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ABSTRACT

Subgroup analysis is frequently used to account for the treatment effect heterogeneity

in clinical trials. When a promising subgroup is selected from existing trial data, a

decision on whether an additional confirmatory trial for the selected subgroup is worth

pursuing needs to be made. Unfortunately, the usual statistical analysis applied to

the selected subgroup as if the subgroup is identified independent of the data often

leads to overly optimistic evaluations. Any statistical analysis that ignores how the

subgroup is selected tends to suffer from subgroup selection bias. In this dissertation,

we propose two new statistical tools to evaluate the selected subgroup. The first

is a risk index which can be used as a simple screening tool to reduce the risk of

over-optimism in naive subgroup analysis and the second is debiased inference to

answer the question of how good the selected subgroup really is. The proposed

tools are model-free, easy-to-implement and adjust for the subgroup selection bias

appropriately. We demonstrate the merit of the proposed tools by re-analyzing the

MONET1 trial. An extension of the debiased inference method is also discussed for

observational studies with potentially many confounders.

viii



CHAPTER I

Introduction

1.1 Subgroup Analysis

Subgroup analysis aims to uncover and confirm heterogeneity of treatment ef-

fects within a population. In clinical trials, a new treatment might turn out to be

marginally effective with the overall study population, but it is often the case that

the treatment appears very promising for a subgroup. When this happens, subgroup

analysis might help researchers better understand the treatment, know where the

treatment would be useful and even rescue the trial. For example, isosorbide dini-

trate and hydralazine hydrochloride (BiDil) was approved by the FDA as an effective

treatment for heart failure for African Americans, a subgroup previously noted to

have a favorable response; see Brody and Hunt (2006). It was recently found through

subgroup analysis that lefitolimod appears effective on patients with extensive-stage

small-cell lung cancer in two important subgroups while the initial trial failed to con-

firm the efficacy of lefitlimod for the overall study population, see the announcement

from MOLOGEN (2018). Because of the potential benefits, subgroup analysis is

widely used in clinical trials.

Sun et al. (2012) showed that among the published randomized trials in core

medical journals in 2007, 207 of them (44%) contained subgroup analysis results.

For example, Bang et al. (2010) studied the efficacy of trastuzumab in combination
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with chemotherapy for gastric cancer in the subgroup defined by the expression level

of HER2 protein and Maemondo et al. (2010) evaluated the efficacy of Gefitnib in

the mutated epidermal growth factor receptor (EGFR) subgroup for the patient with

non-small cell lung cancer. In the era of precision medicine, the evaluation of the

subgroup effects is a popular research area with substantial impacts.

In practice, subgroup analysis might be conducted in many different ways but in

clinical trials, it typically consists of two inter-connected steps: subgroup identifica-

tion and subgroup confirmation, as in the clinical studies mentioned above. In the

identification step, one looks for a promising subgroup in the population. The candi-

date subgroups might come from biological or clinical considerations, expert opinions,

or simply a form of data mining applied to the available data. The confirmation step

often requires a rigorous statistical inference procedure that accounts for the sub-

group selection, and better yet, an additional clinical trial on the identified subgroup.

We refer the decision to invest more in an additional clinical trial as the decision of

subgroup pursuit, as shown in Fig.1.1.

Subgroup Identification Subgroup ConfirmationInvest more in the selected (’best’) subgroup

subgroup pursuit

Figure 1.1: Two-step subgroup analysis

In this dissertation, we focus on subgroup pursuit where a decision on whether

an additional investment should be made for a confirmatory trial on the selected

subgroup needs to be made. Carefully studying the risk and bias issue in subgroup

pursuit, we find that classical statistical tools which ignores how the subgroup is

selected will lead to overly optimistic evaluations of the best selected subgroup effect.

In response to the needs of subgroup analysis in clinical trials, we develop two new

statistical analysis tools for the selected subgroup, risk quantification and debiased

inference, and aim to help a better-informed decision on subgroup pursuit.

Although the statistical tools we develop in this dissertation are mainly motivated
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by and focus on the current practice of subgroup analysis in clinical trials, an extension

of the debiased inference tool to subgroup analysis on observational data is also

introduced at the end of this dissertation. Moreover, the new statistical tools we

develop are expected to have broad applications in other disciplines of data science.

Besides clinical trials, subgroup analysis is also widely used in marketing and political

science. For example, Imai et al. (2013) studied which subgroup of the disadvantaged

workers benefits most from the national supported network program, a job training

program, and the tools we develop here may help political scientists determine how

good the most beneficial subgroup in this study really is.

1.2 Challenges in Subgroup Pursuit

In this section, we take a closer look at subgroup pursuit and carefully study the

risk and bias issue there, and motivate the goal of this dissertation.

1.2.1 Risk in Subgroup Pursuit

Subgroup pursuit is referred to the additional confirmatory trial for the best

selected subgroup as shown in Fig.1.1. In this dissertation, by the best selected

subgroup, we refer to the subgroup that has the highest observed (or estimated)

treatment effect among a pre-specified set of candidate subgroups under considera-

tion. The best subgroup may be identified through a known subgroup identification

method/algorithm. Available methods include machine learning-based algorithm or

model-based method which will be discussed later. Whatever the case, the best se-

lected subgroup is associated with a set of competing subgroups, and this set must

be specified explicitly or implicitly by the subgroup identification method. A better

subgroup is taken as a subgroup with a better treatment effect. If the best subgroup

is non-unique, we take any one of them for the purpose of our analysis.

To confirm the best selected subgroup, subgroup pursuit is often necessary. How-
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ever, there is a clear risk in subgroup pursuit that a subgroup pursuit requires addi-

tional resources but can not guarantee that the treatment would be confirmed effective

in the best selected subgroup with the additional trial. In other words, while a suc-

cessful subgroup pursuit might bring many potential benefits, it is also possible for a

subgroup pursuit to fail and lead to a waste of resources as reported in Naggara et al.

(2011). Therefore, greedy subgroup pursuit is not recommended in practice, and af-

ter the best subgroup is identified, the drug developers need to decide whether they

should pursue further on this identified subgroup. Fig.1.2 shows a desired subgroup

pursuit decision path from subgroup identification to confirmation.

Subgroup
Identification

Subgroup Pursuit
Decision

Subgroup
Confirmation

Invest more in the selected subgroup

Subgroup pursuit

Give Up

Figure 1.2: Three-step subgroup analysis

How to make scientific decisions on subgroup pursuit is a very important manage-

rial question for the drug developer when conducting subgroup analysis. We believe

that appropriate analysis of the best selected subgroup on the original trial data is

needed to inform a better subgroup pursuit decision and the analysis should address

the following two questions.

1. How risky is the pursuit of the selected subgroup?

2. How good is the selected subgroup?

By the analysis of the subgroup data, if the researchers can present a promising

result showing the further pursuit of the selected subgroup is not very risky and the

selected subgroup is good enough to meet the primary endpoint set beforehand, the

managers would be led to believe that there is a very good chance that the treatment
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is effective in the subgroup and it can be validated with an additional trial. Otherwise,

the managers may consider giving up any further pursuit as shown in Fig.1.2.

Appropriate analysis of the selected subgroup might come from domain knowledge

or statistical analysis or both. For the former, researchers will try to figure out the

biological mechanism to explain why certain treatment is useful for certain patients.

For example, the researchers noticed that Gefitnib is one of EGFR tyrosine kinase

inhibitors and reasoned that Gefitnib might be useful for patients with EGFR muta-

tions; see Maemondo et al. (2010). For the statistical analysis, researchers will try to

statistically quantify the risk for subgroup pursuit and infer how good the selected

subgroup really is. In this dissertation, we focus on the statistical analysis of the

selected subgroup.

Many classical statistical tools are available to quantify the risk and make inference

for a given subgroup. For example, the log-rank test may be used for inference

on the subgroup effect for time-to-event data; see Peto and Peto (1972) and Klein

and Moeschberger (2005). Unfortunately, applying the classical statistical tools to

evaluate the selected subgroup often leads to disappointing results. The chance of

success with confirming the treatment effect in the selected subgroup is nowhere near

what it is supposed to be and overly optimistic decisions on subgroup pursuit are

often made.

1.2.2 MONET1 Trial

One case study to note is the MONET1 study, a study of motesanib plus carbo-

platin/paclitaxel (C/P) in patients with advanced nonsquamous nonsmall-cell lung

cancer (NSCLC). It was found that this treatment is not effective for the overall

population. To rescue this trial, the drug developer, Amgen, turned to subgroup

analysis and East Asian patients were found to be responsive to the treatment; see

Kubota et al. (2014). The observed effect size of this subgroup was promising and
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Amgen decided to invest additional resources and conduct a new trial for this sub-

group. However, the follow-up trial (AMG-706) failed to confirm the efficacy of the

treatment for the East Asian subgroup, see Kubota et al. (2017).

Looking back at the MONET1 study, we could say that the managers actually

made an overly optimistic decision on the pursuit of East Asian subgroup, which

led to a waste of resources. Some might argue that the failure of the MONET1

trial may be just by chance. However, as follow-up trials to confirm a promising

subgroup identified from earlier trial data failed more often than expected, question

of statistical validity of classical statistical analysis becomes more acute and we have

to ask whether the preplanned subgroup analysis was appropriately adjusted for.

1.2.3 Subgroup Selection Bias

It is clear that statistical analysis of the best selected subgroup identified from

the same data suffers from over-optimism and is likely to lead to false discoveries,

which we call subgroup selection bias. Take the MONET1 study as an example, if

the drug developer used the observed effect size of the best selected subgroup from

the same data to quantify the risk of the subgroup pursuit and answer the question

of how good the East Asian subgroup is, the failure of the follow-up trial is not just

by chance but mainly due to the subgroup selection bias.

To fix ideas, we consider a toy example consisting of two pre-specified subgroups

with true treatment effect sizes (e.g., log odds ratio) β1 and β2, respectively. Suppose

that the estimated effect sizes are β̂1 = 0.6 and β̂2 = 0.1, then, subgroup 1 would be

identified as the best selected subgroup with a promising treatment effect.

To understand the over optimism of the observed effect size of the selected sub-

group, max(β̂1, β̂2), let us assume both subgroups have no treatment effects, β1 =

β2 = 0, and β̂1 and β̂2 are independent and follow the standard normal distribution.

Then, Figure 1.3 gives the boxplot of max(β̂1, β̂2) based on 2000 random samples.
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It shows clearly that max(β̂1, β̂2) is an inflated estimate of max(β1, β2) in this case.

In fact, simple calculations show E[max(β̂1, β̂2)] ≈ 0.6. It means that even under

this very unfavorable situation for subgroup pursuit where both subgroups have no

treatment effects, we can still observe the best subgroup effect size of 0.6 on average.

Therefore, a classical statistical analysis can not lead to a valid evaluation of the se-

lected subgroup. The failure of the classical statistical tool for the selected subgroup

is due to the fact the method is designed for the fixed population and ignores how the

subgroup is selected. To make a better-informed decision, an appropriate adjustment

to the subgroup selection bias is needed.

Figure 1.3: Boxplot of max(β̂1, β̂2) when β1 = β2 = 0 and β̂1, β̂2 ∼i.i.d N(0, 1)

1.3 The Goals

In this dissertation, we will propose two new statistical tools for the selected

subgroup to help a better-informed decision on subgroup pursuit.

1. Risk Quantification: a risk measure for the pursuit of the selected subgroup;

2. Debiased Inference: a valid inference procedure for the selected subgroup.

To make sure the proposed tools provide valid analysis of the selected subgroup,

we need to address subgroup selection bias appropriately. We aim to make use of
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bootstrap, a resampling method, to account for the selection procedure and address

the selection bias, and we call this idea bootstrapping the bias. To be specific, we

will develop bootstrap-based methods to mimic the subgroup selection procedure and

account for the bias. Even though the true subgroup selection procedure cannot be

simulated directly without knowing the true data generating model, bootstrap has

the potential to approximate this simulation procedure, and help us learn about the

subgroup selection bias and develop an appropriate procedure for bias correction.

In general, we aim for new statistical tools to analyze the selected subgroup, which

are model-free, easy to implement and well-justified. An extension of the proposed

statistical tools to observational studies will be also discussed.

Another goal of our work is to provide some practical guidance for future sub-

group analysis. By revisiting the failed MONET1 trial, we wish to demonstrate that

any proper statistical treatment of the selected subgroup has to depend on how the

subgroup is selected. For example, if the subgroup of East Asians in the MONET1

trial were selected from only two preplanned candidate subgroups (East Asians as

one subgroup and the rest of the population as the other), the selection bias would

be much more limited than in the case of a broader search with a larger number of

candidate subgroups. Therefore, without knowing how the subgroup is selected, no

good statistical analyses exist for the selected subgroup.

1.4 Literature Review

In this section, we will review some relevant literature. We will review the lit-

erature on subgroup identification, subgroup confirmation and debiased inference in

subgroup analysis together with some other relevant literature in other disciplines.
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1.4.1 Subgroup Identification

How to identify the best subgroup is one important research problem in subgroup

analysis. Most existing literature for subgroup identification falls into two categories:

machine learning methods and model-based methods.

Machine learning methods aim to identify the best subgroup through model-free

and nonparametric procedures. For example, Lipkovich et al. (2011) proposed a re-

cursive partitioning-based method to identify the best subgroup. The basic idea is

to split the population into two small subgroups by maximizing the value of a pre-

specified split criterion and retain the subgroup with the larger observed treatment

effect. The process of the split will continue with the retained subgroups until certain

criterion is met. Cai et al. (2010) considered a two-stage procedure to identify the

subgroup. The authors first grouped the subjects into subgroups with certain work-

ing model and then identify the best subgroup by a nonparametric method. Some

other available machine learning methods for subgroup identification include Su et al.

(2009), Foster et al. (2011) and Lipkovich and Dmitrienko (2014).

Model-based methods aim to identify the best subgroup through parametric mod-

elling of the subgroup effects. For example, Shen and He (2015) considered a mixture

model for subgroup identification. The authors used the normal mixture to model the

latent subgroup membership and the response in each subgroup. An EM algorithm

was provided to estimate the parameters in the mixture model and help identify the

subgroups. Some other available model-based methods include Fan et al. (2017) and

Altstein et al. (2011).

The methods reviewed above mainly focus on subgroup identification and do not

consider the inference on the subgroup selected by their algorithms in a rigorous way,

while this dissertation aims to provide statistical tools for appropriate analysis of the

selected subgroup. More literature review on subgroup identification can be found in

Zhang et al. (2018) and Loh et al. (2019).
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1.4.2 Subgroup Confirmation

After a promising subgroup is selected, how to design a new trial and confirm the

selected subgroup is another important research problem in subgroup analysis. Most

existing clinical trail designs in subgroup confirmation fall into two categories: fixed

designs and adaptive designs.

Fixed designs aim to confirm the selected subgroup with single-stage designs. For

example, Ziegler et al. (2012) discussed one possible strategy based on the idea of

enrichment. The authors proposed to first screen the biomarker and only recruit the

patient in the selected subgroup. Then, a randomized trial was conducted on the

recruited patient to confirm the selected subgroup. Some other available fixed design

methods include Mandrekar and Sargent (2009) and Eng (2014).

Adaptive designs aim to confirm the selected subgroup with multiple-stage de-

signs. For example, Friede et al. (2012) considered a two-stages recruitment of the

patients in the selected subgroup where an early stop was allowed. The authors used

the conditional error function to account for the adaptation, and confirmed the se-

lected subgroup by combining statistical evidences in all available stages. Some other

available adaptive design methods include Jenkins et al. (2011) and Song (2014).

With data from additional trials, these methods are not applicable to address the

problem on subgroup pursuit in which we wish to analyze the selected subgroup based

on the original trial data.

1.4.3 Debiased Inference in Subgroup Analysis

As discussed before, analysis of the selected subgroup based on the original trial

data suffers from subgroup selection bias, which is well-recognized in subgroup anal-

ysis as a fundamental challenge for inference; see for example Thomas and Bornkamp

(2017) and Magnusson and Turnbull (2013). Several methods have been proposed to

address subgroup selection bias and they mainly fall into three categories: simulta-
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neous control methods, ad-hoc methods and bayesian methods.

Simultaneous control methods control subgroup selection bias by simultaneous

analyzing all the subgroups. For example, Fuentes et al. (2018) proposed a valid

confidence interval for the selected subgroup effect. Under gaussian assumption, the

authors first minimized the coverage probability across all the possible subgroup ef-

fect sizes for any given critical value and then chose a critical value to guarantee

the minimized coverage probability attain the nominal level. Some other available

simultaneous control methods include Venter (1988), Hothorn et al. (2008) and Hall

and Miller (2010). Although simultaneous control methods provide valid analysis of

the selected subgroup, it is clearly on the conservative side.

Ad-hoc methods address subgroup selection bias by some simple statistical prin-

ciples. For example, Stallard et al. (2008) considered the plug-in rule and proposed

bias-reduced estimates for the selected subgroup effect. Under gaussian assumption,

the authors first derived the form of subgroup selection bias which depends on several

unknown parameters. By plugging in different possible estimates for the unknown

parameters, the authors proposed several bias-reduced estimates for the selected

subgroup effect for practical use. Some other ad-hoc methods include Rosenkranz

(2016) and Shen (2001). Although ad-hoc methods are widely used in practice for

exploratory analysis, they lack any theoretical guarantees.

Bayesian methods model and address subgroup selection bias from the bayesian

view. For example, Bornkamp et al. (2017) provided bias-reduced estimate as well as

credible interval for the selected subgroup by bayesian model averaging. The basic

idea is to average the naive estimates for the subgroups with the posterior model

weights and eliminate the selection bias. Some other bayesian methods include Woody

and Scott (2018) and Berger et al. (2014). It is clear that bayeisan method is model-

dependent and lack of frequentist interpretations.

As far as we know, asymptotically sharp, well-justified and model-free debiased

11



tools for the selected subgroup are still lacking. We shall propose new statistical tools

to bridge this gap.

1.4.4 Relevant Methods in Other Disciplines

In other disciplines, there is some existing literature relevant to this dissertation.

Here, we will focus on intersection bound and selective inference .

Intersection bound is motivated by the recent development of econometrics where

the parameter of interest may be only partially identifiable and known to lie within

the bounds, such as the study of the unemployment compensation reforms effect in

Germany; see Lee and Wilke (2009). The identification and inference for such param-

eters is equivalent to the identification and inference on the maximum/minimum of

the bounds, which is similar to the identification and inference on the best selected

subgroup. Chernozhukov et al. (2013b) proposed a two-stage procedure to identify

and infer the intersection bound. The authors first estimated the region where the

maximum/minimum of the bound was achieved and then constructed a simultaneous

confidence band in the estimated region. Although the method for intersection bound

shares some similar properties of the proposed tools in this dissertation, the proposed

tool is a direct one-stage approach based on resampling.

Selective inference is motivated by the broad applications of modern model se-

lection tools. How to preform valid inference after model selection is a important

problem, which is similar to the problem of the analysis of the selected subgroup

after subgroup identification. Lee et al. (2016) characterized the distribution of a

post-selection estimator conditional on the selection event and proposed valid infer-

ence procedure for the post-selection estimator. Although the techniques developed

for selective inference may be generalized to analyze the selected subgroup, it is un-

clear how to do so in nonlinear models. Moreover, most selective inference methods

are not model-free.
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CHAPTER II

Subgroup Analysis: Risk Quantification

In this chapter, we propose a resampling-based risk index to measure the risk

for subgroup pursuit. When a promising subgroup is selected, we need to address

the question of how risky it is to pursue this selected subgroup in a scientific way.

The proposed index naturally accounts for the subgroup selection procedure and

statistically quantifies how risky it is to invest additional resources into the selected

subgroup and can be used as a screening tool on subgroup pursuit. If the risk index

is not small, it indicates a nontrivial risk that the selected subgroup might be an

artifact and a further pursuit of the selected subgroup may not be recommended.

The proposed risk index is model-free, easy to compute and transparent. We analyze

the MONET1 trial with the risk index and show that the selected subgroup in the

MONET1 trial is indeed risky to pursue.

2.1 A Risk Index for Subgroup Pursuit

Consider a clinical trial of n patients and the observation on the i-th subject is

(Yi, Di, δi, Zi), where Yi is the (possibly censored) survival time with the censoring

indicator δi, Di is the binary treatment indicator, and Zi ∈ {1, 2} is the subgroup

indicator so that Zi = 1, 2 means that the subject i belongs to subgroup 1 or 2 respec-

tively. We use the proportional hazard model, Y ∼ D, on each subgroup and on the
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combined group as the working model, and the standard partial likelihood estimates of

the log-hazard ratios are denoted by β̂1, β̂2, and β̂, respectively for the two subgroups

and for the combined group. We focus on the case of two non-overlapping subgroups

for simplicity but generalizations to more than two or overlapping subgroups are quite

straightforward.

The question of subgroup pursuit arises when one subgroup is noticeably different

from the other but the overall effect size is marginal at best. For the sake of simplicity,

we assume that for the given data, β̂1 > β̂2, and subgroup 1 is the most promising.

If we pursue subgroup 1 by making additional investments in a new clinical trial on

the identified sub-population, the risk materializes when the trial leads to a failure

to confirm a significant treatment effect on the sub-population. It is certainly helpful

if we can statistically quantify the risk before a new clinical trial is planned. There

are, unarguably, many ways such a risk can be measured. However, as pointed out

in Section 1.2.3, the classical statistical tool, such as the observed effect size of the

selected subgroup, ignores how the subgroup is selected and does not quantify the

risk appropriately.

In this dissertation, we focus on a simple risk index which naturally accounts for

the subgroup selection procedure and quantifies the risk in a scientific way. The risk

index is defined as the bootstrap probability of observing a selected subgroup whose

estimated log-hazard ratio is as good as or better than the current observation of

the best selected subgroup, β̂1, where the bootstrap sample is generated without any

subgroup differences.

2.1.1 Problem Setting

Even though we focus on the time-to-event data where the proportional hazard

model and the log-hazard ratio are routinely used in evaluating the subgroup effects,

we would like to make a case for not relying on the strict assumption of proportional
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hazard in the risk quantification. When multiple subgroups are considered and some

of them might overlap, it is highly unlikely that the proportional hazard model is

correctly specified for each subgroup, as well as for the whole population. In fact,

the strict assumption of proportional hazard on all subgroups holds only when the

population is indeed homogeneous. For this reason, any theoretical investigation we

carry out should allow the proportional hazard models to be misspecified. It has been

shown that even under a misspecified proportional hazard model, the observed log-

hazard ratio is still consistent (and asymptotically normal) for an implicitly defined

parameter, which we will continue to call the true log-hazard ratio; see Struthers and

Kalbfleisch (1986) and Lin and Wei (1989). Here, we start from their results and

consider a very general problem setting.

We consider a family of the distributions Fβ to represent the marginal distributions

of the subgroups, where β ∈ R is an unknown parameter and implicitly defined by

the working model of proportional hazard, Y ∼ D; see Lin and Wei (1989). If Fβ is

the proportional hazard model with a given baseline hazard function, β is naturally

taken as the log-hazard ratio of the treatment. For other models, we still perform

analysis under the working model of proportional hazard, Y ∼ D, and β is then the

implicitly defined parameter, which we will continue to call it the true log-hazard

ratio for the model and use it as the treatment effect.

We consider the setting where (Yi, δi, Di, Zi) of size n is a random sample from

P1, where P1 represents the distribution of the whole population consisting of two

subgroups. In Subgroup 1 with Zi = 1, the random sample, (Yi, δi, Di), of size n1 is

taken from Fβ1 , and in Subgroup 2 with Zi = 2, the random sample, (Yi, δi, Di), of

size n2 is taken from Fβ2 , where β1 and β2 are possibly different. It is easy to see

the marginal distribution of Zi is B(1, p). We assume 0 < p < 1 and denote the

implicitly defined parameter of P1 by β0. If β1 = β2, β0 would take the same value.

It is noteworthy that we assume the samples from two subgroups are modeled by
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the same family of distributions F but with possibly different treatment effect/log-

hazard ratio β, and without conditional on the subgroup indicator, Zi, the marginal

distribution of (Yi, δi, Di) may not fall into the family F. We also note that the

particular family F does not have to be known for our analysis.

In Section 2.1.2, we will show that under the general problem setting considered

here, the proposed risk index is well defined and justified without imposing strict

assumptions of proportional hazard, and it is in this sense that the proposed risk

index is model-free.

2.1.2 Computation of the Proposed Risk Index

Although max(β̂1, β̂2) is a biased estimate of the best subgroup effect size, the

statistic itself is interpretable and transparent, which is the observed effect size of the

selected subgroup. Therefore, we aim to propose a risk index based on this statistic

directly but with an appropriate adjustment for the subgroup selection bias. In other

words, sticking to max(β̂1, β̂2), the transparent statistic, we will propose a risk index

answering the question of how risky it is to pursue the selected subgroup in a scientific

way, and it is in this sense the proposed risk index is transparent.

Roughly speaking, we wish to measure the risk of subgroup pursuit by calculating

the probability of observing a selected subgroup whose observed effect size is as good

as or better than the current observation of the selected subgroup, max(β̂1, β̂2), when

the subgroups are actually homogeneous. This probability however depends on the

underlying distribution of the homogeneous population, so we turn to the method

of resampling. Let P ∗ denote the probability measure of the following bootstrap

procedure and β∗1 and β∗2 be the log-hazard ratio estimates of the two subgroups from

the bootstrap sample. Then, our proposed risk index is

RI∗ = P ∗(max(β∗1 , β
∗
2) ≥ max(β̂1, β̂2)),
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and is calculated as follows in Algorithm 1.

Algorithm 1 Risk index for subgroup pursuit.

1: for b = 1...B do
2: Partial bootstrap: Generate {(Y ∗i , D∗i , δ∗i ) : i = 1, · · · , n} as a bootstrap

sample from the set {(Yj, Dj, δj), j = 1, · · · , n};
3: Subgroup assignment: Z∗i = Zi for i = 1, · · · , n;
4: Estimation: Calculate the log-hazard ratio estimate of the two groups, β∗1,b

and β∗2,b, based on the bootstrap sample;
5: end for
6: The risk index is RIB = B−1

∑B
b=1 I(max(β∗1,b, β

∗
2,b) ≥ max(β̂1, β̂2)).

As B → ∞, the index RIB becomes RI∗ under the bootstrap distribution. The

above nonparametric bootstrap procedure is based on the pair bootstrap on (Yi, Di, δi)

without subgroup labels, and the subgroup assignments, Z∗i = Zi, are made to pre-

serve the same number of subjects in each subgroup. This resampling scheme en-

sures that the bootstrap distribution is homogeneous across subgroups, irrespective

of whether there is a distinctive subgroup effect in the original sample or not.

2.1.3 Property and Relevance of the Risk Index

To see how the risk index can be used as a screening tool for subgroup pursuit,

we need to understand the limiting behavior of RI∗. To this end, let Pβ̂ denote the

probability under the data generating process that both subgroups are drawn from

Fβ̂ with the total sample size n and the same subgroup assignment mechanism as that

of the original data. Furthermore, let β̃1 and β̃2 be the estimates of the log-hazard

ratios for the two subgroups under Pβ̂, respectively, and define

RI = Pβ̂(max(β̃1, β̃2) ≥ max(β̂1, β̂2)),

which is a probability depending on the original sample. We make the following

modelling assumptions.

Assumption II.1. limβ→β0 supy|Fβ(y)− Fβ0(y)| = 0.
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Assumption II.2. β0 < max(β1, β2) whenever β1 6= β2.

Assumptions II.1 requires the mapping β → Fβ to be continuous at β0 under the

sup norm. Assumption II.2 removes a pathological case from consideration, that is,

the log-hazard ratio of the combined group cannot be greater than the log-hazard

ratios of both subgroups. The assumptions are satisfied by many models and we do

not need to impose strict assumptions of proportional hazard even though we use

the proportional harzard model as the working model to define and calculate the

parameters.

Theorem II.3. Under Assumptions II.1 and II.2, we have |RI∗ −RI| → 0 in prob-

ability with respect to P1.

Theorem II.3 ensures that the risk index RI∗ is asymptotically the same as RI,

the probability of observing a selected subgroup that is at least as promising as the

current observation of the selected subgroup, max(β̂1, β̂2), when the two subgroups

are homogeneous with β1 = β2 = β̂. This enables us to interpret and understand

the proposed risk index, and justify its use as a screening risk measure of pursuing

the most promising subgroup identified from the data. When β1 6= β2, that is, the

treatment effects are indeed different for the two subgroups, we have low or no risk

of pursuing the better subgroup. In this case, we note that RI approaches zero as

n → ∞, so our proposed risk index, RI∗, would also be close to zero. On the other

hand, the risk of pursuing any subgroup becomes evident when β1 = β2 = β0. In

the latter setting, RI converges to a non-degenerate distribution on (0,1) as n→∞,

and the proposed risk index, RI∗, will be close to zero with a small probability.

In this sense, we can use the risk index as a screening measure of risk of subgroup

pursuit. If the risk index is not small, we should take it as a quantitative argument

against investing additional resources into the subgroup with the seemingly promising

treatment effect.
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How large is too large for the risk index is more of a managerial question. It

depends on how much risk one is willing to take, based on the cost of an additional

trial and the potential return from a successful follow-up trial. As a rough guideline,

we recommend against subgroup pursuit if the risk index is 0.15 or higher.

To see an example of mis-specified working models, consider a special case where

the sample (Yi, Di) is given by the hazard function

λ(t) = λ0(t)eβD+ζTW ,

where W is a random vector independent of D, and ζ is an unknown vector. This

falls into the proportional hazard model itself and satisfies Assumptions II.1 and II.2,

but the working model without including W as a covariate would be mis-specified. As

shown in Lin and Wei (1989), β remains to be the log-hazard ratio (approximately)

under the working model and is interpretable.

2.1.4 The Proposed Risk Index v.s. P-value

The risk index is closely related to the concept of p-values for the null hypothe-

sis that β1 = β2(= β0). Since β̂ → β0 as the sample size increases, we may expect

Pβ̂(max(β̃1, β̃2) ≥ max(β̂1, β̂2)) as well as the risk index to agree with Pβ0(max(β̃1, β̃2) ≥

max(β̂1, β̂2)) asymptotically. The latter is indeed the p-value with max(β̂1, β̂2) as the

test statistic, but cannot be calculated unless β0 is known. However, we hasten to

add that this asymptotic equivalence is untrue and, indeed, the risk index is not a

p-value for the null hypothesis of homogeneity itself.

Any p-value for the null hypothesis of homogeneity β1 = β2(= β0) may serve

as a risk index, but most p-values, such as that from the likelihood ratio test, are

model-based. Although some p-values, such as that from the Wald test, may handle

model misspecification with sandwich-type estimates, they are usually difficult to
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calculate under the scenario of multiple subgroups. On the contrary, our proposed

risk index is model-free and easy to compute, and has the desirable property that it

converges to zero whenever β1 6= β2 but converges to a non-degenerate distribution

on (0,1) otherwise. More importantly, the risk index is directly based on max(β̂1, β̂2),

a widely used and transparent quantity in the current practice of subgroup pursuit

decision, and addresses its bias appropriately. Therefore, our proposed risk index is

more transparent than the p-values from commonly used test statistics for the null

hypothesis of homogeneity.

2.2 Synthetic Data: MONET-1 Study

In this section, we revisit the failed MONET1 trial as a case study. With our pro-

posed risk index, we provide an appropriate guidance on subgroup pursuit decisions

after the initial MONET1 trial data are available.

The purpose of the phase III of MONET1 trial was to confirm the efficacy of an

experimental treatment of motesanib plus carboplatin/ paclitaxel (C/P) in patients

with advanced nonsquamous nonsmall-cell lung cancer (NSCLC). The trial failed to

confirm the overall efficacy, but the East Asian subgroup was found to be highly

promising, as reported in Kubota et al. (2014). The MONET1 study reported the

hazard ratio, where a hazard ratio of less than 1 is in favor of the treatment. To make

this convention consistent with the general treatment earlier in this chapter, one may

simply equate βi in this chapter to the negative log-hazard ratio.

The MONET1 trial data showed that for the East Asian subgroup the treatment

has the hazard ratio of HR = 0.669 and P -value=0.0223, as reported Kubota et al.

(2014). Predefined subgroups were used in the identification of this subgroup, but we

could not find any information on how many and which candidate subgroups were

actually considered. The earlier investigation and the existing literature did not pay

attention to this question, and consequently ignored the subgroup selection bias in
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the analysis.

Because the original data from the MONET1 trial were proprietary, we turn to

synthetic dataset that shares many of the same characteristics as the MONET1 trial

for our study. To that end, we consider the situations where the number of candidate

subgroups ranges from 2 to 16 based on binary coding of some or all of the following

variables in the data: East Asian patient, stage IIIB, received radiotherapy, male, Age

greater than 65, never smoked, ECOG PS status 0 and Adenocarcinoma histology.

If the first indicator variable of East Asian patient is used, we have two candidate

subgroups only (East Asian versus the others). If each of the eight indicator variables

are used, we have a total of 16 subgroups, and they are clearly overlapping. Suppose

that the best subgroup is selected from the candidates based on the estimated hazard

ratios.

Assuming the subgroups are homogeneous and no treatment effect exists in any

subgroup, we generate the synthetic data with the estimated survival function and

censoring distribution based on Figure 1.A in Kubota et al. (2014). Additional details

for the generation of the synthetic data are given in the Appendix A.

Now, we have a data generating model, which enables us to generate a lot of

datasets. To mimic MONET1, we focus on one realization with which the East Asian

subgroup is also selected as the best subgroup among the subgroups we consider and

the estimated effect size and p-value of the East Asian subgroup are similar to those

reported in Kubota et al. (2014). Table 2.1 shows the estimated effect size and p-value

of the East Asian subgroup from MONET1 reported in Kubota et al. (2014) and the

synthetic dataset we use, which are very close.

Table 2.1: The comparison between the synthetic data and MONET-1 study.
Harzard Ratio P -value

Synthetic data 0.663 0.019
MONET-1 0.669 0.022
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Table 2.2: Risk index of the synthetic data. The standard errors for all the entries
are less than 0.01.

No. of subgroups 2 4 6 8 10 12 14 16
Risk Index 0.02 0.08 0.14 0.15 0.15 0.16 0.17 0.18

In the MONET-1 study, a lower hazard ratio indicates a better subgroup. To

make it consistent with the framework used in this chapter, we use the negative log-

hazard ratio as the treatment effect in calculating the risk index. From Table 2.2, we

see that as the number of candidate subgroups increases, the risk index rises. If eight

candidate subgroups were considered in subgroup pursuit, the risk index is 0.15, which

means that even if the population is indeed homogeneous (i.e. no subgroups), we have

15% chance to observe a subgroup that is at least as promising as the East Asians

(HR=0.663). On the other hand, if only two candidate subgroups were considered

(East Asians v.s. the rest) in the planning stage, the risk index would be quite low

in this case. If we ask the question whether we should have recommended a follow-

up trial on the East Asian population, the answer depends on how the subgroup was

selected. If East Asian subgroup was selected after eight or more candidate subgroups

were considered, we would have to be far more cautious.

2.3 Discussion

In this chapter, we propose a statistical quantification for the risk of subgroup

pursuit. The proposed risk index aims to address the question of how risky it is to

pursue the selected subgroup in a scientific way and can help a better decision on

subgroup pursuit.

The risk index is model-free in the sense that it is defined and justified without

imposing strict assumptions of proportional hazard. Although the proportional haz-

ard model is routinely used in clinical trials, misspecifications of the proportional

hazard model over the subgroups of interest are the norm rather than the exception.
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The model-free property allows us to appropriately quantify the risk for subgroup

pursuit with the proposed risk index even when the proportional hazard model is

misspecified, which makes the proposed risk index practically useful.

The other property to note for the risk index is its transparency that the risk index

is directly based on the observed effect size of the selected subgroup, a transparent

and widely used statistic in the current practice of subgroup analysis. Although the

observed effect size of the selected subgroup is biased and tends to underestimate the

risk for subgroup pursuit, it is widely used by practitioners due to its simplicity and

transparency. The proposed risk index adjusts for the subgroup selection bias in the

observed effect size of the selected subgroup directly and is therefore transparent and

easy to understand in practice.

The risk index is also easy to implement in the sense that it is based on a sim-

ple pair bootstrap. Even when the proportional hazard model is misspecified, by

bootstrapping, we do not need to worry about the calculation of the sandwich-type

estimate as in Lin and Wei (1989). Moreover, the simple algorithm enables us to

easily generalize the risk index to the situations where there are multiple overlapped

subgroups, and to measure the risk for subgroup pursuit there.

It is noteworthy that the risk index we have considered here is designed for the

scenario that the subgroups have been predefined. This is often a recommended

approach in subgroup pursuit. However, post hoc subgroup identification without pre-

specified subgroups is often used in practice; see Lipkovich et al. (2011). Therefore,

it will be of interest to generalize our work to more challenging scenarios where no

subgroups are predefined.

2.4 Proof of Theorem II.3

Consider the data {(Yi, δi, Di)}ni=1 as n i.i.d realizations of (Y, δ,D), where Y is the

survival time, δ is the censoring indicator, and D is the treatment indicator, respec-
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tively. Let 5ln(r), 52ln(r) denote the first and second derivative of the log partial

likelihood, and Yi(t) = It≤Yi , Y (t) = It≤Y . Let Eγ denote the expectation under Fγ

and for q = 0, 1, 2, we introduce the following quantities,

S(q)(β, t) =
n∑
i=1

Yi(t)e
βDiDq

i /n,

s(q)
γ (β, t) = EγS

(q)(β, t),

ωγ,i(β) =

∞∫
0

{
Di −

s
(1)
γ (β, t)

s
(0)
γ (β, t)

}
dNi(t)−

∞∫
0

Yi(t)e
βDi

s
(0)
γ (β, t)

{
Di −

s
(1)
γ (β, t)

s
(0)
γ (β, t)

}
dF̄γ(t),

where Ni(t) = IYt≤t,δi=1 and Fn(t) =
∑n

i=1Ni(t)/n, F̄γ(t) = Eγ(Fn(t)). Furthermore,

we let

5l̃γ,n(r) =
n∑
i=1

ωγ,i(r)/n,

52l̃γ,n(r) =
n∑
i=1

δi

{ s
(2)
γ (r, Yi)

s
(0)
γ (r, Yi)

− [
s

(1)
γ (r, Yi)

s
(0)
γ (r, Yi)

]2
}
/n.

The notations, 5l̃ and52l̃, do not mean that they are the first and second derivatives

of some quantities, instead, we use these notations because they are approximations

to5ln and52ln respectively. In the end, we let Ai(r) = Eβi(52l̃βi,n(r)) for i = 0, 1, 2.

For any two quantities an and bn, we will use an ∼ bn to denotes an− bn → 0 in prob-

ability as n→∞.

As shown in Struthers and Kalbfleisch (1986), β̂ → β0 in probability w.r.t P1. To

simplify the proof, we assume that the support of Y of Fβ0 is R+ and the marginal

distribution of Y is continuous. We also focus on a stronger version of Assumption

II.1 which assumes that uniformly continuity in Assumption II.1 is true for a neigh-

borhood B of β0 and we still call it Assumption II.1 in this section. The additional

assumptions are not essential and for other situations, the proof is similar. Recall As-
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sumptions II.1 and II.2, we first establish some basic properties of some key quantities.

Lemma II.4. Under Assumption II.1, we have:

(1) For any q = 0, 1, 2, both supβ,t∈R |S(q)(β, t)/S(0)(β, t)| and supβ,γ,t∈R |s
(q)
γ (β, t)/s

(0)
γ (β, t)|

are bounded with regard to n;

(2) For any q = 0, 1, 2, limβ→β0,γ→β0 supt∈R |s
(q)
γ (β, t)− s(q)

β0
(β0, t)| = 0 and s

(q)
γ (β, t) is

continuous in t for any γ and β;

(3) For any q = 0, 1, 2 and any ε > 0, supγ∈B Pγ(supβ∈B,t∈R |S(q)(β, t) − s(q)
γ (β, t)| >

ε)→ 0;

(4) For all T <∞, infγ∈B,β∈B,t∈[0,T ] s
(0)
γ (β, t) is bounded below;

(5) supβ,γ∈BEγ[
∫∞

0

Y (t)

s
(0)
γ (β, t)

dF̄γ(t)]
2 <∞, and

limγ→β0 limM1→∞ supβ∈BEγ[
∫∞
M1

Y (t)

s
(0)
γ (β, t)

dF̄γ(t)]
2 = 0.

Proof. (1) We can see that Dq
i ≤ D0

i , so, from the definition, S(q)(β, t)/S(0)(β, t) and

s
(q)
γ (β, t)/s

(0)
γ (β, t) are all bounded by 1.

(2) Take q = 1 as an example, we have the following inequality,

sup
t∈R
|s(q)
γ (β, t)− s(q)

β0
(β0, t)|

=supt∈R|Pγ(D = 1)eβEγ(Y (t)|D = 1)− Pβ0(D = 1)eβ0Eβ0(Y (t)|D = 1)|

=supt∈R|Pγ(D = 1)eβPγ(Y ≥ t|D = 1)− Pβ0(D = 1)eβ0Pβ0(Y ≥ t|D = 1)|

≤supt∈R|Pγ(D = 1)eβPγ(Y ≥ t|D = 1)− Pβ0(D = 1)eβ0Pγ(Y ≥ t|D = 1)|+

supt∈R|Pβ0(D = 1)eβ0Pγ(Y ≥ t|D = 1)− Pβ0(D = 1)eβ0Pβ0(Y ≥ t|D = 1)|

≤|Pγ(D = 1)eβ − Pβ0(D = 1)eβ0|+

Pβ0(D = 1)eβ0 sup
t∈R
|Pγ(Y ≥ t|D = 1)− Pβ0(Y ≥ t|D = 1)|.

(2.1)
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From Assumption II.1, Pγ is continuous at γ = β0, so the first term on the right hand

side of (2.1) goes to 0 as β and γ go to β0. From Assumption II.1, Pβ(Y ≥ t|D = 1)

is continuous at β = β0 uniformly in t, so the other term on the right hand side of

(2.1) goes to 0 too. The proof for q = 0, 2 is similar. The continuity of s
(q)
γ (β, t) in t

for any γ and β is trivial from our assumptions.

(3) First, we note that s
(q)
γ (β, t) and S(q)(β, t) are monotone in β and t. From the

assumption of the continuity of the marginal distribution of Y , s
(q)
γ (β, t) is continuous

in β and t. Therefore, by Lemma II.4 (2) and Assumption II.1, given any ε > 0 and

any γ ∈ B, there exists a constant k, which is determined by ε but independent of γ,

and a sequence {(βi,γ, ti,γ)}ki=1, which is determined by γ, such that

Pγ( sup
β∈B,t∈R

|S(q)(β, t)− s(q)
γ (β, t)| > ε) ≤

i=k∑
i=1

Pγ(|S(q)(βi,γ, ti,γ)− s(q)
γ (βi,γ, ti,γ)| > ε/3).

(2.2)

For any γ and t,

Pγ(|S(q)(β, t)− s(q)
γ (β, t)| > ε)

≤varγ(S(q)(β, t))/ε2 = varγ(Y (t)eDβDq)/(nε2) ≤ e2β/(nε2).

(2.3)

Therefore, for any β ∈ B, γ ∈ B and t ∈ R, Pγ(|S(q)(β, t)− s(q)
γ (β, t)| > ε) is bounded

by a constant divided by n, and the constant is independent of β, γ and t. Combining

it with the decomposition in (2.2), we prove for any γ ∈ B, Pγ(supβ∈B,t∈R |S(q)(β, t)−

s
(q)
γ (β, t)| > ε) is bounded by a constant divided by n, and the constant is independent

of γ, so the 3rd part of Lemma II.4 is proved.

(4) For any T < ∞, we note that 1 − Fβ0(T ) > 0, so inft∈[0,T ] s
(0)
β0

(β0, t) is bounded

below. From Lemma II.4 (2), it follows naturally that infγ∈B,β∈B,t∈[0,T ] s
(0)
γ (β, t) is

bounded below.
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(5) Let N(t) = IY≤t,δ=1 and Gγ(t) = 1−EγY (t). Notice that Gγ(t) = Pγ(Y < t) and

F̄γ(t) = Pγ(Y < t, δ = 1), we have Gγ ≥ F̄γ and

s(0)
γ (β, t) ≥ min(eβ, 1)Eγ(Y (t)).

Therefore, there exists a constant CB <∞ determined by B such that

sup
β,γ∈B

Eγ[

∞∫
0

Y (t)

s
(0)
γ (β, t)

dF̄γ(t)]
2 ≤ sup

β,γ∈B
CBEγ[

∞∫
0

Y (t)

1−Gγ(t)
dGγ(t)]

2. (2.4)

For any γ ∈ B, Eγ[
∫∞

0

Y (t)

1−Gγ(t)
dGγ(t)]

2 ≤
∫ 1

0
log2xdx < ∞. Similarly, it follows

that Eγ[
∫∞
M1

Y (t)

1−Gγ(t)
dGγ(t)]

2 ≤
∫ 1−Gγ(M1)

0
log2xdx <∞. From Assumption II.1, we

note that limM1→∞ infγ∈BGγ(M1) > 1 − εB and εB goes to 0 when B shrinks to the

point β0, so we prove the result.

Lemma II.5. Under Assumption II.1, for any ε > 0, Pβ̂(|β̃ − β0| > ε) → 0 in

probability w.r.t P1, where β̃ is the standard partial likelihood estimate under Fβ̂.

Proof. Since β̂ → β0 in probability, W.L.O.G, we assume that β̂ ∈ B.

(1) First, we will show that given r ∈ B, Pβ̂(
√
n| 5 ln(r) − 5l̃β̂,n(r)| > ε) → 0 in

probability w.r.t P1.

Similar to the techniques used in the proof of the asymptotic normality of the partial

likelihood estimator under a mis-specified Cox model in the Appendix of Lin and Wei
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(1989), we have the following useful decomposition,

√
n(5ln(r)−5l̃β̂,n(r))

= −
∞∫

0

{S
(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

}d{
√
n(Fn(t)− F̄β̂(t))}

−
∞∫

0

{S
(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

}
√
n(S(0)(r, t)− s(0)

β̂
(r, t))/s

(0)

β̂
(r, t)dF̄β̂(t).

(2.5)

From Lemma II.4 (1), (3) and (4), we know that
S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

is bounded

and for any τ > 0, we know that Pβ̂(supr∈B,t∈[0,τ ] |
S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

| > ε) → 0 in

probability w.r.t P1. Notice that
√
n(F̄n(t)−Fβ̂(t)) converge to a zero-mean Gaussian

process in probability w.r.t P1, we can show that for any η > 0, there exists an

appropriate partition τ1, s.t.

lim supPβ̂(| −
∞∫

0

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

}
d{
√
n(Fn(t)− F̄β̂(t))}| > ε/2)

≤ lim supPβ̂(| −
τ1∫

0

{S
(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

}d{
√
n(Fn(t)− F̄β̂(t))}| > ε/4)+

lim supPβ̂(| −
∞∫
τ1

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

}
d{
√
n(Fn(t)− F̄β̂(t))}| > ε/4)

<η

(2.6)

in probability w.r.t P1. Therefore, we control the 1st term on the right hand side of

(2.5).

For the 2nd term on the right hand side of (2.5), notice that given r ∈ B,
√
n(S(0)(r, t)−

s
(0)

β̂
(r, t)) converges to a zero-mean Gaussian process in probability w.r.t P1, we can
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decompose

∞∫
0

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

} √
n(S(0)(r, t)− s(0)

β̂
(r, t))/s

(0)

β̂
(r, t)dF̄β̂(t)

into

τ2∫
0

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

} √
n(S(0)(r, t)− s(0)

β̂
(r, t))/s

(0)

β̂
(r, t)dF̄β̂(t)

+

∞∫
τ2

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

} √
n(S(0)(r, t)− s(0)

β̂
(r, t))/s

(0)

β̂
(r, t)dF̄β̂(t)

(2.7)

with appropriate τ2. The first term of (2.7) goes to 0 in probability due to the uniform

convergence of
S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

to 0, the L∞ norm of the gaussian process and

the boundness of 1/s
(0)

β̂
(r, t) when t ∈ [0, τ2]. To control the second term of (2.7), we

note that
S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

is bounded, so there exists a constant C such that

|
∞∫
τ2

{ S(1)(r, t)

S(0)(r, t)
−
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

} √
n(S(0)(r, t)− s(0)

β̂
(r, t))/s

(0)

β̂
(r, t)dF̄β̂(t)|

≤| C√
n

n∑
i=1

∞∫
τ2

(
Yi(t)e

rDi

s
(0)

β̂
(r, t)

− 1)dF̄β̂(t)|.

(2.8)

With Chebyshev’s inequality, the latter one is controlled by Eβ̂(
∫∞
τ2

(
Yi(t)e

rDi

s
(0)

β̂
(r, t)

)dF̄β̂(t))2

after multiplied by a constant, which will go to 0 in probability as τ2 →∞ by Lemma

II.4 (5), so we prove the result.

(2) Second, we will prove that for r ∈ B, Pβ̂(| 5 lβ̂,n(r) − Eβ0ωβ0(r)| > ε) → 0 in

probability w.r.t P1.
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As implied in (1),

Pβ̂(| 5 ln(r)− Eβ0ωβ0(r)| > ε) ∼ Pβ̂(| 5 l̃β̂,n(r)− Eβ0ωβ0(r)| > ε),

and the latter is smaller than

Pβ̂(| 5 l̃β̂,n(r)− Eβ̂ 5 l̃β̂,n(r)| > ε/2) + Pβ̂(|Eβ̂ωβ̂(r)− Eβ0ωβ0(r)| > ε/2). (2.9)

By Chebyshev’s inequality, the first term on the right hand side of (2.9) is smaller

than Eβ̂ω
2
β̂
(r)/n. From Lemma II.4 (5), we see that Eβ̂ω

2
β̂
(r) is bounded in probability

when n goes to infinite so the first term goes to 0 in probability.

For the second term on the right hand side of (2.9), we note that Eγωγ(r) = Eγh(γ, r),

where

h(γ, r) =

∞∫
0

(Di −
s

(1)
γ (r, t)

s
(0)
γ (r, t)

)dNi(t).

Therefore, the quantity in the second term can be further controlled as follows,

|Eβ̂ωβ̂(r)−Eβ0ωβ0(r)| ≤ |Eβ̂h(β̂, r)−Eβ̂h(β0, r)|+ |Eβ̂h(β0, r)−Eβ0h(β0, r)|. (2.10)

From Lemma II.4 (2) and (4), we can show that for any M > 0, |Eβ̂h(β̂, r)IY <M −

Eβ̂h(β0, r)IY <M | goes to 0 in probability. From Lemma II.4 (1) and Assumption II.1,

we can show that |Eβ̂h(β̂, r)IY≥M − Eβ̂h(β0, r)IY≥M | will goes to 0 when M goes to

infinite, so we can control the 1st term on the right hand side of (2.10). For the

second part, from Assumption II.1, we note that h(β0, r) is continuous r.v. w.r.t Y ,

so the second part on the right hand side of (2.10) will go to 0 due to portmanteau

lemma.
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(3) Last, we will show the result, Pβ̂(|β̃ − β0| > ε)→ 0 in probability w.r.t P1.

From Lin and Wei (1989), we know that r = β0 is the solution of Eβ0ωβ0(r) = 0.

Since Eβωβ(r) = Eβh(β, r) and h(β, r) is monotone to r, the solution of Eβ0ωβ0(r) = 0

is unique and we prove the result.

Lemma II.6. Under Assumption II.1, for any ε > 0, Pβ̂(| 52 ln(βn) − A0(β0)| >

ε)→ 0 in probability w.r.t P1, where βn is between β̂ and β̃. Furthermore, A0(β0) is

positive definite.

Proof. W.L.O.G, we assume that β̂ ∈ B. With Lemma II.4 (2) and (4), we can show

that for any τ <∞,

Pβ̂( sup
r∈B,t∈[0,τ ]

|(
s

(2)

β̂
(r, t)

s
(0)

β̂
(r, t)

− (
s

(1)

β̂
(r, t)

s
(0)

β̂
(r, t)

)2)− (
S(2)(r, t)

S(0)(r, t)
− (

S(1)(r, t)

S(0)(r, t)
)2)| > ε)→ 0

in probability w.r.t P1. From the definition, we note that

52 ln(βn)−52l̃β̂,n(βn)

=
n∑
i=1

δi

{( s(2)

β̂
(r, Yi)

s
(0)

β̂
(r, Yi)

− (
s

(1)

β̂
(r, Yi)

s
(0)

β̂
(r, Yi)

)2
)
−
( S(2)(r, Yi)

S(0)(r, Yi)
− (

S(1)(r, Yi)

S(0)(r, Yi)
)2
)}

/n.

(2.11)

Thus, with appropriate partition for Yi, Pβ̂(| 52 ln(βn) − 52l̃β̂,n(βn)| > ε) → 0 in

probability w.r.t P1. Similar to the techniques we use in Lemma II.5 and notice that

52ln(r) and 52l̃β̂,n(r) are always bounded, we can show that

Pβ̂(| 52 ln(βn)− A0(β0)| > ε)

∼Pβ̂(| 52 l̃βn,n(βn)− Eβ̂ 5
2 l̃βn,n(βn)| > ε/2) + Pβ̂(|Eβ̂ 5

2 l̃βn,n(βn)− A0(β0)| > ε/2),

(2.12)
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and the latter goes to 0 in probability w.r.t P1. To be specific, the first term on the

right hand side of (2.12), Pβ̂(| 52 l̃βn,n(βn)−Eβ̂ 52 l̃βn,n(βn)| > ε/2), is controlled by

Chebyshev’s inequality and the second term, Pβ̂(|Eβ̂52 l̃βn,n(βn)−A0(β0)| > ε/2), is

controlled by Lemma II.4 (1), (2), (4) and Assumption II.1. The technique is similar

to what we use in the proof of Lemma II.5 and (2.10).

Since Fβ0 is well defined with true log-hazard ratio as implied in the problem setting,

from Lin and Wei (1989), it is not hard to see that A0(β0) is positive definite.

Lemma II.7. Under Assumption II.1,
√
n5 ln(β̂)→ N(0,

√
Eβ0ω

2(β0)) or, in other

words, for any c, Pβ̂(
√
n5 ln(β̂) > c) → F (c), where F is the survival function of

N(0, Eβ0ω
2(β0)), in probability w.r.t P1.

Proof. W.L.O.G, we assume β̂ ∈ B. From Lemma II.4 (1), (3) and (4), we can prove

that Pβ̂(
√
n5 ln(β̂) > c) ∼ Pβ̂(

√
n5 l̃β̂,n(β̂) > c) by modifying the 1st part of the

proof in Lemma II.5. and showing that
√
n(S(0)(β̂, t)− s(0)

β̂
(β̂, t)) converges to a zero-

mean Gaussian process in probability w.r.t P1. Next, we check the Lindebeger-Feller

condition for CLT, Eβ̂ω
2
β̂
(β̂)I|ωβ̂(β̂)|>√nε1 → 0, for any ε1 > 0. We have the following

decomposition,

Eβ̂ω
2
β̂
(β̂)I|ωβ̂(β̂)|>√nε1

=Eβ̂ω
2
β̂
(β̂)I|ωβ̂(β̂)|>√nε1IY <M + Eβ̂ω

2
β̂
(β̂)I|ωβ̂(β̂)|>√nε1IY≥M .

(2.13)

From Lemma II.4 (2) and (4), when Y < M and γ, r ∈ B, ω2
γ(r) is bounded, so the

first term of (2.13) will go to 0 in probability w.r.t P1. The second term is smaller

than Eβ̂ω
2
β̂
(β̂)IY≥M . From Lemma II.4 (5), we know that Eβ̂ω

2
β̂
(β̂)IY≥M → 0 in prob-

ability w.r.t P1 as M →∞.
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Since Fβ is well defined for β ∈ B as implied in the problem setting, by Lin and

Wei (1989), Eβ̂ωβ̂(β̂) = 0. Furthermore, with similar decomposition techniques used

in the proof of Lemma II.5 and (2.10), we note that |Eβ̂ω2
β̂
(β̂) − Eβ0ω

2
β0

(β0)| → 0

in probability w.r.t P1 from Lemma II.4 (5). Therefore, we show the normality as

desired.

Theorem II.8. Under Assumption II.1,
√
n(β̃ − β̂) → N(0, σ2

0) in probability w.r.t

P1. σ2
0 = A−2

0 (β0)Eβ0ω
2
β0

(β0).

Proof. Take taylor expansion of 5ln(r) at r = β̂ and apply Lemmas II.5–II.7, we can

get the result.

We define 5lP1,n(r), 52l̃P1,n(r), ωP1,i(β) and AP1(r) similar to the quantities in the

1st paragraph but replace s
(q)
γ (β, Yi), F̄γ(t), Eβi , A0(r) with s

(q)
P1

(β, Yi), F̄P1(t), EP1

and AP1(r) and the latter are with regard to P1 instead of Fγ. Let {(Y ∗i , δ∗i , D∗i )}ni=1 be

n random samples (bootstrap sample) from {(Yi, δi, Di)}ni=1. We let 5l∗n(r), 52l∗n(r)

be the first and second derivative of the log partial likelihood of the bootstrap sam-

ple, and β∗ be the bootstrap estimator. We let S(q,∗)(β, t) =
∑n

i=1 Y
∗
i (t)eβD

∗
iD∗qi /n,

5l̄n(r) =
∑n

i=1 ω̄i(r)/n,5l̄∗n(r) =
∑n

i=1 ω̄
∗
i (r)/n and52l∗n(r) =

∑n
i=1 δ

∗
i

{ S(2)(r, Y ∗i )

S(0)(r, Y ∗i )
−

(
S(1)(r, Y ∗i )

S(0)(r, Y ∗i )
)2
}
/n, where

ω̄i(β) =

∞∫
0

{
Di −

S(1)(β, t)

S(0)(β, t)

}
dNi(t)−

∞∫
0

Yi(t)e
βDi

S(0)(β, t)

{
Di −

S(1)(β, t)

S(0)(β, t)

}
dFn(t),

ω̄∗i (β) =

∞∫
0

{
D∗i −

S(1)(β, t)

S(0)(β, t)

}
dN∗i (t)−

∞∫
0

Y ∗i (t)eβD
∗
i

S(0)(β, t)

{
D∗i −

S(1)(β, t)

S(0)(β, t)

}
dF ∗n(t),
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and N∗i (t) = I{Y ∗i ≤t,δ∗i =1} and F ∗n(t) =
∑n

i=1N
∗
i (t)/n. The following theorem shows

the bootstrap consistency under misspecified cox model.

Theorem II.9. Under Assumption II.1, the bootstrap is consistent;
√
n(β∗ − β̂) →

N(0, σ2
P1

) in probability w.r.t P1, where σ2
P1

= A−2
P1

(β0)EP1ω
2
P1

(β0).

Proof. The proof is similar to the proof in Theorem A.5.

(1) We will construct similar results as Lemma II.4.

First, for q = 0, 1, 2, supβ∈B,t∈R |S(q,∗)(β, t)/S(0,∗)(β, t)| is bounded.

Second, for any ε > 0, P ∗(supβ∈B,t∈R |S(q,∗)(β, t)− S(q)(β, t)| > ε) → 0 in probability

w.r.t P1.

Third, there exists subsequence S(0)′(β, t) of S(0)(β, t), P1(for any τ <∞, lim infβ∈B,t∈[0,τ ]

S(0)′(β, t) > 0) = 1.

Fourth, supβ∈BEFn(
∫∞

0

Y (t)eβD

S(0)(β, t)
dFn(t))2 <∞ and

P1( lim
M→∞

lim
n→∞

sup
β∈B

EFn(

∞∫
M

Y (t)eβD

S(0)(β, t)
dFn(t))2 = 0) = 1.

The proof of the first is trivial. Under Assumption II.1, we note that

P1( sup
β∈B,t∈R

|S(q)(β, t)− s(q)
P1

(β, t)| > ε)→ 0.
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Notice that E∗S(q,∗)(β, t) = S(q)(β, t), we prove the second with similar decomposi-

tion as the proof in Lemma II.4 (2) and Chebyshev’s inequality. For the third, we

can show that s
(0)
P1

(β, t) is bounded below for any β ∈ B and t ∈ [0, τ ]. Combining

similar arguments in the second one can lead to the result. Notice that Fn → FP1

a.s. w.r.t P1, the proof of the last one is similar to the proof of Lemma II.4 (5).

W.L.O.G, we assume that P1(for any τ <∞, lim infβ∈B,t∈[0,τ ] S
(0)(β, t) > 0) = 1 and

P ∗(supβ∈B,t∈R |S(q,∗)(β, t)− S(q)(β, t)| > ε)→ 0 a.s. w.r.t P1.

(2) Second, we will show that P ∗(
√
n| 5 l∗n(r)−5l̄∗n(r)| > ε)→ 0 in probability.

Similar to the proof in Lemma II.5, we have the following decomposition

√
n(5l∗n(r)−5l̄∗n(r))

=−
∞∫

0

{S
(1,∗)(r, t)

S(0,∗)(r, t)
− S(1)(r, t)

S(0)(r, t)
}d{
√
n(F ∗n(t)− Fn(t)}

−
∞∫

0

{S
(1,∗)(r, t)

S(0,∗)(r, t)
− S(1)(r, t)

S(0)(r, t)
}
√
n(S(0,∗)(r, t)− S(0)(r, t))/S(0)(r, t)dFn(t).

(2.14)

From (1), we note that for any τ < ∞ , lim infβ∈B,t∈[0,τ ] S
(0)(β, t) > 0 a.s. w.r.t P1.

Therefore, we can decompose

∞∫
0

{ S(1,∗)(r, t)

S(0,∗)(r, t)
− S(1)(r, t)

S(0)(r, t)

}
d{
√
n(F ∗n(t)− Fn(t)}

into
M∫

0

{ S(1,∗)(r, t)

S(0,∗)(r, t)
− S(1)(r, t)

S(0)(r, t)

}
d{
√
n(F ∗n(t)− Fn(t)}+

∞∫
M

{ S(1,∗)(r, t)

S(0,∗)(r, t)
− S(1)(r, t)

S(0)(r, t)

}
d{
√
n(F ∗n(t)− Fn(t)}.
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Since P ∗(supβ∈B,t∈R |S(r,∗)(β, t) − S(q)(β, t)| > ε) → 0 and
√
n(F ∗n(t) − Fn(t)) con-

verges to a zero-mean Gaussian process in probability w.r.t P1, we can apply similar

arguments as the proof of Lemma II.5 and control the 1st term on the right hand

side of (2.14). We get the results by controlling the 2nd term on the right hand side

of (2.14) with similar techniques as used in the proof of Lemma II.5.

(3) Third, we will show that P ∗(|β∗ − β0| > ε)→ 0 in probability w.r.t P1.

We can get the following decomposition

P ∗(| 5 l∗n(r)− EP1ωP1(r)| > ε)

≤P ∗(| 5 l∗n(r)−5l̄∗n(r)| > ε/3)+

P ∗(| 5 l̄∗n(r)− E∗5 l̄∗n(r)| > ε/3) + P ∗(|E∗5 l̄∗n(r)− EP1ωP1(r)| > ε/3).

(2.15)

The first term on the right hand side of (2.15) is controlled by what we prove in

part (2) of this proof. Similar to what Lin and Wei (1989) already showed, we

note that var∗(nl̄∗n(r)) → varP1ω
2
P1

(r) in probability w.r.t P1. The second term on

the right hand side of (2.15) is controlled by Chebyshev’s inequality. Notice that

E∗ 5 l̄∗n(r) = 5l̄n(r), the third term is controlled by the consistency of 5l̄n(r) to

EP1ωP1(r). Similar arguments as the proof of Lemma II.5 show that β0 is the unique

solution of EP1ωP1(r) = 0, so we prove the result.

(4) Fourth, we show that
√
n5 l̄∗n(β̂) is asymptotically normal in probability w.r.t P1.

In other words, we show that P ∗(5l̄∗n(β̂) > c)→ F (c) in probability w.r.t P1, where

F ∼ N(0, EP1ω
2
P1

(β0)).

It is not hard to see that E∗ 5 l̄∗n(β̂) = 0 and 5l̄∗n(β̂) is i.i.d sum of ω̄∗(β̂) w.r.t P ∗.
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We note that

E∗(ω̄∗(β̂))2I|ω̄∗(β̂)|>
√
nε

=E∗(ω̄∗(β̂))2I|ω̄∗(β̂)|>
√
nεIY ∗<M + E∗(ω̄∗(β̂))2I|ω̄∗(β̂)|>

√
nεIY ∗≥M

≤E∗(ω̄∗(β̂))2I|ω̄∗(β̂)|>
√
nεIY ∗<M + E∗(ω̄∗(β̂))2IY ∗≥M .

(2.16)

The first term on the right hand side of (2.16) will go to 0 in probability w.r.t P1

due to the boundness ω̄ when Y ∗ < M . The second term is asymptotically bounded

by EP1ω
2
P1

(β0)IY≥M and the latter goes to 0 when M → ∞. As showed in Lin and

Wei (1989),
∑n

i=1 ω̄
∗2(β̂)/n is consistent to EP1ω

2
P1

(β0). Therefore, we can apply

Lindeberg-Feller CLT.

In the end, similar to Lemma II.6, P ∗(| 52 l∗(β) − 52l̄∗(β)| > ε) → 0 and P ∗(| 52

l̄∗(β) − AP1(β0)| > ε) → 0 in probability w.r.t P1 for β ∈ (β̂, β∗). Combining all the

above, we show the result by taking taylor expansion of 5l̄∗(r) at r = β̂. Since β0 is

well defined, A−2
P1

(β0) is also positive.

If β1 = β2, then, it is obvious that σ0 = σP1 . Let G(·|µ1, µ2, σx1 , σx2 , ρ) be the survival

function of max(X1, X2), where (X1, X2) follows a joint normality with population

mean µ1 and µ2, standard deviation σx1 and σx2 and correlation ρ respectively. We

have the following lemma.

Lemma II.10. Under Assumption II.1,

Pβ̂(
√
nmax(β̃1 − β̂, β̃2 − β̂) ≥ c)→ G(c|0, 0, σ0√

p
,

σ0√
1− p

, 0)

in probability w.r.t P1.
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Proof. Let (Un, Vn) = 1/
√
n(
∑n

i=1 ωβ̂,i(β̂)IZi=1,
∑n

i=1 ωβ̂,i(β̂)IZi=0). Similar to Lemma

II.7, we can show that (Un, Vn) are jointly normal in asymptotic sense. Therefore,

by taking taylor expansion as we did in Theorem II.8, we have
√
n(β̃1 − β̂) and

√
n(β̃2 − β̂) are jointly normal in asymptotic sense. With Theorem II.8, we note

that
√
n(β̃1 − β̂) ∼ N(0,

σ2
0

p
) and

√
n(β̃2 − β̂) ∼ N(0,

σ2
0

1− p
) and are asymptotically

independent, which proves the lemma.

Proof of Theorem II.3: It is easy to see that conditional on the bootstrap sample

we generate in Algorithm 1,
√
n(β∗1 − β̂) and

√
n(β∗2 − β̂) are independent. Therefore,

we can show that
√
nmax(β∗1 − β̂, β∗2 − β̂) → G(·|0, 0, σP1√

p
,

σP1√
1− p

, 0) in probability

w.r.t P1 by Theorem II.9. We note that

P ∗(max(β∗1 , β
∗
2) ≥ max(β̂1, β̂2)) = P ∗(

√
nmax(β∗1−β̂, β∗2−β̂) ≥

√
nmax(β̂1−β̂, β̂2−β̂)).

Since G(·|0, 0, σP1√
p
,

σP1√
1− p

, 0) is continuous, we can show that

P ∗(max(β∗1 , β
∗
2) ≥ max(β̂1, β̂2)) ∼ G(

√
nmax(β̂1 − β̂, β̂2 − β̂)|0, 0, σP1√

p
,

σP1√
1− p

, 0).

Similarly, by Lemma II.10, we have the following relationship

Pβ̂(max(β̃1, β̃2) ≥ max(β̂1, β̂2)) ∼ G(
√
nmax(β̂1 − β̂, β̂2 − β̂)|0, 0, σ0√

p
,

σ0√
1− p

, 0).

If β1 = β2, then,

G(
√
nmax(β̂1 − β̂, β̂2 − β̂)|0, 0, σ0√

p
,

σ0√
1− p

, 0)

=G(
√
nmax(β̂1 − β̂, β̂2 − β̂)|0, 0, σP1√

p
,

σP1√
1− p

, 0).

(2.17)

If β1 6= β2, then, from Assumption II.2, we note that β0 < max(β1, β2) and
√
nmax(β̂1−

β̂, β̂2 − β̂)→∞ in probability w.r.t P1, so the risk index will go to 0. The Theorem
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II.3 is proved. �

Corollary II.11. Under Assumptions II.1 and II.2, if β1 = β2, the risk index will

converge to a non-degenerate distribution on (0,1); Otherwise, the risk index will

converge to 0.

Proof. See the proof in Theorem II.3.

39



CHAPTER III

Subgroup Analysis: Debiased Inference

In this chapter, we propose a resampling-based debiased inference procedure for

the best selected subgroup. When a promising subgroup is selected, we have to answer

the question of how good the selected subgroup is. The proposed method addresses

the subgroup selection bias appropriately by bootstrapping the bias, and provides

a bias-reduced estimator and a valid one-sided confidence bound on the selected

subgroup effect size as measured by log-odds ratio, for instance. Even though the

standard bootstrap method does not estimate the bias correctly, we use the bootstrap

to mimic the subgroup selection procedure, learn about the bias and develop an

appropriate procedure for bias correction. Our proposed method is model-free, easy

to compute and provides asymptotically sharp inference to help a better-informed

decision on subgroup pursuit. We demonstrate the merit of our proposed method by

re-analyzing the MONET1 trial and answer the question of how good the East Asian

subgroup really is. We show that how the subgroup is selected post hoc should play

an important role in any statistical analysis.

3.1 Inference with Predefined Subgroups

In this section, we start from a relatively simple scenario in subgroup analysis

where the candidate subgroups are predefined. We propose bootstrap-based asymp-
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totically sharp inference and a bias-reduced estimator on the effect size of the best

selected subgroup.

3.1.1 Problem Setting

We consider the problem of k (possibly overlapped) subgroups with βi and β̂i

as the effect size and the observed effect size of the ith subgroup, respectively, for

i = 1, . . . , k. The subgroups are usually defined by baseline characteristics of the

subjects. We assume k is a fixed constant, but the total sample size for the trial

is n. We also assume that the data include ni subjects in the ith subgroup, and∑k
i=1 ni ≥ n, where equality occurs only when the k subgroups are mutually exclusive.

In any subsequent asymptotic analysis, we assume that ni/n is bounded away from

0 and 1, as the sample size n increases. At this point, we leave the specification of

the treatment effect to each individual study. It could be a log odds ratio, log hazard

ratio, or a simple mean or a regression coefficient, with β̂i estimated from a sample

of ni subjects. Indeed, our proposed method works for any measure of the treatment

effect as long as the treatment effect measure satisifes two very mild assumptions as

specified in Section 3.1.3. Moreover, we even do not need to assume the model we use

for defining and calculating the treatment effect measure is correctly specified and

the proposed method works for many misspecified models, such as the misspecified

proportional hazard model as discussed in Section 2.1.1. Without sticking to a specific

model to measure the treatment effect and assuming the model is correctly specified,

we say the proposed method is model-free. Without loss of generality, we assume

that a larger value of βi means a better treatment effect.

Let [k] = {1, . . . , k} be the index set. Two quantities of interest in the subgroup

analysis are

1. the best selected subgroup effect : βs, where s = argmaxi∈[k]β̂i;

2. the best subgroup effect : βmax = maxi∈[k] βi.
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Note that βmax is a fixed parameter, whereas βs is the true effect size of the

selected subgroup. One may debate which quantity should be used for subgroup

pursuit decisions, and our proposed inference method works for both quantities. We

will start from inference on βmax and show that the same procedure works for the

inference on βs.

In the cases with k = 2 and when β̂i, i = 1, 2, are jointly normally distributed,

the statistic β̂max = maxi∈[k] β̂i has a skew-normal distribution; see Nadarajah and

Kotz (2008). However the skew-normal distribution has unknown parameters, and if

those parameters are replaced by their best possible estimates with the root-n rate

of convergence, any inference based on the estimated skew-normal distribution is no

longer valid. Of course, the problem does not become less challenging when k > 2,

which calls for a new inferential method to be developed.

3.1.2 Proposed Method

We propose the following bootstrap-based method to construct a lower confidence

limit for βmax for any k ≥ 2. The method has a tuning parameter r ∈ (0, 0.5), and

uses the estimated subgroup effects β̂i and their maximum value β̂max.

Suppose that the data consist of independent observations {Dj, Zj} from j =

1, · · · , n subjects, where Dj represents treatment and outcome measures, and Zj ⊂

[k] indicates which subgroup or subgroups subject j belongs to. We may use the

bootstrap sample {D∗j , Z∗j }, j = 1, · · · , n, by drawing n subjects with replacements.

The subgroup treatment effects for the bootstrapped sample are then denoted by

β̂∗i for i = 1, · · · , k. Depending on the specific model being used to calculate the

treatment effects, other bootstrap methods might be used, so long as some bootstrap

consistency results are satisfied as specified in the next subsection. With the bootstrap

samples at hand, the proposed method proceeds with Algorithm 2.
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Algorithm 2 Lower confidence limit for βmax.

1: For i = 1, . . . , k, set di = (1− nr−0.5)(β̂max − β̂i);
2: for b = 1, . . . , B do
3: For bootstrap sample b: calculate the subgroup effect sizes β∗i,b, and then T ∗b =

√
n(maxi∈[k](β

∗
i,b + di)− β̂max);

4: end for
5: Let cα = quantile(T ∗b , 1−α). The level 1−α lower confidence limit is β̂max−cα/

√
n.

3.1.3 Asymptotic Validity

Just as β̂max = maxi∈[k] β̂i is a biased estimator of βmax, the bootstrap estimate

β∗max = maxi∈[k] β
∗
i for each bootstrap sample is not centered at β̂max. The proposed

method makes an adjustment to each subgroup effect estimate in the bootstrap sample

by the amount di, which measures how far the ith subgroup is from the best selected

subgroup based on the estimated subgroup effect sizes. The amount of adjustment is

greater if β̂i is smaller. The modified bootstrap estimate of βmax is

β∗max,modified = max
i∈[k]

(β∗i + di).

To establish the validity of the proposed method, we require asymptotic normality

of the subgroup effect estimates as well as their bootstrap estimates at each sugbroup.

We use P and P ∗ to denote the probability under the sampling distribution and the

bootstrap-induced distribution, respectively.

Assumption III.1 (Asymptotic normality).
√
n(β̂1 − β1, β̂2 − β2, . . . , β̂k − βk) is

asymptotically normal.

Assumption III.2 (Bootstrap consistency).
√
n(β∗1 − β̂1, β

∗
2 − β̂2, . . . , β

∗
k − β̂k) is

bootstrap consistent, that is, conditional on the data, the asymptotic distribution of

√
n(β∗1−β̂1, β

∗
2−β̂2, . . . , β

∗
k−β̂k) is the same as the limiting distribution in Assumption

III.1. in probability.

In typical parametric and semi-parametric models, Assumption III.1 is satisfied
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for a wide range of estimators β̂i. Assumption III.2 is satisfied for most smooth

estimators, including the parameter estimates from the proportional hazard models;

see Efron and Tibshirani (1994). Our main result is given as follows.

Theorem III.3. Under Assumptions III.1 and III.2, and for any 0 < r < 0.5, we

have,

sup
x∈R
|P ∗(
√
n(β∗max,modified − β̂max) ≤ x)− P (

√
n(β̂max − βmax) ≤ x)| → 0

as n→∞, in probability w.r.t. P .

Theorem III.3 confirms that under very mild assumptions, the proposed inference

for βmax is asymptotically sharp in the sense that the confidence interval we propose

in Algorithm 2 will cover βmax exactly at the nominal level we choose as the sample

size goes to infinite. The following corollary facilitates inference on βs.

Corollary III.4. Under Assumptions III.1 and III.2, and for any 0 < r < 0.5, we

have

sup
x∈R
|P ∗(
√
n(β∗max,modified − β̂max) ≤ x)− P (

√
n(β̂max − βs) ≤ x)| → 0,

as n→∞, in probability w.r.t P .

Corollary III.4 indicates that the proposed bootstrap-based confidence interval for

βmax can also serve as an asymptotically sharp prediction interval for βs. Therefore,

we can use the same procedure to infer the best and the best selected subgroup

effect in subgroup pursuit, without having to choose which quantity to focus on. The

remaining issue with the proposed method is the tuning parameter r. In theory, it

can be any positive value less than 1/2 but we defer the discussion on the practical

choices of the tuning parameter to Section 3.1.5.
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3.1.4 Bias-reduced Estimator

Following the results in Theorem III.3, we propose a bias-reduced estimator for

βmax, and a biased-reduced predictor for βs. Note that the bias E[β̂max − βmax] is

o(1/
√
n) when the number of the best subgroups is 1 (e.g., β1 > β2 in the case of

two subgroups), but the bias is in the order of O(1/
√
n) and non-negligible when the

number of the best subgroups is more than 1 (e.g., β1 = β2 ). To be more specific,

let H = {i : βi = βmax}. Then, the number of the best subgroups is just the size of

H, |H|.

We propose a bias-reduced estimator β̂max,reduced as follows.

β̂max,reduced = β̂max − E∗[β∗max,modified − β̂max],

where E∗ denotes the expectation under the bootstrap distribution. For a rigorous

justification, we need the following two mild assumptions.

Assumption III.5 (2nd moment bound). lim supn→∞E[
√
n(β̂i − βi)]

2 < ∞, for

i = 1, . . . , k.

Assumption III.6 (2nd bootstrap moment). lim supn→∞E
∗[
√
n(β∗i − β̂i)]2 <∞, in

probability, for i = 1, . . . , k.

Theorem III.7. Under Assumptions III.1, III.2, III.5 and III.6, and for any 0 <

r < 0.5, we have

|E∗[
√
n(β∗max,modified − β̂max)]− E[

√
n(β̂max − βmax)]| → 0

as n→∞, in probability w.r.t P .

Theorem III.7 confirms that we can use the bootstrap to approximate the bias,

E[
√
n(β̂max−βmax)], and asymptotically the accuracy of the approximation is oP (1/

√
n),

even when |H| > 1. Under a slightly stronger bootstrap 2nd moment condition,
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Assumption III.8. lim supn→∞E{E∗[
√
n(β∗i − β̂i)]2} <∞, for i = 1, . . . , k,

we can have the following result.

Corollary III.9. Under Assumptions III.1, III.2, III.5 and III.8, and for any 0 <

r < 0.5, we have

|E{E∗[
√
n(β∗max,modified − β̂max)]} − E[

√
n(β̂max − βmax)]| → 0, as n→∞.

Corollary III.9 implies the following comparisons between β̂max and β̂max,reduced

in terms of bias. If there is only one best subgroup (|H| = 1), the biases of β̂max

and β̂max,reduced are both o(1/
√
n). However, if there is more than one best subgroup

(|H| > 1), the bias of β̂max is O(1/
√
n) while the bias of β̂max,reduced is reduced to

o(1/
√
n).

3.1.5 Choice of the Tuning Parameter

A smaller value of the tuning parameter r in Algorithm 2 tends to preserve the

coverage probability better in finite samples at the cost of possibly conservative con-

fidence bounds. We suggest a data-adaptive cross-validated choice of r to help prac-

titioners. The basic idea is to choose r to minimize the mean square error between

β̂max,reduced(r) and βmax. To make this possible without knowing the true value of

βmax, we provide an approximation to the mean square error that can be computed

from the data, and use cross-validation to choose the tuning parameter.

Let A = {r1, . . . , rm} denote a set of possible tuning parameters in the range of

(0, 0.5) with r1 < · · · < rm and m is a finite integer. The following algorithm can be

used to choose r ∈ A.
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Algorithm 3 Cross-validated choice of tuning parameter r.

1: Randomly partition the data into v (approximately) equal-sized subsamples;
2: for l = 1, . . . ,m do
3: for j = 1, . . . , v do
4: Basic setup: use the jth subsample as the reference data and the rest as

the training data;
5: Bias-reduced estimator: use the training data to obtain the bias-reduced

estimator of the best subgroup, β̂max,reduced,j(rl), with rl as the tuning pa-
rameter;

6: for i = 1, . . . , k do
7: Calculations on the testing data: use the reference data to estimate

the effect size of the ith subgroup, β̂i,j, and its standard error σ̂i,j;

8: Evaluation of accuracy: calculate hi,j(rl) = (β̂max,reduced,j(rl) − β̂i,j)2 −
σ̂2
i,j;

9: end for
10: end for
11: end for
12: The tuning parameter is chosen to be argminrl{mini∈[k][

∑j=v
j=1 hi,j(rl)/v]}.

To motivate the use of mini∈[k][
∑j=v

j=1 hi,j(rl)/v] as an approximate objective func-

tion for cross-validation, we state the following result.

Theorem III.10. Under the assumptions of Corollary III.9 and given the set A,

there exists an integer, NA, such that for any n > NA and r ∈ A, we have

E[β̂max,reduced,1(r)− βmax]2 = min
i∈[k]

E[β̂max,reduced,1(r)− βi]2.

Theorem III.10 implies that minimizing the mean square error of the bias-reduced

estimator is asymptotically equivalent to minimizing mini∈[k] E[β̂max,reduced,1(r)− βi]2

as a function of r ∈ A. The inclusion of σ̂2
i,j in the calculation of hi,j(rl) in Step 8 of

the above algorithm is to account for the variation in β̂i,j used there.

3.2 Inference with Post-hoc Identified Subgroups

In this section, we generalize the procedure to the cases where the best subgroup

is post-hoc identified by searching over many (possibly infinitely many) subgroups.
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To be more specific, let {S(c) : c ∈ D} denote the family of subgroups, where S(c)

is a subgroup indexed by c ∈ D and D is a compact set in a Euclidean space. Let

β(c) and β̂(c) represent the effect size and the estimated effect size of subgroup S(c),

respectively.

To distinguish from the best subgroup effect size defined in the previous section,

we use γmax = supc∈D β(c) as the best subgroup effect and γs as the best selected

subgroup effect, which is the true effect size of the subgroup that has the highest

β̂(c) among c ∈ D. We further assume the best selected subgroup is achievable; i.e.,

maxc∈D β̂(c) exists almost surely.

3.2.1 Asymptotically Sharp Inference

We generalize the inference procedure for the predefined subgroups in Section 3.1

to the following algorithm, where γ̂max = supc∈D β̂(c), and β∗(c), c ∈ D, are the

estimated effect sizes of the subgroups for a bootstrap sample. As before, we take the

tuning parameter as any value r ∈ (0, 1/2).

Algorithm 4 Lower confidence limit for γmax.

1: For c ∈ D, let d(c) = (1− nr−0.5)(γ̂max − β̂(c));
2: for b = 1, . . . , B do
3: For bootstrap sample b; calculate effect sizes β∗b (c) for c ∈ D, and then T ∗b =√

n(supc∈D(β∗b (c) + d(c))− γ̂max);
4: end for
5: Let cα = quantile(T ∗b , 1− α), the level α lower confidence limit is γ̂max − cα/

√
n.

The bootstrap procedure is based on the modified bootstrap estimator, γ∗max,modified =

supc∈D(β∗(c) + d(c)), where d(c) does not depend on the bootstrap sample. The jus-

tification of the above procedure needs the following assumptions.

Assumption III.11 (Asymptotically Gaussian process).
√
n(β̂(·)−β(·))→d G(·) in

l∞(D), where G(·) is a Gaussian process with continuous sample path in probability.
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Assumption III.12 (Bootstrap consistency).
√
n(β∗(·)− β̂(·))→d G(·) in l∞(D) in

probability.

Assumption III.13 (Continuous mapping). c → β(c) is a continuous mapping in

D.

Theorem III.14. Under Assumptions III.11, III.12 and III.13 and for any 0 < r <

0.5, we have as n→∞,

sup
x∈R
|P ∗(
√
n(γ∗max,modified − γ̂max) ≤ x)− P (

√
n(γ̂max − γmax) ≤ x)| → 0

in probability w.r.t P .

Theorem III.14 implies that the proposed inference is asymptotically sharp. Ex-

cept the continuous path assumptions for β(c) and for G(c), the assumptions required

here are the stochastic process versions of Assumptions III.1 and III.2. If the (boot-

strap) estimated effect size can be written in a form of an empirical process, then,

Assumptions III.11 and III.12 can be often verified by the use of the Donsker class;

see Van Der Vaart and Wellner (1996). In other words, these assumptions can be

expected to hold in many applications.

Similar to Section 3.1.4, we can have a bias-reduced estimator of γmax as

γ̂max,reduced = γ̂max − E∗[γ∗max,modified − γ̂max].

3.2.2 Selected Subgroup Inference

Previously in the case of predefined subgroups, the inference procedure in Section

3.1.2 works for both βmax and βs. This is true because as the sample size goes to

infinity, the probability that we select the best subgroup converges to one, which

implies
√
n(βs− βmax)→ 0 in probability. However, the almost sure selection cannot
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be expected for post-hoc identified subgroups in general and we have to take a critical

look how we can infer γs.

From the proof of Theorem III.14, we see that, asymptotically, the one-sided

confidence interval for γmax is actually based on the one-sided confidence band for β(c)

on c ∈ K, where K = {c : β(c) = supd∈D β(d)} is the set of c values corresponding to

the best subgroup effect. More specifically, the critical value, cα is the 1−α quantile of

supc∈K G(c) asymptotically. In this sense, we call the interval estimates constructed

in Section 3.2 locally simultaneous confidence intervals, which is in contrasts to any

inference based on a (globally) simultaneous confidence band of β(c) for all c ∈ D and

make the proposed procedure asymptotically sharp when inferring γmax. Because K ⊂

D, the resulting inference is more efficient than the methods based on simultaneous

confidence bands (interval) such as that of Fuentes et al. (2018) and the latter is

clearly not asymptotically sharp and on the conservative side for the inference on

γmax.

Furthermore, although γs may not equal γmax with probability one, it falls into

a local neighborhood of K, which shrinks to K as the sample size increases. This

enables us to establish the following result, analogous to Theorem III.7 for βs.

Theorem III.15. Under the assumptions of Theorem III.14, we have, as n→∞,

sup
x∈R
|P ∗(
√
n(γ∗max,modified − γ̂max) ≤ x)− P (

√
n(γ̂max − γs) ≤ x)| → 0

in probability w.r.t P .

3.3 Synthetic Data: MONET1 Continued

In this section, as a follow-up to Section 2.2, we revisit the failed MONET1 trial

again. We demonstrate the merit of our proposed debiased inference tool by re-

analyzing the failed MONET1 trial. With our proposed method, we provide an
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appropriate guidance on subgroup pursuit decisions after the initial MONET1 trial

data are available and answer the question of how good the East Asian subgroup

really is in a more scientific way.

Similar to what we did in Section 2.2, we apply the proposed debiased inference

procedure on the best subgroup effect to the synthetic data of MONET-1. From the

arguments in Section 2.2, we again equate βi to the negative log-hazard ratio to make

it consistent to the framework in the chapter. We compare the proposed debiased

inference procedure with the naive method which assumes that the subgroup of East

Asians is not selected from the same data; see Table 3.1.

Table 3.1: The bias-reduced estimate and the 95% upper bound of the hazard ratio
of the best selected subgroup (r=0.03).

No. of subgroups 2 4 8 10 16 Naive
Upper bound 0.894 0.947 1.012 1.013 1.024 0.883
Hazard ratio 0.711 0.747 0.781 0.790 0.818 0.663

With the naive method for the East Asian subgroup, the hazard ratio of 0.663

is statistically significant. If only two pre-defined subgroups are considered in the

subgroup selection, the 95% upper confidence limit on the hazard ratio is below

1.0, and the subgroup treatment effect is still significant. However, if eight or more

candidate subgroups are considered in the selection process, the 95% upper confidence

limit on the hazard ratio exceeds 1, implying that the selected subgroup effect is no

longer significant. If that is how the East Asian subgroup was identified, our analysis

would reach a different conclusion from that of Kubota et al. (2014). Ignoring how the

East Asian subgroup was identified would disallow us to evaluate statistical evidence

for the selected subgroup.
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3.4 Simulation Study

In this section, we use Monte Carlo simulations to evaluate the finite-sample perfor-

mance of the proposed method in terms of bias and coverage probabilities. We focus

on censored outcomes where the treatment effect is measured by the log hazard ratio

from the proportional hazard model. In Sections 3.4.1 and 3.4.2, we evaluate the

empirical coverage and bias for the predefined subgroups and the post-hoc identified

subgroups, respectively. In Section 3.4.3, we compare the empirical coverage based

on the synthetic data generating model used in Section 3.3.

3.4.1 Proportional Hazard Model: Predefined Subgroups

To start with, we consider a simple setting consisting of two predefined subgroups.

Let D denote the treatment indicator, and random samples of size n = 400 are gen-

erated from the proportional hazard model with the hazard function λ(t) = λ0(t)eβiD

for subgroup i = 1, 2, respectively, where λ0(t) is the baseline hazard function of

Weibull(1, 1), and the parameters βi are to be specified. The subjects fall into one of

the two subgroups with probability 0.5, and the treatment assignment is also random

with equal probability. The response generated from the above model is then censored

randomly from the right by a censoring variable C, where log(C) follows the uniform

distribution on (-1.25, 1.00). The censoring rate is about 40% across different choices

of βi considered in this study.

In the comparison, we include what we call the naive method, with which we

simply select the better subgroup from β̂i and proceed as if the subgroup were selected

independent of the data. We also consider a simultaneous inference procedure for

comparison, where a lower bound for the selected subgroup effect is constructed based

on the max-type statistic, maxi∈[k]

√
n(β̂i − βi), as in Hothorn et al. (2008). For

convenience, the critical value for maxi∈[k]

√
n(β̂i−βi) is also estimated by bootstrap.

The performance of the naive method and simultaneous method versus the proposed
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method is affected by the distance between subgroup effects, |β1−β2|. In the study we

fix the effect of subgroup 1 by setting β1 = 0 while varying the value of β2 in [0, 0.5].

We use 2000 Monte Carlo samples in evaluating the empirical coverage and average

distance from the true value for the 95% lower confidence bound for the selected

subgroup effect, βs, defined in Section 3.1.1, as well as the empirical bias; see Tables

3.2, 3.3 and 3.4, respectively.

Table 3.2: Empirical coverage of the 95% lower confidence bound of βs: two prede-
fined subgroups. The standard errors for all the entries are around 0.005.
The columns correspond to different smoothing parameters r, and the col-
umn under “adaptive” corresponds to the data-dependent choice of r with
5 folds cross-validation (v = 5).

r = 1/3 1/12 1/21 1/30 naive adaptive simultaneous
β2 = 0 0.933 0.950 0.952 0.952 0.896 0.943 0.952
1/10 0.926 0.945 0.947 0.947 0.912 0.936 0.952
2/10 0.928 0.949 0.951 0.951 0.910 0.939 0.959
3/10 0.941 0.957 0.959 0.959 0.919 0.947 0.960
4/10 0.939 0.955 0.956 0.957 0.927 0.945 0.964
5/10 0.952 0.965 0.965 0.966 0.934 0.953 0.972

Table 3.3: Average distance between the 95% lower bound and βs: two predefined
subgroups.

r = 1/3 1/12 1/21 1/30 naive adaptive simultaneous
β2 = 0 0.248 0.265 0.266 0.266 0.213 0.258 0.269
1/10 0.252 0.269 0.270 0.270 0.218 0.262 0.274
2/10 0.267 0.285 0.288 0.287 0.233 0.277 0.295
3/10 0.290 0.311 0.313 0.314 0.258 0.302 0.323
4/10 0.301 0.326 0.328 0.329 0.273 0.313 0.344
5/10 0.310 0.339 0.342 0.343 0.286 0.323 0.350

The results show clearly that the naive method falls short in coverage probability,

especially when β2 − β1 is smaller than 1/5. Although the simultaneous method can

preserve the coverage probability, it is clearly on the conservative side, especially

when β2 − β1 is larger than 2/5. In comparison, the proposed method preserves the

coverage probability well across a broad range of choices for the tuning parameter
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Table 3.4: Empirical bias for βs: two predefined subgroups.

r = 1/3 1/12 1/21 1/30 naive adaptive
β2 = 0 0.028 0.008 0.007 0.006 0.107 0.018
1/10 0.024 0.002 0.000 -0.001 0.100 0.012
2/10 0.005 -0.021 -0.022 -0.023 0.077 -0.008
3/10 -0.003 -0.045 -0.036 -0.037 0.061 -0.018
4/10 -0.018 -0.063 -0.065 -0.066 0.029 -0.042
5/10 -0.027 -0.067 -0.070 -0.071 0.022 -0.040

r and at the same time remains efficient. The data-adaptive choice of the tuning

parameter can further improve the performance of the proposed method; it achieves

better coverage and at the same time the distance between the lower confidence limit

and the true value is much lower on average compared with that of the simultaneous

method. The bias-reduced estimate reduces the bias from around 0.1 for the naive

method to around 0.01 for the proposed method. A bias of 0.1 in this case means a

roughly 10% relative bias for the hazard ratio estimation.

Next, we evaluate the performance of the proposed method with different numbers

of candidate subgroups. Here, we assume there are k subgroups. Following the

model used earlier with only two subgroups, the survival time is generated by the

proportional hazard model, λ(t) = λ0(t)eβiD for i = 1, · · · , k, , and each subgroup

has the same sample size 200 and the total sample size is n = 200k. We use the same

treatment assignment and the same censoring scheme as before. To assess how much

the subgroup selection bias might be, we focus on the most challenging scenario with

β1 = · · · = βk = 0, and calculate the empirical coverage of the proposed method and

the naive method based on 2000 Monte Carlo repetitions. The results are summarized

in Table 3.5.

From Table 3.5, we see that the coverage probability for the naive method drops

below 0.60 when there are 10 subgroups, and the proposed method has slightly lower

coverage than the nominal level of 0.95. The results are somewhat more sensitive

to the choice of r when the number of subgroups increases, and smaller values of r
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Table 3.5: Empirical coverage of the 95% lower bound of βs: multiple predefined
subgroups (naive).

r=1/3 r=1/12 r=1/21 r=1/30 naive adaptive
k = 2 0.929 0.952 0.953 0.953 0.900 0.939

4 0.911 0.943 0.946 0.947 0.824 0.932
6 0.891 0.941 0.943 0.945 0.739 0.930
8 0.877 0.946 0.949 0.949 0.680 0.932
10 0.866 0.944 0.949 0.950 0.594 0.927
12 0.860 0.946 0.950 0.950 0.543 0.925

generally work better.

In the end, to assess how much the asymptotically sharp property of the proposed

method might help, we focus on the scenario where the best subgroup is singled out

and the subgroup selection bias is at the minimums with β1 = 1 and β2 = · · · = βk =

0, and calculate the empirical coverage of the proposed method and the simultaneous

method based on 2000 Monte Carlo repetitions. The results are summarized in Tables

3.6 and 3.7.

From Tables 3.6 and 3.7, we see that the coverage probability for the simultaneous

method is clearly on the conservative side and the coverage probability is above 0.99

when there are more than 6 subgroups. On the contrary, the proposed method is not

as conservative as the simultaneous method with a lower coverage probability and,

more importantly, much shorter average distance. The results are somewhat more

sensitive to the choice of r when the number of subgroups increases and a larger

tuning parameter aims for the nominal level better. With data-adaptive choice of

the tuning parameter, the proposed method preserves the coverage well and is more

efficient than the simultaneous method with a 15% shorter average distance when

there are more than 6 subgroups.
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Table 3.6: Empirical coverage of the 95% lower bound of βs: multiple predefined
subgroups (simultaneous).

r=1/3 r=1/12 r=1/21 r=1/30 simultaneous adaptive
k = 2 0.958 0.965 0.966 0.966 0.977 0.959

4 0.955 0.978 0.974 0.980 0.989 0.964
6 0.957 0.981 0.972 0.983 0.991 0.965
8 0.963 0.991 0.993 0.993 0.997 0.973
10 0.964 0.993 0.993 0.993 0.997 0.972

Table 3.7: Average distance between the 95% lower bound and βs: multiple prede-
fined subgroups (simultaneous).

r=1/3 r=1/12 r=1/21 r=1/30 simultaneous adaptive
k = 2 0.311 0.336 0.340 0.342 0.365 0.323

4 0.323 0.386 0.393 0.395 0.424 0.354
6 0.330 0.416 0.424 0.426 0.453 0.377
8 0.331 0.434 0.442 0.445 0.471 0.396
10 0.340 0.454 0.462 0.465 0.489 0.413

3.4.2 Proportional Hazard Model: Post-hoc Identified Case

To continue, we consider a post-hoc identified subgroup case based on the propor-

tional hazard model. Let D and W denote the treatment indicator and a continuous

variable used to define the post-hoc subgroups respectively, and random samples of

size n = 400 are generated from the proportional hazard model with the hazard

function λ0(t)eb(W )D, where λ0(t) is the hazard function of Weibull(1, 1), and the

function b(·) is to be specified. We assume that D and W are independent, D follows

Bernoulli(1, 0.5) and W follows Unif[0, 80]. The response generated from the above

model is then censored the same way as that in Section 3.4.1. The censoring rate is

about 40% across different choices of b(·) considered in this study. We consider the

following post-hoc identified subgroups: S(c) = {W ≤ c}, and let β(c) denote the

subgroup effect of S(c) for c ∈ [30, 60]. It is noteworthy that β(c) is usually not equal

to b(c) but, instead, β(c) can be viewed as a weighted average of b(·) in the range

[0, c].

In the comparison, we include what we call the naive method. As pointed out
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in Sections 3.1.4, the performance of the naive method versus the proposed method

is affected by whether the subgroups are homogeneous. To change the homogene-

ity for post-hoc identified subgroups, we consider a simple setting where b(w) =
β1 w > 30

β2 w ≤ 30

. In the study, we fix β1 = 0 while varing β2 in [0, 0.5]. When β2 = β1,

the post-hoc identified subgroups are homogeneous and the subgroup selection bias is

most severe. As β2 increases, the subgroups are farther away from homogeneity, and

the best subgroup, S(30), is more distinctive from the others. We use 2000 Monte

Carlo samples in evaluating the empirical coverage for the best selected subgroup

effect, γs; see Table. 3.8.

Table 3.8: Empirical coverage of the 95% lower bound of γs: post-hoc identified case.

r = 1/3 1/12 1/21 1/30 naive
β2 = 0 0.947 0.961 0.962 0.962 0.872
1/10 0.960 0.972 0.972 0.972 0.879
2/10 0.958 0.966 0.967 0.967 0.890
3/10 0.959 0.969 0.970 0.970 0.895
4/10 0.962 0.968 0.968 0.968 0.906
5/10 0.964 0.972 0.973 0.973 0.901

From Table 3.8, we see that for post-hoc identified subgroups, the naive method

falls short in coverage probability especially when β2 is small, and the proposed

method preserves the coverage probability much better across a broad range of choices

of the tuning parameter. In summary, the proposed method provides trustable infer-

ence for the post-hoc identified case in finite samples.

3.4.3 Synthetic Data Generating Model

We consider a simulation setting based on the synthetic data generating model

of MONET1 in Section 3.3. We focus on the scenario of eight subgroups by the

coding of the following varialbes: East Asian patient, stage IIIB, received radio-

therapy and male. We note that the negative log-hazard ratio of the best selected
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subgroup, βs, equals 0 because the synthetic data generating model assumes that the

subgroups are homogeneous with no treatment effect. In the comparison, we include

the naive method used in Section 3.4.1. To make it consistent to the convention used

in MONET1, we use 2000 Monte Carlo samples in evaluating the empirical coverage

of the 95% upper bound for the log hazard ratio of the best selected subgroup in

Table 3.9.

Table 3.9: Empirical coverage of the 95% upper bound of the log hazard ratio of the
best selected subgroup: the synthetic data model.

r 1/3 1/9 1/30 naive
empirical coverage 0.917 0.946 0.950 0.805

From Table 3.9, we see that the naive method is once again unable to provide

the desired confidence, but the proposed method does well. These results explain

the over-optimism in the original study of Kubota et al. (2014); the failure of the

subgroup pursuit in MONET1 trial is not just by chance, and the subgroup selection

bias deserves accommodation for in any serious subgroup analysis.

3.5 Discussion

In this chapter, we propose a debiased inference tool for the selected subgroup.

The proposed inference tool removes the subgroup selection bias and answers the

question of how good the selected subgroup really is in a scientific way regardless of

whether the candidate subgroups are pre-defined or identified post hoc from the data.

The proposed method can lead to a better decision on subgroup pursuit.

The debiased inference tool we propose is model-free in the sense that we do not

need to stick to a specific model to measure the treatment effect and the model we

use for defining and calculating the treatment effect can be even misspecified. Indeed,

the debiased inference tool only requires very mild assumptions as discussed in 3.1.3

and works for many treatment effect measures, including log-hazard ratio, log-odds
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ratio and sample mean, which makes the proposed inference tool widely applicable.

The other property to note for the debiased inference tool is that it is asymptot-

ically sharp in the sense that the proposed confidence interval for the best selected

subgroup achieves the exact asymptotic coverage probability as desired as the sample

size goes to infinite. In other words, the debiased inference tool will only remove the

bias as much as is needed. Although an adjustment in the subgroup selection bias is

usually needed as we search candidate subgroups to find the best subgroup, an over

adjustment can lead to an inference on the conservative side for the best selected

subgroup. For example, the confidence interval from simultaneous inference aims

for a simultaneous coverage for all the subgroups, and is therefore too conservative

and not asymptotically sharp for the subgroup we select as reviewed in Section 1.4.3

and demonstrated by simulation in Section 3.4.1. The asymptotically sharp property

helps protect the proposed inference tool against over adjustments to the subgroup

selection bias even as the number of candidate subgroups increases. This makes our

proposed inference tool not so conservative, and thus practically useful, even if all

possible candidate subgroups are taken into account.

It is worth noting that the proposed methods implicitly rely on the assumption

that the difference between any two subgroups can be viewed as a constant. In

applications to the studies where among some subgroups, the differences are very

small, it may not be sensible to treat the difference as a constant any more and we

need to investigate further how the proposed method adapts.

No matter the candidate subgroups are predefined or post-hoc identified, they

are clearly specified by the biomarker. However, in practice, the subgroup might

come from a clustering result and implicitly defined by the biomarker, which we call

the grouping subgroup; see Cai et al. (2010). How to generalize the statistical tools

developed here to the grouping subgroup is worth further investigation.
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3.6 Proofs of Theorems III.3-III.10

To simplify the notations, let Ti =
√
n(β̂i − βi), T ∗i =

√
n(β∗i − β̂i), dmax = βmax −

maxi/∈H βi and V = (V1, . . . , Vk) where Vi = β̂max− βmax− β̂i + βi. We start with two

lemmas that are essential for the proof of Theorem III.3.

Lemma III.16. Under Assumption III.1, we have

sup
x∈R
|P (
√
n(β̂max − βmax) ≤ x)− P (max

i∈H
Ti ≤ x)| → 0

as n→∞.

Proof. For any x ∈ R, we have

|P (
√
n(β̂max − βmax) ≤ x)− P (max

i∈H
Ti ≤ x)|

=|P (max
i∈H

Ti ≤ x, Tj ≤ x+
√
n(βmax − βj), j /∈ H)− P (max

i∈H
Ti ≤ x)|

≤1− P (max
i/∈H

Ti ≤ x+
√
ndmax).

(3.1)

For any x ∈ R, by Assumption III.1, we have 1− P (maxi/∈H Ti ≤ x +
√
ndmax)→ 0,

so

|P (
√
n(β̂max − βmax) ≤ x)− P (max

i∈H
Ti ≤ x)| → 0

as n→∞. The result follows naturally from the property of the cdf.

Lemma III.17. Under Assumptions III.1 and III.2, for 0 < r < 0.5, we have

sup
x∈R
|P ∗(
√
n(β∗max,modified − β̂max) ≤ x)− P (max

i∈H
Ti ≤ x)| → 0

as n→∞, in probability w.r.t. P .
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Proof. Similar to the proof in Lemma III.16, we have

|P ∗(
√
n(β∗max,modified − β̂max) ≤ x)− P ∗(T ∗i ≤ x+ nrVi, i ∈ H)|

=|P ∗(T ∗i ≤ x+ nrVi, i ∈ H,T ∗j ≤ x+ nrVj + nr(βmax − βj), j /∈ H)−

P ∗(T ∗i ≤ x+ nrVi, i ∈ H)|

≤1− P ∗(T ∗j ≤ x+ nrdmax − nr||V ||∞, j /∈ H).

(3.2)

When 0 < r < 0.5, by Assumptions III.1 and III.2, we have nr||V ||∞ → 0 in proba-

bility and

1− P ∗(T ∗j ≤ x+ nrdmax − nr||V ||∞, j /∈ H)→ 0

in probability. By Assumptions III.1 and III.2, we have

|P ∗(T ∗i ≤ x+ nrVi, i ∈ H)− P (max
i∈H

Ti ≤ x)| → 0

in probability so

|P ∗(
√
n(β∗max,modified − β̂max) ≤ x)− P (max

i∈H
Ti ≤ x)| → 0

in probability w.r.t P . The result is naturally followed by the property of cdf.

Proof of Theorem III.3: It follows from Lemmas III.16 and III.17. �

Proof of Corollary III.4: The result is true, because
√
n(βs − βmax)→ 0 in prob-

ability. Otherwise, by the definition of βs, the probability of the event, maxi/∈H β̂i ≥

maxi∈H β̂i, will not go to 0 asymptotically, which violates the consistency implied in

Assumption III.1. �
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Lemma III.18. Under Assumptions III.1 and III.5, we have

|E[
√
n(β̂max − βmax)]− E[max

i∈H
Ti]| → 0

as n→∞.

Proof. By Assumptions III.5, we have

E[max
i∈H

Ti]
2 ≤ E[max

i∈H
T 2
i ] ≤

∑
i∈H

ET 2
i <∞

and similarly E[maxi/∈H Ti]
2 <∞ uniformly in n, so

E[
√
n(β̂max − βmax)]2

=E[max
i∈H

Ti + max(0,max
j /∈H

√
n(β̂j −max

i∈H
β̂i))]

2

≤2{E[max
i∈H

Ti]
2 + E[max(0,max

j /∈H
(Tj −max

i∈H
Ti))]

2}

<∞

(3.3)

uniformly in n. By Assumption III.1 and Lemma III.16, the lemma follows from the

uniform integrability for
√
n(β̂max − βmax); i.e.

E|
√
n(β̂max − βmax)|I|√n(β̂max−βmax)|>c

≤[E[
√
n(β̂max − βmax)]2P (

√
n(β̂max − βmax) > c)]1/2 → 0

(3.4)

uniformly in n as c→∞.

Lemma III.19. Under Assumptions III.1, III.2, and III.6, and for any 0 < r < 0.5,

we have

|E∗[
√
n(β∗max,modified − β̂max)]− Emax

i∈H
Ti| → 0

as n→∞, in probability w.r.t P .
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Proof. Similar to the proof in Lemma III.18, by Assumption III.6, we have E∗[maxi∈H(T ∗i −

nrVi)]
2 <∞ and E∗[maxi/∈H(T ∗i −nrVi)]2 <∞ uniformly in n in probability, and then

E∗[
√
n(β∗max,modified − β̂max)]2

=E∗[max
i∈H

(T ∗i − nrVi) + max(0,max
j /∈H

(T ∗j − nr(βmax − βj)− nrVj −max
i∈H

(T ∗i − nrVi)))]2

≤2{E∗|max
i∈H

(T ∗i − nrVi)|2 + E∗|max(0,max
j /∈H

(T ∗j − nrVi −max
i∈H

(T ∗i − nrVi)))|2}

<∞

(3.5)

uniformly in n. The lemma then follows from Assumptions III.1, III.2 and Lemma

III.17 with the similar argument of uniform integrability in Lemma III.18 but for

√
n(β∗max,modified − β̂max).

Proof of Theorem III.7: By Lemmas III.18 and III.19, the result follows. �

Proof of Corollary III.9: It follows from Theorem III.7 and similar arguments of

the uniform integrability in Lemma III.19 but for E∗[
√
n(β∗max,modified − β̂max)]. �

Proof of Theorem III.10: By definition, we have

E[β̂max,reduced,1(r)− βi]2

=E[β̂max,reduced,1(r)− βmax]2 + (βmax − βi)2 + 2E[β̂max,reduced,1(r)− βmax](βmax − βi).

(3.6)

By Assumptions in Corollary III.9, we have E[β̂max,reduced,1(r) − βmax] = o(1), which

implies the desired result. �
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3.7 Proofs of Theorems III.14-III.15

To simplify the notation, we let K + d = {c : distance(c,K) ≤ d}
⋂
D, K + d denote

the complement of the set K+d, (K+d)−K = (K+d)
⋂
K, Gn(c) =

√
n(β̂(c)−β(c))

and G∗n(c) =
√
n(β∗(c) − β̂(c)). By Assumption III.13, we know γmax is achievable

and K is a compact set, so all the above notations are well defined.

Lemma III.20. Under Assumptions III.11 and III.13, for any x ∈ R,

lim
n→∞

P (
√
n(γ̂max − γmax) ≤ x) = P (sup

c∈K
G(c) ≤ x).

Proof. By definition, we have

P (
√
n(γ̂max − γmax) ≤ x)

=P (
√
n sup
c∈D

(β̂(c)− β(c) + β(c)− γmax) ≤ x)

=P (max( sup
c∈K+d

(Gn(c) +
√
n(β(c)− γmax)), sup

c∈K+d

(Gn(c) +
√
n(β(c)− γmax))) ≤ x).

(3.7)

From Assumption III.13,
√
n(β(c)− γmax) converges to negative infinity uniformly in

K + d, so by Assumption III.11, we have

sup
c∈K+d

(Gn(c) +
√
n(β(c)− γmax))→ −∞

in probability. Therefore, the right hand side of (3.7) is asymptotically equivalent to

P ( sup
c∈K+d

(Gn(c) +
√
n(β(c)− γmax)) ≤ x) (3.8)

for any given d. Since for c ∈ K, β(c) = γmax, and for c ∈ (K + d)−K, β(c) < γmax,
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we have the following inequality.

P ( sup
c∈K+d

Gn(c) ≤ x) ≤ (3.8) ≤ P (sup
c∈K

Gn(c) ≤ x). (3.9)

Let n→∞, under Assumption III.11, we have

P ( sup
c∈K+d

G(c) ≤ x) ≤ lim inf (3.8) ≤ lim sup (3.8) ≤ P (sup
c∈K

G(c) ≤ x). (3.10)

Let Ln(x) = P (
√
n(γ̂max − γmax) ≤ x) and recall that Ln(x) is asymptotically equiv-

alent to (3.8). Therefore, for any d > 0, we have

P ( sup
c∈K+d

G(c) ≤ x) ≤ lim inf Ln(x) ≤ lim supLn(x) ≤ P (sup
c∈K

G(c) ≤ x). (3.11)

Under Assumptions III.11 and III.13, limd→0 supc∈K+dG(c) = supc∈K G(c), in proba-

bility. Let d→ 0 in (3.11), we prove the desired result.

Lemma III.21. Under Assumptions III.11, III.12 and III.13 and 0 < r < 0.5, for

any x ∈ R,

lim
n→∞

P ∗(
√
n(γ∗max,modified − γ̂max) ≤ x) = P (sup

c∈K
G(c) ≤ x)

in probability.

Proof. With similar arguments as those in the proof of Lemma III.20, we have

P ∗(
√
n(γ∗max,modified − γ̂max) ≤ x)

=P ∗(sup
c∈D

(G∗n(c)− nr sup
d∈D

[β̂(d)− β̂(c)]) ≤ x)

=P ∗(
√
nmax( sup

c∈K+d
(G∗n(c)− nr sup

d∈D
(β̂(d)− β̂(c))), sup

c∈K+d

(G∗n(c)− nr sup
d∈D

(β̂(d)− β̂(c)))) ≤ x).

(3.12)
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Let L∗n(x) = P ∗(
√
n(γ∗max,modified − γ̂max) ≤ x). We notice that

nr sup
c∈K+d

sup
d∈D

(β̂(d)−β̂(c)) ≤ nr sup
c∈K+d

sup
d∈D

(β̂(d)−β(d)−(β̂(c)−β(c))−nr inf
c∈K+d

(γmax−β(c)).

(3.13)

From Assumptions III.11, III.12 and III.13, the 1st term of the right hand side of

(3.13) converges to 0 in probability and the second term converges to negative infinite.

Therefore, nr supd∈D[β̂(d)− β̂(c)]→ −∞ uniformly for c ∈ K + d in probability and

L∗n(x) is asymptotically equivalent to

P ∗
(

sup
c∈K+d

(G∗n(c)− nr sup
d∈D

[β̂(d)− β̂(c)]) ≤ x
)

in probability. Similar to (3.13), we show that

sup
c∈K+d

|nr sup
d∈D

[β̂(d)− β̂(c)]− nr(γmax − β(c))| → 0

in probability. Therefore, we have L∗n(x) is asymptotically equivalent to

P ∗
(

sup
c∈K+d

(G∗n(c)− nr(γmax − β(c))) ≤ x
)

in probability. Now, we have the following inequality in probability.

P ∗( sup
c∈K+d

G∗n(c) ≤ x) ≤ lim inf L∗n(x) ≤ lim supL∗n(x) ≤ P ∗(sup
c∈K

G∗n(c) ≤ x).

With similar arguments used in the proof of Lemma III.20 and Assumption III.13,

we prove the desired result.

Proof of Theorem III.14: It naturally follows from Lemmas III.20 and III.21 with

the property of the cdf. �
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With γmax = supc β(c), we let Sn = {c : β(c) ≥ γmax − log(n)/n} and γss = β(c̃),

where c̃ is a random variable as the value of c that achieves the minimum of β(c)

among all possible values of argmaxc∈Dβ̂(c). We further denote the smallest value

of c that achieves the maximum of β(c), γmax, by c0, which is a well-defined fixed

value from our continuous and compactness assumptions. Then, we have the follow-

ing lemma to characterize the distribution of γss.

Lemma III.22. Under Assumption III.11, we have

P (γmax − γss < log(n)/n)→ 1.

In other words, P (c̃ ∈ Sn)→ 1, as n→∞.

Proof. If c̃ /∈ Sn, then, β̂(c0) < supc∈S̄n β̂(c). Therefore, we have,

P (γmax − γss > log(n)/n)

≤P
(
β̂(c0) < sup

c∈S̄n
β̂(c)

)
=P
(√

n(β̂(c0)− γmax) <
√
n sup
c∈S̄n

(β̂(c)− β(c) + β(c)− γmax)
)

≤P
(√

n(β̂(c0)− γmax) <
√
n sup
c∈S̄n

(β̂(c)− β(c))−
√
n inf
c∈S̄n

(γmax − β(c))
)
.

(3.14)

Since
√
n supc∈S̄n(β̂(c)−β(c)) ≤

√
n supc∈D(β̂(c)−β(c)) and

√
n infc∈S̄n(γmax−β(c)) >

log(n), the right hand side of (3.14) converges to 0 and we finish the proof.

Lemma III.23. Under Assumption III.11 and for any fixed x, we have

P
(√

n sup
c∈Sn

(β̂(c)− β(c)) ≤ x
)
→ P (sup

c∈K
G(c) ≤ x).

Proof. Since S ⊆ Sn ⊆ S2, we can use similar techniques as those in the proof of

Lemma III.20.
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Lemma III.24. Let qα be the 1−α quantile of supc∈K G(c), then, under Assumption

III.11, we have

lim
n→∞

P
(√

n sup
c∈D

(β̂(c)− γss) ≤ qα

)
= 1− α.

Proof. From the definition, we know β̂(c̃) = supc∈D β̂(c) and γss = β(c̃) so we have

P
(√

n sup
c∈D

(β̂(c)− γss) ≤ qα

)
=P
(√

n[β̂(c̃)− β(c̃)](Ic̃∈Sn + Ic̃ /∈Sn) ≤ qα

)
=P
(√

n(β̂(c̃)− β(c̃)) ≤ qα, c̃ ∈ Sn
)

+ P
(√

n(β̂(c̃)− β(c̃)) ≤ qα, c̃ /∈ Sn
)
.

(3.15)

From Lemma III.22, we know the second part of the right hand side of (3.15) converges

to 0. Notice that

{
√
n(β̂(c̃)− β(c̃)) ≤ qα, c̃ ∈ Sn} ⊇ {

√
n sup
c∈Sn

((β̂(c)− β(c)) ≤ qα, c̃ ∈ Sn},

from Lemmas III.22 and III.23, we have

lim inf
n→∞

P
(√

n(β̂(c̃)− β(c̃)) ≤ qα, c̃ ∈ Sn
)

≥ lim inf
n→∞

P
(√

n sup
c∈Sn

((β̂(c)− β(c)) ≤ qα, c̃ ∈ Sn
)

= lim inf
n→∞

P
(√

n sup
c∈Sn

((β̂(c)− β(c)) ≤ qα

)
→ 1− α.

(3.16)

Since γss ≤ γmax = supc∈D β(c), from Lemma III.20, we have

lim sup
n→∞

P
(√

n sup
c∈D

(β̂(c)−γss) ≤ qα

)
≤ lim sup

n→∞
P
(√

n sup
c∈D

(β̂(c)−max
c∈D

β(c)) ≤ qα

)
= 1−α

Therefore, we complete the proof.

Proof of Theorem III.15: It naturally follows from Lemma III.24 and Theorem

III.14. �
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CHAPTER IV

Inference for High Dimensional Subgroup Analysis

By high dimensional subgroup analysis, we refer to the subgroup analysis in the

presence of (possibly) high dimensional confounders. In this chapter, we consider

a model-based approach for high dimensional subgroup analysis and generalize the

proposed debiased inference tool in Section 3.1 to analyze the best selected subgroup

in high dimensions.

4.1 High Dimensional Subgroup Analysis

The rise of high dimensional subgroup analysis is in response to the needs to

evaluate the subgroup effects in observational studies. Although randomized trials

remain the gold standard for subgroup analysis as discussed in Alosh et al. (2017), the

vast resources that randomized trials require to achieve good power and generability in

evaluating the subgroup effects is a big concern to drug developers, which could make

the subgroup analysis on randomized trials infeasible in practice; see Hébert et al.

(2002). Sometimes randomized trials may be even considered unethical due to the use

of placebo control, especially in pediatric studies; see McMahon and Dal Pan (2018).

In the era of big data, numerous observational data, such as electronic health records,

are available. An observational study is much less costly and has the advantages of

studying heterogeneity, and therefore may be an alternate to randomized trials for
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subgroup analysis.

In practice, several attempts on the subgroup analysis for observational stud-

ies have been made. For example, in the study of efficacy of insulin detemir on

patients with type II diabetes, Echtay et al. (2017) analyzed the efficacy within sub-

populations, such as Lebanese subgroup, based on an observational study. In general,

there is an increasing interest in subgroup analysis for observational studies due to

the potential benefits.

To conduct valid subgroup analysis on observational data, we must address the

confounder bias and model the subgroup effects appropriately. Unfortunately, most

existing literature in subgroup analysis is based on randomized trials and does not ac-

count for the (potential) confounder bias, and thus would be invalid for observational

studies as reviewed in Section 1.4 and Ondra et al. (2016). Some recent literature

in subgroup analysis considers the (potential) pre-treatment information and may

be generalized to subgroup analysis on observational data. For example, Imai et al.

(2013) adapted the Support Vector Machine classifier and proposed a framework to

model the subgroup effects in the presence of pre-treatment variables. The authors

also proposed a Lasso-type penalization method to estimate the subgroup effects and

to select the best subgroup. Some other methods potentially applicable for subgroup

analysis on observational data include Fan et al. (2017) and Wager and Athey (2018).

However, these methods mainly focus on subgroup identification or the inference of

a given subgroup. As far as we know, a careful treatment of subgroup analysis on

observational data, especially the inference on the selected subgroup, is still lacking

and we aim to bridge this gap.

In this chapter, we consider a simple linear model to model the subgroup effects in

the presence of (possibly) high dimensional confounders and to assist high dimensional

subgroup analysis. We propose a new statistical tool to select and infer the best

subgroup in a high dimensional setting. Our work aims to facilitate a better subgroup
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analysis on observational data and advance the use of real-world evidence in evaluating

the subgroup effects.

4.2 Inference with Subgroups in High Dimensions

In this section, we focus on a simple linear model and propose a bootstrap-based

asymptotically sharp inference for the best selected subgroup in the presence of (pos-

sibly) high dimensional confounders.

4.2.1 Problem Setting

Suppose we have a random sample of n observations, {(Yi, Zi, Xi)}ni=1, where Yi is

the response variable, Zi is a p1-dimensional vector of variables representing interac-

tions between the treatment variable and the p1 non-overlapping predefined subgroups

of interest, and Xi is a p2-dimensional vector of the potential confounders for the i-th

subject. It is clear that in the presence of high dimensional confounders, we focus

on the regime where p2 > n. As for the number of the predefined subgroups p1,

it is usually considered as a fixed constant as we did in Section 3.1, but in Section

4.2.3, we will show that our proposed method in this chapter is indeed not relying on

the assumption of fixed p1, which can help the proposed method more robust to the

relative size between p1 and n in practice.

To model the subgroup effects in the presence of (possibly) high dimensional

confounders, we generalize the model used in Wang et al. (2019) and consider the

following model.

Yi = Z ′iβ +X ′iγ + εi, i = 1, . . . , n, (4.1)

where ε = (εi, . . . , εn)′ are the error terms and the coefficients β = (β1, . . . , βp1)
′

capture the subgroup effects. More discussions about the validity of using (4.1) in

adjusting for the confounder bias and modelling the treatment effect can be found
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in Wang et al. (2019) and Belloni et al. (2014). In the presence of high dimensional

confounders where p = p1 + p2 > n, a frequently employed approach to estimate the

subgroup effects is the Lasso estimate proposed in Tibshirani (1996) and defined by:

(β̂′Lasso, γ̂
′
Lasso)′ = arg min

β∈Rp1 ,γ∈Rp2

{
1

n

n∑
i=1

(Yi − Z ′iβ −X ′iγ)2 + +λn(||β||1 + ||γ||1)

}
,

where β̂Lasso = (β̂1,Lasso, . . . , β̂p1,Lasso) are the Lasso estimates for the subgroup effects

and λn is a tuning parameter and may be selected by cross-validation in practice; see

Bühlmann and Van De Geer (2011).

Similar to Section 3.1 and Imai et al. (2013), we propose to select the subgroup

based on the Lasso estimate β̂Lasso. By letting [p1] = {1, . . . , p1}, we focus on the

inference of the following two quantities in high dimensional subgroup analysis:

1. the best selected subgroup effect : βs, where s = argmaxi∈[p1]β̂i,Lasso;

2. the best subgroup effect : βmax = maxi∈[p1] βi.

To facilitate the analysis later, we now introduce the notations that we will use

for the remainder of the section. Denote the maximum of a q-dimensional vecotr a

as amax = max{aj, j = 1, · · · q}, and a collection of integers from 1 to q as [q]. Let M

be a subset of [q] and M c = [q] −M . For a matrix W with q columns, let Wij be

the entry located in the i-th row and the j-th column, WM be the submatrix of W

consisting of the vectors in {Wj, j ∈M} and W−M be the submatrix of W consisting

of the vectors in {Wj, j ∈M c}, where Wj is the j-th column of W, for j = 1, · · · , q.

4.2.2 Proposed Method

One big challenge for the inference in high dimensional subgroup analysis is that

it suffers from not only the subgroup selection bias but also the bias induced by the

penalization routinely used in high dimensional estimation, which we call penalization
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bias. It is well known in the literature that any high dimensional statistical inference

must address the penalization bias appropriately and the Lasso estimate, β̂Lasso, is

biased for inference; see Van de Geer et al. (2014).

Several procedures have been proposed to address the penalization bias for Lasso

estimate and we will consider one procedure, desparsified Lasso in particular, based

on estimating the inverse covariance matrix to remove this bias in β̂Lasso. Let Y =

(Y1, . . . , Yn)′, Z = (Z1, . . . , Zn)′ and X = (X1, . . . , Xn)′, and we assume X, Y and Z

are all appropriately centered. Following Zhang and Zhang (2014), the desparsified

Lasso provides an estimate b̂ = (b̂1, . . . , b̂p1) of β as follows

b̂j = β̂j,Lasso +
V ′j (Y − Zβ̂Lasso −Xγ̂Lasso)

V ′jZj

, j = 1, . . . , p1, (4.2)

where the second part on the right hand side of the above equation is an estimate of

the penalization bias in Lasso, and

Vj = Zj − (Z,X)−j ζ̂j, j = 1, . . . , p1, (4.3)

with

ζ̂j = arg min
ζj∈Rp1+p2−1

{
||Zj − (Z,X)−jζj||22/n+ λX||ζj||1

}
, j = 1, . . . , p1,

where λX is a tuning parameter for the above Lasso procedure and may be differ-

ent from λn used in estimating β̂Lasso. Under certain regularity assumptions, the

desparsified Lasso estimate removes the penalization bias.

It is clear that while removing the penalization bias, the desparsified Lasso esti-

mate can not be used to infer the best selected subgroup directly due to the subgroup

selection bias. Here, to address the subgroup selection bias, we again apply the idea
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of bootstrapping the bias.

In high dimensions, several bootstrap procedures are available; see for example

Chernozhukov et al. (2013a) and Zhang and Cheng (2017). In particular, Dezeure

et al. (2017) proposed the following wild bootstrap procedure for the desparsified

Lasso estimate,

Y ∗i = Z ′iβ̂Lasso +X ′iγ̂Lasso + ε∗i , i = 1, . . . , n, (4.4)

where ε∗i = uiε̂i and ui is i.i.d and independent of the data with E[ui] = 0, E[u2
i ] = 1

and E[u4
i ] < ∞, and ε̂i = Y ∗i − Z ′iβ̂Lasso − X ′iγ̂Lasso, for i = 1, . . . , n. The bootstrap

desparsified Lasso b∗ = (b∗1, . . . , b
∗
p1

) is defined as the desparsified Lasso estimate for β

similar to (4.2) but based on the bootstrap sample {(Y ∗i , Zi, Xi)}ni=1. Dezeure et al.

(2017) showed that under some regularity conditions, the bootstrap procedure in (4.4)

is consistent in the sense that, conditional on the data, the asymptotic distribution

of
√
n(b∗ − β̂Lasso) is equivalent to the limiting distribution of the desparsified Lasso

estimate
√
n(b̂− β).

With the bootstrap procedure for the desparsified Lasso estimate at hand, we

extend the proposed debiased tool in Section 3.1 to infer the best selected subgroup

in our high dimensional subgroup analysis. We first propose to modify b∗max as follows,

b∗modified;max = max
j∈[p1]

(b∗j + cj(r)), (4.5)

where cj(r) = (1 − nr−0.5)(β̂max;Lasso − β̂j,Lasso) and r is a tuning parameter. With

the modified bootstrap estimate b∗modified;max, the proposed method proceeds with

Algorithm 5.
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Algorithm 5 One-sided confidence interval for βmax in high dimensions.

1: Set-up: For j ∈ [p1], calculate cj(r);
2: for l=1,. . . ,B do
3: Wild bootstrap: Generate the bootstrap sample {(Y ∗i , Zi, Xi)}ni=1 by (4.4);
4: Calculation: Calculate T ∗l = b∗modified;max− β̂max based on {(Y ∗i , Zi, Xi)}ni=1 by

(4.5);
5: end for
6: The α-level one-sided confidence interval for βmax is b̂max − quantile(T ∗l , α).

4.2.3 Asymptotic Validity

Even though in our high dimensional subgroup analysis, we focus on the scenario

where the number of the predefined subgroups p1 is often viewed as a constant, we

would like to justify Algorithm 5 without relying on the assumption of fixed p1. In

fact, when many subgroups are searched, p1 may be very close to n and may not be

viewed as a constant any more. In this case, any asymptotic validity assuming p1

is fixed may not be able to guarantee a good finite sample approximation. For this

reason, we would carry out a theoretical investigation while allowing p1 increases with

n.

To establish the asymptotic validity of the proposed inference in Algorithm 5, we

need to make the following assumptions which fall into two categories: (1) assump-

tions for (bootstrap) desparsified Lasso, Assumptions IV.1–IV.6, which are classical

and directly from Dezeure et al. (2017), and ensure the validity of the desparsified

lasso and the consistency of the wild bootstrap counterpart; (2) assumptions for the

tuning parameter, Assumptions IV.7–IV.8, which require the tuning parameter to be

neither too large (Assumption IV.7) nor too small (Assumption IV.8) to ensure that

the modified bootstrap can learn the bias correctly. Let H = {j ∈ [p1] : βj = βmax},

ds = βmax −maxj∈[p1]−H βj and β∗ and γ∗ represent the Lasso estimate on bootstrap

sample, the assumptions are given below.

Assumption IV.1. ||β̂Lasso − β||1 + ||γ̂Lasso − γ||1 = oP (1/
√

log(p) log(p1)).
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Assumption IV.2. λX ∝
√

log(p)/n, ||Vj||22/n ≥ LV , ||Vj||4 = o(||Vj||2), j ∈ [p1].

Assumption IV.3. ε1, . . . , εn independent, E[ε] = 0, E||ε||22/n = σ2
ε , E|εi|2 ≥ L,

E|εi|4 ≤ C.

Assumption IV.4. ||β∗ − β̂Lasso||1 + ||γ∗ − γ̂Lasso||1 = oP ∗(1/
√

log(p) log(p1)) in

probability.

Assumption IV.5. maxij |Xij| ≤ CX and maxij |Zij| ≤ CZ.

Assumption IV.6. maxj∈[p1] ||Vj||∞ ≤ K, log(p1) = o(n1/7).

Assumption IV.7. nr||β̂Lasso − β||∞ = oP (1/
√

log(p1)).

Assumption IV.8. lim infn→∞[nrds − log(p1)] =∞.

Here σε, LV , C, L, CX, CZ and K are positive constants uniformly bounded away

from 0 and ∞. We note that Assumption IV.6 allows p1 increases with n as we wish.

Relative to the classical assumptions, Assumptions IV.1–IV.6, used in Dezeure et al.

(2017), the extra assumptions, Assumptions IV.7–IV.8, are mild. If nr = O(
√

log(p)),

then, Assumption IV.1 directly implies Assumption IV.7. If ds is a constant with

regard to n, then, r ≥ 1/7 and Assumption IV.6 directly implies Assumption IV.8.

In the case of predefined subgroups when p1 is viewed as a fixed constant, 0 < r < 0.5

can easily satisfy Assumptions IV.7–IV.8. In fact, we only require a little more than

Assumptions IV.1–IV.6 to justify the inference on βmax in high dimensions. The

justification is as follows.

Theorem IV.9. Under Assumptions IV.1-IV.8, we have

sup
c
|P (
√
n(b̂max − βmax) ≤ c)− P ∗(

√
n(b∗modified;max − β̂max) ≤ c)| = oP (1)

Theorem IV.9 confirms the proposed one-sided confidence interval in Algorithm

5 is asymptotically sharp for βmax under the classic assumptions for the (bootstrap)
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desparsified Lasso and two mild assumptions for the tuning parameter. Any choice of

the tuning parameter satisfying Assumptions IV.7–IV.8 can guarantee the asymptotic

validity. However, we suggest to use the data-adaptive cross-validated method in

Section 3.1.5 to choose the tuning parameter in practice to improve the finite sample

performance. The following corollary confirms that the procedure also works for the

inference on the best selected subgroup in high dimensional subgroup analysis.

Corollary IV.10. Under Assumptions IV.1-IV.8, we have

sup
c
|P (
√
n(b̂max − βs) ≤ c)− P ∗(

√
n(b∗modified;max − β̂max) ≤ c)| = op(1).

Although we focus on the subgroup selected by the Lasso estimate in Corollary

IV.10, it is not essential. Our proposed method indeed works for the subgroup selected

by any subgroup selection method as long as it can select the best subgroup with high

probability in high dimensions, which many modern model selection tools can easily

achieve. In other words, Corollary IV.10 can be further generalized to other subgroup

selection methods in high dimensions, besides the Lasso-type selection we consider

here, and our proposed method is widely applicable in practice.

4.3 Discussion

In this chapter, we discuss an extension of the debiased inference tool to high

dimensional subgroup analysis. The proposed tool enables an appropriate modelling,

selection and inference on the best subgroup in high dimensions. We anticipate that

the proposed tool can help advance the use of real-world data in subgroup analysis.

One property to note is that the validity of the proposed method is not relying on

the assumption of fixed p1. Although we focus on the scenario where the subgroups

are predefined, it is clear that this property is useful and can help the proposed

method more robust to the relative size between p1 and n. Moreover, without relying
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on a fixed p1, the proposed method might be useful in other research areas, such as

the study of multiple treatments.

The proposed tool provides valid subgroup analysis even in the presence of high

dimensional confounders. Although the proposed tool relies on the linear model

assumption, the validity of the proposed method in high dimensions is not limited to

linear models because more flexible models, such as the semi-parametric model, can

be well approximated by the high dimensional linear model we assume here under

some regularity conditions as discussed in Wang et al. (2019).

One limitation of the proposed tool is that it requires the candidate subgroups

to be non-overlapping in order to make sure the modelling of the subgroup effects

is appropriate. Although non-overlapping subgroups are used in many applications,

overlapping subgroups also arise in practice, such as the male subgroup and East Asian

subgroup considered in the synthetic data study of the MONET1 trial as discussed

in Seciont 2.2. Further research is needed to address the high dimensional inference

question for overlapped subgroups.

4.4 Proof of Theorem IV.9

Following the proof in Dezeure et al. (2017), we let (ζ1, . . . , ζp1) denote a Gaussian

vector with Eζj = 0 and

Eζjζk =
E(ε ◦ Vj)T (ε ◦ Vk)/n

(EV T
j Zj/n)(EV T

k Zk/n)
,

where ◦ denote the elementwise multiplication for vectors. Let P ∗ denote the boot-

strap probability and Ti =
√
n(b̂i − βi) and T ∗i =

√
n(b∗i − β̂i,Lasso). We have the

following approximations.

78



Lemma IV.11. Under Assumptions IV.1-IV.6. For any subset M of [p1], we have

sup
c
|P (max

i∈M
Ti ≤ c)− P (max

i∈M
ζi ≤ c)| = o(1);

sup
c
|P ∗(max

i∈M
T ∗i ≤ c)− P (max

i∈M
ζi ≤ c)| = oP (1).

Proof. Let ξj =
V T
j ε/
√
n

V T
j Zj/n

and

∆j =
(
∑

k 6=j V
T
j Zk(βk − β̂k,Lasso) +

∑
k V

T
j Xk(γk − γ̂k,Lasso))/

√
n

V T
j Zj/n

,

we have

Tj =
√
n(b̂j − βj) = ξj + ∆j.

By Assumptions IV.2, IV.3 and IV.6 and with similar arguments as those in Propo-

sition 1 in Dezeure et al. (2017), we have

sup
c
|P (max

i∈M
ξi ≤ c)− P (max

i∈M
ζi ≤ c)| = o(1).

Moreover, the anti-concentration inequality asserts that if B =
o(1)

log1/2(2|M |)
,

sup
c
P (c ≤ max

i∈M
ζi ≤ c+B) = o(1).

By Assumptions IV.1 and IV.5, we have

||∆||∞ = OP (λX
√
n(||β̂Lasso − β||+ ||γ̂Lasso − γ||)) = oP (1/

√
log(p1)).

Therefore, we prove the first statement. For the bootstrap part, similar arguments

lead to the proof.
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Lemma IV.12. Under Assumptions IV.1-IV.8. We have

sup
c
|P (
√
n(max

i∈[p1]
b̂i −max

i∈[p1]
βi) ≤ c)− P (max

i∈H
Ti ≤ c)| = o(1);

sup
c
|P ∗(
√
n(max

i∈[p1]
b∗i −max

i∈[p1]
β̂i,Lasso) ≤ c)− P (max

i∈H
Ti ≤ c)| = oP (1).

Proof. (1) We have

P (
√
n(max

i∈[p1]
b̂i −max

i∈[p1]
βi) ≤ c) = P (max

i∈H
Ti ≤ c, Tj ≤ c+

√
n(max

i∈H
βi − βj), j /∈ H).

Given a fixed value c0, we have the following bound:

sup
c>c0

|P (
√
n(max

i∈[p1]
b̂i−max

i∈[p1]
βi) ≤ c)−P (max

i∈H
Ti ≤ c)| ≤ 1−P ( max

j∈[p1]−H
Tj ≤ c0 +

√
nds).

From Lemma IV.11, the latter is equivalent to

1− P ( max
j∈[p1]−H

ζi ≤ c0 +
√
nds) ≤ Cp1e

−ds
√
n/2,

where C is a constant independent of n. By Assumption IV.8, Cp1e
−ds
√
n/2 = o(1).

Notice that

lim sup
c→−∞

P (max
i∈[p1]

Ti ≤ c) = 0,

we prove the 1st statement.

(2) Let Ki = nr(maxj∈[p1] β̂j,Lasso−maxj∈[p1] βj−β̂i,Lasso+βi) and d̃i = nr(maxj∈[p1] βj−

βi), we have

P (
√
n(max

i∈[p1]
(b∗i+ci)−max

i∈[p1]
β̂i,Lasso) ≤ c) = P (T ∗i ≤ c+Ki, i ∈ H,T ∗j ≤ c+nrd̃j+Kj, j /∈ H).
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Similar to (1), we have

sup
c>c0

|P ∗(
√
n(max

i∈[p1]
(b∗i + ci)−max

i∈[p1]
β̂i,Lasso) ≤ c)− P ∗(T ∗i ≤ c+Ki, i ∈ H)|

≤1− P ∗(T ∗j ≤ c+ nrd̃i +Ki, i /∈ H).

(4.6)

The latter is bounded by

1− P ∗(T ∗j ≤ c+ nrds − ||K||∞, j /∈ H). (4.7)

By Assumption IV.7, we have ||K||∞ = oP (1/
√

log(p1)). From Lemma IV.11, we can

asymptotically bound (4.7) by

1− P ( max
j∈[p1]−H

Tj ≤ c0 + nrds),

which is o(1) by Assumption IV.8 and Lemma IV.11. Therefore, the right hand side

of (4.6) goes to 0 in probability. Since ||K||∞ = oP (1/ log(p1)), by Lemma IV.11, we

have

sup
c>c0

|P ∗(T ∗i ≤ c+Ki, i ∈ H)− P (max
i∈H

Ti ≤ c)| = oP (1).

With similar arguments in (1), we prove the 2nd statement.

Proof of Theorem IV.9: It is directly from Lemma IV.12.

Proof of Corollary IV.10: It is directly from Lemma IV.12 and Assumptions

IV.7-IV.8.
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CHAPTER V

Summary

When the best subgroup is selected from the data over a set of candidate sub-

groups, appropriate statistical analysis of the selected subgroup is needed to inform

a scientific decision on subgroup pursuit. However, naive estimation and inference

for the treatment effect on the selected subgroup that ignores the selection process

leads to bias and over-optimism. The salient point of this dissertation is that ap-

propriate statistical analysis of the selected subgroup must take the selection process

into account. We propose two new statistical tools, which account for the selectiong

procedure and appropriately address subgroup selection bias, to analyze the selected

subgroup and help a better-informed decision on subgroup pursuit.

The first tool measures the risk of the pursuit of the selected subgroup from

a reasonable angle and can be easily generalized to the situations where there are

multiple overlapping subgroups. The risk index is model-free, easy-to-compute, and

transparent. The behavior of the risk index is well understood and the index can be

used as a quantitative screening tool in subgroup pursuit.

The second tool provides a debiased inference for the selected subgroup. The pro-

posed tools are model-free, easy to implement, and the resulting statistical analysis

is asymptotically sharp, regardless of whether the subgroups are pre-defined or iden-

tified post hoc from the data. An extension to observational studies is also discussed,
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which can help promote the use of real-world evidence in subgroup analysis.

Risk quantification and de-biased inference for the best selected subgroup is critical

to inform better decision making and help reduce false discoveries in subgroup pursuit

in clinical trials. Through a case study of the MONET1 trial and its failed follow-up

trial, we show that lessons can be learned for future subgroup analysis in clinical work.

Our analysis shows that if eight or more subgroups were considered as candidates in

the subgroup identification stage in the MONET1 study, we would not have found

statistical significance in the East Asian subgroup.

The proposed methods aim at statistical analysis; i.e. risk quantification and

debiased inference, for the best selected subgroup. In practice, other considerations,

such as domain knowledge and budge issue, might be taken into consideration in

subgroup identification. The proposed methods would then serve as a conservative

approach to those identified subgroups.

For now, the proposed methods aim for a setting where the difference between any

two subgroups can be viewed as a constant and the candidate subgroups are clearly

defined by biomarkers. However, in practice, more complicated scenarios, such as

the scenario where the difference between two subgroups can be in a root-n order

and the scenario where the candidate subgroups are from a clustering result, may be

considered in subgroup analysis. To help a better subgroup analysis in the future,

further investigations into these more challenge scenarios are needed.

Besides subgroup analysis, this dissertation may be of interests for statisticians in

other research areas. In our study, we notice subgroup selection bias is closely related

to the bias issue in post selection inference and the inflation of the family wise error

rate in multiple testing. We may transform some post selection inference problems and

multiple testing problems into the study of the correction of the subgroup selection

bias and provide alternative solutions from subgroup analysis views.

This dissertation may even have potential impacts beyond statistics and promote
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the use of subgroup analysis in the broad areas of data science. In this dissertation,

we have demonstrated the methods we develop can help more scientific decisions on

subgroup pursuit in clinical trials. We anticipate that the proposed methods can also

benefit the researchers in other disciplines where heterogeneity often arises, such as

sociology and finance, and lead to more important scientific discoveries.

In summary, we hope that this dissertation argues convincingly that valid sta-

tistical analysis of post hoc identified subgroups needs to be and can be performed

effectively with the new risk quantification and debiased inference tools and believe

the proposed methods can promote a better and broader use of subgroup analysis.
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APPENDIX A

Synthetic Data for the MONET1 Study

To generate the synthetic data of the MONET1 trial, we consider a simple setting

of n observations, (Yi, Di, δi, Zi), i = 1, · · · , n, where Yi is the (possibly censored)

survival time of the i-th subject, Di is the treatment indicator, δi is the censoring

indicator, and Zi = (Zi,1, . . . , Zi,K) is the subgroup indicator indicating whether the

subject belongs to any of the 2K subgroups we consider.

Following the MONET1 trial in Kubota et al. (2014), we let n = 1090 and K = 8

with the following subgroups: East Asian patient or not (Zi,1 = 1 or 0), received

radiotherapy or not (Zi,2 = 1 or 0), stage IIIB or not (Zi,3 = 1 or 0), Age greater

than 65 or not (Zi,4 = 1 or 0), ECOG PS equal to 0 or not (Zi,5 = 1 or 0), Ade-

nocarcinoma histology or not (Zi,6 = 1 or 0), male or female (Zi,7 = 1 or 0), and

never smoked or not (Zi,8 = 1 or 0). We independently let Zi,1 ∼ Bernoulli(1, pi), and

Di ∼ Bernoulli(1, p), where the parameters are estimated by the sample proportion

in Table 1 and Figure 1.A in Kubota et al. (2014) and given in Table A.1. We inde-

pendently generate the event time Ti by the distribution F and the censoring time

Ci by the distribution G as defined in Table A.2, both of which are estimated based

on Figure 1.A in Kubota et al. (2014) under the assumptions of no treatment effect.
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Finally, we obtain Yi = min(Ti, Ci) and δi = ITi≤Ci .

Table A.1: Proportion of the subgroups pi and the proportion p of subjects with
treatment.
p p1 p2 p3 p4 p5 p6 p7 p8

0.5 0.208 0.143 0.139 0.339 0.362 0.817 0.615 0.281

Table A.2: Distribution for the event time and the censoring time: F (x) = P (T = x)
and G(x) = P (C = x).

x 8 16 24 32 40 48 56 64 72 80
F 0.05 0.05 0.08 0.06 0.06 0.06 0.04 0.05 0.03 0.04
G 0 0 0 0 0 1/15 1/15 1/15 1/15 1/15

x 88 96 104 112 120 128 136 144 152 160
F 0.04 0.04 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.3
G 0 0 0 0 2/15 2/15 2/15 2/15 2/15 0

In the end, we focus on one synthetic dataset, which is similar to the real data in

the MONET1 trial as discussed in Section 2.2 and can be found in https://github.

com/xinzhoug/Data.
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