑑0 exp

(
1 − 𝜖

2(1 + o𝛼→0(1))
log(T∕t0)

)
= 𝑑0(T∕t0)

1−𝜖
2.0001 , (15)

as in the statement of the lemma.

Now, it remains to lower bound the probability P(
⋂k

j=0 ¬Bj). We may write it as

P

( k⋂
j=0

¬Bj

)
= P(¬B0)

k∏
j=1

P(¬Bj|¬B0, ...,¬Bj−1) ≥ (1 − T−D𝜖)
k∏

j=1

P(¬Bj|¬B0, ...,¬Bj−1),

where the inequality is by Lemma 5.

Now, by the stochastic domination (12), the conditioning, and the Chernoff bound, the jth factor

of the product is lower bounded as follows:

P(¬Bj|¬B0, ...,¬Bj−1) ≥ P(Binomial(𝛼tj−1m, pj) ≥ 𝛼tj−1mpj(1 − 𝜖)|¬B0, ...,¬Bj−1) (16)

≥ 1 − exp

(
−
𝜖2𝛼𝑑j−1

2(1 + 𝛼)

)
.

Under the conditioning, 𝑑j−1 is further lower bounded by
(

1 + (1−𝜖)𝛼
2(1+𝛼)

)j−1

C𝜖 log T ≥(
1 + 𝛼

4(1+𝛼)

)j−1

C𝜖 log T (using the fact that 𝜖 < 1∕2), resulting in

P(¬Bj|¬B0, ...,¬Bj−1) ≥ 1 − exp

(
−C 𝜖3𝛼

2(1 + 𝛼)
⋅
(

1 + 𝛼

4(1 + 𝛼)

)j−1

log(T)

)
. (17)

This implies

P

( k⋂
j=0

¬Bj

)
≥ P(¬B0) ⋅

k∏
j=1

(
1 − exp

(
−C 𝜖3𝛼

2(1 + 𝛼)
⋅
(

1 + 𝛼

4(1 + 𝛼)

)j−1

log(T)

))
. (18)

For convenience, set C′ = C 𝛼

2(1+𝛼)
∕D′ and D′ = 1 + 𝛼

4(1+𝛼)
. Note that D′ > 1. So the product in (18)

can be written (after some simple asymptotic analysis) as

k∏
j=1

(
1 − exp

(
−𝜖3C′ ⋅ D′j log(T)

))
= 1 − Θ(T−𝜖3C′D′ ).
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This implies, after combination with the lower bound on P(¬B0), that we can write

P

( k⋂
j=0

¬Bj

)
≥ (1 − T−D𝜖)(1 − Θ(−T−𝜖3C′D′ )) ≥ 1 − T−D′′𝜖3

, (19)

for some D′′ > 0 (depending on 𝛼), as claimed. Combining this with (13) yields (15) with the claimed

probability bound as follows:

P(𝑑k ≥ 𝑑0(T∕t0)
1−𝜖

2.0001 ) ≥ P

(⋂
j<k

[
𝑑j+1 ≥ 𝑑j

(
1 + (1 − 𝜖)𝛼

2(1 + 𝛼)

)])

≥ P

(⋂
j<k

[
𝑑j+1 ≥ 𝑑j

(
1 + (1 − 𝜖)𝛼

2(1 + 𝛼)

)] || k⋂
j=0

¬Bj

)
⋅ P

( k⋂
j=0

¬Bj

)
≥ 1 ⋅ (1 − T−D′′𝜖3 ),

as required.

Using Lemma 4, we can prove a corollary roughly lower bounding the typical minimum degree of

the collection of vertices before a given time.

Corollary 1 Let Δ > 0 be fixed. There exists some small enough 𝛿 > 0 and positive constant D such
that

P

( ⋃
w<T𝛿

degT (w) < C
(
T1−Δ)1∕2

)
≤ T−D (20)

as T → ∞.

Proof This follows immediately from the fact that the probability bound in Lemma 4 is monotone

in 𝜖 and constant with respect to v. We omit the simple details.

The next result gives a bound on the probability that two early vertices have the same degree.

Lemma 6 There exist positive constants Δ < 1 and c such that the probability that for some s <

s′ < k2 = n2Δ we have degn(s) = degn(s′) is O(n−c).

Proof Let s < s′ < k2 = n2Δ, for some Δ > 0 to be chosen. We first estimate the probability that

degn(s) = degn(s′). In order to do so we set n′ = n0.6 and define

deg(s) = degn−n′ (s) and deg(s) = degn(s) − deg(s).

Note that

P(degn(s) = degn(s′)) =
∑

𝑑,𝑑′,𝑑′

P(degn(s) = degn(s′)|deg(s) = 𝑑, deg(s′) = 𝑑′, deg(s′) = 𝑑′)

× P(deg(s) = 𝑑, deg(s′) = 𝑑′, deg(s′) = 𝑑′)
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=
∑

𝑑,𝑑′,𝑑′

P(deg(s) = 𝑑′ + 𝑑′ − 𝑑|deg(s) = 𝑑, deg(s′) = 𝑑′, deg(s′) = 𝑑′)

× P(deg(s) = 𝑑, deg(s′) = 𝑑′, deg(s′) = 𝑑′) . (21)

Observe that due to Lemma 4 (alternatively, Corollary 1) and Lemma 3, with probability 1−O(n−c),
for some appropriate c > 0 and small enough k = nΔ, a vertex s ∈ [k2] has degree between n0.488 and

n0.51 at any time in the interval [n−n′, n]. Importantly, note that if this holds with probability 1−O(n−c)
for a given choice of Δ, then the same holds for all smaller choices of Δ, with the same value for c (this

is a consequence of the fact that the probability bound in Lemma 4 is a function of 𝜖 and not of v).

Furthermore, one can estimate the random variable deg(s) conditioned on deg(s) = 𝑑 from

above and below by binomial distributed random variables and use Chernoff bound to show that with

probability at least 1 − O(n−c) we have

||| 𝑑n′

2mn
− deg(s)||| = |||0.5m−1𝑑n−0.4 − deg(s)||| ≤ ( 𝑑n′

2mn

)0.6

≤ n0.08 . (22)

Thus, in order to estimate P(degn(s) = degn(s′)), it is enough to bound

𝜌(𝑑′, 𝑑′, 𝑑) = P(deg(s) = 𝑑′ + 𝑑′ − 𝑑|deg(s) = 𝑑, deg(s′) = 𝑑′, deg(s′) = 𝑑′)

for n0.488 ≤ 𝑑, 𝑑′ ≤ n0.51 and

|0.5𝑑n−0.4∕m − (𝑑′ + 𝑑′ − 𝑑)| ≤ n0.08 .

In order to simplify the notation set 𝓁 = 𝑑′ + 𝑑′ − 𝑑. Let us estimate the probability that deg(s) = 𝓁

conditioned on deg(s) = 𝑑 and deg(s′) = 𝑑′. The probability that some vertex v > n − n′ is connected

to s by more than one edge is bounded from above by

Cn′
(m degn(s)

n − n′

)2

≤ n0.6 O(n−0.98) = O(n−0.38)

so we can omit this case in further analysis. The probability that we connect a given vertex v > n − n′

with s is given by

m degv−1(s)
2m(v − 1)

=
𝑑 + O(𝑑n−0.4)
2(n − O(n′))

=
𝑑

2n

(
1 + O(n−0.4)

)
. (23)

Consequently, the probability that deg(s) = 𝓁 conditioned on deg(s) = 𝑑 and deg(s′) = 𝑑′ is given by

(
n′

𝓁

)
𝜌𝓁(1 − 𝜌)n′−𝓁

(
1 + O(n−0.4)

)𝓁(
1 + O(n−0.4𝑑∕n)

)n′−𝓁
,

where 𝜌 = 𝑑∕2n.

If we additionally condition on the fact that deg(s′) = 𝑑′ (so that we now have conditioned on

deg(s) = 𝑑, deg(s′) = 𝑑′, and deg(s′) = 𝑑′), it will result in an extra factor of the order
(

1+O(𝑑∕2n)
)𝑑′
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since it means that some 𝑑′ vertices already made their choice (and selected s′ as their neighbor). Note

however that, since 𝓁, 𝑑′ = O(𝑑n′∕n) = O(n0.11) we have

(
1 + O(n−0.4)

)𝓁
= 1 + O(n−0.29)(

1 + O(n−0.4𝑑∕n)
)n′−𝓁

= 1 + O(n−0.29)(
1 + O(𝑑∕2n)

)𝑑′

= 1 + O(n−0.48) .

Hence, the probability that deg(s) = 𝓁 conditioned on deg(s) = 𝑑, deg(s′) = 𝑑′, and deg(s′) = 𝑑′ is

given by (
n′

𝓁

)
𝜌𝓁(1 − 𝜌)n′−𝓁

(
1 + O(n−0.29)

)
,

and so it is well approximated by the binomial distribution. On the other hand, the probability that

the random variable with binomial distribution with parameters n′ and 𝜌 takes a particular value is

bounded from above by O(1∕
√

n′𝜌). Thus, for a given pair of vertices s < s′ < k2 = n2Δ we have

P(degn(s) = degn(s′)) = O(
√

n∕n′𝑑) + O(n−c) = O(n−c) .

Hence, the probability that such a pair of vertices, s < s′ < k2 = n2Δ exists is bounded from above by

O(k4n−c), and, as remarked at the beginning of the proof, k = nΔ may be chosen small enough so that

this yields a bound of the form O(n−c′ ), for c′ > 0.

4 PROOF OF THEOREM 1

In this section we shall give a complete proof of Theorem 1. Let us first define two properties, 𝔄 and 𝔅
of (m; n) which are crucial for our argument. Here and below we set k = k(n) = nΔ, k̃ = k̃(n) = nΔ′

,

and k̃′ = k̃′(n) = nΔ′′
for some small enough 0 < Δ < Δ′ < Δ′′ to be chosen. Specifically, we will

choose Δ′′ first, followed by Δ′, followed by Δ.

(𝔄) (m; n) has property 𝔄 if no two vertices t1, t2, where k < t1 < t2, are adjacent to the same m
neighbors from the set [t1 − 1].

(𝔅) (m; n) has property 𝔅 if the degree of every vertex s ≤ k̃ is unique in (m; n), that is, for no

other vertex s′ of (m; n) we have degn(s) = degn(s′).

It is easy to see that

P(|Aut((m; n))| = 1) ≥ P((m; n) ∈ 𝔄 ∩𝔅) , (24)

and so

P(|Aut((m; n))| > 1) ≤ P((m; n) ∉ 𝔄) + P((m; n) ∉ 𝔅) . (25)

Indeed, let us suppose that (m; n) has both properties 𝔄 and 𝔅, and 𝜎 ∈ Aut((m; n)). Let us

assume also that 𝜎 is not the identity, and let t1 be the smallest vertex such that t2 = 𝜎(t1) ≠ t1. Note
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that 𝔅 implies that for all s ∈ [k] we have 𝜎(s) = s, so that we must have k < t1 < t2. On the other hand

from 𝔄 it follows that t1 and t2 = 𝜎(t1) have different neigbourhoods in the set [t1 − 1] (which consists

of fixed points of 𝜎, since t1 was assumed to be the smallest nonfixed point of 𝜎). This contradiction

shows that 𝜎 is the identity, that is, |Aut((m; n))| = 1 which proves (24).

Thus, in order to prove Theorem 1 it is enough to show that both probabilities P((m; n) ∉ 𝔄)
and P((m; n) ∉ 𝔅) tend to 0 polynomially fast as n → ∞, for some choice of k, k̃ (equivalently,

Δ,Δ′). We will show that P((m; n) ∉ 𝔄) tends to 0 polynomially fast for any choice of Δ, while

P((m; n) ∉ 𝔅) does so for some sufficiently small choice of Δ′.

Let us study first the property 𝔄. Our task is to estimate from above the probability that there exist

vertices t1 and t2 such that k < t1 < t2, which select the same m neighbors (which, of course, belong

to [t1 − 1]). Thus we conclude

P((m; n) ∉ 𝔄) ≤
∑

k<t1<t2

P(t1, t2 choose the same neighbors in [t1 − 1])

≤
∑

k<t1<t2

∑
1≤r1≤r2···≤rm<t1

P(t1, t2 choose r1, ..., rm). (26)

The event in the last expression is an intersection of dependent events, but it is known (see [8],

Lemma 2.1) that edge events involving connections to distinct target vertices (in this case, r1, ..., rm)

are negatively correlated, so that we can upper bound by a product of probabilities:

P(t1, t2 choose r1, ..., rm) ≤
2∏

𝓁=1

m∏
s=1

P(t𝓁 chooses rs).

Applying Lemma 2, for k < t1 < t2 we get

P(t1, t2 choose r1, ..., rm) ≤ Cm
2∏

𝓁=1

m∏
s=1

1√
t𝓁rs

.

Thus, (26) becomes

P((m; n) ∉ 𝔄) ≤ Cm
∑

k<t1<t2

∑
1≤r1≤r2···≤rm<t1

2∏
𝓁=1

m∏
s=1

1√
t𝓁rs

≤ Cm
∑

k<t1<t2

(t1t2)−m∕2
∑

1≤r1≤r2···≤rm<t1

m∏
s=1

1

rs

≤ D(m)
∑
k<t1

t−m+1+𝛼
1

≤ C(m)k2−m+𝛼, (27)

where C(m),D(m), and 𝛼 are some positive constants (with 𝛼 arbitrarily small and C(m) and D(m)
depending on m). The third inequality arises as follows: we have

∑
1≤r1≤r2···≤rm<t1

m∏
s=1

1

rs
≤

∑
1≤r1≤r2···≤rm−1<t1

m−1∏
s=1

1

rs

∑
rm−1≤rm<t1

1

rm
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≤
∑

1≤r1≤r2···≤rm−1<t1

m−1∏
s=1

1

rs
log

t1
rm−1

≤ log t1 ⋅
∑

1≤r1≤r2···≤rm−1<t1

m−1∏
s=1

1

rs
,

so that, inductively, this sum contributes a factor of (log t1)m ≤ (log t2)m. We may further upper bound

this by D(m)t𝛼
2
, for some arbitrarily small 𝛼 and positive constant D(m).

Hence

P((m; n) ∉ 𝔄) ≤ nΔ(2.0001−m) , (28)

which is polynomially decaying since m ≥ 3. We remark that this holds for arbitrary Δ > 0.

Next we show that, with probability close to 1, Δ′ may be chosen sufficiently small so that

P((m; n) ∉ 𝔅) tends to 0 polynomially fast; that is, the k̃ = nΔ′
oldest vertices of (m; n)

have unique degrees and so these are fixed points of every automorphism. The key ingredient of our

argument is Lemma 6.

We first define some auxiliary properties: 𝔅1 = 𝔅1(Δ′′) is the property that the degrees of all

vertices < k̃′2 are pairwise different, and 𝔅2 = 𝔅2(Δ′,Δ′′) is the property that the degrees of all

vertices < k̃ are greater than those of all vertices > k̃′2. It is easy to see that

P((m; n) ∈ 𝔅) ≥ P((m; n) ∈ 𝔅1,(m; n) ∈ 𝔅2),

so that

P((m; n) ∉ 𝔅) ≤ P((m; n) ∉ 𝔅1) + P((m; n) ∉ 𝔅2).

To estimate the probability that (m; n) ∉ 𝔅1, we reason as follows: from Lemma 6 we know

that with probability at least 1−O(n−c), for some positive constant c, the degrees of all vertices smaller

than k̃′2 = n2Δ′′
are pairwise different, for any Δ′′ small enough to satisfy Lemma 6. In other words,

for such a choice Δ′′, we have P((m; n) ∉ 𝔅1) = O(n−c).
Now we show that we can choose Δ′ so as to upper bound P((m; n) ∉ 𝔅2). Intuitively, we will

show that sufficiently early vertices have high degree, while sufficiently late vertices have low degree.

Using Corollary 1, one can deduce that we can choose Δ′ > 0 (playing the role of 𝛿 in the corollary)

small enough so that, with probability at least 1 − O(n−c) (for another positive constant c > 0) all

vertices s < k̃ = nΔ′
have degrees larger than those of all vertices t > k̃′2 (in particular using the left

tail bound to show that vertices < k̃ all have high degree and the right tail bound to show that vertices

> k̃′2 have low degree whp). Let us be more precise here: we can choose Δ in Corollary 1 to be some

very small constant (say, 0.00001). This ensures the existence of a choice for Δ′ for which

P

( ⋂
s<k̃=nΔ′

degn(s) ≥ Cn(1−0.00001)∕2

)
≥ 1 − T−c, (29)

for some positive constant c. That is, with probability at least 1 − T−c, all vertices < k̃ have degree

larger than Cn0.499995. Note that we can bring the exponent arbitrarily close to 0.5 by finding a small

enough Δ′. We will require, in fact, that Δ′ is small enough compared to Δ′′.
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Now, we can use Lemma 3 to show that all vertices r > k̃′2 = n2Δ′′
have low degree with high

probability. In particular, in the lemma statement, we choose t ∶= n and arbitrary r > k̃′2. This results,

for arbitrary A > 0, in the bound

P(
⋃
r>k̃′2

degn(r) ≥ Aemn(1−2Δ′′)∕2(log n)2) ≤ n ⋅ O(n−A) = O(n1−A), (30)

which is polynomially decaying if we set A sufficiently large (say, A = 2). Note that we have used the

union bound, followed by Lemma 3. This shows that, with probability at least 1 − n−c for some c > 0,

all vertices r > k̃′2 have degree at most Õ(n(1−2Δ′′)∕2). Since Δ′′ is some specific (small) constant, we

may choose Δ′ above so small that this is asymptotically smaller than the lower bound on the degrees

of vertices < k̃. So we have shown that, for this choice of Δ′, we have P((m; n) ∉ 𝔅2) = O(n−c).
Consequently, with probability 1 − O(n−c) degrees of vertices from [k̃] are unique; that is,

(m; n) ∉ 𝔅.

Finally, Theorem 1 follows directly from (25) and our estimates for P((m; n) ∉ 𝔄) and

P((m; n) ∉ 𝔅), provided that we choose Δ < Δ′.

Remark 4 In the affine preferential attachment model with fixed 𝛿 > −m, calculations give the

following alterations of the above derivation. Define a = m
2m+𝛿

. Then Lemma 2.2 of [8] implies that

the probability that vertex t𝓁 chooses rs in any given choice is at most
1

t1−a
𝓁 ra

s
. Following the steps of the

derivation above, we eventually get k2− 2m(m+𝛿)
2m+𝛿 +𝛼

in place of k2−m+𝛼 in the expression (27). Setting the

exponent equal to 0 and solving for m in terms of 𝛿 and 𝛼 shows that we have asymmetry with high

probability if

m >

√
𝛿2 + 4 − 𝛿 + 2

2
.

This recovers our result when 𝛿 = 0, and it shows that the asymmetry threshold (as a function of m)

occurs for smaller m (at least 2) as 𝛿 increases.

5 PROOF OF THEOREM 2

We now prove the claimed estimate of the structural entropy.

We first show that the contribution of E[log |Aut(G)|] is negligible (in particular, o(n)). From

Theorem 1 and the fact that |Aut(G)| ≤ n!, we immediately have

E[log |Aut(G)|] ≤ n log n ⋅ n−𝛿 = o(n).

We now move on to estimate H(𝜎|𝜎(G)), which we will show to satisfy

n log n − O(n log log n) ≤ H(𝜎|𝜎(G)) ≤ n log n − n + O(log n). (31)

To go further, we need to define a few sets which will play a role in our derivation. We define the

admissible set Adm(S) of a given unlabeled graph S to be the set of all labeled graphs g with S(g) =
S such that g could have been generated according to the preferential attachment model with given

parameters. That is, denoting by gt the subgraph of g induced by the vertices 1, ..., t for each t ∈ [n],



712 ŁUCZAK ET AL.

we have that the degree of vertex t in gt is exactly m. We can similarly define Adm(g) = Adm(S(g)).
Then, for a graph g, we define Γ(g) to be the set of permutations 𝜋 such that 𝜋(g) ∈ Adm(g). We will

also define, for an arbitrary set of graphs B,

AdmB(g) = Adm(g) ∩ B, ΓB(g) = {𝜋 ∶ 𝜋(g) ∈ AdmB(g)}.

For a given graph g, these sets are related by the following formula (the simple proof of this fact

is a tweak of that given in Section IIB of [16]):

|AdmB(g)| = |ΓB(g)||Aut(g)| . (32)

We next need to consider some directed graphs associated with G: we start with DAG(G), which is

defined on the same vertex set as G; there is an edge from u to v < u in DAG(G) if and only if there is

an edge between u and v in G (in other words, DAG(G) is simply the graph G before we remove edge

directions). Note that, if we ignore self-loops, DAG(G) is a directed, acyclic graph.

We denote the unlabeled version of DAG(G) (i.e., the set of all labeled directed graphs with the

same structure as DAG(G)) by UDAG(G). We will also, at times, abuse notation and write UDAG(G)
as the set of all labeled, undirected graphs with the same structure as UDAG(G) and with labeling

consistent with UDAG(G) as a partial order.

We have the following observations regarding these directed graphs.

Lemma 7 Let G ∼ (m; n) for any m ≥ 1. For any two graphs g1, g2 satisfying UDAG(g1) =
UDAG(g2), we have

P(G = g1) = P(G = g2).

Proof This can be seen by deriving a formula for the probability assigned to a given graph g by the

model and noting that it only depends on the structure and admissibility (a graph is said to be admissible

if it is in Adm(S) for some unlabeled graph S). If g is not admissible, then there exists some t ∈ [n]
such that the degree of vertex t at time t is not equal to m. This has probability 0, so P(G = g) = 0.

Now, if g is an admissible graph on n vertices, then we can write P(G = g) as a product over

possible degrees of vertices at time n: let degg(v) denote the degree of vertex v in g. We consider the set

Ng(v) of immediate ancestors (i.e., the parents, the vertices that chose to connect to v) of v in DAG(g),
denoting the number of edges that they supply to v by 𝑑1(v), ..., 𝑑k(v)(v), where k(v) is the number of

parents of v. Then we can write P(G = g) as follows:

P(G = g) =
mn−1∏
j=1

(2mj)−1 × (m!)n−1 ×
∏
𝑑>m

∏
v ∶ degg(v)=𝑑

𝑑!
(m − 1)!

|Ng(v)|∏
i=1

1

𝑑i(v)!

This arises from the following considerations: the probability P(G = g) is a ratio, the denomi-

nator of which is a product, with each vertex choice index j contributing a factor of 2m(j − 1). The

numerator is computed as follows: the number of ways that each vertex’s connection choices may

have been made contributes a multinomial coefficient, resulting in the factorial factors of (m!)n−1 and
1

𝑑i!
. Finally, the fact that vertex v in the v product has degree 𝑑 (i.e., is chosen 𝑑 −m times) contributes

the factor of
𝑑!

(m−1)!
.

Since this formula is only in terms of the degree sequence of the graph and UDAG(g), two

graphs that are admissible and have the same unlabeled DAG must have the same probability, which

completes the proof.
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Strictly speaking, the above lemma only holds for the version of the model in which vertex degrees

are updated after every choice made by a new vertex. However, the relative rarity of multiple edges

implies similar results (with additional factors of the form eo(n)) hold for other versions of the model.

This is sufficient for our entropy computations, since we are generally concerned with expected

logarithms of probabilities.

Lemma 8 Fix an unlabeled graph S on n nodes with P(S(G) = S) > 0 with some fixed m ≥ 1. Then
the number of distinct unlabeled directed graphs with undirected structure S is at most eΘ(n).

Proof Observe that the number of edges in S is Θ(n), as it arises with positive probability from

(m; n) and m is fixed. Then note that each of the Θ(n) edges may be given one of two orientations,

resulting in at most 2Θ(n) distinct directed graphs, which completes the proof.

The next lemma shows that H(𝜎|𝜎(G)) may be expressed in terms of the quantities just defined.

Lemma 9 Fix m ≥ 1 and consider G ∼ (m; n). Let 𝜎 ∈ Sn be a uniformly random permutation.
Then

H(𝜎|𝜎(G)) = E[log |ΓUDAG(G)(G)|] + O(n). (33)

Proof First, we give an alternative representation of H(𝜎|𝜎(G)). Recall that H(G|S(G)) =
H(𝜎|𝜎(G))−E[log |Aut(G)|]. The plan is to derive an alternative expression for H(G|S(G)) as follows:

by the chain rule for entropy, we have

H(G|S(G)) = H(G,UDAG(G)|S(G))
= H(UDAG(G)|S(G)) + H(G|UDAG(G))
= O(n) + H(G|UDAG(G)).

Here, the last equality is a result of Lemma 8. Now, by Lemma 7, we have

H(G|UDAG(G)) = E[log |AdmUDAG(G)(G)|] = E[log |ΓUDAG(G)(G)|] − E[log |Aut(G)|] + O(n),

where the second equality is an application of (32). This completes the proof.

Remark 5 Note that Lemma 9 is robust to small variations in the model.

Now, to calculate H(𝜎|𝜎(G)), it thus remains to estimate E[log |ΓUDAG(G)(G)|].
We will lower bound |ΓUDAG(G)(G)| in terms of the sizes of the levels of DAG(G), defined as

follows: L1 consists of the vertices with in-degree 0 (i.e., with total degree m). Inductively, Lj is the set

of vertices that are destinations only of edges coming from vertices in ∪j−1

i=1
Li, with at least one edge

coming from Lj−1. Equivalently, a vertex w is an element of some level ≥ j+1 if and only if there exist

vertices v1 < · · · < vj such that v1 > w and the path vjvj−1 · · · v1w exists in G.

Then it is not too hard to see that any product of permutations that only permute vertices within

levels is a member of ΓUDAG(G)(G). Thus, we have, with probability 1,

|ΓUDAG(G)(G)| ≥ ∏
j≥1

|Lj|!.
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To continue, we will prove a proposition (Proposition 1), to the effect that almost all vertices lie

in low levels of DAG(G). We define X = X(𝜖, k) to be the number of vertices w > 𝜖n that are at level

≥ k in DAG(G). In other words, w is counted in X if there exist vertices v1 < v2 < · · · < vk for which

w < v1 and the path vk · · · v1w exists in DAG(G).
We have the following lemma bounding E[X]:

Lemma 10 For any 𝜖 = 𝜖(n) > 0, there exists k = k(𝜖) for which

E[X(𝜖, k)] ≤ 𝜖n.

In particular, we can take any k satisfying

k ≥ 15
m
𝜖2

log(3∕𝜖). (34)

Proof Suppose that w > 𝜖n. We want to upper bound the probability that there exist vertices v1 <

· · · < vk, with w < v1, such that there is a path vk · · · v1w in G. Applying Lemma 2, this probability is

upper bounded by (
n
k

)
⋅
(Cm

n𝜖

)k
≤

(Cme
𝜖k

)k

since (
n
k

)
n−k ≤

nk

k!
n−k = 1

k!
≤

ek

kk .

The last inequality is by considering the Taylor expansion of ek around 0 and observing that it consists

of strictly positive terms, including
kk

k!
.

Now, it is sufficient to show that we can choose k so that this is ≤ 𝜖. In fact, we can choose k ≥
3Cm
𝜖2

.

This completes the proof.

Now, we define Y = Y(k) to be the number of vertices w ≥ 1 that are at level ≥ k in DAG(G). The

variables X and Y are related by the following inequalities, which hold with probability 1:

X ≤ Y ≤ X + 𝜖n.

Now, to get a bound on Y , we apply Markov’s inequality:

P(Y ≥ 𝛾n) ≤ E[Y]
𝛾n

≤
E[X] + 𝜖n

𝛾n
,

and provided that (34) holds, we can further bound by

P(Y ≥ 𝛾n) ≤ 2𝜖∕𝛾

using Lemma 10. Then, provided that we choose 𝛾 =
√

2𝜖, we have shown that

P(Y ≥ 𝛾n) ≤ 𝛾.

This is summarized in the following proposition.
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Proposition 1 For any 𝛾 = 𝛾(n) > 0, there exists 𝓁 = 𝓁(𝛾) for which the number of vertices that
are not in the first 𝓁 layers of DAG(G) is at most 𝛾n, with high probability. In particular, we can take
𝓁 ≥ 12Cm∕𝛾4.

We have a final important result on the structure of DAG(G). The proof is given in the Appendix.

Theorem 3 (Height of DAG(G)) Consider Gn ∼ (m; n) for fixed m ≥ 1. Then, with probability
at least 1 − o(n−1), the height of DAG(Gn) is at most Cm log n, for some absolute positive constant C.

We now use Proposition 1 to finish our lower bound on E[log |ΓUDAG(G)(G)|]. Fix 𝜖 = 1

log2 n
, so that

𝛾 =
√

2𝜖 = Θ(1∕ log n), and choose 𝓁 = 12Cm∕𝛾4. Then, defining A to be the event that the number

of vertices in layers > 𝓁 is at most 𝛾n = Θ(n∕ log n), we have

E[log |ΓUDAG(G)(G)|] ≥ E[log |ΓUDAG(G)(G)| || A](1 − 𝛾).

Among the 𝓁 layers, there are at most 𝓁−1 that satisfy, say, |Li| < log log n, since
∑𝓁

i=1 |Li| ≥ (1−𝛾)n.

So we have the following:

𝓁∑
i=1

log(|Li|!) = O(𝓁 log log n log log log n) +
∑
i∈B

(|Li| log |Li| + O(|Li|)),
where B = {i ≤ 𝓁 ∶ |Li| ≥ log log n}, and we used Stirling’s formula to estimate the terms i ∈ B.

Note, importantly, that the O(|Li|) term is uniform in i.
The sum

∑
i∈B O(|Li|) = O((1 − 𝛾)n) = O(n), so it remains to estimate∑

i∈B
|Li| log |Li|.

Let N =
∑

i∈B |Li|. Then, multiplying and dividing each instance of |Li| by N in the above expression,

it becomes ∑
i∈B

|Li| log |Li| = N
∑
i∈B

|Li|
N

log
|Li|
N

+ N
∑
i∈B

|Li|
N

log N.

The first sum is simply −NH(X), where X is a random variable distributed according to the empirical

distribution of the vertices on the levels i ∈ B. Since |B| ≤ 𝓁, we have that | − NH(X)| ≤ N log𝓁.

Thus, the first term in the above expression is O(N log𝓁) = O(n log log n). Meanwhile, the second

term is N log N
∑

i∈B
|Li|
N

= N log N = n log n − O(n log log n). Thus, in total, we have shown

E[log |ΓUDAG(G)(G)|] ≥ n log n − O(n log log n).

Compare this with the trivial upper bound on E[log |ΓUDAG(G)(G)|]:
E[log |ΓUDAG(G)(G)|] ≤ log n! = n log n − n + O(log n).

This implies that we have recovered the first term of E[log |ΓUDAG(G)(G)|], but there is a gap in our

lower and upper bounds on the second term. This completes the proof of (31). Combining this with

our estimates of E[log |Aut(G)|] and of H(G) yields the claimed structural entropy estimate, which

concludes the proof of Theorem 2.
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6 CONCLUSION AND FURTHER WORK

In this paper, we just proved that a version of the standard preferential attachment graph is asymmetric if

every node adds more than two edges. It is easy to extend this statement to the case when the attachment

is uniform and a mixture of uniform and preferential: for example, for a fixed 𝛽 ∈ [0, 1], the probability

that a connection choice goes to node w at time n + 1 is

P(vi = w|Gn, v1, ..., vi−1) = 𝛽
degn(w)

2mn
+ (1 − 𝛽)1

n
.

Another, possibly more practical, model was introduced by Cooper and Frieze [7] in which essentially

the number of edges added follows a given distribution. We believe our methodology can handle this

case, too.

However, consider a model in which the weight of a vertex when m new edges are generated is

proportional to the degree raised to some power 𝛼. In this paper we considered 𝛼 = 1. We are confident

our approach could be adopted to work for all 𝛼 > 0 to find the threshold m𝛼 for the asymmetry which,

clearly, will grow with 𝛼. However, in the case 𝛼 ≠ 1 the problem becomes much harder since, for

instance, the probability that t chooses vertex s as its neighbor depends not only on the degree degt(s)
but on the whole degree sequence at the time t (though there has been some work on the asymptotic

degree distribution and other structural properties in the case of 𝛼 > 1 [18, 21]). Nonetheless, these

difficulties could be overcome by modern combinatorial methods and we plan to deal with this model

in the nearest future.
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APPENDIX: FURTHER ANALYSIS OF DAG(G)

Proof of Theorem 3 Let us start with the following, surprising at first sight, observation.

Fact 2 Let w < v. Then the degree degv(w) as well as the probability that v is adjacent to w does not
depend on the structure of the graph induced by the first w vertices. In fact, the degree of a particular
vertex is a Markov chain in time.

Let pm(n, k) denote the probability that DAG(Gn) contains a path of length k. From Fact 2 and

Lemma 2, it follows that

pm(n, k) ≤
∑

v0<v1<···<vk

k∏
i=1

P(vi−1 → vi) ≤
∑

v0<v1<···<vk

k∏
i=1

5m log(3vi∕vi−1)√
vi−1vi

≤
√

n
n−k∑
v0=1

1√
v0

k∏
i=1

n−k−i∑
vi=vi−1+1

5m log(3vi∕vi−1)
vi

. (A.1)

In order to estimate the above sum we split all the vertices v1,… , vk of the path P into several classes.

Namely we say that a vertex vi is of type t in P if t is the smallest natural number such that vi∕vi−1 ≤

(1 + a)t, where a is a small constant to be chosen later, that is, t = ⌈log(vi∕vi−1)∕ log(1 + a)⌉. Then,

given vi−1, the contribution of terms related to vi can be estimated from above by

vi−1(1+a)t∑
vi=vi−1(1+a)t−1

5m log(3vi∕vi−1)
vi

≤ 5m log[(1 + a)] log[3(1 + a)t] ≤ 𝛼t , (A.2)

where, to simplify notation, we put 𝛼 = 5m log(1+a) log(3(1+a)). Let st denote the number of vertices

of type t in P. Note that
∏

t≥2

[
(1 + a)t−1

]st
≤ n and so∑

t≥2

tst ≤ 2
∑
t≥2

(t − 1)st ≤
2 log n

log(1 + a)
. (A.3)
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Let us set J = 2 log n∕log(1 + a). Thus, we arrive at the following estimate for pm(n, k)

pm(n, k) ≤
√

n
n−k∑
v0=1

1√
v0

(
k
s1

)
𝛼s1

∑
∑

t st t≤J

(
k − s1

s2, s3, ..., sk

) k∏
t≥2

(𝛼t)st

≤ 3n
(

k
s1

)
𝛼s1

∑
∑

t st t≤J

(
k − s1

s2, s3, ..., sk

)
exp

(∑
t≥2

st log(𝛼t)
)

≤ 3n
(

k
s1

)
𝛼s1 22J max∑

t st t≤J
exp

(∑
t≥2

st log
(e𝛼t(k − s1)

st

))
.

In order to estimate the expression 𝜎(J, S) = max∑
t st t≤J exp

(∑
t≥2 st log

(
e𝛼tS

st

))
where S =

∑
t≥2 st,

we split the set of all t’s into two parts. Thus, let T1 = {t ∶ log(e𝛼tS∕st) ≤ t} and T2 = {2, 3,… , k}⧵T1 .

Then, clearly,

max∑
t st t≤J

exp
( ∑

t∈T1

st log
(e𝛼tS

st

))
≤ max∑

t st t≤J
exp

( ∑
t∈T1

stt
)
≤ exp(J) .

Observe that for every t ∈ T2 we have log(eS𝛼t∕st) ≥ t and so st ≤ e𝛼te−tS. It is easy to check that

then st log
(

e𝛼tS
st

)
≤ 6 ⋅ 2−tS , so

max∑
t st t≤J

exp
( ∑

t∈T2

st log
(e𝛼tS

st

))
≤ max∑

t st t≤J
exp

(
6S

∑
t∈T2

2−t
)
≤ exp(3S) ≤ exp(3J).

Thus, 𝜎(J, S) ≤ exp(4J) , and, since s1 = k − S ≥ k − J,

pm(n, k) ≤ 3n
(

k
s1

)
𝛼s1 22J𝜎(J, k − s1) ≤ 3n2k𝛼k−J exp(6J)

≤ 3 exp(log n + k + (k − J) log 𝛼 + 6J).

Since for 0 < a < 1 we have a∕2 < log(1 + a) < a, if we set a = 1∕(310m), then 𝛼 < 1∕61 and

log 𝛼 < −4. Now let us recall that J = 2 log n∕log(1 + a) and k = 5000m log n > 4J. Thus,

pm(n, k) ≤ 3 exp(log n + k + (k − J) log 𝛼 + 6J)
≤ 3 exp(log n + k − 3k + 3k∕2) = exp(log n − k∕2) = o(n−1) .

It is simple to show that with high probability the height is also lower bounded by Ω(log n). Thus,

the height is Θ(log n) with high probability.


