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ABSTRACT

This thesis examines the nature of Temkin’s canonical metrics on the sheaves

of differentials of Berkovich spaces, and discusses 3 applications thereof. First, we

show a comparison theorem between Temkin’s metric on the i-analytification of a

smooth variety over a trivially-valued field of characteristic zero, and a weight metric

defined in terms of log discrepancies. This result is the trivially-valued counterpart

to a comparison theorem of Temkin between his metric and the weight metric of

Mustat, ă–Nicaise in the discretely-valued setting.

These weight metrics are used to define an essential skeleton of a pair over a

trivially-valued field; this is done following the approach of Brown–Mazzon in the

discretely-valued case, and we show a compatibility result between the essential skele-

tons of pairs in the two settings. Furthermore, a careful study of the closures of these

skeletons enables us to realize the toric skeleton of a toric variety as an essential skele-

ton.

On the Berkovich unit disc, Temkin’s metric acts a substitute for the Lebesgue

measure. Adopting this philosophy, we show a non-Archimedean version of the

Ohsawa–Takegoshi extension theorem. As a corollary, we deduce a non-Archimedean

analogue of Demailly’s regularization theorem for quasisubharmonic functions on the

Berkovich disc.

Finally, we employ Temkin’s metric and essential skeletons to compute the dual

boundary complexes of two classes of character varieties that arise in non-abelian

viii



Hodge theory. These two results provide the first non-trivial evidence for the geo-

metric P = W conjecture of Katzarkov–Noll–Pandit–Simpson in the compact case.

For each result, we give two proofs: one using non-Archimedean geometry over a

trivially-valued field, and another in the discretely-valued setting. The latter pro-

duces degenerations of compact hyper-Kähler manifolds, which are of independent

interest.
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CHAPTER I

Introduction

Analytic methods in algebraic geometry are powerful tools. From Hodge theory

and Kodaira’s vanishing theorem to the deformation invariance of plurigenera, there

are many theorems in algebraic geometry whose proofs either necessitate or are

facilitated by input from complex-analytic geometry. However, when working over a

non-Archimedean field, the story is more mysterious. The theory of non-Archimedean

analytic geometry was born in the early 1960’s when Tate initiated in [Tat71] the

study of rigid-analytic spaces over a (nontrivially-valued) non-Archimedean field in

order to generalize the uniformization of elliptic curves to the p-adic setting. In the

decades since Tate’s foundational work, the field of non-Archimedean geometry has

grown rapidly and several approaches have appeared in the literature. We will be

interested in the theory of Berkovich spaces.

In [Ber90, Ber93], Berkovich introduced his theory of analytic spaces over a non-

Archimedean field. Berkovich builds on Tate’s rigid spaces and it generalizes it

in several directions; in particular, Berkovich’s theory allows the base field to be

trivially-valued. Berkovich spaces provide a more honest geometric alternative to

rigid spaces, which enables the use of methods similar to those in complex geometry.

Furthermore, Berkovich spaces are close cousins of Huber’s adic spaces (see [Hub93,

1
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Hub94]) and of Raynaud’s formal models (see [Bos14]), and they are intimately

related to the objects of tropical geometry (see [Pay09]).

The theory of Berkovich spaces enjoys a deep connection with algebraic geom-

etry: to a variety X over a complete non-Archimedean field k, we can associate

a Berkovich space Xan, called its Berkovich analytification. The analytification

Xan is a non-Archimedean analogue of the classical analytification of a complex

variety, as in [Ser56]. The underlying topological space of Xan consists of valua-

tions on the residue fields of X that extend the given valuation on the base field k.

When k is trivially-valued, the Berkovich analytification contains a compact subspace

Xi ⊆ Xan of particular interest, called the i-analytification of X. First introduced

by Thuillier in [Thu07], Xi is a compactification of the space of rank-1 valuations

on the function field of X that restrict to the trivial valuation on the base field k

and admit a centre on X.

In recent years, the theory of Berkovich spaces has found many applications across

algebraic geometry and other branches of mathematics. Several significant examples

are given below:

- Harris and Taylor’s proof in [HT01] of the local Langlands conjecture (for GLn

over a discretely-valued field of characteristic zero) crucially uses the étale co-

homology theory developed for Berkovich spaces in [Ber93].

- In [Ber94, Ber96a], Berkovich proves a conjecture of Deligne, which states that

the vanishing cycles sheaves of a scheme over a discrete valuation ring depend

only on the formal completion along the special fibre.

- Berkovich spaces serve as ideal topological spaces on which to study complex

and p-adic dynamics, e.g. as in [BR10].
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- Following the work of Kontsevich–Soibelman in [KS06], Berkovich’s theory has

enabled progress towards the construction of the SYZ fibration in mirror sym-

metry, and the construction of the non-Archimedean SYZ fibration as in [Yu16,

NXY18].

- In [Thu07], Thuillier used i-analytifications to prove that the homotopy type

of the dual complex of the boundary divisor of a compactification of a smooth

variety over a perfect field is independent of the choice of compactification.

- There are non-Archimedean analogues of complex-geometric theorems that have

been developed for Berkovich spaces, most notably the solution by Boucksom–

Favre–Jonsson of a non-Archimedean Calabi–Yau problem in [BFJ15].

- In [ACP15], Abramovich–Caporaso–Payne realize the tropical moduli space

of curves as a combinatorial subspace of the Berkovich analytification of the

Deligne–Mumford compactificationMg,n ofMg,n, which has revolutionized the

study of tropical moduli.

- Berkovich’s framework can be used to construct a non-Archimedean limit of a

degeneration of complex-analytic spaces, which can be then used to understand

the limiting behaviour of the degeneration, as in [Ber09, Jon16, Fav16, BJ17].

- Berkovich spaces are used to give criteria for K-stability and the existence

of Kähler–Einstein metrics on Fano manifolds, as in the proof of Boucksom–

Berman–Jonsson of the Yau–Tian–Donaldson conjecture in [BBJ15].

In [Tem16], Temkin introduces canonical metrics on the sheaves of differentials

of a Berkovich space, building on the work of [KS06, MN15]. In complex geome-

try, canonical metrics and canonical volume forms are ubiquitous and their utility is
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abundant; one can ask whether the same holds true in the non-Archimedean setting.

To this end, we examine in this thesis the nature of Temkin’s metric and discuss

3 applications thereof: one to the study of skeletons of Berkovich analytifications,

another to potential theory on Berkovich curves, and finally one to the geometric

P = W conjecture from non-abelian Hodge theory. This work appears in the pa-

pers [Ste18, MMS18].

1.1 Temkin’s canonical metric and weight functions

For a smooth variety X over a discretely-valued field k of residue characteristic

zero, Mustat, ă and Nicaise introduce in [MN15] the notion of a weight function on Xan

associated to a rational pluricanonical form on X. More precisely, for a section η of

ω⊗mX/k defined on a Zariski-open subset U ⊆ X, they construct a lower-semicontinuous

function

wtη : Uan → R ∪ {±∞}

on the Berkovich analytification Uan of U . When η is a global section of ω⊗mX/k, the

weight function wtη is defined in terms of the geometry of models of X over the

valuation ring k◦ of k, and hence wtη enjoys many connections with the relative

minimal model program (see [NX16, BN16]). The weight functions were originally

introduced by Kontsevich and Soibelman in [KS06] in the case when k = C((t)) and

X is a maximally-degenerate K3 surface in order to build the mirror family of X

using the SYZ fibration. Moreover, the definition was recently extended to the case

of pairs in [BM17] in order to study degenerations of hyper-Kähler varieties.

The weight function wtη can be thought of as a way to measure the “length” of

the form η at each point of Xan. In this way, the collection of all weight functions on

Xan gives rise to a weight metric on the analytification (ω⊗mX/k)
an of the pluricanonical
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bundle ω⊗mX/k on X. In [Tem16], Temkin describes how the weight metric can be

realized as a special case of a general construction in Berkovich geometry: for any

non-Archimedean field k and any Berkovich space Z over k, Temkin constructs a

canonical metric on the pluricanonical sheaves of Z, which we call Temkin’s metric.

Temkin shows in [Tem16, Theorem 8.3.3] that the canonical metric and the weight

metric coincide when k is a discretely-valued field of residue characteristic zero and

Z = Xan for a smooth variety X over k. A thorough discussion of Temkin’s work

appears in §3.3.

Now, let k be a trivially-valued field of characteristic zero, X a normal variety

over k, KX a canonical divisor on X, D a Weil divisor on X, and m ∈ Z>0 be

such that m(KX + D) is Cartier. In §3.2.2, we construct a weight function on the

i-analytification Xi associated to a rational pluricanonical form on X. As in the

discretely-valued setting, these weight functions can be bundled into a weight metric

on the i-analytification OX(m(KX +D))i of the logarithmic pluricanonical bundle.

The weight functions on Xi are built in terms of log discrepancy functions. The

log discrepancy of a prime divisor over X is a ubiquitous notion in birational geom-

etry, and it can be used to define a log discrepancy function on the set of divisorial

valuations on X. Further, it extends to a lower-semicontinuous function on spaces of

(semi)valuations by [JM12, BdFFU15, BJ18a]. Now, for each rational pluricanonical

form η with poles along D, the weight function wtη is, up to scaling, defined to be the

log discrepancy of the pair (X,Dred−div(η)); see §3.2.1 for a more precise definition.

The definition of the weight metric in the trivially-valued setting is justified by

the following comparison theorem in the case when X is smooth and the boundary

D is empty.

Theorem A. Let k be a trivially-valued field of characteristic zero and let X be a
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smooth variety over k. Then, Temkin’s metric on (ω⊗mX/k)
i coincides with the weight

metric.

Theorem A is the trivially-valued analogue of Temkin’s comparison theorem in

the discretely-valued setting, and the proof of Theorem A proceeds by reducing to

the discretely-valued case. The strategy of proof can be summarized in 3 steps:

- We show that both metrics in Theorem A are determined on the subspace Xdiv

of divisorial points in Xi (see Theorem 3.3.3.3).

- For x ∈ Xdiv and a suitable discretely-valued extension k′ of k, the fibre of the

ground field extension map Xan
k′ → Xan above x contains a distinguished point

x′. We give an explicit description of x′ in terms of models of Xk′ over the

valuation ring (k′)◦ of k′ (see §3.4.2).

- Finally, we relate Temkin’s metric at x and x′, and the weight metric at x and

x′, and appeal to Temkin’s comparison theorem in the discretely-valued setting

(see Lemma 3.3.2.1 and Proposition 3.4.3.1).

The major use of Theorem A is that it provide a computable expression for

Temkin’s metric on Xi, i.e. one in terms of the birational geometry of X. This

enables the use of Temkin’s metric in several applications. Furthermore, Theorem A

shows that the log discrepancy function is the “correct” extension of its values on

divisorial valuations, since it coincides with Temkin’s metric, which is a canonically-

defined object.

1.2 Dual complexes and essential skeletons

Degeneration and compactification of algebraic varieties are powerful tools in al-

gebraic geometry: they recast the study of non-proper varieties into that of proper



7

varieties and their invariants. General theorems on resolutions of singularities ensure

the existence of simple normal crossing (snc) degenerations and compactifications in

characteristic zero: this means that the central fibre of the degeneration or the

boundary of the compactification are divisors with smooth irreducible components,

which intersect one another transversally.

To such a divisor D on a variety X, we associate a regular ∆-complex D(D),

namely the dual intersection complex of D. The dual complex encodes the combina-

torial structure of the connected components of intersections of irreducible compo-

nents of D, called the strata of D, and it captures aspects of the geometry of X \D.

For instance, it follows from Deligne [Del71] that there exists a correspondence be-

tween the reduced rational homology of D(D) and the top dimensional pieces of the

weight filtration on the cohomology of X \ D. See also [Ber00, Theorem 1.1.(c)]

and [Pay13, Theorem 4.4].

Many conjectures in the theory of singularities, tropical geometry, mirror sym-

metry, or even non-abelian Hodge theory involve understanding the homotopy or

homeomorphism type of particular dual complexes. This can often be done by re-

framing the study of dual complexes in terms of non-Archimedean geometry. This

is done by constructing a Berkovich space Z over a non-Archimedean field k and

a polyhedral subspace S ⊆ Z, called a skeleton of Z, such that the following two

conditions hold:

- S is homeomorphic to the dual complex in question;

- Z admits a strong deformation retraction onto S.

The homotopy or homeomorphism type of the skeleton S, and hence of the dual

complex, can then be computed using non-Archimedean techniques.
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In general, there is not a unique skeleton of a Berkovich space; rather, skeletons

usually arise from the choice of some auxiliary data. Nonetheless, in certain set-

tings one can construct a canonical skeleton of a Berkovich space, called an essential

skeleton. This originates in the work of Mustat, ă–Nicaise [MN15] and Kontsevich–

Soibelman [KS06]. In the next sections, we discuss further contributions to this

theory.

1.2.1 Skeletons over a discretely-valued field

For a smooth, proper variety X over a discretely-valued field k, a common source

of skeletons of Xan are the dual complexes of suitable pairs on models of X over the

valuation ring k◦ of k. More precisely, let X be a degeneration of X over k◦ such

that the special fibre X0 is an snc divisor on X ; in this case, we say X is an snc

model of X. Such models always exist when the residue characteristic of k is zero.

The order of vanishing along a component of X0 defines a valuation on the function

field of X, and hence a point of Xan. In this way, the vertices of the dual complex of

X0 are embedded in Xan, and the results of [Ber99, MN15] show that this extends

to an embedding of the entire dual complex into Xan; the image, denoted Sk(X ), is

called the skeleton of X . More generally, we can associate skeletons to log-regular

models of X over k◦, or enhance the special fibre of X with horizontal components,

as in [BM17, GRW16]. In both cases, the skeleton is a polyhedral subspace of the

Berkovich analytification.

The aforementioned skeletons of Xan all depend on some additional input, and

they are not intrinsic to the variety X in question. Motivated to construct a canonical

skeleton of Xan, Mustat, ă and Nicaise introduce in [MN15] the notion of the essential

skeleton of X when k has residue characteristic zero. For each global pluricanonical



9

form η ∈ H0(X,ω⊗mX/k), they consider the minimality locus Sk(X, η) ⊆ Xan of the

weight function wtη, called the Kontsevich–Soibelman skeleton of (X, η). The union

Skess(X) :=
⋃
η

Sk(X, η)

is the essential skeleton of X. The essential skeleton Skess(X) is a union of faces in

the skeleton Sk(X ) of any snc model X of X, and, when X is a curve of genus

greater than zero, Skess(X) coincides with the skeleton of the minimal snc model of

X. In general, X may not admit a minimal snc model; however, if X is projective

and ωX/k is semiample, then X admits a good minimal dlt model Xdlt, and in fact

Skess(X) = Sk(Xdlt).

This is a result of Nicaise–Xu (see [NX16, Theorem 3.3.3]), and the existence of such

a model depends on deep results from the minimal model program.

Furthermore, under these stronger hypotheses, the analytification Xan admits a

strong deformation retraction onto Skess(X); this is deduced by Nicaise–Xu from the

work of de Fernex–Kollár–Xu [dFKX17]. It is worth noting that, when X is Calabi–

Yau, this retraction is a non-Archimedean SYZ fibration; see [Yu16, NXY18].

1.2.2 Skeletons over a trivially-valued field

For a variety X over a trivially-valued field k, skeletons arise not from a choice

of model over the valuation ring but from a choice of divisor on X. To that end,

let D be an effective Weil divisor on X such that (X,D) is a log regular pair;

this is the case e.g. when X is smooth and D is snc, or when X is a toric variety

and D is the toric boundary. Following [BM17], we construct in §4.2 a skeleton

Sk(X,D) ⊆ Xi associated to D, which has the structure of a cone complex with the

vertex corresponding to the trivial valuation. In fact, Sk(X,D) coincides with the
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skeleton produced by Ulirsch in [Uli17, §6] and, when k is perfect, with Thuiller’s

skeleton associated to a toroidal embedding without self-intersection, as in [Thu07,

§3]. Furthermore, if the boundary D is snc, then Sk(X,D) coincides with the cone

complex of quasi-monomial valuations in D of [JM12], and it is homeomorphic to the

cone over the dual complex D(D). Thus, the language of skeletons in the trivially-

valued setting can provide a good formalism with which to study dual complexes.

Suppose now that the characteristic of k is zero. For a global pluricanonical

form η on X with poles along D, write wtη : Xi → R ∪ {±∞} for the associated

weight function, as in §1.1. The minimality locus Sk(X,D, η) of wtη is called the

Kontsevich–Soibelman skeleton of η, and the essential skeleton of the pair (X,D) is

the union

Skess(X,D) :=
⋃
η

Sk(X,D, η)

of the Kontsevich–Soibelman skeletons for η ∈ H0(X,OX(m(KX + D))) and for

m ∈ Z>0 sufficiently divisible; such a form η is said to be a (global) D-logarithmic

pluricanonical form. As in [BM17], we prove that the Kontsevich–Soibelman skele-

tons are each contained in Sk(X,D), and hence Skess(X,D) is as well. In other

words, the weight functions of (X,D) cut out essential faces from Sk(X,D), and the

union of these faces defines the essential skeleton Skess(X,D).

In §4.2.8, we establish a compatibility result between the weight functions in

the trivially-valued and discretely-valued settings, similar to one used in the proof

of Theorem A. As a consequence, we obtain that the essential skeleton in the former

setting is a cone over the essential skeleton in the latter, as stated below. This result

is also illustrated in Fig. 4.1 in the special case of a semistable degeneration of a Tate

elliptic curve.

Theorem B. Let k be a trivially-valued field of characteristic zero. Let X be a
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degeneration over the ring of formal power series k[[$]] that arises as the base change

of X → C along the map Spec(ÔC,0)→ C, where C is the germ of a smooth k-curve,

0 ∈ C(k), and ÔC,0 ' k[[$]]. Suppose that the generic fibre Xk(($)) of X is smooth,

and X is a normal, flat, projective C-scheme such that the special fibre X0 is reduced.

If (X,X0) is log canonical and KX +X0 is semiample, then

Skess(Xk(($))) = Skess(X,X0) ∩X disc,

where X disc ⊆ Xi is the k(($))-analytic generic fibre of X .

The assumption in Theorem B that the degeneration X is defined over a k-

curve C is a technical condition, and we expect the result to hold without it (on

the other hand, the log canonicity assumption is necessary; see Remark 4.2.8.4).

This assumption is needed in the proof of Theorem B in order to apply the results

of [NX16]; there, it is used to apply the results of the minimal model program to

schemes over rings of formal power series.

More generally, Temkin’s metric can be used to define the essential skeleton of

a (quasi-smooth) Berkovich space over any non-Archimedean field. This approach

is adopted in [HN17, Proposition 4.3.2] and [KY19] to realize intrinsically-defined

skeletons as essential skeletons. For example, Halle and Nicaise show that the in-

trinsic skeleton of an abelian variety (constructed in [Ber90, §6.5] by Berkovich in

terms of the non-Archimedean uniformization) coincides with the essential skeleton

over any field. By Theorem A, this definition of the essential skeleton in terms of

Temkin’s metric coincides with the one above, when both are defined. Moreover, The-

orem A provides a concrete and computable description of the essential skeleton over

a trivially-valued field of characteristic zero.

As a result of these constructions, there is a unified framework of studying canoni-
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cal skeletons of Berkovich analytifications in both the trivially-valued and discretely-

valued settings. In §6.1, we will describe how these tools are applied to compute two

classes of dual complexes arising in non-abelian Hodge theory.

1.2.3 The closure of Kontsevich–Soibelman skeletons

The methods discussed in §1.2.1 and §1.2.2 allow us to discuss the weight func-

tions, the Kontsevich–Soibelman skeletons, and the essential skeletons simultane-

ously in the trivially-valued and discretely-valued settings. In this section, this uni-

form approach is adopted to describe the closures of these skeletons, and to realize

an intrinsically-defined skeleton of a toric variety as an essential skeleton.

Let k be a non-Archimedean field that is either trivially or discretely-valued, and

let (X,D) be a log-regular pair over k. For a log-regular model (X , DX ) of (X,D)

over the valuation ring of k (which we understand as (X , DX ) = (X,D) when k

is trivially-valued), we can explicitly describe the closure of the associated skeleton

Sk(X , DX ) in Xan. More precisely, we show in Proposition 4.3.1.5 that the closure

of Sk(X , DX ) is a disjoint union of skeletons associated to the strata of DX ; this

extends [Thu07, Proposition 3.17].

Suppose that k has residue characteristic zero. If D is snc with irreducible com-

ponents {Di} and η is a regular D-logarithmic pluricanonical form on X, then the

above decomposition induces one on the closure of the Kontsevich–Soibelman skele-

ton Sk(X,D, η). For each stratum W of D, we write ResW (η) for the residue form

of η along W , and (W,
∑

j : W 6⊆Dj Dj|W ) for the induced log-regular structure on W

(see Proposition 4.3.1.1 for a precise definition). In the result below, we describe the

closure of Sk(X,D, η) in terms of the Kontsevich–Soibelman skeletons of the residue

forms ResW (η) of η along the various strata W of D.
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Theorem C. Let D be an snc divisor on X and η be a non-zero regular D-logarithmic

pluricanonical form on X. Then, the closure of the Kontsevich–Soibelman skeleton

Sk(X,D, η) in Xan lies in the disjoint union of the Kontsevich–Soibelman skeletons

⊔
W

Sk
(
W,

∑
j : W 6⊆Dj

Dj|W ,ResW (η)
)
,

where the index runs over all strata W of D.

In addition, we show that the inclusion in Theorem C is an equality when k is

trivially-valued (see Proposition 4.3.3.2), while it is false in the discretely-valued

setting (see Example 4.3.3.3).

There are instances of similar decompositions that occur in the literature. For

example, if X is the toric variety over k associated to a rational polyhedral fan Σ,

then Σ admits a natural compactification, which is endowed with a decomposition

indexed by the strata of the toric boundary divisor; see [Pay09, §3] and [Rab12,

Proposition 3.4]. In [Thu07, §2], this compactification of the support of Σ is embed-

ded into Xan and the image is called the toric skeleton of X. Building on the ideas

of Berkovich in [Ber90, §5.1], Thuillier shows that Xan admits a strong deformation

retraction onto the toric skeleton. The toric skeleton is the principal connection

between non-Archimedean and tropical geometry; for example, Thuillier’s strong

deformation retraction is precisely the tropicalization map of X.

The toric skeleton only depends on the choice of open torus T in X, which de-

termines a toric boundary divisor D = X\T on X. We show that the toric skeleton

can be realized in terms of the essential skeleton of the pair (X,D).

Theorem D. Let X be a normal toric variety over k, and D be the toric bound-

ary divisor on X. Then, the closure of Skess(X,D) in Xan coincides with the toric

skeleton.
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The proof of Theorem D proceeds by decomposing the skeletons into disjoint

unions of subspaces indexed by the strata of D, and then explicitly comparing these

pieces. See §4.3.2 for further details.

1.3 A non-Archimedean Ohsawa–Takegoshi extension theorem

The Ohsawa–Takegoshi theorem is one of the fundamental extensions theorems

in complex geometry. Originating in the foundational paper [OT87] of Ohsawa–

Takegoshi, many generalizations and improvements have since been shown; see [Man93,

Ber96b, Siu96, Dem00, MV07]. Its many applications include Siu’s much-celebrated

proof [Siu98] of the deformation invariance of plurigenera. In its simplest form, the

classical Ohsawa–Takegoshi theorem asserts the following: given a plurisubharmonic

function ϕ on the complex unit disc D, a point z ∈ D\{ϕ = −∞}, and a value

a ∈ C, there is a holomorphic function f on D such that f(z) = a and∫
D

|f(x)|2e−2ϕ(x)dλ ≤ π|f(z)|2e−2ϕ(z).

The constant π is optimal, as shown in [Bo13, Theorem 1]. There is also an adjoint

formulation of the result, which concerns the extension of a holomorphic 1-form

rather than of a holomorphic function.

Let k be a non-Archimedean field, k{T} be the Tate algebra in one variable over

k, X = Ek(1) be the Berkovich closed unit disc over k (see Fig. 5.1 for a picture

of X when k is algebraically closed). In order to state a non-Archimedean version

of the Ohsawa–Takegoshi extension theorem, we must discuss the non-Archimedean

analogues of (pluri)subharmonic functions and volume forms. The former is well-

understood: there is a class of quasisubharmonic functions on the Berkovich closed

unit disc, which are the non-Archimedean analogue of (pluri)subharmonic functions

on the complex unit disc. These are briefly discussed in §5.1.4, and a comprehensive
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treatment is given in [BR10, Jon15].

On the complex unit disc, the Lebesgue measure is a canonical volume form.

In general, volume forms on a complex manifold naturally correspond to smooth

metrics on the canonical bundle. Thus, a non-Archimedean analogue of the Lebesgue

measure on the disc is a canonical metric on the canonical bundle of X. This role

is played by Temkin’s metric: let ‖dT‖geom : X → R+ denote (the geometric version

of) Temkin’s metric applied to the global section dT of ωX/k. In fact, ‖dT‖ coincides

with the radius function on X; see §5.1.2 for more details. Set AX = − log ‖dT‖.

As suggested by the notation, AX coincides with the log discrepancy function on

X = A1,i
k when k is a trivially-valued field of characteristic zero.

For any quasisubharmonic function ϕ on X and analytic function f ∈ k{T},

consider the norm

‖f‖ϕ := sup
X\Z(ϕ)

|f |e−ϕ−AX

where Z(ϕ) := {ϕ = −∞}. The function ϕ + AX can be thought of as a metric on

the canonical bundle ωX/k, and the norm ‖f‖ϕ measures the length of the section

fdT in the metric ϕ+ AX .

Now, we can state a non-Archimedean version of the Ohsawa–Takegoshi extension

theorem on the Berkovich closed unit disc X = Ek(1).

Theorem E. Assume k is algebraically closed, trivially-valued, or is spherically

complete of residue characteristic zero. Let ϕ be a quasisubharmonic function on

X = Ek(1). For any z ∈ X, there exists a nonzero polynomial f ∈ k[T ] such that

lim
ε→0+

‖f‖(1+ε)ϕ ≤ |f(z)|e−ϕ(z).

If ϕ(z) = −∞, then we may find f such that limε→0+ ‖f‖(1+ε)ϕ < +∞. Moreover, if k

is algebraically closed and z is a rigid point of X, then for any value a ∈ H(z)∗ = k∗,
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we may find f such that f(z) = a.

The techniques involved in the proof of Theorem E rely crucially on the tree

structure of the Berkovich unit disc; in particular, the proof does not generalize to

higher dimensions. More precisely, the proof proceeds by first constructing a finite

subtree Γϕ of X that captures the worst of the singularities of ϕ, and we reduce to

proving Theorem E on the convex hull of Γϕ ∪ {z}. For each end of the tree Γϕ,

we construct a new quasisubharmonic function φ such that Γφ ( Γϕ and reduce to

proving Theorem E for φ. This inductively reduces Theorem E to a simple case,

which is solved directly. The proof of Theorem E appears in §5.2.

In Theorem E, an analytic function is measured using the sequence of norms

‖ · ‖(1+ε)ϕ as ε → 0+, instead of with the single norm ‖ · ‖ϕ (which is what one

might expect from the classical Ohsawa–Takegoshi theorem). Nonetheless, the for-

mer proves to give the correct analogy with the complex setting, as the following

example demonstrates. Consider the (pluri)subharmonic function ϕ = α log |z|, with

α > 0, on the complex unit disc D. It is elementary to verify that
∫
D
e−2ϕdλ < +∞

if and only if α < 1. Similarly, consider the quasisubharmonic function ϕ = α log |T |,

with α > 0, on the Berkovich unit disc X = Ek(1); then, limε→0+ ‖1‖(1+ε)ϕ < +∞ if

and only if α < 1.

1.3.1 A regularization theorem

As an application of Theorem E, we prove a regularization theorem for quasisub-

harmonic functions on the Berkovich unit disc. Certain results in this direction

already exist in the literature: in [Jon15, Theorem 2.10], it was shown that any qua-

sisubharmonic function on X is the decreasing limit of bounded quasisubharmonic

functions. A similar argument appears in [FRL06a, §4.6]. However, these construc-



17

tions use only the tree structure on the Berkovich unit disc (in particular, they do

not incorporate the analytic structure). It is therefore unlikely that these proofs can

be generalized to higher dimensions.

As inspiration, we use the much-celebrated regularization theorem of Demailly

for a plurisubharmonic function φ on a bounded pseudoconvex domain Ω ⊂ Cn.

For such a plurisubharmonic function φ on Ω and a positive integer m, we associate

the Hilbert space Hmφ of holomorphic functions on Ω satisfying the integrability

condition ∫
Ω

|f |2e−2mφdλ < +∞.

The Demailly approximation associated to Hmφ is a plurisubharmonic function φm

on Ω with analytic singularities, and it is given by

φm(z) = sup
f∈H ◦

mφ

1

m
log |f(z)|

for z ∈ Ω, where H ◦
mφ ⊆ Hmφ denotes the unit ball. Demailly uses the Ohsawa–

Takegoshi theorem to show that the sequence (φm)∞m=1 converges pointwise and in

L1
loc to φ. See [Dem92] for further details.

We adopt the same philosophy in the non-Archimedean setting: to a quasisubhar-

monic function ϕ on X, we associate the idealHϕ of the Tate algebra k{T} consisting

of those analytic functions f satisfying the finiteness condition

‖f‖+
ϕ := lim

ε→0+
sup

X\Z(ϕ)

|f |e−(1+ε)ϕ−AX < +∞

For each positive integer m, we define the non-Archimedean Demailly approximation

ϕm by the formula

ϕm :=
1

m

(
sup

f∈Hmϕ\{0}
log

|f |
‖f‖+

mϕ

)∗
,

where (−)∗ denotes the upper-semicontinuous regularization. We show that ϕm is a

quasisubharmonic function on X with analytic singularities.
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The ideal sheaf on X associated to Hϕ behaves like a non-Archimedean multi-

plier ideal associated to ϕ, and may be of independent interest. This idea is briefly

explored in §5.3.3, where we show that Hϕ generates the stalks of a locally-defined

multiplier ideal sheaf associated to ϕ. These multiplier ideals are used to show that

the ideals Hϕ satisfy a subadditivity property.

We prove the following non-Archimedean analogue of Demailly’s regularization

theorem.

Theorem F. Assume k is algebraically closed, trivially-valued, or is spherically com-

plete with residue characteristic zero. For a quasisubharmonic function ϕ on X with

ϕ ≤ 0, we have

ϕ ≤ ϕm ≤ ϕ+
AX
m
.

In particular, the sequence (ϕm)∞m=1 converges pointwise to ϕ on {AX < +∞} ⊆ X.

In Theorem F, the crucial inequality ϕm ≥ ϕ is a consequence of Theorem E;

see §5.3 for the proof. In principle, a statement similar to Theorem F ought to be

possible in higher dimensions, but this requires a higher-dimensional version of the

Ohsawa–Takegoshi theorem for polydiscs.

There has been much work done on the development of pluripotential theory

on Berkovich spaces. Quite generally, Chambert-Loir and Ducros have introduced

in [CD12] the notion of continuous plurisubharmonic functions. In addition, semi-

positive metrics on line bundles were studied in detail by [Zha95, Gub98], among

others. On analytic curves, potential theory is well-established, due to the work

of Thuillier [Thu05]; in the continuous case, this coincides with the potential the-

ory of Chambert-Loir and Ducros by a theorem of Wanner in [Wan18]. A (global)

regularization theorem similar to Theorem F is proven in [BFJ16, Theorem B] for
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analytifications of smooth, projective varieties over a discretely-valued field of residue

characteristic zero. A related discussion appears in [BFJ08, §5].

1.4 New evidence for the geometric P = W conjecture.

By studying the behaviour of the weight functions over C (equipped with the

trivial valuation), we determine the homeomorphism type of the dual complex of

pairs that arise from compactifications of character varieties. In particular, our com-

putation provides new evidence for the geometric P = W conjecture, formulated

by Katzarkov, Noll, Pandit, and Simpson in [KNPS15, Conjecture 1.1]; see alter-

natively [Sim16, Conjecture 11.1]. We give a brief overview of the content of this

conjecture in §6.1.

For a reductive algebraic group G, consider the G-character variety

MG := Hom(π1(X), G) �G

of G-representations of the topological fundamental group π1(X) of a proper, smooth

curve X over C; MG is also known as the Betti moduli space for the group G. When

X is a compact Riemann surface of genus one, MG can be realized as the GIT

quotient

{(A,B) ∈ G×G : AB = BA} �G,

where G acts by conjugation on each factor of G×G. For example, when G = GLn,

MGLn is isomorphic to the n-fold symmetric product (C∗×C∗)(n) of the torus C∗×C∗.

In this setting, the geometric P = W conjecture asserts that the dual bound-

ary complex D(∂MG) of MG has the homotopy type of a sphere (of a particular

dimension, depending on G). It is not a priori clear how one can make sense of

D(∂MG), since MG can be a singular affine variety, hence it may not admit an snc

compactification. Thus, the task is to find mildly singular compactifications to which
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a dual complex may still be attached. Our solution is to consider dlt compactifica-

tions (see §6.2.1 for a precise definition). Such compactifications have a well-defined

dual complex, whose homotopy type is independent of the choice of a specific dlt

compactification by [dFKX17]. Further, when the group G is either GLn or SLn,

the existence of dlt compactifications follows from the existence of dlt blow-ups by

Hacon (see [Fuj11, Theorem 10.4] and [KK10, Theorem 3.1]), and the fact that MG

has canonical and Q-factorial singularities (as shown in [BS16, Theorems 1.20 and

1.21]).

Among all possible dlt compactifications of MG, it is convenient to restrict to

special ones, namely the dlt log Calabi–Yau compactifications. This is an algebraic

condition which rigidifies the configuration of divisors at infinity, and in practice

it simplifies the description of the dual complex. The dual complex of any dlt log

Calabi–Yau compactification identifies a distinguished homeomorphism class in the

homotopy equivalence class of the dual complex of any dlt compactification. More-

over, it is expected that MG actually admits a log Calabi–Yau compactification; see

[Sim16]. These observations suggest the following strengthening of the homotopy

equivalence in the geometric P = W conjecture.

Conjecture 1.4.0.1. The Betti moduli space MG admits a dlt log Calabi–Yau com-

pactification (MG, ∂MG) and the associated dual complex D(∂MG) is homeomorphic

to a sphere.

In our final main results, we prove Conjecture 1.4.0.1 when G is GLn or SLn. These

results provide the first non-trivial evidence for the geometric P = W conjecture in

the compact case.

Theorem G. The dual boundary complex D(∂MGLn) of a dlt log Calabi–Yau com-
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pactification of MGLn has the homeomorphism type of S2n−1.

Theorem H. The dual boundary complex D(∂MSLn) of a dlt log Calabi–Yau com-

pactification of MSLn has the homeomorphism type of S2n−3.

We are not aware of an explicit dlt compactification of MG. To overcome this

issue, we recast the problem in terms of non-Archimedean geometry. In this ap-

proach, strata of the boundary divisor are thought as centres of suitable monomial

valuations (in the sense of Proposition 4.2.1.1). These valuations can be studied

abstractly, independent of a choice of compactification of MG and without concern

for the singularities that may arise in a compactification. In particular, this new

viewpoint allows us to reinterpret the dual complex D(∂MG) as the level set of a

suitable function inside a space of valuations, namely as the minimality locus of a

log discrepancy function. More precisely, we show that D(∂MG) is homeomorphic

to the link of the essential skeleton of a log Calabi–Yau pair (see Definitions 6.2.4.2

and 6.2.4.3).

In fact, one could determine the homotopy type of D(∂MG) by using Thuillier’s

skeleton and the arguments in the trivially-valued proofs of Theorems G and H.

However, our new definition of essential skeleton allows us to establish the actual

homeomorphism class of the dual boundary complex and it adapts well to the more

singular case of dlt compactifications.

We give two proofs for each of Theorems G and H, one in the trivially-valued

setting and the other in the discretely-valued one. The latter is technically more

demanding, since it requires the construction of a degeneration of compact hyper-

Kähler manifolds; see §6.2.6 and §6.3.1. However, this construction is of independent

interest, as it suggests a relationship between the geometric P = W conjecture and

the conjecture below.
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Conjecture 1.4.0.4. Let X be a maximally unipotent good minimal dlt degeneration

of compact hyper-Kähler manifolds over C((t)). Then, the dual complex of the special

fibre of X is homeomorphic to Pn(C).



CHAPTER II

Preliminaries

2.1 Conventions

A non-Archimedean field is a field k equipped with a multiplicative norm

| · | : k → R+ := [0,+∞)

that satisfies the ultrametric inequality and with respect to which k is complete. The

associated valuation on k is v = − log | · |. Write k◦ := {| · | 6 1} for the valuation

ring, k◦◦ := {| · | < 1} for the maximal ideal, k̃ := k◦/k◦◦ for the residue field, and

√
|k×| := {c ∈ R∗+ : ∃ ` ∈ Z such that c` ∈ |k×|},

for the divisible value group, where R∗+ := (0,+∞). Further, we say k is trivially-

valued if |k×| = {1}, and discretely-valued if there is r ∈ (0, 1) such that |k×| = rZ.

In the former case, we will always denote the trivial norm by | · |0 and the trivial

valuation by v0. A valued extension k′/k is a field extension k′ of k that is a non-

Archimedean field whose norm restricts to the norm on k. We freely use the language

of k-analytic spaces from [Ber90, Ber93].

A variety is an integral separated scheme of finite type over a field. The terms line

bundle and invertible sheaf are used interchangeably. A pair (resp. a sub-pair) (X,D)

is the datum of a normal scheme X and a Weil Q-divisor D with coefficients in (0, 1]

23
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(resp. in (−∞, 1]); the divisor D is called a boundary (resp. sub-boundary). Write

D=1 =
∑

iDi for the union of all irreducible components of D whose coefficient equals

1. The irreducible components of the intersection Di1 ∩ . . . ∩ Dir of r components

of D=1 are called strata of codimension r. A pair (X,D) is simple normal crossing

(snc) if X is a regular scheme and the support of D is an effective Cartier divisor on

X such that for any x ∈ Supp(D), there are local equations f1, . . . , fr ∈ mx of the

components of Supp(D) containing x that form a regular system of parameters in

the local ring OX,x.

2.2 Berkovich analytifications

Let k be a non-Archimedean field and let X be a scheme locally of finite type over

k. Consider the functor FX : Ank → Sets from the category Ank of good analytic

spaces over k to the category Sets of sets given by

Z 7→ Hom(Z,X),

where Hom(Z,X) denotes the set of morphisms Z → X as locally k-ringed spaces.

Theorem 2.2.0.1. The functor FX is representable by a boundaryless, strictly k-

analytic space Xan and a surjective morphism ker : Xan → X of locally k-ringed

spaces.

Proof. See [Ber90, Theorem 3.4.1] in the nontrivially-valued case and [Ber90, Theo-

rem 3.5.1] in the trivially-valued case.

The space Xan is called the Berkovich analytification of X, and ker is called the

kernel map. The assignment X 7→ Xan is functorial, and it commutes with fibre

products and ground field extension. For a morphism of schemes f : X → Y , write
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f an : Xan → Y an for the induced map on Berkovich analytifications. The functor

X 7→ Xan has many permanence properties (see [Ber90, §3.4-3.5]) that we use freely.

The underlying topological space of Xan admits a concrete description: a point

x ∈ Xan is a pair (ξx, | · |x), where ξx ∈ X is a scheme-theoretic point of X, and | · |x

is an absolute value on the residue field κ(x) of X at ξx that extends | · | on k; write

vx = − log | · |x for the associated valuation on κ(x). It is often convenient to think

of | · |x as a seminorm on the stalk OX,ξx that restricts to the given norm on k. This

seminorm is defined by the composition

OX,ξx → κ(x)
|·|x→ R+,

the kernel of which is precisely the maximal ideal mξx of OX,ξx . The completed residue

field H(x) of Xan at x is the completion of κ(x) with respect to | · |x. The kernel

map is given by ker(x) := ξx. The analytification Xan is equipped with the weakest

topology such that ker is continuous, and, for any Zariski-open U ⊆ X and any

f ∈ OX(U), the map ker−1(U)→ R+ given by

x 7→ |f(x)| := |f(ξx)|x

is continuous.

Equivalently, if X = Spec(A) is affine, then Xan is the set of multiplicative semi-

norms |·|x : A→ R+ that restrict to the given norm on k, equipped with the topology

of pointwise convergence. The kernel map is given by ker(x) = {f ∈ A : |f(x)| = 0}.

When X is a variety, the subset of birational points Xbir ⊆ Xan of Xan is the

ker-preimage of the generic point of X. Alternatively, Xbir is the space of valuations

on the function field of X that extend the given valuation on k.

The Berkovich analytification Xan has good topological properties: it is locally

compact and locally Hausdorff. Moreover, it satisfies the following topological GAGA
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results.

Proposition 2.2.0.2. 1. X is separated if and only if Xan is Hausdorff.

2. X is proper if and only if Xan is compact and Hausdorff.

3. X is connected if and only if Xan is arcwise connected.

In fact, if X is connected, then the analytification Xan is locally arcwise connected

by [Ber90, Theorem 3.2.1].

Proof. See [Ber90, Theorem 3.4.8] in the nontrivially-valued case and [Ber90, Theo-

rem 3.5.3] in the trivially-valued case.

Write OXan for the structure sheaf on Xan, called the sheaf of analytic functions

on Xan. Given a coherent sheaf F of OX-modules on X, the pullback

Fan := ker∗(F) = ker−1(F)⊗ker−1(OX) OXan

is a coherent sheaf of OXan-modules on Xan, called the analytification of F . Further,

if L is a line bundle on X, then Lan := ker∗(L) is a line bundle on Xan . If X is proper

or if X is separated and k is trivially-valued, then the functor F 7→ Fan on coherent

sheaves satisfies various cohomologyical GAGA theorems; see [Ber90, §3.4-3.5].

2.3 Analytic generic fibres

Let k be a non-Archimedean field. A formal k◦-scheme X is locally finitely

presented if it is locally of the form Spf(A), where A is the quotient of the ring

k◦{T1, . . . , Tn} of restricted power series by a finitely-generated ideal. Write X0 for

the special fibre of X, which is a k̃-scheme locally of finite type. Berkovich constructs

in [Ber94, Ber96a] a k-analytic space associated to X, which we describe below. This
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work mirrors Raynaud’s construction of the generic fibre functor from rigid-analytic

geometry.

For a k-analytic space Z, write GX(Z) for the set of morphisms ϕ : Z → X of

locally k◦-ringed spaces satisfying the following two conditions:

1. for any open U ⊆ X and any affinoid domain V ⊆ Z such that ϕ(V ) ⊆ U ,

the induced morphism ϕ∗ : OX(U) → OZ(V ) satisfies ‖ϕ∗(f)‖V ≤ 1 for all

f ∈ OX(U), where ‖ · ‖V is the norm on the k-affinoid algebra OZ(V );

2. for any z ∈ Z, the composition OX,ϕ(z) → OZ,z → H(z) takes values in H(z)◦,

and OX,ϕ(z) → H(z)◦ is a local homomorphism of local rings.

This gives rise to a functor GX : k-An→ Sets given by Z 7→ GX(Z).

Theorem 2.3.0.1. The functor GX is representable by a strictly k-analytic space Xη

and a surjective morphism redX : Xη → X0 from the G-topological site of Xη to the

Zariski site of X0.

Proof. See [Thu07, Proposition 1.3] for a proof, as well as [Ber94, §1] and [Ber96a,

§1] for the basic properties of GX.

The space Xη is called the analytic generic fibre of X, and redX is the reduction

map. The rule X 7→ Xη is functorial. As a map on topological spaces, redX is anti-

continuous, and it is a morphism of sites in the following sense: red−1
X (U) is an affinoid

domain for any Zariski-open U ⊆ X0, and the redX-preimage of a Zariski-open cover

of X0 is an affinoid cover of Xη.

Suppose now that X is a locally finitely presented k◦-scheme, and X̂ is the$-adic

formal completion of X for some choice of pseudouniformizer $ ∈ k◦◦ (i.e. $ ∈ k◦◦

is nonzero if k is nontrivially valued, and $ = 0 otherwise). Write Xk := X ×k◦ k
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for the generic fibre of X , which is a scheme locally of finite type over k. The special

fibre X0 := X ×k◦ k̃ coincides with the special fibre X̂0 of X̂.

In the special case when X = Spec(A) is affine, X̂η is the affinoid domain in

X an
k given by

X̂η =M(Â ⊗k◦ k) = {x ∈X an
k : |f(x)| ≤ 1 for all f ∈ A},

where Â denotes the $-adic completion of A. More generally, X̂η and X an
k are

related as follows.

Proposition 2.3.0.2. If X is separated and finitely presented over k◦, then there

is a closed embedding ιX : X̂η ↪→ X an
k of X̂η as a compact strictly analytic domain

in X an
k . Furthermore,

1. a point x ∈ X an
k lies in X̂η if and only if the morphism Spec(H(x)) → Xk of

k-schemes extends to a morphism Spec(H(x)◦)→X of k◦-schemes.

2. ιX is an isomorphism if and only if X is proper over k◦.

If x ∈X an
k lies in X̂η, then the image of the closed point via Spec(H(x)◦)→X

coincides with redX (x) ∈X0, and we say that x admits a centre on X .

Proof. See [Ber94, §5] for a proof. See also [Con99, Theorem A.3.1] for a proof of

the corresponding statement in rigid-analytic geometry.

For x ∈ X̂η, the reduction redX (x) ∈X0 is a specialization of ker(x) ∈Xk ⊆X ,

and so OX ,ker(x) is a localization of OX ,redX (x); in particular, the seminorm x on

OX ,ker(x) restricts to a seminorm on OX ,redX (x). For a coherent sheaf a of fractional

ideals on X , set

vx(a) := min
f∈aredX (x)

vx(f).
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Further, for a Q-Cartier divisor D on X , set vx(D) := m−1vx(OX (−mD)), where

m ∈ Z>0 is such that mD is Cartier.

2.4 i-analytifications

If k is trivially valued, then a locally finitely presented formal k◦-schemes is the

same as a k-scheme locally of finite type. Let X be such a k-scheme, and write

Xi := X̂η for the analytic generic fibre. The space Xi is called the i-analytification

of X, and it was introduced and studied in [Thu07]. In this setting, the reduction

map is called the centre map and it is written cX : Xi → X. The reason for the name

is as follows: when X is integral and separated, Xbir ∩Xi is the space of valuations

on the function field of X that admit a centre on X (in the classical sense), and cX

is the map that sends any valuation to its centre.

As with any analytic space over a trivially-valued field, there is a R+-action on

Xi: for a ∈ R+ and x ∈ Xi, the point a · x ∈ Xi is given by

|f(a · x)| := |f(x)|a

for f ∈ κ(x). In terms of valuations, the action is va·x = a · vx. Moreover, if a > 0,

then cX(a · x) = cX(x).

2.5 Models

Suppose k is discretely-valued. For a scheme X of finite type over k◦, write

Xk := X ×k◦ k for the generic fibre and X0 := X ×k◦ k̃ for the special fibre. If

X is a variety over k, a model for X over k◦ (or more classically, a degeneration of

X) is a normal, flat, separated scheme X of finite type over k◦ endowed with an

isomorphism of k-schemes Xk
'→ X. A morphism of models is a morphism X ′ →X

of k◦-schemes between two models of X such that the induced map X ′
k
'→ Xk on
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generic fibres is an isomorphism such that the following diagram commutes:

X ′
k Xk

X

'

'
'

By Proposition 2.3.0.2, the analytic generic fibre X̂η is a compact strictly analytic

domain in Xan equipped with the reduction map redX : X̂η → X̂0 = X0. Note that

if X ′ → X is a proper morphism of models of X, then it induces an isomorphism

X̂ ′
η
'→ X̂η on the analytic generic fibres.

A model X is semistable if the special fibre X0 is reduced, and X is an snc model

if X is a regular scheme and the special fibre X0 is an snc divisor on X . Note that

the special fibre X0 is always a principal Cartier divisor: it is the divisor divX ($)

of a uniformizer $ ∈ k◦◦\{0}. When k is of residue characteristic zero, snc models

always exist by Hironaka’s theorem on resolution of singularities; see [Hir64].

Let (X,D) be a pair. A model for (X,D) is a pair (X ,D), where X is a model of

X over k◦ and D = D+ X0,red; here, D denotes the closure of D in X and X0,red is

the reduced special fibre of X . Furthermore, we require that KX +Dred is Q-Cartier

when KX +Dred is so.

2.6 Monomial and quasi-monomial points

Let k be a non-Archimedean field. For a valued extension k ⊆ k′, consider

s(k′/k) := tr.deg(k̃′/k̃),

t(k′/k) := dimQ(
√
|k′×|/

√
|k×|),

d(k′/k) := s(k′/k) + t(k′/k).

The invariant s(k′/k) is called the transcendence degree of k′/k, and t(k′/k) is called

the rational rank. The basic properties of these invariants are collected in the lemma

below.
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Lemma 2.6.0.1. 1. If k ⊆ k′ is a valued extension, then d(k′/k) ≤ tr.deg(k′/k).

2. If k ⊆ k′ ⊆ k′′ is a tower of valued extensions, then

d(k′′/k) = d(k′′/k′) + d(k′/k),

and the analogous equalities hold for s and t.

3. If k ⊆ k′ is an immediate valued extension, then

d(k′/k) = s(k′/k) = t(k′/k) = 0.

In particular, if k ⊆ k′ ⊆ ` ⊆ `′ is a tower of valued extensions such that both

k′/k and `′/` are immediate, then

d(`′/k′) = d(`/k).

Proof. The inequality in (1) is the Abhyankar inequality; see e.g. [Bou89, VI, §10.3,

Corollary 1]. The equalities in (2) and (3) are elementary.

Let X be a variety over k. For x ∈ X, set s(x) = s(H(x)/k), t(x) = t(H(x)/k),

and d(x) = d(H(x)/k). By Lemma 2.6.0.1, we have d(x) ≤ dim(X) for all x ∈ Xan. A

point x ∈ X is Abhyankar if d(x) = dim(X); such points are dense in Xan by [Poi13,

Corollaire 4.8]. Among the Abhyankar points of Xan, we will be particular interested

in the subclass of divisorial points. A point x ∈ Xan is divisorial if the following

condition holds:

- if k is trivially-valued, then s(x) = dim(X)− 1 and t(x) = 1;

- if k is nontrivially-valued, then s(x) = dim(X) and t(x) = 0.

Write Xdiv ⊆ Xan for the subset of divisorial points. In the literature, the points x

satisfying s(x) = dim(X) and t(x) = 0 are known as the Shilov points of Xan. While



32

Shilov and divisorial points coincide when k is nontrivially-valued, there are many

more divisorial points than Shilov points in the trivially-valued setting. Indeed, when

k is trivially-valued, the only Shilov point of Xan is the trivial norm.

In both the trivially-valued and discretely-valued settings, divisorial points admit

a geometric criterion, provided that the variety X is normal.

Proposition 2.6.0.2. Let X be a normal variety over k and x ∈ Xan.

1. If k is trivially-valued and x ∈ Xi, then x ∈ Xdiv if and only if there exists

a constant c > 0, a proper birational morphism h : Y → X from a normal

k-variety Y , and a prime divisor E ⊆ Y such that

|f(x)| = e−c ordE(h∗f)

for f ∈ k(X); in this case, we say x is determined by the triple (c, Y
h→ X,E).

2. If k is discretely-valued and x admits a centre on some model of X, then x ∈ Xdiv

if and only if there exists a model X of X and an irreducible component E ⊆X0

such that

|f(x)| = |$|ordE(f)/ ordE($)

for f ∈ k(X), where $ is a uniformizer of k; in this case, we say x is determined

by the pair (X , E).

Proof. See [ZS60, VI,§14, Theorem 31] for a proof of (1), and [MN15, Proposition

2.4.8] for a proof of (2).

Proposition 2.6.0.3. If char(k̃) = 0, then Xdiv is dense.

Proof. This is [JM12, Remark 4.11] in the trivially-valued setting, and [MN15, Propo-

sition 2.4.9] in the discretely-valued case.
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Remark 2.6.0.4. For a k-analytic space X, a point x ∈ X is called a Shilov point if

s(x) = dimx(X) and t(x) = 0, where dimx(X) denotes the local dimension of X at

x (see [Duc07] for a discussion of dimension theory on k-analytic spaces). If X is a

good strictly k-analytic space of equidimension d (i.e. dimx(X) = d for all x ∈ X),

then [Poi13, Corollaire 4.5] shows that the locus

{x ∈ X : s(x) = d}

is dense in X. As Shilov points and divisorial points coincide on a good, equidimen-

sional strictly k-analytic space over a nontrivially-valued field, this result can be seen

as a generalization of Proposition 2.6.0.3.

When char(k̃) = 0 and k is either discretely-valued or trivially-valued, the set of

Abhyankar points in Xan admits a geometric description that generalizes the one for

divisorial points in Proposition 2.6.0.2.

Consider first the case when k is trivially-valued. A point x ∈ Xi is quasi-

monomial if there exists

- a proper birational morphism h : Y → X from a normal k-variety Y ,

- a regular system of parameters (y1, . . . , yr) at a regular point ξ of Y ,

- an r-tuple (α1, . . . , αr) ∈ Rr
+

such that x is the unique minimal real valuation with vx(yi) = αi; see [JM12, Propo-

sition 3.1] for the construction of vx. If, in addition, Y is smooth, ξ is a stratum

of a reduced, snc divisor D on Y , and the yi’s local equations for the components

of D containing ξ, then we say x is determined by the pair (Y,D). The skeleton of

the pair (Y,D) is the subset Sk(Y,D) ⊆ Xi of quasi-monomial points determined

by the pair (Y,D). The R+-scaling action on Xi gives Sk(Y,D) the structure of a

cone complex, with each face of Sk(Y,D) determined by a stratum of D.
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Suppose now that k is discretely-valued and let $ be a uniformizer of k. A point

x ∈ Xan is monomial if there exists

- an snc model X of X,

- an r-tuple (E1, . . . , Er) of distinct irreducible components of X0,

- local equations yi for Ei at the generic point ξ of a connected component of

E1 ∩ . . . ∩ Er,

- an r-tuple (α1, . . . , αr) ∈ Rr
+

such that
∑r

i=1 αi ordEi($) = 1 and x is the unique minimal real valuation with

vx(yi) = αi; see [MN15, Proposition 2.4.4] for the construction of vx. We say x is

determined on the model X . The skeleton of X is the subset Sk(X ) ⊆ X̂η ⊆ Xan

of monomial points determined on X . The skeleton Sk(X ) carries the structure of

a cell complex, with cells of dimension r corresponding to connected components of

intersections of r irreducible components of X0.

We denote by Xmon the set of quasi-monomial or monomial points in Xan, and

we note that Xdiv ⊆ Xmon ⊆ Xbir ⊆ Xan.

Proposition 2.6.0.5. Assume char(k̃) = 0 and let x ∈ Xan.

1. If k is trivially-valued and x ∈ Xi, then x ∈ Xmon if and only if x is Abhyankar.

2. If k is discretely-valued and x admits a centre on some model of X, then x ∈

Xmon if and only if x is Abhyankar.

The condition that x ∈ Xan admits a centre on some model of X is necessary

because the models we consider in this section are algebraic (however, if X is proper,

then this condition is always satisfied). If one instead allows formal models and

defines the class of monomial points analogously, then Proposition 2.6.0.5(ii) no
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longer requires this condition by [GM16, Proposition A.5]. (When X is proper,

one does not need to make the distinction between algebraic and formal models

by [GM16, Lemma 2.4].)

Proof. The equivalence in (1) is [ELS03, Proposition 2.8], and (2) follows from [BFJ16,

Remark 3.8].

2.7 Gauss extensions

Let k be a non-Archimedean field and pick r ∈ (0, 1)\
√
|k∗|. Consider the k-

subalgebra kr of k(($)) that consists of those bi-infinite series
∑

j∈Z aj$
j with aj ∈ k

such that |aj|rj → 0 as |j| → +∞. The k-algebra kr is in fact a field and it is complete

with respect to the norm

|
∑
j∈Z

aj$
j|r := max

j∈Z
|aj|Krj.

Introduced in [Ber90, §2.1], the extension kr/k of non-Archimedean fields is often

referred to as a Gauss extension in the literature. If k is trivially-valued, then kr is

simply a Laurent series field k(($)) over k equipped with the $-adic norm satisfying

|$|r = r.

Let Z be a k-analytic space, and write pr : Zr := Z×k kr → Z for the ground field

extension. For any z ∈ Z, the fibre p−1
r (z) ⊆ Zr is naturally identified with the spec-

trumM(H(z)⊗̂kkr). If the tensor product seminorm on H(z)⊗̂kkr is multiplicative,

then it defines the unique Shilov point σr(z) of M(H(z)⊗̂kkr).

Proposition 2.7.0.1. 1. For any z ∈ Z, σr(z) is well-defined and the natural map

H(z)⊗̂kkr → H(σr(z)) is an isometric isomorphism.

2. The map σr : Z → Zr is a continuous section of pr.

3. If X is a k-variety and Z = Xan, then x ∈ Xbir if and only if σr(x) ∈ Xbir
kr

.
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Proof. The assertion (1) is clear from the definition, (2) is [Ber93, Lemma 2.2.5], and

(3) follows by working affinoid-locally and applying [Ber93, Lemma 2.2.5].

The invariants s, t, and d introduced in §2.6 behave well under Gauss extension.

Proposition 2.7.0.2. Let z ∈ Z.

1. If r ∈
√
|H(z)×|, then s(σr(z)) = s(z) + 1 and t(σr(z)) = t(z)− 1.

2. If r 6∈
√
|H(z)×|, then s(σr(z)) = s(z) and t(σr(z)) = t(z).

In particular, d(σr(z)) = d(z). Moreover, if X is a k-variety and Z = Xan, then

3 z is Abhyankar if and only if σr(z) is so;

4 z is divisorial or trivial if and only if σr(x) is divisorial and r ∈
√
|H(z)×|.

Proof. This is [Poi13, Lemme 4.6]. See also [BJ18b, Corollary 1.4].

2.8 Logarithmic geometry

In this section, we will briefly review the terminology of log schemes and we refer

to [Kat89, Kat94] for a general exposition. See also [BM17, BM19].

Denote a log scheme by X+ = (X,MX+), where X is a scheme andMX+ ⊆ OX is

the structural sheaf of monoids. All log schemes are assumed to be fine and saturated

(fs) log schemes defined with respect to the Zariski topology. That is,MX+ is a sheaf

in the Zariski topology on X, and for every x ∈ X, the stalk MX+,x contains O×X,x

and it has the following three properties:

• MX+,x is a finitely-generated monoid;

• the groupification morphism MX+,x →Mgp
X+,x is injective;

• if fn ∈MX+,x for some f ∈Mgp
X+,x and n ∈ Z>0, then f ∈MX+,x.
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The characteristic sheaf of X+ is the quotient sheaf

CX+ :=MX+/O×X .

For x ∈ X, write IX+,x for the ideal of OX,x generated by MX+,x \ O×X,x.

The prototypical example of a log scheme that we will consider is the following:

let D be an effective Weil divisor on a scheme X, and consider the sheaf

U 7→ MD(U) := {f ∈ OX(U) : f |X\D is invertible}

of monoids on X. The log scheme X+ = (X,MD) is called the divisorial log structure

on X associated to D, and we write it as X+ = (X,D). Note that X+ depends only

on Supp(D). If D is an snc divisor and x is a stratum of D, then CX+,x is a free

monoid on the local equations of the components of D passing through x, and IX+,x

is the maximal ideal of OX,x.

A log scheme X+ is log-regular at x ∈ X if the following two conditions hold:

1. OX,x/IX+,x is a regular local ring;

2. dim(OX,x) = dim(OX,x/IX+,x) + rank(Cgp
X+,x), where Cgp

X+,x is the groupification

of the monoid CX+,x.

The log scheme X+ is log-regular if it is log-regular at all points. Two common

examples of log-regular log schemes are toric varieties with the divisorial log structure

associated to the torus-invariant boundary divisor, or smooth varieties equipped with

the divisorial log structure associated to an snc divisor.

For a log-regular log scheme X+, the locus {x ∈ X : MX+,x 6= O×X,x} where the

log structure is nontrivial is a reduced divisor on X, which we will denote by DX+ . In

fact, the log scheme X+ is isomorphic to X equipped wtih the divisorial log structure

on X induced by DX+ by [Kat94, Theorem 11.6].
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For a log-regular log scheme X+ = (X,DX+), the Kato fan FX+ = (F,MF ) is the

log scheme consisting of the subscheme F ⊆ X of generic points x of the intersections

of irreducible components of DX+ , and MF,x = CX+,x. The Kato fan first appears

in [Kat94] and the above description is detailed in [BM17, Lemma 2.2.3].

2.9 Polyhedral complexes

The dual (intersection) complex of a (pure-dimensional) snc divisor D is the cell

complex D(D) whose vertices are in correspondence with the irreducible components

{Di}i∈I of D, and whose r-dimensional cells correspond to strata of codimension r+1.

The attaching maps are prescribed by the inclusion relation. The complex D(D) is

simplicial precisely when the intersection
⋂
i∈J Di is irreducible for any subset J ⊆ I.

Given a topological space A, the cone over A, denoted Cone(A), is the quotient

of A ×R+ under the identification (a1, 0) ∼ (a2, 0) for any a1, a2 ∈ A. The vertex

of Cone(A) is the image of A × {0} under the quotient map. The group R∗+ acts

by rescaling on the second factor and descends to an action on Cone(A). If C is a

topological space homeomorphic to Cone(A), then A is homeomorphic to the quotient

of the punctured cone C∗ := C \ {vertex} by the R∗+-action.

Given two topological spaces A and B, the join of A and B, denoted A ∗ B, is

the quotient of the space A×B × I, where I = [0, 1], under the identifications

(a, b1, 0) ∼ (a, b2, 0) ∀a ∈ A, b1, b2 ∈ B,

(a1, b, 1) ∼ (a2, b, 1) ∀a1, a2 ∈ A, b ∈ B.

In other words, the join is the space of all segments joining points in A and B, with

two segments meeting only at common endpoints.

The homeomorphism A×B × I ×R+ → A×R+ ×B ×R+ given by

(a, b, t, r) 7→ (a, r(1− t), b, rt)



39

descends to a R∗+-equivariant homeomorphism

Cone(A ∗B) ' Cone(A)× Cone(B), (2.1)

where the cones are endowed with the R∗+-action defined above, and the product has

the diagonal action.



CHAPTER III

Canonical metrics on sheaves of differentials

3.1 Metrics on non-Archimedean line bundles

Let k be a non-Archimedean field. In this section, we will discuss the formalism

of metrics on line bundles on k-analytic spaces.

3.1.1 Definition of a metric on a line bundle

Definition 3.1.1.1. Let X be a k-analytic space. Given a line bundle L on X, a

metric φ on L is the data of a function φ(·, x) : Lx → R for each x ∈ X, with the

following transformation property: for any s ∈ Lx and f ∈ OX,x, we have

φ(fs, x) = vx(f) + φ(s, x). (3.1)

A metric φ is continuous if for any open subset U ⊆ X and any section s ∈ Γ(U,L),

the function

U 3 x 7→ φ(s, x) ∈ R

is continuous. This definition coincides with the continuous metrics of [CL11], pro-

vided that φ(·, x) 6≡ +∞ for all x ∈ X. Similarly, one defines upper-semicontinuous

(usc) and lower-semicontinuous (lsc) metrics.

For line bundles L1 and L2 on X with metrics φ1 and φ2, the tensor product

40
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L1 ⊗ L2 is equipped with the metric φ1 ⊗ φ1 given by

(φ1 ⊗ φ2)(s1 ⊗ s2, x) = φ1(s1, x) + φ2(s2, x)

for x ∈ X, s1 ∈ L1,x, and s2 ∈ L2,x. Similarly, a metric on a line bundle induces

metrics on the inverse and on the powers of the line bundle.

Remark 3.1.1.2. In the literature, it is common to write a metric φ on line bundles

in the ‘multiplicative’ notation ‖ · ‖ = rφ for some r ∈ (0, 1), as opposed to the

‘additive’ notation introduced in Definition 3.1.1.1. That is, a metric on Lan can also

be defined as a collection of functions ‖ · ‖x : Lan
x → R+ such that

‖f · s‖x = |f(x)| · ‖s‖x

for s ∈ Lan
x and f ∈ OXan,x. See [CL11] for further details. The multiplicative

notation is adopted especially in §3.3-3.4, whereas the additive notation is more

convenient elsewhere.

3.1.2 Metrics on analytifications of line bundles

Suppose now that X is a variety over k and L is a line bundle on X. In this

section, we will discuss metrics on the analytification Lan of L.

For x ∈ X, the stalk Lan
x can be realized as

Lan
x ' Lker(x) ⊗OX,ker(x) OXan,x. (3.2)

The (semi)continuity of a metric on Lan can be verified on algebraic sections of L,

in the following sense.

Lemma 3.1.2.1. A metric φ on Lan is (semi)continuous if and only if for any

x ∈ X, the function φ(·, x) : Lker(x) → R is (semi)continuous.
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This is often a more convenient condition to check for metrics that are defined in

terms of algebro-geometric data. The proof of Lemma 3.1.2.1 is immediate from (3.2)

and the transformation property for a metric.

A metric φ is determined by its values on the algebraic stalks Lker(x) of L; indeed,

given a function φ(·, x) on Lker(x) satisfying the transformation property (3.1), it

extends to a function on Lan
x by using the isomorphism (3.2). More precisely, if

s ∈ Lker(x) is an OX,ker(x)-module generator, then s ⊗ 1 ∈ Lan
x is an OXan,x-module

generator, so the value of φ(·, x) on Lan
x is completely determined by its value on

s⊗ 1 and the formula (3.1).

Furthermore, if k is trivially-valued, then we may consider metrics on the i-

analytification

Li := Lan|Xi

of L. In this setting, a metric on Li is in fact determined at a point x by its values

on the stalks LcX(x); indeed, the localization map OX,cX(x) ↪→ OX,ker(x) gives rise to

an isomorphism

Lker(x) ' LcX(x) ⊗OX,cX (x)
OX,ker(x)

and we can argue as before.

Definition 3.1.2.2. Assume k is trivially-valued. Given a line bundle L on X, the

trivial metric φtriv,L on Li assigns to a point x ∈ Xi and a local section s ∈ LcX(x)

the number

φtriv,L(s, x) = vx(f), (3.3)

where s is given by the function f ∈ OX,cX(x) locally at cX(x). Said differently,

pick any OX,cX(x)-module generator δ ∈ LcX(x), and write s = fδ in LcX(x). The

expression (3.3) is independent of the choice of generator δ, since any two generators
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differ by a unit u ∈ O×X,cX(x), and vx(u) = 0.

The trivial metric φtriv,L allows us to identify a function ϕ : Xi → R with a metric

ϕ+φtriv,L on Li; that is, to a point x ∈ Xi and a local section s ∈ LcX(x), the metric

ϕ+ φtriv,L assigns the number

(ϕ+ φtriv,L)(s, x) := ϕ(x) + vx(f),

where, locally at cX(x), s is given by the function f ∈ OX,cX(x). In fact, every metric

on Li arises in this manner. See [BJ18b, §2.8] for further details.

Remark 3.1.2.3. If X is proper over a trivially-valued field k, the trivial metric φtriv,L

is the non-Archimedean metric on Li associated to the trivial test configuration of

(X,L), in the sense of [BHJ17, Remark 3.3]. The relationship between test configu-

rations and non-Archimedean metrics yields new insights in the study of K-stability;

see [BJ18a] for an overview.

3.2 Weight metrics

In this section, we introduce the notion of a weight function associated to a rational

pluricanonical form on a variety defined over a trivially-valued field of characteristic

zero. The weight functions are crucial to define and compute the essential skeleton

of a pair in the trivially-valued setting.

To this end, we briefly recall the formalism of metrics on the analytification of

a line bundle over an arbitrary non-Archimedean field k. We introduce the weight

metric on the analytification of the pluricanonical bundle; in the discretely-valued

case, the weight metric originates in [MN15] and it is studied further in [NX16, BN16,

Tem16, BM17]. To do so, we assume that k has residue characteristic zero: this guar-

antees the divisorial points are dense in the Berkovich analytification (see Proposi-
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tion 2.6.0.3), a property that we employ in the construction of weight functions and

weight metrics.

Throughout the section, let X be a normal variety over a non-Archimedean field

k, KX a canonical divisor on X, and D a Weil Q-divisor on X such that KX +Dred

is Q-Cartier. For m ∈ Z>0 sufficiently divisible, the sections of the line bundle

ω⊗m(X,Dred)
:= OX(m(KX +Dred))

are called logarithmic m-pluricanonical forms of (X,D), while the sections of the

rank-1 reflexive sheaf

ω⊗m(X,D)
:= OX(m(KX +D))

are called D-logarithmic m-pluricanonical forms on X.

3.2.1 The weight metric over a discretely-valued field

Suppose that k is a discretely-valued field with residue characteristic zero, and

let $ ∈ k◦◦ be a uniformizer. Generalizing the ideas of Kontsevich and Soibelman

in [KS06], Mustat, ă and Nicaise in [MN15] construct a R-valued function on the

analytification Xan associated to a rational pluricanonical forms η of X, called the

weight function associated to η and denoted by wtη. We briefly recall the definition

of the weight function and prove a maximality property; see [MN15, NX16, BM17]

for further details.

Let η be a rational section of ω⊗m(X,D). The definition of the weight function associ-

ated to η on divisorial points is as follows. If x ∈ Xdiv has a divisorial representation

on a model X of X, then we may assume that (X , DX ) is a log-regular model of

(X,Dred), where DX = Dred + (X0)red. Then, we set

wtη(x) := vx(div(X ,DX−divX ($))(η)) +m, (3.4)
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where div(X ,DX−divX ($))(η) denotes the divisor on X determined by η, which is

thought of as a rational section of the line bundle

OX (m(KX /k◦ +DX − divX ($))).

By [BM17, Lemma 4.1.4], the formula for the weight function in (3.4) is equivalent

to the original definition of the weight function introduced in [MN15, §4.3].

Theorem 3.2.1.1. Suppose X is smooth. For any rational section η of ω⊗m(X,D), there

is a unique maximal lower-semicontinuous extension wtη : Xan → R of the weight

function wtη : Xdiv → R.

The extension was produced by Mustat, ă and Nicaise in [MN15, §4.4], and the

maximality property is demonstrated below. This property is presumably well-known

to experts, but we are not aware of a proof appearing in the literature.

Proof. Pick a smooth compactification X ⊆ X of X, so Xbir = X
bir

. Such a com-

pactification exists by Nagata’s compactification theorem and resolution of singulari-

ties. The construction of a lower-semicontinuous extension wtX,η : Xan → R is made

in [MN15, §4.4], and similarly we have an extension wtX,η : X
an → R. By [MN15,

Proposition 4.5.5], we have

wtX,η = wtX,η

on Xan. We now prove that wtX,η is maximal: if W : Xan → R is another lower-

semicontinuous extension of wtη rom Xdiv, then we must show the inequality

W (x) 6 wtX,η(x) (3.5)

for all x ∈ Xan. To this end, we first prove (3.5) for x ∈ Xmon, and then for any

x ∈ Xan by approximating x by monomial points. If x ∈ Xmon, pick a sequence (xj)
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of divisorial points that converges to x, all of whom lie in the skeleton of a fixed snc

model of X. By the lower-semicontinuity of W , we have

W (x) 6 lim inf
j

W (xj) = lim inf
j

wtX,η(xj) = wtX,η(x),

where the final equality lim infj wtX,η(xj) = wtX,η(x) follows from the continuity of

the weight function on a fixed skeleton, as in [MN15, Proposition 4.4.3]. If x ∈ Xan,

then [BFJ16, Corollary 3.2] implies that x = limX ρX (x), where the limit runs over

all snc models X of X and ρX : X
an → Sk(X ) denotes the retraction onto the

skeleton from [MN15, §3.1]. As ρX (x) ∈ Xmon
= Xmon for all snc models X , the

lower-semicontinuity of W shows that

W (x) 6 lim inf
X

W (ρX (x)) 6 lim inf
X

wtX,η(ρX (x))

= lim inf
X

wtX,η(ρX (x))

6 sup
X

wtX,η(ρX (x))

= wtX,η(x) = wtX,η(x).

The uniqueness of the extension follows from the maximality, and we write it simply

as wtη = wtX,η.

Definition 3.2.1.2. The weight metric wtdisc is the metric on (ω⊗m(X,Dred))
an satisfying

wtdisc(η, x) = wtη(x) (3.6)

for any x ∈ Xan and rational section η of ω⊗m(X,Dred) that is regular at ker(x). By The-

orem 3.2.1.1, wtdisc is the maximal lower-semicontinuous metric on (ω⊗m(X,Dred))
an such

that (3.6) holds on Xdiv. Write ‖ · ‖wtdisc for the weight metric in multiplicative

notation, as in Remark 3.1.1.2.
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3.2.2 The weight metric over a trivially-valued field

Suppose that k is a trivially-valued field of characteristic zero, and assume that

KX +D is Q-Cartier.

Definition 3.2.2.1. Let x ∈ Xdiv ∩ Xi be the divisorial point determined by the

triple (c, Y
h→ X,E). Pick canonical divisors KY on Y and KX on X such that

h∗(KY ) = KX . The log discrepancy A(X,D)(x) of x is the value

A(X,D)(x) := c

(
1 + ordE

(
KY −

1

m
h∗(m(KX +D))

))
(3.7)

for m ∈ Z>0 sufficiently divisible. The pair (X,D) is log canonical if A(X,D)(x) > 0

for all x ∈ Xdiv ∩Xi.

It is easy to verify that the log discrepancy A(X,D)(x) depends only on x, and not

on the choice of m, nor on the choice of the birational model Y of X.

There is a maximal lower-semicontinuous extension A(X,D) : Xi → R of the log

discrepancy on the divisorial points Xdiv ∩Xi; explicitly, it is given by

A(X,D)(x) = sup
U3x

inf
y∈U∩Xdiv

A(X,D)(y), (3.8)

where the supremum runs over all open neighbourhoods U of x in Xi. The extension

A(X,D), which we also refer to as the log discrepancy function, is R+-homogeneous

and it is non-negative when (X,D) is log canonical. The restriction to Xbir ∩ Xi

admits an alternative characterization; see [Blu18, §3.2].

The log discrepancy function is well studied in the literature: when X is smooth

and D = ∅, it is introduced in [JM12, §5] as a function AX : Xbir ∩Xi → R+. The

same holds for normal varieties by [BdFFU15]. The function AX is extended to all

of Xi when X is smooth in [BJ18a, Appendix A], and it is constructed in positive

characteristic in [Can17, §3].
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Definition 3.2.2.2. For a rational section η of ω⊗m(X,Dred) that is regular on the Zariski

open U ⊆ X, the weight function wtη : Ui → R of η is given by

wtη(x) = mA(X,Dred)(x) + φtriv,ω⊗m
(X,Dred)

(η, x).

The weight metric wttriv is the metric on (ω⊗m(X,Dred))
i satisfying

wttriv(η, x) = wtη(x) (3.9)

for any x ∈ Xi and rational section η of ω⊗m(X,Dred) that is regular at ker(x). It

follows that wttriv is the the maximal lower-semicontinuous metric on (ω⊗m(X,Dred))
i such

that (3.9) holds on Xdiv ∩Xi. Write ‖ · ‖wttriv for the weight metric in multiplicative

notation.

Remark 3.2.2.3. There is another construction in [MN15, §6.1] of a weight function

in the trivially-valued setting, which is distinct from the weight function of Defini-

tion 3.2.2.2 (indeed, it does not take a pluricanonical section as an argument).

3.2.3 Alternative expressions for the weight function

Assume that k is a trivially-valued field of characteristic zero. For a rational

section η of ω⊗m(X,Dred), set

Dη := Dred − div(X,Dred)(η),

where div(X,Dred)(η) denotes the divisor of η, thought of as a rational section of the line

bundle ω⊗m(X,Dred). In the following proposition, we provide an alternative expression

for the weight function associated to η, which is purely in terms of a log discrepancy

function.

Proposition 3.2.3.1. For any x ∈ Xi, we have wtη(x) = mA(X,Dη)(x).
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Proof. Using the maximality properties of the weight function and of the log discrep-

ancy function, it suffices to check the equality on divisorial points. If x ∈ Xdiv ∩Xi

is determined by the triple (c, Y
h→ X,E), then we have that

wtη(x) = mA(X,Dred)(x) + φtriv,ω⊗m
(X,Dred)

(η, x)

= mc

(
1 + ordE

(
KY −

1

m
h∗(m(KX +Dred))

))
+ c ordE(h∗div(X,Dred)(η))

= mA(X,Dred−div(X,Dred)(η))(x)

= mA(X,Dη)(x),

as required.

Corollary 3.2.3.2. If x ∈ Xdiv ∩Xi is the divisorial point determined by the triple

(c, Y
h→ X,E), then

wtη(x) = vx(div(Y,DY )(h
∗η)),

where DY = D̃red +
∑

iEi, D̃red denotes the strict transform of Dred via h, and the

Ei’s are the irreducible h-exceptional divisors on Y .

Corollary 3.2.3.2 shows that the weight function wtη onXdiv∩Xi can be computed

much as in the discretely-valued setting; indeed, this result is the analogue of [BM17,

Lemma 4.1.4]. Moreover, Corollary 3.2.3.2 can be deduced from Proposition 3.2.3.1,

but we find enlightening to provide a different proof of the statement using a local

calculation.

Proof. By definition of weight function and of the log discrepancy function, we have
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that

wtη(x) = mA(X,Dred)(x) + φtriv,ω⊗m
(X,Dred)

(η, x)

= mc

(
1 + ordE

(
KY −

1

m
h∗(m(KX +Dred))

))
+ φtriv,ω⊗m

(X,Dred)
(η, x)

= c ordE

((
ω⊗m(Y,DY )

)−1 ⊗ h∗ω⊗m(X,Dred)

)
+ φtriv,ω⊗m

(X,Dred)
(η, x).

Let ξ = cX(x) be the centre of x on X, and let ξ′ be the generic point of E in Y .

Consider a OX,ξ-module generator δ of ω⊗m(X,Dred),ξ. Then, locally at ξ, we write the

section η as η = fδ for some f ∈ Frac(OX,ξ), so that

φtriv,ω⊗m
(X,Dred)

(η, x) = vx(f) = c ordE(h∗f).

Consider now a OY,ξ′-module generator α of the stalk(
ω⊗m(Y,DY ) ⊗

(
h∗ω⊗m(X,Dred)

)−1
)
ξ′
.

It follows that α⊗ h∗δ is a OY,ξ′-module generator of
(
ω⊗m(Y,DY )

)
ξ′

, and we write

h∗η = (α−1h∗f) · α⊗ h∗δ

locally at ξ′. It follows that

vx(div(Y,DY )(h
∗η)) = vx(α

−1h∗f)

= vx(α
−1) + vx(h

∗f)

= c ordE

((
ω⊗m(Y,DY )

)−1 ⊗ h∗ω⊗m(X,Dred)

)
+ c ordE(h∗f)

= wtη(x),

which concludes the proof.

3.3 Temkin’s metrization of pluricanonical sheaves

In this section, we review Temkin’s construction from [Tem16] of an intrinsic met-

ric on the sheaves of differentials of an analytic space. The metrics in this section are
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written multiplicatively as in Remark 3.1.1.2, following the conventions of [Tem16].

By doing so, one avoids changing the base of logarithms when passing between the

trivially-valued and discretely-valued settings.

3.3.1 Seminorms on modules of Kähler differentials

Let (k, | · |k) denote a non-Archimedean field. Let (A, | · |A) be a seminormed

k-algebra, and let Â denote the separated completion of (A, | · |A). Let Ω1
A/k be the

(algebraic) module of Kähler differentials, which we equip with the seminorm

‖η‖A/K := inf max
i
|ai|A · |bi|A, for η ∈ Ω1

A/k,

where the infimum ranges over all finite expressions of the form η =
∑

i aidbi with

ai, bi ∈ A. By [Tem16, Lemma 4.1.3], ‖ · ‖A/k is the maximal A-module seminorm

such that the differential d : A→ Ω1
A/k is a contractive k-module morphism.

The completed module of Kähler differentials Ω̂1
A/k of A is the separated comple-

tion of (Ω1
A/k, ‖ · ‖A/k), and we write the resulting norm on Ω̂1

A/k also as ‖ · ‖A/k.

In [Tem16], the seminorm ‖ · ‖A/k on Ω1
A/k is referred to as the Kähler seminorm,

and the norm ‖ · ‖A/k on Ω̂1
A/k is known as the Kähler norm.

There is an alternate, intrinsic description of the completed module of Kähler

differentials.

Proposition 3.3.1.1. The composition d̂ : A
d→ Ω1

A/k → Ω̂1
A/k is the universal con-

tractive k-derivation with values in a Banach Â-module, where Â denotes the sepa-

rated completion of A.

Proof. This is [Tem16, Lemma 4.3.3].

Suppose A is a k-affinoid algebra, and let J be the kernel of the multiplication

map A⊗̂kA → A, which we can view as a finite Banach A-module. Consider the
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contractive morphism q : A→ J of Banach A-modules given by

a 7→ 1⊗̂a− a⊗̂1.

The map q can be used to realize Ω̂1
A/k in a manner analogous to the construction of

the module of Kähler differentials for rings.

Proposition 3.3.1.2. There is a natural isomorphism

Ω̂1
A/k ' J /J 2

of Banach A-modules that identifies d̂ with the composition A
q→ J → J /J 2.

Proof. See [Tem16, Remark 4.3.4] and [Ber93, §3.3].

For a good k-analytic space Z, one can construct a coherent sheaf Ω1
Z/k of Kähler

differentials on Z such that for any affinoid domain V =M(A) in Z, we have

Γ(V,Ω1
Z/k) = Ω̂1

A/k.

Strictly speaking, Ω1
Z/k is defined as a sheaf in the G-topology on Z, but there is no

distinction by [Ber93, Proposition 1.3.4]. The sheaf of Kähler differentials satisfies

the following GAGA theorem.

Proposition 3.3.1.3. For a finite type k-scheme X, there is a natural isomorphism

Ω1
Xan/k ' (Ω1

X/k)
an (3.10)

of coherent sheaves of OXan-modules. Furthermore, if k is trivially valued, then (3.10)

restricts to a natural isomorphism Ω1
Xi/k ' (Ω1

X/k)
i of OXi-modules.

Proof. The isomorphism (3.10) is [Duc11, §5.1.4], and the corresponding statement

for i-analytifications holds because Xi is an analytic domain of Xan.

For more details on the construction of the sheaf of differentials, see [Ber93, §3.3]

and [Duc11, §5.1].
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3.3.2 Temkin’s metric

Let Z be a good k-analytic space. For each z ∈ Z, the stalk (Ω1
Z/k)z is the filtered

colimit

Ω1
Z/k,z = lim−→

M(A)3z
Ω̂1
A/k

over all affinoid neighbourhoodsM(A) ⊆ Z of z. In particular, the Kähler norms on

each Ω̂1
A/k induce a colimit seminorm the stalk Ω1

Z/k,z, which we denote by ‖ ·‖z. The

pair (Ω1
Z/k,z, ‖ · ‖z) is a seminormed OZ,z-module, which is not complete in general.

This collection {‖ · ‖z}z∈Z of seminorms on each stalk of Ω1
Z/k is known as Temkin’s

metric on the sheaf Ω1
Z/k; it gives Ω1

Z/k the structure of a seminormed sheaf of OZ-

modules in the sense of [Tem16, §3.1].

The stalks Ω1
Z/k,z can be difficult to describe; for example, Ω1

Z/k,z is not isomor-

phic to Ω1
OZ,z/k as normed OZ,z-algebras. Nevertheless, the completed fibres admit

a much nicer description: for any affinoid neighbourhood M(A) ⊆ Z of z, the uni-

versal property of Ω̂1
Z/k yields a contractive morphism Ω̂1

A/k → Ω̂1
H(z)/k of Banach

A-modules, and the universal property of the colimit gives rise to a morphism ψz

and a commutative diagram

Ω̂1
A/k

Ω1
Z/k,z Ω̂1

H(z)/k.
ψz

By [Tem16, Theorem 6.1.8], the morphism ψz identifies Ω̂1
H(z)/k with the sep-

arated completion of the module (Ω1
Z/k,z, ‖ · ‖z). In fact, ψz factors through the

fibre Ω1
Z/k(z) := Ω1

Z/k,z ⊗OZ,z H(z), which is equipped with the tensor product semi-

norm. This factorization identifies Ω̂1
H(z)/k with the separated completion of Ω1

Z/k(z);

see [Tem16, Corollary 6.1.9].

Now, let Z be a quasi-smooth k-analytic space in the sense of [Duc11, Definition
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5.2.4]. For example, take Z to be the analytification of a smooth k-scheme, or the i-

analytification of a smooth k-scheme when k is trivially-valued. By [Duc11, Corollary

5.3.2], the sheaf Ω1
Z/k is locally free.

Let `,m ∈ Z>0. The stalk of the exterior power Ω`
Z/k :=

∧`
i=1 Ω1

Z/k at a point

z ∈ Z acquires an OZ,z-module seminorm as follows: let ‖ · ‖z,` be the largest OZ,z-

module seminorm on Ω`
Z/k,z such that for any local sections s1, . . . , s` ∈ Ω1

Z/k,z, we

have

‖s1 ∧ . . . ∧ s`‖z,` ≤
∏̀
i=1

‖si‖z.

Similarly, the stalks of the tensor power (Ω`
Z/k)

⊗m are also equipped with seminorms;

see [Tem16, §3.2] for a more complete discussion. In particular, if Z is of equidimen-

sion n, then the m-pluricanonical sheaf ω⊗mZ/k := (Ωn
Z/k)

⊗m is a line bundle on Z, and

it carries a metric

‖ · ‖Tem = {‖ · ‖Tem,z}z∈Z ,

which we will also refer to as Temkin’s metric. Moreover, for a fixed local section s

of ω⊗mZ/k, the function ‖s‖Tem is upper-semicontinuous on the locus where s is defined.

Thus, in the terminology of §3.1, Temkin’s metric is lower-semicontinuous.

In the lemma below, we describe the behaviour of Temkin’s metric on ω⊗mZ/k under

Gauss extensions (as defined in §2.7). For r ∈ R∗+, write Zr := Z ×k kr, pr : Zr → Z

for the ground field extension map, and σr : Z → Zr for the Gauss extension.

Lemma 3.3.2.1. Let Z be a good k-analytic space, r ∈ (0, 1)\
√
|k∗|, and `,m ∈ Z>0.

Then, for any z ∈ Z,

‖ · ‖Tem,z = ‖(pr)∗z(·)‖Tem,σr(z)

as OZ,z-module seminorms on (Ω`
Z/k)

⊗m
z , where (pr)

∗
z : (Ω`

Z/k)
⊗m
z → (Ω`

Zr/kr
)⊗mσr(z) de-

notes the pullback map at z.
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Proof. We may assume that m = ` = 1. Consider the commutative diagram

Ω̂1
H(z)/k⊗̂H(z)

(
H(z)⊗̂kkr

)
Ω̂1

(H(z)⊗̂kkr)/kr

Ω̂1
H(z)/k⊗̂H(z)H(σr(z)) Ω̂1

H(σr(z))/kr

Arguing as in [Tem16, Theorem 6.3.11], it suffices to show that the bottom horizontal

map is an isometry. Indeed, the vertical maps are isometric isomorphisms because

the natural map H(z)⊗̂kkr → H(σr(z)) is so, and the top horizontal map is an

isometric isomorphism by [Tem16, Lemma 4.2.6].

3.3.3 Temkin’s metric on divisorial points

When k is a nontrivially-valued field of residue characteristic zero, Temkin’s metric

‖ · ‖Tem on ω⊗mZ/k is the maximal lower-semicontinuous extension of its values on the

divisorial points Zdiv ⊆ Z (in the sense of [Tem16, §3.2.7]). This is shown in [Tem16,

Corollary 8.2.10]. When k is trivially-valued of characteristic zero, one can show that

Temkin’s metric is determined by the set of divisorial points and by the trivial norm;

this is done by reducing to the nontrivially-valued setting by means of the Gauss

extensions (as in §2.7).

Definition 3.3.3.1. Let Z be a good k-analytic space, W ⊆ Z a subset, L a line

bundle on Z, and ‖ · ‖ = {‖ · ‖z}z∈Z a metric on L. We say that ‖ · ‖ is determined

on W if for any z ∈ Z and any section s ∈ Lz, we have

‖s‖z = inf
U3z

sup
y∈U∩W

‖(sU)y‖y, (3.11)

where the infimum ranges over all open neighbourhoods U of z and local sections

sU ∈ Γ(U,L) that restrict to sz, and (sU)y denotes the image of sU in the stalk Ly

at y.
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Note that the right-hand side of (3.11) defines the minimal upper-semicontinuous

metric on L that extends the collection of seminorms {‖ · ‖z}z∈W . In particular, if

‖ · ‖ is upper-semicontinuous, then ‖ · ‖z dominates this seminorm for any z ∈ Z.

Now, let Z be a good, quasi-smooth, equidimensional k-analytic space, and let

ZShv ⊆ Z be the subset of Shilov points of Z. In [Tem16], Temkin shows the following

result.

Theorem 3.3.3.2. Suppose char(k̃) = 0 and m ∈ Z>0. If Z is a compact, strictly

k-analytic space and s ∈ Γ(Z, ω⊗mZ/k), then

max
z∈Z
‖sz‖Tem,z = max

z∈ZShv
‖sz‖Tem,z, (3.12)

where sz denotes the image of s in the stalk ω⊗mZ/k,z. In particular, if k is nontrivially-

valued, then Temkin’s metric on ω⊗mZ/k is determined on Zdiv.

Proof. The equality (3.12) is [Tem16, Corollary 8.2.10]. The second statement follows

from the first by observing that any open neighbourhood of a point contains a strictly

k-affinoid neighbourhood by [Ber90, Proposition 2.2.3(iii)], Shilov points are dense

by Remark 2.6.0.4, and Shilov and divisorial points coincide in this setting.

The goal of this section is to prove the following trivially-valued analogue of The-

orem 3.3.3.2.

Theorem 3.3.3.3. Let k be a trivially-valued field of characteristic zero. For any

z ∈ Z and s ∈ Γ(Z, ω⊗mZ/k), there is an affinoid neighbourhood V ⊆ Z of z such that

max
z∈V
‖sz‖Tem,z = max

z∈V ∩(Zdiv∪{z0})
‖sz‖Tem,z, (3.13)

where sz denotes the image of s in the stalk ω⊗mZ/k,z, and z0 denotes the trivial norm.

In particular, Temkin’s metric on ω⊗mZ/k is determined on Zdiv ∪ {z0}.
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The proof of Theorem 3.3.3.3 proceeds by reduction to Theorem 3.3.3.2 using

Gauss extensions.

Lemma 3.3.3.4. For any z ∈ Z and any affinoid neighbourhood V ⊆ Z of z, either

V is strictly k-affinoid or there exists a smaller affinoid neighbourhood W ⊆ V of z

and r 6∈
√
|k∗| such that Wkr := W ×k kr is strictly kr-affinoid.

It is a standard trick in the theory of analytic spaces to pick r1, . . . , rn 6∈
√
|k∗|

such that Vk~r := V ×k k~r is strictly k~r-affinoid, where k~r := kr1⊗̂k . . . ⊗̂kkrn . The

point of Lemma 3.3.3.4, however, is that this can be done with n = 1, after possibly

passing to a smaller affinoid neighbourhood.

Proof of Lemma 3.3.3.4. Suppose V is not strictly k-affinoid; in particular,
√
|k∗| is

not all of R∗+. Let AV be the k-affinoid algebra corresponding to V . An admissible

epimorphism from a generalized Tate algebra to AV induces a closed immersion of V

into a polydisc, with z landing in the interior of the image. As Laurent domains form

a basis of closed neighbourhoods of x, there is an affinoid neighbourhoodM(B) ⊆ V

of z, where B is of the form

B =
k{s−1

i Si, t
−1
j Tj}

(S − fi, gjTj − 1)
,

for some si, tj ∈ R∗+, fi, gj ∈ k{s−1S, t−1T}, and i = 1, . . . , `, j = 1, . . . ,m. By

assumption, |fi(z)| < si and |gj(z)| > tj for all i, j. For any r ∈ R∗+, the subgroup

rQ is dense in R∗+, so there are exponents pi, qj ∈ Q such that |fi(z)| ≤ rpi < si and

|gj(z)| ≥ rqj > tj for all i, j. Pick r so that r 6∈
√
|k∗|. Set

B′ :=
k{(rpi)−1Si, (r

qj)′−1Tj}
(Si − fi, gjTj − 1)

,

then W :=M(B′) ⊆M(B) ⊆ V is an affinoid neighbourhood of z and, by construc-

tion, Wkr is strictly kr-affinoid.
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Proof of Theorem 3.3.3.3. Let V be an affinoid neighbourhood of x, and assume

that V is not strictly k-affinoid. By Lemma 3.3.3.4, we may assume that there exists

r ∈
√
|k∗| such that Vkr is strictly kr-affinoid. Set

M = max
z∈V
‖s‖Tem,z and M̃ = max

z′∈Vkr
‖p∗rs‖Tem,z′ ,

where pr : Vkr → V denotes the ground field extension map. Write σr : V → Vkr for

the Gauss extension.

We claim that M = M̃ . Since pr is surjective, [Tem16, Lemma 6.3.2] implies that

M ≥ M̃ . Further, Lemma 3.3.2.1 asserts that ‖s‖Tem,z = ‖p∗rs‖Tem,σr(z) ≤ M̃ for all

z ∈ Z. It follows that M = M̃ .

By [Tem16, Corollary 8.2.10] (and the assumption that Vkr is strictly kr-affinoid!),

there exists y ∈ Vkr ∩Zdiv
kr

such that ‖p∗rs‖ω,y = M̃ . Set z = pr(y). Applying [Tem16,

Lemma 6.3.2], we have

M̃ = ‖p∗rs‖Tem,y ≤ ‖s‖Tem,z ≤M,

and hence all of the above inequalities are equalities; in particular, z also achieves

the maximum M . Thus, it suffices to show that z is either a divisorial point or the

trivial norm.

It suffices to show that z is an Abhyankar point with t(H(z)/k) ≤ 1. By [Ber90,

Corollary 9.3.2], d(H(y)/kr) ≤ d(H(σr(z))/kr); in particular, σr(z) is Abhyankar

since y is so. By Proposition 2.7.0.2(3), this occurs if and only if z is Abhyankar

(while Proposition 2.7.0.2 is written only for analytifications of varieties, the same

result holds more generally when Abhyankar points are defined using the local di-

mension as in [Duc07]). It remains to show that t(H(z)/k) ≤ 1. As z is obtained via

restriction from y, it follows that

t(H(z)/k) = dimQ(
√
|H(z)∗|) ≤ dimQ(

√
|H(y)∗|/) = 1,
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which completes the proof.

3.4 Comparison theorems with Temkin’s metric

The goal of this section is to first review Temkin’s comparison theorem [Tem16,

Theorem 8.3.3] with the weight metric in the discretely-valued setting, and then to

prove Theorem A by passing to a discretely-valued extension and applying Temkin’s

comparison result.

3.4.1 Temkin’s comparison theorem with the weight metric

One of the main results of [Tem16] is a comparison theorem between Temkin’s

metric and the weight metric over a discretely-valued field of residue characteristic

zero. Let k be such a field, and let $ be an uniformizer of k.

To state Temkin’s comparison theorem, we write the weight metric multiplica-

tively as in Remark 3.1.1.2. For a normal k-variety X such that ω⊗mX/k is invert-

ible for m ∈ Z>0, recall that the weight metric ‖ · ‖wtdisc on the canonical bun-

dle (ω⊗mX/k)
an ' ω⊗mXan/k is defined as follows: for any x ∈ Xan and local section

s ∈ ω⊗mX/k,ker(x), set

‖s‖wtdisc,x := |$|wts(x).

This formula determines the seminorm ‖ · ‖wtdisc,x on all of the stalks ω⊗mXan/k,x as in

§3.1. For a divisorial point x ∈ Xdiv corresponding to a k◦-model X of X and an

irreducible component E ⊆X0, the weight metric admits a simple description: pick

a OX ,E-module generator δ of the stalk ω⊗mX /k◦,E and write s = fδ for some f ∈ k(X),

then

‖s‖wtdisc,x = |f(x)| · |gE(x)|m,

where gE is a local equation of E at its generic point on X . This expression is
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independent of the choice of δ since any two generators differ by a multiplicative

factor u ∈ O×X ,E and |u(x)| = 1.

Theorem 3.4.1.1. [Tem16, Theorem 8.3.3] For a smooth k-variety X and m ∈ Z>0,

we have

‖ · ‖wtdisc = |$|m‖ · ‖Tem

as metrics on (ω⊗mX/k)
an ' ω⊗mXan/k.

Proof. The proof of Theorem 3.4.1.1, as outlined in [Tem16, Remark 8.3.4(i)], very

much requires the description of the weight function as the maximal lower-semicontinuous

extension of its values on divisorial points as in Theorem 3.2.1.1; combining this

with Theorem 3.3.3.2, it suffices to check equality on divisorial points. This is done

by appealing to results from log geometry and almost mathematics. Further, the

proof of Theorem 3.4.1.1 uses that X is smooth in order to reduce to the case m = 1.

It is not clear whether the assumptions in Theorem 3.4.1.1 can be weakened to

assume only that X is Q-Gorenstein.

When proving Theorem 3.4.1.1, Temkin uses a description of the weight metric

that does not involve references to a pair (X , E). For the sake of completeness, we

review Temkin’s construction (as in [Tem16, §8.3.1]) and prove that it coincides with

our definition of the weight metric.

Temkin’s construction requires the following commutative algebra lemma, which

does not seem to appear explicitly in the literature. Using the machinery of cotangent

complexes, it can be deduced from [GR03, Theorem 6.5.12]. We thank Rankeya

Datta for his help in formulating a more elementary proof.

Lemma 3.4.1.2. If ` ⊆ K is a finite separable extension of discretely-valued fields,
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then K◦ is a finite-type `◦-algebra of the form

`◦[s1, . . . , sm]

(f1, . . . , fm)

such that ∆ = det
(
∂fi
∂sj

)
is nonzero in K◦.

Note that in Lemma 3.4.1.2 neither K nor ` are required to be complete, and we

have made no assumptions on the characteristic of the fields.

Remark 3.4.1.3. The proof of Lemma 3.4.1.2 uses a selection of commutative algebra

definitions and results, which we recall below.

1. Let k be a field and A be a k-algebra. We say that A is a local complete

intersection (lci) if there exists a cover {D(gi)}i∈I of Spec(A) by distinguished

opens such that for each i ∈ I, there is a presentation

A[1/gi] =
k[x1, . . . , xn]

(f1, . . . , fc)

with dim (A[1/gi]) = n − c. If no localizations are necessary, then we say that

A is a (global) complete intersection. See [Sta19, Tag 00S9] for more details.

2. A ring map A→ B is syntomic if it is flat, of finite presentation, and for every

p ∈ Spec(A), κ(p) → B ⊗A κ(p) is a local complete intersection. See [Sta19,

Tag 00SL] for more details.

3. By [Sta19, Tag 00SY], for any ring map A→ B is a ring map, the following two

conditions are equivalent:

(a) there exists g ∈ B such that A→ B[1/g] is syntomic;

(b) there exists g ∈ B such that A→ B[1/g] is a global complete intersection.

Proof of Lemma 3.4.1.2. Let A be the integral closure of `◦ in K. By [Mat89, Corol-

lary on p.85], then A is a Dedekind domain, and `◦ ↪→ A is finite by [Sta19, Tag
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032L]. Moreover, A ⊆ K◦ because K◦ is a valuation ring containing `◦. It follows

that n := K◦◦ ∩ A is a nonzero prime ideal of A (indeed, it contains the nonzero

maximal ideal of `◦), hence n is maximal in A. Thus, An ⊆ K◦. Since discrete

valuation rings are maximal with respect to dominance, we must have K◦ = An.

Furthermore, the ring A is semilocal. Indeed, any maximal ideal of A must con-

tract to `◦◦ under the local homomorphism `◦ ↪→ A, hence the contractions contains

a uniformizer $` of `◦. However, the extension $`A has a finite presentation

$`A = mα1
1 · · ·mαr

r ,

and the maximal ideals of A that appear in the presentation are precisely those that

contain $`. Thus, A is semilocal.

Now, assume without loss of generality that n = m1. For each i = 2, . . . , r, take

gi ∈ mi\n, and set g := g2 · · · gr. Then, A[1/g] is local with maximal ideal nA[1/g],

so

A[1/g] = (A[1/g])nA[1/g] = An[1/g] = K◦.

In particular, `◦ ↪→ K◦ is of finite type, since it is the composition of the finite map

`◦ ↪→ A and the finite type map A ↪→ A[1/g] = K◦.

Applying Remark 3.4.1.3(3) with g = 1 (and using the fact that both `◦ and K◦

are of dimension 1), it suffices to show that `◦ ↪→ K◦ is syntomic. Observe that K◦

is flat over `◦, since flatness over a dvr is equivalent to torsion-freeness. Moreover,

we have seen that `◦ ↪→ K◦ is of finite type, and hence of finite presentation because

`◦ is noetherian. Therefore, to construct the desired presentation, it remains to show

that each fibre of `◦ ↪→ K◦ is lci. In fact, we will show that each fibre is a global

complete intersection.

The fibre above the generic point of `◦ is ` ↪→ K, which is finite and separable by
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assumption. By the primitive element theorem, we can write K = `[T ]/(f) for some

irreducible polynomial f ∈ `[T ]; in particular, K is a global complete intersection

over `. Furthermore, the derivative f ′(T ) is nonzero because the extension ` ↪→ K

is nontrivial, so L ↪→ K is smooth.

The fibre above the closed point of `◦ is ˜̀ ↪→ K◦/($e
K), where $K is a uniformizer

of K◦ and e ∈ Z≥1 is the ramification index of the extension K/`. The quotient

K◦/($e
K) is a noetherian local ring of dimension zero, hence it is complete. Since it

contains the field ˜̀, it has a coefficient field, i.e. there is an injective homomorphism

K̃ ↪→ K◦/($e
K).

Consider the surjective K̃-algebra homomorphism K̃[[T ]] → K◦/($e
K) given by

T 7→ $K (this is well-defined precisely because K◦/($e
K) is complete). The power

series ring K̃[[T ]] is a dvr, so every ideal must be of the form (T β) for some β ∈ Z≥0;

in particular, the kernel must be (T e). Therefore, ˜̀ ↪→ K◦/($e
K) decomposes as

˜̀ ↪→ K̃ ↪→ K̃[T ]/(T e) ' K̃[[T ]]/(T e) ' K◦/($e
K).

The finite field extension ˜̀ ↪→ K̃ decomposes into a sequence

˜̀= F0 ⊆ F1 ⊆ . . . ⊆ Fd = K̃

of nontrivial finite simple extensions, i.e. for all i = 1, . . . , d, we have Fi = Fi−1[Si]/(hi)

and hi ∈ Fi−1[Si] is irreducible. By induction, we can write

K̃ =
˜̀[S1, . . . , Sd]

(h1, . . . , hd)
.

It follows that

K◦/($e
K) '

˜̀[S1, . . . , Sd, T ]

(h1, . . . , hd, T e)
.

Note that the special fibre need not be smooth (indeed, it is not even reduced if

e > 1). This completes the proof that there is a presentation of the desired form.
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Finally, it remains to show that the Jacobian determinant ∆ (as in the statement)

is nonzero in K◦, but this is clear: we have seen that the generic fibre ` ↪→ K is

smooth, so ∆ is invertible in K by the Jacobian criterion, hence nonzero.

Remark 3.4.1.4. There are purely inseparable, finite extensions ` ⊆ K of discretely-

valued fields such that `◦ ↪→ K◦ is not finite. For example, there are non-excellent

non-F -finite dvrs, from which one can construct an extension `◦ ↪→ K◦ of dvrs that

is not finite; see [DS18, §4.1].

Construction 3.4.1.5. As before, k is discretely-valued field of residue character-

istic zero, X is a normal k-variety, n = dim(X), and x ∈ Xdiv. Let K(x) denote

the function field k(X) equipped with the norm x; K(x) is a discretely-valued field

and the separated completion of K(x) is the completed residue field H(x) of Xan at

x. Let $x be a uniformizer of K(x). We will construct a metric ‖ · ‖α,x on the fibre

ωXan/k,x(x) by specifying its value on a nonzero element of the K(x)-suspace ωK(x)/k.

Let u1, . . . , un ∈ K(x)◦ be such that u1, . . . , un form a transcendence basis of

K(x)/k and ũ1, . . . , ũn form a transcendence basis of K̃(x)/k̃; such a collection exists

by the assumption that x is divisorial and [Tem16, 8.3.1]. Set `(x) = k(u1, . . . , un),

so `(x) ⊆ K(x) is a finite separable extension, since K(x) is a finitely-generated

extension of k. By Lemma 3.4.1.2, there is a presentation of the form

K(x)◦ =
`(x)◦[s1, . . . , sm]

(f1, . . . , fm)

such that ∆x := det
(
∂fi
∂sj

)
is nonzero in K(x)◦. By [Liu02, Corollary 4.14], the

relative canonical module ωK(x)◦/`(x)◦ is generated by ∆−1
x as a K(x)◦-submodule of

K(x). Hence, the relative canonical module ωK(x)◦/k◦ is generated by

ηx := ∆−1
x du1 ∧ . . . ∧ dun (3.14)
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as a K(x)◦-submodule of Ωn
K(x)/k. The metric ‖ · ‖α,x on ωXan/k,x(x) is uniquely

determined by declaring

‖ηx‖α,x := |$x(x)|.

That is, there is a unique way to write any element of ωXan/k,x(x) as fηx for some

f ∈ H(x), and we set

‖fηx‖α,x = |f(x)| · ‖ηx‖α,x = |f$x∆x(x)|.

It is easy to check that the function ‖ · ‖α,x is independent of the choices involved.

The following shows that the metric ‖ · ‖α,x from Construction 3.4.1.5 coincides

with the weight metric ‖ · ‖wtdisc,x as defined at the start of the section.

Proposition 3.4.1.6. For x ∈ Xdiv and s ∈ ωXan/k,x, we have ‖s‖α,x = ‖s‖wtdisc,x.

Proof. It suffices to show ‖ηx‖α,x = ‖ηx‖wtdisc,x, where ηx ∈ ωK(x)◦/k◦ is as in (3.14).

Suppose x is determined by the pair (X , E), in which case there are isomorphisms

K(x)◦ ' OX ,E and ωK(x)◦/k◦ ' ωX /k◦,E. The form ηx gives a K(x)◦-module isomor-

phism

σx : ωK(x)◦/k◦ ' OX ,E

given by fηx 7→ f ; in particular, σx(ηx) = 1. Thus,

ordE(divX (ηx) + X0,red) = ordE(σx(ηx)) + 1 = 1,

and hence

‖ηx‖wtdisc,x = |$|b
−1
E ordE(divX (ηx)+X0,red) = |$|b

−1
E = |$x| = ‖ηx‖α,x,

where bE = ordE(X0).
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3.4.2 Divisorial points under Gauss extensions

Let k be a trivially-valued field of characteristic zero. Let X be a normal k-variety,

and let x ∈ Xdiv∩Xi be the divisorial point determined by the triple (c, Y
h→ X,E).

Assume that X is quasi-projective, and Y and E are smooth. For r ∈ (0, 1), recall

that kr = k(($)) is the Gauss extension of k with |$|r = r; write pr : Xan
kr
→ Xan for

the ground field extension map and σr : Xan → Xan
kr

for the Gauss extension map.

For any such r, the point σr(x) ∈ Xan
kr

is divisorial by Proposition 2.7.0.2.

The goal of this section is to pick an r ∈ (0, 1) such that we can construct an

explicit divisorial representation of σr(x) ∈ Xdiv
kr

. This is done in three steps.

1. Construct an explicit k[[$]]-model of Xk(($)), together with an irreducible com-

ponent F of its special fibre, with the property that for any element a ∈ k(X),

we have

ordE(a) = ordF (a).

2. Endow k(($)) with the $-adic norm |$|r = r for a suitable choice of r ∈ (0, 1)

so that the divisorial valuation yF ∈ Xan
kr

determined by F satisfies pr(yF ) = x.

3. Show that σr(x) = yF .

The construction we will present is inspired by a similar phenomenon involving test

configurations, as in [BHJ17, BJ18b]; this relationship is described further in Re-

mark 3.4.2.2.

Step 1. We may assume that h is projective by [KM08, Lemma 2.45], and

so [Har77, II, Theorem 7.17] implies that there exists a coherent ideal I ⊆ OX such

that Y = BlI X and h is identified with the blow-up morphism. Let α ∈ Z>0 be the

multiplicity of E in the exceptional locus of h.
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Consider the fibre product X := X ×k k[[$]]: this is the trivial k[[$]]-model of

Xk(($)), and its special fibre X0 is naturally identified with X. We set I := (I,$) ⊆

OX , which is a coherent ideal sheaf on X that is cosupported on X0. Let ν : Y → X

be the blow-up of X along I. As the vanishing locus of I lies in X0, it follows that Y

is again a model of Xk(($)). The strict transform of X0 via ν can be identified with

Y by [Har77, II, Corollary 7.15]. Under this identification, Y0 contains a copy of the

divisor E, which we write as Ẽ. Further, let ρ : Y 99K Y ×k k[[$]] be the birational

map given by the composition of ν : Y → X with the inverse of Y ×k k[[$]] → X .

These objects are collected in Section 3.4.2.

Write η (resp. η̃) for the generic point of E (resp. Ẽ) in Y (resp. Y). We claim

that the composition of ρ with the projection Y ×k k[[$]]→ Y onto the special fibre

sends η̃ to η. Indeed, observe that the diagram

Y ×k k[[$]] Y

Y ⊃ E Ẽ ⊂ Y0

ρ

is commutative, and that the bottom arrow restricts to an isomorphism from Ẽ to

E. Hence, it suffices to show that Ẽ is not contained in the indeterminacy locus of ρ,

and we show this with the following local computation. Suppose X = Spec(A) and

I = (f1, . . . , f`), in which case an affine chart of Y is given by U = Spec(B), where

B =
A[S2, . . . , S`]

(f1Si − fi : i = 2, . . . , `)
.

There is a corresponding affine chart of Y given by U = Spec(B), where

B =
A[S2, . . . , S`, S̃]

(f1S̃ −$, f1Si − fi : i = 2, . . . , `)

and A = A ⊗k k[[$]]. The birational map ρ : Y 99K Y ×k k[[$]] is given on these

charts by the composition of the two top arrows in the diagram below:
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Y
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[[
$

]]
)

S
p

ec
(k

((
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))
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Figure 3.1: A commutative diagram describing the model associated to the Gauss extension.
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B ⊗k k[[$]] (B ⊗k k[[$]])[S̃] B = (B⊗kk[[$]])[S̃]

(f1S̃−$)

B B/($)

Thus, the construction of the map Y 99K Y ×k k[[$]] → Y yields a ring morphism

OY,η → OY,η̃, which sends η̃ to η, as required.

The irreducible subscheme Ẽ of Y is not a divisor (indeed, it has codimension 2

in Y), so consider the blow-up µ : Z → Y of Ẽ. Note that Z is again a model of

Xk(($)). Write F ⊆ Z0 for the exceptional divisor of µ, which is irreducible since Ẽ

is so.

We claim that ordF (a) = ordE(a) for all a ∈ k(X). It suffices to show the equality

for a ∈ OY,η. With notation as above, the exceptional divisors of h in the affine chart

U = Spec(B) of Y is defined by f1. Let g be a local equation of E at η. In the model

Y , Ẽ is locally cut out by g and the equations defining the strict transform of X0.

Therefore, in Z, g is a local equation of F at its generic point.

Write a = ugλ for u ∈ O×Y,η and λ ∈ Z>0 (so that ordE(a) = λ). The image of this

expression for a via the map

OY,η → OY,η̃ → OZ,F

gives an expression for a in OZ,F . As u remains a unit in OZ,F , we deduce that

ordF (a) = λ ordF (g) = λ = ordE(a),

as required.

Step 2. We will find r ∈ (0, 1) such that the divisorial valuation yF ∈ Xan
kr

deter-

mined by (Z, F ) satisfies pr(yF ) = x. To that end, we first compute the multiplicity

of F in the special fibre of Z. Working in an affine chart of the blowup as before,

the composition Z → Y → X → Spec(k[[$]]) can locally be written as
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k[[$]] A = A⊗k k[[$]] B = A[S2,...,S`,S̃]

(f1S̃−$,f1Si−fi : i=2,...,`)

A[S2,...,S`,S̃,Q]

(S̃−gQ,f1S̃−$,f1Si−fi : i=2,...,`)
.

In particular, we can write $ = f1gQ at the generic point of F . As Q is a unit in

OZ,F , we conclude that

ordF ($) = ordF (f1) + ordF (g) = ordE(f1) + ordF (g) = α + 1.

Set r = e−c(α+1), where recall that x is determined by the triple (c, Y → X,E). For

any a ∈ k(X), we have that

|a(x)| = e−c ordE(a) = r
ordE(a)

α+1 = r
ordF (a)

ordF ($) = rvyF (a) = |a(yF )|.

That is, pr(yF ) = x.

Step 3. It remains to show that yF = σr(x). This is done by appealing to the

following construction from [BJ18b, §1.6]. The group k∗ acts on k[[$]] as follows:

for c ∈ k∗ and f =
∑

j∈Z aj$
j with aj ∈ k and aj = 0 for j � 0, set

c · f :=
∑
j∈Z

c−jaj$
j.

For a k-scheme X, there is an induced k∗-action on the product X ×k k[[$]], and

we say that an ideal sheaf on X ×k k[[$]] is k×-invariant if the corresponding closed

subscheme of X×kk[[$]] is fixed pointwise by the k∗-action. For example, if J ⊆ OX

is an ideal sheaf, then (J , $) ⊆ OX×k[[$]] is k∗-invariant.

Lemma 3.4.2.1. Let X (`) → X (`−1) → . . . → X (1) → X be a sequence of models of

Xk(($)), where each morphism X (i+1) → X (i) is the blow-up of a k∗-invariant ideal,

and X = X ×k k[[$]] is the trivial model of Xk(($)). If k is an infinite field and

r ∈ (0, 1), then any divisorial point of Xan
kr

determined by an irreducible component

of X (`)
0 lies in the image of σr.
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In [BJ18b, §1.7], Lemma 3.4.2.1 is used to interpret the k∗-invariant divisorial

points of Xan
k(($)) in terms of test configurations.

Proof. This follows from [BJ18b, Proposition 1.6]; see also [BHJ17, Lemma 4.5].

The point yF ∈ Xan
kr

satisfies the hypotheses of Lemma 3.4.2.1 by construction, so

it lies in the image of σr. As σr is a section of the projection pr and pr(yF ) = x by

Step 2, we conclude that σr(x) = yF .

Remark 3.4.2.2. The construction of the point yF is inspired by one in the proof

of [BHJ17, Proposition 4.11]. There, for any r ∈ (0, 1), the authors view the Gauss

extension as a continuous map σr : Xi → (X×kA1
k)

i, and one can show the following:

if x ∈ Xi is the divisorial point given by the triple (− log(r), Y → X,E), then σr(x)

is a monomial valuation on the birational model Y ×k A1
k → X ×k A1

k in the snc

divisor E ×k A1
k + Y ×k {0}.

The construction of yF = σr(x) can be rephrased in the above language. We first

consider the blow-up ν of X ×k A1
k at {cX(x)} × {0}, and then the blow-up µ of

the intersection of Exc(ν) and the strict transform of X ×k {0} via ν. The valuation

σr(x) is realized as an order of vanishing along Exc(µ). The advantage of realizing

σr(x) in this manner is that the blow-ups occur only above the origin of A1
k.



72

•

• •

•

• •
•

• •

•

• •
•

µ

X ×A1
k

Y ×A1
k

ν = blowup of the originblowup of {0} ×A1
k

Construction in [BHJ17] Construction in §3.4.2

Figure 3.2:
A comparison between the constructions of [BHJ17] and §3.4.2. We illustrate the two
approaches to the construction of σr(x) in Remark 3.4.2.2 with a toric example. Con-
sider X = A2

k and the blow-up Y → X at the origin with exceptional divisor E ⊆ Y .
Let x ∈ Xi be the divisorial point determined by the triple (− log(r), Y → X,E). In
the above figure, the triangles represent a slice of the fans of the various toric blow-ups
that occur in the two constructions. Following [BHJ17], σr(x) is a monomial valuation
in the divisors corresponding to the white nodes, which we picture as a square on the
segment joining them. On the other side, according to §3.4.2, we extract a divisor cor-
responding to σr(x) with a sequence of two blow-ups, and we mark this divisor with a
square.

3.4.3 Proof of Theorem A

The goal of this section is to prove Theorem A, which is the trivially-valued

analogue of Theorem 3.4.1.1. This justifies the definition of the weight metric in

the trivially-setting from (3.2.2). The proof of Theorem A proceeds by reduction

to Theorem 3.4.1.1.

Throughout this section, let k be a trivially-valued field of characteristic zero, and

let X be a normal, Q-Gorenstein k-variety. Fix m ∈ Z>0 such that ω⊗mX/k is a line

bundle. For x ∈ Xi, recall that we write

‖ · ‖wttriv,x = e−wttriv(·,x)

for the multiplicative form of the weight metric on the stalk (ω⊗mX/k)
i
x .
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Proposition 3.4.3.1. Let x ∈ Xi be the divisorial point determined by the triple

(c, Y
h→ X,E). With notation as in §3.4.2, for any rational section s of ω⊗mX/k, we

have

‖s‖wttriv,x = r−m‖q∗rs‖wtdisc,σr(x), (3.15)

where qr : Xkr → X denotes the (algebraic) ground field extension.

Proof. Set ξ = cX(x). Let s be a OX,ξ-module generator of the stalk ω⊗mX/k,ξ. It suffices

to show (3.15) for s; indeed, any local section at ξ can be written as fs for some

f ∈ OX,ξ, in which case both sides of (3.15) are multiplied by |f(x)|. By working

locally around ξ, we may assume that X = Spec(A) is affine and s is globally-defined.

With the same notation as in Step 2 of Section 3.4.2, we have

‖s‖wttriv,x = e−cm(1+(`−1)α), (3.16)

since ordE(KY/X) = ordE(f `−1
1 ) = (` − 1)α. By [Liu02, Corollary 6.4.14], the stalk

of the relative canonical sheaf ωZ/X at the generic point of F can be viewed as the

OZ,F -submodule of the function field of Xk(($)); further, it is generated by (gf `1)−1.

The m-th power of these generators multiplied by q∗rs thus gives a OZ,F -module

generator of the stalk ω⊗mZ/k[[$]],F . It follows that

‖q∗rs‖wtdisc,σr(x) = ‖q∗rs‖wtdisc,yF

= |(gf `1)m(yF )| · |g(yF )|m

= |g(yF )|m(2+lα)

= e−cm(2+`α).

Thus, combining the above with (3.16), it follows that

r−m‖q∗rs‖wtdisc,σr(x) = ecm(α+1)e−cm(2+`α) = e−cm(1+(`−1)α) = ‖s‖wttriv,x,

as required.
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Now, Proposition 3.4.3.1 is the key tool to prove the trivially-valued analogue

of Theorem 3.4.1.1, which is stated as Theorem A in the introduction.

Theorem 3.4.3.2. If X is a smooth k-variety, then ‖ · ‖wttriv = ‖ · ‖Tem as metrics

on (ω⊗mX/k)
i ' ω⊗m

Xi/k
.

Proof. By Theorem 3.3.3.3 and using that A(X,∅) is the maximal lower-semicontinuous

extension of its values on divisorial points, it suffices to show the equality on the

points in Xdiv ∩ Xi. Fix x ∈ Xdiv ∩ Xi and let r′ ∈ (0, 1) be chosen as in Step 2

of Section 3.4.2. It suffices to check equality on elements of the stalk (ω⊗mX/k)ker(x), i.e.

on a rational section s of ω⊗mX/k. Now, applying Proposition 3.4.3.1, Theorem 3.4.1.1,

and Lemma 3.3.2.1 we find that

‖s‖wttriv,x = (r′)−m‖q∗r′s‖wtdisc,σr′ (x) = (r′)−m
(
(r′)m‖q∗r′s‖Tem,σr′ (x)

)
= ‖s‖Tem,x,

which completes the proof.

Remark 3.4.3.3. Let k,X,m be as above. To any Cartier divisor D on X, we can

associate a canonical singular metric ‖ · ‖D on the line bundle OX(D)an in the fol-

lowing manner: the divisor D induces an embedding ιD of OX(D) into the constant

sheaf k(X), and for any x ∈ Xan and f ∈ OX(D)ker(x), set

‖f‖D,x := |ιD(f)(x)|.

Now, Temkin’s metric ‖ · ‖Tem and ‖ · ‖Dred
induce a tensor product metric on

(ω⊗m(X,Dred))
i. By Theorem 3.4.3.2, this tensor product metric coincides with the

weight metric wttriv. It would be interesting if this metric (ω⊗m(X,Dred))
i arises in a

similar fashion as in [Tem16], or if similar results could be obtained in the singular

setting.



CHAPTER IV

Essential skeletons of pairs

4.1 Skeletons over a discretely-valued field

In this section, we briefly review the construction of the skeleton associated to

a log regular model from [BM17], and of the Kontsevich–Soibelman and essential

skeletons from [MN15]. These are constructions whose trivially-valued analogues are

discussed in §4.2, where more detail is given. Throughout, let k be a discretely-valued

field, $ ∈ k◦◦ a uniformizer, S = Spec(k◦), and let S+ be the divisorial log structure

on S defined by the closed point Spec(k̃).

Let X + be a log-regular log scheme over S+, x ∈ FX + , g1, . . . , gm ∈ CX +,x monoid

generators, and g1, . . . , gm ∈MX +,x lifts of the g1, . . . , gm. Note that g1, . . . , gm is a

generating system for the maximal ideal mx ⊆ OX ,x. In particular, any f ∈ OX ,x

admits a decomposition of the form

∑
β∈Zm+

cβg
β (4.1)

in the mx-adic completion ÔX ,x of OX ,x, where cβ ∈ Ô×X ,x ∪ {0}. A decomposition

of f as in (4.1) is called an admissible expansion of f .

Proposition 4.1.0.1. For any monoid homomorphism α ∈ Hom(CX +,x,R+) such

75
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that α($) = 1, there exists a unique minimal semivaluation

vα : OX ,x\{0} → R+

such that

1. vα extends the discrete valuation vk on k ↪→ OX ,x;

2. for any f ∈MX+,x, we have vα(f) = α(f);

3. for any f ∈ OX ,x and any admissible expansion f =
∑

β∈Zm+
cβg

β, we have

vα(f) = min
β
vk(cβ) + α(gβ).

Proof. This is [BM17, Proposition 3.2.10]. In the special case when X0 is an snc

divisor on X and X + = (X ,X0), this is [MN15, Proposition 2.4.4].

Any semivaluation as in Proposition 4.1.0.1 defines a point of the analytic generic

fibre X̂η. The collection of all such semivaluations is a piecewise-linear subspace

Sk(X +) ⊆ X̂η called the skeleton of X +, which is a polyhedral complex in Xbir

with (possibly) unbounded faces. In the special case when X0 is an snc divisor on

X and X + = (X ,X0), then Sk(X +) = Sk(X ) is the skeleton from [MN15, §3].

Assume now that char(k̃) = 0. Let X be a smooth, proper variety over k, D an

snc boundary on X, and X+ = (X,D) for the associated divisorial log structure on

X. For any η ∈ H0(X,m(KX +D)), let wtη(X,D) denote the minimal value of the

weight function wtη on Xan. The Kontsevich–Soibelman skeleton Sk(X,D, η) of η is

the locus of points x ∈ Xbir such that wtη(x) = wtη(X,D). By [BM17, Proposition

4.1.6], Sk(X,D, η) ⊆ Sk(X +) for any log regular model X + of X+ over S+. The

essential skeleton Skess(X,D) of the pair is the union of all Kontsevich–Soibelman

skeletons; in particular, it is also contained in the skeleton of any log regular model of
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X+. In the special case when D = 0, Skess(X,D) = Skess(X) is the essential skeleton

of Mustat, ă–Nicaise. See [MN15, BM17, BM19] for further details.

4.2 Skeletons over a trivially-valued field

In this section, we construct a skeleton associated to a log-regular log scheme over

a trivially valued field k. This generalizes the construction of the simplicial cones

of quasi-monomial valuations in [JM12, §3], and it is a trivially-valued analogue of

the skeletons of §4.1. Moreover, our skeleton coincides with that of [Uli17, §6], but

the explicit descriptions of the points that arises in the two constructions is slightly

different. Our realization of the skeleton, inspired by [MN15], enables us to describe

the minimality loci of the weight functions of §3.2.2, and ultimately to define the

essential skeleton of a pair over k, when k has characteristic zero.

Throughout the section, let k be a trivially-valued field, X a normal variety over

k, and D an effective Q-divisor on X such that KX +Dred is Q-Cartier, and assume

that the log scheme X+ = (X,Dred) is log-regular; in particular DX+ = Dred. Note

that, under these assumptions, the pair (X,Dred) is log canonical.

4.2.1 The faces of the skeleton of a log-regular scheme.

In the following proposition, we construct the valuations that will form the skele-

ton of X+. Over a perfect field, the log scheme X+ has toroidal singularities, and

the valuations of its skeleton are the toric or monomial valuations of the local toric

model, parametrized by the realification of the cocharacter lattice, as in [Thu07]. For

an arbitrary log-regular log scheme X+, the valuations are expressed in terms of the

log-geometric data.

Proposition 4.2.1.1. For any x ∈ FX+ and α ∈ Hom(CX+,x,R+), there exists a
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unique minimal semivaluation

vα : OX,x\{0} → R+

such that

1. vα extends the trivial valuation v0 on k ↪→ OX,x;

2. for any f ∈MX+,x, we have vα(f) = α(f).

Moreover, vα is a valuation if and only if α ∈ Hom(CX+,x,R+).

Proof. The proof is analogous to that of Proposition 4.1.0.1 (see [BM17, Proposition

3.2.10]). We briefly outline the construction in this setting. Pick a multiplicative

section σ : CX+,x →MX+,x of the quotient mapMX+,x → CX+,x. By [BM17, Lemma

3.2.3], any f ∈ OX,x can be expressed as

f =
∑

γ∈CX+,x

aγ · σ(γ)

as an element of the mx-adic completion ÔX,x, where aγ ∈ O×X,x ∪ {0}. Such an

expression will be referred to as an admissible expansion of f . Now, set

vα(f) := inf
γ∈CX,x

v0(aγ) + α(γ). (4.2)

Following [BM17, Proposition 3.2.10], one can show that vα(f) is independent of the

choice of admissible expansion of f or of the choice of section σ, the infimum is in

fact a minimum, and vα defines a semivaluation on OX,x that satisfies the desired

properties.

For any x ∈ FX+ , consider the subset

Skx(X
+) := {vα : α ∈ Hom(CX+,x,R+)}
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of Xi, equipped with the subspace topology inherited from Xi. Alternatively,

Skx(X
+) can be equipped with the topology of pointwise convergence inherited from

the identification with the space Hom(CX+,x,R+); that is, for a sequence (αn)∞n=1 and

α in Hom(CX+,x,R+), we have vαn → vα in Skx(X
+) if and only if αn(γ)→ α(γ) for

all γ ∈ CX+,x. These two topologies are compared below.

Lemma 4.2.1.2. The topology of pointwise convergence on Skx(X
+) coincides with

the subspace topology inherited from Xi.

Proof. Given a sequence (αn)∞n=1 and α in Hom(CX+,x,R+), it suffices to show that

vαn(f) → vα(f) for all f ∈ OX,x if and only if αn(γ) → α(γ) for all γ ∈ CX+,x.

Granted the latter assumption, the convergence vαn(f) → vα(f) follows by (4.2).

Conversely, for any lift γ̃ ∈MX+,x of γ, we have that

αn(γ) = vαn(γ̃)→ vα(γ̃) = α(γ).

Lemma 4.2.1.3. For any x ∈ FX+, the closure Skx(X
+) of Skx(X

+) in Xi coincides

with the subset

{vα : α ∈ Hom(CX+,x,R+)}. (4.3)

In addition, Skx(X
+) ∩Xbir = Skx(X

+)

Proof. Denote by Zx the subset of Xi defined in (4.3). It is clear that Skx(X
+) ⊆ Zx;

thus, we need to show that Zx is contained in Skx(X
+) and Zx is closed in Xi.

Consider a net (vαε)ε in Zx such that vαε → v for some v ∈ Xi. For any f ∈ O×X,x,

v(f) = limε vαε(f) = 0, so the restriction of v to MX+,x descends to a monoid

morphism α : CX+,x → R+. Arguing as in Lemma 4.2.1.2, one sees that αε → α and

hence vαε → vα in Xi; thus, v = vα lies in Zx, so Zx is contained in Skx(X
+).
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Now, following the proof of Lemma 4.2.1.2, we observe that the map

Hom(CX+,x,R+)� Zx ⊆ Xi

α 7→ vα

is continuous, so Zx is the image of a compact space into a Hausdorff space via a

continuous map, and hence Zx is closed. It follows that Zx = Skx(X
+). Finally,

Zx ∩Xbir = Skx(X
+) by Proposition 4.2.1.1.

4.2.2 The skeleton of a log-regular scheme.

The subsets Skx(X
+) of Xi, for x ∈ FX+ , can be glued together in a manner

that is compatible with the relation of specialization in the Kato fan FX+ . Indeed,

consider x, y ∈ FX+ where x is a specialization of y, i.e. x ∈ {y}. The localization

map OX,x ↪→ OX,y descends to a surjective monoid morphism τx,y : CX+,x � CX+,y.

In this case, the two subsets of Skx(X
+) and Sky(X

+) of Xi are related as follows:

Lemma 4.2.2.1. The map Sky(X
+) → Skx(X

+), given by vα 7→ vα◦τx,y , is con-

tinuous and injective. Furthermore, this map identifies Sky(X
+) as a subspace of

Skx(X
+) in Xi.

Proof. The continuity is immediate from Lemma 4.2.1.2, and the injectivity follows

from the surjectivity of τx,y. Finally, note that vα and vα◦τx,y coincide as points of

Xi by the uniqueness in Proposition 4.2.1.1.

Definition 4.2.2.2. The skeleton of X+ is the subspace

Sk(X+) :=
⋃

x∈FX+

Skx(X
+) ⊆ Xi,

where Sky(X
+) is identified as a subset of Skx(X

+) whenever x ∈ {y} via Lemma 4.2.2.1.
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By construction, Sk(X+) has the structure of a polyhedral cone complex with

vertex v0 where

{v0} = Hom({0},R+) = SkηX (X+)

and ηX ∈ FX+ is the generic point of X. The faces of Sk(X+) are precisely the

subsets Skx(X
+) for x ∈ FX+ . Write Sk(X+) for the closure of Sk(X+) in Xi.

Lemma 4.2.1.3 shows that Sk(X+) is the union of the subsets Skx(X
+) for x ∈ FX+

with the suitable identifications as in Lemma 4.2.2.1.

For any log-regular log scheme X+ over k, [Kat94, Proposition 9.8] shows that

there is a regular k-scheme X ′, a reduced snc divisor D′ on X ′, and a morphism

X ′+ = (X ′, D′) → X+ of log schemes such that FX′+ is obtained from FX+ via

subdivisions. As subdivisions of the Kato fan do not change the associated skeleton,

it follows that X ′i → Xi restricts to a homeomorphism Sk(X ′+) ' Sk(X+). Two

consequences of this fact are detailed below:

- The skeleton Sk(X+) coincides with the subspace QM(X ′, DX′) ⊆ Xi of quasi-

monomials valuations in (X ′, DX′) constructed in [JM12, §3]. It follows that

Sk(X+) lies in the locus of quasi-monomial points of Xi.

- Under the identification Sk(X ′+) ' Sk(X+), the skeleton Sk(X+) is endowed

with the structure of a simplicial cone complex, and moreover with an integral

piecewise affine structure (analogous to [JM12, §4.2]).

4.2.3 The retraction to the skeleton.

Proposition 4.2.3.1. There is a continuous retraction map

ρX+ : Xi → Sk(X+)
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such that cX(v) ∈ {cX(ρX+(v))} for all v ∈ Xi. Moreover, ρX+ restricts to a

continuous retraction map Xbir ∩Xi → Sk(X+).

Proof. Given v ∈ Xi, the construction of the retraction ρX+(v) is described below.

Write x = cX(v), and let y be a Kato point in FX+ to which x specializes; that is, y

is the generic point of a stratum of DX+ to which x specializes. Let IX+,x denotee

the ideal of OX,x generated by MX+,x\O×X+,x, so the natural map OX,x ↪→ OX,y is

the localization at IX+,x, and hence my = IX+,xOX,y. For any multiplicative section

σ : CX+,x →MX+,x, [BM17, Lemma 3.2.3] shows that any f ∈ OX,x can be expressed

as

f =
∑

γ∈CX+,x

aγ · σ(γ) (4.4)

as an element of ÔX,y, where aγ ∈ (OX,x\IX+,x) ∪ {0}. For any expansion of f as

in (4.4), set

ṽ(f) := min
γ∈CX+,x

v0(aγ) + v(σ(γ)). (4.5)

Following the proof of [BM17, Proposition 3.2.10], one can show that ṽ is well-defined

and is a semivaluation ṽ : OX,x → R+. Further, it is clear that x specializes to cX(ṽ)

since ṽ(f) > 0 for all f ∈ OX,x.

We claim that ṽ ∈ Sky(X
+). To see this, we construct a monoid morphism α̃ ∈

Hom(CX+,y,R+) such that ṽ = vα̃ as semivaluations, where vα̃ is the semivaluation

constructed in Proposition 4.2.1.1. Observe that any f ∈ OX,y can be written as

f = g/h with g ∈ OX,x and h ∈ OX,x\IX+,x, so ṽ(h) = 0 and hence ṽ(f) = ṽ(g) > 0.

In addition, f is invertible in OX,y if and only if g is, which is equivalent to g ∈

OX,x\IX+,x; in this case, ṽ(f) = ṽ(g) = 0 by construction. Thus, the restriction

of ṽ to MX+,y descends to a monoid morphism α̃ : CX+,y → R+. The uniqueness

in Proposition 4.2.1.1 guarantees that ṽ = vα̃; thus, set ρX+(v) := ṽ ∈ Sky(X
+).
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Note that if v ∈ Sk(X+), then we have ṽ = v. Indeed, if x = cX(v) ∈ FX+ , then

the formula (4.5) defining ṽ on elements of OX,x coincides with (4.2). That is, ρX+

is a retraction of Xi onto Sk(X+) for the inclusion Sk(X+)→ Xi.

It remains to show that ρX+ is continuous. For each w ∈ Xi, consider the subset

Uw = c−1
X ({cX(ρX+(w))}) of Xi, which is an open neighbourhood of w since the

centre map is anticontinuous. As {Uw}w∈Xi is an open cover of Xi, it suffices to

show that the restriction ρX+ |Uw is continuous for each w ∈ Xi. Note that the image

of ρX+ |Uw lies in SkcX(ρX+ (w))(X
+) because cX(ρX+(w)) is a Kato point to which

cX(w′) specializes for all w′ ∈ Uw. The continuity of ρX+|Uw is then a consequence

of the following: for any f ∈ OX,cX(ρX+ (w)), the map

Uw → R+

w′ 7→ vρX+ (w′)(f)

is continuous. Indeed, if f =
∑

γ aγ ·σ(γ) is an admissible expansion in ÔX,cX(ρX+ (w)),

then

vρX+ (w′)(f) = min
γ
v0(aγ) + w′(σ(γ))

is continuous in w′. Hence, ρX+|Uw is continuous, which concludes the proof.

The retraction of Proposition 4.2.3.1 is related to other constructions in the liter-

ature.

- If X+ = (X,DX+) is an snc pair, the retraction ρX+ of Proposition 4.2.3.1

restricts to the retractionXbir∩Xi → Sk(X+) of [JM12, §4.3]. Note that [JM12]

denotes the space Xbir ∩Xi by ValX .

- After identifying Sk(X+) with the extended cone complex ΣX+ following [Uli17,

§6.1], ρX+ coincides with the tropicalization map Xi → ΣX+ . In particu-
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lar, [Uli17, Theorem 1.2] implies that ρX+ recovers Thuillier’s (strong deforma-

tion) retraction map from [Thu07, §3.2].

4.2.4 Functoriality of the skeleton.

Given log-regular log schemes X+ and Y + over k and a morphism ϕ : X → Y

of k-schemes, write ϕi : Xi → Y i for the i-analytification. The retraction map

of Proposition 4.2.3.1 shows that ϕi restricts to a continuous map

Sk(X+) ↪→ Xi ϕi
−→ Y i ρY+−→ Sk(Y +) (4.6)

between the closures of the skeletons. If ϕ is a dominant map, then (4.6) restricts to

a continuous map

Sk(X+) ↪→ Xbir ∩Xi ϕi
−→ Y bir ∩ Y i ρY+−→ Sk(Y +). (4.7)

That is, the formation of the skeleton is functorial with respect to dominant mor-

phisms.

4.2.5 Comparison with the dual complex

In [MN15, Proposition 3.1.4], Mustat, ă and Nicaise remark that, given a variety X

over a discretely valued field, the skeleton associated to an snc model X of X over the

valuation ring is homeomorphic to the dual intersection complex of the special fibre

X0. In the trivially-valued field case, consider a log-regular pair X+ = (X,DX+) such

that DX+ is an snc divisor, and let D(DX+) denote the dual intersection complex of

DX+ . In the following proposition, we compare D(DX+) to the skeleton Sk(X+); this

result is well-known to experts, but we include a proof for the sake of completeness.

Proposition 4.2.5.1. There is a homeomorphism between Sk(X+) and the cone

over D(DX+).
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In §6.2, we extend Proposition 4.2.5.1 to more singular pairs; see e.g. Lemma 6.2.4.4.

Proof. A point x ∈ FX+ is the generic point of a stratum of DX+ of codimension

r, for some r; since DX+ is snc, a choice of local equations for DX+ at x yields an

isomorphism CX+,x ' Nr. This induces an isomorphism

Skx(X
+) ' Hom(CX+,x,R+) ' (R+)r

of topological monoids.

A face of D(DX+) correspond to a stratum Z of DX+ of codimension r for some

r, and is isomorphic to the standard simplex ∆r−1. Thus, the cone over this face is

homeomorphic to (R+)r, i.e. to Skx(X
+) where x is the generic point of Z.

As the gluing maps on the dual complex are compatible with the identifications

on Sk(X+), we conclude that the cone over the dual complex is homeomorphic to

the skeleton of X+.

Definition 4.2.5.2. The link of the skeleton Sk(X+) is the (topological) quotient

Sk(X+)∗/R∗+ by the R∗+-rescaling action.

Proposition 4.2.5.3. The spaces Sk(X+)∗/R∗+ and D(DX+) are homeomorphic.

Proof. The proof is identical to that of [Thu07, Proposition 4.7], and we sketch it

below. The rescaling action on the punctured cone over D(DX+) makes the homeo-

morphism of Proposition 4.2.5.1 into an R∗+-equivariant one. The assertion follows

by taking quotients by the R∗+-actions.

It follows from Proposition 4.2.5.3 that Sk(X+)∗/R∗+ has the structure of a (com-

pact) cell complex induced by the homeomorphism with D(DX+).
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4.2.6 The skeleton of a product

Let k be a trivially-valued field and let X+ = (X,DX+) and Y + = (Y,DY +) be

log-regular pairs over k. We denote by Z+ = (Z,DZ+) the product in the category

of fine and saturated log schemes. In particular, Z+ is log-regular and

DZ+ = DX+ × Y +X ×DY + .

The goal of this section is to compare the skeleton associated to Z+ with the product

of skeletons of X+ and Y + in the category of topological spaces.

Lemma 4.2.6.1. The projection maps (prX , prY ) : Z → X ×k Y induces an isomor-

phism FZ+
'→ FX+ × FY +.

Proof. As any stratum of DZ+ is of the form Dx×Dy for some x ∈ FX+ and y ∈ FY + ,

we have a bijective correspondence between FZ+ and FX+ × FY + that is compatible

with the projections to the factors. Moreover, this bijection is actually an isomor-

phism of Kato fans, observing that

CZ+,z ' CX+,x ⊕ CY +,y

when the Kato point z ∈ FZ+ maps to (x, y) ∈ FX+ × FY + .

The projections prX : Z+ → X+ and prY : Z+ → Y + are dominant morphisms of

log-regular log schemes, hence they induce a continuous map of skeletons

(
prSk(X+), prSk(Y +)

)
: Sk(Z+)→ Sk(X+)× Sk(Y +)

that is constructed as in 4.2.4; that is,
(

prSk(X+), prSk(Y +)

)
is the composition

Sk(Z+) ↪→ Zi∩Zbir
(pri

X+ ,pri
Y+ )

−−−−−−−→ (Xi∩Xbir)×(Y i∩Y bir)
(ρX+ ,ρY+ )
−−−−−−→ Sk(X+)×Sk(Y +).
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It follows that there is a commutative diagram

Zbir ∩ Zi
(pri

X+ ,pri
Y+ )

//

ρZ+

��

(Xbir ∩Xi)× (Y bir ∩ Y i)

(ρX+ ,ρY+ )

��

Sk(Z+)
(prSk(X+),prSk(Y+))

// Sk(X+)× Sk(Y +).

(4.8)

In the following lemma, we show that the map prSk(X+) : Sk(Z+)→ Sk(X+) is in

fact induced by the restriction of morphisms of monoids.

Lemma 4.2.6.2. Let z = (x, y) ∈ F+
Z be a Kato point, ε ∈ Hom(CZ+,z,R+), and let

ix,z : CX+,x ↪→ CZ+,z and iy,z : CY +,y ↪→ CZ+,z denote the inclusions of characteristic

sheaves. Then, 
prSk(X+)(vε) = vε◦ix,z ,

prSk(Y +)(vε) = vε◦iy,z .

Proof. It suffices to show the first equality. By the definition of the projection map

to the skeleton, we have that

prSk(X+)(vε) = ρX+(priX+(vε)).

Since prSk(X+)(vε) is a point of Skx(X
+), there exists α ∈ Hom(CX+,x,R+) such that

ρX+(priX+(vε)) = vα.

Hence, it suffices to show α = ε ◦ ix,z. By Proposition 4.2.1.1, for any m ∈MX,x we

have

α(m) = priX+(vε)(m)

and, since prX induces the inclusion of fraction fields i : k(X) ↪→ k(Z), we obtain

that

priX+(vε)(m) = (vε ◦ i)(m) = vε(m) = ε(m).
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On the other hand, for any m ∈MX,x we also have

vε◦ix,z(m) = (ε ◦ ix,z)(m) = ε(m),

which concludes the proof.

Similar to [BM17, Proposition 3.4.3], we prove that log-regular skeletons are well-

behaved under products.

Proposition 4.2.6.3. The map
(
prSk(X+), prSk(Y +)

)
restricts to a homeomorphism

Sk(Z+) ' Sk(X+)× Sk(Y +).

Proof. It suffices to show that
(
prSk(X+), prSk(Y +)

)
restricts to a homeomorphism

Skz(Z
+) ' Skx(X

+) × Sky(Y
+) for each z = (x, y) ∈ FZ+ . By Lemma 4.2.6.2, this

is equivalent to showing that the map

Hom(CZ+,z,R+)→ Hom(CX+,x,R+)× Hom(CY +,y,R+),

given by ε 7→ (ε ◦ ix,z, ε ◦ iy,z), is a homeomorphism. It is clearly continuous and, if

qz,x : CZ+,z → CX+,x and qz,y : CZ+,z → CY +,y denote the projections, then

(ε1, ε2) 7→ ε1 ◦ qz,x + ε2 ◦ qz,y

is a continuous inverse.

Proposition 4.2.6.4. There is a homeomorphism

Sk(Z+)∗/R∗+ ' (Sk(X+)∗/R∗+) ∗ (Sk(Y +)∗/R∗+),

where (Sk(X+)∗/R∗+)∗(Sk(Y +)∗/R∗+) denotes the join of Sk(X+)∗/R∗+ and Sk(Y +)∗/R∗+.

Proof. Observe that the proof of Proposition 4.2.6.3 yields a R∗+-equivariant home-

omorphism

Sk(Z+) ' Sk(X+) ∗ Sk(Y +),
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where the product is endowed with the diagonal action. As explained in §2.9, there

exists a R∗+-equivariant homeomorphism

Sk(Z+) ' Cone((Sk(X+)∗/R∗+) ∗ (Sk(Y +)∗/R∗+)).

The statement now follows from the results of §2.9.

4.2.7 The Kontsevich–Soibelman and essential skeletons

Assume now that k has characteristic zero and D is a Weil Q-divisor on X such

that KX +Dred is Q-Cartier. Following the approach of Kontsevich and Soibelman,

for any rational D-logarithmic pluricanonical form η on X, we can construct a subset

Sk(X,D, η) of Xi as the set of birational points satisfying a minimality condition

with respect to η. More precisely, we define

wtη(X,D) := inf{wtη(x) : x ∈ Xi} ∈ R.

Definition 4.2.7.1. The Kontsevich–Soibelman skeleton of the triple (X,D, η) is

Sk(X,D, η) = {x ∈ Xbir ∩Xi : wtη(x) = wtη(X,D)}.

In fact, as in [MN15, Theorem 4.7.5], Sk(X,D, η) is the closure in Xbir ∩Xi of the

points x ∈ Xdiv ∪ {v0} such that wtη(x) = wtη(X,D).

Assume in addition that X+ = (X,Dred) is log-regular, hence log canonical. In

this case, the function A(X,Dred) is non-negative on Xi, and it has value exactly 0 at

any divisorial point in Sk(X+), thus on Sk(X+). In fact, the only x ∈ Xbir ∩ Xi

with A(X,Dred)(x) = 0 are those in the skeleton by [Blu18, Proposition 3.2.5].

Proposition 4.2.7.2. For a non-zero regular D-logarithmic pluricanonical form η

on X and x ∈ Xi, we have

wtη(x) > wtη(ρX+(x)),
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and if x ∈ Xbir ∩Xi, then equality holds if and only if x ∈ Sk(X+).

Proof. By the maximal lower-semicontinuity of the weight function, it suffices to

show the inequality on Xbir ∩ Xi (or even on Xdiv ∩ Xi). Let x ∈ Xbir ∩ Xi.

Denote by ξ and ξ′ the centres of x and ρX+(x), respectively. By construction of

the retraction ρX+ , we have that ξ ∈ {ξ′}, and hence there exists a trivializing open

U ⊆ X for the logarithmic pluricanonical bundle ω⊗m(X,Dred) that contains both ξ and

ξ′. On such an open set U , the form η|U corresponds to a regular function f on U ,

and the weight functions can be computed as
wtη(x) = A(X,Dred)(x) + vx(f),

wtη(ρX+(x)) = A(X,Dred)(ρX+(x)) + vρX+ (x)(f).

Locally at ξ′, f has an admissible expansion of the form f =
∑

γ∈CX+,ξ′
cγγ. The

ultrametric inequality gives

vx(f) > min
γ
{v0(cγ) + vx(γ)} = vρX+ (x)(f), (4.9)

and A(X,Dred)(x) > 0 = A(X,Dred)(ρX+(x)) by [Blu18, Proposition 3.2.5]; adding this

to (4.9), we get that wtη(x) > wtη(ρX+(x)).

Assume, in addition, that the equality A(X,Dred)(x)+vx(f) = vρX+ (x)(f) holds. As

vx(f) > vρX+ (x)(f) and A(X,Dred)(vx) > 0, this assumption implies that A(X,Dred)(x) =

0. It follows that x lies in the skeleton Sk(X+).

Definition 4.2.7.3. The essential skeleton Skess(X,D) of (X,D) is the union of all

Kontsevich–Soibelman skeletons Sk(X,D, η), where η runs over all non-zero regular

D-logarithmic pluricanonical forms on X. In symbols,

Skess(X,D) :=
⋃
η

Sk(X,D, η).
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For any regularD-logarithmic pluricanonical form η, the function φtriv,ω⊗m
(X,Dred)

(η, ·)

is non-negative, and hence wtη is as well. Further, if η is non-zero, wtη(v0) = 0,

where v0 is the trivial valuation. It follows that wtη(X,D) = 0 and v0 ∈ Sk(X,D, η)

for every such form η. In particular, the essential skeleton of (X,D) is nonempty

whenever there exists a non-zero regular D-logarithmic form on X.

By arguing as in [MN15, Proposition 4.5.5(v)], one can show that

Sk(X,D, η⊗m) = Sk(X,D, η)

for any m ∈ Z>0. In particular, Skess(X,D) can be computed as the union of

Kontsevich–Soibelman skeletons of sections of m(KX +D) with m ∈ Z>0 sufficiently

divisible.

Remark 4.2.7.4. There are two fundamental reasons why the essential skeleton is

defined in terms of non-zero regular D-logarithmic pluricanonical forms. They are

the following:

- If ξ ∈ X and δ is a generating section of ω⊗m(X,Dred),ξ, then any regular section η of

ω⊗m(X,D) can be written, locally at ξ, as η = fδ for some f ∈ OX,ξ. For any x ∈ Xi

such that f is regular at cX(x) and cX(ρX+(x)), we have vx(f) > vρX+ (x)(f), as

in Proposition 4.2.7.2. In particular, the minimality locus of wtη on Xbir ∩Xi

(and hence the essential skeleton) lies in the log-regular skeleton Sk(X+).

- The definition of the essential skeleton is in terms of D-logarithmic pluricanon-

ical forms, as opposed to logarithmic pluricanonical forms. This is done so that

the faces of Sk(X+) corresponding to components of D with coefficient strictly

less than 1 do not lie in the essential skeleton. This choice is compatible with

the correspondence between the dual complex of a dlt boundary divisor and

the essential skeleton in the discretely-valued setting, as explored in [NX16,
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Theorem 3.3.3] and [BM17, Proposition 5.1.7].

Furthermore, when (X,D) is a logCY pair, we will show in Proposition 6.2.4.1 that

the essential skeleton Skess(X,D) in fact coincides with the skeleton Sk(X,D=1).

This plays a crucial role in the proof of Theorem G.

4.2.8 Comparison of the trivially-valued and discretely-valued settings

This section explores a relationship between the weight functions in the trivially-

valued and in the discretely-valued cases. To this end, we work in a setting where

both the weight functions are defined and interact, namely on the total space of a

degeneration. Proposition 4.2.8.3 shows that we can regard an essential skeleton,

defined in the trivially-valued setting, as a cone over the essential skeleton in the

discretely-valued setting.

Let k be a trivially-valued field of characteristic zero. Let X be a degeneration

over k[[$]], i.e. a normal, flat, separated scheme of finite type over k[[$]]. The formal

completion X̂ of X along the special fibre X0 is a formal scheme topologically of

finite type over k[[$]], and the structure morphism

X̂ → Spf(k[[$]]) (4.10)

is a morphism of special formal k-schemes in the sense of [Ber96a, §1]. The mor-

phism (4.10) induces a morphism

X triv → D1
k(0, 1)

on the analytic generic fibres, where D1
k(0, 1) denotes the open unit disc over k.

We can identify D1
k(0, 1) with the interval [0, 1) by sending r ∈ [0, 1) to the $-adic

seminorm | · |r on k[[$]] normalized so that |$|r = r. Under this identification, the
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fibre of X triv → D1
k(0, 1) above 1/e is the generic fibre of X , denoted X disc, as an

analytic space over the field K := (k(($)), | · |1/e); see [Nic11, Lemma 4.2] for details.

Definition 4.2.8.1. We say that X is defined over a curve if there exists a germ

of a smooth curve C over k, a closed point 0 ∈ C(k), an isomorphism ÔC,0 ' k[[$]]

(which we write as an equality from now on), and a normal, flat, separated scheme

X over C such that

X = X ×C Spec(ÔC,0).

For the rest of the section, fix a morphism X → C and 0 ∈ C(k) as in Defini-

tion 4.2.8.1. There is a cartesian square of analytic spaces over k given by

X disc X triv Xi

{1/e} ' M(K) [0,1) ' D1
k(0, 1) Ci.

Let X0 ⊆ X denote the fibre above 0. Suppose that X0 is reduced, Xk(($)) is

smooth, and KX + X0 is Q-Cartier. For any regular section η of ω⊗m(X,X0), write

ηK for the Gelfand–Leray form associated to η: this is the regular section of ω⊗mXK

characterized by the property that ηK ∧ d$ coincides with the pullback of η along

X → X, or equivalently it is the contraction of η with the vector field ∂/∂$.

See [NS07, Definition 9.5] for more details. We can define weight functions on X triv

and X disc as follows:

- the weight function wtdisc
ηK

: X disc → R is defined as in Theorem 3.2.1.1, where

we consider ηK as a regular section of ω⊗m(X ,X0);

- the weight function wttriv
η : X triv → R is the restriction of the weight function

wtη : Xi → R defined as in Definition 3.2.2.2.

Note that the reason we assume that X is defined over a curve is that our definition
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of wttriv
η only holds on the i-analytification of a k-variety, but not on a general

k-analytic space.

Proposition 4.2.8.2. Let m ∈ Z>0 be such that m(KX + X0) is Cartier. For

η ∈ H0(X,m(KX +X0)) and x ∈X disc, we have

wtdisc
ηK

(x) = wttriv
η (x). (4.11)

If in addition X → C is proper (and hence X disc = X an
K ), then there is an inclusion

of Kontsevich–Soibelman skeletons

Sk(XK , ηK) ⊇ Sk(X,X0, η) ∩X disc, (4.12)

which is an equality provided that (X,X0) is log canonical and that there is a com-

ponent of X0 along which η does not vanish identically.

Proof. We prove (4.11) in two steps. For the first step, assume that x ∈X disc∩Xdiv

and is determined by a prime divisor on a proper birational model h : Y → X of X,

where h is an isomorphism away from X0. Let Y := Y ×X X ; it is equipped with

a proper birational morphism Y → X , also denoted by h, that is an isomorphism

outside of X0. In particular, Y is a model of XK .

Set ξ = redX (x) and take a OX ,ξ-module generator δ of ω⊗m(X ,X0),ξ. Locally at ξ,

write the section ηK as ηK = fδ for some f ∈ OX ,ξ. Consider the identity

m(KY /k[[$]] + Y0,red − divY ($))−

(∑
i

ma(Ei)Ei + divY (h∗f)−mdivY ($)

)

= h∗(m(KX /k[[$]] + X0)− divX (f)),

(4.13)

where Ei are the exceptional prime divisors of h, and a(·) is the log discrepancy

function with respect to (X ,X0). Note that a(Ei) = A(X,X0)(ordEi).
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Now, (3.4) and (4.13) yield the equalities

wtdisc
ηK

(x) = vx(div(Y ,Y0,red−divY ($))(ηK)) +m

= ma(x) + vx(h
∗f)−mvx($) +m

= mA(X,X0)(x) + vx(f)

= mA(X,X0−div(X,X0)
(η))(x)

= wttriv
η (x),

where the second-to-last equality follows from [Kol13, Lemma 2.5] and the last equal-

ity from Proposition 3.2.3.1. Thus, (4.11) holds for any x ∈X disc ∩Xdiv. Note that

(XK)div = X disc∩Xdiv, since the blow-up of a formal ideal on X that is cosupported

on X0 can be realized as the completion of an algebraic blow-up of X.

Now, we proceed to the second step: to prove the equality (4.11) on all of X disc,

it suffices to check that both wtdisc
ηK

and wttriv
η are maximal lower-semicontinuous

extensions on X disc of

wtdisc
ηK
|(XK)div = wttriv

η |X disc∩Xdiv .

This follows immediately for wtdisc
ηK

from Theorem 3.2.1.1.

By Definition 3.2.2.2 and since the inclusion X triv ↪→ Xi is an open immer-

sion, the weight function wttriv
η is the maximal lower-semicontinuous extension of

wttriv
η |X triv∩Xdiv . By construction, wttriv

η is R∗+-homogeneous, i.e. we have wttriv
η (a ·

x) = a · wttriv
η (x) for a ∈ R∗+. By homogeneity, the restriction of wttriv

η to X disc is

the maximal lower-semicontinuous extension of wttriv
η |X disc∩Xdiv . This completes the

proof of (4.11).

The inclusion (4.12) can be deduced from (4.11) as follows: it implies that

wttriv
η (X,X0) 6 wtdisc

ηK
(XK).
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By Definition 4.2.7.1, Sk(X,X0, η) ∩ X disc consists of those x ∈ X bir
K such that

wttriv
η (x) = wttriv

η (X,X0). Thus, for such an x, we have

wtdisc
ηK

(x) = wttriv
η (x) = wttriv

η (X,X0) 6 wtdisc
ηK

(XK) 6 wtdisc
ηK

(x),

and hence these are equalities. It follows that x ∈ Sk(XK , ηK) by [MN15, Theorem

4.7.5].

We show equality in (4.12) under the additional hypotheses that (X,X0) is log

canonical and there is a component E ⊆ X0 such that ordE(div(X,X0)(η)) is zero.

The former assumption guarantees that wttriv
η (X,X0) = 0, which in turn implies

that wttriv
η (ordE) = mA(X,X0)(ordE) = 0. After rescaling ordE, we find that there is

a point x ∈X disc such that wtdisc
ηK

(x) = 0; in particular,

0 = wttriv
η (X,X0) 6 wtdisc

ηK
(XK) 6 wtdisc

ηK
(x) = 0.

Thus, both sides of the inclusion (4.12) consist of those x ∈ (X disc)bir such that

wtdisc
ηK

(x) = 0, hence they coincide.

Now, we have developed the tools to prove Theorem B from the introduction.

Proposition 4.2.8.3. If X → C is projective, then there is an inclusion of essential

skeletons

Skess(XK) ⊇ Skess(X,X0) ∩X disc, (4.14)

which is an equality when (X,X0) is log canonical and KX +X0 is semiample.
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)[ |
1/e

D1
k(0, 1)

X triv

X disc

Figure 4.1:
An illustration of Proposition 4.2.8.3 for a Tate elliptic curve. Consider the degener-
ation X := {xyz + $(x3 + y3 + z3) = 0} ⊆ P2

C[[$]], where P2
C[[$]] has homogeneous

coordinates [x : y : z]. The equality of (4.14) can be illustrated for X as above: the
cone is Skess(X,X0), and its intersection with the fibre X disc is a circle (that is, the
essential skeleton of the Tate elliptic curve X an

K ).

Proof. The inclusion (4.14) is immediate from (4.12) and the fact that Kontsevich–

Soibelman skeleton can be computed in terms of tensor powers of the given form. For

the equality, assume now that (X,X0) is log canonical and KX + X0 is semiample.

Pick m ∈ Z>0 such that m(KX + X0) is Cartier and globally generated, and pick

global generators η1, . . . , ηN ∈ H0(X,m(KX + X0)) that do not vanish along all of

X0. As (X,X0) is log canonical, [Kol13, Corollary 1.36] shows that there is a dlt pair

(Xdlt, Xdlt
0 ), equipped with a crepant birational morphism (Xdlt, Xdlt

0 ) → (X,X0)

that is an isomorphism on the snc-locus of (X,X0). In particular,

X dlt := Xdlt ×C Spec(ÔC,0)

is a good minimal dlt model of XK that dominates the model X ; this is a tech-

nical condition needed to apply the results of [NX16], and it is discussed further

in Definition 6.2.6.2.

Write δi for the pullback of ηi to Xdlt, and δi,K for the restriction to the generic

fibre X dlt
K = XK . Since the map (Xdlt, Xdlt

0 ) → (X,X0) is crepant, the sections
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δ1, . . . , δN of H0(Xdlt,m(KXdlt + Xdlt
0 )) are global generators for m(KXdlt + Xdlt

0 ).

Then,

Skess(XK) =
N⋃
i=1

Sk(X dlt
K , δi,K) =

N⋃
i=1

Sk(XK , ηi,K), (4.15)

where the first equality follows from [NX16, Theorem 3.3.3], and the second equality

follows from [MN15, Proposition 4.7.2]. Now, observe that (4.14) and (4.15) yield

inclusions

Skess(X,X0) ∩X disc ⊆ Skess(XK)

=
⋃

N
i=1 Sk(XK , ηi,K)

=
⋃

N
i=1 Sk(X,X0, ηi) ∩X disc

⊆ Skess(X,X0) ∩X disc,

where the final equality follows from the case of equality in (4.12). This completes

the proof.

Remark 4.2.8.4. If (X,X0) is not log canonical, then the equality in (4.14) does not

necessarily hold. For example, take a semistable degeneration X → C of an elliptic

curve to a cusp with KX +X0 trivial, such as

X = {zy2 = x3 +$z3} ⊆ P2
k ×k Spec (k[$]) .

The pair (X,X0) is not log canonical e.g. by [Kol13, Theorem 2.31], and hence

Skess(X,X0) is empty. However, Skess(XK) is the skeleton of the minimal regular

model of XK , which is non-empty.

4.3 Closure of the skeleton of a log-regular pair

The skeleton of a log-regular model of X is a polyhedral complex in Xbir with

(possibly) unbounded faces. The closure of the skeleton in the Berkovich analyti-

fication Xan has itself a decomposition into skeletons associated to the strata of
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the log-regular structure of X. This decomposition is treated in details in [Thu07,

Proposition 3.17] in the trivially-valued setting, and the case of a toroidal embedding

is mentioned in [ACP15, Example 2.4.2 and Proposition 2.6.2]. In this section, we

review and extend their description for a log-regular log scheme, in order to prove

analogous results for the closure of the Kontsevich–Soibelman skeletons when the

residue characteristic is zero.

Let k be a field that is either trivially or discretely-valued. In the latter case, let $

be a uniformizer of k◦. Write S+ for the log structure on S = Spec(k◦) that is trivial

when k is trivially-valued, and the divisorial log structure determined by the special

fibre Spec(k̃) when k is discretely-valued. Let X+ = (X,DX+) be a log-regular log

scheme over k, and let X+ = (X , DX+) be a log-regular model of X+ over S+, which

we understand as X+ = X+ when k is trivially-valued. Let X an denote Xi when k

is trivially-valued, and X̂η when k is discretely-valued.

Moreover, we denote by

DX+ =
∑N

i=1DX+,i

the sum of the irreducible components of DX+ , Ix ⊆ {1, . . . , N} the (possibly empty)

index set such that {x} is the irreducible component of

⋂
i∈Ix

DX+,i

with generic point x ∈ FX+ , Dx = {x} for each x ∈ FX+ , and Dx = (Dx)k for

the generic fibre of Dx for each x ∈ FX+ . For x ∈ FX+ , let Dan
x denote Di

x if k is

trivially-valued, and the analytic generic fibre of Dx if k is discretely-valued. In both

cases, the closed immersion Dx ↪→ X induces a closed immersion Dan
x ↪→ X an on

analytifications.
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4.3.1 The decomposition of the closure of the skeleton

In order to decompose the closure Sk(X+) into a disjoint union of skeletons as-

sociated to the strata D+
y for any y ∈ FX+ , we endow the subscheme D+

y with the

log-regular structure prescribed by the following proposition.

Proposition 4.3.1.1. Let x, y ∈ FX+ be such that x ∈ {y} and consider the sub-

monoid

Iy = {f ∈MX+,x : f(y) = 0}

of MX+,x. Then, the log structure associated to MX+,x \ Iy → OX ,x/IyOX ,x on the

scheme Spec(OX ,x/IyOX ,x) is log-regular.

Proof. This follows immediately from [Kat94, Proposition 7.2].

For each y ∈ FX+ , the log-regular structure obtained in Proposition 4.3.1.1 is

called the trace of X+ on Dy. More geometrically, the trace log structure on Dy is

(Dy,
∑
j /∈Iy

DX+,j|Dy).

In particular, the Kato fan of D+
y is given by

FD+
y

= FX+ ∩ Dy = {x ∈ FX+ : x ∈ {y}},

and the characteristic sheaf of D+
y at x ∈ FD+

y
is CD+

y ,x
= {γ ∈ CX+,x : γ(y) 6= 0}.

Thus, for any x ∈ FD+
y

, there is an injective monoid morphism

CD+
y ,x

↪→ CX+,x.

For any y ∈ FX+ such that D+
y dominates the base log scheme S+, we can construct

the skeleton Sk(D+
y ). In the case when k is discretely-valued field and the scheme

D+
y is vertical (i.e. D+

y is supported on the closed fibre of X+), we set Sk(D+
y ) = ∅.
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Lemma 4.3.1.2. For any x ∈ FX+, the closure Skx(X+) of Skx(X+) in X an coin-

cides with the subset

Zx :=


{vα : α ∈ Hom(CX+,x,R+)}, if k is trivially-valued,

{vα : α ∈ Hom(CX+,x,R+), α($) = 1}, if k is discretely-valued,

(4.16)

of X an. In particular,

Sk(X+) =
⋃

x∈FX+

Zx.

Proof. In the trivially-valued case, the claim coincides with Lemma 4.2.1.3. Similarly,

in the discretely-valued case, it is clear that Skx(X+) ⊆ Zx and that Zx is closed.

By [BM17, Proposition 3.2.15], it follows that Zx ⊆ Skx(X+), hence we conclude

that Zx is the closure of Skx(X+).

Proposition 4.3.1.3. For any x ∈ FX+, the closure Skx(X+) of Skx(X+) in X an

coincides with the disjoint union

Skx(X+) =
⊔

y∈FX+

x∈{y}

Skx(D+
y ).

Proof. A valuation in the closure of Skx(X+) is of the form vα for some morphism

α ∈ Hom(CX+,x,R+) by Lemma 4.3.1.2. If Im(α) ⊆ R+, then vα ∈ Skx(X+);

otherwise, the subset

Iα = {f ∈ OX ,x : vα(f) = +∞}.

is non-empty, and it forms an ideal of OX ,x.

Claim 4.3.1.4. There exists y ∈ FX+ such that x ∈ {y} and the vanishing locus

V (Iα) ⊆ Spec(OX ,x) of Iα is equal to {y}.

Proof of Claim 4.3.1.4. First, observe that

V (Iα) =
⋂
f∈Iα

V (f) =
⋂

f∈Iα∩MX+,x

V (f).
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Thus, it suffices to prove that

⋂
f∈Iα

V (f) ⊇
⋂

f∈Iα∩MX+,x

V (f).

Let f ∈ Iα, then any admissible expansion
∑

γ∈CX+,x
cγγ is such that, if cγ 6= 0, then

γ ∈ Iα. Therefore, for any f ∈ Iα⋂
γ∈Iα∩MX+,x

V (γ) ⊆
⋂

γ : cγ 6=0 in f=
∑
cγγ

V (γ) ⊆ V (f)

and we obtain the required inclusion. Therefore, V (Iα) is a stratum of DX+ , since

Iα is a prime ideal and V (f) is the union of irreducible components of DX+ for any

f ∈ Iα ∩MX+,x. By definition of a Kato point, we have that

{x} =
⋂

f∈MX+,x\O
×
X ,x

V (f) ⊆
⋂

γ∈Iα∩MX+,x

V (γ) = {y},

hence we conclude that x ∈ {y}. This completes the proof of the claim.

Now, let y ∈ FX+ be such that x ∈ {y} and V (Iα) = {y}. Any element γ of

CX+,x satisfies γ ∈ CD+
y ,x

if and only if γ(y) 6= 0, or equivalently γ /∈ Iα. Thus, the

restriction αy of the morphism α to CD+
y ,x

does not attain the value +∞. To such

a morphism we associate a valuation vαy that, by construction, lies in the skeleton

Skx(D+
y ). Therefore, by restriction of morphisms, we obtain an injective map

Skx(X+) ↪→
⊔

y∈FX+ : x∈{y}

Skx(D+
y ).

It remains to show the surjectivity of this map. Given a valuation vβ ∈ Skx(D+
y )

for some y ∈ FX+ with x ∈ {y} and β ∈ Hom(CD+
y ,x
,R+), we can extend β to a

morphism β̃ on CX+,x by

β̃(γ) :=


β(γ), γ ∈ CD+

y ,x
,

+∞, otherwise.
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The associated valuation vβ̃ lies in the closure Skx(X+) in X an, therefore we get

⊔
y∈FX+ : x∈{y}

Skx(D+
y ) ↪→ Skx(X+).

The two maps are inverse of each other by construction, which completes the proof.

Proposition 4.3.1.5. The closure of the skeleton Sk(X+) in X an admits the decom-

position

Sk(X+) =
⊔

y∈FX+

Sk(D+
y ),

where Sk(D+
y ) is viewed as a subset of X an by the inclusion Dan

y ↪→ X an. Further,

Sk(D+
y ) = Sk(X+) ∩ ker−1(y).

Proof. From Proposition 4.3.1.3, it follows that

Sk(X+) =
⋃

x∈FX+

Skx(X+) =
⋃

x∈FX+

⊔
y∈FX+ : x∈{y}

Skx(D+
y )

=
⊔

y∈FX+

⋃
x∈FD+

y

Skx(D+
y )

=
⊔

y∈FX+

Sk(D+
y ).

For any y ∈ FX+ , if the skeleton Sk(D+
y ) is non-empty, then it consists of birational

points of Dan
y , hence of valuations whose image via the kernel map is the generic

point of Dy, thus y. Therefore, the kernel map distinguishes the different part of the

disjoint union in Sk(X+).

4.3.2 The case of the toric varieties

Let M be a finitely-generated free abelian group, N = Hom(M,Z) be the cochar-

acter lattice, and 〈·, ·〉 : M ×N → Z be the evaluation pairing. Set MR := M ⊗Z R



104

and NR := N ⊗Z R. Let Σ be a rational polyhedral fan in NR. Given a cone σ ∈ Σ,

consider the monoid Sσ := σ∨ ∩M .

Let XΣ (resp. XΣ) be the normal toric variety over k (resp. model over S) associ-

ated to the fan Σ. Let DΣ denote the (reduced) toric boundary divisor of XΣ. Write

DX+ for DΣ when k is trivially-valued, or for DΣ + (XΣ)0,red when k is discretely-

valued. The log scheme X+ = (XΣ, DX+) is log-regular, and the goal of this section

is to describe the closure in X an
Σ of the essential skeleton of (XΣ, DΣ).

The support of the fan Σ admits a natural compactification Σ, as in [Pay09, §3]

and [Rab12, Proposition 3.4]; see also [ACM+15, §7.2]. The construction is reviewed

below. Given a cone σ ∈ Σ, we denote by σ := Hom(Sσ,R+), equipped with the

topology of pointwise convergence. The space σ admits a locally closed stratification

by the quotient monoids σ/σ′, for each face σ′ 4 σ, where the embedding σ/σ′ ↪→ σ

is given by

u+ σ′ 7→

m 7→

〈m,u〉, m ∈ σ′⊥,

+∞, otherwise,

 (4.17)

for u ∈ σ. For example, the natural inclusion σ ↪→ σ coincides with the embedding

σ/σ′ ↪→ σ associated to the face σ′ = 0. If τ 4 σ, then the natural map Sσ → Sτ

induces an open embedding τ ↪→ σ; moreover, if σ′ 4 τ 4 σ, then the embedding

τ ↪→ σ restricts to the natural inclusion τ/σ′ ↪→ σ/σ′. Consequently, the cones

{σ : σ ∈ Σ} glue to give an extended cone

Σ :=
⋃
σ∈Σ

σ =
⊔
σ∈Σ

⋃
σ4τ

τ/σ, (4.18)

which is a compactification of the support of Σ in N ⊗Z R. In [Thu07, §2], Thuil-

lier constructs an embedding JΣ of Σ into X an
Σ , as well as a strong deformation

retraction of X an
Σ onto the image of the embedding. The work of [Thu07] is over a
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trivially-valued field, but these constructions in fact hold over any field, as pointed

out in [ACM+15, Proposition 7.6]. The image of JΣ in X an
Σ is called the toric skeleton

of XΣ. Note that both the embedding JΣ and the toric boundary DΣ are completely

determined by the choice of dense torus in XΣ.

For any cone σ ∈ Σ, the cones τ that contain σ as a face form a fan in N/〈σ〉⊗ZR,

whose associated toric S-scheme is the orbit closure V(σ) corresponding to the cone

σ. Further, the subscheme V(σ) is a stratum of DX+ , so it can be endowed with

the trace log structure V(σ)+ = (V(σ), DV(σ)+) as in §4.3.1. The stratification of the

skeleton of V(σ)+ is related to the decomposition (4.18) by the embedding JΣ, as

demonstrated below.

Proposition 4.3.2.1. For any cone σ of Σ, JΣ restricts to a homeomorphism

⋃
σ4τ

τ/σ ' Sk(V(σ)+).

Proof. This follows from [Thu07, Proposition 2.13], [Uli17, Theorem 1.2 and §3.4],

and Proposition 4.2.1.1.

Now, we show that the toric skeleton can be realized as the closure of an essential

skeleton, which was stated as Theorem D in the introduction.

Corollary 4.3.2.2. Assume char(k̃) = 0. The closure of the essential skeleton of

(XΣ, DΣ) in X an
Σ coincides with the toric skeleton; that is,

JΣ : Σ =
⊔
σ∈Σ

⋃
σ4τ

τ/σ
'−→
⊔
σ∈Σ

Sk(V(σ)+) = Sk(X+) = Sk
ess

(XΣ, DΣ).

Proof. The homeomorphism between Σ and Sk(X+) follows immediately from Corol-

lary 4.3.1.5 and Corollary 4.3.2.1. As a toric variety with its toric boundary defines

a logCY pair, the last homeomorphism will follow from Proposition 6.2.4.1 in the
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trivially-valued field case, and applying [BM17, Lemma 5.1.2] in the discretely-valued

field case.

{0}

τ1

τ0

τ2

σ0

σ1

σ2

σ0/τ1σ1/τ1

σ0/τ0

σ2/τ0

σ1/τ2

σ2/τ2

σ0/σ0σ1/σ1

σ2/σ2

τ1/τ1

τ0/τ0

τ2/τ2

Sk(D1)

Sk(D0)

Sk(D2)

Sk(D0,1)

Sk(D1,2)

Sk(D0,2)

Figure 4.2:
A comparison of the decomposition of the extended fan and the closure of the skeleton
for a model of P2. Let Σ be the usual fan in R2 associated to the k◦-toric variety
XΣ = P2

k◦ . In the picture on the left, we have the compactification Σ and its decom-
position as in (4.18). In the picture on the right, there is the stratification of Sk(X+)
from Proposition 4.3.1.5.

4.3.3 The closure of a Kontsevich–Soibelman skeleton

Assume char(k̃) = 0. Let (X,D) be a pair over k such that D =
∑

i aiDi is a Q-

boundary divisor with snc support, so the log scheme X+ = (X,Dred) is log-regular.

Assume KX + Dred is Q-Cartier. Let X be an snc model of X over S. We set

DX+ = Dred if k is trivially-valued, and DX+ = Dred +X0,red if k is discretely-valued.

Then, X+ = (X , DX+ =
∑

iDX+,i) is a log-regular model of (X,Dred) over S+.

Taking advantage of the decomposition of the closure of the skeleton Sk(X+) de-

scribed in Proposition 4.3.1.5, we study the closure of Kontsevich–Soibelman skele-

tons. More precisely, in Proposition 4.3.3.1, we show that for any non-zero D-

logarithmic pluricanonical form η, the valuations in the complement

Sk(X,D, η) \ Sk(X,D, η)
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are minima of weight functions associated to suitable forms on the strata of DX+(=

Dred =
∑

iDi). In the trivially-valued setting, this characterization can be made

even more precise (Proposition 4.3.3.2).

As we assume that the divisor DX+ is snc, the characteristic monoid CX+,x at any

Kato point x of X+ is a free monoid isomorphic to N|Ix|, where the isomorphism

is determined by choosing local equations zi of the components DX+,i at x. In this

case, any f ∈ OX ,x at x has an admissible expansion of the form

f =
∑

γ∈Z|Ix|>0

cγz
γ,

in the completion ÔX ,x, where cγ ∈ {0} ∪ O×X ,x.

Let η be a non-zero regular D-logarithmic m-pluricanonical form on X, and let

x be the generic point of an irreducible component Di of D. The residue ResDi(η)

of the form η along Di is a (possibly zero) regular
(∑

j 6=i ajDj

)
|Di-logarithmic m-

pluricanonical form on Di, whose local description we review below. If the divisor

Di is locally defined at x by the equation zi = 0, then η can locally be written at x

as

η =

(
dzi
zi

)⊗m
∧ µ

for some local section µ of
∧n−1(Ω1

X/K(logD))⊗m, where n is the relative dimension

of X over K. The form ResDi(η) is a global section in H0
(
Di, ω

⊗m
(Di,

∑
j 6=i ajDj |Di )

)
that

is locally given by the restriction µ|Di .

For a general Kato point x ∈ FX+ , Dx is a stratum of D, i.e. a component of an

intersection of {Di : i ∈ Ix}, so we can iterate the above construction; that is, if zi is

a local equation of the component Di at x for each i ∈ Ix, then write

η =
∧
i∈Ix

(
dzi
zi

)⊗m
∧ µ



108

for some local section µ of
∧n−|Ix|(Ω1

X/K(logD))⊗m. The form ResDx(η) on Dx is

locally given by η
∣∣
Dx
. See [EV92, §2] for further details.

This leads us to the following result, which was stated as Theorem C in the

introduction.

Proposition 4.3.3.1. Under the same assumptions on (X,D), if η is a non-zero

regular D-logarithmic pluricanonical form on X and x ∈ FX+, then there is an

inclusion

Sk(X,D, η) ∩ ker−1(x) ⊆ Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)).

Proof. By Proposition 4.2.7.2 and Proposition 4.3.1.5,

Sk(X,D, η) ∩ ker−1(x) ⊆ Sk(X+) ∩ ker−1(x) = Sk(D+
x ) =

⋃
y∈FD+

x

Sky(D+
x ),

Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)) ⊆ Sk(D+
x ) =

⋃
y∈FD+

x

Sky(D+
x ).

Therefore, we may prove the desired inclusion for a valuation that lies in Sky(D+
x ), for

some y ∈ FD+
x

. In order to relate the closure of the Kontsevich–Soibelman skeleton

Sk(X,D, η) to the Kontsevich–Soibelman skeleton Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)),

we will compute explicitely the associated weight functions on the faces Sky(X+)

and Sky(D+
x ). To that end, recall that the forms η and ResDx(η) respectively induce

divisors div(X ,DX+ )(η) and div(Dx,DD+
x

)(ResDx(η)) on X and Dx when k is trivially-

valued, and div(X ,DX+−div(π))(η) and div(Dx,DD+
x
−div(π))(ResDx(η)) in the discretely-

valued case. To compute the weight functions wtη and wtResDx (η) on Sky(X+) and

Sky(D+
x ), we first determine local equations for these divisors at y.

The Kato point y ∈ FD+
x

satisfies y ∈ {x} and Ix ⊆ Iy. Let z1, . . . , zn be local

parameters at y such that zi is a local equation of DX+,i for each i ∈ Iy. Then, the
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forms η and ResDx(η) can be written locally at y as

η = fg−1 · g
∧
i∈Ix

(
dzi
zi

)⊗m ∧
j∈Iy\Ix

(
dzj
zj

)⊗m ∧
h/∈Iy

dz⊗mh ,

ResDx(η) =

fg−1 · g
∧

j∈Iy\Ix

(
dzj
zj

)⊗m ∧
h/∈Iy

dz⊗mh

∣∣
Dx

= fg−1
∣∣
Dx
· g

∧
j∈Iy\Ix

(
dzj
zj

)⊗m ∧
h/∈Iy

dz⊗mh

for some f ∈ OX ,y, with g = $m if k is discretely-valued and g ∈ O×X ,y if k is

trivially-valued. Thus, fg−1 and fg−1
∣∣
Dx

are the required local equations at y. An

admissible expansion of f in ÔX ,y can be decomposed as

f =
∑

γ∈Z|Iy |>0

cγz
γ =

∑
γ : ∃i∈Ix,γi 6=0

cγz
γ +

∑
γ : ∀i∈Ix,γi=0

cγz
γ, (4.19)

with cγ ∈ {0} ∪ O×X ,y. It follows that

f
∣∣
Dx

=
∑

γ : ∀i∈Ix,γi=0

cγ
∣∣
Dx
zγ (4.20)

in ÔDx,y and cγ
∣∣
Dx
∈ {0} ∪ O×Dx,y, so (4.20) is an admissible expansion of f

∣∣
Dx

at y.

Thus, for valuations vα ∈ Sky(X+) and vβ ∈ Sky(D+
x ), we have

wtη(vα) = vα(f) = min

{
min

γ : ∃i∈Ix,γi 6=0
{vα(cγ) + α(zγ)}, min

γ : ∀i∈Ix,γi=0
{vα(cγ) + α(zγ)}

}
,

wtResDx (η)(vβ) = vβ(f
∣∣
Dx

) = min
γ : ∀i∈Ix,γi=0

{vβ(cγ) + β(zγ)}.

(4.21)

Due to 4.21 the weight function wtη extends to a continuous function on Sky(X+)

and restricts to wtResDx (η) on Sky(D+
x ). Indeed, if vβ ∈ Sky(D+

x ), then β(zγ) = +∞
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for any γ such that γi 6= 0 for some i ∈ Ix. As a result we have that

wtη(vβ) = vβ(f)

= min

{
min

γ : ∃i∈Ix,γi 6=0
{vβ(cγ) + β(zγ)}, min

γ : ∀i∈Ix,γi=0
{vβ(cγ) + β(zγ)}

}
= min

γ : ∀i∈Ix,γi=0
{vβ(cγ) + β(zγ)}

= vβ(f
∣∣
Dx

) = wtResDx (η)(vβ).

The minimality locus of wtη along Sky(D+
x ) are contained in the minimality locus of

wtResDx (η). Hence, we conclude that

Sk(X,D, η) ∩ ker−1(x) ⊆ Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)).

When k is a trivially-valued field, the inclusion of Proposition 4.3.3.1 is in fact an

equality.

Proposition 4.3.3.2. Under the same assumptions on (X,D), suppose that k is

trivially-valued. If η is a non-zero regular D-logarithmic pluricanonical form on X

and x ∈ FX+, then

Sk(X,D, η) ∩ ker−1(x) = Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)).

Proof. Under the same assumption and notation of the proof of Proposition 4.3.3.1,

consider vβ ∈ Sky(D+
x ), where β is a morphism on CD+

x ,y
' N|Iy\Ix|. We construct a

sequence of valuations (vαn)∞n=1 in Sky(X+) that converge to vβ as follows:
αn(zi) = β(zi), i ∈ Iy \ Ix,

αn(zi) = n, i ∈ Ix.
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We have αn(zi)→ +∞ as n→ +∞ for any i ∈ Ix; moreover, for sufficiently large n,

vαn(f) can be written as

vαn(f) = min
γ : ∀i∈Ix,γi=0

{vαn(cγ) + αn(zγ)}

= min
γ
αn(zγ)

= min
γ
β(zγ) = vβ(f

∣∣
Dx

),

(4.22)

where the two right-hand minima range over all γ ∈ Z
|Iy |
>0 such that cγ 6= 0 and

such that for all i ∈ Ix, γi = 0. Thus, given any valuation vβ in Sky(D+
x ), we can

construct a sequence of valuations in Sky(X+) that converge to vβ, and moreover by

(4.21) attaining the same weight with respect to ResDx(η) and η.

Assume now that vβ ∈ Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η))∩Sky(D+
x ) and consider a

sequence (vαn)∞n=1 in Sky(X+) converging to vβ, as above. The minimal weight with

respect to either form is zero and we know that

wtη(vαn) = vαn(f) = vβ(f |Dx) = wtResDx (η)(vβ) = 0

by (4.21) and (4.22). It follows that vαn ∈ Sk(X,D, η) for all n sufficiently large. In

other words, any valuation in the Kontsevich–Soibelman skeleton

Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η))

is the accumulation point of a sequence of valuations in Sk(X,D, η), hence we have

the inclusion of Sk(Dx,
∑

j /∈Ix ajDj|Dx ,ResDx(η)) in Sk(X,D, η) ∩ ker−1(x), as re-

quired.

Example 4.3.3.3. Over a discretely-valued field k, the inclusion of Proposition 4.3.3.1

may be strict. Indeed, consider the k◦-scheme

X = Spec

(
k◦[T1, T2, T3]

($ − T 2
1 T2T3)

)
,
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and let Di be the reduced vertical divisor on X given by the equation Ti = 0,

for i = 1, 2, 3. Let D4 be the horizontal divisor on X given by the equation T1 −

a, for some a ∈ k◦\{0}. Consider the log scheme X + = (X , DX +) with the

divisorial log structure given by DX + =
∑4

i=1Di. In Figure 4.3 below, we describe

the closure of Sk(X +), as well as the decomposition Sk(X +) = Sk(X +)
⊔

Sk(D+
4 )

from Proposition 4.3.1.5. There, the face of Sk(X +) corresponding to the generic

point of the intersection
⋂
i∈J Di, for J ⊆ {1, . . . , 4}, is denoted by x∩i∈JDi .

Sk(D+
4 )

Sk(X +)xD2
xD3

xD1

xD1∩D2

xD1∩D2∩D3

xD4∩D2∩D3

xD4∩D3
xD4∩D2

xD4∩D2∩D3

xD1∩D3

xD3|D4
xD2∩D3|D4

xD2|D4

Figure 4.3:
An example illustrating that the inclusion of Proposition 4.3.3.1 may be strict. The

figure shows the closure Sk(X +) in X̂η of the skeleton of X +.

Consider the logarithmic canonical forms given by
η =

T 2
1 T

2
2 T

2
3

T1−a
dT2
T2
∧ dT3

T3
= 2

T 2
1 T

2
2 T

2
3

T1−a
dT1
T1
∧ dT3

T3
= −2

T 2
1 T

2
2 T

2
3

T1−a
dT1
T1
∧ dT2

T2
,

ResD4(η) = 2aT 2
2 T

2
3
dT3
T3

= −2aT 2
2 T

2
3
dT2
T2
.

The Kontsevich–Soibelman skeleton of η is Sk(Xk, (D4)k, η) = {vD1}, as

wtη(vDi) = vDi

(
T 2

1 T
2
2 T

2
3

T1 − a

)
+ 1 =


2, for i = 1,

3, for i = 2, 3.
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where wtη(vD1) = 2 since the multiplicity of D1 is 2. However, the Kontsevich–

Soibelman skeleton of ResD4(η) is the skeleton Sk(D+
4 ). It follows that

Sk(Xk, (D4)k, η) ∩ ker−1(xD4) = ∅ ( Sk(D+
4 ) = Sk((D4)k, ∅,ResD4(η)).

Thus, the inclusion of Proposition 4.3.3.1 may be strict.



CHAPTER V

A non-Archimedean Ohsawa–Takegoshi extension theorem

Let k be a non-Archimedean field and let K := k̂a denote its completed algebraic

closure.

5.1 The structure of the Berkovich unit disc

In this section, we review a variety of features of the Berkovich unit disc over k:

the classification of points, the metric structure, Temkin’s metric on the disc, and

the theory of quasisubharmonic functions on the disc.

5.1.1 The Berkovich unit disc

The Tate algebra k{T} in the variable T is the k-subalgebra of k[[T ]] consisting

of those power series f =
∑∞

i=0 aiT
i, with ai ∈ k, such that |ai| → 0 as i→∞. The

Tate algebra is a Banach k-algebra when equipped with the Gauss norm

|f(xG)| := max
i≥0
|ai|.

See [BGR84, §5.1] for further details.

The Berkovich unit disc is the set X :=M(k{T}) of multiplicative seminorms on

the Tate algebra k{T} that extend the given absolute value on k and are bounded

114
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above by the Gauss norm xG. When equipped with the topology of pointwise con-

vergence, X is a compact Hausdorff path-connected space.

Define a partial order ≤ on X by declaring that x ≤ y if and only if |f(x)| ≤ |f(y)|

for all f ∈ k{T}; in this way, the pair (X,≤) becomes a rooted tree with root at the

Gauss point xG. The tree structure on X is discussed in more detail in Section 5.1.3.

Let Gal(ka/k) denote the group of automorphisms of ka fixing k (though ka/k

is not Galois when k is not perfect), and let XK := M(K{T}) denote the ground

field extension of X to K, which comes equipped with a continuous surjective map

pK : XK → X. The ground field extension XK carries a Gal(ka/k)-action, extending

the natural action on K by isometries, such that pK induces a homeomorphism

XK/Gal(ka/k)
∼−→ X,

where XK/Gal(ka/k) has the quotient topology. See [Ber90, p.18] and [BR10, §1]

for further details.

Given z ∈ K◦ and r ∈ [0, 1], we may construct a point xz,r ∈ XK as the sup-norm

over the closed disc D(z, r) := {a ∈ K◦ : |z− a| ≤ r} ⊂ K◦ of radius r about z; that

is,

|f(xz,r)| := sup
z′∈D(z,r)

|f(z′)|, f ∈ K{T}.

The point pK(xz,r) ∈ X will again be denoted by xz,r. When K 6= k, it is possible

that two pairs (z, r) and (z′, r′) may define the same point of X; for example, if

z′ ∈ Gal(ka/k) · {z} and r > 0, then xz′,r = xz,r.

When z ∈ (ka)◦ and r = 0, the associated point xz,0 is called a rigid point ; the

seminorm xz,0 coincides with the seminorm induced by the maximal ideal of k{T}

generated by the minimal polynomial of z over k. Let Xrig denote the subset of rigid

points. The points of X can be classified into 4 types:
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xG

x0,0

•

•

x0,ρ

xb,0

•

•
•x0,µ

xa,|a−b|

xa,0
•

•

r

1

ρ ∈ |k∗|

|a− b|

µ 6∈ |k∗|

0

Figure 5.1:
The Berkovich unit disc X over an algebraically closed, spherically complete field, with
the radius function shown on the vertical axis. It has the structure of a metric R-tree,
with the rigid points Xrig lying at the leaves.

1. a type 1 point is of the form xz,0 ∈ X for z ∈ K◦;

2. a type 2 point is of the form xz,r ∈ X for z ∈ K◦ and r ∈ (0, 1] ∩ |K∗|;

3. a type 3 point is of the form xz,r ∈ X for z ∈ K◦ and r ∈ (0, 1]\|K∗|;

4. a type 4 point is the pointwise limit of xzi,ri such that the corresponding discs

D(zi, ri) form a decreasing sequence with empty intersection.

See [Ber90, p.18] for further details; when K 6= k, see also [Ked11, Proposition

2.2.7]. The set of type 1 points is precisely the set of rigid points and, when k is

nontrivially-valued, the set of rigid points and the set of type 2 points are both dense

in X. Points of type 4 exist only when k is not spherically complete.

The radius function r : X → [0, 1] is an upper-semicontinuous function on X that

sends a point xz,r of type 1, 2, or 3 to r, and a point x = limi xzi,ri of type 4 to limi ri.

Note that this function is not continuous in general: if k is nontrivially-valued, then

there is a net (xi) ⊆ Xrig such that xi → xG, but r(xi) = 0 for all i and r(xG) = 1.
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For any x ∈ X, the multiplicity of x is m(x) := #p−1
K (x) ∈ Z>0∪{∞}. The points

of type 1 with finite multiplicity are precisely the rigid points. All points of type 2

and type 3 have finite multiplicity.

Lemma 5.1.1.1. Assume k is trivially-valued or has residue characteristic zero. For

any x ∈ X of type 2 or 3, there exists x′ ∈ Xrig such that x′ ≤ x and m(x′) = m(x).

Proof. Let d = m(x), let x1, . . . , xd be the pK-preimages of x, and let G := Gal(ka/k).

Each xi is the sup-norm over a closed disc Di ⊆ K◦ of radius r(x) > 0. It suffices

to show that there is z1 ∈ D1 ∩ (ka)◦ such that G · {z1} = {z1, . . . , zd} with zi ∈ Di.

Fix any z1 ∈ D1 ∩ (ka)◦, then it is easy to see that any such z1 has #G · {z1} ≥ d.

Assume k is trivially-valued. If r(x) = 1, then the problem is trivial. If r(x) < 1,

then each Di contains a unique rigid point; in particular, G · {z1} has size precisely

equal to d.

Assume now that k has residue characteristic zero. The case when d = 1 is [Ax70,

Proposition 2’] and we deduce the general case using a similar strategy (the d = 1

case also follows from the main result of [Sch15]).

Let z1, . . . , z` ∈ G · {z1} be those conjugates of z1 that lie in D1. We claim each

Di contains precisely ` elements of the orbit G · {z1}. Indeed, by assumption there

exists σi ∈ G such that σi(z1) ∈ Di, from which it follows that σi(zj) ∈ Di for all

j = 1, . . . , ` since G acts by isometries. As σi is an automorphism of ka, it must

give a bijection G · {z1} ∩D1
∼→ G · {z1} ∩Di, which gives the claim. Now, for all

i = 1, . . . , d, set

wi := `−1
∑

u∈G·{z1}∩Di

u.

As the residue characteristic of k is zero, |`| = 1 and hence

|σi(z1)− wi| =

∣∣∣∣∣∣`σi(z1)−
∑

u∈G·{z1}∩Di

u

∣∣∣∣∣∣ ≤ max
u∈G·{z1}∩Di

|σi(z1)− u| ≤ r(x).
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In particular, wi ∈ Di. Moreover, we have G · {w1} = {w1, . . . , wd} by construction.

Example 5.1.1.2. The statement of Lemma 5.1.1.1 is not necessarily true for a

nontrivially-valued field of positive residue characteristic. Consider k = Qp with

the p-adic norm, normalized so that |p| = p−1. If x is the type 2 point of XCp

corresponding to the closed disc

E := D(p1/p, |p|
2p−1
p(p−1) ) ⊆ (Cp)

◦,

then pK(x) ∈ X is a type 2 point with multiplicity m(π(x)) = 1, but we claim that

there is no Qp-rational point lying below it, i.e. E∩Qp = ∅. We thank Kiran Kedlaya

for pointing out this example.

Let ζp denote a primitive p-th root of unity in ka, and set

ci := ζ ipp
1/p ∈ K.

Then, c1, . . . , cp is the Gal(ka/k)-orbit of p-th roots of p in K and we claim that

|ci − cj| = p−
1
p−1

for i 6= j. Indeed, plugging 1 into the p-th cyclotomic polynomial over Qp yield the

identity

p =
∏

1≤i≤p−1

(1− ζ ip),

and taking norms yields |p| = |1− ζp|p−1. As |ζ ip − ζjp | = |1− ζp| for i 6= j, we have

|ci − cj| = |1− ζp| · |p|1/p = |p|
1
p−1

+ 1
p = p−

2p−1
p(p−1) .

Set r := p−
2p−1
p(p−1) . Now, suppose there exists a ∈ Qp ∩ E. Write |a| = p−n for some

n ∈ Z. Note that |c1| 6∈ pZ, so either |a| > |c1| or |c1| > |a|.
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• If |a| > |c1|, then n < 1/p and |a − c1| = |a| ≤ r implies that n ≥ 2p−1
p(p−1)

> 0,

but there are no integers satisfying both inequalities.

• If |c1| > |a|, then p−1/p = |c1| = |c1 − a| ≤ r, so −1
p
≤ − 2p−1

p(p−1)
, which is

equivalent to demanding p ≤ 0.

Thus, E ∩Qp = ∅, as required.

5.1.2 Temkin’s metric on the Berkovich unit disc

The sheaf Ω1
X/k of Kähler differentials on X is the free OX-module on the differ-

ential dT . Following the notation of §3.3, write ‖ · ‖Tem,x for Temkin’s metric on the

stalk Ω1
X/k,x at x ∈ X.

Proposition 5.1.2.1. Suppose k is algebraically closed. For any x ∈ X, we have

‖dT‖Tem,x = r(x).

Proof. This is [Tem16, §6.3.1].

When working over fields that are not algebraically closed or of nonzero residue

characteristic, it is often better to work with what Temkin calls the geometric Kähler

seminorm; this is done because Temkin’s metric may be poorly behaved when k or

k̃ has wild extensions, as in [Tem16, §6.2]. For x ∈ X and s ∈ Ω1
X/k,x, the geometric

Kähler seminorm ‖s‖geom,x is defined as

‖s‖geom,x := ‖p∗Ks‖Tem,x′

for x′ ∈ p−1
K (x). This is independent of the choice of x′. See [Tem16, §6.3.15] for

more details. In the context of the unit disc, the geometric Kähler seminorm can be

described as follows.
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Proposition 5.1.2.2. For any x ∈ X, we have ‖dT‖geom,x = r(x).

Proof. This is immediate from Proposition 5.1.2.1 and the definition of ‖·‖geom,x.

By analogy with the log discrepancy function, writeA := − log r = − log ‖dT‖geom;

this a lower-semicontinuous function X → R+. Thus, any global section of Ω1
X/k can

be written as fdT for some f ∈ k{T}, and

‖fdT‖geom,x = |f(x)|e−A(x)

for any x ∈ X.

5.1.3 Metric structure on the Berkovich unit disc

In this section, we discuss the metric tree structure on the Berkovich unit disc.

For a comprehensive treatment, see [BR10] and [Jon15].

For each x ∈ X, define an equivalence relation ∼ on the set X\{x} by declaring

y ∼ z if the paths (x, y] and (x, z] intersect. The tangent space TX,x at x is the set

of equivalences classes of X\{x} modulo ∼. For each ~v ∈ TX,x, let U(~v) be the set

of points of X representing ~v, and set

m(~v) := inf
y∈U(~v)

m(y).

The subsets of the form U(~v), for some tangent direction ~v, form a subbasis of open

sets for the topology on X. See [Jon15, §2.3] for further details.

The closed unit disc X may be equipped with a generalized metric, in the sense

that the distance between two points may be infinite; in particular, X gains the

structure of a metric tree. This generalized metric is described as follows. Let

r : X → [0, 1] denote the radius function, which can be thought of as a Gal(ka/k)-

equivariant function on XK . Define a function α : X → R+ by specifying that
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α(xG) = 0 and

α(x)− α(y) = −
∫ x

y

1

m(z)
d (log r(z)) , (5.1)

for any two distinct points x, y ∈ X, where the integral is taken over the unique path

in X joining the points x and y. These constraints completely determine a func-

tion α : X → [−∞,+∞] whose restriction to any segment is monotone decreasing.

Observe that, when k = ka, α = − log r = A. This, in turn, induces a generalized

metric d on X by setting

d(x, y) := |α(x)− α(x ∨ y)|+ |α(y)− α(x ∨ y)|

for x, y ∈ X; here, x∨ y is the least upper bound of x and y. The rooted tree (X,≤)

acquires the structure of a metric tree when equipped with the generalized metric d.

It is important to note that the topology on X induced by d is strictly finer than the

native topology.

5.1.4 Quasisubharmonic functions on the Berkovich unit disc

One can discuss potential theory and the notion of quasisubharmonic functions

on any metric tree, as developed in [Jon15, §2.5]. We briefly recall this theory in the

special case of the Berkovich disc. This is also discussed in [BR10, §5] (though our

conventions differ slightly).

Fix a finite atomic measure ρ0 supported at xG, i.e. ρ0 is a positive real multiple

of the Dirac mass δxG at the Gauss point xG. A function ϕ : X → [−∞,∞) is called

ρ0-subharmonic if it satisfies:

1. for every finite subtree Y ⊂ X\Xrig containing xG, ϕ|Y is a continuous function

on Y such that:

(a) ϕ|Y is convex on any segment in Y that does not contain xG;
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(b) for any y ∈ Y ,

ρ0{y}+
∑
~v∈TyY

d~v (ϕ|Y ) ≥ 0,

where d~v (ϕ|Y ) denotes the directional derivative of ϕ|Y in the direction ~v.

2. ϕ is the limit of its retractions to finite subtrees containing xG; more precisely,

if {Yi}i∈I denotes the net of finite subtrees of X\Xrig containing xG and if

ri : X → Yi is the (continuous) retraction map of X onto Yi, then ϕ = lim
i
r∗iϕ.

The condition (b) is equivalent to the subaverage property: for any y ∈ Y , there

exists r > 0 such that

ϕ(y) ≤ 1

|BY (y, r)|
∑

z∈BY (y,r)

ϕ(z) + mass(ρ0)r · 1{xG}(y),

where BY (y, r) := {z ∈ Y : d(y, z) = r} is the ball of radius r about y in Y , and

1{xG} is the indicator function of the point xG. This is reminiscient of the classical

definition of subharmonic functions on Rn.

A function is said to be quasisubharmonic if it is ρ0-subharmonic for some mea-

sure ρ0 as above. The class of ρ0-subharmonic functions on X is a convex set, which

is closed under taking finite maxima and decreasing (pointwise) limits. A quasisub-

harmonic function is upper-semicontinuous, but it may take the value −∞; this can

only occur at those points x ∈ X such that α(x) = +∞.

Given a topological space Z and a function φ : Z → [−∞,∞) that is locally

bounded above, the upper-semicontinuous (usc) regularization φ∗ of φ is defined by

the formula

φ∗(z) := lim sup
y→z

φ(y), z ∈ Z.

The usc regularization φ∗ is the smallest upper-semicontinuous function such that

φ∗ ≥ φ.
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Lemma 5.1.4.1. If {ϕi}i∈I is a net of ρ0-subharmonic functions on X which is lo-

cally bounded above, then the usc regularization ψ∗ of ψ := supi∈I ϕi is ρ0-subharmonic.

Furthermore, ψ∗ = ψ on X\{α = +∞}.

Proof. This is [BR10, Proposition 8.23(E)].

The rest of this section is devoted to a brief discussion of the Laplacian of a qua-

sisubharmonic function. Given a ρ0-subharmonic function ϕ and any finite subtree

Y ⊂ X containing xG, let ∆(ϕ|Y ) be the unique signed Borel measure on Y de-

termined by the following rule: if ~v1, . . . , ~vn are tangent directions in Y such that

U(~vi) ∩ U(~vj) 6= ∅ and U(~vi) 6⊆ U(~vj) for all i 6= j, then

∆(ϕ|Y )

(
n⋂
i=1

U(~vi)

)
= −

n∑
i=1

d~vi (ϕ|Y ) .

The Laplacian is the signed Borel measure ∆ϕ uniquely characterized by the follow-

ing property: for any finite subtree Y ⊂ X containing xG,

(rY )∗(ρ0 + ∆ϕ) = ρ0 + ∆ (ϕ|Y ) ,

where rY : X → Y is the (continuous) retraction map of X onto Y . There are several

Laplacians defined in the literature, and the above definition follows the conventions

of [FJ04, Jon15] and it differs from that of [BR10] by a negative sign; see [BR10,

§5.8] for a discussion of the various Laplacian operators.

Quasisubharmonic functions and their Laplacians behave well with respect to

the ground field extension map pK : XK → X, in the following sense: given a

ρ0-subharmonic function ϕ on X, p∗Kϕ is a ∗Kρ0-subharmonic function on XK and

∆ϕ = (pK)∗∆(p∗Kϕ). Indeed, this follows from the fact that a finite subtree of XK

containing the Gauss point is mapped onto a finite subtree of X containing the Gauss

point.
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Example 5.1.4.2. For any irreducible f ∈ k{T}, the function ϕ := log |f | is ρ0-

subharmonic, where ρ0 = m(x)·δxG and x ∈ Xrig is the rigid point of X corresponding

to the maximal ideal (f) of k{T}. It is easy to check that

∆ϕ = m(x) (δx − δxG) .

More generally, for any f ∈ k{T}, the function log |f | is quasisubharmonic and its

Laplacian can be identified, up to scaling and adding a multiple of δxG , with the

divisor of zeros of f via the Poincaré–Lelong formula. See [BR10, Example 5.20].

In fact, for any x ∈ X with m(x) < +∞, the function ϕ = −α(x∨·) is m(x) · δxG-

subharmonic with Laplacian given by ∆ϕ = m(x) (δx − δxG).

For a quasisubharmonic function ϕ on X, we may construct a metric on OX : to

a local section f of OX over an analytic domain V ⊂ X, we assign the function

x 7→ |f(x)|e−ϕ(x), for x ∈ V . This convention mirrors how (semipositive) metrics on

line bundles on complex manifolds are locally given by plurisubharmonic functions.

5.2 An Ohsawa–Takegoshi-type extension theorem

Assume that k is algebraically closed, trivially-valued, or is spherically complete

of residue characteristic zero. Let X = M(k{T}) be the Berkovich closed unit

disc over k with Gauss point xG, let r : X → [0, 1] be the radius function, and let

A := − log r : X → R+.

In this section, we prove the following variant of Theorem E and deduce Theo-

rem E as an easy consequence.

Theorem 5.2.0.1. Let ϕ be a quasisubharmonic function on X with ϕ(xG) = 0,

and let Z(ϕ) = {ϕ = −∞} denote the polar locus of ϕ. For any z ∈ X, there exists
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a constant ε0 > 0 and a nonzero polynomial f ∈ k[T ] such that

‖f‖(1+ε)ϕ := sup
x∈X\Z(ϕ)

|f(x)|e−(1+ε)ϕ(x)−A(x) ≤ |f(z)|e−ϕ(z) for all ε ∈ [0, ε0].

If ϕ(z) = −∞, then we may find f such that ‖f‖(1+ε)ϕ < +∞ for all ε ∈ [0, ε0].

Moreover, if k is algebraically closed and z ∈ Xrig, then for any value a ∈ H(z)∗ = k∗,

we may find f such that f(z) = a.

We will prove Theorem 5.2.0.1 in §5.2.1. The hypotheses of Theorem 5.2.0.1 may

be weakened to allow ϕ(xG) ≥ 0, but it is false if ϕ(xG) < 0 (e.g. if ϕ = −1, then

the only f that could satisfy the inequality in Theorem 5.2.0.1 at the Gauss point

is f = 0). Nonetheless, Theorem E, which has no hypothesis on the value of ϕ(xG),

may be easily deduced from Theorem 5.2.0.1. Furthermore, the presence of the

hypotheses on the field k is discussed immediately after the proof of Lemma 5.2.1.4

Proof of Theorem E. Given a quasisubharmonic function ϕ on X and a point z ∈ X,

set φ := ϕ − ϕ(xG). Theorem 5.2.0.1 asserts that there is a nonzero polynomial

f ∈ k[T ] such that ‖f‖(1+ε)φ ≤ |f(z)|e−φ(z) for all ε > 0 sufficiently small. Thus,

lim
ε→0+

‖f‖(1+ε)ϕ = eϕ(xG) lim
ε→0+

eεϕ(xG)‖f‖(1+ε)φ ≤ |f(z)|e−φ(z)+ϕ(xG) = |f(z)|e−ϕ(z).

This completes the proof of Theorem E.

It is a result of B locki (see [Bo13, Theorem 1]) that the optimal constant appearing

in the classical Ohsawa–Takegoshi theorem for the complex unit disc is π. In the

non-Archimedean setting, however, the optimal constant is 1. This is demonstrated

by the result below.

Corollary 5.2.0.2. For any z ∈ X, let c(z) be the smallest positive number such

that for any quasisubharmonic function ϕ on X, there exists a nonzero f ∈ k{T}
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satisfying

lim
ε→0+

‖f‖(1+ε)ϕ ≤ c(z)|f(z)|e−ϕ(z).

Then, c(z) = 1.

Proof. If ϕ ≡ 0, then

|f(xG)| = lim
ε→0+

‖f‖(1+ε)ϕ ≤ c(z)|f(z)| ≤ c(z)|f(xG)|.

As |f(xG)| 6= 0, it follows that c(z) ≥ 1. Theorem E asserts that the lower bound

c(z) = 1 is achieved for any z.

5.2.1 Proof of Theorem 5.2.0.1

Fix z ∈ X. Suppose ϕ is ρ0-subharmonic for some finite (atomic) measure ρ0

supported at the Gauss point xG, and ϕ(xG) = 0. To simplify the exposition, we

assume ϕ(z) > −∞. When ϕ(z) = −∞, the proof is similar: one proves analogues

of the sequence of lemmas below, each of which is made easier because one is only

concerned with ensuring that a quantity is finite, as opposed to ensuring that the

same quantity is less than some fixed value.

The strategy of the proof is to use strong induction on bmass(ρ0)c. For this reason,

the following terminology will be quite helpful.

Definition 5.2.1.1. Let ε0 > 0. A nonzero polynomial f ∈ k[T ] is a (ϕ, ε0)-extension

at z if the inequality

‖f‖(1+ε)ϕ ≤ |f(z)|e−ϕ(z)

holds for all ε ∈ [0, ε0]. Equivalently, f is a (ϕ, ε0)-extension if for all x ∈ X\Z(ϕ)

and all ε ∈ [0, ε0], we have

log |f(x)| − log |f(z)| ≤ A(x) + (1 + ε)ϕ(x)− ϕ(z). (5.2)
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As ϕ ≤ 0, in order to verify that f is an (ϕ, ε0)-extension at z, it suffices to check

‖f‖(1+ε0)ϕ ≤ |f(z)|e−ϕ(z), as opposed to verifying it for all ε ∈ [0, ε0].

The key players in the proof of Theorem 5.2.0.1 are the finite subtrees

Γϕ,n :=

{
x ∈ X : (ρ0 + ∆ϕ){y ≤ x} ≥ n

n+ 1
m(x)

}
.

for n ≥ 1. Note that Γϕ,n is indeed a finite subtree of X, since any end x of Γϕ,n

satisfies

(ρ0 + ∆ϕ){x} ≥ n

n+ 1
m(x)

and ρ0 + ∆ϕ is a positive measure of finite mass equal to mass(ρ0). It is clear that

Γϕ,n ⊇ Γϕ,n+1 for any n ≥ 1; in particular,

Γϕ :=
⋂
n≥1

Γϕ,n = {x ∈ X : (ρ0 + ∆ϕ){y ≤ x} ≥ m(x)}

is a finite subtree of X that is contained in Γϕ,n for any n ≥ 1.

The subtrees Γϕ,n are crucial in reducing Theorem 5.2.0.1 to a “finite” problem.

Observe that any point of Γϕ,n must have a finite multiplicity because mass(ρ0) is

finite and, moreover, Γϕ,n ∩ Xrig ⊆ Z(ϕ). Variants of this tree appear in [Jon15,

Prop 2.8] and [FJ04, Lem 7.7].

The following is the base case for our induction.

Lemma 5.2.1.2. If mass(ρ0) < 1, there exists a constant ε0 > 0 such that any

nonzero constant function is a (ϕ, ε0)-extension at z.

Proof. Set ε0 := 1−mass(ρ0)
mass(ρ0)

. Since mass(ρ0) < 1, Γϕ = ∅ and

|d~v(1 + ε)ϕ| ≤ (1 + ε) mass(ρ0) ≤ 1

for all tangent directions ~v in X, provided ε ∈ [0, ε0]. To check that any constant

function is a (ϕ, ε0)-extension at z, it suffices to check that

0 ≤ A+ (1 + ε)ϕ− ϕ(z)
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on X\Z(ϕ). This inequality is satisfied at the Gauss point:

A(xG) + (1 + ε)ϕ(xG)− ϕ(z) = −ϕ(z) ≥ 0.

Moreover, the convexity of ϕ and of A ensures that it is enough to check that, in any

tangent direction at xG, the function (1 + ε)ϕ + A only increases in that direction.

However, in any such direction ~v,

d~v ((1 + ε)ϕ+ A) ≥ −(1 + ε) mass(ρ0) + 1 ≥ 0,

which completes the proof.

Now, if mass(ρ0) ≥ 1, then xG ∈ Γϕ,n for all n ≥ 1, because m(xG) = 1. In

particular, Γϕ,n 6= ∅ and the set of ends Ends(Γϕ,n) is nonempty. If Γ is a subtree of

X that contains xG, we adopt the following conventions: if Γ ) {xG}, then Ends(Γ)

consists of those points in Γ with a unique tangent direction in Γ; if Γ = {xG}, then

Ends(Γ) = Γ.

Let Γ′ϕ,n denote the convex hull of Γϕ,n ∪ {z}. Let rΓ′ϕ,n : X → Γ′ϕ,n denote the

retraction of X onto Γ′ϕ,n. For any n ≥ 1, observe that a (r∗Γ′ϕ,nϕ, ε0)-extension f at z

is also a (ϕ, ε1)-extension at z, where ε1 = min{ε0, 1
n
}. Indeed, for any x ∈ Γ′ϕ,n and

any direction ~v ∈ TX,x such that U(~v) ∩ Γ′ϕ,n = ∅, we have

d~v((1 + ε)ϕ+ A) >

(
−(1 + ε)

n

n+ 1
+ 1

)
m(x) ≥ 0

for all ε ∈ [0, ε1]. Thus, for fixed n ≥ 1, we may replace ϕ with r∗Γ′ϕ,nϕ to assume that

ϕ is locally constant off of Γ′ϕ,n.

Fix n ≥ 1 such that

Γϕ,n\Γϕ =
⊔
j∈J

[xj, x̃j), (5.3)

where J is a finite index set, and for all j ∈ J , x̃j ∈ Γϕ and the point xj is of type

2 or 3 such that the multiplicity function is constant on [xj, x̃j). Moreover, for each
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j ∈ J , if ~vj ∈ TX,x̃j denotes the unique tangent direction at x̃j with xj ∈ U(~vj), then

d~vjϕ = −m(xj).

As mentioned before, the strategy of the proof of Theorem 5.2.0.1 is by strong

induction on bmass(ρ0)c. In the following sequence of lemmas, we explain how to

reduce the problem of the existence of a (ϕ, ε0)-extension at z to the existence of

a (φ, ε1)-extension at z, where φ is a ρ-subharmonic for some finite measure ρ with

mass(ρ) ≤ mass(ρ0) − 1 and 0 < ε1 ≤ ε0. As mass(ρ0) is finite, after finitely-

many such reductions, we must find ourselves in the setting of Lemma 5.2.1.2. The

hypotheses of each lemma are concerned with which types of points may arise in the

finite set Ends(Γϕ,n); in particular, if one assumes that k is spherically complete, one

can ignore Lemma 5.2.1.5.

Lemma 5.2.1.3. Suppose that mass(ρ0) ≥ 1 and that there exists x ∈ Ends(Γϕ,n) of

type 1. Then, there exists ε1 > 0 and a ρ-subharmonic function φ, with mass(ρ) ≤

mass(ρ0)− 1, such that a (ϕ, ε0)-extension f at z may be constructed from a (φ, ε1)-

extension f̃ at z.

Proof. By assumption, x ∈ Γϕ and so it satisfies m(x) < +∞; in particular, x ∈ Xrig,

because x is of type 1. In addition, as Γϕ ∩ Xrig ⊆ Z(ϕ) and z 6∈ Z(ϕ), we have

x 6= z. Let mx denote the maximal ideal of k{T} corresponding to x, and let g be

a polynomial generator of mx with |g(xG)| = 1. As type-1 points are minimal with

respect to the partial order ≤, we have

1 ≤ m(x) ≤ (ρ0 + ∆ϕ){y ∈ X : y ≤ x} = ∆ϕ{x}.

Set c := ∆ϕ{x}
m(x)

≥ 1, γ := bcc, and ρ := ρ0 − γδxG , then the function φ := ϕ− γ log |g|

is ρ-subharmonic and φ(xG) = 0. Suppose there exists ε1 > 0 and a (φ, ε1)-extension

f̃ ∈ k[T ] at z and set f := gγ f̃ . We claim that there exists ε0 ∈ (0, ε1] such that f is
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a (ϕ, ε0)-extension at z.

Case 1. Consider the case when c is an integer. If z′ := rΓϕ,n(z), then Γ′ϕ,n =

Γϕ,n ∪ [z, z′]. If z′ 6= z, let ~vz ∈ TX,z′ be the unique direction at z′ with z ∈ U(~vz).

The function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) is decreasing in the direction ~vz provided

d~vz(−(1 + ε0)ϕ − A) ≤ 0. This occurs if ε0 ≤ m(~vz)
nm(z′)

. Thus, it suffices to find ε0 > 0

such that

|f(y)|e−(1+ε0)ϕ(y)−A(y) ≤ |f(z)|e−ϕ(z) = |f̃(z)|e−φ(z)

for all y ∈ Γϕ,n. Set Γ̃φ,n = Γφ,n ∪ {xG} (where we must include xG in case Γφ,n is

empty). If y ∈ Γ̃φ,n, then φ(y) ≤ − n
n+1

α(y), and hence

|g(y)|−ε0ce(ε1−ε0)φ(y) ≤
(
e−α(y)

)−ε0cm(x)+ n
n+1

(ε1−ε0)

and this is less than or equal to 1 provided ε0 ≤ ε1n
m(x)c(n+1)+n

. Granted this, observe

that

|f(y)|e−(1+ε0)ϕ(y)−A(y) = |g(y)|−ε0ce(ε1−ε0)φ(y)|f̃(y)|e−(1+ε1)φ(y)−A(y)

≤ |f̃(y)|e−(1+ε1)φ(y)−A(y)

≤ |f̃(z)|e−φ(z),

as required. Let x̃ denote the minimal element of Γ̃φ,n ∩ [x, xG] and let ~vx ∈ TX,x̃ be

the unique direction at x̃ such that x ∈ U(~vx). As Γϕ,n = Γ̃φ,n ∪ [x, xG], it suffices to

find an ε0 > 0 such that the function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) is decreasing in the

direction ~vx, or equivalently

d~vx (ε0m(x)cα− (1 + ε0)φ− A) ≤ 0.

This occurs if ε0 ≤ m(~vx)
(c(n+1)+n)m(x)

.

Case 2. Now, suppose c is not an integer, i.e. c > γ. Write ϕ = ψ + c log |g|

for some quasisubharmonic function ψ on X with ψ ≤ 0. Set ε0 = ε1(c−γ)
c

. It is
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straightforward to check that ε1φ ≤ ε0ϕ on all of X. Thus, for any y ∈ X\Z(ϕ), we

have

|f(y)|e−(1+ε0)ϕ(y)−A(y) = eε1φ(y)−ε0ϕ(y)|f̃(y)|e−(1+ε1)φ(y)−A(y)

≤ |f̃(z)|e−φ(z)

= |f(z)|e−ϕ(z),

which completes the proof.

Lemma 5.2.1.4. Suppose that mass(ρ0) ≥ 1 and that there exists x ∈ Ends(Γϕ,n)

of type 2 or of type 3 such that rΓϕ,n(z) 6= x. Then, there exists ε1 > 0 and a ρ-

subharmonic function φ, with mass(ρ) ≤ mass(ρ0)− 1, such that a (ϕ, ε0)-extension

f at z may be constructed from a (φ, ε1)-extension f̃ at z.

Proof. By Lemma 5.1.1.1, there exists x′ ∈ Xrig such that rΓϕ,n(x′) = x and m(x′) =

m(x). If x ∈ Γϕ, then set c := ∆ϕ{x}
m(x)

≥ 1. We construct a new ρ0-subharmonic

function ϕ′ by extending ϕ linearly with slope cm(x) from the end x to the rigid

point x′; more precisely, ϕ′ is given by the formula

ϕ′(y) := ϕ(y) + cm(x) (α(y ∨ x)− α(y ∨ x′)) .

It is clear that ϕ′(xG) = 0, ϕ′(z) = ϕ(z), and ϕ′ ≤ ϕ. In particular, any (ϕ′, ε0)-

extension at z is also a (ϕ, ε0)-extension at z.

If x ∈ Γϕ,n\Γϕ, then by the assumption (5.3), we can replace ϕ with a function

that is linear on [x, rΓϕ(x)] with slope m(rΓϕ(x)) and then repeat the same argument

as above.

The proof of Lemma 5.2.1.4 is one point in the proof of Theorem 5.2.0.1 where

the additional assumptions on the field k are needed (in order to be able to ap-
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ply Lemma 5.1.1.1). If one were to pick x′ ∈ Xrig such that m(x′) > m(x), then the

function ϕ′ need not be quasisubharmonic.

In addition, the conditions on the field k are such that the hypotheses of the

following lemma can only occur when k is algebraically closed and nontrivially-valued.

Lemma 5.2.1.5. Suppose that mass(ρ0) ≥ 1 and that there exists x ∈ Ends(Γϕ,n) of

type 4 and x 6= z. Then, there exists ε1 > 0 and a ρ-subharmonic function φ, with

mass(ρ) ≤ mass(ρ0)−1, such that a (ϕ, ε0)-extension f at z may be constructed from

a (φ, ε1)-extension f̃ at z.

xG

rΓϕ
(z)

z ∨ x

z

x

x̃

u

u′

•

•

•

•

• •

•

•
•

• •

Figure 5.2: A possible configuration for Γϕ,n in Lemma 5.2.1.5.

Proof. By assumption, k is algebraically closed and nontrivially-valued (so the type

2 points of X are dense). Moreover, all multiplicities are equal to 1 and α = A.

Note that, since x is of type 4, A(x) ∈ (0,+∞). Recall that Γ′ϕ,n denotes the

convex hull of Γϕ,n ∪ {z} (we allow the possibility that z ∈ Γϕ,n, so it is possible

that Γ′ϕ,n = Γϕ,n). Let x̃ ∈ (x, xG] be the minimal point with the property that

{y ∈ Γ′ϕ,n : y ≤ x̃} 6= [x, x̃]. That is, x̃ is the minimal point on (x, xG] such that (x̃, x]

does not intersect any branches of Γ′ϕ,n other than the one containing x. It follows

that rΓϕ,n(z) 6∈ (x̃, x]. An example is in Fig. 5.2.
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Set c := −d~vϕ ≥ 1, where ~v ∈ TX,x̃ is the unique tangent direction at x̃ with

x ∈ U(~v); then, after possibly replacing ϕ with a smaller quasisubharmonic function,

we may assume that ϕ is linear of slope −c on [x, x̃], i.e.

ϕ(y) = ϕ(x̃)− c (α(y)− α(x̃))

for y ∈ [x, x̃]. If γ := bcc, and ρ := ρ0−γδxG , then the function φ(y) := ϕ(y)+γα(y∨x)

is ρ-subharmonic and φ(xG) = 0. Suppose there exists ε1 > 0 and a (φ, ε1)-extension

f̃ ∈ k[T ] at z.

Pick u ∈ (x, x̃) of type 2 such that α(x) − α(u) ∈ (0, η), where η is a positive

number chosen to be less than A(x)
c

and, if φ(x) < 0, then we also require that

η < −ε1φ(x)
c

.

Pick u′ ∈ Xrig such that rΓϕ,n(u′) = u, and a polynomial generator g of mu′ with

|g(xG)| = 1. Set f := f̃ gγ. By construction, z ∨ u = z ∨ x, and hence we have

|f(z)|e−ϕ(z) = |g(z)|γ|f̃(z)|eγα(z∨u)e−φ(z) = |f̃(z)|e−φ(z).

Case 1. Suppose that c is an integer and φ(x) = 0. Then, φ|[x,xG] = 0, and hence

ϕ(y) = −cα(y ∨ x) for y ∈ [x, xG]. Arguing as in Case 1 of Lemma 5.2.1.3, it suffices

to find an ε0 > 0 such that

|f(y)|e−(1+ε0)ϕ(y)−A(y) ≤ |f̃(z)|e−φ(z) (5.4)

for y ∈ Γϕ,n. By assumption, Γφ,n ∩ [x, xG] ⊆ {xG}, so the left-hand side of (5.4)

is equal to |f̃(y)|e−(1+ε0)φ(y)−A(y) for y ∈ Γφ,n, in which case (5.4) holds. Thus, it

suffices to verify (5.4) for y ∈ [x, xG]. It holds when y = xG by assumption, and the

function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) is decreasing on [u, xG], but increasing on [u, x].

Therefore, it is enough to check (5.4) at y = x. Let β := log |f̃(x)| − log |f̃(xG)|, so

β ≤ 0. Suppose there exists an ε0 > 0 such that

eβ|g(x)|ce−(1+ε0)ϕ(x)−A(x) ≤ 1. (5.5)
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Then, |f(x)|e−(1+ε0)ϕ(x)−A(x) ≤ |f̃(xG)|, and |f̃(xG)| is less than or equal to |f̃(z)|e−φ(z)

by assumption. Thus, it suffices to show (5.5). Observe that

eβ|g(x)|ce−(1+ε0)ϕ(x)−A(x)

= exp (β − cα(u)− (1 + ε0)ϕ(x̃) + (1 + ε0)c (α(x)− α(x̃))− A(x))

≤ exp (−c (α(u)− α(x))− A(x) + ε0cα(x)) ,

so (5.5) holds at y = x if ε0 ≤ A(x)−cη
cα(x)

.

Case 2. Suppose that c is an integer and φ(x) < 0. As in Case 1 of Lemma 5.2.1.3,

it suffices to find ε0 > 0 such that (5.4) holds for all y ∈ Γϕ,n. Set Γ̃φ,n = Γφ,n∪{xG}.

Again arguing as in Case 1 of Lemma 5.2.1.3, (5.4) holds for y ∈ Γ̃φ,n provided

ε0 ≤
ε1n

n+ c(n+ 1)
.

Finally, as in Case 1, the function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) on Γϕ,n\Γ̃φ,n is maxi-

mized at y = x, so it suffices to find an ε0 > 0 so that holds (5.4) there. Observe

that

|g(u)|ce(ε1−ε0)φ(x)+(1+ε0)cα(x) ≤ 1

provided

ε0 ≤
−ε1φ(x)− cη
−φ(x) + cα(x)

,

where −ε1φ(x)− cη > 0 by the choice of u. It follows that

|f(x)|e−(1+ε0)ϕ(x)−A(x) = |g(u)|ce(ε1−ε0)φ(x)e(1+ε0)cα(x)|f̃(x)|e−(1+ε1)φ(x)−A(x)

≤ |f̃(z)|e−φ(z),

which completes the proof in Case 2.

Case 3. Suppose c > γ. Following the previous two cases, it suffices to find ε0 > 0

such that (5.4) holds for all y ∈ Γϕ,n. Set Γ̃φ,n = Γφ,n ∪ {xG}. If y ∈ Γ̃φ,n, then
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φ(y) ≤ − n
n+1

α(y), and hence

e(ε1−ε0)φ(y)+γε0α(y∨u′) ≤
(
e−α(y)

) n
n+1

(ε1−ε0)−γε0
.

This last quantity is less than or equal to 1 provided

ε0 ≤
ε1n

γ(n+ 1) + n
.

In this case, we have

|f(y)|e−(1+ε0)ϕ(y)−A(y) ≤ eγε0α(y∨u′)+(ε1−ε0)φ(y)|f̃(y)|e−(1+ε1)φ(y)−A(y)

≤ |f̃(z)|e−φ(z).

Let x′′ ∈ [u, xG] be the minimal point of Γ̃φ,n ∩ [u, xG]. If ~v′′ ∈ TX,x′′ is the unique

direction at x′′ with x ∈ U(~v′′), then the function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) is

decreasing on [u, x′′] provided

d~v′′(ε0γα− (1 + ε0)φ− A) ≤ 0.

Using the fact that d~v′′φ ≥ − n
n+1

, this holds if ε0 ≤ 1
(n+1)γ+n

.

Now, the function y 7→ |f(y)|e−(1+ε0)ϕ(y)−A(y) on [x, u) achieves its maximum at

y = x, so it suffices to find an ε0 > 0 such that (5.4) holds at y = x. If φ(x) = 0, one

can argue as in Case 1. If φ(x) < 0, then it follows that

|g(u)|γe(ε1−ε0)φ(x)+(1+ε0)γα(x) ≤ eγη+ε1φ(x)−ε0ϕ(x),

and this is bounded above by 1 provided

ε0 ≤
−φ(x)ε1 − γη
−ϕ(x)

.

Note that −φ(x)ε1 − γη > 0 by the choice of u. Therefore, we have

|f(x)|e−(1+ε0)ϕ(x)−A(x) ≤ |g(u)|γe(ε1−ε0)φ(x)+γ(1+ε0)α(x)|f̃(x)|e−(1+ε1)φ(x)−A(x)

≤ |f̃(z)|e−φ(z),

which completes the proof.
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If none of the hypotheses of the previous 4 lemmas hold, then Γ′ϕ,n must be the

interval [z, xG]. This special case is addressed below.

Lemma 5.2.1.6. Suppose mass(ρ0) ≥ 1 and Γ′ϕ,n = [z, xG], then there exists ε0 > 0

such that any nonzero constant function is a (ϕ, ε0)-extension at z.

Proof. It suffices to find ε0 > 0 such that −(1 + ε0)ϕ(y) − A(y) ≤ −ϕ(z) for any

y ∈ [z, xG]. For such y, ϕ(z)−ϕ(y) ≤ 0 and hence it suffices to find ε0 > 0 such that

−ε0ϕ(y) − A(y) ≤ 0 for all such y. This holds for any ε0 > 0 at y = xG. Thus, if

~v ∈ TX,xG is the unique direction at xG with z ∈ U(~v), then it suffices to find ε0 > 0

such that d~v (−ε0ϕ− A) ≤ 0. This holds if ε0 ≤ m(~v)
−d~vϕ

.

Let us now summarize the proof of Theorem 5.2.0.1: if mass(ρ0) < 1, then a

(ϕ, ε0)-extension at z exists by Lemma 5.2.1.2. Suppose now that mass(ρ0) ≥ 1; in

particular, Γϕ,n 6= ∅ and Ends(Γϕ,n) 6= ∅. As discussed at the start of the section, we

assume that ϕ is locally constant off of the convex hull of Γϕ ∪ {z}. By repeatedly

applying Lemma 5.2.1.3, Lemma 5.2.1.4, and Lemma 5.2.1.5, we may assume that

Ends(Γϕ,n) consists of a single type-2 or type-3 point onto which z retracts. This is

precisely the setting of Lemma 5.2.1.6, which then asserts that a (ϕ, ε0)-extension at

z exists. Now, if z ∈ Xrig and k = ka, then H(z) = k, so the second assertion is

immediate from the first. This concludes the proof of Theorem 5.2.0.1.

5.3 A non-Archimedean Demailly approximation

Let X be the Berkovich closed unit disc over k. Given a quasisubharmonic ϕ on

X, one may wish to approximate it by a sequence of quasisubharmonic functions

whose singularities are controlled. One such result is already well known: [Jon15,

Theorem 2.10] shows that there is a decreasing sequence of bounded quasisubhar-

monic functions (ϕn)∞n=1 on X which decrease pointwise to ϕ. Let us briefly recall
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the construction: if ϕ is ρ0-subharmonic, for each n ≥ 1, consider the finite subtree

Γn :=

{
x ∈ X : (ρ0 + ∆ϕ){y ≥ x} ≥ 2−n and d(xG, x) ≤ 2n

}
,

where d is the generalized metric on X from §5.1.3. If rn : X → Γn denotes the

retraction map of X onto Γn, then ϕn is, up to translation by a constant, equal to

(rn)∗ϕ. A similar argument appears in [FRL06b, §4.6].

Notice that the construction of the sequence (ϕn)∞n=1 heavily uses the tree struc-

ture on X (indeed, the same proof yields an analogous result for any metric tree) and

moreover it depends on the choice of exhausting sequence of subtrees Γn. Without in-

volving the analytic structure, it is unlikely that such a regularization result will gen-

eralize to higher-dimensional analytic spaces. The goal of this section is to construct

a canonical regularization of a quasisubharmonic function on the Berkovich unit disc.

The inspiration is the much-celebrated regularization theorem of Demailly [Dem92,

Proposition 3.1].

Let us briefly recall the construction of the Demailly approximation of a plurisub-

harmonic function on the complex unit disc. Let D be the open unit disc in C,

and let ϕ be a plurisubharmonic function on D. Consider the Hilbert space Hϕ of

holomorphic functions f on D satisfying the integrability condition

‖f‖2
ϕ :=

∫
D

|f |2e−2ϕdλ < +∞,

where dλ is the Lebesgue measure. For each m ≥ 1, let (fm,n)∞n=1 be an orthonormal

basis of Hmϕ and define a plurisubharmonic function ϕm on D by the formula

ϕm =
1

2m
log

(
∞∑
n=1

|fm,n|2
)
.

This function ϕm is called the Demailly approximation associated to Hmϕ; ϕm has



138

analytic singularities, in the sense that it can be locally written as

c log

(
N∑
i=1

|gi|2
)

+ β

for some constant α > 0, local holomorphic functions gi, and a locally bounded

function β. The Demailly approximation may also be expressed as

ϕm = sup
f

1

m
log |f |,

where the supremum ranges over all holomorphic functions f in the unit ball of

Hmϕ. In [Dem92, Proposition 3.1], it is shown that the sequence (ϕm)∞m=1 converges

pointwise (and in L1
loc) to ϕ and, after passing to a subsequence, is decreasing in m.

In §5.3.1, given a quasisubharmonic function ϕ on the Berkovich unit disc X, we

construct an ideal Hϕ of the Tate algebra, and for each m ≥ 1 we construct the non-

Archimedean Demailly approximation ϕm associated toHmϕ. Using Theorem 5.2.0.1,

we show that the sequence (ϕm)∞m=1 converges to ϕ. In §5.3.3, we briefly discuss the

connection between the ideals Hϕ and a locally-defined non-Archimedean multiplier

ideal associated to ϕ.

5.3.1 Construction of the non-Archimedean Demailly approximation

Let ϕ be a quasisubharmonic function on X with ϕ ≤ 0. The case when ϕ may

be positive will be addressed later. As in §5.2, consider the function

‖ · ‖ϕ : k{T} → R+

defined by

‖f‖ϕ := sup
x∈X\Z(ϕ)

|f(x)|e−ϕ(x)−A(x)

for f ∈ k{T}. The function ‖ · ‖ϕ is a non-Archimedean norm on the locus {‖ · ‖ϕ <

+∞} in k{T}. The norms of this form are not submultiplicative in general, but
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they do satisfy a monotonicity property: if ϕ, φ are quasisubharmonic and such that

ϕ ≤ φ ≤ 0, then ‖f‖φ ≤ ‖f‖ϕ for any f ∈ k{T}. In particular, the limit

‖f‖+
ϕ := lim

ε→0+
‖f‖(1+ε)ϕ

exists (though it may be infinite). Consider the subset Hϕ of the Tate algebra

consisting of those series f ∈ k{T} such that ‖f‖+
ϕ < +∞. The function ‖ · ‖+

ϕ

defines a non-Archimedean norm on Hϕ, which is not submultiplicative in general.

With this norm, Hϕ is a normed k{T}-module.

Lemma 5.3.1.1. The subset Hϕ is a principal ideal of k{T}, which is complete for

the norm ‖ · ‖+
ϕ . In particular, Hϕ is a Banach k{T}-module.

Proof. It is clear that Hϕ is closed under addition. Given g ∈ k{T}, the image of

the function x 7→ |g(x)| is contained in the interval [0, |g(xG)|]. For any f ∈ Hϕ and

for any ε > 0,

‖fg‖(1+ε)ϕ ≤ |g(xG)| · ‖f‖(1+ε)ϕ.

In particular, fg ∈ Hϕ. Furthermore, the Tate algebra k{T} is a principal ideal

domain (when k is nontrivially-valued, see [Bos14, Corollary 2.2.10]; otherwise,

k{T} = k[T ]) and hence Hmϕ is principal.

Let (fj)
∞
j=1 ⊂ Hϕ be a Cauchy sequence in the norm ‖ · ‖+

ϕ . It follows that

(fj)
∞
j=1 is also a Cauchy sequence for the Gauss norm, since | · |xG ≤ ‖ · ‖+

ϕ . By the

completeness of k{T}, the sequence (fj)
∞
j=1 admits a limit f ∈ k{T}. All ideals of

k{T} are closed, so f ∈ Hϕ. If Hϕ = (h), then we can write fj = gjh and f = gh for

some gj, g ∈ k{T} such that gj → g in | · |xG . For any δ > 0, take ε > 0 sufficiently

small so that ‖h‖(1+ε)ϕ < +∞ and take j � 0 so that |(gj − g)(xG)| < δ
‖h‖+ϕ

. It
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follows that

‖fj − f‖+
ϕ ≤ ‖fj − f‖(1+ε)ϕ

≤

(
sup

x∈X\Z(ϕ)

|(gj − g)(x)|

)
‖h‖(1+ε)ϕ

= |(gj − g)(xG)| · ‖h‖(1+ε)ϕ <
δ

‖h‖+
ϕ

‖h‖(1+ε)ϕ

≤ δ.

Therefore, fj → f in the norm ‖·‖+
ϕ , and so Hϕ is complete with respect to ‖·‖+

ϕ .

Proposition 5.3.1.2. Let ϕ, φ be quasisubharmonic functions on X with ϕ, φ ≤ 0.

If there exist C1, C2 > 0 such that φ− C2 ≤ ϕ ≤ φ+ C1 on X, then

e−C1‖ · ‖+
φ ≤ ‖ · ‖

+
ϕ ≤ eC2‖ · ‖+

φ

as functions on k{T}. In particular, Hϕ and Hφ coincide as ideals of k{T} and the

identity map between them is an isomorphism of Banach k{T}-modules. Moreover,

if ϕ is bounded, then Hϕ = k{T}.

The proof of Proposition 5.3.1.2 is elementary. However, Proposition 5.3.1.2 may

be used to define Hϕ for a quasisubharmonic function ϕ such that supX ϕ > 0, in

which case it is not clear that the limit defining the norm ‖ · ‖+
ϕ exists.

The ideals Hϕ satisfy the subadditivity-type property below.

Proposition 5.3.1.3. If ϕ, φ are quasisubharmonic functions on X, then

Hϕ+φ ⊆ HϕHφ.

The proof of Proposition 5.3.1.3 requires studying the extension of the ideal Hϕ

to each local ring OX,x of X. This is discussed in §5.3.3. This proof is simpler than
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in the complex setting, where the proof of the subadditivity theorem for multiplier

ideals relies crucially on the Ohsawa–Takegoshi theorem on the unit bidisc.

We will now define the non-Archimedean analogue of a plurisubharmonic function

with analytic singularities.

Definition 5.3.1.4. A quasisubharmonic function ϕ on X is said to have analytic

singularities if there exists a cover {Vi}i∈I of X by affinoid domains such that for

each i ∈ I, there are analytic functions fi,1, . . . , fi,ni ∈ OX(Vi), positive numbers

αi,1, . . . , αi,ni > 0, and a bounded function βi : Vi → R such that

ϕ|Vi = βi +

ni∑
j=1

αi,j log |fi,j| on Vi.

Quasisubharmonic functions with analytic singularities, like their complex coun-

terparts, are quite well-behaved. One instance of this is illustrated below.

Example 5.3.1.5. Let ϕ be a quasisubharmonic function on X with analytic sin-

gularities and suppose it admits a decomposition ϕ = β + α log |f |, with f ∈ k{T}

irreducible, α > 0, and β : X → R bounded. Then, Hϕ = (f bαc).

Given a quasisubharmonic function ϕ on X and a positive integer m ≥ 1, the

non-Archimedean Demailly approximation associated to Hmϕ is the function

ϕm :=
1

m

(
sup

f∈Hmϕ\{0}
log

|f |
‖f‖+

mϕ

)∗
,

where (−)∗ denotes the upper-semicontinuous regularization. When k is nontrivially-

valued, ϕm may equivalently be defined in terms of a supremum over

f ∈ B(1)mϕ := {f ∈ Hmϕ : ‖f‖+
mϕ ≤ 1},

the unit ball in Hmϕ. This mirrors the definition of the Demailly approximation in

the complex setting.
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Proposition 5.3.1.6. Let ϕ be a quasisubharmonic function on X and let m ≥ 1.

The non-Archimedean Demailly approximation ϕm is quasisubharmonic with analytic

singularities.

Proof. For each f ∈ Hmϕ, 1
m

log |f |
‖f‖+mϕ

≤ ϕ(xG) and hence by Lemma 5.1.4.1, the

function ϕm is quasisubharmonic. Let h ∈ Hmϕ be any generator. To show ϕm has

analytic singularities, it suffices to show that the function

β(x) :=
1

m

(
sup

f∈Hmϕ\{0}
log
|f(x)|
‖f‖+

mϕ

)∗
− 1

m
log
|h(x)|
‖h‖+

mϕ

is bounded. As ‖gh‖+
mϕ ≥ |g(xG)||h(xG)|e−mϕ(xG) 6= 0 for any nonzero g ∈ k{T}, we

have

sup
g∈k{T}\{0}

log
|h(x)||g(x)|
‖gh‖+

mϕ

≤ log
|h(x)|
|h(xG)|

+mϕ(xG).

This upper bound is upper semicontinuous in x, so it follows that

β(x) ≤ 1

m
log
‖h‖+

mϕ

|h(xG)|
+ ϕ(xG).

For a lower bound, taking g = 1 gives β ≥ 0. Note that the decomposition ϕm =

β + 1
m

log |h(x)|
‖h‖+mϕ

is not unique – it depends on the choice of generator h of the ideal

Hmϕ.

Remark 5.3.1.7. It is not true in general that, if ϕ has analytic singularities, then

ϕm = ϕ for all m ≥ 1. Rather, ϕm is an “algebraic approximation” to ϕ, as the

following example demonstrates. Let ϕ = α · log |f | for some α > 0 and f ∈ k{T}

irreducible. It is easy to verify that

ϕm =
bmαc
m

log |f |.

If x ∈ Xrig is the rigid point corresponding to the maximal ideal (f) of k{T}, then

ϕm has rational slope along the branch [x, xG] of X; however, this will not be the

case for ϕ if α ∈ R\Q.
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Example 5.3.1.8. The sequence (ϕm)∞m=1 does not, in general, decrease monotoni-

cally in m. If ϕ = 3
2

log |T |, then

ϕm =


ϕ, m = 2n

3n+1
2n+1

log |T |, m = 2n+ 1.

In particular, ϕ2n = ϕ for all n ≥ 0, but the subsequence (ϕ2n+1)n≥0 decreases mono-

tonically to ϕ. It is not clear whether or not the sequence ϕm admits a decreasing

subsequence in general. For related results in the complex case, see [Kim14].

5.3.2 A regularization theorem

The following is a non-Archimedean analogue of Demailly’s regularization theo-

rem [Dem92, Proposition 3.1].

Theorem 5.3.2.1. Assume k is algebraically closed, trivially-valued, or is spherically

complete of residue characteristic zero. Let ϕ be a quasisubharmonic function on X

with ϕ ≤ 0, and let m ≥ 1. For any x ∈ X,

ϕ(x) ≤ ϕm(x) ≤ ϕ(x) +
1

m
A(x).

In particular, ϕm converges pointwise to ϕ on {A < +∞} ⊆ X.

The estimate in Theorem 5.3.2.1 in fact yields a stronger assertion than just

the pointwise convergence of the non-Archimedean Demailly approximation ϕm to

ϕ. Indeed, for any compact subset K ⊆ X such that α|K is bounded above, ϕm

converges uniformly to ϕ; this is reminiscent of the L1
loc convergence of the Demailly

approximation in the complex case. The estimate in Theorem 5.3.2.1 can thus be

thought of as asserting that ϕm converges to ϕ in a non-Archimedean version of the

Hartog’s sense, as introduced in [DS09, Definition 3.2.3].
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The key ingredient in the proof of Theorem 5.3.2.1 is Theorem 5.2.0.1. Moreover,

the proof shows that the hypothesis that ϕ ≤ 0 is only needed for the upper bound,

whereas the lower bound always holds.

Proof. Consider first the upper bound on ϕm. If A(x) = +∞, then the upper bound is

trivial. Suppose that A(x) < +∞, in which case α(x) < +∞ as well, so ϕm(x) may

be calculated without the upper-semicontinuous regularization by Lemma 5.1.4.1.

The upper bound then follows from the observation that

m(ϕm − ϕ)− A = sup
f∈Hmϕ

log
|f |e−mϕ−A

‖f‖+
mϕ

≤ 0,

where we have used that ϕ ≤ 0 to conclude that |f |e−mϕ−A ≤ ‖f‖+
mϕ.

To get the lower bound, let φ := ϕ − ϕ(xG) and observe that Hmϕ = Hmφ and

‖f‖+
mφ = emϕ(xG)‖f‖+

mϕ for any f ∈ Hmϕ. For any x ∈ X, Theorem 5.2.0.1 asserts

that there exists an ε0 > 0 and a (mφ, ε0)-extension f ∈ k[T ] at x. In particular,

f ∈ Hmφ and

1 ≤ |f(x)|
‖f‖+

mφ

e−mφ(x) =
|f(x)|
‖f‖+

mϕ

e−mϕ(x),

or equivalently ϕ(x) ≤ 1
m

log |f(x)|
‖f‖+mϕ

≤ ϕm(x).

Remark 5.3.2.2. A quasisubharmonic function cannot, in general, be bounded point-

wise below by a quasisubharmonic function with analytic singularities. Indeed, a

general quasisubharmonic function can have a dense set of poles in X: for example,

if {aj : j ≥ 0} forms a dense subset of k◦, set

ϕ :=
∞∑
j=0

cj log |T − aj|,

for some cj > 0 satisfying
∑∞

j=0 cj = 1. However, a quasisubharmonic function with

analytic singularities on X must have a finite set of poles. This is analogous to the

fact that a subharmonic function with analytic singularities on the complex unit disc

has a discrete set of poles.
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5.3.3 Non-Archimedean multiplier ideals

Let A = k{T} and X = M(A). The stalk OX,x of the structure sheaf OX at

x ∈ X is a noetherian local ring, which may be computed as the direct limit of the

affinoid algebras AV over all affinoid neighborhoods V of x. The unique maximal

ideal mx of OX,x consists of those germs f ∈ OX,x such that |f(x)| = 0. We say that

a germ f ∈ OX,x is defined on an affinoid domain V ⊂ X if it lies in the image of

the natural map AV → OX,x.

For x ∈ Xrig, let mx denote the corresponding maximal ideal of A. As in [BGR84,

7.3.2/1], mx is the extension of mx along the natural map A → OX,x (though this

is false for arbitrary points of an affinoid space, as demonstrated by [Ber93, Remark

2.2.9]). Moreover, for x ∈ Xrig, the natural map A → OX,x factors through the

localization Amx , which induces an isomorphism Âmx
∼→ ÔX,x on completions.

In complex geometry, we associate to each plurisubharmonic function (or more

generally, to a semipositive metric on a line bundle) a multiplier ideal sheaf, which

measures the singularities of the plurisubharmonic function. We propose a non-

Archimedean analogue of this notion.

Definition 5.3.3.1. Let ϕ be a quasisubharmonic function on X with ϕ ≤ 0. For

any x ∈ X, the local multiplier ideal of ϕ at x, denoted J (ϕ)x, consists of those

germs f ∈ OX,x such that for all ε > 0, there is an affinoid neighborhood Vε of x on

which f is defined such that

sup
Vε\Z(ϕ)

|f |e−(1+ε)ϕ−A < +∞.

It is easy to check that the local multiplier ideal J (ϕ)x is indeed an ideal of the

local ring OX,x. Furthermore, it is immediate from the definition that the local mul-

tiplier ideals satisfy J (ϕ+β)x = J (ϕ)x where β is a bounded upper-semicontinuous
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function on X. In particular, if supX ϕ > 0, we may define the local multiplier ideal

of ϕ at x to be J (ϕ − ϕ(xG))x. For simplicity, we assume from now on that all

quasisubharmonic functions are nonpositive.

The name of a multiplier ideal is justified by examples of the following form: if

f ∈ A is irreducible, c > 0, and ϕ := c · log |f |, then J (ϕ)x = m
bcc
x , where x ∈ Xrig

is the rigid point corresponding to the maximal ideal (f) of A. More generally, the

local multiplier ideals admit a similar description for a general quasisubharmonic

function, as is made precise in the following lemma.

Lemma 5.3.3.2. Let x ∈ X.

1. For x ∈ Xrig, J (ϕ)x = m
bcxc
x , where cx := ∆ϕ{x}/m(x).

2. For x ∈ X\Xrig, J (ϕ)x = OX,x.

The quantity cx may be thought of as the “non-Archimedean Lelong number” of

ϕ at the point x.

Proof. Fix x ∈ Xrig. For a germ f ∈ OX,x, let ordx(f) denote the maximal power

of mx to which f belongs. To say f ∈ J (ϕ)x is equivalent the existence of an ε > 0

such that ordx(f)− (1 + ε)cx + 1 ≥ 0, which occurs if and only if ordx(f) > cx − 1,

i.e. ordx(f) ≥ bcxc. Thus, J (ϕ)x = m
bcxc
x .

Fix x ∈ X\Xrig and any ε0 > 0. There are only finitely-many rigid points

z1, . . . , zn ∈ Xrig satisfying (1 + ε0)czi ≥ 1, so we may find an affinoid neighborhood

V of x which avoids z1, . . . , zn and hence

sup
V \Z(ϕ)

|1|e−(1+ε)ϕ−A < +∞

for all ε ∈ [0, ε0]. Thus, 1 ∈ J (ϕ)x.
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One can show that the local multiplier ideals J (ϕ)x arise as the stalks of a coherent

sheaf of ideals on X. More precisely, the local multiplier ideals satisfy a “coherence”

property similar to [Dem12, Proposition 5.7], originally due to Nadel [Nad90].

Lemma 5.3.3.3. For x ∈ Xrig, J (ϕ)x = Hϕ · OX,x.

Proof. The inclusion Hϕ ·OX,x ⊆ J (ϕ)x is clear. The local ring OX,x is a dvr, so the

ideal Hϕ · OX,x can be written as md
x for some d ∈ Z≥0; the power d is the largest

integer such that Hϕ ⊆ md
x. We first show that d ≥ bcxc: pick a net (xj)j∈J in

{α < +∞} that converges to x such that xj ≥ x for all j ∈ J . After shifting ϕ by a

constant, assume that ϕ(xG) = 0, and arguing as in [Jon15, Lemma 2.9] we have

ϕ(xj) = −
∫ xj

xG

(∆ϕ){y ∈ X : y ≤ xj}dα(y)

≤ −
∫ xj

xG

(∆ϕ){x}dα(y)

= −∆ϕ{x}α(xj).

Fix a generator gx of mx. For any f ∈ Hϕ, there is a unique factorization f = gaxh

(up to units) for some a ∈ Z≥0 and h ∈ A\mx. For sufficiently small ε > 0, the above

upper bound on ϕ(xj) gives

+∞ > sup
X\Z(ϕ)

|f |e−(1+ε)ϕ−A ≥ sup
j∈J
|f(xj)|e−(1+ε)ϕ(xj)−A(xj)

≥ sup
j∈J
|h(xj)|e−am(xj)α(xj)+(1+ε)(∆ϕ{x})α(xj)−m(xj)α(xj)

≥ sup
j∈J
|h(xj)|eα(xj)(−am(x)+(1+ε)(∆ϕ{x})−m(x))

where we have used that m(x) ≥ m(xj) and m(xj)α(xj) ≥ A(xj), which follows

from (5.1). This last supremum is finite only if

−am(x) + (1 + ε)(∆ϕ{x})−m(x) ≤ 0,
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and this must hold for all ε > 0 sufficiently small; said differently, a ≥ bcxc. Thus,

d ≥ bcxc.

Now, any generator f of Hϕ, there is a unique way to write f = gdxh (up to units)

for some h ∈ A\mx. If d > bcxc, then it is easy to check that g
bcxc
x h lies inHϕ (it is the

same calculation as above near x, and hence g
bcxc
x h must be a generator of Hϕ; this

is a contradiction, so d = bcxc. Thus, Hϕ ·OX,x = m
bcxc
x and we apply Lemma 5.3.3.2

to conclude.

It is not hard to check that the local multiplier ideals satisfy many of the usual

properties of multiplier ideals on complex algebraic varieties, e.g. invariance under

small perturbations, the behavior under adding integral divisors, and the subaddi-

tivity property (in the subsequent lemma). This further justifies the terminology.

Lemma 5.3.3.4. If ϕ, φ are quasisubharmonic functions on X and x ∈ X, then

J (ϕ+ φ)x ⊆ J (ϕ)xJ (φ)x.

Proof. The assertion follows from Lemma 5.3.3.2 and the observation that

b∆(ϕ+ φ){x}c ≥ b∆ϕ{x}c+ b∆φ{x}c.

Proof of Proposition 5.3.1.3. After translating ϕ and φ by constants, we may as-

sume that they are nonpositive. The inclusion Hϕ+φ ⊆ HϕHφ holds if and only

for every maximal ideal mx of A, there is an inclusion Hϕ+φÂmx ⊆ (HϕHφ) Âmx

of the extensions along A → Âmx . The claim then follows from Lemma 5.3.3.3

and Lemma 5.3.3.4.

As demonstrated by Lemma 5.3.3.2, the local multiplier ideals on the Berkovich

unit disc are somewhat degenerate, principally because the types of singularities



149

of quasisubharmonic functions that can occur in one dimension are limited. In this

paper, they serve only to prove Proposition 5.3.1.3. However, the definition naturally

extends to higher dimensions and, in that more complicated setting, could prove quite

useful.

Remark 5.3.3.5. Given a quasisubharmonic function ϕ on X and x ∈ X, it is easy

to see that ideals Hϕ and J (ϕ)x satisfy an analogue of the openness conjecture.

That is, Hϕ =
⋃
ε>0H(1+ε)ϕ and similarly for J (ϕ)x. The openness conjecture, for a

plurisubharmonic function defined on a neighborhood of the origin in Cn, has been

solved in [Ber13].



CHAPTER VI

On the geometric P=W conjecture

The theory of weight functions and of essential skeletons developed in the previous

chapters can be employed to describe certain dual complexes that are of particular

interest in non-abelian Hodge theory. The goal of this section is the study of the

dual boundary complex D(∂MGLn) of the GLn-character variety MGLn associated

to a Riemann surface of genus one, and to prove Theorems G and H from the in-

troduction. Throughout, all varieties are defined over C, which is thought of as a

non-Archimedean field equipped with the trivial norm.

6.1 The geometric P = W conjecture.

In this section, we give a brief overview of the geometric P = W conjecture,

formulated by Katzarkov, Noll, Pandit, and Simpson in [KNPS15, Conjecture 1.1];

see alternatively [Sim16, Conjecture 11.1]. To do so, we begin with the cornerstone

of non-abelian Hodge theory, namely the Corlette–Simpson correspondence. For a

reductive algebraic group G, this correspondence is a homeomorphism between the

G-character variety, or Betti moduli space,

MB := Hom(π1(X), G) �G

150
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of G-representations of the topological fundamental group of a smooth curve X over

C, and Hitchin’s moduli space MDol of semistable principal Higgs G-bundles on X

with vanishing Chern classes, also known as the Dolbeault moduli space. See e.g.

[Sim94] for further details and generalizations.

The spaces MB and MDol are non-proper varieties, and the “behaviour at infinity”

of the Corlette–Simpson correspondence is a topic of great interest in the literature;

see [KNPS15]. To that end, consider the following extra data:

- a compactification MB (resp. MDol) of MB (resp. of MDol);

- the boundary ∂MB := MB \MB (resp. ∂MDol := MDol \MDol);

- a neighbourhood at infinity NB (resp. NDol) of MB (resp. of MDol), i.e. a tubular

neighbourhood of ∂MB (resp. of ∂MDol);

- a punctured neighbourhood N∗B := NB \ ∂MB (resp. N∗Dol := NDol \ ∂MDol) of

∂MB (resp. of ∂MDol).

Note that the Corlette–Simpson correspondence induces a homotopy equivalence

N∗Dol ∼ N∗B. Hitchin’s moduli space MDol comes equipped with the Hitchin map

H : MDol → CN ,

with 2N = dimC(MDol) (see [Hit87, Equation 4.4]), which induces a map from N∗Dol

to a neighbourhood at infinity of CN . Composing with the radial projection to the

sphere S2N−1, we obtain a map

h : N∗Dol
H−→ CN \ {0} ∼−→ S2N−1.

Now, assume that the dual boundary complex D(∂MB) is well-defined. By means

of a partition of unity, one can define a map from N∗B to the dual boundary complex
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D(∂MB), written

α : N∗B → D(∂MB).

If ∂MB is an snc divisor, then the homotopy type of D(∂MB) is independent of the

choice of the snc compactification by the works of many authors, e.g. [Dan75, Ste06,

KS06, Thu07, ABW13, Pay13].

The geometric P = W conjecture proposes a correspondence between the dual

boundary complex of MB and the sphere at infinity of the Hitchin base for MDol.

Conjecture 6.1.0.1 (Geometric P = W conjecture). There exists a homotopy equiv-

alence

D(∂MB) ∼ S2N−1 (6.1)

such that the following diagram is homotopy commutative

N∗Dol
∼ //

h
��

N∗B

α

��

S2N−1 ∼ // D(∂MB).

(6.2)

The results in [Sim16] provide evidence for the conjecture: when MB is the SL2-

character variety of local systems on a punctured sphere (such that conjugacy classes

of the monodromies around the punctures are fixed), Simpson proves in [Sim16,

Theorem 1.1] that the dual boundary complex D(∂MB) has the homotopy type of

a sphere; see also [Kom15, Theorem 1.4]. However, there is no known proof of the

commutativity of the diagram 6.2. In the same paper, Simpson suggests to study the

case of character varieties associated to compact Riemann surfaces. In the sequel,

we explain our contribution in the genus one case.
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6.2 Dual boundary complex of GLn-character varieties of a genus one
surface

The goal of this section is to prove the following result, stated as Theorem G in

the introduction.

Theorem 6.2.0.1. The dual boundary complex D(∂MGLn) of a dlt log Calabi–Yau

compactification of MGLn has the homeomorphism type of S2n−1.

This character variety admits a concrete description: one can show that MGLn

is the n-fold symmetric product of the two-dimensional algebraic torus C∗ × C∗;

see e.g. [FT16, Corollary 5.6]. Symmetric products of toric surfaces are natural

candidates for compactifications of MGLn . However, these compactifications are not

dlt, although log canonical and log Calabi–Yau (see §6.2.2). In §6.2.3 we adapt the

strategy of [KX16] to prove Theorem G for n = 2. For higher n, this approach is

not sufficient and we instead employ techniques from Berkovich geometry (see §6.2.4

and §6.2.6).

It is worth remarking that a related conjecture, known as cohomological P = W

conjecture, holds for a crepant resolution of MGLn thanks to [dCHM13]. For more

details about this cohomological version, we refer the interested reader to [dCHM12]

and to the excellent survey [Mig17].

6.2.1 Dlt modifications and dual complexes

Given a log canonical (lc) pair (X,∆), a lc centre of the pair is the centre of a

divisorial valuation x ∈ Xi with A(X,∆)(x) = 0. The snc locus Xsnc is the largest

open subset in X such that the pair (X,∆) restricts to an snc pair. The pair (X,∆)

is said to be divisorial log terminal (dlt) if none of its lc centres are contained in

X \Xsnc; see [KM08, Definition 2.37] for more details. Recall that two pairs (X,∆X)
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and (Y,∆Y ) are crepant birational if X and Y are birational and A(X,∆X) = A(Y,∆Y )

as functions on Xbir = Y bir; see [Kol13, Definition 2.23] for further details.

There are several advantages to working with dlt pairs over snc pairs. Most

notably, we use the fact that any lc pair (X,∆) is crepant birational to a (non-unique)

dlt pair (Xdlt,∆dlt), while the corresponding statement fails in general for snc pairs.

This fact is a consequence of the existence of dlt modifications, as in [Kol13, Corollary

1.36], which asserts that there exists a proper birational morphism g : Xdlt → X

with exceptional divisors {Ei}i∈I such that

1. (dlt) the pair (Xdlt,∆dlt := g−1
∗ ∆ +

∑
i∈I Ei) is dlt, where g−1

∗ ∆ is the strict

transform of ∆ via g;

2. (crepant) KXdlt + ∆dlt ∼Q g∗(KX + ∆).

It is always possible to construct a dual intersection complex for a dlt pair (X,∆)

by following the same prescriptions as for snc pairs (while this is not in general

possible for lc pairs). In fact, this coincides with the dual complex of the snc pair

(Xsnc,∆=1|Xsnc)

by [dFKX17, §2]. The dual complex of a lc pair (X,∆) can be defined as the

homeomorphism class of the dual complex of any dlt modification of (X,∆), and

it is denoted by DMR(X,∆); the notation is an abbreviation for Dual complex

of a Minimal dlt partial Resolution. The homeomorphism class DMR(X,∆) is

well-defined, as it is independent of the choice of a dlt modification by [dFKX17,

Definition 15].
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6.2.2 Hilbert scheme of n points of a toric surface

Let Z be a smooth, projective toric surface, and let ∆ be its toric boundary. Let

ΣZ be a toric fan for Z, write |ΣZ | for its support, and |ΣZ |∗ := |ΣZ |\{0}. Note that:

1. Z+ := (Z,∆) is an snc logCY pair;

2. Z \∆ ' C∗ ×C∗;

3. D(Z+) ' Skess(Z,∆)∗/R∗+ = Sk(Z+)∗/R∗+ = |ΣZ |∗/R∗+ ' (R2\{0})/R∗+ ' S1.

Denote by Z [n] the Hilbert scheme of n points of Z; see [Bea83, §6] for an overview of

the construction. Recall that the Hilbert scheme of n points of a projective surface

is a crepant resolution of its n-fold symmetric product. In a diagram, we have

Zn := Z × . . .× Z︸ ︷︷ ︸
n−times

q
��

Z [n] ρHC // Z(n) := Zn/Sn,

where the crepant birational map ρHC is the Hilbert–Chow morphism, and q is the

quotient of the product Zn by the action of the symmetric group Sn of degree n,

which acts by permuting the factors of Zn. This gives rise to the following diagram

of lc logCY pairs:

(Zn,∆n := pr∗1 ∆ + . . .+ pr∗n ∆)

q

��

(Z [n],∆[n] := ρHC
∗∆(n))

ρHC // (Z(n),∆(n) := q∗∆
n)

.

The variety Z(n) is a compactification of MGLn ' (C∗ × C∗)(n), since we can

identify C∗×C∗ ' Z \∆ ⊆ Z. Further, since the lc pairs (Z [n],∆[n]) and (Z(n),∆(n))

are crepant birational, it follows from [dFKX17, Proposition 11] that

D(∂MGLn) ' DMR(Z(n),∆(n)) ' DMR(Z [n],∆[n]) ' D(∂(C∗ ×C∗)[n]). (6.3)
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Remark 6.2.2.1. Unfortunately, the pair (Z(n),∆(n) = Z(n) \ (C∗ × C∗)(n)) fails to

be dlt. In light of (6.3), one could eventually consider the Hilbert scheme Z [n], but

even in that case the compactification is not dlt, as we show in the following. For

simplicity, in this section we will focus our attention on the case n = 2.

Let (C2
x1,x2

, (x1x2 = 0)) be a local toric chart for (Z,∆). As above, consider the

product pair

(C2
x1,x2
×C2

y1,y2
, (x1x2y1y2 = 0)).

There is an involution which swaps x1 and x2 with y1 and y2 respectively. Via the

change of coordinates (u, v, r, s) = (x1 + y1, x2 + y2, x1 − y1, x2 − y2), the involution

sends (u, v, r, s) to (u, v,−r,−s). Hence, the previous diagram has the following

form:

C2
u,v ×C2

r,s

q
��

C2
u,v × Bl0(C2

r,s/(Z/2Z))
ρHC // C2

u,v ×C2
r,s/(Z/2Z) ' C2

u,v × Spec
(

C[x,y,z]
(xz−y2)

)
,

where the maps q is given in coordinates by

q : (u, v, r, s) 7→ (u, v, r2, rs, s2).

Consider the chart of the blowup Bl0(C2
r,s/(Z/2Z)) ⊆ C3

x,y,z ×P2
[X:Y :Z] given by

C2
x′,y′ ↪→ Bl0(C2

r,s/(Z/2Z)) ⊆ C3
x,y,z ×P2

[X:Y :Z]

(x′, y′) 7→ ((x′, x′y′, x′y′2), [1 : y′ : y′2]).

In these local coordinates, the boundaries are given by the following equations:

1. ∆2 = (x1x2y1y2 = 0) = ((u2 − r2)(v2 − s2) = 0);

2. ∆(2) = ((u2 − x)(v2 − z) = 0);
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3. ∆[2] loc
= ((u2 − x′)(v2 − x′y′2) = 0).

One of the components of ∆(2) and ∆[2] is non-normal, and so none of the pairs

(X(2),∆(2)) and (X [2],∆[2]) can be dlt by [KM08, Corollary 5.52].

6.2.3 A proof of Theorem 6.2.0.1 for n = 2.

The n = 2 case of Theorem 6.2.0.1 can be deduced from results in [KX16] and the

Poincaré conjecture, as it is explained below. In the following lemma, the fundamen-

tal group of a variety refers to the topological fundamental group of the associated

complex-analytic variety.

Lemma 6.2.3.1. For n ≥ 2, the dual boundary complex D(∂(C∗ ×C∗)[n]) is simply

connected, i.e.

π1(D(∂(C∗ ×C∗)[n])) = 1.

Proof. Consider a dlt modification h : (Z [n],dlt,∆[n],dlt) → (Z [n],∆[n]). By [KX16,

Theorem 36], there is a surjection of fundamental groups

π1((Z [n],dlt)sm) −→ π1(DMR(Z [n],∆[n])),

where the superscript ‘sm’ denotes the restriction to the smooth locus. Since h is

a birational contraction (that is, the exceptional locus of the inverse map h−1 has

complex codimension > 2), there exists a surjection

π1((Z [n])sm) −→ π1((Z [n],dlt)sm)

by [KX16, Lemma 41]. However, Z [n] is smooth and rationally connected, and hence

π1(Z [n]) = 1; see e.g. [Deb01, Corollary 4.18.(c)]. It follows that

DMR(Z [n],∆[n]) ' D(∂(C∗ ×C∗)[n])

is simply connected.
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Proof of Theorem 6.2.0.1 for n = 2. By [KX16], DMR(Z [2],∆[2]) is a real 3-manifold

with the rational homology of the 3-sphere S3. By Lemma 6.2.3.1, it is also simply

connected, and hence the Poincaré conjecture implies that it is homeomorphic to the

3-sphere S3. By (6.3), the same holds for D(∂MGL2).

The methods of the proof of Theorem 6.2.0.1 for the n = 2 case are not sufficient

to prove the theorem in the general case. The problem is that they do not provide

a control on the torsion of Hi(D(∂(C∗ × C∗)(n)),Z). In the sequel, we avoid this

issue by constructing an explicit homeomorphism between DMR(Z(n),∆(n)) and

the sphere S2n−1, which is a non-Archimedean avatar of the geometric construction

of the Hilbert scheme via products and finite quotients.

6.2.4 The essential skeleton of a logCY pair

The construction of the dual complex of a lc pair relies on the intersection poset

of the strata of a dlt modification. It is convenient to think of these strata as the as-

sociated monomial valuations, suitably normalized, as defined in Proposition 4.2.1.1.

The advantage of this viewpoint is that these valuations are independent of the

choice of dlt modification, and they embed in a common ambient space, namely the

i-analytification, with image equal to the essential skeleton of the pair (see Lemma

6.2.4.4).

As defined in §4.2.7, the essential skeleton of a pair (X,∆X) is given by the union

of the minimality loci of a collection of weight functions in the i-analytification. In

the proper logCY case, the weight functions associated to regular ∆X-pluricanonical

forms coincide with the log discrepancy A(X,∆X), as we show in Proposition 6.2.4.1.

Proposition 6.2.4.1. Let (X,∆X) be a proper log-regular logCY pair. If η is a

regular section of OX(m(KX + ∆X)), then wtη = mA(X,∆X) as functions on Xi.
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Moreover, if (X,∆=1
X ) is log-regular, then

Skess(X,∆X) = Sk(X,∆=1
X ). (6.4)

Proof. By properness, there exists a unique regular section η of OX(m(KX + ∆X))

up to scaling, for m ∈ Z>0 sufficiently divisible. As a result, the weight functions

are independent of the choice of a ∆X-logarithmic m-pluricanonical section, and so

Skess(X,∆X) = Sk(X,∆X , η).

We now proceed as in the proof of Proposition 3.2.3.1 and Corollary 3.2.3.2. Let

δ be a local generator of OX(m(KX + ∆X,red)) and f be a local regular function such

that η = fδ. As η is a global generator of OX(m(KX +∆X)), then f provides a local

equation for m(∆X,red −∆X). Hence, from Proposition 3.2.3.1, we get that

wtη(x) = A(X,∆X,red−(∆X,red−∆X)) = A(X,∆X)(x).

We conclude that

Skess(X,∆X) = Sk(X,∆X , η)

= {x ∈ Xbir : A(X,∆X)(x) = 0}

= {x ∈ Xbir : A(X,∆=1
X )(x) = 0}

= Sk(X,∆=1
X ),

where the intermediate equality follows from the fact that the log centres of the pairs

(X,∆=1
X ) and (X,∆X) coincide. Indeed, one can first assume that (X,∆X) is an snc

pair by passing to a log resolution that, locally at the generic point of the strata of

∆=1
X , is given by a sequence of blow-ups induced by subdivisions of the corresponding

Kato fan. One then applies [Kol13, Proposition 2.7].

In fact, if there exists a boundary ∆ 6 ∆X such that (X,∆X) is a log-regular pair,

then one can define a skeleton of (X,∆) as in §4.2 by throwing away suitable faces
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of Sk(X,∆X). With this definition, the equality (6.4) holds without the additional

hypothesis that (X,∆=1
X ) is log-regular. Nonetheless, Proposition 6.2.4.1 suggests

the following generalization of the definition of the essential skeleton to a proper lc

logCY sub-pair, which agrees with the skeleton of [BJ17, Proposition 5.6] in the dlt

case.

Definition 6.2.4.2. Let (X,∆X) be a proper lc logCY sub-pair. The essential

skeleton of (X,∆X) is

Skess(X,∆X) := {x ∈ Xbir ∩Xi : A(X,∆X)(x) = 0}.

As in Definition 4.2.5.2, we can consider the link of the skeleton.

Definition 6.2.4.3. The link of the essential skeleton Skess(X,∆X) is the quotient

of the punctured skeleton Skess(X,∆X)∗ := Skess(X,∆X)\{v0} via rescaling, denoted

by

Skess(X,∆X)∗/R∗+.

Lemma 6.2.4.4. If the proper lc logCY sub-pairs (X,∆X) and (Y,∆Y ) are crepant

birational, then

Skess(X,∆X) = Skess(Y,∆Y ), (6.5)

Skess(X,∆X)∗/R∗+ = Skess(Y,∆Y )∗/R∗+, (6.6)

Skess(X,∆X)∗/R∗+ ' DMR(X,∆X). (6.7)

Proof. The equalities (6.5) and (6.6) follow from the fact that A(X,∆X) = A(Y,∆Y ) on

Xbir = Y bir. The equality (6.7) is a consequence of the existence of a (crepant) dlt

modification, and Proposition 4.2.5.3, once we restrict to the snc locus of the dlt

modification.
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Remark 6.2.4.5. Given a lc logCY pair (X,∆X), Xi admits a strong deformation

retraction onto the closure of Skess(X,∆X). Indeed, Xi retracts onto the closure

of the skeleton of a pair (Y, f−1
∗ (∆X) +

∑
iEi) by [Thu07, Theorem 3.26], where

f : Y → X is an snc modification of (X,∆X) and Ei are the exceptional divisors of

f . Then Sk(Y, f−1
∗ (∆X) +

∑
iEi) retracts onto Skess(X,∆X) by [dFKX17, Theorem

28.(2)]. While this is not needed in the sequel, the existence of this retraction affirms

the use of the terminology ‘skeleton’ used in Definition 6.2.4.2.

Lemma 6.2.4.6. Let (X,∆X) be a proper lc logCY pair. Let G be a finite group

acting on X so that the quotient map q : X → X/G is quasi-étale, i.e. étale away

from a subscheme of codimension > 2. Then,

Skess(X/G,∆X/G := q∗∆X) = qi(Skess(X,∆X)) ' Skess(X,∆X)/G. (6.8)

In particular,

Skess(X/G,∆X/G)∗/R∗+ ' Skess(X,∆X)∗/(R∗+ ×G). (6.9)

Proof. Observe that the skeleton Skess(X/G,∆X/G) is well-defined since the pair

(X/G,∆X/G) is lc logCY. Indeed, q∗(KX/G + ∆X/G) = KX + ∆ ∼Q 0, because q is

quasi-étale. In particular, [KM08, Proposition 5.20] implies that the pair (X/G,∆X/G)

is lc as (X,∆X) is so.

In order to show the first equality of (6.8), it is enough to show that the surjective

map qi : Xi → (X/G)i restricts to a surjective map

qi|Skess : Skess(X,∆X)→ Skess(X/G,∆X/G)

on essential skeletons. To this end, we first prove that the image of Skess(X,∆X) via

qi lies in Skess(X/G,∆X/G) and that qi|Skess is surjective on divisorial points.



162

Let x ∈ Xdiv∩Xi be the divisorial point determined by the triple (c, Y
h→ X,E).

By [Kol13, Lemma 2.22], there exists a commutative diagram

E ⊂ Y
q′
//

h
��

F ⊂ Y ′

h′

��

X
q
// X/G

where Y ′ is a normal variety and F is a divisor on Y ′ satisfying

- the morphism h and h′ are birational;

- the map q′ is rational and dominant;

- the image of the divisor E via q′ is the divisor F .

Note that the image qi(x) is determined by the triple (c ·r(E), Y ′
h′→ X/G,F ), where

r(E) is the ramification index of q′ along E. Indeed, we have that

c · ordE(f ◦ q ◦ h) = c · ordE(f ◦ h′ ◦ q′) = c · r(E) ordF (f ◦ h′)

for any rational function f ∈ K(X/G). By [KM08, Proposition 5.20], we have that

A(X/G,∆X/G)(q
i(x)) is zero if A(X,∆X)(x) is zero, hence qi(x) ∈ Skess(X/G,∆X/G) for

any divisorial point x ∈ Skess(X,∆X) . Similarly, the proof of [KM08, Proposition

5.20] shows that qi|Skess is surjective on divisorial points.

In fact, qi|Skess is surjective onto the whole skeleton Skess(X/G,∆X/G). Indeed,

since qi is equivariant with respect to the R∗+-action, it is enough to check that the

induced map

qi|Skess∗ /R∗+
: Skess(X,∆X)∗/R∗+ → Skess(X/G,∆X/G)∗/R∗+

is surjective. If qi|Skess is surjective on divisorial points, then qi|Skess∗ /R∗+
is a contin-

uous map from a compact topological space to a Hausdorff space with dense image.

Hence, qi|Skess is surjective.
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Finally, the second equality of (6.8) follows from [Ber95, Corollary 5]. Since the

actions of G and R∗+ commute and the homeomorphism

Skess(X/G,∆X/G) ' Skess(X,∆X)/G

is R∗+-equivariant, we conclude that also (6.9) holds.

6.2.5 Proof of Theorem 6.2.0.1

Proof of Theorem 6.2.0.1. The desired homeomorphism is obtained by applying the

preceding sequence of lemmas as follows:

D(∂MGLn) ' DMR(Z(n),∆(n))

' Skess(Z(n),∆(n))∗/R∗+

' Skess(Zn,∆n)∗/(R∗+ ×Sn)

'
(

(Skess(Z,∆)∗/R∗+) ∗ . . . ∗ (Skess(Z,∆)∗/R∗+)

)
/Sn

' (S1 ∗ . . . ∗ S1)/Sn

' S2n−1/Sn

' S2n−1,

where the final homeomorphism follows from Lemma 6.2.5.1, which is stated imme-

diately after this proof.

We conclude the section by proving the topological lemma mentioned at the end

of the proof of Theorem 6.2.0.1. It is presumably well-known, but the authors are

not aware of a reference.

Lemma 6.2.5.1. Consider the linear action of the symmetric group Sn that per-

mutes the standard coordinates of Cn. The quotient of the unit sphere S2n−1 ⊂ Cn

by this action is homeomorphic to the sphere S2n−1.
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Proof. Consider the finite morphism q : C× . . .×C→ C(n) ' C[z]n,1 given by

(z1, . . . , zn) 7→
n∏
i=1

(z − zi),

where we identify the symmetric product C(n) with the space C[z]n,1 of monic poly-

nomials of degree n in one variable with complex coefficients. The restriction of q to

the boundary of the closed unit polydisc D2n

q : S2n−1 ' ∂D2n = ∂D1 ∗ . . . ∗ ∂D1 → q(S2n−1) ' S2n−1/Sn

is the given quotient map. The space C[z]n,1 is isomorphic to Cn through the identi-

fication ψ : C[z]n,1 → Cn of a monic polynomial with the n-uples of its coefficients;

more explicitly, ψ is by

ψ

(
n∏
i=1

(z − zi)

)
= ψ(zn + r1e

iθ1zn−1 + . . .+ rne
iθn) = (r1e

iθ1 , . . . , rne
iθn),

where (rj, θj)16j6n are polar coordinates on Cn ' R2n. Further, let ϕ : Cn → Cn be

the homeomorphism given by

ϕ(r1e
iθ1 , . . . , rne

iθn) = (r1e
iθ1 , 2
√
r2e

iθ1 , . . . , n
√
rne

iθn).

We can restrict the composition ϕ
|ϕ| ◦ ψ ◦ q : Cn \ {0} → Cn \ {0} to a morphism of

spheres which factors through the symmetric quotient by construction, as shown in

the following diagram

S2n−1

S2n−1/Sn S2n−1.

ϕ
|ϕ|◦ψ◦q

q

ϕ
|ϕ|◦ψ

We claim that the map

ϕ

|ϕ|
◦ ψ : S2n−1/Sn → S2n−1
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is a homeomorphism. Indeed, since it is a continuous map from a compact topo-

logical space to a Hausdorff space, it is enough to check that it is bijective. This is

equivalent to show that the preimage of any point in S2n−1 via the map ϕ
|ϕ| ◦ ψ ◦ q is

a Sn-orbit. Alternatively, we need to prove that the preimage of any real half-line

{(reiθ1 , . . . , reiθn) : r ∈ R+} ⊆ Cn via the map ϕ ◦ ψ ◦ q is the orbit of a half-line

{(rz1, . . . , rzn) : r ∈ R+} ⊆ Cn. This follows from the fact that

(ϕ ◦ ψ ◦ q)−1(reiθ1 , . . . , reiθn) = (ψ ◦ q)−1(reiθ1 , r2eiθ2 , . . . , rneiθn)

=
⋃
σ∈Sn

(rzσ(1), . . . , rzσ(n))

for any r ∈ R+, where the values zj are chosen in such a way that

q(z1, . . . , zn) = (eiθ1 , . . . , eiθn).

6.2.6 An alternative proof of Theorem 6.2.0.1.

The proof of Theorem 6.2.0.1 is inspired by the result in [BM17, Proposition 6.2.4].

There, Brown and the second author show that the dual complex of a degeneration

of the Hilbert scheme of n points of K3 surfaces induced by a maximal unipotent

semistable degeneration of K3 surfaces is homeomorphic to the complex projective

space Pn(C). Both proofs crucially rely on the compatibility of the construction of

the essential skeleton with products and finite quotients.

In this section, we exhibit a direct connection between the two results: we show

how Theorem 6.2.0.1 can be deduced from [BM17, Proposition 6.2.4]. This alternate

proof relies on the construction of an explicit degeneration of Calabi–Yau varieties

(see Proposition 6.2.6.3), and a global-to-local argument (Lemma 6.2.6.1) that re-

lates the dual complex of the degeneration to that a logCY pair. While the proof
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of Theorem 6.2.0.1 presented in §6.2.5 is technically more elementary, we expect

both strategies to prove useful for future calculations of dual complexes. Further-

more, the existence of a degeneration as in Proposition 6.2.6.3 is of independent

interest: loosely speaking, it realizes a character variety as a “limit” of compact

hyper-Kähler manifolds.

Let (X,∆X) be a dlt pair with ∆=1
X :=

∑m
i=1 ∆i. For every stratum W of (X,∆X),

there exists a Q-divisor Diff∗W (∆X) such that

(KX + ∆X)|W ∼Q KW + Diff∗W (∆X).

See [Kol13, §4.18] for more details. By adjunction, we have that Diff∗W (∆X)=1 coin-

cides with the trace of ∆X on W , i.e.

Diff∗W (∆X)=1 =
∑
W*∆i

∆i|W .

In particular, any stratum W of a dlt (logCY) pair has an induced structure of

(logCY) pair (W,Diff∗W (∆X)) such that

D(Diff∗W (∆X)=1) ' D
( ∑
W*∆i

∆i|W
)
. (6.10)

Lemma 6.2.6.1 (Global-to-local argument). Let (X,∆X) be a dlt pair such that the

dual complex of D(∆X) is a topological manifold. Then, D(Diff∗W (∆X)) is homeo-

morphic to a sphere for any stratum W of ∆=1
X .

Proof. Up to baricentrical subdivisions, the link of a neighbourhood of a cell associ-

ated to W in D(∆X) is isomorphic to D(Diff∗W (∆X)). Since D(∆X) is a topological

manifold, this link is homeomorphic to a sphere.

We will construct a degeneration of Hilbert schemes of a K3 surface with a compo-

nent of the special fibre that, paired with the different of the special fibre, is crepant
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birational to a dlt compactification of MGLn . This is then combined with the global-

to-local argument to compute the dual complex in Theorem 6.2.0.1. The properties

of the required degeneration are collected below.

Definition 6.2.6.2. A model X over C[[t]] is good minimal dlt if X is Q-factorial,

the pair (X ,X0,red) is dlt, and KX + X0,red is semiample.

Proposition 6.2.6.3. Let (X,∆X) be a lc logCY pair. Assume there exist

(a) a maximal unipotent semistable good minimal dlt model S of a K3 surface S

over C((t)),

(b) a good minimal dlt model S [n],dlt of the Hilbert scheme of n points of S,

such that (X,∆X) is crepant birational to (D,Diff∗D(S [n],dlt)) for some irreducible

component D of the special fibre S [n],dlt
0 . Then, D(∆X) is homeomorphic to a sphere.

Proof. It follows from the combination of Lemma 6.2.6.1, [dFKX17, Proposition

11], [BM17, Proposition 6.2.4], and [NX16, Propositon 3.3.3]. Note that we only

use [BM17, Proposition 6.2.4] to grant that the dual complex of the degeneration is

a manifold, and not the fact that it is actually homeomorphic to a complex projective

space.

Proof of Theorem 6.2.0.1. Let S be a semistable good minimal (although not Q-

factorial) snc model over C[[t]] of a quartic surface S in P3
C((t)), degenerating to the

union of four hyperplanes S0 =
∑3

i=0Di. For example, take the Dwork pencil

S :=

{
x0x1x2x3 + t

3∑
i=0

x4
i = 0

}
⊆ P3

[x0:x1:x2:x3] × Spec(C[[t]]).
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The degeneration S is a model of the K3 surface S as in Proposition 6.2.6.3(a), and

the proof proceeds in two steps: we construct a model S [n],dlt of S[n] as in Proposi-

tion 6.2.6.3(b), and then we identify a component of the special fibre S [n],dlt
0 which,

paired with the different of S [n],dlt
0 , is crepant birational to a dlt compactification of

MGLn .

For the first step, let (S (n),S (n)
0 ) and (S [n],S [n]

0 ) be the pairs given by the rel-

ative n-fold symmetric product and the relative Hilbert scheme of n points on S re-

spectively, together with their special fibres. Consider a log resolution of (S [n],S [n]
0 ),

written

g : (Y ,∆Y := g−1
∗ S [n]

0 + E)→ (S [n],S [n]
0 ),

which is an isomorphism on the snc locus of (S [n],S [n]
0 ), where E is the sum of

the g-exceptional divisors. Note that the composition g ◦ ρHC of g with the Hilbert–

Chow morphism ρHC gives a log resolution of the pair (S (n),S (n)
0 ) as well. The

(KY /C[[t]]+∆Y )-MMP with scaling terminates with a Q-factorial, dlt, minimal model

of S[n]

h : (S [n],dlt,S [n],dlt
0,red = h−1

∗ S [n]
0 + E ′)→ S [n],

where E ′ is the sum of the (g ◦ ρHC)-exceptional divisors that lie in the special

fibre, and S [n],dlt
0,red is the reduced special fibre of S [n],dlt. The existence of such a h

follows from [Kol13, Corollary 1.36]; note that the degeneration S is defined over

a curve (see Definition 4.2.8.1), so we can run a relative MMP as usual. Note also

that the pair (S (n),S (n)
0 ) is (reduced) lc logCY, since (S ,S0) is so. The pair

(S [n],dlt,S [n],dlt
0,red ) is logCY as well, as h is a crepant morphism of pairs (see [Kol13,

§1.35]). Hence, S [n],dlt is a good minimal dlt model of S[n], as required in order to

apply Proposition 6.2.6.3.

Now, we show that there exist irreducible components ∆dlt
i of S [n],dlt

0,red such that
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the pairs

(∆dlt
i ,Diff∗∆dlt

i
(S [n],dlt

0,red ))

are crepant birational to a dlt compactification of MGLn ' (C∗×C∗)(n), equivalently

of (C∗ × C∗)[n]. To this end, note that the special fibre S (n)
0 contains irreducible

components ∆i ' (P2)(n), i ∈ I ' {0, . . . , 3}, which are the n-fold symmetric

products of the hyperplanes Di. Denote by ∆′i and ∆dlt
i the strict transform of

∆i under ρHC and h, respectively. By [Kol13, Proposition 4.6], the following pairs

are crepant birational:

(∆′i,Diff∆′i
(S [n]

0,red)) ∼ (∆i,Diff∆i
(S (n)

0 )) ∼ (∆dlt
i ,Diff∆dlt

i
(S [n],dlt

0,red )).

Further, the inclusion of Di \ ∪j 6=iDj ' C∗ ×C∗ into Di induces the embedding of

∆◦i := (Di \ ∪j 6=iDj)
[n] into ∆′i, which is isomorphic to (C∗ × C∗)[n]. We need the

following technical lemma.

Lemma 6.2.6.4. Diff∆′i
(S [n]

0,red) = ∆′i \∆◦i .

Proof. It is clear that Diff∆′i
(S [n]

0,red) > (S [n]
0 \∆′i)|∆′i . For the equality, it is enough

to prove that no divisor whose generic point is contained in ∆◦i belongs to the sup-

port of Diff∆′i
(S [n]

0,red). By [Kol13, Proposition 4.5 (1)], it is sufficient to prove that

S [n] is regular along ∆◦i . To this aim, let ξ ∈ ∆◦i be a scheme of length n in S0.

Since the immersion of a (formal) neighbourhood of ξ in S [n]
0 factors through ∆i,

the subscheme ξ is unobstructed by [Fog68, Theorem 2.4]; it follows from [Kol96,

Theorem 2.10] that S [n] is regular at ξ.
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Finally, we conclude that

D(∂(MGLn) ' DMR(∆′i,Diff∆′i
(S [n]

0,red))

' DMR(∆dlt
i ,Diff∆dlt

i
(S [n],dlt

0,red ))

' S2n−1,

where the first homeomorphism holds by Lemma 6.2.6.4 and (6.3), the second is [dFKX17,

Proposition 11], and the final homeomorphism is Proposition 6.2.6.3.

6.3 Dual boundary complex of SLn-character varieties of a genus one
surface

In this section, we determine the homeomorphism class of the dual boundary

complex of the SLn-character variety MSLn associated to a Riemann surface of genus

one. The following result is stated as Theorem H in the introduction.

Theorem 6.3.0.1. The dual boundary complex D(∂MSLn) of a dlt log Calabi–Yau

compactification of MSLn has the homeomorphism type of S2n−3.

Proof. Observe that MSLn is the fibre of the determinant morphism

(C∗ ×C∗)(n) 'MGLn → C∗ ×C∗ (6.11)

((ai, bi))
n
i=1 ' [(A,B)] 7→ (detA, detB) = (

∏n
i=1 ai,

∏n
i=1 bi) , (6.12)

where the pair (A,B) of matrices in GLn represents a point in MGLn , and (ai)
n
i=1

and (bi)
n
i=1 are their eigenvalues; see for instance [BS16, Lemma 8.17]. We proceed

in several steps.

First, we will show that the character variety MSLn admits a lc logCY compacti-

fication MSLn . Indeed, consider the diagram

L := m−1
r (1) ' (C∗ ×C∗)n−1 (C∗ ×C∗)n C∗ ×C∗ 3 1 = (1, 1)

MSLn (C∗ ×C∗)(n),

q

mn
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wheremn is the multiplication map, and q the quotient by the action of the symmetric

group Sn, permuting the factors. The projective closure L of L in (P2)n is invariant

with respect to the action

(C∗ ×C∗)n−1 × (P2)n → (P2)n

given as follows: for ((ai, bi))
n−1
i=1 ∈ (C∗ ×C∗)n−1 and ([xj : yj : zj])

n
j=1 ∈ (P2)n, the

point ((ai, bi))
n−1
i=1 · ([xj : yj : zj])

n
j=1 of (P2)n has j-th factor given by

[ajxj : bjyj : zj], j = 1, . . . , n− 1,∏n−1
i=1 a

−1
i · xn :

∏n−1
i=1 b

−1
i · yn : zn

]
, j = n.

for j = 1, . . . , n.

As L ' (C∗ × C∗)n−1 is a dense orbit of this algebraic action, it follows that

L is a toric compactification of L. In particular, the pair (L, ∂L := L \ L) is a

(normal) lc logCY pair. Since L is Sn-invariant and the restriction of the quotient

map q : (P2)n → (P2)(n) to L is quasi-étale, then the projective closure MSLn of

MSLn in (P2)(n) is a lc logCY compactification of MSLn . Thus, we can construct the

essential skeleton Skess(MSLn , ∂MSLn) as in Definition 6.2.4.2. Although L is a toric

variety, it is worth pointing out that the embedding L ↪→ (P2)n is not toric.

Next, let ∆ be the toric boundary of P2 and N be the cocharacter lattice of

the torus C∗ × C∗ ⊆ P2. By Proposition 6.2.4.1, Skess(P2,∆) is the skeleton

of the log-regular pair (P2,∆), and hence the multiplication mn induces a map

αn : Skess(P2,∆)n → Skess(P2,∆) by functoriality, as in §4.7. In particular, in this

toric case, the essential skeleton Skess(P2,∆) can be identified with NR ' R2 (see
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§4.3.2), and αn is given by the linear map

(NR)n ' R2n → NR ' R2,

(xi, yi)
n
i=1 7→

(∑n
i=1 xi,

∑n
i=1 yi

)
.

Finally, observe that the symmetric quotient of the kernel of αn is isomorphic to the

additive group Cn−1, i.e.

α−1
n (0)/Sn ' Cn−1.

This follows from the diagram below:

α−1
n (0) Skess((P2)n,∆n) ' Cn ' R2n Skess(P2,∆) ' C ' R2

α−1
n (0)/Sn Skess((P2)(n),∆(n)) ' Cn,

αn

qi pr

where the map pr is the linear projection to the Sn-invariant coordinate αn.

Now, the essential skeleton of the pair (MSLn , ∂MSLn) is homeomorphic to the

symmetric quotient of the fibre of αn, namely

Skess(MSLn , ∂MSLn) ' α−1
n (0)/Sn.

This statement can be shown following the same strategy of [BM17, Proposition

6.3.3]. Indeed, the latter relies on the functoriality of skeletons via finite quotients and

products, which we have reproved in the trivially-valued setting in Proposition 4.2.6.3

and Lemma 6.2.4.6.

Finally, in the same fashion as in §6.2.5, we conclude that

D(∂MSLn) ' DMR(MSLn , ∂MSLn) ' S2n−3.
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6.3.1 An alternative proof of Theorem 6.3.0.1

Following the same strategy as in §6.2.6, one can invoke a global-to-local argument

to reduce the proof of Theorem 6.3.0.1 to the construction of a degeneration as in the

following proposition. Observe that the role of the Hilbert scheme of a K3 surface

in Proposition 6.2.6.3 is replaced by the generalised Kummer variety of an abelian

surface.

Proposition 6.3.1.1. There exists a good minimal dlt model K dlt
n−1 of a generalised

Kummer variety and an irreducible component ∆dlt of the special fibre K dlt
n−1,0 such

that the pair (∆dlt,Diff∆dlt(K dlt
n−1,0,red)) is crepant birational to a lc logCY compacti-

fication of MSLn.

The proof of Proposition 6.3.1.1 relies on some local computations on the Tate

curve. Following [DR73, VII], we recall that the Tate curve Gm is a model over C[[t]]

of the multiplicative group Gm with special fibre given by an infinite chain of P1’s;

see Section 6.4 for the construction. In fact, Gm is the universal cover of the minimal

model of a Tate elliptic over C((t)), as in [Tat95] (see also [Sil09, C §14]). Mind that

Gm is the completion of a C-scheme that is only locally of finite type over C.

The model Gm, obtained from Gm by removing the nodes of the special fibre,

is the Néron model of Gm; see [DR73, VII, Example 1.2.c)]. In particular, Gm is

endowed with a multiplication morphism

G n
m := Gm × . . .× Gm → Gm,

which extends the multiplication Gn
m → Gm on the generic fibre. Let Vn−1 denote the

fibre of the identity section via the multiplication map G n
m → Gm. By a local compu-

tation in the coordinates of [DR73, VII], one can show that the pair (V n−1,V n−1,0),

given by the closure of Vn−1 in the fibre product G
n

m together with its special fi-
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bre, is normal, reduced, and toric. Further, the intersection V n−1 ∩ (G
n

m \ G n
m) has

codimension two in V n−1. The proof of these facts appear in Section 6.4.

Proof of Proposition 6.3.1.1. Let E be an elliptic curve over C((t)) with multiplica-

tive reduction (c.f. [Liu02, Definition 10.2.2]), and E be a semistable good minimal

snc model of E over C[[t]]. In order to later run a MMP, assume further that E is

defined over a curve in the sense of Definition 4.2.8.1. For example, take E to be the

Dwork pencil of cubic curves that appears in Fig. 4.1. The Néron model N of E is

the group scheme obtained from E by removing the nodes of the special fibre; see

[Liu02, Theorem 10.2.14].

We first perform the classical construction of a singular generalised Kummer va-

riety, as in [Bea83, §7], but in the relative setting. Let Xn−1 be the fibre of the

identity section of the multiplication morphism

mn : (N ×N )n := (N ×C[[t]] N )×C[[t]] . . .×C[[t]] (N ×C[[t]] N )→ (N ×C[[t]] N ).

The closure X n−1 of Xn−1 in (E ×E )n is invariant under the action of the symmetric

group Sn, which acts by permuting the factors of (E ×E )n. As a result, the quotient

K sing
n−1 := X n−1/Sn

is a model of the singular generalised Kummer variety Ksing
n−1 associated to the abelian

surface E × E. Let K sing
n−1,0 be the special fibre of K sing

n−1 .

Lemma 6.3.1.2. The pair (K sing
n−1 ,K

sing
n−1,0) is reduced lc logCY.

Proof. We omit the subscript n− 1 for brevity. Since the quotient map X → K sing

is quasi-étale, it is equivalent to check that the pair (X ,X 0) is reduced lc logCY. To

this end, observe that the universal cover of (E ×E )n is the fibre product (Gm×Gm)n

of Tate curves. Therefore, the pair (X ,X 0) is reduced lc, since it is étale-locally
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isomorphic to the pair (V ×V , (V ×V )0), which is the fibre product of the reduced

toric pair (V ,V 0) by Proposition 6.4.0.1.

In order to verify that KX /C[[t]] + X 0 is trivial, it suffices to check that its re-

striction (
KX /C[[t]] + X 0

)
|X = KX /C[[t]] + X0 ∼ KX /C[[t]]

to X is trivial; indeed, X \X has codimension two in X by Proposition 6.4.0.1.

Let NX ((N ×N )n) denote the normal bundle of X in (N ×N )n. As X is a fibre

of the locally trivial fibration mn, it follows that det (NX ((N ×N )n)) is trivial; in

particular, we have

KX /C[[t]] ∼ K(N ×N )n/C[[t]]|X ⊗ det
(
NX ((N ×N )n)

)
∼ 0,

since (N ×N )n is Calabi–Yau. Thus, the pair (X ,X 0) is logCY, as required.

Restrict now the construction of the relative generalised Kummer variety to the

identity component of the special fibre of N , which is isomorphic to C∗: this gives

the construction of MSLn in 6.11. As a consequence, an irreducible component of the

special fibre K sing
n−1,0 is a lc logCY compatification of MSLn in (P1 × P1)(n). This is

shown by arguing as in the proof of Theorem 6.3.0.1.

Finally, the good minimal dlt model K dlt
n−1 of the generalised Kummer varietyKn−1

associated to E×E can be obtained, following [Kol13, Corollary 1.38], by extracting

the exceptional divisors of the Hilbert–Chow morphism ρHC : Kn−1 → Ksing
n−1.

Proof of Theorem 6.3.0.1. The result follows from Lemma 6.2.6.1, Proposition 6.3.1.1,

and [BM17, Proposition 6.3.4].
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6.4 Local computations on the Tate curve

The goal of this section is to prove Proposition 6.4.0.1, which is a technical ingre-

dient needed in the proof of Proposition 6.3.1.1. The former result involves the Tate

curve of [DR73, VII], whose existence and basic properties were discussed in §6.3.1.

We begin by recalling its construction.

Let (xi)i∈Z be a collection of indeterminates. The Tate curve Gm over the base

ring R := C[[t]] is the union of the affine charts (Ui+1/2)i∈Z given by

Ui+1/2 := Spec

(
R[xi, yi+1]

(xiyi+1 − t)

)
.

For each i ∈ Z, the charts Ui−1/2 and Ui+1/2 are glued along the open subscheme

Ti := Ui−1/2 ∩ Ui+1/2

= Spec
(
O(Ui+1/2)[x−1

i ]
)

= Spec
(
R[xi, x

−1
i ]
)

(yi+1 = t/xi)

= Spec
(
O(Ui−1/2)[y−1

i ]
)

= Spec
(
R[yi, y

−1
i ]
)

(xi−1 = t/yi)

via the identification xiyi = 1.

The R-group scheme Gm :=
⋃
i∈Z Ti, obtained from Gm by removing the nodes in

the special fibre, is the Néron model of the multiplicative group Gm, as explained

in [DR73, Example 1.2.c]. In particular, the n-th multiplication map

Gm × . . .×Gm → Gm

extends to a homomorphism

µn : G n
m := Gm ×R . . .×R Gm → Gm
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of R-group schemes, which (when n = 2) is given in local charts by

Ti ×R Tj −→Ti+j

R[xi, x
−1
i ]⊗R R[xj, x

−1
j ]←−R[xi+j, x

−1
i+j]

xi ⊗ xj ←[ xi+j.

As xi−1yi = t and xiyi = 1, it follows that xi = t−ix0. In particular, the identity

section Id of Gm is cut out in the chart Ti by the equation xi = t−i.

Let Vn−1 := µ−1
n (Id) be the fibre of the identity section Id via the n-th multiplica-

tion map µn, and let V n−1 denote the closure of Vn−1 in Gm. The proposition below

describes the singularities of the pair (V n−1,V n−1,0), where V n−1,0 is the special

fibre of V n−1.

Proposition 6.4.0.1. The pair (V n−1,V n−1,0) is normal, reduced, and toric (i.e. it

is Zariski-locally isomorphic to a normal toric scheme with its reduced toric bound-

ary). Furthermore, the intersection V n−1∩ (G
n

m \G n
m) has codimension two in V n−1.

The Proposition 6.4.0.1 is an immediate corollary of Lemma 6.4.0.2 below. Indeed,

the assertions in Proposition 6.4.0.1 are local: we may work on the the open subsets

Uα+1/2 := Uα1+1/2 ×R . . .×R Uαn+1/2,

for any multi-index α = (α1, . . . , αn) ∈ Zn, since the Uα+1/2’s cover G
n

m.

For brevity, we omit the subscript n− 1 from now on; let Vα be the restriction of

V to Tα := Tα1 ×R . . .×R Tαn , V α be its closure in Uα+1/2, and V α,0 be the special
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fibre of V α. In local coordinates, we have

Uα+1/2 = Spec

(
R[xα1 , yα1+1, . . . , xαn , yαn+1]

(xαiyαi+1 − t)

)
,

Tα = Spec
(
R[x±1

α1
, . . . , x±1

αn ]
)
⊆ Uα+1/2,

Vα =

{
n∏
i=1

xαi = t−
∑
αi

}
⊆ Tα.

Lemma 6.4.0.2. For any α ∈ Zn, the pair (V α,V α,0) is normal, reduced, and toric.

Furthermore, the intersection V α ∩ (Uα+1/2 \ G n
m) has codimension two in V α.

Proof. The proof is divided into cases depending on the sign of |α| :=
∑n

i=1 αi. For

the first case, assume that |α| > 0. In this case, V α is cut out of Uα+1/2 by the

equation t|α|
∏n

i=1 xαi = 1, so t is invertible on V α. In particular, V α and Vα both

coincide with the generic fibre of Uα+1/2, which is isomorphic to the Frac(R)-scheme

Gn
m. Thus, there is nothing to prove.

In the second case, assume |α| = 0. As
∏n

i=1 xαi = 1 on V α, it follows that

the xαi ’s are invertible there, and hence the variables yαi+1 = x−1
αi
xα1yα1+1 can be

eliminated. Thus, we have

V α = Spec
(
R[x±1

α1
, . . . , x±1

αn−1
, yα1+1]

)
' Gn−1

m,R ×R A1
R,

V α,0 = {xα1yα1+1 = 0} = {yα1+1 = 0},

V α ∩ (Uα+1/2 \ G n
m) ⊆ V α ∩

{
n∏
i=1

xαi = 0

}
= ∅.

It is clear from the above equations that (V α,V α,0) satisfies the required properties.

For the third and final case, assume |α| < 0. We will show that V α is normal by

showing the conditions S2 and R1, and in the process we deduce that (V α,V α,0) is

toric and V α,0 is reduced. This will be done in two steps.

First, observe that V α is contained in the closed, toric subscheme Zα of Uα+1/2
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given by the equations 
t ·
∏n

i=1 xαi = t−|α|+1,

xα1yα1+1 = . . . = xαnyαn+1 = t

in Spec (R[xα1 , yα1+1, . . . , xαn , yαn+1]). The fibres of Zα over R are easily described:

over the generic fibre, Zα coincides with V α; over the special fibre, it is (Uα+1/2)0,

hence given by the equations

xα1yα1+1 = . . . = xαnyαn+1 = t = 0.

Recall that if a Gorenstein scheme of pure dimension d is a union of two closed

subschemes of pure dimension n and one is Cohen-Macaulay, then the other is Cohen-

Macaulay; see [Kol11, Lemma 7]. Thus, since Zα = V α∪(Uα+1/2)0 and both Zα and

(Uα+1/2)0 are complete intersections, it follows that V α is Cohen-Macaulay, hence S2.

In particular, the pair (V α,V α,0) is toric, as both V α and V α,0 are torus-invariant

subschemes of Zα.

Now, it is enough to check the condition R1 at the generic point of each irreducible

component of V α,0. As V α is a toric R-scheme, such components are toric strata

of (Uα+1/2)0 of dimension n − 1. Let (J, j) be the datum of a non-empty subset

J ⊆ I := {1, . . . , n}, along with a distinguished element j ∈ J . Consider the (n− 1)-

dimensional stratum Z(J,j) of V α,0 given by the equations

Z(J,j) :=



xαi = 0 i ∈ J,

yαi+1 = 0 i ∈ (I \ J) ∪ {j},

t = 0.

Up to relabeling of the indices, we can assume that 1 ∈ J and j = 1, in which case

we write Z(J,j) simply as ZJ . After localizing at the generic point of ZJ , the functions



180

{xαi : i ∈ I \ J}, and {yαi+1 : i ∈ J \ {1}} become invertible, and hence the variables

yαi+1 = x−1
αi
xα1yα1+1 i ∈ I \ J,

xαi = y−1
αi+1xα1yα1+1 i ∈ J \ {1},

can be eliminated. Thus, locally at the generic point of ZJ , we have

V α
loc
=

xα1 ·

 ∏
i∈J\{1}

y−1
αi+1

 · (xα1yα1+1)|J |−1 ·

∏
i∈I\J

xαi

 = (xα1yα1+1)−|α|


=
{

(invertible) · (xα1)
|J |+|α|(yα1+1)|J |+|α|−1 = 1

}
in Spec

(
R[x±1

αi
, y±1
αl+1 : i ∈ I \ J, l ∈ J \ {1}][xα1 , yα1+1]

)
.

If |J | + |α| > 1 or |J | + |α| < 0, then V α,0 does not contain ZJ , and there is

nothing to prove.

If |J |+ |α| = 0, then yα1+1 is invertible and it is a function of x±1
αi

and y±1
αl+1 with

i ∈ I \ J and l ∈ J \ {1}, so that

V α
loc
= Spec

(
R[x±1

αi
, y±1
αl+1 : i ∈ I \ J, l ∈ J \ {1}][xα1 ]

)
' Gn−1

m,R ×R A1
R.

In particular, V α,0 = {xα1 = 0}.

Finally, if |J |+ |α| = 1, then xα1 is invertible and it is a function of x±1
αi

and y±1
αl+1

with i ∈ I \ J and l ∈ J \ {1}, so that

V α
loc
= Spec

(
R[x±1

αi
, y±1
αl+1 : i ∈ I \ J, l ∈ J \ {1}][yα1+1]

)
' Gn−1

m,R ×R A1
R.

In particular, V α,0 = {yα1+1 = 0}. We conclude that V α is a normal toric irreducible

scheme locally of finite type. The local computation above shows also that the divisor

V α,0 is reduced. Further, in order to prove that V α ∩ (Uα+1/2 \G n
m) has codimension

two in V n−1, it is enough to check that this intersection does not contain the generic

point of any stratum ZJ . A point in (Uα+1/2 \ G n
m) is characterized by the property
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that a pair of coordinates (xαi , yαi+1) for i ∈ I vanishes simultaneously. However,

this cannot happen at the generic point of ZJ , as the local equations above show.

This concludes the proof of Lemma 6.4.0.2.
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