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ABSTRACT

Over the past couple decades, we have witnessed a huge explosion in data generation

from almost every perspective on our lives. Along with such huge volumes of data

come more complex models, e.g., deep neural networks (DNNs). This increase in

complexity demands new trends in both modeling and analysis of data, among which

low dimensionality and sparsity lie at the core. In this thesis, we follow this avenue

to address some problems and challenges raised by modern data and models.

High-dimensional data are often not uniformly distributed in the feature space,

but instead they lie in the vicinity of a low dimensional subspace. Identifying such

low-dimensional structures cannot only give better interpretability of the data, but

also significantly reduce the storage and computation costs for algorithms that deal

with the data. The second chapter of this thesis focuses on low-rank linear subspace

models, and we particularly focus on improving and analyzing an efficient subspace

estimation method in the context of streaming data with emphasis on data being

undersampled.

On the other hand, real word data are in general non-linear and involve much more

complex dependencies, which motivates the development of DNNs. With massive

amounts of data and computation power, the high capacity and the hierarchical

structure of DNNs allow them to learn extremely complex non-linear dependencies and

features. However, the successes achieved by DNNs are marred by the inscrutability of

models, poor generalizability, and high demands on data and computational resources,

xi



especially given that the size and the complexity of DNNs keeps increasing. To

combat these challenges, we specifically focus on two perspectives, model compression

and disentangled representation learning.

DNNs are often over-parameterized with many parameters being redundant and

non-critical, hence successfully removing these connections is expected to improve

both efficiency and generalization. In Chapter III, we go a step further by presenting

a new method for compressing DNNs, which encourages sparsity while simultaneously

identifying strongly correlated neurons and setting the corresponding weights to a

common value. The ability of our method to identify correlations within the network

not only helps further reduce the complexity of DNNs, but also allows us to cope with

and gain more insights on the highly correlated neurons instead of being negatively

affected by them.

From another perspective, many believe that the poor generalization and inter-

pretability of DNNs can be resolved if the model can, in the setting of unsupervised

learning, identify and separate out the underlying explanatory factors of data into

different factors of its learned representation. Such representations are more likely

to be used across a variety of tasks, with each particular task being relevant with a

different subset or combination of all representation factors. In Chapter 4, we present

an information theoretic approach for jointly learning a hybrid discrete-continuous

representation, where the goal is to uncover the underlying categories of data while

simultaneously separating the continuous representation into statistical independent

components with each encoding a specific variation in data.

xii



CHAPTER I

Introduction

1.1 Motivation

Data are currently being generated from ubiquitous sources with an unprecedented

volume and variety, which together with the massive amount of computational power

allow us to train more complex machine learning models, e.g., deep learning models.

Deep learning is built upon the computation technique of neural networks, with

the hope to mimic the human brain and analyze data in a way similar to what a

human would do. Over the past decade, deep learning has become one of the primary

research areas in developing artificial intelligence, and it has been the working horse

in solving a variety of practical problems, in particular for those in supervised learning

[84, 122, 70, 74] and reinforcement learning [97, 98, 99, 117, 75].

Although deep learning has achieved tremendous success, we still need to overcome

several challenges before deep learning is widely adopted in solving real life problems.

In general, these challenges fall into three categories. First, deep learning is highly

demanding on data and computational power. Deep learning models are usually

of massive size, that is, a huge amount of parameters need to be tuned. More

parameters generally require more data and more computational resources. Second,

deep learning models suffer from the butterfly effect. As was initially observed in

1
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[123], a small perturbation on the input data can cause even state-of-the-art neural

networks to output completely incorrect predictions with high confidence, though

such perturbations are imperceptible for humans. This vulnerability allows hackers to

attack the model even without accessing the internal mechanism. Third, deep neural

networks are essentially a black box. Due to the nonlinearity and the hierarchical

structure, it’s very hard to interpret the decision-making process of a deep learning

model. This significantly limits the usage of deep learning models in mission-critical

applications like financial services and clinical decision-making.

This thesis work takes a step towards resolving these challenges by targeting three

different machine learning problems, namely, subspace learning from massive data,

deep neural network compression, and interpretable representation learning, with the

unified goal of extracting compact and interpretable knowledge from massive data.

The underlying motivations can be summarized as the following:

• Don’t solve a harder problem than you have to. Many real data are more likely

to concentrate in the vicinity of a subspace of much lower dimension embedded

in the original high dimensional space where data live. This motivates the usage

of low rank subspace models in solving a wide range of problems in science and

engineering for the sake of efficiency, ease of analysis, and better interpretability.

Therefore, the low-dimensional linear subspace model is popular because of its

ubiquitous success, and complicated nonlinear dimensionality reduction is not

desirable unless it’s absolutely necessary.

• Less is more. Compressing dense neural networks to sparse ones is often desired.

Neural network compression not only tackles potential over-fitting but also

accelerate the development of intelligent devices by significantly reducing the

burden on computation and memory. Moreover, neural networks can be further
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simplified by identifying strongly correlated input features for each layer and

tying the associated connection weights together. By doing so, we thereby take

a step towards opening the black box by identifying and coping with the highly

correlated neurons instead of being negatively affected by them.

• Build an explanatory model of data. The vision of artificial intelligence is that

the future world will be populated with intelligent agents that can fundamentally

understand the world around us and reason and make decisions in an interpretable

way. A widely believed idea is that such a goal can be achieved if the agents

can, without a teacher (annotations), identify and disentangle the underlying

explanatory factors of data into disjoint parts of the learned representations.

In addition to providing more interpretability of the inner decision-making

mechanism of the agent, such representations are more likely to be used over a

variety of tasks, i.e., each task depends on a different subset or combination of

the whole set of representations factors.

1.2 Subspace Identification from Streaming Data

Many practical datasets exhibit low-dimensional structure. By leveraging low-

dimensional structure of the given data, we are expected to (i) play with many fewer

degrees of freedom, which can help improve efficiency when solving many important

problems in machine learning and statistics; (ii) capture useful representations that

are less variant to most local changes of the input, e.g., in the presence of noise and

outliers; (iii) simplify the analysis of complex (nonlinear) observation processes; (iv)

gain more interpretability about the data.

Consider the following three illustrative examples. First, for surveillance video data

analysis, background subtraction is a useful technique that can help us identify and
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track the activities of moving objects in the foreground [68, 33]. In this scenario, if

we stack the video frames as columns of a matrix, the static background with lighting

changes naturally corresponds to a low-dimensional subspace. A second example is

face recognition. With only the illumination changing, the human face can be well

represented by a low-dimensional subspace. Identifying this subspace is crucial in

many applications like face recognition [135] and image alignment [69, 105]. For a

final example, consider recommender systems, where the goal is to use incomplete

rankings provided by other users on some products to anticipate the preference of

any user on any other products. The low dimensional assumption is key for solving

this problem [82]. The philosophy behind this assumption is that we can use fewer

categories to model diverse human behavior.

Therefore, subspace estimation is of great use in a variety of settings, i.e., instead

of the massive data itself, the subspace spanned by the these principal components

is the object of interest and requires less storage and communication complexity.

However, to efficiently identify the subspace, we need to handle the following three

challenges arising regularly in modern machine learning problems and data-intensive

analysis. First of all, data can be high-dimensional and observed in a streaming

way. The velocity of high-dimensional data being generated is continuing to reach

unprecedented levels, e.g., huge volumes of photos and video data are generated

from ubiquitous sources, moreover, each single frame may contain thousands or ten

thousands of pixels. Secondly, data are likely incomplete. Two typical cases are

missing data and compressed sensing data, which can arise due to the limitations on

the way data are being collected [132, 82], or privacy settings in social networks, or

the technology used by a specific area like Magnetic resonance imaging (MRI) for

medical diagnosis [9]. The last challenge is the theoretical guarantees for proposed
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algorithms. Until recently, most known methods with rigorous guarantees for solving

this type of problem use a batch data model [34, 106, 77, 79, 88, 78], which requires

expansive storage and computation costs and thus prevents efficient processing of

large data.

In Chapter II, we focus on extending an existing algorithm for subspace estimation

from streaming data to a more general sampling scheme and providing theoretical

guarantees correspondingly.

1.3 Simultaneous Sparsification and Parameter Tying in Deep Learning

Deep neural networks (DNNs) have recently revolutionized machine learning by

dramatically advancing state-of-the-art performance in many applications, including

computer vision [70, 62], natural language processing [13, 49], playing video games

[96] and healthcare [95]. The key behind this widespread success is that a typical

DNN usually contains millions or even billions of parameters/weights, which together

with the hierarchical structure of DNN and massive amounts of data allow it to

learn very complex mappings and perform inferences at multiple levels. On the

other hand, although a larger DNN usually yields better performance [61, 51], such

high capacity makes both storage and computation very expensive, resulting in

fundamental challenges in deploying DNNs in devices with limited resources, e.g., cell

phones, smart wearable devices, drones and self-driving cars. However, it has been

shown that many popular deep neural network architectures are over-parameterized

[47], where a large fraction of the parameters can be predicted from the remaining

ones with no accuracy loss. This motivates a surge of research interest to compress

neural networks with benefits being twofold: (i) significantly reducing the complexity

of DNNs so as to improve efficiency and generation; (ii) facilitating the deployment
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of a larger base architecture to obtain a better baseline for further compression.

A natural approach for neural network compression is to remove redundant connec-

tions. Two typical methods are pruning [65, 89] and sparsity regularization [146, 134].

Parameter sharing/tying is another well-known approach for controlling the complex-

ity of DNNs by forcing certain sets of weights to share a common value. Some forms

of weight sharing are hard-wired to express certain invariances; a notable example is

the shift-invariance of convolutional layers. However, other groups of weights may be

tied together during the learning process to further reduce the network complexity.

In Chapter III, we adopt a recently proposed regularizer, GrOWL (group ordered

weighted `1), which encourages sparsity and, simultaneously, learns which groups of

parameters should share a common value.

GrOWL has proven effective in linear regression, being able to identify and cope

with strongly correlated covariates. Unlike standard sparsity-inducing regularizers

(e.g., `1 a.k.a. Lasso), GrOWL not only eliminates unimportant neurons by setting all

their weights to zero, but also explicitly identifies strongly correlated neurons by tying

the corresponding weights to a common value. This ability of GrOWL motivates the

following two-stage procedure: (i) using the GrOWL regularizer during training to

simultaneously identify significant neurons and groups of parameters that should be

tied together; (ii) retraining the network, enforcing the structure that was unveiled

in the previous phase, i.e., keeping only the significant neurons and enforcing the

learned tying structure. As shown in Chapter III, being capable of identifying highly

correlated neurons and tying the assoicated parameters/weights together yields two

desirable effects in terms of better stability and prediction. First, unlike the standard

`1 type regularization, GrOWL is capable of selecting all relevant features instead of

a random subset of them, which guarantees a more stable learning process and better
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interpretability of the model. Second, the parameter tying property helps denoise the

input data and alleviate co-adaption in DNNs so as to improve prediction.

1.4 Interpretable Representation Learning

Building explanatory models of data lies at the core of artificial intelligence

(AI) [23]. Such explainable models have profound impact on various important

topics, including safe AI, fairness and bias in social science, and automatic scientific

discovery. This has led to a surge of interests in the deep learning community in

learning disentangled representation. Although there is no generally agreed upon

definition of disentanglement, many believe learning a factorial representation is a

good starting point, given the hypothesis that data has been generated by a number of

independent factors through a stochastic random process. Specifically, such a factorial

representation is expected to be semantically meaningful in a way that a change in one

dimension of the representation corresponds to a change in one true factor of variation

in data, while being invariant to changes in other factors. Successfully learning

the disentangled representations is useful in a variety of tasks, including enabling

interpretable decision making in downstream tasks like supervised learning and

reinforcement learning, allowing explainable knowledge transfer in transfer learning,

and performing controllable data generation in generative models.

A large amount of research has focused on learning disentangled representations

in supervised learning and semi-supervised learning where the annotations can either

explicitly or implicitly guide what disentanglement means. However, unsupervised

learning is more desired, sometimes even necessary, given that it’s more human-like

and annotations are costly to obtain and hence are scarce in practice. Recently, deep

generative models have shown great promise in unsupervised learning of disentangled



8

representations, where variational autoencoders (VAE) [81] and generative adver-

sarial networks (GAN) [63] based approaches are arguably the two most influential

lines. The original objectives of both VAE and GAN solely target data reconstruc-

tion/generation fidelity, thus tending to encode different variations in data in a highly

entangled way. Many follow up works augment the original objectives with various

disentanglement-encouraging terms, with the goal of finding the optimal trade-off

between reconstruction and disentanglement [71, 32, 80, 35, 37, 52, 92, 55].

In Chapter IV, we propose the Regularized Information Maximizing Auto-Encoding

(RIMAE), an information theoretic approach to learning hybrid discrete-continuous

representations in an unsupervised setting. Instead of building upon the generative

models, we start with a very natural criterion that good representations, at least to

some degree, should be informative about the data. This motivates us to maximize

the mutual information between data and its representations, which is the substance

of the InfoMax principle [90]. Although the mutual information between data and its

representations can be trivially maximized by simply memorizing the data, proper

constraints are naturally implied by our target. We show that the proposed objective

provides a principled framework for understanding the relationships among the

informativeness of each representation factor, disentanglement of representations, and

decoding quality.

1.5 Outline and Publications

This thesis proposal is organized as follows. Chapter II provides the theoretical

guarantees of a Grassmannian gradient descent algorithm for subspace estimation

from both fully sampled and undersampled data. Chapter III describes a novel

method for compressing neural networks by simultaneously encouraging sparisification
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and parameter tying. Chapter IV presents an information theoretic approach for

simultaneously learning discrete and continuous representations of data by leveraging

stochastic autoencoder. Chapter V provides conclusion and discussions on future

work.
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CHAPTER II

Convergence of a Grassmannian Gradient Descent Algorithm
for Subspace Estimation From Undersampled Data

2.1 Introduction

Low-rank matrix factorization is an essential tool for high-dimensional inference

with fewer measurements than variables of interest, where low-dimensional models

are necessary to perform accurate and stable inference. Many modern problems fit

this paradigm, where signals are undersampled because of sensor failure, resource

constraints, or privacy concerns. Suppose we wish to factorize a matrix M =

UW T when we only get a small number of linear measurements of M . Solving

for the subspace basis U can be computationally burdensome in this undersampled

problem and related regularized problems. Many algorithms that attempt to speed

up computation are solving a non-convex optimization problem, and therefore come

with few guarantees.

The Singular Value Decomposition (SVD) provides the solution to the non-convex

matrix factorization problem formulation with full data, and there are several highly

successful algorithms for solving it [59]. Unfortunately, these algorithms cannot

easily be extended to problems with incomplete observations of the matrix. Recently,

several results have been published with first-of-their-kind guarantees for a variety

of different gradient-type algorithms on non-convex matrix factorization problems

11
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[11, 25, 39, 46, 76, 77, 145]. These new algorithms, being gradient-based, are well-

suited to extensions of the SVD where the matrix is not fully sampled and where we

include different cost functions or regularizers. For example, with gradient methods to

solve the SVD we may be able to solve Robust PCA [33, 68, 137], Sparse PCA [44], or

even `1 PCA [29] with gradient methods as well. However, almost none of these results

gives guarantees in streaming problem, where data can only be accessed one partial

column vector at a time. This is a critical problem in the modern machine learning

context with massive data and comparatively limited memory, or in applications

where data are collected continuously and must be processed in realtime. The existing

theoretical results for the streaming problem significantly overestimate the number of

samples needed for convergence for typical algorithms.

Our contribution is to provide a global convergence result for d-dimensional

subspace estimation using an incremental gradient algorithm performed on the

Grassmannian, the space of all d-dimensional subspaces of Rn, denoted by G(n, d).

Subspace estimation is a special case of matrix factorization with orthogonality

constraints, where we seek to estimate only the subspace spanned by the columns

of the left matrix factor U ∈ Rn×d. Our result demonstrates that, for fully sampled

data without noise, this gradient algorithm converges globally to the global minimizer

almost surely, i.e., it converges from any random initialization to the global minimizer.

For undersampled data, including compressively sampled data and missing data,

we provide results showing monotonic improvement in expectation on the metric of

convergence for each iteration.

This chapter is organized as follows. The problem formulation and the GROUSE

algorithm are described in Section 2.2. The global convergence result for fully

sampled data is presented in Section 2.4, the convergence behavior of GROUSE
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with undersampled data is studied in Section 2.5, and the corresponding proofs are

provided in Sections 2.8.1, 2.8.2 and 2.8.3. Experiment results are in Section 2.6.

2.2 Problem Setting

in this chapter, we consider the problem of learning a low dimensional subspace

representation from streaming data. Specifically, we are given a sequence of ob-

servations xt = Atvt where At ∈ Rm×n (m ≤ n) are sampling matrices that are

given for each observation; vt ∈ Rn are drawn from a continuous distribution with

support on the true subspace, spanned by Ū ∈ Rn×d with orthonormal columns,

i.e., vt = Ūst, st ∈ Rd. in this chapter, we study three different sampling frameworks:

the fully sampled case with At being the identity matrix, the compressively sampled

case with At ∈ Rm×n (m � n) being random Gaussian matrices, and the missing

data case where each row of At (m � n) is uniformly sampled from the identity

matrix.

We formulate subspace estimation as a non-convex optimization problem as follows.

Let U ∈ Rn×d be a matrix with orthonormal columns. Then we want to solve:

minimize
U∈Rn×d

T∑
t=1

min
wt
‖AtUwt − xt‖2

2(2.1)

subject to span (U) ∈ G(n, d)

This problem is non-convex firstly because of the product of the two variables U and

wt and secondly because the optimization is over the Grassmannian G(n, d), the non-

convex set of all d-dimensional subspaces in Rn. We study an online algorithm to solve

the above problem, where we process one observation at a time and perform a rank-one

update to generate a sequence of estimates Ut with the goal that R(Ut) → R(Ū),

where R(·) denotes the column range.
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We can see the relationship between our problem and the well studied low-rank

matrix recovery problem. Let W ∈ Rd×T and M = [v1, . . . , vT ] ∈ Rn×T , then (2.1) is

equivalent to

minimize
U∈Rn×d,W∈Rd×T

‖A (UW )−A (M) ‖2
2(2.2)

subject to span (U) ∈ G(n, d)

where A : Rn×T → RmT is a linear operator. Our algorithm can be thought of as an

incremental algorithm to solve this problem as well. Fueled by the great deal of recent

success of directly solving non-convex factorization problems (as we discuss in related

work below), we study the natural incremental gradient descent algorithm [24] applied

to (2.1) directly. Since the optimization variable in our problem is a subspace, we

constrain the gradient descent to the Grassmannian G(n, d). The resulting algorithm

is called GROUSE (Grassmannian Rank-One Update Subspace Estimation) algorithm

and is described in Algorithm 1. This description differs from its initial introduction

in [15] in that it extends the missing data case to a more general sampling framework.

Algorithm 1 GROUSE: Grassmannian Rank-One Update Subspace Estimation
Given U0, an n× d matrix with orthonormal columns, with 0 < d < n;
Set t := 0;
repeat

Given sampling matrix At : Rn → Rm and observation xt = Atvt;
Define wt := argmina ‖AtUta− xt‖2;
Define pt := Utwt and r̃t := xt −Atpt, rt := ATt r̃t;
Using step size

(2.3) θt = arctan

(
‖rt‖
‖pt‖

)
update with a gradient step on the Grassmannian:

(2.4) Ut+1 := Ut +

(
yt
‖yt‖

− pt
‖pt‖

)
wTt
‖wt‖

where yt
‖yt‖2

=
pt
‖pt‖2

cos(θt) +
rt
‖rt‖2

sin(θt)

t := t+ 1;
until termination
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2.2.1 Algorithm

At each step, the GROUSE algorithm receives a vector xt = Atvt, and tries to

minimize the inconsistency between R(U) and the true subspace R(Ū) with respect

to the information revealed in the sampled vector xt, i.e.,

(2.5) F (U ; t) = min
a
‖AtUa− xt‖2

In order to do so, GROUSE forms the gradient of F with respect to U evaluated at

the current estimate Ut, and takes a step in the direction of the negative gradient

restricted to the Grassmannian. The derivation of the incremental gradient descent

update rule on the Grassmannian is found in [15, 18], and we summarize it here.

To compute the gradient of F on the Grassmannian, we first need to compute

the derivative of F with respect to U and evaluate it at Ut. As we will prove later,

under mild conditions, AtUt has full column rank with high probability. Therefore,

the derivative is

(2.6)
dF
dU

= −2ATt r̃tw
T
t

where r̃ := xt−AtUtwt denotes the residual vector with respect to the sampled vector

xt, and wt is the least-squares solution of (2.5). Using Equation (2.70) in [53], the

gradient of F on the Grassmannian then follows as

∇F =
(
I − UtUT

t

) dF
dU

= −2
(
I − UtUT

t

)
ATt r̃tw

T
t

= −2ATt r̃tw
T
t .(2.7)

The final equality follows by r̃t ⊥ AtUt, which can be verified using the definitions of

wt and r̃t. According to Eq (2.65) in [53], a gradient step along the geodesic with

tangent vector −∇F can be then formed as a function of the singular values and
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singular vectors of ∇F . For this specific case of our rank one ∇F given in 2.7, the

update rule follows as

(2.8) U(η) = Ut +

[
(cos (ηtσt)− 1)

Utwt
‖wt‖

+ sin (ηtσt)
ATt r̃t
‖ATt r̃t‖

]
wTt
‖wt‖

where ηt > 0 is the chosen step size at iteration t, pt := Utwt is the predicted value

of the projection of the vector vt onto R(Ut) and σt = ‖ATt r̃t‖‖pt‖. By leveraging

the fact that r̃t ⊥ AtUt and pt ∈ R(Ut), it’s easy to verify that the rank-one update

(2.8) maintains orthogonality U(η)TU(η) = Id, and tilts R(Ut) to a new point on

Grassmannian.

In summary, for each observation the GROUSE algorithm works as follows: it

projects the data vector onto the current estimate of the true subspace with respect

to the sampling matrix At, to get either the exact (when At = In) or approximated

projection pt and residual rt = ATt r̃t. Then GROUSE updates the current estimate

with a rank-one step as described by (2.4). In the present work, we propose an

adaptive stepsize framework that sets the stepsize only based on the sampled data

and the algorithm outputs. More specifically, at each iteration a stepsize ηt is chosen

such that ηtσt = arctan
(
‖rt‖
‖pt‖

)
. As shown in Section 2.4, the proposed stepsize scheme

is greedy for the fully sampled data, i.e., it maximizes the improvement of our defined

convergence metric at each iteration. For the undersampled data, we establish a local

convergence result by showing that, with the proposed stepsize, GROUSE moves the

current estimated subspace towards the true subspace with high probability despite

the nonconvex nature of the problem and undersampled data.

2.2.2 Related Work

Many recent results have shown theoretical support for directly solving non-

convex matrix factorization problems with gradient or alternating minimization
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methods. Among the incremental methods [46] is the one closest to ours, where

the authors consider recovering a positive semidefinite matrix with undersampled

data. They propose a step size scheme with which they prove global convergence

results from a randomly generated initialization. However, their convergence results

contain a obscure term, and their choice of step size depends on the knowledge of

some parameters that are likely to be unknown in practical problems. Without

this knowledge, the results only hold with sufficiently small step size that implies

significantly slower convergence. In contrast, while our work applies more narrowly to

the subspace estimation problem, we provide an explicit expression for the expected

improvement at each iteration, using a step size that only depends on the observations

and outputs of the algorithms. Based on that, we posit a conjecture on the global

convergence rate for fully sampled data. Although we have not yet established a

complete proof of this conjecture, it’s a very promising result that matches what we

have seen in practice. We present our current proof of the conjecture in Appendix

2.8.2, and discuss the missing steps for finally validating it. Other work that has

looked at incremental methods has focused only on fully sampled vectors. For example,

[14] invokes a martingale-based argument to derive the global convergence rate of

the proposed incremental PCA method to the single top eigenvector in the fully

sampled case. In contrast, [12] estimates the best d-dimensional subspace in the fully

sampled case and provides a global convergence result by relaxing the non-convex

problem to a convex one. We seek to identify the d dimensional subspace by solving

the non-convex problem directly.

The results in this chapter are very closely related to our previous work [17]. In [17],

we prove that, within a local region of the true subspace, an expected improvement

of their defined convergence metric for each iteration of GROUSE can be obtained.
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In contrast, we establish global convergence results to a global minimizer from any

random initialization for fully sampled data, and extend the local convergence results

to compressively sampled data. We also expand the local convergence results in [17]

to a much less conservative region, and we provide a much simpler analysis framework

that can be applied to different sampling strategies. Moreover, for each iteration

of the GROUSE algorithm, the expected improvement on the convergence metric

defined in [17] only holds locally in both theory and practice, while our theoretical

result provides a tighter bound for the global convergence behavior of GROUSE

over a variety of simulations. This suggests that our result has more promise to be

extended to a global result for both missing data and compressively sampled data.

Turning to batch methods, [108, 77] provided the first theoretical guarantee for an

alternating minimization algorithm for low-rank matrix recovery in the undersampled

case. Under typical assumptions required for the matrix recovery problems [106],

they established geometric convergence to the global optimal solution. Earlier work

[78, 102] considered the same undersampled problem formulation and established

convergence guarantees for a steepest descent method (and a preconditioned version)

on the full gradient, performed on the Grassmannian. [39, 25, 145] considered low rank

semidefinite matrix estimation problems, where they reparamterized the underlying

matrix as M = UUT , and update U via a first order gradient descent method.

However, all these results require batch processing and a decent initialization that is

close enough to the optimal point, resulting in a heavy computational burden and

precluding problems with streaming data. We study random initialization, and our

algorithm has fast, computationally efficient updates that can be performed in an

online context.

Lastly, several convergence results for optimization on general Riemannian mani-
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folds, including several special cases for the Grassmannian, can be found in [2]. Most

of the results are very general; they include global convergence rates to local optima

for steepest descent, conjugate gradient, and trust region methods, to name a few. We

instead focus on solving the problem in equation 2.1 and provide global convergence

rates to the global minimum.

Before we present the main results, we first call out the following notation which

we use throughout this chapter. For notational convenience, we will drop the iteration

subscript except our convergence metric ζt defined in Definition 1 hereafter.

Notation We use R(M) to denote the column space of a matrix M and PM to

denote the orthogonal projection onto R(M). In denotes the identity matrix in Rn×n

and Mi denotes the ith row of matrix M . in this chapter, without specification, ‖ · ‖

denotes the `2 norm. R(Ū) and R(U) denote the true subspace and our estimated

subspace respectively, here both Ū and U are matrices in Rn×d with orthonormal

columns. Also we use v‖ and v⊥ to denote the projection and residual of the underlying

full vector v ∈ Rn onto the estimated subspace R(U), i.e., v‖ = UUTv, v⊥ = v − v‖.

Note that these two quantities are in general unknown for the undersampled data

case. We define them so as to relate the intermediate quantities, determined by the

algorithm and sampled data, to the improvement on our defined convergence metric.

2.3 Preliminaries

In this section, we first define our convergence metric and describe an assumption

on the streaming data needed to establish our results. Subsequently, we state a

fundamental result that is essential to quantify the improvement on the convergence

metric over GROUSE iterates.

Definition 1 (Determinant similarity). Our measure of similarity between R(U) and
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R(Ū) is ζ ∈ [0, 1], defined as

ζ := det(ŪTUUT Ū) =
d∏

k=1

cos2 φk .

where φk denotes the kth principal angle between R(Ū) and R(U) (See [[120], Chapter

5]) by cosφk = σk(Ū
TU) with σk denoting the kth singular value of ŪTU .

The convergence metric ζ increases to one when our estimate R(U) converges to

R(Ū), i.e., all principal angles between the two subspaces equal zero. Compared

to other convergence metrics defined either as ‖(I − Ū ŪT )U‖2
F = d − ‖ŪTU‖2

F =∑d
k=1 sin2 φk or 1−‖ŪTU‖2

2 = sin2 φ1, our convergence metric ζ measures the similarity

instead of the discrepancy between R(U) and R(Ū). In other words, ζ achieves its

maximum value one when R(U) converges to R(Ū), while the typical subspace

distance is zero when the subspaces are equal. Also note that ζ = 0 iff at least one of

the principal angles is a right angle. That is, all stationary points Ustat of the full

data problem except the true subspace have det
(
ŪTUstatU

T
statŪ

)
= 0 [138, 18].

Assumption 1. For the underlying data v = Ūs, we assume the entries of s are

independent, and identically distributed symmetrically about zero, and each entry has

zero-mean and unit variance.

Given this assumption, we have the following lemma which relates the projection

v‖ and the projection residual v⊥ to the improvement on our convergence metric ζt.

As we will show in the following sections, this lemma is crucial for us to establish

the expected improvement on our defined convergence metric ζt for all the sampling

frameworks considered in this work. The proof is provided in Section 2.8.1.

Lemma 2.3.1. Let v‖ and v⊥ denote the projection and residual of the full data

sample v onto the current estimate R(U). Then given Assumption 1, for each iteration
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of GROUSE we have

(2.9) E
[
‖v⊥‖2

‖v‖‖2

∣∣∣∣U] ≥ E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] ≥ 1− ζt
d

.

Although both projection (v‖) and projection residual (v⊥) are in general unknown

for the undersampled data, we can relate the approximated projection residual AT r̃

to the true one v⊥ by leveraging either random matrix theory or the incoherence

property of the underlying subspace R(Ū). Therefore, the above lemma provides a

unifying step to quantify the improvement on the convergence metric for all cases

considered in the present work.

2.4 Fully Sampled Data

In this section, we consider fully sampled data, i.e., A = In. The corresponding

proofs for these results can be found in Section 2.8.2. We start by deriving a

greedy step size scheme for each iteration t that maximizes the improvement on our

convergence metric ζt. For each update we prove the following:

(2.10)
ζt+1

ζt
=

(
cos θ +

‖v⊥‖
‖v‖‖

sin θ

)2

.

It then follows that

(2.11) θ∗ = arg max
θ

ζt+1

ζt
= arctan

(
‖v⊥‖
‖v‖‖

)
.

This is equivalent to (2.3) in the fully sampled setting At = In. Using θ∗, we obtain

monotonic improvement on the determinant similarity that can be quantified by the

following lemma.

Lemma 2.4.1 (Monotonicity for the fully sampled noiseless case). For fully sampled

data, choosing step size θ∗ = arctan
(
‖v⊥‖
‖v‖‖

)
, after one iteration of GROUSE we obtain

ζt+1

ζt
= 1 +

‖v⊥‖2

‖v‖‖2
≥ 1 .
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To gain more insight into the improvement on ζt for each iteration of GROUSE,

we call out the following lemma, which is a natural result of Lemma 2.3.1 and Lemma

2.4.1.

Lemma 2.4.2 (Expected improvement on ζt). When fully sampled data satisfying

Assumption 1 are input to the GROUSE (Algorithm 1), the expected improvement

after one update step is given as:

E
[
ζt+1

∣∣U] ≥ (1 +
1− ζt
d

)
ζt .

Under the mild assumption that each data vector is randomly sampled from

the underlying subspace, we obtain strict improvement on ζt for each iteration

provided ‖v⊥‖ > 0 and ‖v‖‖ > 0. Therefore, Lemma 2.4.1 provides insight into

how the GROUSE algorithm converges to the global minimum of a non-convex

problem formulation: GROUSE is not attracted to stationary points that are not the

global minimum. As we mentioned previously, all other stationary points Ustat have

det(ŪTUstatU
T
statŪ) = 0, because they have at least one direction orthogonal to Ū [18].

Therefore, if the initial point U0 has determinant similarity with Ū strictly greater

than zero, then we are guaranteed to stay away from other stationary points, since

GROUSE increases the determinant similarity monotonically, according to Lemma

2.4.1. This together with Lemma 2.4.2 yields the following convergence result of

GROUSE.

Theorem 2.4.1 ( Convergence of GROUSE). Initialize the starting point U0 of

GROUSE such that ζ0 > 0. Let 1 ≥ ζ∗ ≥ ζ0 be the desired accuracy of our estimated
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subspace. Then for any ρ > 0, after

K ≥
(
d

ζ0

+ 1

)
log

(
1

ρ(1− ζ∗)

)
iterations of GROUSE Algorithm 1,

P (ζK ≥ ζ∗) ≥ 1− ρ .

.

Notice that if we initialize GROUSE with U0 drawn uniformly from the Grassman-

nian, e.g., as the orthonormal basis of a random matrix V ∈ Rn×d with entries being

independent standard Gaussian variables, this guarantees ζ0 > 0 with probability one.

Therefore, Theorem 2.4.1 provides a global convergence result of GROUSE despite

the non-convexity of our objective. However, with this randomly initialized U0, the

value of the associated determinant similarity ζ0 is O
((

d
n

)d). Thereby, GROUSE

requires O
(
d
(
n
d

)d) iterations to converge to the required precision, which is too

pessimistic compared to the actual number of iterations required by GROUSE. To

narrow this gap, we call out the following conjecture on the global convergence rate

for GROUSE.

Conjecture 2.4.1 (Global Convergence of GROUSE). Let 1 ≥ ζ∗ > 0 be the desired

accuracy of our estimated subspace. With the initialization (U0) of GROUSE as the

range of an n× d matrix with entries being i.i.d standard normal random variables,

then for any ρ > 0, after

K ≥ K1 +K2

=

(
2d2

ρ
+ 1

)
τ0 log(n) + 2d log

(
1

2ρ(1− ζ∗)

)
iterations of GROUSE Algorithm 1,

P (ζK ≥ ζ∗) ≥ 1− 2ρ ,
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where τ0 = 1 +
log

(1−ρ/2)
C

+d log(e/d)

d logn
with C be a constant approximately equal to 1.

The is still incomplete. We present our current strategy for proving it in Sec-

tion 2.8.2 and discuss the missing steps there. We show that the iteration com-

plexity can potentially be a combination of iterations required by two phases:

K1 =
(

2d2

ρ
+ 1
)
τ0 log(n) is the number of iterations required by GROUSE to achieve

ζt ≥ 1/2 from a random initialization U0; and K2 = 2d log
(

1
2ρ(1−ζ∗)

)
is the number

of additional iterations required by GROUSE to converge to the given accuracy ζ∗

from ζK1 = 1/2.

We want to comment that conjecture 2.4.1 requires fully observed noiseless data,

which is not very practical in many cases. However, it can potentially be the first

convergence guarantee for the Grassmannian gradient descent based method for

subspace estimation with streaming data. It is a very important initial step for

further studies on more general cases, including undersampled data and noisy data

with outliers. In the following section, we will analyze the convergence behavior of

GROUSE for undersampled data. We leave the corrupted data case as future work.

2.5 Undersampled Data

In this section, we consider undersampled data where each vector v is subsampled

by a sampling matrix A ∈ Rm×n with the number of measurements being much

smaller than the ambient dimension (m � n). We study two typical cases, the

compressively sampled data where A are random Gaussian matrices, and the missing

data where each row of A is uniformly sampled from the identity matrix, In ∈ Rn×n.

We first outline several elementary facts that can help us understand how the

GROUSE algorithm navigates on the Grassmannian with undersampled data. The

proofs can be found in Section 2.8.3.
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Suppose AU has full column rank, then the projection coefficients w are found

by the squares solution of w =: arg mina ‖AUa− x‖
2, i.e., w = (UTATAU)−1UTATx.

Note that x = Av, therefore we can further decompose the projection coefficients w

as w = w‖ + w⊥ where

(2.12) w‖ =
(
UTATAU

)−1
UTATAv‖ , w⊥ =

(
UTATAU

)−1
UTATAv⊥ .

This decomposition explicitly shows the perturbation induced by the undersampling

framework, i.e., Av⊥ is not perpendicular to AU in general, though v⊥ is orthogonal

to R(U). Now we are going to use this perturbation to show how the approximated

projection p and residual r deviate from the exact ones obtained by projecting the

full data sample v onto the current estimate R(U).

Lemma 2.5.1. Given Eq equation 2.12, let p = p‖+p⊥ with p‖ = Uw‖ and p⊥ = Uw⊥,

then

p‖ = v‖ and r = ATAv⊥ − ATPAU(Av⊥) .(2.13)

Proof. Let a = UTv‖, then a is the unique solution to Uw = v‖ given that U has full

column rank. Since AU also has full column rank, b =
(
UTATAU

)−1
UTATAv‖ is

also the unique solution to AUw = Av‖. It then follows that AUa = Av‖ = AUb.

Therefore, a = b. As for the second statement, it simply follows due to the fact that

Av‖ = AUw‖ ∈ R(AU). Hence r̃ = (Im − PAU)Av = (Im − PAU)Av⊥, recall that

PAU denotes the orthogonal projection operator onto the column space of AU . This

together with r = AT r̃ completes the proof.

Below we lower bound the improvement on ζt as a function of the key quantities

r, r̃ and p. Compared to Lemma 2.4.1, Lemma 2.5.1 and Lemma 2.5.2 highlight
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the how the perturbations induced by the undersampling framework influence the

improvement on ζt for each iteration. Being able to analyze and bound the quantities

that include the perturbations is the key to establish the expected improvement on ζt

for undersampled data.

Lemma 2.5.2. Suppose AU has full column rank, then for each iteration of GROUSE

we have

(2.14)
ζt+1

ζt
≥ 1 +

2 ‖r̃‖2 − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2

where ∆ = wT⊥
(
ŪTU

)−1
ŪT r with w⊥ =

(
UTATAU

)−1
UTATAv⊥.

The above lemma highlights the main hurdle in establishing global convergence for

undersampled data. As is indicated by (2.14), there is no guarantee on monotonicity

of the improvement on ζt. Indeed the uncertainty and perturbations introduced by

the undersampling framework can even prevent us from establishing monotonically

expected improvement on ζt. However, we are still able to bound the key quantities

in Lemma 2.5.2 and provide more insights on the convergence behaviors of GROUSE

for both compressively sampled data and missing data.

2.5.1 Compressively Sampled Data

This section presents convergence results for compressively sampled data. We use

an approach that merges linear algebra with random matrix theory to establish an

expected rate of improvement on the determinant similarity ζt at each iteration. We

show that, under mild conditions, the determinant similarity increases in expectation

with a rate similar to that of the fully sampled case, roughly scaled by m
n
. Detailed

proofs for this section are provided in Section 2.8.3.

Theorem 2.5.1. Suppose each sampling matrix A has i.i.d Gaussian entries dis-

tributed as N (0, 1/n). Let φd denote the largest principal angle between R(U) and
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R(Ū), then with probability exceeding 1 − exp
(
−dδ2

8

)
− exp

(
−mδ2

32
+ d log

(
24
δ

))
−

(4d+ 2) exp
(
−mδ2

8

)
we obtain

Ev
[
ζt+1

∣∣U] ≥ (1 + γ1

(
1− γ2

d

m

)
m

n

1− ζt
d

)
ζt ,

where γ1 =
(1−δ)(1−2δ

√
m
n )(

1+
√

1+δ
1−δ

d
m

)2 and γ2 =

(
1 +

2 tan(φd)+δ d
cos(φd)

(1−2δ
√

m
n )
√

(1+δ)d/m

)
1+δ
1−δ . Now let β =

8(1+δ)

(1−δ)2(1−2δ)2 , further suppose

m ≥ d ·max

{
32

δ2
log

(
24n2/d

δ

)
, β (tanφd + δ cosφdd)

(
tanφd + δ cosφdd+

1

2

)}
,

then with probability at least 1− 2/n2 − exp (−dδ2/8) we have

Ev
[
ζt+1

∣∣U] ≥ (1 +
1

2γ1

m

n

1− ζt
d

)
ζt .

This theorem implies that, for each iteration of GROUSE, expected improvement

on ζt can be obtained with high probability as long as the number of samples is enough.

As shown in Theorem 2.5.1, our theory for GROUSE requires more measurements

when R(U) is far away from R(Ū), in which case cosφd =: ε is very small. In the

high dimensional setting where m � n, compared to the fully sampled data case,

the expected improvement on ζt is approximately scaled down by m
n
. As we will

show, this scaling factor is mainly determined by the relative amount of effective

information stored in the approximated projection residual. On the other hand, due

to the perturbation and uncertainty induced by the compressed sampling framework,

the improvement on the determinant similarity given by the lower bound in Lemma

2.5.2 is neither monotonic nor global. As mentioned before, this is the main hurdle

to pass before we can provide a global convergence result for undersampled data.

However, despite of these difficulties, we are still able to establish Theorem 2.5.1 which

shows that, with reasonable number of measurements, the expected improvement on
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the convergence metric is monotonic with high probability as long as our estimate

R(U) is not too far away from the true subspace R(Ū).

To prove Theorem 2.5.1, we provide the following intermediate results to quantify

the key quantities in Lemma 2.5.2 with high probability, where probability is taken

with respect to the random Gaussian sampling matrix A.

Lemma 2.5.3. Under the same conditions as Theorem 2.5.1, with probability at least

1− exp
(
−mδ2

2

2

)
− exp

(
−mδ2

1

8

)
− exp

(
−dδ2

1

8

)
we obtain

‖r̃‖2
2 ≥ (1− δ1)

(
1− β d

m

)
m

n
‖v⊥‖2

2(2.15)

2‖r̃‖2
2 − ‖r‖2

2 ≥ (1− δ1)

(
1− 2δ2

√
m

n

)(
1− β d

m

)
m

n
‖v⊥‖2

2(2.16)

where δ1, δ2 ∈ (0, 1), and β = 1+δ1
1−δ1 .

To interpret the above results, note that

‖r̃‖2
2 = ‖(Im − PAU)Av⊥‖2

2 = ‖Av⊥‖2
2 − ‖PAU(Av⊥)‖2

2 .(2.17)

where the first equality follows by the fact that (Im − PAU)Av‖ = 0 as we argued

before, and the second equality holds since PAU is an orthogonal projection onto

R(AU). Then by leveraging the concentration property of random projection, we can

prove that ‖r̃‖2
2 concentrates around its expectation m−d

n
‖v⊥‖2

2 with high probability.

Also note that ‖r‖2
2 ≤ ‖A‖2

2‖r̃‖2
2, hence the second statement equation 2.16 can be

established by the concentration result of ‖r̃‖2
2 and that of ‖A‖2

2 according to the

random matrix theory.

Next we establish high probability bounds on ‖p‖2
2 and ∆. Then Theorem 2.5.1

follows naturally by first replacing the key quantities in Lemma 2.5.2 with their high

probability bounds, and then taking the expectation over the uncertainty of the

underlying full data vt.
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Lemma 2.5.4. With the same conditions as Theorem 2.5.1, for any δ1 ∈ (0, 1), we

have

‖p‖2 ≤

(
1 +

√
1 + δ1

1− δ1

d

m

)2

‖v‖2

with probability at least 1− exp
(
−dδ2

1

8

)
− exp

(
−mδ2

1

32
+ d log

(
24
δ1

))
.

Lemma 2.5.5. With the same conditions as Theorem 2.5.1, let δ1, δ3 ∈ (0, 1), then

∆ ≤
√

1 + δ1

1− δ1

d

m

(
tan(φd) + δ3

d

cos(φd)

)
m

n
‖v⊥‖2

holds with probability at least 1−exp
(
−dδ2

1

8

)
−exp

(
−mδ2

1

32
+ d log

(
24
δ1

))
−4d exp

(
−mδ2

3

8

)
.

Lemma 2.5.4 shows that ‖p‖2
2 doesn’t diverge significantly from ‖v‖2

2 as long as

m ≥ d. This together with Lemma 2.5.2 and Lemma 2.5.3 imply that the required

number of measurements in Theorem 2.5.1 is mainly determined by that required

by Lemma 2.5.5 so as to prevent ∆ diverging too far from m
n
‖v⊥‖2

2. As a result, the

improvement on the determinant similarity is still dominated by the magnitude of

the projection residual over that of the projection, which is proportional to that

of the full data case scaled by the sampling density. On the other hand, Lemma

2.5.5 implies that, in order to guarantee ∆ to be much smaller than m
n
‖v⊥‖2

2, the

number of required measurements increases along with first principal angle between

the estimated subspace R(U) and the true subspace R(Ū).

For the sake of completeness, we sketch the proof of Theorem 2.5.1 here, and the

detailed proof is provided in Section 2.8.3.

Proof sketch of Theorem 2.5.1. Let η1 = 1+δ
1−δ

d
m
, η2 = (1 − δ)

(
1− 2δ

√
m
n

)
and η3 =

tan(φd) + δ d
cos(φd)

, then plugging in the results in Lemmas 2.5.3, 2.5.4 and 2.5.5 into
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Lemma 2.5.2 with δ1 = δ2 = δ3 = δ yields,

ζt+1

ζt
≥ 1 + γ1

(
1− γ2

d

m

)
m

n

‖v⊥‖2

‖v‖2
≥ 1 + γ1

(
1− γ2

d

m

)
m

n

1− ζt
d

(2.18)

where γ1 =
(1−δ)(1−2δ

√
m
n )(

1+
√

1+δ
1−δ

d
m

)2 and γ2 =

(
1 + 2

tan(φd)+δ3
d

cos(φd)

(1−2δ
√

m
n )
√

(1−δ2)d/m

)
1+δ
1−δ .

The first probability bound is obtained by taking the union bound of those quantities

used to generate Lemma 2.5.3 to Lemma 2.5.5, which can be lower bounded by

1− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 2) exp

(
−mδ

2

8

)
(2.19)

Next we establish the complexity bound on m. As we will prove in Section 2.8.3,

γ2
d
m
< 1

2
is equivalent to the following,

m ≥ 8(1 + δ)

(1− δ)2 (1− 2δ)2

(
ε+ δ

√
1 + ε2d

)(
ε+ δ

√
1 + ε2d+

1

2

)
d(2.20)

To establish another bound on m, m ≥ 32
δ2 log

(
24n2/d

δ

)
d implies the following,

exp

(
−mδ

2

32
+ d log

(
24

δ

))
≤ exp(− log n2) =

1

n2
(2.21)

(4d+ 2) exp

(
−mδ

2

8

)
≤ (4d+ 2)

n8

(
δ

24

)4d

� 1

n2
(2.22)

equation 2.21 and equation 2.22 complete the proof for the bound on m and justify

the simplification of the probability bound in equation 2.19.

2.5.2 Missing Data

In this section, we study the convergence of GROUSE for the missing data case.

We show that within the local region of the true subspace, we obtain an expected

monotonic improvement on our defined convergence metric with high probability. We

use Ω to denote the indices of observed entries for each data vector, and we assume Ω

is uniformly sampled over {1, 2, . . . , n} with replacement. In other words, we assume
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each row of the sampling matrices A is uniformly sampled from the rows of identity

matrix In with replacement. We use the notation Av =: vΩ, AU =: UΩ. Again our

results are with high probability with respect to A, in this case with respect to the

random draw of rows of In, and in expectation with respect to the random data v.

Please refer to Section 2.8.3 for the proofs of this section.

Before we present our main results, we first call out the typical incoherence

assumption on the underlying data.

Definition 2. A subspace R(U) is incoherent with parameter µ if

max
i∈{1,...,n}

‖PUei‖2
2 ≤

µd

n

where ei is the ith canonical basis vector and PU is the projection operator onto the

column space of U .

Note that 1 ≤ µ ≤ n
d
. According to the above definition, the incoherence parameter

of a vector z ∈ Rn is defined as:

(2.23) µ(z) =
n‖z‖2

∞
‖z‖2

2

In this section, we assume the true subspace R(Ū) is incoherent with parameter µ0,

and use µ(U), µ(v⊥) to denote the incoherence parameter of R(U) and v⊥ respectively.

We now show the expected improvement of ζt in a local region of the true subspace.

Theorem 2.5.2. Suppose
∑d

k=1 sin2 φk ≤ dµ0

16n
and |Ω|= m. If

m > max

{
128dµ0

3
log
(√

2dn
)
, 64µ(v⊥)2 log (n) , 52

(
1 + 2

√
µ(v⊥) log(n)

)2

dµ0

}
then with probability at least 1− 3

n2 we have

Ev
[
ζt+1

∣∣U] ≥ 1 +
1

4

m

n

1− ζt
d

.
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This theorem shows that, within the local region of the true subspace, expected

improvement on ζt can be obtained with high probability. As is implied by the

theorem, this local region gets enlarged if the true subspace is more coherent, which

may seem at first counterintuitive. However, the required number of measurements

also increases as we increase µ0. In the extreme case, when m increases to n, the local

convergence results can be extended to a global result, as we proved for the full data

case in Section 2.4. On the other hand, compared to Theorem 2.5.1, the convergence

result for the missing data case holds within a more conservative local region of the

true subspace. This gap is induced by the challenge of maintaining the incoherence

property of our estimates R(U), for which we had to consider the worst case. We

leave the extension of the local convergence results to global results as future work.

In order to compare our result to the local convergence result in [Corollary 2.15,

[17]], consider the following corollary.

Corollary 2.5.1. Define the determinant discrepancy as κt = 1− ζt, then under the

same conditions as Theorem 2.5.2, we have

Ev
[
κt+1

∣∣κt] ≤ (1− 1

4

(
1− dµ0

16n

)
m

nd

)
κt

with probability exceeding 1− 3/n2.

Recall that 1 ≤ µ0 ≤ n
d
, therefore the expected linear decay rate of κt is at least

1− 9
16

m
nd
. In [17] (Corollary 2.15), a similar linear convergence result is established

in terms of the Frobenius norm discrepancy between R(Ū) and R(U), denoted as

εt =
∑d

i=1 sin2 φd. However, their result only holds when εt ≤ (8× 10−6) m
n3d2 which is

more conservative than our assumption in Theorem 2.5.2. Moreover, as we mentioned

previously, empirical evidence shows the lower bound in Theorem 2.5.2 holds for

every iteration from any random initialization. In contrast, in [17], even for numerical
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results expected linear improvements only hold within the local region of the true

subspace.

Now we present the following intermediate results for the proof of Theorem 2.5.2.

Note that in this missing data case, the projection residual rΩ of vΩ onto UΩ is mapped

back to Rn by zero padding the entries at the indices that are not in Ω. Therefore,

unlike Lemma 2.5.5 of the compressively sampled data case, here ‖r̃‖ = ‖r‖ = ‖rΩ‖.

Therefore, equation 2.14 becomes

(2.24)
ζt+1

ζt
≥ 1 +

‖rΩ‖2

‖p‖2
+ 2

∆

‖p‖2
.

Now similarly to the compressively sampled data case, we proceed by establishing

concentration results for the key quantities ‖r‖2
2, ‖p‖2

2 and ∆ respectively.

Lemma 2.5.6 ([16], Theorem 1). Let δ > 0, and suppose m ≥ 8
3
dµ(U) log (2d/δ).

Then, with probability exceeding 1− 3δ,

‖rΩ‖2 ≥ (1− α0)
m

n
‖v⊥‖2

where α0 =
√

2µ(v⊥)2

m
log
(

1
δ

)
+ (β1+1)2

1−γ1

dµ(U)
m

, β1 =
√

2µ(v⊥) log
(

1
δ

)
, and γ1 =

√
8dµ(U)

3m
log (2d/δ).

Lemma 2.5.7. Let δ > 0. Under the same condition on m as Lemma 2.5.6, with

probability at least 1− 2δ we have

‖p‖2 ≤

(
1 +

β1 + 1

1− γ1

√
dµ(U)

m

)2

‖v‖2

where β1 and γ1 equal to those defined in Lemma 2.5.6.

Lemma 2.5.8. Let δ > 0. Under the same condition on m as Lemma 2.5.6, with

probability at least 1− 3δ we have

|∆| ≤ η3

cosφd

√
sin2 φd +

dµ0

m

√
dµ(U)

m

m

n
‖v⊥‖2
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where η3 = (1+β1)(1+β2)
1−γ1

, β2 =
√

2µ(v⊥) log
(

1
δ

)
dµ0

dµ0+m sin2 φd
, and β1 and γ1 equal to

those defined in Lemma 2.5.6.

Lemma 2.5.6 shows that the concentration of ‖r‖2
2 = ‖rΩ‖2

2 does not only depend on

the sampling framework, but also on the incoherence property of the current estimate

and the true projection residual, i.e., µ(U) and µ(v⊥). To see this clearly, recall that

‖rΩ‖2
2 = ‖v⊥,Ω‖2

2 − ‖PUΩ
(v⊥,Ω)‖2

2, hence the incoherence property of v⊥ and R(U)

directly influences the concentration of ‖rΩ‖2
2. On the other hand, for compressive

data, the Gaussian distributed sampling matrices yield tight concentration results for

‖p‖2
2, ‖rΩ‖2

2 and ∆. Therefore, the upper bounds of the key quantities established in

Lemmas 2.5.6, 2.5.7 and 2.5.8 are not as tight as those for the compressive data except

the extreme case where µ(U) = µ(v⊥) = 1, i.e., both R(U) and v⊥ are incoherent.

As shown in the above lemmas, in order to establish concentration of the key

quantities in (2.24), it is essential for the subspaces generated by GROUSE to be

incoherent over iterates. It has been proven in [17] that within the local region of

R(Ū), the incoherence of R(U) can be bounded by that of R(Ū).

Lemma 2.5.9 ([17], Lemma 2.5). Suppose
∑d

k=1 sin2 φk ≤ d
16n
µ0, then µ(U) ≤ 2µ0.

Now we are ready to prove Theorem 2.5.2. We sketch the proof here, and a detailed

proof is provided in Section 2.8.3.

Proof sketch of Theorem 2.5.2. Given the condition required by Theorem 2.5.2, we

have sinφd ≤
√
dµ0/16n and cosφd ≥

√
1− dµ0/16n. This together with Lemma

2.5.9 and Lemma 2.5.8 yield |∆| ≤ 11
5
η3

dµ0

n
‖v⊥‖2. Also for β2 in Lemma 2.5.8,

β2 ≤
√

2µ(v⊥) log(1/δ) = β1. Hence,

(2.25) |∆| ≤ 11

5

(1 + β1)2

1− γ1

dµ0

n
‖v⊥‖2 .
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Letting η2 = (1+β1)2

1−γ1

dµ0

m
and α1 =

√
2µ(v⊥)2

m
log
(

1
δ

)
, then applying this definition

together with Lemma 2.5.9 to Lemma 2.5.7 and Lemma 2.5.6 yields

‖p‖2 ≤
(

1 +

√
2η2

1− γ1

)2

‖v‖2(2.26)

‖rΩ‖2 ≥ (1− α1 − 2η2)
m

n
‖v⊥‖2(2.27)

Now applying equation 2.25, equation 2.26 and equation 2.27 to equation 2.24 we

have

ζt+1

ζt
≥ 1 +

(1− α1 − 32
5
η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
(2.28)

with probability at least 1 − 3δ. The probability bound is obtained by taking the

union bound of those generating Lemmas 2.5.6, 2.5.7 and 2.5.8, as we can see in the

proofs in Section 2.8.3 this union bound is at least 1− 3δ.

Letting η1 =
(1−α1− 32

5
η2)

(1+
√

2η2/(1−γ1))2
, then η1 > 0 is equivalent to 1− α1 − 32

5
η2 > 0. This

further gives that if m satisfies the condition in Theorem 2.5.2, then η1 >
1
4
. Now

taking expectation with respect to v yields,

(2.29) Ev
[
ζt+1

∣∣U] ≥ (1 +
1

4

m

n
E
[
‖v⊥‖2

‖v‖2

∣∣U]) ζt ≥ (1 +
1

4

m

n

1− ζt
d

)
ζt

where the last inequality follows from Lemma 2.3.1. Finally choosing δ to be

1/n2completes the proof.

2.6 Numerical Results

In this section, we demonstrate that our theoretical results match the empir-

ical convergence behavior of GROUSE. We generate the underlying data matrix

M =

[
v1 v2 . . . vT

]
as M = ŪW . For both the fully sampled data case and

compressively sampled data case, the underlying signals are generated from a sparse

subspace, demonstrating that incoherence assumptions are not required by our results
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Figure 2.1:
Illustration of the bounds on K in Conjecture 2.4.1 compared to their values in practice,
averaged over 50 trials with different n and d. We show the ratio of K to the bound
d2 log(n) + d log(1− ζ∗).

for these two cases. Specifically, the underlying subspace of each trial is set to be

a sparse subspace, as the range of an n× d matrix Ū with sparsity on the order of

log(n)
n

. For the missing data case, we generate the underlying subspace as the range of

an n× d matrix with i.i.d standard normal distribution. The entries of the coefficient

matrix W for all three cases are generated as i.i.d N (0, 1) satisfying Assumption 1.

We also want to mention that we run GROUSE with random initialization for all of

the plots in this section.

We first examine our global convergence result, i.e., Conjecture 2.4.1, for the

fully sampled data in Figure 2.1. We run GROUSE to convergence for a required

accuracy ζ∗ = 1− 1e-4 and show the ratio of K to the simplified bound of Conjecture

2.4.1, d2 log(n) + d log 1
1−ζ∗ . We run GROUSE over 50 trials and show the mean

and variance. We can see that, for fixed n, our conjecture becomes more and more

loose as we increase the dimension of the underlying subspace. However, compared

to the empirical mean, the empirical variance is very small. This indicates that the

relationship between our conjectured upper bounds and the actual iterations required
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Figure 2.2:
Illustration of expected improvement on ζ given by Theorem 2.5.1 (left) and Theorem
2.5.2 (right) over 50 trials. We set n = 5000, d = 10. The diamonds denote the lower
bound on expected convergence rates described in Theorem 2.5.1 and Theorem 2.5.2.

by GROUSE is stable.

Next we examine our theoretical results (Theorem 2.5.1 and Theorem 2.5.2) for

the expected improvement on ζt for the undersampled case in Figure 2.2. We set

n = 5000 and d = 10. We run GROUSE over different sampling numbers m. The

plots are obtained by averaging over 50 trials. We can see that our theoretical bounds

on the expected improvement on ζt for both missing data and compressively sampled

data are tight from any random initialization, although we have only established local

convergence results for both cases. Also note that Theorem 2.5.1 and Theorem 2.5.2

indicate that the expected improvement on the determinant similarity has a similar

form to that of the fully sampled case roughly scaled by the sampling density (m/n).

These together motivate us to approximate the required iterations to achieve a given

accuracy as that required by the fully sampled case times the reciprocal of sampling

density, n/m:

(n/m) ·
(
d2 log(n) + d log(1− ζ∗)

)
.

As we see in Figure 2.3, when m is slightly larger than d, the empirical mean of the

ratio of the actual iterations required by GROUSE to our heuristic bound is similar
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Figure 2.3:
Illustration of our heuristic bounds on K (the actual iterations required by GROUSE
to converge to the given accuracy) over different d, m and n, averaged over 20 trials.
In this simulation, we run GROUSE from a random initialization to convergence for
a required accuracy ζ∗ = 1 − 1e-3. We show the ratio of K to the heuristic bound
n
m

(
d2 log(n) + d log(1− ζ∗)

)
. In (a) and (b), we set d = 50 and examine K over

m and n for both missing data (a) and compressively sampled data (b). In (c) and
(d), we set n = 10000 and examine K over m and d for both missing data (c) and
compressively sampled data (d). In these plots, we use the dark red to indicate the
failure of convergence.

to that of the full data case. We leave the rigorous proof of this heuristic as future

work.

2.7 Conclusion

In this chapter, we analyze a manifold incremental gradient descent algorithm

applied to a particular non-convex optimization formulation for recovering a low-

dimensional subspace from streaming data sampled from that subspace. We provide a
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simplified analysis as compared to [143], showing global convergence of the algorithm

to the global minimizer for fully sampled data. However, the current convergence

rate is loose compared to what we observed in practice. A future direction is to

narrow the gap between our theory and the actual performance of GROUSE, for

which Conjecture 2.4.1 shows great promise. We will complete the missing step in

our current proof of Conjecture 2.4.1 and validate it in the near future.

With undersampled data, we show that expected improvement on our convergence

metric ζt can be obtained with high probability for each iteration t. We prove

that, comparing with fully sampled data, the expected improvement on determinant

similarity is roughly proportional to the sampling density. With compressively sampled

data this expected improvement holds from any random initialization, while it only

holds within the local region of the true subspace for the missing data case.

2.8 Supplementary material

2.8.1 Preliminaries

We start by providing the following lemma that we will use regularly in the

manipulation of the matrix ŪTU . It also provides us with more insight into our

metric of determinant similarity between the subspaces. The proof can be found in

[120].

Lemma 2.8.1 ([120], Theorem 5.2). Let U, Ū ∈ Rn×d with orthonormal columns,

then there are unitary matrices Q, Ȳ , and Y such that

QŪȲ :=



d

d I

d 0

n− 2d 0

 and QUY :=



d

d Γ

d Σ

n− 2d 0


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where Γ = diag (cosφ1, . . . , cosφd),Σ = diag (sinφ1, . . . , sinφd) with φi being the ith

principal angle between R(U) and R(Ū) defined in Definition 1.

Now we are going to prove Lemma 2.3.1, which is essential for us to establish

expected improvement on the determinant similarity for each iteration in the various

sampling cases we consider. Before that, we present the following lemmas that are

requried for the proof.

Lemma 2.8.2. Given any matrix Q ∈ Rd×d, suppose that w ∈ Rd is a random

vector whose components wi, i = 1, . . . , d are zero-mean, independent, and identically

distributed symmetrically about zero (i.e., the distribution of wi is an even function).

Then

E

[
wTQw

wTw

]
=

1

d
tr(Q) .

Proof of Lemma 2.8.2.

E

[
wTQw

wTw

]
=
∑
i 6=j

E

[
wiwjQij

wTw

]
+

d∑
i=1

E

[
w2
iQii

wTw

]

=
d∑
i=1

QiiE

[
w2
i

wTw

]
(2.30)

=
1

d
trQ ,(2.31)

where Eqs (2.30) and (2.31) hold by the following two arguments. For Eq (2.30), let

f(w1, . . . , wd) be the joint distribution among the coordinates, and without loss of
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generality let i = 1 and j 6= 1, then

E

[
w1wjQ1j

wTw

]
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

w1wjQij

wTw
f(w1, . . . , wd)dw1dw2 · · · dwd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

w1wjQ1j

w2
1 +

∑
k 6=iw

2
k

f(w1)f(w2) · · · f(wd)dw1dw2 · · · dwd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

(∫ ∞
−∞

w1

w2
1 +

∑
k 6=iw

2
k

f(w1)dw1

)
wjQ1jf(w2) · · · f(wd)dw2 · · · dwd

= 0

where the last inequality holds since w1

w2
1+
∑
k 6=i w

2
k
is an odd function of w1 and f(w1) is

an even function of w1, thereby the term in parentheses will integrate to zero. We

note that if wi is a discrete random variable, the argument would be similar.

To get Eq (2.31) we note that

1 = E

[∑
iw

2
i∑

j w
2
j

]
=
∑
i

E

[
w2
i

wTw

]
= dE

[
w2
i

wTw

]
, i = 1, . . . , d ,

where the last step holds because each wi is identically distributed.

Lemma 2.8.3 ([46], Lemma 16). Let X = [X1, · · · , Xd] with Xi ∈ [0, 1], i = 1, . . . , d,

then

d−
d∑
i=1

Xi ≥ 1− Πd
i=1Xi

Proof of Lemma 2.3.1. According to Lemma 2.8.2 and Lemma 2.8.3 we have the

following

E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] = E
[
‖Ūs‖2 − ‖UUT Ūs‖2

‖Ūs‖2

∣∣∣∣U] ϑ1= E
[
sT Ȳ (I − Γ2)Ȳ T s

sT s

∣∣∣∣U]
ϑ2=

1

d
tr
(
I − Γ2

) ϑ3

≥ 1− ζt
d

(2.32)



42

where ϑ1 follows by Lemma 2.8.1 and ‖Ūs‖2 = ‖s‖2, ϑ2 from Lemma 2.8.2, and ϑ3

from Lemma 2.8.3 with Xi = cos2 φi.

2.8.2 Proof of Fully Sampled Data

In this section we prove the results of Section 2.4. We start by proving Eq 2.10,

the deterministic expression for the change in determinant similarity from one step of

the GROUSE algorithm to the next. Using this expression, we prove the GROUSE

monotonic improvement of Lemma 2.4.1, expected improvement of Lemma 2.4.2, and

finally the global convergence conjecture 2.4.1.

Recall that y
‖y‖ = cos(θ)

v‖
‖v‖‖

+ sin(θ) v⊥
‖v⊥‖

in Algorithm 1. Then according to the

GROUSE update in 2.4 we have

det
(
ŪTUt+1

)
= det

(
ŪTU +

(
ŪTy

‖y‖
−
ŪTv‖
‖v‖‖

)
wT

‖w‖

)
ϑ1= det

(
ŪTU

)(
1 +

wT (ŪTU)−1

‖w‖

(
ŪTy

‖y‖
−
ŪTv‖
‖v‖‖

))
ϑ2= det

(
ŪTU

) wT (ŪTU)−1ŪTy

‖y‖‖w‖
ϑ3= det

(
ŪTU

)(
cos θ +

‖v⊥‖
‖v‖‖

sin θ

)
(2.33)

where ϑ1 follows from the Schur complement, i.e., that for any invertible matrix

M we have det
(
M + abT

)
= det(M)

(
1 + bTM−1a

)
; ϑ2 and ϑ3 hold since ‖v‖‖2 =

‖Uw‖2 = ‖w‖2 and the following

wT (ŪTU)−1ŪTv‖
w=UT Ūs

= vTv‖ = ‖v‖‖2(2.34a)

wT (ŪTU)−1ŪTv⊥
w=UT Ūs

= vTv⊥ = ‖v⊥‖2.(2.34b)

Given this, the proof of Lemma 2.4.1 follows directly from the above proof and

the greedy step size derived in Eq. 2.11.



43

Proof of Lemma 2.4.1. By using θ = arctan
(
‖v⊥‖
‖v‖‖

)
, we have cos θ =

‖v‖‖
‖v‖ and sin θ =

‖v⊥‖
‖v‖ . This together with 2.33 gives det

(
ŪTUt+1

)
= det

(
ŪTU

) ‖v‖
‖v‖‖

. Therefore,

ζt+1

ζt
=

det(ŪTUt+1)
2

det(ŪTU)
2 = ‖v‖2

‖v‖‖2
= 1 + ‖v⊥‖2

‖v‖‖2
.

Proof of Lemma 2.4.2. Lemma 2.4.2 follows directly from 2.3.1 and 2.4.1, i.e.,

E
[
ζt+1

ζt

∣∣∣∣U] = 1 + E
[
‖v⊥‖2

‖v‖‖2

∣∣∣∣U] ≥ 1 + E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U]
≥ 1 +

1− ζt
d

(2.35)

Note that, given U , ζt is a constant, hence completes the proof.

With the above results, we are ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let κt = 1− ζt denote the determinant discrepancy between

R(Ū) and R(U). According to Lemma 2.4.2 we have the following:

E
[
κt+1

κt

∣∣∣∣U] ≤ 1− 1− κt
d

(2.36)

Now according to Lemma 2.4.1, κt ≤ 1− ζ0 for all t ≥ 0. So using Eq (2.36) we have

the following:

E
[
κt+1

∣∣U] ≤ (1− 1− κt
d

)
κt ≤

(
1− ζ0

d

)
κt .

Taking expectation of both sides, we have

E [κt+1] ≤
(

1− ζ0

d

)
E [κt] .

After K ≥ d
ζ0

log 1
ρ(1−ζ∗) ≥

d
ζ0

log
E[ηK1

]

ρ(1−ζ∗) iterations of GROUSE we obtain

E [κt+K1 ] ≤
(

1− ζ0

d

)K
E[κ0] ≤

(
1− ζ0

d

) d
ζ0

log
E[κ0]

ρ(1−ζ∗)

E[κ0] ≤ ρ(1− ζ∗) .

Therefore

P (ζK ≥ ζ∗) = 1− P (κK ≥ 1− ζ∗) ≥ 1− E [κK ]

1− ζ∗
≥ 1− ρ .(2.37)
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To prove Conjecture 2.4.1, we need the following lemma.

Lemma 2.8.4. [103] Initialize the starting point U0 of GROUSE as the orthonor-

malization of an n× d matrix with entries being standard normal random variables.

Then

E[ζ0] = E
[
det(UT

0 Ū Ū
TU0)

]
= C

(
d

ne

)d
where C > 0 is a constant.

Now we are ready to show our initial proof of Conjecture 2.4.1.

Proof of Conjecture 2.4.1. Let κt = 1−ζt denote the determinant discrepancy between

R(Ū) and R(U). According to Lemma 2.4.2 we have the following:

E
[
ζt+1

ζt

∣∣∣∣U] ≥ 1 +
1− ζt
d

(2.38a)

E
[
κt+1

κt

∣∣∣∣U] ≤ 1− 1− κt
d

(2.38b)

Therefore, the expected convergence rate of ζt is faster when R(U) is far away from

R(Ū), while that of κt is faster when R(U) is close to R(Ū). This motivates us to

split the analysis into two phases, bounding the number of iterations in each phase.

We first use Eq (2.38a) to get the necessary K1 iterations for GROUSE to converge

to a local region of global optimal point from a random initialization. From there, we

obtain the necessary K2 iterations for GROUSE to converge to the required accuracy

by leveraging Eq (2.38b).

Let ρ be any number within the range (0, 1]. Let ζ̄t be a non-decreasing sequence

with E[ζ̄0] = E[ζ0] and the expected increase rate being lower bounded as

E
[
ζ̄t+1

∣∣U] ≥ (1 +
ρ

2d

)
ζ̄t .

Taking expectation of both sides, we obtain the following:

E
[
ζ̄t+1

]
≥
(

1 +
ρ

2d

)
E[ζ̄t]
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Therefore after K1 ≥ (2d/ρ+ 1) log
1− ρ

2

E[ζ0]
steps we have

E
[
ζ̄K1

]
≥
(

1 +
ρ

2d

)K1

E[ζ0] ≥
((

1 +
ρ

2d

) 2d
ρ

+1
)log

1− ρ2
E[ζ0]

E[ζ0]

≥ E[ζ0]e
log

1− ρ2
E[ζ0] = 1− ρ

2
(2.39)

Assume the ζt produced by GROUSE converges faster than ζ̄t, i.e.,

E [ζK1 ] ≥ E
[
ζ̄K1

]
≥ 1− ρ

2
(2.40)

Therefore,

P
(
ζK1 ≥

1

2

)
= 1− P

(
1− ζK1 ≥

1

2

)
ϑ1

≥ 1− E[1− ζK1 ]

1/2
≥ 1− ρ(2.41)

where ϑ1 follows by applying Markov inequality to the nonnegative random variable

1− ζ̄K1 .

Now with probability at least 1 − ρ, ζt ≥ 1
2
for all t ≥ K1, i.e., κt ≤ 1

2
for all

t ≥ K1. So using Eq (2.38b) we have the following:

E
[
κt+1

∣∣U] ≤ (1− 1− κt
d

)
κt ≤

(
1− 1

2d

)
κt .

Taking expectation of both sides, we have

E [κt+1] ≤
(

1− 1

2d

)
E [κt] .

After K2 ≥ 2d log 1/2
ρ(1−ζ∗) ≥ 2d log

E[ηK1
]

ρ(1−ζ∗) additional iterations of GROUSE we obtain

E [κt+K1 ] ≤
(

1− 1

2d

)K2

E[κK1 ] ≤
(

1− 1

2d

)2d log
E[κK1

]

ρ(1−ζ∗)

E[κK1 ] ≤ ρ(1− ζ∗) .

Hence following a similar argument as before we have

P (ζK1+K2 ≥ ζ∗) = 1− P (κK1+K2 ≥ 1− ζ∗) ≥ 1− E [κK1+K2 ]

1− ζ∗
≥ 1− ρ .(2.42)

(2.41) and (2.42) together complete the proof.
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Although we still need more rigorous analysis to justify our assumption, this proof

provides a form of the convergence rate we can expect. We also want to emphasize

that the above proof provides the local convergence rate for GROUSE. Specifically, as

is indicated by the proof of the second phase, GROUSE requires at most 2d log 1/2
ρ(1−ζ∗)

iterations to converge from ζt = 1/2 to any required accuracy ζ∗ ∈ (1/2, 1).

2.8.3 Proof of Undersampled Data

In this section, we prove our main results for undersampled data. We again start

by proving a result for the deterministic expression for the change in determinant

similarity from one step of the GROUSE algorithm to the next, in this case a lower

bound given by Lemma 2.5.2.

Proof of Lemma 2.5.2. Note that,

wT (ŪTU)−1ŪTp = wT (ŪTU)−1ŪTUw = ‖p‖2(2.43a)

wT1 (ŪTU)−1ŪT r
ϑ1= sT ŪTU(ŪTU)−1ŪT r = vTAT r̃

ϑ2= ‖r̃‖2(2.43b)

where ϑ1 follows by Lemma 2.5.1 and ϑ2 holds since vTAT r̃ = vTAT (Im − PAU) r̃ =

‖r̃‖2. As a consequence, we have the following

det
(
ŪTUt+1

)
= det

(
ŪTU + ŪT

(
p+ r

‖p+ r‖
− p

‖p‖

)
wT

‖w‖

)
ϑ3= det(ŪTU)

wT (ŪTU)−1ŪT (p+ r)

‖p‖
√
‖p‖2 + ‖r‖2

= det(ŪTU)
‖p‖2 + ‖r‖2 + ‖r̃‖2 − ‖r‖2 + ∆

‖p‖
√
‖p‖2 + ‖r‖2

where ∆ = wT2
(
ŪTU

)−1
ŪT r; and ϑ3 follows by the Schur complement

det
(
M + abT

)
= det(M)

(
1 + bTM−1a

)
for any invertible M ∈ Rn×n and a, b ∈ Rn.

Hence
ζ̄t+1

ζt
=

(
det
(
ŪTUt+1

)
det
(
ŪTU

) )2
ϑ4

≥ 1 +
‖r‖2

‖p‖2
+ 2
‖r̃‖ − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2
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where ϑ4 holds since (c+d)2 ≥ c2 +2cd with c = ‖p‖2+‖r‖2

‖p‖
√
‖p‖2+‖r‖2

, d = ‖r̃‖2−‖r‖2+∆

‖p‖
√
‖p‖2+‖r‖2

.

In the following sections, we proceed by establishing the convergence results of

missing data and compressively sampled data by bounding the key quantities in

Lemma 2.5.2.

Proof for Compressively Sampled Data We start by showing how the results on

the key quantities in Lemmas 2.5.3, 2.5.4 and 2.5.5 lead to the main result of the

compressively sampled data case.

Proof of Theorem 2.5.1. Let η1 = 1+δ
1−δ

d
m
, η2 = (1−δ)

(
1− 2δ

√
m
n

)
and η3 = tan(φd)+

δ d
cos(φd)

, then plugging in the results in Lemma 2.5.3 to Lemma 2.5.5 into Lemma

2.5.2 with δ1 = δ2 = δ3 = δ yields,

ζt+1

ζt
≥ 1 +

2 ‖r̃‖2 − ‖r‖2

‖p‖2
+ 2

∆

‖p‖2

≥ 1 +
1(

1 +
√
η1

)2 (η2(1− η1)− 2
√
η1η3)

m

n

‖v⊥‖2

‖v‖2

= 1 + γ1

(
1− γ2

d

m

)
m

n

‖v⊥‖2

‖v‖2

=

(
1 + γ1

(
1− γ2

d

m

)
m

n

)
1− ζt
d

(2.44)

where γ2 =
(

1 + 2 η3

η2
√
η1

)
1+δ
1−δ =

(
1 + 2

tan(φd)+δ3
d

cos(φd)

(1−2δ
√

m
n )
√

(1−δ2)d/m

)
1+δ
1−δ , γ1 = η2

(1+
√
η1)

2 =

(1−δ)(1−2δ
√

m
n )(

1+
√

1+δ
1−δ

d
m

)2 , and the last equality follows from Lemma 2.3.1.

The probability bound is obtained by taking the union bound of those quantities
(in Lemma 2.8.5, Lemma 2.8.8, Lemma 2.8.7, Corollary 2.8.2, Lemma 2.8.16) used to
generate Lemma 2.5.3 to Lemma 2.5.5. As we can see, this union bound is

1− exp

(
−mδ

2

2

)
− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 1) exp

(
−mδ

2

8

)
> 1− exp

(
−dδ

2

8

)
− exp

(
−mδ

2

32
+ d log

(
24

δ

))
− (4d+ 2) exp

(
−mδ

2

8

)
(2.45)

To get the complexity bound on m, let ε = tan(φd), α1 = ε+ δ
√

1 + ε2d, α2 = 1+δ
1−δ

and α3 =
(
1− 2δ

√
m
n

)√
1 + δ, then according to 2.54 we have γ2

d
m
< 1

2
is equivalent
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to the following,

α2d+
2α1α2

√
d

α3

√
m <

m

2

⇔

(√
m

2
− α1α2

√
d

α3

)2

>

(
α2 +

α2
1α

2
2

α2
3

)
d

ϑ1⇐ m ≥ 8
α2

1α
2
2

α2
3

d+ 4
√
α2
α1α2

α3

d

ϑ2⇐ m ≥ β
(
ε+ δ

√
1 + ε2d

)(
ε+ δ

√
1 + ε2d+

1

2

)
d(2.46)

where ϑ1 follows from
√(

α2 +
α2

1α
2
2

α2
3

)
d <

√
α2d + α1α2

α3

√
d; and ϑ2 follows by β =

8(1+δ)

(1−δ)2(1−2δ)2 .

To establish another bound on m we can see that m ≥ 32
δ2 log

(
24n2/d

δ

)
d implies

the following,

exp

(
−mδ

2

32
+ d log

(
24

δ

))
≤ exp(− log n2) =

1

n2
(2.47)

(4d+ 2) exp

(
−mδ

2

8

)
≤ (4d+ 2)

n8

(
δ

24

)4d

→ 0(2.48)

Eqs (2.47) and (2.48) complete the proof for the bound on m and justify the simplifi-

cation of the probability bound in Eq (2.45).

Next we are going to prove the intermediate lemmas in Section 2.5.1, i.e., bound

the key quantities in Lemma 2.5.2, for which we need the following concentration

results.

Lemma 2.8.5. Let A ∈ Rm×n with entries being i.i.d Gaussian random variables

distributed as N (0, 1/n), v ∈ Rn is an vector. Then for any δ ∈ (0, 1), with probability

at least 1− 2 exp−mδ
2/8, we have

P
(
‖Av‖2

2 > (1 + δ)
m

n
‖v‖2

2

)
< exp

(
−mδ

2

8

)
,

P
(
‖Av‖2

2 < (1− δ)m
n
‖v‖2

2

)
< exp

(
−mδ

2

8

)
.
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Proof. Note that Av is a random vector with i.i.d entries distributing as N (0, ‖v‖2
2/n).

Therefore, n‖Av‖
2
2

‖v‖22
is a chi-squared distribution with m degrees of freedom, which yields,

P

[
n ‖Av‖2

2

m‖v‖2
2

− 1 > δ

]
< exp

(
−mδ2/8

)
P

[
n ‖Av‖2

2

m‖v‖2
2

− 1 < −δ

]
< exp

(
−mδ2/8

)

Lemma 2.8.6. Let A ∈ Rm×n be a random matrix whose entries are independent

and identically distributed Gaussian random variables with mean zero, and variance γ

. Let z1, z2 ∈ Rn such that z1 ⊥ z2, then Az1 and Az2 are independent of each other.

Proof. Let aTi denote the ith row of A and M = Az1z
T
2 A

T . Then we have

E[M ]ii = E
[
aTi z1z

T
1 ai
]

= zT1 E[aia
T
i ]z2 = γzT1 z2 = 0

E[M ]ij = E
[
aTi z1z

T
1 aj
]

= zT1 E[aia
T
j ]z2 = 0

Therefore Az1 and Az2 are uncorrelated. This together with the fact that both

Az1 and Az2 are Gaussian distributed random vectors imply that Az1 and Az2 are

independent.

Lemma 2.8.7 ([129], Corollary 5.35). Let A be an n ×m matrix (n ≥ m) whose

entries are independent standard normal random variables. Then for every h ≥ 0,

with probability at least 1− 2 exp (−h2/2) one has

(2.49)
√
n−
√
m− h ≤ σmin(A) ≤ σmax(A) ≤

√
n+
√
m+ h

where σmin, σmax denote the smallest and largest singular values of A.
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With the above results, we are able to call out the following intermediate result to

quantify ‖PAU(Av⊥)‖2
2, which is a key quantity that will be used for proving Lemmas

2.5.3, 2.5.4 and 2.5.5.

Lemma 2.8.8. Let A ∈ Rm×n with entries being i.i.d Gaussian random variables

distributed as N (0, 1/n), then for any δ ∈ (0, 1) we have

‖PAUAv⊥‖2
2 ≤ (1 + δ)

d

n
‖v⊥‖2

2

hold with probability at least 1− exp
(
−dδ2

8

)
.

Proof. Note that Av⊥ is a Gaussian random vector with i.i.d entries distributed as

N (0, ‖v⊥‖2
2/n), and AU is a Gaussian random matrix with i.i.d entries distributed

as N (0, 1/n). Then according to Lemma 2.8.6, AU and Av⊥ are independent of

each other. Therefore, y = PAU(Av⊥) is the projection of Av⊥ onto a independent

random d-dimensional subspace. According to the rotation invariance property of Av⊥,

‖PAU(Av⊥)‖ is equivalent to the length of projecting Av⊥ onto its first d coordinates.

Hence,

P

(
‖PAU(Av⊥)‖2

2 =
d∑

k=1

y2
k ≤ (1 + δ)

d

n
‖v⊥‖2

2

)
≥ 1− exp

(
−dδ

2

8

)
(2.50)

Similar to the proof for Lemma 2.8.5, here the probability bound is followed from the

concentration bound for Chi-squared distribution with degree d.

Now we start by proving that Lemma 2.5.3 follows directly from Lemma 2.8.5 and

Lemma 2.8.7.
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Proof of Lemma 2.5.3. According to Lemmas 2.8.5 and 2.8.8, we have

‖r̃‖2
2 = ‖ (Im − PAU)Av⊥‖2

2 = ‖Av⊥‖2
2 − ‖PAU(Av⊥)‖2

2

≥ (1− δ1)
m

n
‖v⊥‖2

2 − (1 + δ1)
d

n
‖v⊥‖2

2

= (1− δ1)

(
1− 1 + δ1

1− δ1

d

m

)
m

n
‖v⊥‖2

2(2.51)

hold with probability at least 1− exp
(
−mδ2

1

8

)
− exp

(
−dδ2

1

8

)
. As for the second part

of Lemma 2.5.3, we have

2‖r̃‖2
2 − ‖r‖2

2 = 2‖r̃‖2
2 − ‖AT r̃‖2

2 ≥ (2− σ2
max(A

T ))‖r̃‖2
2

ϑ1

≥
(

1− 2δ2

√
m

n

)
‖r̃‖2

2

≥
(

1− 2δ2

√
m

n

)
(1− δ1)

(
1− 1 + δ1

1− δ1

d

m

)
m

n
‖v⊥‖2

2(2.52)

here ϑ1 follows from Lemma 2.8.7 with Aij ∼ N (0, 1/n) and h = δ
√
m/n. The

probability bound 1− exp
(
−mδ2

1

8

)
− exp

(
−dδ2

1

8

)
− exp

(
−mδ2

2

2

)
is obtained by taking

the union bound over 2.51 and ϑ1.

To prove Lemma 2.5.4 and Lemma 2.5.5, we need the following extra results which

are implied by Lemma 2.8.5. The corresponding proofs are provided at the end of

this section.

Corollary 2.8.1. Under the conditions of Lemma 2.8.5, for x, y ∈ Rn and δ, with

probability exceeding 1− 4e−mδ
2/8 we have

m

n

(
xTy − δ‖x‖‖y‖

)
≤ xTATAy ≤ m

n

(
xTy + δ‖x‖‖y‖

)

Corollary 2.8.2. Under the condition of Lemma 2.8.5, for any vector v ∈ R(U) we
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have

P
(
‖Av‖2

2 > (1 + δ)
m

n
‖v‖2

2

)
< exp

(
−mδ

2

32
− d log(δ) + d log(24)

)
,

P
(
‖Av‖2

2 < (1− δ)m
n
‖v‖2

2

)
< exp

(
−mδ

2

32
− d log(δ) + d log(24)

)
.

Given Lemma 2.8.1 and Corollary 2.8.2, we prove Lemma 2.5.4 and Lemma 2.5.5

by first proving the following intermediate results to bound the key components of p

and ∆.

Lemma 2.8.9. Let w2 =
(
UTATAU

)−1
UTATAv⊥, then

P

(
‖w2‖ ≤

√
1 + δ1

1− δ2

d

m
‖v⊥‖

)

≥ 1− exp

(
−dδ

2
1

8

)
− exp

(
−mδ

2
2

8
− d log(δ2) + d log(24)

)

Proof. Given the fact that U ∈ Rn×d with columns being orthonormal, we have

‖w2‖ = ‖Uw2‖. It then follows that,

‖Uw2‖
ϑ1

≤ ‖AUw2‖√
(1− δ2)m/n

ϑ2

≤
√

1 + δ1

1− δ2

d

m
‖v⊥‖

where ϑ1 follows from Corollary 2.8.2, and ϑ2 followed by Lemma 2.8.8, i.e.,

‖AUw2‖ = ‖PAU(Av⊥)‖ ≤
√

(1 + δ1)
d

n
‖v⊥‖2

The probability bound is obtained by applying the union bound over ϑ1 and ϑ2.

Lemma 2.8.10. Let φd denote the largest principal angle between R(U) and R(Ū),

then

P
(∥∥ŪTATAv⊥

∥∥ ≤ (sinφd + dδ)
m

n
‖v⊥‖

)
≥ 1− 4d exp

(
−mδ

2

8

)
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Proof of Lemma 2.8.10. Let ūk denote the kth column of Ū , and δ ∈ (0, 1). Then

∥∥ŪTATAv⊥
∥∥ =

∥∥∥ŪT
(
ATA− m

n
In
)
v⊥ +

m

n
ŪTv⊥

∥∥∥
≤ m

n

∥∥ŪTv⊥
∥∥+

∥∥∥ŪT
(
ATA− m

n
In
)
v⊥

∥∥∥
=
m

n

∥∥ŪTv⊥
∥∥+

√√√√ d∑
k=1

(
ūTkA

TAv⊥ −
m

n
ūTk v⊥

)2

ϑ1

≤ m

n

∥∥ŪTv⊥
∥∥+

√√√√ d∑
k=1

(
δ
m

n
‖ūk‖‖v⊥‖

)2

ϑ2

≤ sinφd
m

n
‖v⊥‖+

m

n
dδ‖v⊥‖(2.53)

where ϑ1 follows from Lemma 2.8.1; ϑ2 holds from Lemma 2.8.16 and the fact that√∑d
k=1

(
δm
n
‖ūk‖‖v⊥‖

)2 ≤ dδm
n
‖ūk‖‖v⊥‖; and the probability bound is obtained by

taking the union bound of that in Lemma 2.8.1.

We are ready to prove Lemma 2.5.4 and Lemma 2.5.5.

Proof of Lemma 2.5.4. Let η =
√

1+δ1
1−δ1

d
m
, then according to Lemma 2.8.9 we have

‖p‖2 = ‖Uw1 + Uw2‖2 ≤
(
‖v‖‖+ ‖Uw2‖

)2

≤
(
‖v‖‖+ η‖v⊥‖

)2

≤ (1 + η)2‖v‖2

with probability at least

1− exp

(
−mδ

2
1

32
− d log(δ1) + d log(24)

)
− exp

(
−dδ

2
1

8

)
.

Here the probability bound is obtained by choosing δ1 = δ2 in Lemma 2.8.9, hence

completes the proof.

Proof of Lemma 2.5.5. According to the definition of ∆, we can see Lemma 2.5.5 is
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a direct results of Lemma 2.8.9 and Lemma 2.8.16, that is

|∆| = wT2
(
ŪTU

)−1
ŪTAT (Im − PAU)Av⊥

≤
∥∥wT2 ∥∥∥∥∥(ŪTU

)−1
∥∥∥∥∥ŪTAT (Im − PAU)Av⊥

∥∥
ϑ1

≤ ‖w2‖
∥∥∥(ŪTU

)−1
∥∥∥∥∥ŪTATAv⊥

∥∥
ϑ2

≤ 1

cos(φd)

√
1 + δ1

1− δ1

d

m
‖v⊥‖

(
sinφd

m

n
+
m

n
dδ3

)
‖v⊥‖

=
1

cos(φd)

√
1 + δ1

1− δ1

d

m
(sin(φd) + dδ3)

m

n
‖v⊥‖2(2.54)

where ϑ1 holds since
∥∥ŪTAT (Im − PAU)Av⊥

∥∥ ≤ ∥∥ŪTATAv⊥
∥∥; ϑ2 followed by Lemma

2.8.9 and Lemma 2.8.10; and the probability bound is obtained by taking the union

bound that in Lemma 2.8.9 and Lemma 2.8.10.

Finally, we are going to prove the auxiliary results Corollary 2.8.2 and Lemma 2.8.1.

The key idea for proving Corollary 2.8.2 is using the covering numbers argument and

applying Lemma 2.5.3 to a given d-dimensional subspace R(U). This is a common

strategy used for compress sensing.

Proof of Corollary 2.8.2. Without loss of generality we restrict ‖v‖ = 1. From

covering numbers [121], there exists a finite set Q with at most
(

24
δ

)d points such

that Q ⊂ R(U), ‖q‖ = 1,∀q ∈ Q, and for all x ∈ R(U) with ‖v‖ = 1 we can find a

q ∈ Q such that

‖v − q‖ ≤ δ/8

Now applying Lemma 2.8.5 to the points in Q with ε = δ/2 and using the standard

union bound, then with probability at least 1− 2
(

24
δ

)d
exp

(
− δ2

32
m
)
we have

(1− δ/2)
m

n
‖v‖2 ≤ ‖Ax‖2 ≤ (1 + δ/2)

m

n
‖v‖2
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which gives

(2.55)
√

1− δ/2
√
m

n
‖v‖ ≤ ‖Ax‖ ≤

√
1 + δ/2

√
m

n
‖v‖

Since ‖v‖ = 1, we define γ as the smallest number such that

(2.56) ‖Ax‖ ≤
√

1 + γ

√
m

n
∀x ∈ R(U)

Since for any x ∈ R(U) with ‖v‖ = 1 we can find a q ∈ Q such that ‖x− q‖ ≤ δ/8,

we have the following

‖Ax‖ ≤ ‖Aq‖+ ‖A(x− q)‖ ≤
√

1 + δ/2

√
m

n
+
√

1 +H

√
m

n
δ/8

Since γ is the smallest number (2.56) holds, we have
√

1 + γ ≤
√

1 + δ/2+
√

1 + γδ/8.

(2.57)
√

1 + γ ≤
√

1 + δ/2

1− δ/8
≤
√

1 + δ

Similarly, the lower bound follows by

‖Ax‖ ≥ ‖Aq‖ − ‖A(x− q)‖ ≥
√

1− δ/2
√
m

n
−
√

1 + γ
δ

8

√
m

n

≥
(√

1− δ/2−
√

1 + δ
δ

8

)√
m

n

≥
√

1− δ
√
m

n

This completes the proof.

Proof of Lemma 2.8.1. Note that,

xTATAy

‖x‖‖y‖
=

1

4

(∥∥∥∥A( x

‖x‖
+

y

‖y‖

)∥∥∥∥2

−
∥∥∥∥A( x

‖x‖
− y

‖y‖

)∥∥∥∥2
)

Applying Lemma 2.8.5 on both terms separately and applying the union bound we



56

have

P
[
xTATAy

‖x‖‖y‖
≤ m

n

(
xTy

‖x‖‖y‖
− δ
)]

= P

[
xTATAy

‖x‖‖y‖
≤ 1

4

(
(1− δ)m

n

∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥2

− (1 + δ)
m

n

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)]

< 2 exp

(
−mδ

2

8

)(2.58)

Similarly,

P
[
xTATAy

‖x‖‖y‖
≥ m

n

(
xTy

‖x‖‖y‖
+ δ

)]
= P

[
xTATAy

‖x‖‖y‖
≥ 1

4

(
(1 + δ)

m

n

∥∥∥∥ x

‖x‖
+

y

‖y‖

∥∥∥∥2

− (1− δ)m
n

∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥2
)]

< 2 exp

(
−mδ

2

8

)(2.59)

holds with probability no more than 2.58 and 2.59 complete the proof.

Proof of Missing Data Here we again bound the quantities in Lemma 2.5.2, Equation

2.14, this time assuming A represents an entry-wise observation operation and

assuming incoherence on the signals of interest. As we show below, in the proof of

Theorem 2.5.2, we put together bounds given by Lemmas 2.5.6, 2.5.7 and 2.5.8, which

are all proved in this section too, along with Lemma 2.5.9 for completeness. We start

by proving the main result for missing data.

Proof of Theorem 2.5.2. Given the condition required by Theorem 2.5.2, we have

sinφd ≤
√
dµ0/16n and cosφd ≥

√
1− dµ0/16n. This together with Lemma

2.5.9 and Lemma 2.5.8 yield |∆| ≤ η3

√
1+ m

16n√
1−dµ0/16n

2dµ0

n
‖v⊥‖2 ≤ 2η3

√
1+ 1

16√
1− 1

16

dµ0

n
‖v⊥‖2 ≤
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11
5
η3

dµ0

n
‖v⊥‖2. Also for β2 in Lemma 2.5.8 we have β2 ≤

√
2µ(v⊥) log(1/δ) = β1.

Therefore,

(2.60) |∆| ≤ 11

5

(1 + β1)2

1− γ1

dµ0

n
‖v⊥‖2 .

Letting η2 = (1+β1)2

1−γ1

dµ0

m
and α1 =

√
2µ(v⊥)2

m
log
(

1
δ

)
, then applying this definition

together with Lemma 2.5.9 to Lemma 2.5.7 Lemma 2.5.6 yields

‖p‖2 ≤
(

1 +

√
2η2

1− γ1

)2

‖v‖2(2.61)

‖rΩ‖2 ≥ (1− α1 − 2η2)
m

n
‖v⊥‖2(2.62)

Now applying 2.60, 2.61 and 2.62 to 2.24 we obtain

ζt+1

ζt
≥ 1 +

(1− α1 − 2η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
− 22

5

η2

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2

≥ 1 +
(1− α1 − 32

5
η2)

(1 +
√

2η2/(1− γ1))2

m

n

‖v⊥‖2

‖v‖2
(2.63)

which holds with probability at least 1− 3δ. The probability bound is obtained by

taking the union bound of those generating Lemmas 2.5.6, 2.5.7 and 2.5.8, as we can

see in the proofs of them in this Section, this union bound is at least 1− 3δ.

Letting η1 =
(1−α1− 32

5
η2)

(1+
√

2η2/(1−γ1))2
, then η1 > 0 is equivalent to 1− α1 − 32

5
η2 > 0, for

which we have the following: if

(2.64)

m > max

128dµ0

3
log

(
2d

δ

)
, 32µ(v⊥)2 log

(
1

δ

)
, 52dµ0

(
1 +

√
2µ(v⊥) log

(
1

δ

))2


then η1 >
1
4
.

Under this condition, taking expectation with respect to v yields,

(2.65) Ev
[
ζt+1

ζt

∣∣U] ≥ 1 +
1

4

m

n
E
[
‖v⊥‖2

‖v‖2

∣∣∣∣U] ≥ 1 +
1

4

m

n

1− ζt
d

where the last inequality follows from Lemma 2.3.1. Finally choosing δ to be

1/n2completes the proof.
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We then prove Corollary 2.5.1, the result that allows comparison between our

convergence rate and that in [17].

Proof of Corollary 2.5.1. Let X = [X1, . . . , Xd] with Xi = sin2 φi. Let f(X) =

1−
∑d

i=1 Xi−Πd
i=1(1−Xi), then ∂f(X)

∂Xi
= −1 + Πj 6=i(1−Xj) ≤ 0. That is, f(X) is a

decreasing function of each component. Therefore, f(X) ≤ f(0) = 0. It follows that

(2.66) ζt = Πd
i=1(1−Xi) ≥ 1−

d∑
i=1

Xi ≥ 1− dµ0

16n

With a slight modification of Theorem 2.5.2 we obtain

E
[
κt+1

∣∣κt] ≤ (1− 1

4

m

n

ζt
d

)
κt .(2.67)

(2.66) and (2.67) together complete the proof.

We now focus on proving the key lemmas for establishing Theorem 2.5.2, for which

we need the following lemmas (the proofs can be found in [16]).

Lemma 2.8.11. [16] Let δ > 0. Suppose m ≥ 8
3
dµ(U) log (2d/δ), then

P
(∥∥∥(UT

ΩUΩ

)−1
∥∥∥ ≤ n

(1− γ1)m

)
≥ 1− δ

where γ1 =
√

8dµ(U)
3m

log (2d/δ).

Lemma 2.8.12 ([16], Lemma 1). Let α =
√

2µ(v⊥)2

m
log(1/δ), then

P
(
‖v⊥,Ω‖2 ≥ (1− α)

m

n
‖v⊥‖2

)
≥ 1− δ

Lemma 2.8.13 ([16], Lemma 2). Let µ(U), µ(v⊥) denote the incoherence parameters

of R(U) and v⊥, and let δ ∈ (0, 1) and β1 =
√

2µ(v⊥) log (1/δ), then

P
(∥∥UT

Ω v⊥,Ω
∥∥2 ≤ (β1 + 1)2m

n

dµ(U)

n
‖v⊥‖2

)
≥ 1− δ
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Now we are ready for the proof of Lemmas 2.5.6, 2.5.7 and 2.5.8.

Proof of Lemma 2.5.6. According to Lemmas 2.8.12, 2.8.13 and 2.8.11, we have

‖rΩ‖2 = ‖v⊥,Ω‖2 − vT⊥,ΩUΩ

(
UT

ΩUΩ

)−1
UT

Ω v⊥,Ω

≥ ‖v⊥,Ω‖2 −
∥∥∥(UT

ΩUΩ

)−1
∥∥∥ ‖UT

Ω v⊥,Ω‖2

ϑ1

≥
(

1− α− (β1 + 1)2

1− γ1

dµ(U)

m

)
m

n
‖v⊥‖2

with probability at least 1− 3δ.

Proof of Lemma 2.5.7. Lemma 2.8.13 and Lemma 2.8.11 together give the following

‖Uw2‖2 =
∥∥∥(UT

ΩUΩ

)−1
UT

Ω v⊥,Ω

∥∥∥2

≤
∥∥∥(UT

ΩUΩ

)−1
∥∥∥2 ∥∥UT

Ω v⊥,Ω
∥∥2

≤ (β1 + 1)2

(1− γ1)2

dµ(U)

m
‖v⊥‖2

holds with probability exceeding 1− 2δ. Therefore,

‖p‖2 ≤
(
‖v‖‖+ ‖Uw2‖

)2 ≤

(
1 +

β1 + 1

1− γ1

√
dµ(U)

m

)2

‖v‖2

We also need the following lemma for the proof of Lemma 2.5.8, the proof of which

is provided at the end of this section.

Lemma 2.8.14. Let β2 =
√

2µ(v⊥) log
(

1
δ

)
dµ0

dµ0+m sin2 φd
, where again µ0 denoting the

incoherence parameter of R(Ū). Then

P

∥∥ŪT
Ω v⊥,Ω

∥∥ ≤ (1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖v⊥‖

 ≥ 1− δ
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Proof of Lemma 2.5.8. Note that |∆| = ‖∆‖, for which we have the following,

‖∆‖ =
∥∥wT2 (ŪTU)−1ŪT r

∥∥
=
∥∥∥vT⊥,ΩUΩ

(
UT

ΩUΩ

)−1 (
ŪTU

)−1
ŪT

Ω (I − PUΩ
) v⊥,Ω

∥∥∥
≤
∥∥vT⊥,ΩUΩ

∥∥∥∥∥(UT
ΩUΩ

)−1
∥∥∥∥∥∥(ŪTU

)−1
∥∥∥∥∥ŪT

Ω (I − PUΩ
) v⊥,Ω

∥∥
ϑ1

≤ 1

cosφd

∥∥vT⊥,ΩUΩ

∥∥∥∥∥(UT
ΩUΩ

)−1
∥∥∥∥∥ŪT

Ω v⊥,Ω
∥∥

≤ 1

cosφd
(β1 + 1)

√
m

n

dµ(U)

n
(1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1
n

m(1− γ1)
‖v⊥‖2

ϑ2

≤ (1 + β1)(1 + β2)

(1− γ1) cosφd

√
m sin2 φd
dµ0

+ 1

√
dµ0

n

√
dµ(U)

n
‖v⊥‖2

where ϑ1 holds since from the following:

∥∥ŪT
Ω (I − PUΩ

) v⊥,Ω
∥∥ ≤ ∥∥ŪT

Ω v⊥,Ω
∥∥ ,

∥∥∥(UT
ΩUΩ

)−1
∥∥∥ ≤ 1

cosφd

and ϑ2 follows by putting Lemmas 2.8.13, 2.8.11 and 2.8.14 together.

We also prove Lemma 2.5.9 for completeness. Before that we first call out the

following lemma, the proof of which can be found in [17].

Lemma 2.8.15. [17] There exists an orthogonal matrix V ∈ Rd×d such that

d∑
k=1

sin2 φk ≤
∥∥ŪV − U∥∥2

F
≤ 2

d∑
k=1

sin2 φk

Proof of Lemma 2.5.9. According to Lemma 2.8.15 we have

‖Ui‖2 ≤
∥∥Ūi∥∥2

+
∥∥ŪiV − Ui∥∥2

≤
∥∥Ūi∥∥+

√√√√2
d∑

k=1

sin2 φk

≤
(

1 +
1

2
√

2

)√
dµ0

n

It hence follows that ‖Ui‖2
2 ≤ 2dµ0

n
.
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We need the following lemma and McDiarmid’s inequality to prove Lemma 2.8.16.

Lemma 2.8.16.
∥∥ŪTv⊥

∥∥2 ≤ sin2(φd)‖v⊥‖2, where φd denotes the largest principal

angle between R(Ū) and R(U).

Proof. According to the definition of v⊥ and Lemma 2.8.1, we have

∥∥ŪTy
∥∥2

=
∥∥ŪT

(
I− UUT

)
Ūs
∥∥2

= sT Ȳ Σ4Ȳ 4s

ϑ3

≤ sin2 φds
T Ȳ Σ2Ȳ T s = sin2 φd‖v⊥‖2

here Ȳ and Σ are the same as those defined in Lemma 2.8.1, and the last equality

holds since ‖v⊥‖2 = ‖s‖2 − vTUUTv = sT Ȳ Σ2Ȳ T s.

Theorem 2.8.1. (McDiarmid’s Inequality [94]). Let X1, . . . , Xn be independent

random variables, and assume f is a function for which there exist ti, i = 1, . . . , n

satisfying

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| ≤ ti

where x̂i indicates replacing the sample value xi with any other of its possible values.

Call f(X1, . . . , Xn) := Y . Then for any ε > 0,

P [Y ≥ EY + ε] ≤ exp

(
− 2ε2∑n

i=1 t
2
i

)
P [Y ≤ EY − ε] ≤ exp

(
− 2ε2∑n

i=1 t
2
i

)

Proof of Lemma 2.8.14. We use McDiarmid’s inequality to prove this. For the sim-

plicity of notation denote v⊥ as y. Let Xi = ŪΩ(i)yΩ(i) ∈ Rd, and f(X1, . . . , Xm) =

‖
∑m

i=1Xi‖2 =
∥∥ŪT

Ω v⊥,Ω
∥∥

2
, then |f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . xn| can be bounded
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via ∣∣∣∣∣∣
∥∥∥∥∥

m∑
i=1

Xi

∥∥∥∥∥
2

−

∥∥∥∥∥
m∑
i 6=k

Xi + X̂k

∥∥∥∥∥
2

∣∣∣∣∣∣ ≤
∥∥∥Xk − X̂k

∥∥∥
2
≤ ‖Xk‖2 + ‖X̂k‖2

≤ 2‖y‖∞
√
dµ0/n(2.68)

We next calculate E [f(X1, . . . , Xm)] = E
[
‖
∑m

i=1Xi‖2

]
. Note that

(2.69) E

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2
 = E

[
m∑
i=1

‖Xi‖2 +
m∑
i=1

∑
j 6=i

XT
i Xj

]

Recall that we assume the samples are taken uniformly with replacement. This

together with the fact that
∥∥Ūi∥∥2

= ‖PR(Ū)(ei)‖ ≤
√
dµ0/n yield the following

E

[
m∑
i=1

‖Xi‖2

]
=

m∑
i=1

E
[∥∥∥UΩ(i)yΩ(i)

∥∥∥2
]

=
m∑
i=1

n∑
k=1

‖Ūk‖2y2
kP{Ω(i)=k} ≤

m

n

dµ0

n
‖y‖2(2.70)

E

[
m∑
i=1

∑
j 6=i

XT
i Xj

]
=

m∑
i=1

∑
j 6=i

n∑
k1=1

n∑
k2=1

yk1Ū
T
k1
Ūk2yk2P(Ωj = k2)P(Ωi = k1)

=
m2 −m
n2

‖ŪTy‖2 ≤ m2

n2
sin2 φd‖y‖2(2.71)

where the last inequality holds by Lemma 2.8.16.

Eqs (2.69) (2.70) and (2.71) together with the Jensen’s inequality imply

(2.72) E

[∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
]
≤
√
m

n

√
m

n
sin2 φd +

dµ0

n
‖y‖ =

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖

Let ε = β2

√
m
n
dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖, then (2.68) and (2.72) together with Theorem
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2.8.1 give

P

‖UΩyΩ‖ ≥ (1 + β2)

√
m

n

dµ0

n

√
m sin2 φd
dµ0

+ 1‖y‖


≤ exp

−2β2
2
m
n
dµ0

n

(
m sin2 φd
dµ0

+ 1
)
‖y‖2

4m‖y‖2
∞
dµ0

n


= exp

−β2
2

(
m sin2 φd
dµ0

+ 1
)
‖y‖2

2n ‖y‖2
∞

 = δ(2.73)

where the last inequality follows by submitting our definition of µ(y) Eq (2.23) and

β2.



CHAPTER III

Learning to Share: Simultaneous Parameter Tying and
Sparsification in Deep Learning

3.1 Introduction

Deep neural networks (DNNs) have recently revolutionized machine learning by

dramatically advancing the state-of-the-art in several applications, ranging from

speech and image recognition to playing video games [61]. A typical DNN consists

of a sequence of concatenated layers, potentially involving millions or billions of

parameters; by using very large training sets, DNNs are able to learn extremely

complex non-linear mappings, features, and dependencies.

A large amount of research has focused on the use of regularization in DNN

learning [61], as a means of reducing the generalization error. It has been shown that

the parametrization of many DNNs is very redundant, with a large fraction of the

parameters being predictable from the remaining ones, with no accuracy loss [47].

Several regularization methods have been proposed to tackle the potential over-fitting

due to this redundancy. Arguably, the earliest and simplest choice is the classical `2

norm, known as weight decay in the early neural networks literature [111], and as

ridge regression in statistics. In the past two decades, sparsity-inducing regularization

based on the `1 norm (often known as Lasso) [124], and variants thereof, became

standard tools in statistics and machine learning, including in deep learning [61].

64
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Recently, [114] used group-Lasso (a variant of Lasso that assumes that parameters

are organized in groups and encourages sparsity at the group level [139]) in deep

learning. One of the effects of Lasso or group-Lasso regularization in learning a DNN

is that many of the parameters may become exactly zero, thus reducing the amount of

memory needed to store the model, and lowering the computational cost of applying

it.

Figure 3.1:
A DNN is first trained with GrOWL regularization to simultaneously identify the sparse
but significant connectivities and the correlated cluster information of the selected
features. We then retrain the neural network only in terms of the selected connectivities
while enforcing parameter sharing within each cluster.

It has been pointed out by several authors that a major drawback of Lasso (or

group-Lasso) regularization is that in the presence of groups of highly correlated

covariates/features, it tends to select only one or an arbitrary convex combination of

features from each group [27, 30, 56, 104, 147]. Moreover, the learning process tends

to be unstable, in the sense that subsets of parameters that end up being selected

may change dramatically with minor changes in the data or algorithmic procedure.

In DNNs, it is almost unavoidable to encounter correlated features, not only due to

the high dimensionality of the input to each layer, but also because neurons tend

to co-adapt, yielding strongly correlated features that are passed as input to the

subsequent layer [119].

In this work, we propose using, as a regularizer for learning DNNs, the group version
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of the ordered weighted `1 (OWL) norm [56], termed group-OWL (GrOWL), which

was recently proposed by [104]. In a linear regression context, GrOWL regularization

has been shown to avoid the above mentioned deficiency of group-Lasso regularization.

In addition to being a sparsity-inducing regularizer, GrOWL is able to explicitly

identify groups of correlated features and set the corresponding parameters/weights

to be very close or exactly equal to each other, thus taking advantage of correlated

features, rather than being negatively affected by them. In deep learning parlance, this

corresponds to adaptive parameter sharing/tying, where instead of having to define a

priori which sets of parameters are forced to share a common value, these sets are

learned during the training process. We exploit this ability of GrOWL regularization to

encourage parameter sparsity and group-clustering in a two-stage procedure depicted

in Fig. 3.1: we first use GrOWL to identify the significant parameters/weights of

the network and, simultaneously, the correlated cluster information of the selected

features; then, we retrain the network only in terms of the selected features, while

enforcing the weights within the same cluster to share a common value.

The experiments reported below confirm that using GrOWL regularization in

learning DNNs encourages sparsity and also yields parameter sharing, by forcing

groups of weights to share a common absolute value. We test the proposed approach

on two benchmark datasets, MNIST and CIFAR-10, comparing it with weight decay

and group-Lasso regularization, and exploring the accuracy-memory trade-off. Our

results indicate that GrOWL is able to reduce the number of free parameters in the

network without degrading the accuracy, as compared to other approaches.
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3.2 Related Work

In order to relieve the burden on both required memory and data for training and

storing DNNs, a substantial amount of work has focused on reducing the number of

free parameters to be estimated, namely by enforcing weight sharing. The classical

instance of sharing is found in the convolutional layers of DNNs [61]. In fact, weight-

sharing as a simplifying technique for NNs can be traced back to more than 30 years

ago [85, 112].

Recently, there has been a surge of interest in compressing the description of

DNNs, with the aim of reducing their storage and communication costs. Various

methods have been proposed to approximate or quantize the learned weights after

the training process. [48] have shown that, in some cases, it is possible to replace

the original weight matrix with a low-rank approximation. Alternatively, [5] propose

retraining the network layer by layer, keeping the layer inputs and outputs close to

the originally trained model, while seeking a sparse transform matrix, whereas [60]

propose using vector quantization to compress the parameters of DNNs.

Network pruning is another relevant line of work. In early work, [86] and [66]

use the information provided by the Hessian of the loss function to remove less

important weights; however, this requires expensive computation of second order

derivatives. Recently, [64] reduce the number of parameters by up to an order of

magnitude by alternating between learning the parameters and removing those below

a certain threshold. [89] propose to prune filters, which seeks sparsity with respect

to neurons, rather than connections; that approach relieves the burden on requiring

sparse libraries or special hardware to deploy the network. All those methods either

require multiple training/retraining iterations or a careful choice of thresholds.
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There is a large body of work on sparsity-inducing regularization in deep learning.

For example, [42] exploit `1 and `0 regularization to encourage weight sparsity;

however, the sparsity level achieved is typically modest, making that approach not

competitive for DNN compression. Group-Lasso has also been used in training DNNs;

it allows seeking sparsity in terms of neurons [114, 8, 146, 100] or other structures,

e.g., filters, channels, filter shapes, and layer depth [134]. However, as mentioned

above, both Lasso and group-Lasso can fail in the presence of strongly correlated

features (as illustrated in Section 3.4, with both synthetic data and real data.

A recent stream of work has focused on using further parameter sharing in convo-

lutional DNNs. By tying weights in an appropriate way, [50] obtain a convolutional

DNN with rotation invariance. On the task of analyzing positions in the game Go, [40]

showed improved performance by constraining features to be invariant to reflections

along the x-axis, y-axis, and diagonal-axis. Finally, [36] used a hash function to

randomly group the weights such that those in a hash bucket share the same value.

In contrast, with GrOWL regularization, we aim to learn weight sharing from the

data itself, rather than specifying it a priori.

Dropout-type methods have been proposed to fight over-fitting and are very popular,

arguably due to their simplicity of implementation [119]. Dropout has been shown

to effectively reduce over-fitting and prevent different neurons from co-adapting.

Decorrelation is another popular technique in deep learning pipelines [22, 41, 109];

unlike sparsity-inducing regularizers, these methods try to make full use of the model’s

capacity by decorrelating the neurons. Although dropout and decorrelation can reduce

over-fitting, they do not compress the network, hence do not address the issue of

high memory cost. It should also be mentioned that our proposal can be seen as

complementary to dropout and decorrelation: whereas dropout and decorrelation
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can reduce co-adaption of nodes during training, GrOWL regularization copes with

co-adaptation by tying together the weights associated to co-adapted nodes.

3.3 Group-OWL Regularization for Deep Learning

3.3.1 The Group-OWL Norm

We start by recalling the definition of the group-OWL (GrOWL) regularizer and

very briefly reviewing some of its relevant properties [104].

Definition 3. Given a matrix W ∈ Rn×m, let w[i]· denote the row of W with the

i-th largest `2 norm. Let λ ∈ Rn
+, with 0 < λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The GrOWL

regularizer (which is a norm) Ωλ : Rn×m → R is defined as

(3.1) Ωλ(W ) =
n∑
i=1

λi
∥∥w[i]·

∥∥
This is a group version of the OWL regularizer [56], also known as WSL1 (weighted

sorted `1 [142]) and SLOPE [26], where the groups are the rows of its matrix argument.

It is clear that GrOWL includes group-Lasso as a special case when λ1 = λn. As

a regularizer for multiple/multi-task linear regression, each row of W contains the

regression coefficients of a given feature, for the m tasks. It has been shown that by

adding the GrOWL regularizer to a standard squared-error loss function, the resulting

estimate of W has the following property: rows associated with highly correlated

covariates are very close or even exactly equal to each other [104]. In the linear case,

GrOWL encourages correlated features to form predictive clusters corresponding to

the groups of rows that are nearly or exactly equal. The rationale underlying this

chapter is that when used as a regularizer for DNN learning, GrOWL will induce

both sparsity and parameters tying, as illustrated in Fig. 3.2 and explained below in

detail.
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3.3.2 Layer-Wise GrOWL Regularization For Feedforward Neural Networks

A typical feed-forward DNN with L layers can be treated as a function f of the

following form:

f(x, θ) ≡ hL = fL (hL−1WL + bL)

hL−1 = fL−1 (hL−2WL−1 + bL−1)

...

h1 = f1 (xW1 + b1)

θ =
(
W1, b1, . . . ,WL, bL

)
denotes the set of parameters of the network, and each fi is

a component-wise nonlinear activation function, with the rectified linear unit (ReLU),

the sigmoid, and the hyperbolic tangent being common choices for this function [61].

Given labelled data D =
(
(x(1), y(1)), ..., (x(m), y(m))

)
, DNN learning may be for-

malized as an optimization problem,

(3.2) min
θ
L(θ) +R(θ), with L(θ) =

m∑
i=1

L
(
y(i), f

(
x(i), θ

))
,

where L
(
y, ŷ
)
is the loss incurred when the DNN predicts ŷ for y, andR is a regularizer.

Here, we adopt as regularizer a sum of GrOWL penalties, each for each layer of the

neural network, i.e.,

(3.3) R(θ) =
L∑
l=1

Ωλ(l)

(
Wl

)
, λ(l) ∈ RNl−1

+ ,

where Nl denotes the number of neurons in the l-th layer and 0 < λ
(l)
1 ≥ λ

(l)
2 ≥ · · · ≥

λ
(l)
Nl−1
≥ 0. Since R(θ) does not depend on b1, ..., bL, the biases are not regularized, as

is common practice.

As indicated in Eq. equation 3.3, the number of groups in each GrOWL regularizer

is the number of neurons in the previous layer, i.e., λ(l) ∈ RNl−1 . In other words, we
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treat the weights associated with each input feature as a group. For fully connected

layers, whereWl ∈ RNl−1×Nl , each group is a row of the weight matrix. In convolutional

layers, where Wl ∈ RFw×Fh×Nl−1×Nl , with Fw and Fh denoting the width and height,

respectively, of each filter, we first reshape Wl to a 2-dimensional array, i.e., Wl →

W 2D
l , where W 2D

l ∈ RNl−1×(FwFhNl), and then apply GrOWL on the reshaped matrix.

That is, if the l-th layer is convolutional, then

(3.4) R(Wl) = Ωλ(l)

(
W 2D
l

)
.

Each row of W 2D
l represents the operation on an input channel. The rationale

to apply the GrOWL regularizer to each row of the reshaped weight matrix is

that GrOWL can select the relevant features of the network, while encouraging the

coefficient rows of each layer associated with strongly correlated features from the

previous layer to be nearly or exactly equal, as depicted in Fig. 3.2. The goal is

to significantly reduce the complexity by: (i) pruning unimportant neurons of the

previous layer that correspond to zero rows of the (reshaped) weight matrix of the

current layer; (ii) grouping the rows associated with highly correlated features of the

previous layer, thus encouraging the coefficient rows in each of these groups to be

very close to each other. As a consequence, in the retraining process, we can further

compress the neural network by enforcing the parameters within each neuron that

belong to the same cluster to share same values.

In the work of [8], each group is predefined as the set of parameters associated

to a neuron, and group-Lasso regularization is applied to seek group sparsity, which

corresponds to zeroing out redundant neurons of each layer. In contrast, we treat the

filters corresponding to the same input channel as a group, and GrOWL is applied

to prune the redundant groups and thus remove the associated unimportant neurons

of the previous layer, while grouping associated parameters of the current layer that
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correspond with highly correlated input features to different clusters. Moreover, as

will be shown in Section 3.4, group-Lasso can fail at selecting all relevant features

of previous layers, and for the selected ones the corresponding coefficient groups are

quite dissimilar from each other, making it impossible to further compress the DNN

by enforcing parameter tying.

(a) GrOWL regularization effect on fully connected layers.

(b) GrOWL regularization effect on convolutional layers.

Figure 3.2:
GrOWL’s regularization effect on DNNs. (a) Fully connected layers: for layer l, GrOWL
clusters the input features from the previous layer, l− 1, into different groups, e.g., blue
and green. Within each neuron of layer l, the weights associated with the input features
from the same cluster (input arrows marked with the same color) share the same
parameter value. The neurons in layer l − 1 corresponding to zero-valued rows of Wl

have zero input to layer l, hence get removed automatically. (b) Convolutional layers:
each group (row) is predefined as the filters associated with the same input channel;
parameter sharing is enforced among the filters within each neuron that corresponds
with the same cluster (marked as blue with different effects) of input channels.
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3.3.3 Proximal Gradient Algorithm

To solve (3.2), we use a proximal gradient algorithm [20], which has the following

general form: at the t-th iteration, the parameter estimates are updated according to

(3.5) θ(t+1) = proxηR
(
θ(t) − η∇θL(θ(t))

)
,

where, for some convex function Q, proxQ denotes its proximity operator (or simply

“prox") [20], defined as proxQ(ξ) = arg minν Q(ν) + 1
2
‖ν − ξ‖2

2. In Eq. equation 3.5,

‖ν − ξ‖2
2 denotes the sum of the squares of the differences between the corresponding

components of ν and ξ, regardless of their organization (here, a collection of matrices

and vectors).

Since R(θ), as defined in equation 3.3, is separable across the weight matrices of

different layers and zero for b1, ..., bL, the corresponding prox is also separable, thus

W
(t+1)
l = prox

ηΩ
(l)
λ

(
W

(t)
l − η∇Wl

L(θ(t))
)
, for l = 1, . . . , L(3.6)

b
(t+1)
l = b

(t)
l − η∇blL(θ(t)) for l = 1, ..., L.(3.7)

It was shown by [104] that the prox of GrOWL can be computed as follows. For

some matrix V ∈ RN×M , let U = proxΩλ
(V ), and vi and ui denote the corresponding

i-th rows. Then,

(3.8) ui = vi (proxΩλ
(ṽ))i/‖vi‖,

where ṽ = [‖v1‖, ‖v2‖, · · · , ‖vN‖]. For vectors in RN (in which case GrOWL coincides

with OWL), proxΩ
λ(l)

can be computed with O(n log n) cost, where the core com-

putation is the so-called pool adjacent violators algorithm (PAVA [45]) for isotonic

regression. We provide one of the existing algorithms in Appendix 3.6.1; for details,

the reader is referred to the work of [26] and [141]. in this chapter, we apply the
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proximal gradient algorithm per epoch, which generally performs better. The training

method is summarized in Algorithm 2.

Algorithm 2
Input: parameters of the OWL regularizers λ(l), ..., λ(L), learning rate η
for each epoch T do
for each iteration t in epoch T do

Update the parameters θ =
(
W1, b1, . . . ,WL, bL

)
via backpropagation (BP)

end for
Apply proximity operator via equation 3.6

end for

3.3.4 Implementation Details

Setting the GrOWL Weights GrOWL is a family of regularizers, with different

variants obtained by choosing different weight sequences λ1, . . . , λn. in this chapter,

we propose the following choice:

(3.9) λi =


Λ1 + (p− i+ 1)Λ2, for i = 1, ..., p,

Λ1, for i = p+ 1, ..., n,

where p ∈ {1, ...n} is a parameter. The first p weights follow a linear decay, while the

remaining ones are all equal to Λ1. Notice that, if p = n, the above setting is equivalent

to OSCAR [27]. Roughly speaking, Λ1 controls the sparsifying strength of the

regularizer, while Λ2 controls the clustering property (correlation identification ability)

of GrOWL [104]. Moreover, by setting the weights to a common constant beyond

index p means that clustering is only encouraged among the p largest coefficients,

i.e., only among relevant coefficient groups.

Finding adequate choices for p, Λ1, and Λ2 is crucial for jointly selecting the

relevant features and identifying the underlying correlations. In practice, we find that

with properly chosen p, GrOWL is able to find more correlations than OSCAR. We

explore different choices of p in Section 3.4.1.
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Parameter Tying After the initial training phase, at each layer l, rows of Wl that

corresponds to highly correlated outputs of layer l − 1 have been made similar or

even exactly equal. To further compress the DNN, we force rows that are close to

each other to be identical. We first group the rows into different clusters 1 according

to the pairwise similarity metric

(3.10) Sl(i, j) =
W T
l,iWl,j

max (‖Wl,i‖2
2, ‖Wl,j‖2

2)
∈ [−1, 1],

where Wl,i and Wl,j denote the i-th and j-th rows of Wl, respectively.

With the cluster information obtained by using GrOWL, we enforce parameter

sharing for the rows that belong to a same cluster by replacing their values with the

averages (centroid) of the rows in that cluster. In the subsequent retraining process ,

let G(l)
k denote the k-th cluster of the l-th layer, then centroid g(l)

k of this cluster is

updated via

∂L
∂g

(l)
k

=
1∣∣∣G(l)
k

∣∣∣
∑

Wl,i∈G
(l)
k

∂L
∂Wl,i

.(3.11)

3.4 Numerical Results

We assess the performance of the proposed method on two benchmark datasets:

MNIST and CIFAR-10. We consider two different networks and compare GrOWL

with group-Lasso and weight decay, in terms of the compression vs accuracy trade-

off. For fair comparison, the training-retraining pipeline is used with the different

regularizers. After the initial training phase, the rows that are close to each other are

clustered together and forced to share common values in the retraining phase. We

implement all models using Tensorflow [1]. We evaluate the effect of the different
1in this chapter, we use the built-in affinity propagation method of the scikit-learn package [31]. A brief description

of the algorithm is provided in Appendix 3.6.2.
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Figure 3.3:
Regularization effect of GrOWL for different p values (Eq ( 3.9)). In this plot, the y-axis
indicates the sorted values of S in Equation 3.10.

regularizers using the following quantities:

sparsity = (#zero params)/(# total params) ,

compression rate = (# total params)/(# unique params) ,

parameter sharing = (# nonzero params)/(# unique params) .

3.4.1 Different Choices of GrOWL Parameters

First, we consider a synthetic data matrix X with block-diagonal covariance matrix

Σ, where each block corresponds to a cluster of correlated features, and there is a gap

g between two blocks. Within each cluster, the covariance between two features Xi

and Xj is cov(Xi, Xj) = 0.96|i−j|, while features from different clusters are generated

independently of each other. We set n = 784, K = 10, block size 50, and gap g = 28.

We generate 10000 training and 1000 testing examples.

We train a NN with a single fully-connected layer of 300 hidden units. Fig 3.3 shows

the first 25000 entries of the sorted pairwise similarity matrices (Eq 3.10) obtained

by applying GrOWL with different p (Eq 3.9) values. By setting the weights beyond

index p to a common constant implies that clustering is only encouraged among the p

largest coefficients, i.e., relevant coefficient groups; however, Fig. 3.3 shows that, with
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properly chosen p, GrOWL yields more parameter tying than OSCAR (p = n). On

the other hand, smaller p values allow using large Λ2, encouraging parameter tying

among relatively loose correlations. In practice, we find that for p around the target

fraction of nonzero parameters leads to good performance in general. The intuition is

that we only need to identify correlations among the selected important features.

Fig. 3.3 shows that weight decay (denoted as `2) also pushes parameters together,

though the parameter-tying effect is not as clear as that of GrOWL. As has been

observed in the literature [27], weight decay often achieves better generalization than

sparsity-inducing regularizers. It achieves this via parameter shrinkage, especially in

the highly correlated region, but it does not yield sparse models. In the following

section, we explore the compression performance of GrOWL by comparing it with

both group-Lasso and weight decay. We also explore how to further improve the

accuracy vs compression trade-off by using sparsity-inducing regularization together

with weight decay (`2). For each case, the baseline performance is provided as the best

performance obtained by running the original neural network (without compression)

after sweeping the hyper-parameter on the weight decay regularizer over a range of

values.

3.4.2 Fully Connected Neural Network on MNIST

The MNIST dataset contains centered images of handwritten digits (0–9), of size

28×28 (784) pixels. Fig 3.4 (a) shows the (784 × 784) correlation matrix of the

dataset (the margins are zero due to the redundant background of the images). We

use a network with a single fully connected layer of 300 hidden units. The network is

trained for 300 epochs and then retrained for an additional 100 epochs, both with

momentum. The initial learning rate is set to 0.001, for both training and retraining,

and is reduced by a factor of 0.96 every 10 epochs. We set p = 0.5, and Λ1,Λ2 are
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Figure 3.4:
MNIST: comparison of the data correlation and the pairwise similarity maps (Eq (3.10))
of the parameter rows obtained by training the neural network with GrOWL, GrOWL+`2,
group-Lasso, group-Lasso+`2 and weight decay (`2).

selected by grid search.

Pairwise similarities (see Eq. (3.10)) between the rows of the weight matrices

learned with different regularizers are shown in Fig. 3.4 (b–f). As we can see, GrOWL

(+`2) identifies more correlations than group-Lasso (+`2), and the similarity patterns

in Fig. 3.4 (b, c) are very close to that of the data (Fig. 3.4(a)). On the other hand,

weight decay also identifies correlations between parameter rows, but it does not

induce sparsity. Moreover, as shown in Table 3.1, GrOWL yields a higher level of

parameter sharing than weight decay, matching what we observed on synthetic data

in Section 3.4.1.

The compression vs accuracy trade-off of the different regularizers is summarized

in Table 3.1, where we see that applying `2 regularization together with group-Lasso

or GrOWL leads to a higher compression ratio, with negligible effect on the accuracy.
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Table 3.1:
Sparsity, parameter sharing, and compression rate results on MNIST. Baseline model is
trained with weight decay and we do not enforce parameter sharing for baseline model.
We train each model for 5 times and report the average values together with their standard
deviations.

Regularizer Sparsity Parameter Sharing Compression ratio Accuracy
none 0.0± 0% 1.0± 0 1.0± 0 98.3± 0.1%

weight decay 0.0± 0% 1.6± 0 1.6± 0 98.4± 0.0%

group-Lasso 87.6± 0.1% 1.9± 0.1 15.8± 1.0 98.1± 0.1%

group-Lasso+`2 93.2± 0.4% 1.6± 0.1 23.7± 2.1 98.0± 0.1%

GrOWL 80.4± 1.0% 3.2± 0.1 16.7± 1.3 98.1± 0.1%

GrOWL+`2 83.6± 0.5% 3.9± 0.1 24.1± 0.8 98.1± 0.1%

Table 3.1 also shows that, even with lower sparsity after the initial training phase,

GrOWL (+`2) compresses the network more than group-Lasso (+`2), due to the

significant amount of correlation it identifies; this also implies that group-Lasso only

selects a subset of the correlated features, while GrOWL selects all of them. On

the other hand, group-Lasso suffers from randomly selecting a subset of correlated

features; this effect is illustrated in Fig. 3.5, which plots the indices of nonzero rows,

showing that GrOWL (+`2) stably selects relevant features while group-Lasso (+`2)

does not. The mean ratios of changed indices2 are 11.09%, 0.59%, 32.07%, and 0.62%

for group-Lasso, GrOWL, group-Lasso+`2, and GrOWL+`2, respectively.

3.4.3 VGG-16 on CIFAR-10

To evaluate the proposed method on large DNNs, we consider a VGG-like [118]

architecture proposed by [140] on the CIFAR-10 dataset. The network architecture is

summarized in Appendix 3.6.4; comparing with the original VGG of [118], their fully

connected layers are replaced with two much smaller ones. A batch normalization

layer is added after each convolutional layer and the first fully connected layer. Unlike

[140], we don’t use dropout. We first train the network under different regularizers

for 150 epochs, then retrain it for another 50 epochs, using the learning rate decay
2The mean ratio of changed indices is defined as: 1

n

∑n
k=1 ‖Ik − Ī‖0/‖Ī‖0, where n is the number of experiments,

Ik is the index vector of kth experiment, and Ī = 1
n

∑n
k=1 Ik is the mean index vector.
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Figure 3.5:
MNIST: sparsity pattern of the trained fully connected layer, for 5 training runs, using
group-Lasso, GrOWL, group-Lasso+`2, GrOWL+`2.

scheme described by [70]: the initial rates for the training and retraining phases

are set to 0.01 and 0.001, respectively; the learning rate is multiplied by 0.1 every

60 epochs of the training phase, and every 20 epochs of the retraining phase. For

GrOWL (+`2), we set p = 0.1n (see Eq. equation 3.9) for all layers, where n denotes

the number of rows of the (reshaped) weight matrices of each layer.

The results are summarized in Table 3.2. For all of the regularizers, we use the

affinity propagation algorithm (with preference value3 set to 0.8) to cluster the rows

at the end of initial training process. Our experiments showed that it is hard to

encourage parameter tying in the first 7 convolutional layers; this may be because

the filters of these first 7 convolutional layers have comparatively large feature maps

(from 32× 32 to 8× 8), which are only loosely correlated. We illustrate this reasoning

in Fig. 3.6, showing the cosine similarity between the vectorized output channels

of layers 1, 6, 10, and 11, at the end of the training phase; it can be seen that the

outputs of layers 10 and 11 have many more significant similarities than that of layer

6. Although the output channels of layer 1 also have certain similarities, as seen in
3In Table 3.4 (Appendix 3.6.4), we explore the effect of different choices of this value.
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Table 3.2:
Sparsity (S1) and Parameter Sharing (S2) of VGG-16 on CIFAR-10. Layers marked by *
are regularized. We report the averaged results over 5 runs.

Layers Weight Decay group-Lasso group-Lasso + `2 GrOWL GrOWL + `2
(S1, S2) (S1, S2) (S1, S2) (S1, S2) (S1, S2)

conv1 0%, 1.0 0%, 1.0 0%, 1.0 0%,1.0 0%, 1.0
*conv2 0%, 1.0 34%, 1.0 40%, 1.0 20%, 1.0 34%, 1.0
*conv3 0%, 1.0 28%, 1.0 20%, 1.0 28%, 1.0 17%, 1.0
*conv4 0%, 1.0 34%, 1.0 29%, 1.0 30%, 1.0 27% 1.0
*conv5 0%, 1.0 12%, 1.0 11%, 1.0 8%, 1.0 14%, 1.0
*conv6 0%, 1.0 38%, 1.0 40%, 1.0 38%, 1.0 43%, 1.0
*conv7 0%, 1.0 46%, 1.0 51%, 1.0 40%, 1.0 50%, 1.0
*conv8 0%, 1.0 49%, 1.0 53%, 1.0 50%, 1.0 55%, 1.0
*conv9 0%, 1.0 78%, 1.0 78%, 1.0 74%, 1.1 75%, 1.2
*conv10 0%, 1.2 76%, 1.0 76%, 1.0 66%, 2.7 73%, 3.0
*conv11 0%, 1.2 84%, 1.0 87%, 1.0 81%, 3.7 88%, 3.7
*conv12 0%, 2.0 85%, 1.0 91%, 1.0 75%, 2.6 78%, 2.5
*conv13 0%, 2.1 75%, 1.1 90%, 1.1 78%, 1.9 71%, 4.2
*fc 0%, 4.2 78%, 1.0 91%, 1.1 69%, 2.7 81%, 2.2
softmax 0%, 1.0 0%,1.0 0%, 1.0 0%, 1.0 0%, 1.0
Compression 1.3± 0.1X 11.1± 0.5X 14.5± 0.5X 11.4± 0.5X 14.5± 0.5X
Accuracy 93.1± 0.0% 92.1± 0.2% 92.7± 0.1% 92.2± 0.1% 92.7± 0.1%

Baseline Accuracy: 93.4± 0.2%, Compression: 1.0X

Table 3.2, neither GrOWL (+`2) nor weight decay tends to tie the associated weights.

This may mean that the network is maintaining the diversity of the inputs in the first

few convolutional layers.

Although GrOWL and weight decay both encourage parameter tying in layers 9-13,

weight decay does it with less intensity and does not yield a sparse model, thus it

cannot significantly compress the network. [89] propose to prune small weights after

the initial training phase with weight decay, then retrain the reduced network; however,

this type of method only achieves compression4 ratios around 3. As mentioned by

[89], layers 3-7 can be very sensitive to pruning; however, both GrOWL (+`2) and

group-Lasso (+`2) effectively compress them, with minor accuracy loss.

On the other hand, similar to what we observed by running the simple fully-

connected network on MNIST, the accuracy-memory trade-off improves significantly

by applying GrOWL or group-Lasso together with `2. However, Table 3.2 also shows
4Although parameter sharing is not considered by [89], according to Table 3.2, pruning following weight decay

together with parameter sharing still cannot compress the network as much as GrOWL does.
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Figure 3.6:
Output channel cosine similarity histogram obtained with different regularizers. Labels:
GO:GrOWL, GOL:GrOWL+`2, GL:group-Lasso, GLL:group-Lasso+`2, WD:weight
decay.

that the trade-off achieved by GrOWL (+`2) and group-Lasso (+`2) are almost the

same. We suspect that this is caused by the fact that CIFAR-10 is simple enough

that one could still expect a good performance after strong network compression. We

believe this gap in the compression vs accuracy trade-off can be further increased in

larger networks on more complex datasets. We leave this question for future research.

3.5 Conclusion

We have proposed using the recent GrOWL regularizer for simultaneous parameter

sparsity and tying in DNN learning. By leveraging on GrOWL’s capability of

simultaneously pruning redundant parameters and tying parameters associated with

highly correlated features, we achieve significant reduction of model complexity, with

a slight or even no loss in generalization accuracy. We evaluate the proposed method

on both a fully connected neural network and a deep convolutional neural network.

The results show that GrOWL can compress large DNNs by factors ranging from

11.4 to 14.5, with negligible loss on accuracy.

The correlation patterns identified by GrOWL are close to those of the input

features to each layer. This may be important to reveal the structure of the features,

contributing to the interpretability of deep learning models. On the other hand,

by automatically tying together the parameters corresponding to highly correlated
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features, GrOWL alleviates the negative effect of strong correlations that might be

induced by the noisy input or the co-adaption tendency of DNNs.

3.6 Supplementary Material

3.6.1 ProxGrOWL

Various methods have been proposed to compute the proximal mapping of OWL

(ProxOWL). It has been proven that the computation complexity of these methods is

O(n log n) which is just slightly worse than the soft thresholding method for solving `1

norm regularization. In this chapter, we use Algorithm 3 that was originally proposed

in [26].

Algorithm 3 ProxGrOWL [26] for solving proxη,Ωλ
(z)

Input: z and λ
Let λ̃ = ηλ and z̃ = |Pz| be a nonincreasing vector, where P is a permutation matrix.
while z̃ − λ̃ is not nonincreasing: do

Identify strictly increasing subsequences, i.e., segments i : j such that

(3.13) z̃i − λ̃i < z̃i+1 − λ̃i+1 < z̃j − λ̃j

Replace the values of z̃ and λ̃ over such segments by their average value: for k ∈ {i, i+ 1, · · · , j}

(3.14) z̃k ←
1

j − i+ 1

∑
i≤k≤j

z̃k, λ̃k ←
1

j − i+ 1

∑
i≤k≤j

λ̃k

end while
Output: ẑ = sign (z)PT (z̃ − λ̃)+.

3.6.2 Affinity Propagation

Affinity Propagation is a clustering method based on sending messages between

pairs of data samples. The idea is to use these messages to determine the most

representative data samples, which are called exemplars, then create clusters using

these exemplars.

Provided with the precomputed data similarity s(i, j), i 6= j and preference s(i, i),

there are two types information being sent between samples iteratively: 1) respon-
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sibility r(i, k), which measures how likely that sample k should be the exemplar of

sample i; 2) availability a(k, i), which is the evidence that sample i should choose

sample k as its exemplar. The algorithm is described in 4.

Algorithm 4 Affinity Propagation [57]
Initialization: r(i, k) = 0, a(k, i) = 0 for all i, k
while not converge do
Responsibility updates:

r(i, k)← s(i, k)−max
j 6=k

(a(j, i) + s(i, j))

Availability updates:

a(k, k)←
∑
j 6=k

max{0, r(j, k)}

a(k, i)← min

0, r(k, k) +
∑

j 6∈{k,i}

max{0, r(j, k)}


end while
Making assignments:

c∗i ← argmax
k

r(i, k) + a(k, i)

Unlike k-means or agglomerative algorithm, Affinity Propagation does not require

the number of clusters as an input. We deem this as a desired property for enforcing

parameter sharing in neural network compression because it’s impossible to have the

exact number of clusters as a prior information. In practice, the input preference of

Affinity Propagation determines how likely each sample will be chosen as an exemplar

and its value will influence the number of clusters created.

3.6.3 Network Architecture for Synthetic Data and MNIST

Table 3.3: Network Architecture for both MNIST and Synthetic Data
Input ∈ R784

FC 500 BatchNorm ReLU
FC 10 Softmax

3.6.4 VGG-16 on CIFAR-10
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Table 3.4:
VGG: Clustering rows over different preference values for running the affinity propagation
algorithm (Algorithm 4). For each experiment, we report clustering accuracy (A),
compression rate (C), and parameter sharing (S) of layers 9-14. For each regularizer, we
use different preference values to run Algorithm 4 to cluster the rows at the end of initial
training process. Then we retrain the neural network correspondingly. The results are
reported as the averages over 5 training and retraining runs.

Preference Value 0.6 0.7 0.8 0.9
(A, C, S) (A, C, S) (A, C, S) (A, C, S)

GrOWL 92.2%, 13.6, 3.5 92.2%, 12.5, 2.6 92.2%, 11.4, 2.1 92.2%, 10.9, 1.7
Group Lasso 92.2%, 12.1, 1.1 92.0%, 11.4, 1.1 92.1%, 11.0, 1.0 92.2%, 9.5, 1.0
GrOWL + `2 92.7%, 14.7, 2.3 92.5%, 15.4, 2.9 92.7%, 14.5, 2.3 92.6,%, 13.5, 1.8
GrLasso + `2 92.7%, 14.8, 1.2 92.7%, 14.5, 1.1 92.7%, 14.5, 1.0 92.6%, 14.3, 1.0
Weight Decay 93.2%, 1.8, 2.2 93.4%, 1.5, 1.7 93.1%, 1.3, 1.4 93.3%, 1.1, 1.1

The network architecture of VGG is summarized in Table 3.5, which is proposed

by [140] on the CIFAR-10 dataset. Comparing with the original VGG of [118], their

fully connected layers of this tiny VGG are replaced with two much smaller ones.

In Table 3.4, we access each regularizer over different preference values for running

the affinity propagation algorithm (Algorithm 4). For each cell, the result is summa-

rized over 5 training-retraining runs, one for each trial with only the preference value

required by Algorithm 4 being different. As is shown in Table 3.4, both Group Lasso

and GrLasso+`2 exhibit almost no parameter sharing effect over a wide range of

preference values required by the clustering algorithm ( Algorithm 4). This validates

the fact, in existence of highly correlated features, Group Lasso tends to select one

or a small random subset of all relevant features. In contrast, GrOWL is capable of

selecting all of them and tying the corresponding parameters together. Although this

ability of GrOWL is supposed to yield better performance and more stable learning

process, we did not observe this by running VGG on CIFAR-10. We suspect this is

due to the fact that we are using a complex model on a comparatively simpler dataset.

We expect the superiority of GrOWL over Group Lasso would be more obvious when

we move to more complex dataset, where being able to select all relevant features is

crucial for guaranteeing stable learning process and better performance.
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Table 3.5: Network statistics of VGG-16.

Layers Output #Channels
#Params

w × h in&out
conv1 32× 32 3, 64 1.7E+03
*conv2 32× 32 64, 64 3.7E+04
*conv3 16× 16 64, 128 7.4E+04
*conv4 16× 16 128, 128 1.5E+05
*conv5 8× 8 128, 128 2.9E+05
*conv6 8× 8 128, 256 5.9E+05
*conv7 8× 8 256, 256 5.9E+05
*conv8 4× 4 256, 512 1.2E+06
*conv9 4× 4 512, 512 2.4E+06
*conv10 4× 4 512, 512 2.4E+06
*conv11 2× 2 512, 512 2.4E+06
*conv12 2× 2 512, 512 2.4E+06
*conv13 2× 2 512, 512 2.4E+06
*fc 1 512, 512 1.0E+06
sofrmax 1 512, 10 5.1E+03



CHAPTER IV

Regularized Information Maximization Auto-Encoding

4.1 Introduction

Recent years have witnessed great successes in deep learning, but these successes

are marred by the inscrutability of models as their sizes and complexities keep

growing. Learning interpretable representations so as to gain more understanding of

the decision-making process has become ever more important, especially as complex

models have reached many critical areas, including social science, financial services

and healthcare. A large amount of research has focused on unsupervised learning

of disentangled representations, which is motivated by the argument that a real

intelligent agent can only be attained if it can learn to identify and separate out the

underlying explanatory factors of data into disjoint parts of the learned representations

[23].

Over the past decade, there has been a large body of work focusing on using

autoencoders to power unsupervised representation [23, 128]. An autoencoder consists

of an encoder and a decoder. Given the input data, the encoder first maps it to the

representation space, then the decoder maps the representation back to the original

space where the input lives. Autoencoders are typically used as a dimensionality

reduction technique by restricting the latent space to a lower dimensionality than the

87
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input space. Extensions of ordinary autoencoders have been proposed to encourage

desired representation characteristics. Sparse autoencoders [101] impose sparsity

constraints on the over-complete representation bases. Denoising autoencoders [131]

propose to reconstruct the original clean input from its artificially corrupted version.

These approaches are shown to extract useful representations with better compactness

and robustness. However, it is still unclear how to further extend them to achieve

more challenging goals, e.g., when the goal is to simultaneously identify the underlying

categories of data and disentangle the continuous representation factors.

In the parallel fashion, there has been a surge of interest in exploring the Vari-

ational AutoEncoder (VAE) [81, 107] framework for disentangled representation

learning. From the optimization perspective, VAE can also be interpreted as an

ordinary autoencoder regularized in a specific way, i.e., by pushing the conditional

probability of representation given data towards some prior that is often chosen

according to our assumptions on how data is generated. As is proposed in β-VAE

[71], better disentangled representations can be attained by using a larger weight on

the regularization. However, by doing so, β-VAE also severely sacrifices the mutual

information between data and its representations, resulting in a poor trade-off between

disentanglement and reconstruction fidelity.

Many recent efforts have focused on attaining a better disentanglement and

reconstruction trade-off, where the approaches generally fall into two lines. One of

them revises the original objective of VAE and put larger weight on the so-called total

correlation [133] term to promote statistical independence between representation

factors [80, 58, 35, 55], while the other proposes to implicitly preserve the mutual

information when increasing the regularization strength [92, 32, 7, 52, 144]. While

various degrees of improvements have been achieved, these approaches still suffer from
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two major shortcomings. First, they are shown to be incapable of uncovering the

categorical information of the data. Although better priors may compensate for this

weakness, finding such priors is itself a very challenging problem. Second, we still lack

fundamental understanding or principles for effectively retaining the informativeness

each representation component has about the data while simultaneously encouraging

statistical independence between them.

In this work, we propose and explore a different strategy. Rather than directly

targeting proper constraints for attaining desired representations characteristics, we

step back to a very intuitive criterion that any good representation should, at least to

some degree, retain a significant amount of information about the data. This suggests

to maximize the mutual information between data and its representations, which

is the substance of the InfoMax principle [90]. However, the mutual information

can be trivially maximized by simply memorizing the data. InfoMax is thereby

typically invoked with various constraints. A natural question arises as, building

upon InfoMax, whether it’s possible to derive proper constraints to yield the desired

representation characteristics, e.g., a disentangled continuous representation and

interpretable categorical representation, yet maximally preserving the informativeness

of representation. With this as our motivation and ultimate goal, we propose

Regularized Information Maximization Auto-Encoding (RIMAE) for jointly learning

a hybrid discrete and continuous representation. Our contributions lie in the following:

• Proposing an objective to simultaneously recover the underlying categories of

data and disentangle the continuous representation factors in a way that each of

them corresponds to a specific variation in data.

• While regularizations can naturally incur a loss on reconstruction, building upon

InfoMax, the derived constraints allow us to achieve a better trade-off between
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the desired representation characteristics and reconstruction fidelity.

• Providing a fundamental understanding on how to encourage statistically inde-

pendent representation factors yet effectively preserving the informativeness of

each factor.

4.2 Jointly Learning A Hybrid Categorical and Continuous Representa-
tion

Assume data x ∈ Rd has been generated by combining a discrete factor with a fixed

number of independent continuous factors, through a complex stochastic process. The

discrete factor determines the category of the data, while the continuous latent factors

correspond to the other variations in data. Let K∗1 and K∗2 denote the numbers of

the underlying categories and continuous latent factors of data, respectively. Assume

K∗1 , K
∗
2 � d, and we are primarily concerned with the reverse direction. That is,

learning a hybrid discrete-continuous representation from observed data, using a

stochastic autoencoder. Our goal is to uncover the underlying categories of data, while

successfully separating the continuous latent factors into independent representation

factors.

4.2.1 Classic Autoencoders and Beyond

Let y ∈ {1, . . . , K1} and z ∈ RK2 , with K1, K2 � d, denote the discrete and

continuous representation variables respectively, an ordinary autoencoder optimizes

the following,

maximizeθ,φ Eqφ(x,y,z) [log pθ(x|y, z)] ,(4.1)

where qφ and pθ denote the stochastic encoder and decoder correspondingly. Notice

that qφ(x,y, z) = q(x)qφ(y, z|x), where q(x) denotes the distribution of data x,

and qφ(y, z|x) denotes the conditional distribution, parameterized by the encoder,
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of the representation given the data. The objective (4.1) is often termed as nega-

tive reconstruction error, though the output of decoder is generally not the exact

reconstruction of the input x, but instead being the probabilistic parameter(s) for

a distribution pθ(x|y, z) that may generate x with high probability. The choices

for the likelihood distribution pθ(x|y, z) are data dependent, two common ones are

Gaussian distribution for real valued data and Bernoulli distribution for binary data.

Without any constraints on K1 and K2, the reconstruction error can be trivially

minimized by simply learning an identity mapping. A natural solution is to use

a bottleneck layer to produce under-complete representations, this often results

in a loss on the reconstruction fidelity, and hence can be seen as lossy compressed

representation learning. In this chapter, we follow this avenue by restricting K1, K2 �

d. Nevertheless, the low dimensionality constraint alone is not enough to yield

interpretable representations. This can be seen from two perspectives. First, only

restricting K1, K2 � d is not sufficient to uncover the true categories of data and

disentangle the continuous representation in the desired way. Second, the model

can simply memorize the data as long as the capacity of the autoencoder is high

enough, which results in worse overfitting. Therefore, further regularization needs

to be applied, which will naturally incur an additional loss on reconstruction. The

goal is thereby finding proper constraints to attain a better trade-off between the

reconstruction quality and the desired representation characteristics.

At the same time, it is evident that informative representations yield better

reconstruction quality. This motivates us to revisit the InfoMax principle [90], which

proposes to maximize the mutual information between data and its representations.

However, the mutual information can be trivially maximized by simply memorizing

the data. Instead of directly applying InfoMax, we take it as our starting point, upon
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which we derive proper objective or constraints to preserve the informativeness of

representation when seeking for the desired representation characteristics maximally.

Next, we proceed by first showing that proper decomposition of the mutual information

between data and its representation sheds more light on this goal.

4.2.2 Simultaneous Category Separation and Category Identification

Maximizing the mutual information Iφ(x;y) between data x and its categorical

representation y provides a very intuitive way for learning. To see this, recall that the

mutual information between two random variables, e.g., x and y, can be decomposed

as [43]1,

Iφ(x;y) = Hφ(y)− Hφ(y|x) .(4.2)

Here Hφ(y) = Eqφ(y)[− log qφ(y)] denotes the entropy of y under the conditional

probability qφ(y|x), and Hφ(y|x) = Eq(x)qφ(y|x)[− log qφ(y|x)] denotes the conditional

entropy of y given x. Mutual information can thus be interpreted as the decrease

in uncertainty of one random variable given another random variable [43]. In the

context where y being the categorical representation, Hφ(y) achieves the maximum

if the marginal distribution of y is an uniform distribution over all categories, and

Hφ(y|x) attains its minimum if the conditional distribution qφ(y|x) is deterministic

for all x. The entropy Hφ(y) can thus be interpreted as the the category balance

quantity, and the conditional entropy Hφ(y|x) can be seen as the category separation

quantity. Therefore, maximizing Iφ(x;y) is equivalent to uniformly assign data over

all categories while simultaneously driving highly confident categorical identities for

each data sample. Without any given priors on the distribution of categories, this is

essentially the desired effect for unsupervised learning of categorical representation.
1Note (4.2) is generally true regardless of φ. We keep φ here for the consistency in notations.
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Now the question is, given the conditional probabilistic model qφ(y|x), how we

can effectively estimate and maximize the mutual information Iφ(x;y). Mutual

information is notoriously hard to compute, in particular in the high-dimensional and

continuous settings. Fortunately, by leveraging the fact that the cardinality of the

space of y (i.e., the number of categories) is typically low, Iφ(x;y) is computationally

tractable. Specifically, let xm denote a random sample of x. Given M i.i.d samples

{xm}Mm=1, let

Îφ(x;y) = H
(

1

M

∑M
m=1qφ(y|xm)

)
− 1

M

∑M
m=1H (qφ(y|xm))

= H (q̂φ(y))− Ĥ (qφ(y|x))(4.3)

denote our estimation of Iφ(x;y) under the conditional distribution qφ(y|xm). As is

indicated in Proposition 4.2.1, with a suitably large batch of samples, Iφ(x;y) can be

well estimated by it’s estimate Îφ(x;y) established in (4.3). This allows us a way to

optimize Iφ(x;y) that is amenable to stochastic gradient descent with minibatches of

data. In other words, optimizing I(x;y) can be reduced to optimize Îφ(x;y).

Proposition 4.2.1. Let y be a discrete random variable that belongs to some cate-

gorical class C. Suppose both the true and the estimated marginal distributions are

bounded below, that is, qφ(y), q̂φ(y) ∈ [1/(CK1), 1] with some constant C ≥ 1. Then

for any δ ∈ (0, 1), with probability at least 1− 2δ we obtain the following,∣∣∣Iφ(x;y)− Îφ(x;y)
∣∣∣ ≤ K1 (max{logCK1 − 1, 1}+ e)

√
log(2K2/δ)

2M
.(4.4)

Here M denotes the number of samples used to establish Îφ(x;y) as Eq (4.3).

4.2.3 Simultaneous Informativeness and Disentanglement for Continuous Represen-
tation

As for the continuous representation z, to gain some insights into the relation-

ship between the informativeness of each representation factor and the statistical
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independence between the factors, we use the following decomposition of the mutual

information Iφ(x; z). Assume the conditional distribution qφ(z|x) is factorial 2, let

DKL denote the KL divergence, then (we refer to Appendix 4.7.1 for the proof),

Iφ(x; z) =
∑K2

k=1Iφ(x; zk)−DKL

(
qφ(z)

∣∣∣∣ΠK2
k=1qφ(zk)

)
.(4.5)

The first term of the RHS of (4.5) quantifies how much information each representation

factor zk carries about the data x. The second term is known as the total correlation

of z [133], which quantifies the statistical dependence across the dimensions of z and

achieves the minimum if and only if they are independent of each other. As is shown

in (4.5), maximizing the mutual information Iφ(x; z) can translate to maximizing the

individual informativeness of each representation factor, while maximally reducing

the statistical dependence between factors.

With data x being continuous, the mutual information between data and its

continuous representation factor Iφ(x; zk) can be trivially maximized by simply

memorizing the data. This is due to the fact that Hφ(zk|x) diverges to −∞ when

the conditional probability qφ(zk|x) degenerates to Dirac delta distribution for each

data sample. In our context, this can be seen according to the following proposition.

Proposition 4.2.2. Suppose the conditional distribution qφ(z|x) is a factorial Gaus-

sian distribution with mean µ ∈ RK2 and covariance diag(σ) ∈ RK2×K2. Then3,

Iφ(x; zk) ≤
1

2
log
(
Eq(x)

[
σ2
k|x
]

+ Varq(x) [µk|x]
)
− 1

2
Eq(x)

[
logσ2

k|x
]
.(4.6)

The equality is attained if and only if zk is Gaussian distributed.

Note here both µk and σk are random variables. As we proved in Appendix

4.7.1, the variance of each representation factor can be established as Var(zk) =
2In this work, we model qφ(z|x) as factorial Gaussian distribution by explicitly parameterizing its mean and

diagonal covariance accordingly in our implementation.
3While similar results have likely been established in the information theory literature, we include this proposition

to motivate our objective design.
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Eq(x) [σ2
k|x] + Varq(x) [µk|x]. The inequality in (4.6) is incurred by the fact that,

with any fixed value of Var(zk), the entropy Hφ(zk) will achieve its maximum if and

only if zk is Gaussian distributed. A natural constraint raises as the variance of zk

should be finite. With any finite value of Var(zk), Proposition 4.2.2 indicates that

maximizing Iφ(x; zk) is equivalent to squeezing zk within the domain of a Gaussian

distribution while simultaneously decreasing the variance σk of the conditional

distribution qφ(zk|x). This matches the intuition that zk is more informative about

x if it has less uncertainty given x, yet captures more variance in data, i.e., σk is

small while µk dispersing within the domain the z.

However, a vanished variance, i.e., σk being zero for all data, results in the

ordinary autoencoder setting. This is not desired given the following two major

shortcomings: i) With limited training data and each data sample is mapped to a

deterministic representation, the representation space can exhibit a certain degree

of fragmentation, i.e., being extremely non-smooth, and thereby overfitting. ii) The

encoder can choose to remember whatever type of information, e.g., noise specific

to local patches or pixels, to improve the decoding quality maximally. To remedy

this issue while achieving the upper bound in Proposition 4.2.2, a simple solution is

to push qφ(zk) towards a Gaussian distribution and simultaneously prevent σk from

being too small. Therefore, we consider the following for maximizing Iφ(x; zk) under

proper constraint,

maximizeφ −
∑K2

k=1DKL (qφ(zk)||p(zk))− α
∑K2

k=1 max(0, σ∗k − σk)(4.7)

Here p(zk) are i.i.d scaled normal distribution with finite variance. For the numerical

results presented in this chapter, we set σ∗k = 0.01 and α = 10−4 for all k = 1, . . . K2.

Using (4.7) as the proxy for maximizing Iφ(x; zk) in (4.5) yields our objective for

maximizing Iφ(x; z).
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4.2.4 Overall Objective

According to Sections 4.2.2&4.2.3, our overall objective can be summarized as,

maximizeθ,φ Eqφ(x,y,z) [log pθ(x|y, z)] + InfoReg(y) + InfoReg(z) ,

where InfoReg(y) = Iφ(x;y)

InfoReg(z) = −
∑K2

k=1DKL (qφ(zk)||p(zk))− α
∑K2

k=1 max(0, σ∗k − σk)

−DKL

[
qφ(z)||ΠK2

k=1qφ(zk)
]

Recall that, both −
(∑K2

k=1DKL (qφ(zk)||p(zk))− α
∑K2

k=1 max(0, σ∗k − σk)
)

and

Iφ(x;y) correspond to our information regularization (promoting) objective for each

representation factor (zk and y), while DKL

[
qφ(z)||ΠK2

k=1qφ(zk)
]
characterizing the

statistical independence between the continuous representation factors. Therefore,

trade-off can be formalized between the informativeness of each latent factor and

the statistical independence between the continuous representation factors. This

motivates us to consider the following objective,

maximizeθ,φ Eqφ(x,y,z) [log pθ(x|y, z)]︸ ︷︷ ︸
LAutoEncoder

+ βIφ(x;y)︸ ︷︷ ︸
Informativeness of y

−β
(∑K2

k=1DKL (qφ(zk)||p(zk))− α
∑K2

k=1 max(0, σ∗k − σk)
)

︸ ︷︷ ︸
Informativeness of zk

− γDKL

[
qφ(z)||ΠK2

k=1qφ(zk)
]︸ ︷︷ ︸

Dependence between zk

.

Here β, γ > 0. As proposed in Eq (4.7), α is the regularization strength of preventing

σk from being too small (below the prefixed threshold σ∗k) so as to avoid degenerated

solution.

4.3 Related Work

VAE and its variants. Variational autoencoder has shown great promise in learning

disentangled representation. From the optimization perspective, VAE can be seen as
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the ordinary autoencoder regularized in a specific way4, indicated by Eq (4.8a). To

better illustrate the focuses of VAE and its variants, we follow [73] and rewrite (4.8a)

as (4.8b).

LVAE = Eqφ(x,y,z) [log pθ(x|y, z)]︸ ︷︷ ︸
LAE

−DKL [qφ(y|x)||p(y)]︸ ︷︷ ︸
R(y)

−DKL [qφ(z|x)||p(z)]︸ ︷︷ ︸
R(z)

(4.8a)

= LAE −DKL [qφ(y)||p(y)]− Iφ(x;y)−DKL [qφ(z)||p(z)]− Iφ(x; z) .(4.8b)

Here p(y) and p(z) denote the priors that are often chosen according to the assumption

on how data is generated. The decomposition in (4.8) highlights the major drawback

of the popular method β-VAE [71]. To be more specific, although using larger weights

on R(y) and R(z) are expected to yield desired representation characteristics by

heavily penalizing the divergence between qφ(y) and qφ(z) and their priors respectively,

it also severely sacrifices the mutual information between data and its representation,

and hence results in even less utilization of the representation and poor reconstruction.

Various methods have been proposed in recent work to address the limitations

of β-VAE. [52, 7, 32, 92] propose to constrain the mutual information between the

representation and the data by pushing its upper bounds, i.e., R(y) and R(z) in

Eq (4.8a), towards progressively increased target values. However, specifying and

tuning the target values can itself be very challenging, which makes this method

less practical. Alternatively, [144, 127] drop the mutual information terms in (4.8b).

By pushing only the marginal distributions qφ(y) and qφ(z) towards their priors,

they target the desired representation characteristics carried by the priors without

explicitly penalizing the informativeness of the representation. Another relevant line

of work [58, 80, 35, 55] proposes to learn disentangled continuous representation by

minimizing the so-called total correlation term, either augmented as an extra term
4We augment the ordinary VAE objective by incorporating a discrete representation.
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to (4.8) or obtained by further decomposing DKL (qφ(z)||p(z)) in (4.8), as a way to

encourage statistical independence between the representation components. Although

these approaches can reduce the drawback of β-VAE to various degrees, they all suffer

from uncovering the underlying categories of data. Better priors may compensate

this weakness, however, finding such priors is itself a very challenging task.

Information theory based representation learning. The recent trend in leveraging

information theory for representation learning was initially driven by supervised

approaches. In this setting, the Information Bottleneck (IB) framework [125, 115,

126, 116, 113, 6, 4, 3] provides an elegant principle for representation learning as

"keeping only what is relevant". To be more specific, the IB approach trades off the

minimality of the representation by minimizing the informativeness it carries about

the data, against the sufficiency of the representation for the task by maximizing the

mutual information between the representation and the task.

The elephant in the room is that the IB framework focuses on supervised learning

which often suffers from poor data availability and generalizability. One possible

explanation is that the information required by a specific task is very limited. Thus

the underlying structure of data is less explored. A long-standing idea in machine

learning is that such limitation can be addressed by unsupervised learning. In the

setting of unsupervised learning, maximizing the mutual information between data

and its representation, i.e., the so called InfoMax principle [90], is an important

avenue [90, 21, 28, 19, 83, 72] for representation learning. Typically, InfoMax is

invoked with some constraints to avoid trivial solutions, e.g., preventing the model

from simply memorizing the data.
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In this chapter, we look at a challenging setting of unsupervised representation

learning, where we target a hybrid discrete-continuous representation. Starting with

the InfoMax principle, we derive key quantities and constraints that allow us to further

sculpt the representation space, to achieve the desired representation characteristics

while maximally preserving the informativeness of each representation factor.

4.4 Experimental Results

We compare RIMAE against various VAE based approaches that are summarized

in Figure 4.1. We would like to demonstrate that RIMAE can (i) successfully learn a

hybrid of continuous and discrete representations, with y matching the underlying

categories ytrue well and z disentangling the explanatory factors hidden in data

into its independent representation factors; (ii) outperform the VAE based models

by achieving a better trade-off between the representation interpretability and the

decoding quality.

LVAE = LAE︸︷︷︸
1©
−DKL [qφ(y)||p(y)]︸ ︷︷ ︸

2©

− Iφ(x;y)︸ ︷︷ ︸
3©

−DKL [qφ(z)||p(z)]︸ ︷︷ ︸
4©

− Iφ(x; z)︸ ︷︷ ︸
5©

.

β-VAE: 1©− β ( 2©+ 3©)− β ( 4©+ 5©)

InfoVAE: 1©− β 3©− β 5©
Joint-VAE: 1©− β | 2©+ 3©− Cy | − β | 4©+ 5©− Cz|

Figure 4.1:
Relevant work. β-VAE modifies the original VAE objective by increasing the penalty
on the KL divergence. InfoVAE drops the mutual information terms. JointVAE seeks
to control the mutual information by pushing their upper bounds (i.e., 2© + 3© and
4©+ 5©) towards progressively increased values, Cy&Cz.

In this section, we perform quantitative evaluations on MNIST [87], Fashion

MNIST [136] and dSprites [93]. We choose the priors p(z) and p(y) as isotropic

Gaussian distribution and uniform distribution, respectively. Detailed experimental

settings are provided in Appendix 4.7.3. For notational convenience, we drop the

subscripts φ and θ hereafter.
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4.4.1 MNIST and Fashion MNIST

We start by evaluating different methods on MNIST and Fashion MNIST in Figure

4.3. Both MNIST and Fashion MNIST contain 60000 binary 28× 28 training images

with only the underlying discrete factor (label) are given. Therefore, we quantitatively

evaluate the interpretability of y only, which we report as the clustering accuracy. As

for the continuous representation factors, we qualitatively assess their interpretability

via latent space traversal.

Qualitative evaluation We start by qualitatively demonstrating that informative

representations can potentially yield better interpretability. In each plot of Figure

4.2, we fix the discrete representation (y) and traverse a continuous representation

factor (indicated by the subtitle) in each row. Similarly, each column is obtained by

fixing the value of the continuous representation z and traversing y. As we can see,

the informative continuous representation factors have uncovered intuitive factors of

the variations in data, e.g., angle, width, and thickness for MNIST, size, style, and

brightness for Fashion MNIST. In contrast, traversing the continuous factors that

achieve zero informativeness about the data shows no variation. We observe the same

phenomenon for the discrete representation y. Specifically, RIMAE can generate

different digit (item) types with the same style, while the non-informative y learned

by β-VAE completely fails to discover any useful categorical information of data.

Informative representations yield better reconstruction Figure 4.1 shows that, β-

VAE implicitly pushes the marginal distributions of both continuous and discrete

representations towards the associated priors respectively, i.e., minimizing the diver-

gences DKL (q(y)||p(y)) and DKL (q(z)||p(z)). Although using larger β values can
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I(x;z3) = 1.8 I(x;z5) = 1.6 I(x;z6) = 1.0 I(x;z8) = 0 I(x;z6) = 1.7

(a) RIMAE, I(x;y) = 2.3 (b) β-VAE, I(x;y) = 0

I(x;z1) = 2.2 I(x;z7) = 2.0 I(x;z2) = 1.4 I(x;z9) = 0.0 I(x;z8) = 2.2

(c) RIMAE, I(x;y) = 2.2 (d) β-VAE, I(x;y) = 0

Figure 4.2:
Maintaining informativeness of representation factors is necessary for capturing variations
in data. In every plot above, each row is obtained by conditioning on a fixed value of y
and traversing the associated zk within range [−2.5, 2.5]; and each column shows the
images generated by fixing the value of z and traversing y ∈ {1, 2, · · · , 10}. For each
plot, the initial value of z is randomly sampled from the isotropic Gaussian distribution.
As we can see, non-informative representation factors, i.e., the non-informative zk
(learned by RIMAE) and the non-informative y (learned by β-VAE), completely fail at
discovering any variations in data.

better minimize such divergences, as seen in Figure 4.1, it also increasingly diminishes

the mutual information between data and its representation. This in turn results in

less useful (informative) representations and poor reconstruction quality, as demon-

strated in Figure 4.3. In contrast, Figure 4.3 also shows that, by either explicitly or

implicitly preserving the mutual information between data and its representation,

all the other three methods achieve much better reconstruction as we increase the

penalty strength.

Figure 4.3 also implies that the reconstruction quality mainly depends on the infor-

mativeness of the continuous representation. This can be seen from two perspectives.

First, when the regularization strength is small, all four models achieve the same
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Figure 4.3:
Informative representations yield better reconstruction. We train each model by sweeping
β (γ for RIMAE) within the range [1, 10]. We set β = γ/2 for RIMAE. For each parameter
value, we run each method on each dataset over 20 random initializations.

level of reconstruction quality, where the associated I(x; z) are roughly the same

while I(x;y) are dramatically different. Second, the reconstruction error changes

similarly as that of I(x; z). One possible explanation is that the informativeness

of the continuous representation I(x; z) is much larger than that of the discrete

representation I(x;y). In the extreme case, I(x; z) can be infinitely large, while

I(x;y) can always be upper bounded by logK1 and thereby is negligible. Therefore,

in JointVAE, using larger target values of Cy for the discrete representation does not

necessarily lead to better reconstruction, while a larger value of Cz for the continuous

representation does yield high fidelity reconstruction. However, this comes along

with poor independence between the continuous representation factors. This can

be explained by Figure 4.1, where large Cz values not only promote the mutual

information I(x; z), but also drive q(z) away from its factorial prior p(z).
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On I(x;y) and interpretable categories of data We asses the performance of different

methods on uncovering the underlying categories of data, which is quantitatively

evaluated as the clustering accuracy. As seen in Figure 4.4, by simply pushing

the conditional distribution q(y|x) towards a uniform distribution, β-VAE obtains a

completely non-informative discrete representation y. As a result, β-VAE is not able to

recover the underlying categories. As a comparison, InfoVAE implicitly preserves the

mutual information I(x;y) by simply dropping it from the VAE objective. However,

InfoVAE only optimizes the category balance of data by regularizing the marginal

distribution q(y) to be uniform. As a result, it cannot ensure good enough category

separation, especially for those categories that are similar to each other. This is further

demonstrated by the comparatively larger values of the conditional entropy H(y|x)

retained by InfoVAE. In contrast, RIMAE optimizes both category balance and

category separation of data and hence performs better in uncovering the underlying

categories of data.

JointVAE implicitly maximizes the mutual information I(x;y) by pushing its

upper bound, i.e., DKL(q(y|x)||p(y)), towards a progressively increasing target value

Cy. However, Figure 4.4 implies that it can easily get stuck at some bad local optima,

where the mutual information is still away from its maximum. A heuristic is that once

JointVAE enters the local region of some local optima, progressively increasing Cy

only induces oscillation within that region. On the other hand, even when JointVAE

achieves comparatively larger mutual information I(x;y), it can easily overfit. As

is indicated by the comparatively smaller values of H(y|x) in Figure 4.4, JointVAE

tends to give very confident predictions on the category identities for each data

sample, even when the clustering accuracy is poor.
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Figure 4.4:
Quantitatively evaluation on the discrete representation y. We train each model by
sweeping β (γ for RIMAE) within the range [1, 10]. We set β = γ/2 for RIMAE. For
each β value, we run each method on each dataset over 20 random initializations.

On I(x; zk) and interpretable variations in data For each value of x, the associated

value of the mean µk is such that the conditional distribution q(zk|x) will concentrate

around that value, while the corresponding value of σk quantifies the variation of zk

allowed to deviate from the mean µk. Figure 4.5(a) shows that the representation

factor zk is more informative about the data x if it (i) can effectively capture the

variation in data by dispersing the mean values µk of the conditional distribution

q(zk|x) across data samples, and (ii) has less uncertainty given x, i.e., σk being small

for each data sample.

On the other hand, a vanishing variance, i.e., σk being zero for all values of x,

degenerates the conditional distribution q(zk|x) to the Dirac delta distribution. In

this setting, each value of x (each data sample) is associated with a deterministic

value of zk, hence the space of zk may not be continuous, and it’s prone to overfitting.
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(a) (b)

Figure 4.5:
On the informativeness of the continuous representation factors. (a) The continuous
representation factor zk is more informative about x if it has less uncertainty given x
(σk being small), yet captures more variance in data (µk dispersing across data samples).
(b) Latent traverse of continuous representation factors, learned by RIMAE with different
regularization strengths, that encode the angle of digits. For each plot, we fix the value
of y and traverse the associated dimension zk in each row. In each row, we initialize z
by randomly sample a value from the isotropic gaussian distribution N (0, Id), then we
traverse the dimension zk within range [−2.5, 2.5].

To better illustrate this, we traverse the representation factors that associate with

different levels of variance σk and informativeness I(x; zk) in Figure 4.5(b). As is

implied, maintaining proper magnitude of the σk preserves the local smoothness

of the space of zk, thereby small traversals generate images with small, consistent

transforms in the angle of the digits. However, with σk too small, there exist noticeable

representational discontinuities, for which small latent traversals generate images with

inconsistent variation. The generated images near the boundaries of these fragments

are often of poor quality and dramatically different from the training data.

On the disentanglement of discrete and continuous representations For the data

where different categories share common variations, we want to disentangle the

discrete representation y and the continuous representation z. In particular, we seek

to retain the underlying categorical information maximally, denoted as ytrue, of data

in y, while removing it from z.

We first provide another perspective to highlight the importance of promoting
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I(x;y). Figure 4.6 shows that, without any constraints, i.e., β(or γ) = 0, the

ordinary autoencoder tends to completely ignore the discrete representation, where

the associated mutual information I(x;y) vanishes. In this setting, I(x; z) can be

infinitely large when z is a deterministic function of continuous x, so the usefulness

of y is therefore negligible. This implies that, to obtain interpretable y, we need

to either promote I(x;y) or decrease I(x; z). However, Figure 4.6 shows that, with

a wide range of regularization strength, I(x; z) still dominates I(x;y), hence the

reconstruction quality mainly depends on I(x; z) (as is discussed in Section 4.4.1)

and the usefulness of the discrete representation is negligible. This sheds insights into

why we should promote the informativeness of y instead of further penalizing it.

Next we show that penalizing the mutual information I(x; z) between data and

its continuous representation can implicitly decrease the informativeness of z about

the underlying categories of data, i.e., I(ytrue; z). To be more specific, we can prove

the following (the proof is provided in Appendix 4.7.1),

I(ytrue; z) ≤ I(x; z)− H(x;ytrue)− Eq(y,z|x)q(x)[log pθ(x|y, z)](4.9)

Notice that, H(x|ytrue) is a constant, and Eq(y,z|x)q(x)[log p(x|y, z)] is the negative

reconstruction error. Therefore, the informativeness of z about the underlying

categories ytrue of data can be implicitly decreased by penalizing I(x; z) as well

as the reconstruction error. This is further demonstrated in Figure 4.6(b), where

I(x;ytrue) diminishes along with the decrease of I(x; z). However, the purity of the

continuous representation, defined as Purity(z) = 1− I(ytrue;z)
I(x;z)

, increase for all models

except β-VAE as we increase the regularization strength. One possible explanation is

that β-VAE is incapble of encoding the categorical information ytrue into its discrete

representation, hence the continuous representation needs to carry more information

about ytrue, which is significant for guaranteeing the reconstruction quality. This
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(a) Without any regularization (β = 0), the informativeness of the discrete representation y is
already very poor. The reconstruction quality is determined by the informativeness of the

continuous representation, since I(x; z) can be infinitely large, while I(x;y) can always be upper
bounded by logK1 and thereby is negligible. Therefore, to obtain interpretable y, we should

promote I(x;y) instead of further penalizing it, which is what β-VAE does.

(b) Penalizing I(x; z) implicitly decreases I(ytrue; z). Compared to β-VAE, the other three models
are able to retain the true categorical information (ytrue) in y to various degrees (see (a)), and
hence increase the purity of z in terms of driving z to be less informative about y while better

preserving the informativeness of z regarding the other variations in data.

Figure 4.6:
Disentanglement of y and z regarding the true categories of data, denoted as ytrue. We
track the mutual information between ytrue and (a) discrete representation y, and (b)
continuous representation z.

implies that the disentanglement of y and z can be obtained by penalizing I(x; z)

while simultaneously encouraging the informativeness of y.

4.4.2 2D Shapes

In this section, we quantitatively evaluate the disentanglement capability of RIMAE

on dSprites. This dataset contains 737,280 binary 64× 64 images with six ground

truth factors: shape(3), scale(6), orientation(40), x-position(32), y-position(32).

Parentheses contain the number of quantized values for each true latent factor. We

set y ∈ {1, 2, 3} and z ∈ R10, where we expect that y can recover the shapes of data,
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Figure 4.7:
Disentanglement vs. reconstruction on dSprites. The results are reported by training
each method with β ∈ [1, 10], and we set β = γ/2 with γ ∈ [1, 10] for RIMAE. For each
β value, every method is trained over 20 random initializations. Shade regions indicate
the 90% confidence intervals.

and z can separate the other underlying factors into its disjoint dimensions, i.e., each

zk associates with a different underlying factor.

To asses the reconstruction vs. reconstruction trade-off, we use the disentanglement

metric proposed by [35],

MIG =
1

J

J∑
j=1

1

H(vj)

(
Î(zk(j) ; vj)− max

k 6=k(j)
Î(zk; vj)

)
,

where k(j) = arg max
k

I(zk; vj) .(4.10)

Here J is the number of ground truth factors, vj denotes the jth true factor, and

Î(zk; vj) denotes the empirical mutual information between a latent representation

factor zk and the ground truth factor vj . As we can see, for each true factor vj , MIG

first measures the gap between the largest two informativeness among all of those

achieved by the representation factors about vj. The disentanglement score is then

defined as the weighted average of the gaps that are obtained over all true factors. A

high disentanglement score implies that each ground truth factor associated with one

single representation factor that is more informative than the others.

Disentanglement vs. reconstruction Figure 4.7, shows that β-VAE struggles in

achieving a good trade-off between disentanglement and reconstruction. This is
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caused by the fact that, although using large β values can heavily push the marginal

distribution q(z) towards the factorial prior, it also significantly sacrifices the informa-

tiveness of the representation. To be more specific, using large β values can degrade

the informativeness of each representation factor, which can scale down the difference

between the top two informativeness in Eq (4.10). Moreover, using large β values can

also decrease the number of informative representation factors (dimensions of z). As

a result, there may not exist enough informative representation factors to separate

the underlying latent factors of data, and different variations in data can even be

encoded into one single representation factor.

As a comparison, both InfoVAE and RIMAE achieve better disentanglement

vs. reconstruction quality trade-off. Specifically, Figure 4.7 shows that RIMAE

consistently obtains better disentanglement in the region of interest where both

the decoding quality and the informativeness of representation are reasonably good,

i.e., when β ranges from 3 to 5. We attribute this to the effect of explicitly encouraging

statistically independent representation factors by minimizing the total correlation

term in our objective. On the other side, with large β values, InfoVAE further

minimizes the divergence between the marginal distribution of the representation

towards the factorial prior, leading to good disentanglement that is comparable to

that achieved by RIMAE in the same region. However, in such a region, the associated

decoding quality and the informativeness of the representation are both poor, which

hinders the usefulness of the learned representations.

As has been observed in Figure 4.7, even with higher values of β, JointVAE can still

maintain certain amount of mutual information that is very close to the target value Cz.

This is expected for JointVAE, since larger β values further minimize the divergence

between the upper bound of the mutual information, i.e., DKL (q(z|x)||p(z)), and
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(a) Disentanglement score (MIG) = 0.44. High MIG indicates more disentangled representation.
Left: groundth truth factors vs. representation factors; Right: traversing zk conditioned on y = 1.

(b) Disentanglement score (MIG) = 0.09. Low MIG value indicates more entangled representation.
Left: groundth truth factors vs. representation factors; Right: traversing zk conditioned on y = 1.

Figure 4.8:
RIMAE on dSprites. Left column: Relation between the continuous representation fac-
tors and the ground truth factors. Each row corresponds to a ground truth factor and
each column to a latent variable. Each cell shows the relationship between the mean
of a representation factor versus the quantized ground truth factor. For the position
factor (first row), blue indicates high value and red indicates low value. The colored
lines indicate object shape, oval(red), square (green), and heart (blue). We only plot
those zk where Var[µk] ≥ 0.01. Right column: Traversing the learned representation
factors listed in the left column. For each plot we randomly sample a isotropic Gaussian
distributed vector z ∈ RK2 , then traverse each zk within range [−2.5, 2.5] for each row.

the target value Cz. However, the disentanglement achieved by JointVAE is generally

poor. The reason is that JointVAE indeed pushes the summation of the mutual

information I(x; z) and the divergence DKL(q(z)||p(z)) towards a target value, hence

there is no guarantees that the divergence DKL(q(z)||p(z)) would diminish to zero

even at the convergence. Figure 4.7 indicates that, over a wide range of β values, the

representation z learned by JointVAE is comparatively more correlated across its

dimensions.
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High disentanglement score implies better interpretability To assess whether higher

disentanglement score (MIG) indeed implies more disentangled representation, we

evaluate the learned continuous representations associated with different MIG scores.5

Figure 4.8(a) shows that the representation that corresponds to higher MIG score

successfully separates the underlying latent factors of data into different representation

factors. In contrast, Figure 4.8(b) indicates that the representation achieves a lower

MIG score exhibits high entanglement, where either one single representation factor

learns more than one underlying factors of data, or one underlying factor of data is

mapped to multiple representation factors.

Non-prominent categorical information We also explore the discrete representation

learned by RIMAE in Figure 4.9. Compared to the other variations in dSprites,

especially the variations in position and scale, the variation of shape is not prominent.

However, Figure 4.9 shows that RIMAE can still learn the shape information to

some degree. On the other hand, when (β, γ) is comparatively smaller or larger,

RIMAE tends to encode other variations in data rather than the shape information

into the categorical representation y. One possible explanation is that, in these two

regions, the reconstruction term in the RIMAE objective affects the distribution of

representation more.

To be more specific, when (β, γ) is small, the reconstruction term in the RIMAE

objective weights more in sculpting the representation space. Figures 4.9(a)&(d)

imply that RIMAE assigns the more prominent information, i.e., position, to the

discrete representation y. As seen in Figure 4.9(d), the categorical representation

y learned by RIMAE separates the location of data into two regions. We found

that the subtle changes within each of such regions are encoded in the continuous
5For Figures (a) and (c), we borrow the idea from [35].
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(a) I(y, true factors)

(b) I(y, shape) = 0.54
I(y, rotate) = 0.13

(c) I(y, shape) = 0.13

I(y, scale) = 0.47

(d) I(y, shape) = 0.01

I(y, position) = 0.68

Figure 4.9:
RIMAE on dSprites. (a): Tracking the mutual information between y and various ground
truth latent factors over β values. The plots are generated over 20 random runs. Shade
regions indicate the 90% confidence intervals. (b)-(d): For each plot, we traverse y in
each column and traverse one continuous representation factor zk in each row.

representations to guarantee good reconstruction quality. Similarly, large (β, γ) values

strongly regularize the latent representation, which can incur loss on the reconstruction

severely. To maximally preserve the reconstruction fidelity in this situation, RIMAE

again encodes the more prominent information in data, e.g., position and scale, into

its discrete representation.

4.4.3 Qualitative Results on CelebA

To evaluate RIMAE on more realistic data, we consider CelebA [91]. For this

dataset, neither the continuous nor the discrete latent factors are known. There-

fore we qualitatively evaluate RIMAE by performing latent traverse on the learned

representations. We set z ∈ R32 and y ∈ {1, 2, . . . , 10}.

In Figure 4.10, we traverse both discrete and continuous representation factors

learned by RIMAE. In each plot, each row is obtained by randomly sampling an
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(a) Gender (b) Azimuth (c) Background color (d) Hair color

(e) Traversing y ∈ {1, 2, . . . 10} in each row.

Figure 4.10:
RIMAE on CelebA. (a)–(d): Latent traverse of part of the continuous latent factors
learned by RIMAE. For each row, we randomly sample an isotropic Gaussian random
vector z, and then traverse one continuous factor (one dimension of z) within range
[−3, 3] while fixing the other dimensions. (e): Latent traverse of the discrete represen-
tation y. Each row is obtained by randomly sampling an isotropic Gaussian random
vector z, and then traversing y ∈ {1, 2, . . . , 10}.

isotropic Gaussian random vector, and traversing the corresponded representation

factor (zk or y). Figures 4.10(a)–(d) show that, RIMAE successfully uncovers and

separate intuitive factors hidden in data into different representation factors. As for

the discrete representation y, instead of facial identity, the discrete representation y

encodes the other variations in data, including azimuth, face brightness, or hairstyle.

Following the discussion for dSprites, there exist several other prominent variations

in CelebA, e.g., hair color, background color, or azimuth. Therefore, it’s less clear for

the model which aspect of the data should be used to separate data into different

categories.

4.5 Matching the intrinsic dimension of data

As for the continuous representation, our current work implicitly assumes the

intrinsic dimension of data is known, i.e., the number of true latent factors is
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known, and we seek to uncover and separate these factors to different representation

components while properly regularizing the informativeness of each component to

capture useful variations in data. However, the actual number of latent factors is

generally unknown, a natural solution could be starting with a large dimension for

the continuous representation, and encouraging the model to discover the intrinsic

dimension of true latent factors by using proper regularization. Instead of only

preventing the variance of the conditional distribution from being too small, we

consider the following regularization 6:

Reg(z) =

K2∑
k=1

∣∣∣∣log

(
σ2
k

hk

)∣∣∣∣ .(4.11)

Here hk is the variance of the prior p(zk) associated with the k-th dimension of z. As

we can see, for each dimension k, |log (σ2
k)| ranges from [0,∞). Explicitly, it equals 0

if σk = hk and diverges to ∞ when σk equals 0 or ∞.

Notice that, by squeezing the marginal distribution q(zk) within the domain of a

Gaussian distribution p(zk) whose variance is hk, we can upper bounded σk by hk.

Therefore, minimizing the Reg(z), defined in Eq (4.7), can effectively remove the

redundant dimensions of z by pushing the associated σk towards hk. Moreover, it

can also prevent σk from being vanished (i.e., σk = 0), thereby effectively avoiding

overfitting.

Instead of using the regularization in (4.7), we consider the following for regularizing

the continuous representation z,

maximizeφ −
∑K2

k=1DKL (qφ(zk)||p(zk))−
∑K2

k=1

∣∣∣log
(
σ2
k

hk

)∣∣∣(4.12)

It can be of great practical interest to explore this new regularization to see whether it

can better uncover the intrinsic dimension of the true latent continuous representation

z, and enable RIMAE to tackle more general problems effectively.
6This regularization was first proposed in [110] in the setting the wasserstein autoencoder.
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4.6 Conclusion

We have proposed RIMAE, a novel approach for uncovering the underlying cat-

egories of data, while simultaneously disentangling the other hidden explanatory

factors of data into disjoint parts of the learned continuous representation. Instead

of directly targeting proper constraints for the ordinary autoencoders to obtain the

desired representation characteristics, RIMAE steps back to a natural criterion that

any good representations should be informative about the data, and proposes to

maximizing the mutual information between data and its representations at the very

beginning. We show that the information maximization objective provides a very

natural way for unsupervised learning of categorical representation while providing a

connection between the informativeness of each continuous representation factor and

the statistical independence between these factors. The constraints are implied by

our objective to avoid degenerated solutions.

Unsupervised joint learning of disentangled continuous and discrete representations

is a challenging problem due to the lack of prior for semantic awareness and other

inherent difficulties that arise in learning discrete representations. This work takes a

step towards achieving this goal.

4.7 Supplementary Material

4.7.1 Proof of the Main Results

Proof of Equation (4.5) Recall that

Iφ(x; z) = Hφ(z)− Hφ(z|x) .(4.13)
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Let X ,Z,Zk denote the domains x, z and zk correspondingly. We can further

decompose Hφ(z) and Hφ(z|x) as,

Hφ(z|x) = −
∫
X
q(x)

∫
Z
qφ(z|x) log qφ(z|x)dzdx

ϑ1=

K2∑
k=1

−
∫
X
q(x)

∫
Z
qφ(z|x) log qφ(zk|x)dzdx

=

K2∑
k=1

Hφ(zk|x) ,(4.14)

where ϑ1 follows by the assumption that qφ(z|x) is factorial. As for Hφ(z), we have:

Hφ(z) = −
∫
Z
qφ(z) log qφ(z)dz

= −
∫
Z
qφ(z) log

qφ(z)

ΠK2
k=1qφ(zk)

dz −
K2∑
k=1

∫
Z
qφ(z) log qφ(zk)dz

= −DKL
(
qφ(z)||ΠK2

k=1qφ(zk)
)

+

K2∑
k=1

Hφ(zk) .(4.15)

Substituting Equations (4.14) & (4.15) into Equation (4.13) yields the result:

Iφ(x; z) =

K2∑
k=1

Hφ(zk)−DKL
(
qφ(z)||ΠK2

k=1qφ(zk)
)
−

K2∑
k=1

Hφ(zk|x)

=

K2∑
k=1

Iφ(x; zk)−DKL
(
qφ(z)||ΠK2

k=1qφ(zk)
)
.(4.16)

Proof of Proposition 4.2.2

Proof. We start by computing the expectation of zk. Recall that µk and σk are the

mean and variance of the conditional distribution qφ(zk|x) correspondingly. Note

here µk and σk are both random variables, with each pair values of (µk,σk) being

associated with a specific value x, which we denote as (µk, σk). Let X and Zk denote
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the domains of x and zk respectively, then

Eqφ(zk) [zk] =

∫
Zk
zk

∫
X
qφ(zk|x)q(x)dxdzk

=

∫
X
q(x)

∫
Zk
zkqφ(zk|x)dzkdx

=

∫
X
q(x)µk(x)dx

= Ex [µk|x] .(4.17)

Then the variance of zk followed as:

Varφ [zk] =

∫
Zk
z2
k

∫
X
qφ(zk|x)q(x)dxdzk − Ex [µk|x]2

=

∫
X
q(x)

∫
Zk
z2
kqφ(zk|x)dzkdx− Ex [µk|x]2

ϑ1=

∫
X
q(x)

[
σ2
k(x) + µk(x)2

]
dx− Ex [µk|x]2

= Ex
[
σ2
k|x
]

+ Varx [µk|x] ,(4.18)

where ϑ1 holds since E[z2
k|x] = µk(x)2 + σ2

k(x). Next, note that

Iφ(x; zk) = Hφ(zk)− Hφ(zk|x) ,(4.19)

for which we have the following,

Hφ(zk|x) = −
∫
X
q(x)

∫
Zk
qφ(zk|x) log qφ(zk|x)dzkdx

=
1

2

∫
X
q(x) log

(
2πeσ2

k(x)
)
dx

=
1

2

(
log(2πe) + Ex

[
logσ2

k|x
])
.(4.20)

For the entropy of zk, we leverage the fact that Hφ(zk) is upper bounded by the

entropy of a Gaussian distributed random variable with the same variance, that is

(4.21) Hφ(zk) ≤
1

2

(
log 2πe+ log

(
Ex
[
σ2
k|x
]

+ Varx [µk|x]
))

Substituting equations (4.20) & (4.21) into equation (4.19) completes the proof.
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Proof of Proposition 4.2.1

Proof. Let xn denote a sample of x, and q̂φ(y) = 1
N

∑N
n=1 qφ(y|xn) denote the

Monte Carlo estimate of the true marginal distribution qφ(y) =
∫
X q(x)qφ(y|x)dx =

Ex [qφ(y|x)]. Note that qφ(y|x) ∈ [0, 1] for all x ∈ X , then applying the Hoeffding’s

inequality for bounded random variables [Theorem 2.2.6, [130]] yields,

P (|q̂φ(y)− qφ(y)| ≥ t) = P

(∣∣∣∣∣ 1

N

N∑
n=1

qφ(y|xn)− Ex [qφ(y|x)]

∣∣∣∣∣ ≥ t

)

≤ 2 exp
(
−2Nt2

)
(4.22)

Let δ′ = 2 exp (−2Nt2), it then follows,

P

(
|q̂φ(y)− qφ(y)| <

√
log(2/δ′)

2N

)
≥ 1− δ′(4.23)

Given Eq (4.23), we first establish the concentration results of the entropy Hq̂φ(y) with

respect to the estimate q̂φ(y). Assume for each k ∈ {1, . . . , K1}, we have qφ(y = k)

and q̂φ(y = k) bounded below by 1/(CK1) for some constant C ≥ 1. Consider the

function t log t whose derivative is 1 + log t ∈ [1− logCK1, 1], therefore

|q̂φ(y) log q̂φ(y)− qφ(y) log qφ(y)| =

∣∣∣∣∣
∫ q̂φ(y)

qφ(y)

(1 + log t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ q̂φ(y)

qφ(y)

|1 + log t|dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ q̂φ(y)

qφ(y)

max{logCK1 − 1, 1}dt

∣∣∣∣∣
≤ max{logCK1 − 1, 1}|q̂φ(y)− qφ(y)|(4.24)

Summing over k = 1, . . . , K1 gives

∣∣∣Ĥφ(y)−Hφ(y)
∣∣∣ ≤ K1 max{logCK1 − 1, 1}|q̂φ(y)− qφ(y)| .(4.25)
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Let δ = K1δ
′, then Eq (4.23) together with Eq (4.25) yield the following,

P

(∣∣∣Ĥφ(y)−Hφ(y)
∣∣∣ < K1 max{logCK1 − 1, 1}

√
log(2K1/δ)

2N

)
≥ 1− δ(4.26)

Next we are going to bound the divergence between Ĥφ(y|x) and Hφ(y|x) that

are defined as the following,

Ĥφ(y|x) = − 1

N

N∑
n=1

K1∑
k=1

qφ(y = k|xn) log qφ(y = k|xn),

Hφ(y|x) = −
∫
X
q(x)

K1∑
k=1

qφ(y = k|x) log qφ(y = k|x)dx .

Note that h log h ∈ [−1/e, 0] for all h ∈ [0, 1], then again applying [Theorem 2.2.6,

[130]] yields,

P

(∣∣∣∣∣ 1

N

N∑
n=1

qφ(y|xn) log qφ(y|xn)− Ex [qφ(y|x) log qφ(y|x)]

∣∣∣∣∣ < t

)
≤ 2 exp

(
−2t2e2N

)(4.27)

Following the similar arguments as before, let δ′ = 2 exp (−2t2e2N), we have

P

(∣∣∣∣∣ 1

N

N∑
n=1

qφ(y|xn) log qφ(y|xn)− Ex [qφ(y|x) log qφ(y|x)]

∣∣∣∣∣ <
√
e2 log(2/δ′)

2N

)
≤ δ′

(4.28)

Now let δ = K1δ
′, applying union bound yields,

|Ĥφ(y|x)−Hφ(y|x)| ≤
K1∑
k=1

∣∣∣∣∣ 1

N

N∑
n=1

qφ(y|xn) log qφ(y|xn)− Ex [qφ(y|x) log qφ(y|x)]

∣∣∣∣∣
≤ K1

√
e2 log(2K1/δ)

2N
(4.29)

hold with probability 1− δ.

Concluding from equations (4.26) & (4.29), with probability exceeding 1− 2δ, we

have ∣∣∣Iφ(x;y)− Îφ(x;y)
∣∣∣ ≤ ∣∣∣Hφ(y)− Ĥφ(y)

∣∣∣+
∣∣∣Hφ(y|x)− Ĥφ(y|x)

∣∣∣
= K1 (max{logCK1 − 1, 1}+ e)

√
log(2K1/δ)

N
.(4.30)
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Proof of Equation (4.9) To see this, note that I(ytrue; z) = I(x; z) − I(x; z|y) +

I(z;ytrue|x). As for I(z;ytrue|x), we have,

I(z;ytrue|x) = H(z|x)− H(z|x,ytrue) = H(z|x)− H(z|x) = 0(4.31)

It then follows,

I(ytrue; z) = I(x; z)− I(x; z|ytrue)

= I(x; z)− H(x|ytrue) + H(x|z,ytrue)

ϑ1

≤ I(x; z)− H(x|ytrue)− Eq(y,z|x)q(x)[log p(x|y, z)](4.32)

where ϑ1 holds since −Eq(y,z|x)q(x)[log p(x|y, z)] = H(x|ytrue, z) +

DKL [q(x|y, z)||p(x|y, z)]. Notice that, H(x|ytrue) is a constant, and

Eq(y,z|x)q(x)[log p(x|y, z)] is the negative reconstruction error. Therefore, the

informativeness of z about the underlying categories ytrue of data can be implicitly

decreased by penalizing I(x; z) as well as the reconstruction error.

4.7.2 Approximation of the Marginal Distribution

Computing the marginal distributions of the continuous representation z and

its kth component zk requires the entire dataset, e.g., qφ(z) =
∫
X qφ(z, x)dx ≈

1
N

∑N
n=1 qφ(z|xn) with xn being a sample of x. To scale up our method to large

datasets, we propose to estimate based on the minibatches data, e.g., qφ(z) ≈

1
B

∑B
b=1 qφ(z|xb).

Now consider the entropy Hφ(z), which we approximate in the following way,

Hφ(z) = Ez[log qφ(z)] ≈ 1

B

B∑
b=1

log qφ(zb)

=
1

B

B∑
b=1

log
1

B

B∑
b′=1

qφ(zb|xb′) .(4.33)
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Here both b and b′ are enumerated within the same minibath. Other quantities

involved in our objective are estimated in a similar fashion.

4.7.3 Experimental Settings

Training procedure: We use Adam to train all models with learning rate 1e− 3.

• MNIST&Fashion MNIST:

– epochs: 100

– batch size: 1024

• dSprites:

– epochs: 50

– batch size: 2048

• CelebA:

– epochs: 50

– batch size: 512

Network architecture: The networks used by us for each dataset are summarized

below, which are all implemented in PyTorch.
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Table 4.1: Encoder and Decoder architecture for MNIST and Fashion MNIST.
Encoder

Input vectorized 28× 28 grayscale image
#Input #Output Activation function

Layer 1 784 500 ReLU
Layer 2 500 500 ReLU

Layer 3 500 20 [10(µ) + 10(log σ)] Linear
500 10 [p(y)] Softmax

Decoder
Input concatenated representation

(
y ∈ R10, z ∈ R10

)
#Input #Output Activation function

Layer 1 20 500 ReLU
Layer 2 500 500 ReLU
Layer 3 500 784 Sigmoid

Table 4.2:
Encoder and Decoder architecture for dSprites. For this dataset, we adopt the network
architecture used in [35].

Encoder
Input vectorized 64× 64 grayscale image

#Input #Output Activation function
Layer 1 4096 1200 ReLU
Layer 2 1200 1200 ReLU

Layer 3 1200 20 [10(µ) + 10(log σ)] Linear
1200 3 [p(y)] Softmax

Decoder
Input concatenated representation

(
y ∈ R3, z ∈ R10

)
#Input #Output Activation function

Layer 1 13 1200 Tanh
Layer 2 1200 1200 Tanh
Layer 3 1200 1200 Tanh
Layer 4 1200 4096 Sigmoid
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Table 4.3: Encoder and Decoder architecture for CelebA.
Encoder

Input 64× 64 RGB image

Layers Output #Channels Activation function
w × h in&out

Conv 1 32× 32 3, 32 ReLU
Conv 2 16× 16 32, 32 ReLU
Conv 3 8× 8 32, 32 ReLU
Conv 4 4× 4 32, 32 ReLU
FC 5 1 512, 256 ReLU

FC 6 256 64 [32(µ) + 32(log σ)] Linear
256 10 [p(y)] Softmax

Decoder
Input concatenated representation

(
y ∈ R10, z ∈ R32

)
Layers Output #Channels Activation function

w × h in&out
FC 1 1 42, 256 ReLU
Conv 2 4× 4 256, 64 ReLU
Conv 3 8× 8 64, 64 ReLU
Conv 4 16× 16 64, 32 ReLU
Conv 5 32× 32 32, 32 ReLU
Conv 5 64× 64 32, 3 Sigmoid



CHAPTER V

Conclusion and Future Work

In this thesis, we target three different machine learning problems to tackle the

challenges caused by the increasing complexity of both modern data and models.

Although each presented approach is motivated from a different perspective, the un-

derlying goal can be unified as extracting compact knowledge from data by leveraging

the structure hidden in data. We now conclude with a brief summary of each chapter

and discussions on the associated future directions.

5.1 Convergence of GROUSE for Both Fully Sampled and Undersampled
Data

In Chapter II, we analytically study the convergence behavior of the GROUSE

algorithm, and provide the first global convergence result for an incremental gradient

descent method on the Grassmannian for fully sampled noise-free data. For the case

of undersampled data, we establish monotonic expected improvement on the defined

convergence metric for each iteration with high probability. To further narrow the

gap between our global convergence and the actual convergence behavior of GROUSE,

we propose a conjecture where we divide the convergence into two phases: the initial

phase and the local phase. In the initial phase, we propose to use a different analysis

strategy to bound the convergence rate more tighter. Through we do empirically
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validate our conjecture on the global convergence of fully sampled data, establishing

global convergence through more rigorous analysis is a very important direction for

future work.

Another avenue of future work is to establish the convergence results for undersam-

pled data. As is indicated by Lemma 2.5.2, the main hurdle to establish the global

convergence result is the perturbation induced by the undersampling framework.

A natural question hence arises as whether we can cross the hurdles in analysis

by using a new sampling strategy? Our expectations are, with the new sampling

strategy, we can resolve the problems caused by the typical undersampling framework,

i.e., subsampling the input vectors uniformly at random [missing data case, Section

2.5.2] or taking isotropic random Gaussian measurements [compressively sampled

data, Section 2.5.1]. Inspired by the recent works on compressed sensing of sparse

vectors [67, 10] and low-rank matrix completion [38, 54], adaptive sampling can be a

promising direction of future work.

Last but not the least, extending our current analysis to noisy data would be of

great practical and theoretical interest. With noiseless data, we propose a greedy step

size scheme so as to maximally include the information in the projection residual for

each update step of GROUSE. However, such a strategy can lead to worse convergence

in the existence of noise, since the noise part will gradually dominate the projection

residual as our estimate gets closer to the true subspace. Therefore, with noisy data,

in order to incorporate less and less of the residual information into our estimate over

time, a different step size scheme is required. A natural resolution can be to impose a

diminishing weight in front of our current step size scheme for the noiseless data. By

doing so, we can maximally incorporate the information in the projection residual,

while gradually leaving out the information of noise.
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In [143], we propose a step size regimen for fully sampled data, which is simply a

weighted version of the step size for noise-free data, where the weights depend on

the data and noise statistics. It would be interesting to develop similar strategy for

undersampled data, in particularly for the cases where the noise (outliers) is sparse

but can be of arbitrarily large magnitude.

5.2 Simultaneous Sparsity and Parameter Tying for Neural Networks
Compression

In Chapter III, we propose using the recent GrOWL regularizer for simultaneous

parameter sparsity and tying in DNN (Deep Neural Network) learning. Unlike

the conventional sparsity-inducing regularizers, GrOWL simultaneously eliminates

unimportant variables by setting their weights to zero, while also explicitly identifying

highly correlated groups of variables by tying the corresponding weights to be very

close or exactly equal to each other. Instead of defining a prior to decide which

sets of parameters should be enforced to share a common value, GrOWL learns the

parameter sharing structure from the data itself. This ability of GrOWL not only

allows us more space for neural network compression but also helps us cope with

strong correlations that might be induced by the noisy input or the co-adaptation

tendency of DNNs.

As we numerically demonstrate in Chapter III, the correlation patterns identified

by GrOWL are close to those of the input features to each layer. Therefore, many

interesting directions can be explored by leveraging the correlation identification

ability of GrOWL. Among these, the most exciting one would be, using GrOWL to

identify and better understand the intrinsic correlations among the selected sparse

features, contributing to revealing the structure of features and their relations with

the corresponding task. By doing so, we can probably take a step towards improving
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the interpretability of deep learning models. Moreover, instead of the hard-wired

parameter sharing framework used by the convolutional neural network, GrOWL

allows us to learn the parameter sharing structure from the data. Exploring whether

GrOWL could give us a interpretable yet useful parameter sharing framework would

be of great practical interest.

Another exciting direction is exploring the possibility of leveraging the denoising

effect of GrOWL to improve the vulnerability of DNNs in the existence of adversarial

examples. Adversarial examples can be obtained by perturbing the input data

with small norm-bounded noise, which can induce strong correlations among the

data. By leveraging GrOWL’s ability in identifying such correlations and tying the

associated parameters together, we can effectively denoise the input data to improve

the vulnerability of DNNs, instead of being negatively affected by it.

Finally, as is discussed in the numerical section of Chapter III, the gap in the

accuracy versus memory trade-off obtained by applying GrOWL and group-Lasso

decreases as we move to large DNNs. Although we suspect this can be caused by

running a much larger network on a simple dataset, it motivates us to explore different

ways to apply GrOWL to compress neural networks. One possible approach for future

work is to apply GrOWL within each neuron by predefining each 2D convolutional

filter as a group (instead all 2D convolutional filters corresponding to the same input

features). By doing so, we encourage parameter sharing among much smaller units,

which in turn would further improve the diversity vs. parameter sharing trade-off.

5.3 Regularized Information Maximization AutoEncoding

In Chapter IV, we present an information-theoretical approach for disentangled

representation learning in the setting of unsupervised learning, with the emphasis on
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jointly learning a hybrid continuous and discrete representation. We show that the

proposed RIMAE method is capable of discovering the underlying categories of data,

while simultaneously identifying and separating the other explanatory factors hidden

in data into disjoint part of the learned continuous representation. Building upon

the great promise of RIMAE, we briefly discuss a few interesting future directions to

improve the current method further.

First of all, maximizing the mutual information I(x;y) between data x and its

discrete representation y alone is not good enough to guarantee successful recovery of

the underlying categories of data. Notice that, the mutual information I(x;y) can be

trivially maximized by uniformly distributing the whole data over all categories, while

randomly assigning each data sample to one category without guaranteeing similar

samples being assigned to the same category. Although the reconstruction criterion

is supposed to prevent such useless discrete representation, given the existence of the

continuous representation, it’s easy for the model to ignore the discrete representation,

since its capacity in determining the reconstruction fidelity is typically much smaller

than that of the continuous representation. To remedy this issue, further constraints

are required for learning useful discrete representation. Among these, a promising one

is to enforce local smoothness of the model, which can potentially remove the flaw of

our current model by enforcing each data sample and its perturbation, obtained by

adding small norm-bounded noise to each data sample, being assigned to the same

category.

Moreover, RIMAE assumes data is uniformly distributed over all categories. How-

ever, real-world data may contain imbalanced categories. In this setting, directly

maximizing the mutual information I(x;y) between data and its categorical rep-

resentation is not proper, since optimizing I(x;y) tends to push the distribution
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of y towards uniform distribution. One possible resolution would be replacing the

categorical balance term H(y) in I(x;y) with a cross entropy loss H(q(y); p(y)) where

p(y) denote the prior of the distribution of data over its categories.

Given categorical data that exhibit similar variations for each group, e.g., MNIST

shares the same writing style for each digit. It would be of great practical interest to

explicitly encourage the statistical independence between the discrete representation

and the continuous one. By doing so, we can obtain disentangled representation that is

more faithful to the underlying latent factors of data, i.e., successfully uncovering the

categories of data, while simultaneously disentangling the continuous representation

factors with each factor capturing a different variation in data, shared over categories.
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