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ABSTRACT

Type 2 diabetes (T2D) is a complex disease that affects an estimated 415 million

people worldwide. Genome wide association studies (GWAS) have identified >240

genetic signals that encode predisposition to this disease and related traits. However,

the underlying biological mechanisms driving this predisposition are largely unknown,

which is a serious impediment in designing precision therapeutic strategies. The focus

of my research is to untangle the genetic complexity of T2D to better understand the

biological mechanisms of how disease predisposition is encoded in our DNA. Specif-

ically, I aim to understand how T2D genetic risk variants modulate gene expression

in orchestrating disease mechanisms.

I utilize high throughput molecular profiling data in human pancreatic islets and

other diverse tissues along with human and rodent cell line model systems and employ

computational and experimental approaches to map functional signatures of genetic

variants associated with T2D. First, I compared gene regulatory annotations defined

using diverse epigenomic data across 4 cell types to compare their cell specificities and

genetics of gene expression regulation. I observed that genetic variants in genomic

regions with more cell type-specific enhancer chromatin have lower effects on gene

expression than variants in genomic regions with more ubiquitous promoter chro-

matin. However, genetic variants in cell type-specific enhancer regions have higher

effects in chromatin accessibility than those in less cell type-specific promoter regions.

Second, I integrated GWAS data with various -omics data in islets to nominate bi-

xvii



ological mechanisms. I observed that T2D risk variants confluently disrupt DNA

binding motifs of the transcription factor (TF) regulatory factor X (RFX) in accessi-

ble regions. Third, I describe large scale expression quantitative trait locus (eQTL)

mapping efforts along with integration of epigenomic data to describe molecular reg-

ulatory mechanisms. Utilizing such large eQTL and integrating information such

as chromatin accessibility and TF binding predictions helped elucidate in vivo TF

activity preferences. Fourth, I describe profiling and analysis of the enhancer tran-

scriptome in islets, which I then integrate with other available epigenomic data to

better understand the characteristics of gene regulation.
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CHAPTER I

Introduction

T2D is a complex, life-altering and chronic disease, which affects an estimated

30 million Americans and 415 million people worldwide. Large-scale genetic studies

have identified numerous independent genetic signals that encode predisposition to

this disease and related traits. However, the underlying biological mechanisms driving

this predisposition are largely unknown, which is a serious impediment in designing

precision therapeutic strategies. The focus of my research is to untangle the genetic

complexity of T2D to better understand the biological mechanisms of how disease

predisposition is encoded in our DNA.

1.1 T2D pathophysiology

T2D is a heterogeneous syndrome characterized by hyperglycemia (increased plasma

glucose levels) and abnormalities in carbohydrate and fat metabolism. The beta cells

of the pancreatic islets of langerhans secrete the hormone insulin, which is essential

to maintain normal levels of glucose in the body. Insulin secretion from the pancreas

normally reduces glucose output by the liver, enhances glucose uptake by skeletal

muscle, and suppresses fatty acid release from fat tissue. A combination of factors

including resistance to insulin, inadequate insulin secretion, and excessive or inap-

propriate glucagon secretion contribute towards development of T2D. It has been
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Figure 1.1: Pathophysiology of type 2 diabetes. Insulin resistance in peripheral tissues
leads to increased circulating fatty acids and the hyperglycemia. In turn, the raised
concentrations of glucose and fatty acids in the bloodstream will feed back to worsen
both insulin secretion and insulin resistance. Reprinted from [176]

established that insulin resistance in peripheral tissues such as skeletal muscle, adi-

pose (fat) and liver, which can arise partly due to obesity, results in an increased

insulin demand to achieve glucose homeostasis in the body [176] (Fig. 1.1, adapted

from [176]). The pancreas can usually compensate for this increased demand with

increased insulin levels through an expansion of beta cell mass and/or insulin secre-

tion by the beta cells. However, over time due to glucose toxicity and other factors,

islet function decreases and failure to compensate for insulin resistance results in the

development of T2D [81]. Conditions such as impaired fasting glucose and impaired

glucose tolerance are known to predispose to the development of overt diabetes [176].

2



1.2 Genetic studies to understand T2D predisposition

T2D is the result of a complex interplay between genetic, epigeneomic and en-

vironmental factors. While obesity, diet and lifestyle are strong predictors of T2D,

T2D also has a strong genetic component. Individuals with one parent who has T2D

have a 40% estimated lifetime risk of developing the disease whereas the risk increases

to 70% if both parents are affected. Therefore, identifying these genetic bases can

provide crucial insights into T2D pathogenesis.

Numerous studies to date have aimed to identify genetic signatures of T2D. Early

family-based linkage studies discovered that variants in the TCF7L2 gene were as-

sociated with T2D [39]. Subsequent fine-mapping efforts indicated that an intronic

variant rs7903146 contributed to the original linkage signal [39, 56]. Through more

recent high throughput association studies has been confirmed in European, African

and Asian populations and it is one of strongest and most consistently replicated

genetic association with T2D with an odds ratio of 1.4. Interestingly, a recent large

scale (genome wide) study identified seven independent signals at the TCF7L2 locus

[110], highlighting the complexity of the locus. Candidate gene studies elucidated

that variants in genes including KCNJ11, PPAR-g, ABCC8 among others are associ-

ated with T2D. While family-based linkage and candidate gene studies supplemented

our understanding of the T2D genetic architecture, these approaches were found to

be ultimately limited in the context of T2D. This is because these studies generally

had smaller sample sizes and tested a select group of variants based on imperfect

understanding of candidate biological pathways. Smaller scale and more focussed ap-

proaches have indeed been successful for many mendelian diseases that involve higher

effect size and highly penetrant variants, however, emerging evidence posited that

T2D had a more complex genetic architecture driven by more commonly occurring

variants that would be predicted to have more modest effect sizes. This concept is

also known as the common disease, common variant hypothesis (Fig. 1.2), adapted

3



Figure 1.2: Relationship between strengths of effects (effect sizes) and risk variant
frequencies. Reprinted from [115]

from [115]. Therefore, it was imperative to cast a wider net to identify the multiple

genetic loci associated with the disease. Developments in the genotyping technology

and enhanced cataloging of haplotypes (regions of the genomes that are inherited to-

gether) of common variants through efforts such as the HapMap [184], 1000 genomes

[179] projects enabled testing millions of Single nucleotide polymorphisms (SNPs)

for association with T2D. These genome wide association study (GWAS) approaches

have now identified numerous loci (>240) associated with T2D and related traits

[49, 111, 110]. Multiple GWAS studies have also be combined through meta analyses

that can result in increased statistical power and add to the list of new loci. Trans-

ethnic GWAS studies which can leverage differences in the genome structure across

populations while considering differences in allele frequencies, are also highly effective

in identifying loci [150, 181, 101].

The heritability estimates for T2D range from 20% to 70% across various studies

[149, 5, 150, 110]. It has been suggested that since chip based GWA studies largely

profiled common SNPs, rare variants that could not be profiled initially could explain

the missing heritability [35]. However, recent studies with substantially increased
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sample sizes and more complete coverage of low frequency variation have not bolstered

this hypothesis for T2D [111].

While multitude of studies have demonstrated the potential of GWAS in identi-

fying loci, it is important to note that GWA studies essentially report associations

between genomic regions and the disease trait. GWAS, however, do not inform about

the underlying causal molecular mechanisms; understanding these necessitate several

exhaustive follow up studies. Mechanistic insights from a refined view of T2D genetics

are essential to realize the translational value of GWA studies; such efforts may then

allow for personalised risk scores [82], stratification of patients by different underlying

pathophysiology [191] or towards identifying therapeutic targets.

Understanding the causal molecular mechanisms underlying T2D GWAS associa-

tions is quite challenging due to multiple factors. First, T2D and related trait GWA

studies have largely implicated common variants that individually have modest effect

sizes (odds ratios 1.1-1.5). Moreover, most of the variants occur in non-protein cod-

ing regions, suggesting that these do not directly affect protein structure or function.

GWAS loci are commonly referred to by the names of genes located close to them

for simplicity, however, only a few are close to strong biological candidates. Only

occasionally one might find causal SNP candidates with particularly strong biological

credentials such as those causing a non-synonymous change. Second, the lead GWAS

SNP might not always be the causal SNP. This is because our genome is inherited in

blocks such that multiple variants are highly correlated with each other and are said

to in linkage disequilibrium (LD). Third, the target genes and how the GWAS SNP

risk alleles affect their expression level (increasing/decreasing) are often unknown,

as these may be distant. For example, an obesity-associated variant located in the

intronic region of the FTO gene, does not affect the expression of this gene; instead,

it influences the expression of the genes IRX3 and IRX5, which are located over a

megabase away from the variant [26]. These factors culminate in scenarios where
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GWAS signals tag multiple, mostly non-coding variants where the causal SNP(s) and

their target genes are difficult to identify using genetic information alone.

1.3 Flow of biological information from genetic variation to

phenotype

To understand how genetic variation influences phenotypic traits, it is critical to

consider several layers of molecular domains over which genetic information can prop-

agate. The DNA encodes information which can affect the chromatin landscape and

influence gene expression, effects of which can then relay to influence protein and

metabolomic networks in eventually affect phenotypic changes (Fig. 1.3, adapted

from [24]). As initial molecular control layers, understanding the epigenomic and

transcriptomic effects of genetic variation can be highly informative in piecing to-

gether molecular mechanisms [92]. For example, genetic variants occurring in reg-

ulatory elements may confer risk by altering transcription factor binding sites that

propagate signals from upstream transcription factors to influence downstream target

gene expression. One of the first steps towards understanding the molecular impact

of genetic variation on complex traits is therefore using epigenomic information to

identify the regulatory elements through which these act.

1.4 Investigating the epigenomic domain to identify gene

regulatory elements

DNA wraps around histone proteins and forms nucleosomes; covalent modifica-

tions on these histones and other patterns in this landscape helps establishing and

maintaining relevant cell-specific and cell-identity gene expression programs. Dif-

ferent modifications on the histone tails have been observed to be associated with

distinct functions. For example, promoters are marked by tri-methylation of histone
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Figure 1.3: Molecular domains propagating genetic information towards phenotype.
Adapted from [24]
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H3 lysine 4 (H3K4me3) [11, 126, 1], enhancers are marked by mono-methylation of

H3K4 (H3K4me1) [66] the acetylation of H3K27 (H3K27ac) mark is associated with

both active promoter and enhancer activity [126]. Also, trimethylation of H3K36

(H3K36me3) is associated with transcribed regions; and trimethylation of H3K27

(H3K27me3) is associated with Polycomb repressed regions [66, 210]. These molec-

ular modifications among others have been thoroughly profiled across a multitude

of cell and tissue types using chromatin immunoprecipitation followed by sequenc-

ing (ChIP-seq) [182, 186]. Patterns of these diverse and informative signals have

been distilled using hidden hidden markov model (HMM) method implemented in

the ChromHMM tool [43, 41] to segment the genome into chromatin states. Parker,

Stitzel and colleagues constructed chromatin state maps for pancreatic islets, and

identified islet-specific stretch enhancers (SEs), which are long (3 kb) segments of

the genome that are continuously decorated with enhancer-associated histone marks.

Importantly, this study revealed that T2D GWAS loci are highly and specifically

enriched to occur in islet stretch enhancers. Similar observations were also made

by others and these studies collectively represent the first level of functional conver-

gence in which disease-relevant variants across the genome are enriched in a set of

large enhancers active in specific tissues [182, 120, 189, 142, 144, 153]. However, while

chromatin state analysis is useful for narrowing down the regions of interest to a small

subset of regulatory regions (Fig. 1.4, reprinted from [92]), the resolution of analysis

is approximately 200 bp (a consequence of the fact that each nucleosome contains

about 147 bp of DNA wrapped around the histones), which is still too coarse to pin-

point the underlying sequence motif(s) that could be mediating a genetic regulatory

effect.
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Figure 1.4: Functional mapping of diabetes-associated variants using tissue-specific
regulatory maps. GWAS have identified loci associated with risk for type 2 diabetes,
with strength of association (-log10 p value) shown throughout the genome in a Man-
hattan plot (top, data from [180, 178]). Each genome-wide significant region (above
the horizontal red line) can then be explored using a locus-zoom plot (B), which
shows one of the type 2 diabetes-associated loci (overlapping the gene WFS1 ) as
an example [178]. In the locus zoom plot, each dot represents a variant associated
with type 2 diabetes, and its colour represents the level of LD, with the lead variant
(reference variant [Ref Var]) highlighted in purple. Most SNPs occur in non- coding
regions, where chromatin state analyses (C) help identify locations of tissue-specific
regulatory regions. While some enhancer regions may be shared across tissues, there
are others that are unique. Reprinted from [92]
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1.5 Profiling accessible chromatin to identify regulatory ele-

ments in high resolution

To identify regulatory segments at a higher resolution, it is imperative to locate

the binding sites of TFs. TFs are known to bind in regions of accessible or open

chromatin regions, or, conversely, TF binding can create focal changes to chromatin

architecture such that nucleosomes are displaced and the surrounding DNA becomes

more accessible. Consequently, profiling accessible regions of the genome can help

close in to the TF bound regulatory elements. Early genome-wide maps of open

chromatin regions in human pancreatic islets used formaldehyde-assisted isolation of

regulatory elements followed by sequencing (FAIRE-seq) [51] or DNase I digestion

coupled to DNA sequencing (DNase-seq) [172]. By comparing these data to maps

from other cell types, these studies identified islet-specific open chromatin regions that

coincided with evolutionarily conserved binding sites for key islet transcription factors

nearby genes of critical importance in pancreatic islets (e.g. PDX1 and NKX6-1).

A more recent open chromatin profiling method, the assay for transposase accessible

chromatin followed by sequencing (ATAC-seq) [16], has enabled more routine analysis

of scarce samples, such as human pancreatic islets, because of its lower minimum input

material requirements (Fig. 1.5A). DNA sequence underlying the highly accessible

regions (ATAC-seq peaks) can then be interrogated using the vast TF DNA binding

sequence motif (or position weight matrix (PWM)) information databases [83, 118,

158, 77] using specifically designed tools [147] to infer binding sites of these TFs

(TF footprint motifs) (Fig. 1.5B, adapted from [92]). Therefore, compared with

analysis of histone marks, open chromatin analyses (especially ATAC-seq) have a

higher resolution, permitting the identification of specific TF footprint motifs that

may be altered by disease risk alleles.
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Figure 1.5: Pinpointing individual cis-regulatory elements within broad regulatory
regions. A. Open chromatin regions can be identified by assays such as ATAC-seq. TF
Motif analysis within open chromatin regions may identify bound by TFs. Searching
a TF motifs from available databases in the open chromatin region can nominate
TF footprint motif(s) associated with specific TFs. B. eQTL analyses, which use
statistical associations between genetic variation and gene expression at a population
level, can identify variants that influence expression of downstream target genes,
for example, by activating or disrupting transcription factor binding sites. In this
example, the blue C allele disrupts an underlying TF footprint motif and is associated
with decreased expression of the hypothetical target gene X. Adapted from [92]
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1.6 Identifying target genes of regulatory variants

The next step towards attaining a more complete mechanistic insight is identifying

the target genes of the regulatory variants. This can be accomplished with eQTL

studies, which look at population-level statistical associations between gene expression

and genetic variation to assign SNPs to target genes (Fig. 1.5B). Standard eQTL

analysis involves a direct association test between markers of genetic variation with

gene expression levels typically measured in tens or hundreds of individuals. Several

such studies have been conducted across diverse and diabetes-relevant human tissues,

such as skeletal muscle [162], adipose [25], liver [58] , islets [44, 193, 196] along with

other emerging studies included as a part of this work. Additional layers of regulatory

annotation could reveal additional signatures of convergence.

1.7 Thesis outline

In this work, I have analyzed multiple large-scale omics datasets to better un-

derstand gene regulatory mechanisms. In chapter 2, I compared gene regulatory

annotations defined using diverse epigenomic data across 4 cell types to compare

their cell specificities and genetics of gene expression regulation. In chapters 3 and

4, I describe large scale eQTL mapping efforts along with integration of epigenomic

data to describe molecular regulatory mechanisms. In chapter 5, I describe profiling

and analysis of the enhancer transcriptome in islets, which I then integrate with other

available epigenomic data to better understand gene regulatory characteristics. I then

delineate the exciting future perspectives that stem from my work and could further

contribute to the field of human complex disease genetics.
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CHAPTER II

Cell Specificity of Human Regulatory Annotations

and Their Genetic Effects on Gene Rxpression

2.1 Abstract

Epigenomic signatures from histone marks and TF binding sites have been used

to annotate putative gene regulatory regions. However, a direct comparison of these

diverse annotations is missing, and it is unclear how genetic variation within these

annotations affects gene expression. Here, we compare five widely-used annotations

of active regulatory elements that represent high densities of one or more relevant

epigenomic marks: super and typical (non-super) enhancers, stretch enhancers, high-

occupancy target (HOT) regions, and broad domains, across the four matched human

cell types for which they are available. We observe that stretch and super enhancers

cover cell type-specific enhancer chromatin states whereas HOT regions and broad

domains comprise more ubiquitous promoter states. eQTL in stretch enhancers have

significantly smaller effect sizes compared to those in HOT regions. Strikingly, chro-

matin accessibility QTL in stretch enhancers have significantly larger effect sizes com-

pared to those in HOT regions. These observations suggest that stretch enhancers

could harbor genetically primed chromatin to enable changes in TF binding, possi-

bly to drive cell type-specific response to environmental stimuli. Our results suggest

13



that current eQTL studies are relatively underpowered or could lack the appropriate

environmental context to detect genetic effects in the most cell type-specific regula-

tory annotations, which likely contributes to infrequent co-localization of eQTL with

genome-wide association study (GWAS) signals.

2.2 Introduction

Genome-wide association studies (GWAS) have shown that most of the genetic

variants associated with disease related traits lie in non protein-coding regions [68].

More importantly, these loci are specifically enriched in enhancer elements of disease-

relevant cell types [182, 120, 189, 142, 29, 144, 153]. This suggests that the majority

of disease associated genetic variants modulate regulatory elements that can influ-

ence gene expression. Therefore, it is essential to identify and understand the genetic

signatures and molecular function(s) of gene regulatory regions.

Epigenomic profiling such as chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) of histone modifications or TF that can indicate

regulatory activity in vivo have been effectively used to predict the regulatory function

of genomic regions. For example, super enhancers have been defined in multiple cell

types as regions with high levels of the histone H3 lysine 27 acetylation (H3K27ac)

mark [69]. Putative enhancer elements were identified from ChIP-seq peaks, and

elements within 12.5 kb of each other were stitched together. After ranking these

stitched regions based on the enhancer associated ChIP-seq signal (Fig. 2.1A), a

small number ( 3%) of identified regions that contained a large fraction (>40%) of the

ChIP-seq signal, observable as a steep rise in the ChIP-seq signal curve (geometrical

inflection point, Fig. 2.1A) [204], were termed super enhancers. These elements were

at least an order of magnitude larger in size than the remaining non-super enhancer

elements (i.e., typical enhancers). This signal-based approach has been generalized as
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Figure 2.1: Description of the regulatory annotation calling procedures. A: Su-
per/typical enhancers are called by using the H3K27ac mark ChIP-seq to assign en-
hancer elements, stitching elements within 12.5 kb and ranking the stitched segments
based on H3K27ac levels. B: Stretch enhancer calling procedure involves analyzing
patterns of multiple histone marks, assigning chromatin state segmentations using
ChromHMM, followed by identifying contiguous enhancer chromatin state segments
longer than 3 kb. C: HOT regions are defined as regions with higher transcription
factor binding occupancies than expected. D: Broad domains are defined as the top
5% of the H3K4me3 ChIP-seq peaks by length.
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the rank ordering of super enhancers (ROSE) algorithm [108]; [204] (Fig. 2.1A). Su-

per enhancers are thought to encompass multiple constituent enhancer elements that

collectively have high regulatory potential and drive high expression of cell identity

regions [204, 69].

In another approach, ChIP-seq data for multiple histone modifications were used

to annotate the genome. A HMM based approach identified distinct and recur-

rent patterns in the ChIP-seq data and segmented the genome into chromatin states

[43, 41]. Analyzing chromatin states across diverse cell types and tissues, the authors

identified that the longest 10% of contiguous enhancer chromatin states (enhancers

≥ 3 kb) were highly cell type-specific, occurred nearby genes with highly cell type-

specific gene ontology (GO) terms, and were enriched for cell type relevant disease and

trait associated variants [142]. These regions were referred to as stretch enhancers

[142] (Fig. 2.1B) and represent substantially large regions of enhancer associated

chromatin.

Regulatory annotations have also been defined from TF ChIP-seq profiling. Anal-

ysis of such datasets across cell types revealed that more than 50% of TF bound sites

occurred in highly occupied clusters that were not randomly distributed across the

genome [132, 185, 182, 13]. To identify regions where TF occupancies were higher

than expected by chance, one study first collapsed ChIP-seq peaks for multiple TFs as

observed binding regions (Fig. 2.1C, blue bar). The expected regions of TF binding

or target regions (Fig. 2.1C, gray bars) and individual TF binding sites within these

regions (Fig. 2.1C, colored triangles), were then randomly sampled 1000 times, while

keeping the number and size distributions equivalent to those observed. Occupancies

were scored based on observed and expected collapsed binding sites (Fig. 2.1C, blue

and green blocks, respectively); regions with the top 5% occupancies were classified
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as high occupancy target (HOT) regions (Fig. 2.1C).

The histone H3 lysine 4 trimethylation (H3K4me3) mark is associated with active

and poised promoters [11, 126, 1]. Unusually large regions of the H3K4me3 mark

have been observed in multiple cell types across humans, mice and other species,

often spanning up to 60 kb [1, 10, 23]. Importantly, the broadest 5% of H3K4me3

domains were found to mark genes with cell type-specific functions [10, 187]. These

regions have been termed broad domains (Fig. 2.1D).

These diverse methodologies identify genomic regions with substantially high den-

sities of epigenomic marks known to be associated with gene regulation. These re-

gions denote important classes of regulatory elements, which show cell type-specificity,

transcriptional activity in reporter assays, and disease relevance based on GWAS SNP

enrichments [91, 142, 69, 10, 13, 102, 12, 31]. Few studies have compared the char-

acteristics for subsets of these annotations, showing some degree of overlap between

HOT regions and super enhancers [99] and chromatin interactions between broad do-

mains and super enhancers [187]. However, the functional differences among these

annotations, especially how genetic variation in these elements affects target gene ex-

pression, are unclear. To fill this gap, we compared diverse characteristics of super-,

typical-, stretch-enhancers, HOT regions and broad domains (hereafter collectively

referred to as regulatory annotations) in the only four matched human cell types for

which they are available: the lymphoblastoid cell line (LCL) GM12878, embryonic

stem cell line H1, leukemia cell line K562, and hepatic carcinoma cell line HepG2. We

used previously published annotations as these were rigorously generated by respec-

tive authors and are widely used. Collectively, these regulatory annotations represent

the computational and statistical integration of 245 ChIP-seq data sets (an average

of 61 ChIP-seq data sets per cell type). We report annotation summary statistics
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and the proportion of overlap with diverse chromatin states in these regions. We

measure enrichment for proximity to genes that are expressed in a cell type-specific

manner, and integrate genetic regulatory data to measure enrichment for expression

quantitative trait loci (eQTL). Finally, as measures of strength of gene and chro-

matin accessibility regulation, we compare the effect sizes of loci associated with gene

expression (eQTL), DNase hypersensitivity (dsQTL), and allelic bias in ATAC-seq

data. Comparisons using these metrics allow us to quantify biological properties of

these regulatory annotations.

2.3 Results

2.3.1 Genomic distribution, coverage, and overlap of diverse regulatory

annotations

To catalogue super, typical, stretch enhancers, HOT regions and broad domains

regulatory annotations, we computed the number of distinct segments marked by

each annotation, the length distribution of these segments, and the percentage of the

genome that is covered by each annotation across the four cell types (Fig. 2.2A-C).

Across all cell types, HOT regions comprised the greatest number of segments (Fig.

2.2A). However, they were smaller in size (Fig. 2.2B). Super enhancers comprised

the longest segments among all annotations across the studied cell types (Fig. 2.2B),

likely due to stitching together H3K27ac peaks that are separated ≤ 12.5 kb. All

pairwise comparisons between segment lengths for annotations were significant (ad-

justed p < 2.2×10-06) in each of the cell types from Wilcoxon Rank Sum Test followed

by Bonferroni correction, highlighting the differences across annotations. While the

percent genome covered by each annotation varied across cell types, these regions

consistently covered less than 2% of the genome (Fig. 2.2C).
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Next, we calculated the fraction of overlap between all pairs of regulatory annota-

tions. We report the Jaccard statistic (base-pair level intersection/union) for overlap

between two annotations (Fig. 2.2D, E). We compare overlaps between different an-

notations within a cell type (Fig. 2.2D) and between a single annotation (e.g., broad

domains) across cell types (Fig. 2.2E). Despite their relatively low genomic cover-

age (0.5% of the genome), super enhancer segments show considerable overlaps with

stretch enhancer segments in the same cell type (Fig. 2.2D), which are significantly

enriched (p=0.0001, Fig. 2.3). This is in agreement with both of these annotations

representing large domains of active enhancers marked with H3K27ac. HOT regions

show extensive overlaps across cell types (Fig. 2.2E), indicating that these regions

are less cell type-specific. Broad domains display a similar pattern, though to a less

pronounced degree (Fig. 2.2E). Conversely, stretch, super and typical enhancers show

low overlaps across cell types, which indicates a higher degree of cell type-specificity

(Fig. 2.2E).

2.3.2 Regulatory annotations comprise distinct chromatin states

Most regulatory annotations are defined using histone modification ChIP-seq pro-

files. However, the differences in their underlying chromatin landscape are unclear.

We compared each regulatory annotation with previously reported chromatin state

segmentations across all four cell types [196] (Fig. 2.4). Such comparisons are infor-

mative because the chromatin states (ChromHMM states) have been generated from

an integrative analysis of ChIP-seq data for five diverse histone marks (H3K4me1,

H3K4me3, H3K27ac, H3K36me3 and H3K27me3) resulting in 13 chromatin states

encompassing active promoter (regions enriched for H3K4me3, H3K27ac marks), en-

hancer (regions enriched for H3K4me1 and H3K27ac marks), transcribed (regions
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Figure 2.2: Summary statistics and overlaps demonstrate differences in character-
istics of regulatory annotations. For each annotation in each cell type considered,
shown are number of annotation segments (A), length distribution of segment an-
notations (B) and percent genomic coverage (C). Jaccard statistic (base-pair level
intersection/union) between each pair of annotations is shown within a cell type (D)
and across cell types (E).
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Figure 2.3: Log2(Fold enrichment) for overlap between each pair of regulatory anno-
tations is shown. Enrichments calculated using GAT [46]. Gray=Not significant after
Bonferroni correction. Super and typical enhancers in the same cell type are strongly
depleted for overlap since these are disjoint sets. Black tiles on the diagonal represent
same cell type and regulatory annotation in the pair.
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enriched for H3K36me3), repressed (regions enriched for H3K27me3 marks), and qui-

escent states (regions lacking marks) [196]. Different enhancer states, such as active

enhancer 1 and 2 represent states with different levels of H3K4me1 and H3K27ac

mark enrichment and have different genomic coverage [196]. For each regulatory an-

notation in a particular cell type, we computed the fraction of overlap with chromatin

states in the corresponding cell type and across the other three cell types (Fig. 2.4).

Generally, HOT regions and broad domains overlap with promoter-related chromatin

states consistently across all four cell types, irrespective of which cell type they were

called in (Fig. 2.4, facets a1-4, b1-4). In contrast, stretch, super and typical en-

hancers show a higher fraction of overlap with enhancer-related chromatin states in

the corresponding cell type. Notably, stretch/super/typical enhancer regions defined

in one cell type constitute mostly non-enhancer chromatin states in other cell types

(Fig. 2.4, facets c1-4, d1-4, e1-4), which further reinforces the cell type-specific nature

of these annotations.

We then sought to quantify the cell type-specificity of enhancer and promoter

chromatin states in each regulatory annotation. For each segment of a regulatory

annotation, we computed the ChromHMM posterior probabilities of being called an

enhancer or active promoter state averaged over 200bp intervals, denoting chromatin

state preference of that segment in each cell of the four cell types. We then computed

the information content encoded by these probabilities across cell types (see meth-

ods). High information content indicates high specificities of chromatin state. We

observe that stretch enhancers constitute high information and high probability en-

hancer chromatin state (Fig. 2.6A showing GM12878 annotations, Fig. 2.5 showing

annotations in all cell types) whereas HOT regions constitute low information and

high probability promoter state (Fig. 2.6B showing GM12878 annotations, Fig. 2.7

showing annotations in all cell types). These analyses highlight the differences in the
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Figure 2.4: Fraction of annotations overlapped by chromatin states. Overlap frac-
tions of each annotation (facet columns) defined in each cell type (facet rows) with
chromatin states defined in each cell type (X- axis) is shown. Stretch enhancers were
defined using the same chromatin state model for the corresponding cell types.
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Figure 2.5: Enhancer chromatin state information content for annotations. Average
posterior probability for an annotation segment to be called an enhancer chromatin
state vs the information content of that feature in the each cell type (facet rows).

underlying chromatin context and cell type-specificities for these annotations.

2.3.3 Regulatory annotations exhibit distinct cell type-specificity of gene

regulatory function

Regulatory annotations have been linked to common diseases based on their en-

richment to overlap GWAS variants. We directly compared GWAS SNP enrichments

for diseases that are relevant to the cell types represented here, such as Crohns dis-

ease, rheumatoid arthritis and other autoimmune traits (relevant for lymphoblastoid

cell line GM12878), and metabolic traits such as body mass index (BMI) and type 2
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Figure 2.6: Enhancer and promoter chromatin state information content shows cell
type-specificity of regulatory annotations. Average posterior probability for an anno-
tation segment to be called an enhancer (A) or promoter (B) chromatin state vs the
information content of that feature in the GM12878 cell type calculated by comparing
average posterior probabilities across the four cell types.

diabetes (T2D) (relevant for liver hepatocyte cell line HepG2) in each regulatory an-

notation. Super and stretch enhancers in GM12878 (lymphoblastoid cell line (LCL))

were generally the most enriched for autoimmune related trait GWAS SNPs (Fig.

2.8), whereas stretch enhancers and broad domains in HepG2 were enriched for BMI

and T2D GWAS SNPs (Fig. 2.8).

We next assessed the gene regulatory potential for these annotations using several

diverse comparisons. We first measured the distance to nearest protein-coding gene

from the ends of each annotation segment and found that broad domain and su-

per enhancer segments tend to occur in closer proximity of gene transcription start

sites (TSSs) relative to other annotations (Fig. 2.9). Because a regulatory element

does not always target the nearest gene, we next utilized cis-expression quantita-

tive trait loci (cis-eQTL), which unambiguously identify target genes by associating

genetic variation (SNPs) with gene expression. We asked if regulatory annotations

overlapped cis-eQTL which were previously identified in LCLs in the genotype tis-
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Figure 2.7: Promoter chromatin state information content for annotations. Average
posterior probability for an annotation segment to be called an promoter chromatin
state vs the information content of that feature in the each cell type (facet rows).
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Figure 2.8: Enrichment for annotations in GM12878 and HepG2 to overlap GWAS
loci for different traits. Red line = Bonferroni multiple testing correction threshold.
Gray = not significant after Bonferroni correction. Annotations overlapping at least
3 GWAS loci for a trait are shown in each panel.

sue expression (GTEx) project [58]. HOT regions in the LCL GM12878 showed the

highest enrichment to overlap LCL eQTLs (Fig. 2.10), likely because these represent

active promoter regions with high TF binding activity and lie close to protein coding

genes (Fig. 2.9). However, HOT regions in control cell types (i.e., non-LCL) were

similarly enriched to overlap LCL eQTLs, which highlights the similarity of HOT

regions across cell types.

We hypothesized that significant enrichment of LCL eQTLs in regulatory an-

notations of unrelated cell types is largely driven by eQTLs for more ubiquitously

expressed genes. To test this hypothesis, we classified protein-coding genes by their

specificity of expression in LCLs using RNA-seq data for 50 diverse tissues from the

GTEx project [58] and an information theory approach [161, 64, 162, 196]. We cal-

culated the expression specificities of genes by comparing the relative expression of

each gene in LCLs with the entropy of the gene across all 50 tissues in the panel.
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Figure 2.9: Cumulative distribution for distance to nearest TSS (all Gencode V19
protein coding genes) for segments in each regulatory annotation in each cell type.

We defined the LCL expression specificity index (LCL-ESI), which ranges from 0

(i.e., low or ubiquitously expressed genes) to 1 (i.e., highly and specifically expressed

genes in LCL). We binned the genes into quintiles based on this LCL-ESI measure;

such that bin five represents genes with the highest LCL-ESI scores (Fig. 2.11). We

then asked which regulatory annotations occurred closer to cell type-specific genes.

We calculated the distance to the nearest TSS for genes in each LCL-ESI bin, which

revealed that annotation segments occur closer to genes with higher LCL-ESI (Fig.

2.12, colored lines). To control for the different number of segments in each anno-

tation, we constructed a null expectation by randomly sampling genes from across

the five LCL-ESI bins and calculating the distribution of distances to nearest gene

TSS (Fig. 2.12, black). We then normalized the observed distance distribution for

each LCL-ESI bin gene set with that from the null set and used this as a controlled

measure of TSS proximity enrichment (Fig. 2.13A). We observed that all regulatory

annotations are depleted from occurring close to non-specific genes (LCL-ESI bin 1)

and enriched to occur closer to highly specific genes (LCL-ESI bin 5). Notably, super,

stretch, typical enhancers and broad domains were more enriched to occur near the

most cell type-specific genes than HOT regions (Fig. 2.13A). As expected, enrich-
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Figure 2.10: Enrichment of regulatory annotations in four cell types to overlap with
LCL eQTL (GTEx v7). Fold enrichments are shown in A, -log10(p values) are shown
in B. Enrichment p values significant after a Bonferroni correction for 20 tests are
marked with *.
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ments for all annotations to occur within larger distances to TSS (order of mega bases)

converge to 1 (Fig. 2.13A), indicating a properly controlled proximity enrichment test.

We next asked which regulatory annotations were more enriched to overlap eQTL

of more cell type-specific genes. We obtained sets of LCL eQTL [58] for genes in each

LCL-ESI bin and calculated the enrichment of each eQTL set in the regulatory anno-

tations. Indeed, we observe that GM12878 regulatory annotations were increasingly

enriched to overlap eQTLs for highly LCL specific genes (Fig. 2.14) and the fold

enrichment for eQTLs in a bin is positively correlated with the LCL-ESI bin number

(Fig. 2.13B, GM12878 facet). Notably, stretch enhancers, and in some instances

typical enhancers, in non-LCL cell types showed strong negative correlations of LCL

eQTL fold enrichment with LCL-ESI bin number (Fig. 2.13B), indicating higher cell

type-specificity for stretch enhancers. This is consistent with the previous histone

modification based chromatin state analyses (Fig. 2.6, Figs. 2.4, 2.5, 2.7, 2.8), which

also highlight the cell type-specificity of stretch enhancers. HOT regions in non-LCL

cell types show high enrichments for eQTLs in less cell type-specific LCL-ESI bins 1-3

(Fig. 2.14). This analysis shows that high enrichments of LCL eQTLs in non-LCL

annotations (Fig. 2.10) was driven by eQTLs for more ubiquitously expressed genes.

These analyses further emphasize the differences in the cell type-specificities of these

regulatory annotations.

2.3.4 Patterns of expression and chromatin QTL effect sizes in annota-

tions suggest regulatory buffering

While enriched overlap with eQTLs demonstrates genetic regulatory potential

for each annotation (Figs. 2.10, 2.14, 2.13B), this analysis does not distinguish the

strength of these genetic effects on gene expression. To understand this, we com-

30



Figure 2.11: Gene expression specificity index in lymphoblastoid cell line (LCL-ESI).
A: Distribution of LCL-ESI for protein coding genes with median transcripts per
million (TPM) >= 0.15 in LCL. Colors indicate equal sized binning of the genes
into quintiles by LCL-ESI. Each bin contained 2753 protein coding genes. B: Median
TPM for genes in each LCL-ESI quintile bin across the 50 GTEx tissues analyzed.
Lymphoblastoid cell line (LCL) is named as Cells-EBV-transformed lymphocytes in
the GTEx dataset.
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Figure 2.12: Cumulative distribution for distance to nearest TSS (Gencode V19 pro-
tein coding genes binned by LCL-ESI, 2753 genes in each bin) for regulatory anno-
tations in GM12878. Black curves represent 10,000 random sub-samplings of 2753
genes from across the five bins.

pared the absolute effect sizes (beta values from the linear regression models) of LCL

eQTLs overlapping different GM12878 regulatory annotations. We excluded SNPs

with minor allele frequency (MAF) < 0.2, since these SNPs have substantially re-

duced statistical power and are therefore biased to be detected as eQTL only with

higher effect sizes (Fig. 2.15). We observed that LCL eQTLs in GM12878 stretch en-

hancers have nominally significantly lower (p=0.032) effect sizes than GM12878 HOT

regions, however this comparison does not survive a Bonferroni correction accounting

for 10 pairwise tests (Fig. 2.16A). To achieve higher power for such an analysis, we

utilized the larger GTEx blood eQTL dataset and compared effect sizes in annota-

tions of the blood relevant leukemia cell line K562. Consistent with the LCL analysis,

we observed that effect sizes of blood eQTL in K562 stretch enhancers were signifi-

cantly lower than that of HOT regions (Bonferroni corrected p = 0.0082, Fig. 2.17A).

We note that the differences in effect sizes for LCL and blood eQTL are largely due

to different sample sizes and therefore power to detect eQTL. To further control for

potential sources of bias in this analysis, we next asked if this effect size difference

was driven by distance to the eQTL target genes TSS or the number of SNPs in high
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Figure 2.13: Proximity to protein coding genes and enrichment for eQTL highlight
functions of regulatory annotations. A: Enrichment for regulatory annotation ele-
ments in GM12878 to lie within distances (x-axis) of transcription start site (TSS) of
protein coding genes binned by gene expression specificity in lymphoblast cell lines
(LCL-ESI). Enrichment calculated in comparison to 10,000 random samplings, 95%
confidence intervals shown. B: Pearson correlation of LCL-ESI gene quintile bin num-
bers (increasing LCL specificity) with the fold enrichment of eQTLs of these genes
in regulatory annotations. Positive correlation shows that the eQTLs for more LCL
specific genes are more enriched in annotations. Significant (p < 0.05) correlations
are marked with a *.
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Figure 2.14: Enrichment for regulatory annotations to overlap LCL eQTL (GTEx v7,
10% FDR) binned by LCL-ESI or the eQTL eGene.

LD with the index eQTL SNP. We modeled the eQTL absolute effect size using linear

regression including these additional two covariates along with an indicator variable

encoding stretch enhancer or HOT region annotation (eQTL overlapping both anno-

tations were not considered). We observed a significant effect on the indicator variable

(p = 0.005, regression coefficient = -0.0521, Table 2.1), which confirms the smaller ef-

fect size of eQTL in stretch enhancers, independent of TSS distance and LD structure.

Differences in effect sizes of eQTLs in stretch enhancers compared to HOT regions

directly translates to differences in the statistical power to detect eQTL residing in

these regulatory annotations, which have remarkably distinct cell type-specificities.

To quantify this, we performed a power calculation for the 10th through 90th per-

centiles of the eQTL effect size distribution observed in each annotation, keeping

other parameters such as sample size, MAF, type 1 error rate, number of tests and

the standard deviation of the error term constant. We show that variants in stretch

enhancers have nearly uniform lower power to be detected as eQTL across the effect

size distribution (Fig. 2.17B, S12B). Indeed, stretch enhancers showed lower enrich-

34



Figure 2.15: Lower minor allele frequency (MAF) variants have higher eQTL effect
sizes. A: Distribution of MAF for LCL eQTL (GTEx v7, 10% FDR). B: LCL eQTL
absolute effect size (slope of the linear regression) vs minor allele frequency (MAF).
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Figure 2.16: Gene expression and chromatin QTL effect size differences in regulatory
annotations suggest regulatory buffering. A: Distribution of eQTL effect sizes for
LCL eQTL (GTEx v7, 10% FDR) in GM12878 regulatory annotations are shown.
Nominal P values < 0.05 are shown. B: Power to detect eQTL after Bonferroni
correction at effect sizes corresponding the 10th through 90th percentiles observed for
each annotation (shown in A). Other constant parameters for the power calculation
are shown in box.

Table 2.1: Ordinary least squares regression results modeling blood eQTL absolute
effect size dependent on K562 HOT regions or stretch enhancer annotation, distance
of the eQTL to eGene TSS and number of SNPs in LD r2>0.99
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ment to overlap eQTLs than HOT regions (Fig. 2.10). Therefore, identifying eQTLs

in cell type-specific stretch enhancers will require larger sample sizes.

Among other mechanisms, eQTL SNPs can influence gene expression in vivo by

modulating TF binding. TFs can either bind in nucleosome-depleted regions or bind

and displace nucleosomes (pioneer factors) [57, 200, 17]. Therefore, QTL analysis

of chromatin accessibility using DNase I hypersensitivity (dsQTL) can assess variant

effects on regulatory element activity. Interestingly, we found that LCL dsQTLs

[32] in stretch enhancers have significantly higher effect sizes than those in HOT

regions (Bonferroni corrected p=6.2×10-08, Fig. 2.17C), which is the opposite of

what we observed for eQTL effects (Fig. 2.17A). dsQTL in super enhancers and

typical enhancers also have higher effect sizes than those in HOT regions (Bonferroni

adjusted p = 0.013, 2.2×10-05 respectively). To examine the effect of genetic variation

on open chromatin at the resolution of an individual sample, we quantified allelic bias

in the assay for transposase accessible chromatin followed by sequencing (ATAC-seq)

data available in GM12878 [17]. Allelic bias measured by quantifying the ATAC-

seq signal over each of the two alleles at a heterozygous site is an indicator of allelic

differences in chromatin accessibility at a specific locus. To control for different power

to detect allelic bias, we uniformly down-sampled all SNPs to 30x coverage. We

included all SNPs from the full range of MAFs with nominally significant allelic bias

(p < 0.05) since the SNP MAF does not affect the power to detect allelic bias in

an individual sample. Consistent with the dsQTL results, we observed that SNPs

in stretch enhancers show a significantly larger allelic bias effect size (see Methods)

compared to HOT regions (Bonferroni corrected p = 0.0051, Fig. 2.17D). This trend

remains after removing SNPs with MAF < 0.2, similar to the dsQTL analyses above

(Fig. 2.18), indicating that SNP MAF does not confound this analysis. No other

pairwise tests were significant. Collectively, these observations show that stretch
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enhancers harbor variants that have strong genetic effects on chromatin changes but

these are buffered at the level of transcription.

2.4 Discussion

We performed a comparative analysis of five regulatory annotations, all based

on diverse epigenomic signatures, to better understand their regulatory capacity

and downstream transcriptional effects. We observed that stretch, super and typ-

ical enhancers overlap enhancer chromatin states in the corresponding cell type, but

overlap non-enhancer chromatin states in unrelated cell types, supporting the cell

type-specificity of these regulatory elements. These observations highlight H3K27ac

as a good proxy for cell type-specific regulatory function. Annotations based on the

H3K4me3 mark (Broad domains) and TF binding (HOT regions) show a large frac-

tion (>40%) of overlaps with promoter chromatin states across different cell types.

Consistent with our observations, a recent study in the fly reported that regions

bound by large numbers of TFs (such as HOT regions) are less cell type-specific [88].

While the diverse ChIP-seq data used to define regulatory annotations comes from

different individuals, we note that future studies using ChIP-seq data from the same

individual might have even higher power to detect cell type-specific differences.

Analysis of genetic effects on gene regulatory function of annotations revealed that

blood eQTLs in K562 stretch enhancers have significantly lower effect sizes compared

to HOT regions. Stretch/super enhancers are known to regulate more cell type-

specific genes for which the expression levels may be tightly controlled under basal

conditions. Multiple studies have observed redundancy in gene regulation by individ-

ual components of super enhancers [63, 166, 133, 207]. Such studies then contested the

notion of super/stretch enhancers as a distinct entity, arguing that these annotations

are no different than other enhancers. However, here we offer an alternative expla-
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Figure 2.17: Gene expression and chromatin QTL effect size differences in regulatory
annotations suggest regulatory buffering. A: Distribution of eQTL effect sizes for
blood eQTL (GTEx v7, 10% FDR) in K562 regulatory annotations. B: Power to
detect eQTL after Bonferroni correction at effect sizes corresponding the 10th through
90th observed for each annotation (shown in A). Other constant parameters for the
power calculation are shown in box. C: Distribution of effect sizes for LCL DNase
QTLs in GM12878 regulatory annotations. D: Distribution of effect sizes (deviation
from expectation) for SNPs with significant allelic bias in GM12878 ATAC-seq (p
< 0.05, minimum coverage at SNP=30, reads down-sampled to 30, see methods) in
GM12878 regulatory annotations. P values from Wilcoxon rank sum tests, after a
Bonferroni correction accounting for 10 pairwise tests. Number of QTLs/allelic biased
SNPs overlapping each regulatory annotation is shown in parentheses in A, C and D.
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Figure 2.18: Effect sizes for Allelic Bias in GM12878 ATAC-seq after removing low
MAF SNPs (consistent with eQTL and dsQTL effect size analyses). SNPs with MAF
> 0.2 and allelic bias p value < 0.05 were included for this analysis.
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nation - that enhancer buffering which results from functional redundancy could be

a mechanism for tighter control of gene expression under basal conditions and would

explain the low observed eQTL effect sizes. These regions could encode regulatory

plasticity, allowing critical genes to respond to multiple (patho)physiologic stimuli.

This would lead to smaller effects in the steady state, whereas each component could

contribute to tight but pliable regulation by different signaling pathways. Therefore,

the outcome of perturbing enhancer components might be different in response to dif-

ferent environmental stimuli and existing studies that probe basal conditions would

not detect such effects.

In contrast, genetic variants associated with open chromatin in stretch enhancers

show significantly higher effects than those in HOT regions, both within a single

sample (allelic bias in ATAC-seq) and across multiple samples (dsQTL). Our results

present an apparent discrepancy in that genetic variants in stretch enhancers display

higher chromatin QTL effect sizes and slightly but significantly lower basal expression

QTL effect sizes when compared to HOT regions. It is possible that the large con-

stellation of TFs bound in HOT regions [182, 88] maintain more constitutively open

chromatin, which would be less susceptible to effects of individual genetic variants.

This concept of buffering has been demonstrated previously where a smaller fraction

of SNPs in strong DNase peaks showed significant allelic bias compared to those in

weak DNase peaks [119]. We reason that chromatin accessibility, which influences

TF binding could be a molecular feature of the initial response cascade to propagate

gene expression changes under stimulatory conditions. We hypothesize that the larger

genetic effects on stretch enhancer chromatin accessibility will propagate to gene ex-

pression effects under specific environmental conditions. Under this hypothesis, we

expect that many dsQTL will be associated with gene expression under specific stim-

uli (or response-specific eQTL) rather than steady state (basal eQTL). In support of
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this, a recent study in the macrophage model system [3] showed that 60% of eQTLs

that manifest upon stimulation are chromatin QTL in the basal state. Unfortunately,

currently available response expression or chromatin QTL datasets are underpowered

for a comparison of effect sizes in the regulatory annotations analyzed here owing to

low sample sizes.

Our observations could help reconcile why many cis-eQTLs are shared across cell

types and infrequently co-localize with GWAS signals [103, 74, 58]. We have shown

that while stretch enhancers are enriched to overlap GWAS loci for cell type-relevant

traits, variants in these regions are underpowered to be identified as eQTL. Current

eQTL studies are biased to identify eQTLs for more broadly expressed genes. Our

results suggest that larger sample sizes will be needed to identify cell type-specific

eQTLs. Additionally, our results suggest the need to perform response eQTL studies

under carefully selected environmental conditions.

2.5 Materials and Methods

2.5.1 Regulatory annotation sources

Regulatory annotations for GM12878, H1 hESCs, HepG2 cell types were down-

loaded from previously published studies for HOT regions [13], Broad domains [10],

Stretch Enhancers [196], Super and Typical Enhancers [69].

2.5.2 Summary statistics and overlaps between annotations, chromatin

states and ATAC-seq peaks

Summary statistics such as the number of features in each annotation, segment

size distribution and percent genome coverage (Fig. 2.2A-C) were calculated using

custom scripts (see GitHub). To compute overlap fractions between all pairs of an-
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notations shown in Fig. 2.2D,E, we calculated the base pair level overlap between

each pair using BEDtools intersect [154]. For each pair of annotation sets, we then

calculated the Jaccard statistic by dividing the total length of the intersection region

with the total length of the union region. To calculate the fraction of regulatory anno-

tation overlap with chromatin states in Fig. 2.4, we used chromatin states previously

defined in the four cell types considered [196] and used BEDtools intersect. Stretch

enhancer annotations were also obtained from this previous study [196].

Enrichment for overlap between each pair of regulatory annotations in Fig. 2.3

was calculated using the Genomic Association Tester (GAT) tool [65]. To ask if two

sets of regulatory annotations overlap more than that expected by chance, GAT ran-

domly samples segments of one regulatory annotation set from the genomic workspace

(hg19 chromosomes) and computes the expected overlaps with the second regulatory

annotation set. We used 10,000 GAT samplings for each regulatory annotation. The

observed overlap between segments and annotation is divided by the expected overlap

and an empirical p-value is obtained.

2.5.3 Chromatin state information content analysis

We first compiled the average posterior probabilities of a regulatory annotation

segment to be called an enhancer or promoter chromatin state. We utilized the pre-

viously published 13-chromatin state ChromHMM model (also used to define stretch

enhancers) [196], which also outputs posterior probabilities for each 200bp genomic

segment to be called each of the 13 states in each of the four cell types. We considered

the sum of Active enhancer 1 and 2, weak enhancer and genic enhancer posterior prob-

abilities to represent enhancer states, and averaged these values over all the 200bp

tiles overlapping each annotation segment. We considered Active TSS, Weak TSS

and Flanking TSS states to denote promoter chromatin states. For example, for a
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segment in GM12878 broad domains, we obtained the average posterior probabili-

ties for the region being an enhancer or promoter state in a cell xsegment,cell for cell

∈ GM12878, H1, HepG2, and K562. To calculate the information content, we first

calculated the relative average posterior probabilities, psegment,cell

psegment,cell =
xsegment,cell∑4

cell=1 xsegment,cell

Next, we calculated entropy of the segment as:

Entropysegment = −
4∑

cell=1

psegment,cell × log2(psegment,cell)

We know that entropy is maximized with all segments have equal relative proba-

bilities, or psegment,cell = 1
4

for cell ∈ GM12878, H1, HepG2, and K562

Max.Entropysegment = −
4∑

cell=1

1

2
× log2(

1

4
) = 2

Information contentsegment,cell = psegment,cell×(Max.Entropysegment−Entropysegment)

We then compared xsegment,cell with Informationcontentsegment,cell.

While high posterior probabilities for enhancer or promoter states indicate pref-

erence for that state, high information content indicates cell type-specificity of that

chromatin state preference. For plotting Fig. 2.6, to have the same x axes ranges

for all facets for easier comparison (stretch enhancers only show high mean posterior

probabilities for enhancer states and low posterior probabilities for promoter states

due to their definition), we added one pseudo-count in each corner for all facets.
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2.5.4 Distance to nearest gene

We downloaded the Gencode V19 gene annotations from ftp://ftp.sanger.ac.

uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz and

obtained the transcription start site (TSS) coordinates for protein coding genes. For

each segment in each annotation, we computed the distance to nearest protein coding

gene TSS using BEDtools closest [154].

2.5.5 Enrichment of genetic variants in genomic features

Enrichment for genome wide association study (GWAS) variants for different traits

and expression quantitative trait loci (eQTL) identified in the lymphoblastoid cell line

(LCL) in regulatory annotations was calculated using GREGOR (version 1.2.1) [160].

Since the causal SNP(s) for the traits are not known, GREGOR allows considering

the input lead SNP along with SNPs in high linkage disequilibrium (LD) (based on

the provided R2THRESHOLD parameter) while computing overlaps with genomic

features (regulatory annotations). Therefore, as input to GREGOR, we supplied

SNPs that were not in high linkage disequilibrium with each other. We pruned the

list of SNPs using the PLINK (v1.9) tool [152]; [22] clump option and 1000 genomes

phase 3 vcf files (downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502 ) as reference. For each input SNP, GREGOR selects 500 control

SNPs that match the input SNP for minor allele frequency (MAF), distance to the

nearest gene, and number of SNPs in LD. Fold enrichment is calculated as the num-

ber of loci at which an input SNP (either lead SNP or SNP in high LD) overlaps the

feature over the mean number of loci at which the matched control SNPs (or SNPs

in high LD) overlap the same features. This process accounts for the length of the

features, as longer features will have more overlap by chance with control SNP sets.

Specific parameters for the GWAS enrichment were: GWAS variants for Rheuma-
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toid Arthritis, type 1 diabetes (T1D) and type 2 diabetes (T2D) were obtained from

the NHGRI-EBI catalog (https://www.ebi.ac.uk/gwas/). We used the following

parameters - Pruning to remove SNPs with r2 > 0.2 for European population; GRE-

GOR: r2 threshold = 0.8. LD window size = 1Mb; minimum neighbor number =

500, population = European.

Specific parameters for the LCL eQTL enrichment were: LCL eQTL data from

the genotype tissue expression (GTEx V7) study was downloaded from the GTEx

website https://www.gtexportal.org/home/datasets. We used the following pa-

rameters Pruning to remove SNPs with r2 > 0.8 for European population; GREGOR:

r2 threshold = 0.99. LD window size = 1Mb; minimum neighbor number = 500, pop-

ulation = European.

We used different r2 threshold for GWAS (r2=0.8) vs eQTL (r2=0.99) enrichment

analyses because eQTL analyses measure a molecular feature instead of a complex

phenotype and therefore have higher resolution to identify the more likely causal

variants.

2.5.6 Analysis of LCL-specific expression (LCL-ESI)

We used an information theory approach [161, 64] to score genes based on LCL

expression level and specificity relative to the panel of 50 diverse GTEx tissues, each

of which had RNA-seq data for more than 25 samples. We downloaded RNA-seq

data from GTEx V7 study from the website https://www.gtexportal.org/home/

datasets filename GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_

tpm.gct.gz. This data was in the form of median transcripts per million (TPM) for

each gene in each tissue. We considered protein-coding genes and removed those that

were lowly expressed in LCL (median TPM > 0.15) to avoid potential artifacts. We
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calculated the relative expression of each gene (g) in LCL compared to all 50 tissues

(t) as p:

pg,LCL =
xg,LCL∑50
n=1 xg,t

We next calculated the entropy for expression of each gene across all 50 tissues as

H:

Hg = −
50∑
n=1

pg,tlog2(pg,t)

Following previous studies [161, 64], we defined LCL tissue expression specificity

(Q) for each gene as:

Qg,LCL = Hg − log2(pg,LCL)

To aid in interpretability, we divided Q for each gene by the maximum observed

Q and subtracted this value from 1 and refer to this new score as the LCL expression

specificity index (LCL-ESI):

LCL− ESIg = 1− Qg,LCL

Qmax,LCL

LCL-ESI scores near zero represent lowly and/or ubiquitously expressed genes and

scores near 1 represent genes that are highly and specifically expressed in LCL.

Enrichment for distance to genes based on gene expression specificity in LCL We

binned the protein coding genes into quintiles based on LCL-ESI, such that bin 5

included the most LCL specific genes. Each quintile bin contained N=2,753 protein

coding genes. We then used BEDtools closest to calculate distance to nearest protein

coding gene TSS for each bin, obtaining empirical cumulative distribution functions

(ECDFs) for each regulatory annotation in each cell type. Since the regulatory anno-
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tations vary in the number of segments, and will therefore have different probabilities

to occur nearby TSS, the distance to nearest protein coding gene TSS ECDFs cannot

be directly compared. We therefore obtained the expected distance to nearest protein

coding gene TSS ECDF for each annotation by randomly sampling N=2,753 genes

from across the five bins 10,000 times and calculating the distance to nearest gene.

We then calculated the TSS proximity enrichment for each annotation by dividing

the observed with the mean expected ECDF. Enrichment therefore denotes the fold

change in the observed fraction of annotation segments within a certain distance of

protein coding gene TSSs in a specific LCL-ESI bin over the mean fraction of segments

at the same distance from the randomly sampled genes. The 95% confidence intervals

for the enrichment values were calculated as observed/(mean 1.96*SE), where SE =

standard error of the mean expected fraction.

Enrichment to overlap eQTL based on expression specificity of gene We sorted

the eQTL SNPs into quintiles based on LCL-ESI of the associated genes (eGene) and

grouped them into five equally sized bins, resulting in 585 eQTLs in each bin. Bin

numbers represent eQTLs that correspond to increasingly LCL-specific genes where

bin number 1 represents the least LCL-specific and bin number 5 represents the

most LCL-specific genes. We calculated the enrichment for each eQTL set to overlap

regulatory annotations using GREGOR with the same parameters as described above

for the bulk set of LCL eQTL. To quantify the trend of LCL eQTL enrichment

with LCL eGene expression specificity, we calculated the Spearman correlation of the

enrichment effect size expressed as log2(fold enrichment) with the eQTL bin number

using the cor() function from the stats package (v3.5.1) in R(R Core Team).
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2.5.7 Gene expression and chromatin accessibility QTL effect sizes in

regulatory annotations

We used the beta values or the slope of the linear regression as the effect size of

LCL and blood eQTL (GTEx V7) and DNase hypersentivity site QTL (dsQTL) [32].

All of these QTL studies used inverse rank based normalization steps on the molec-

ular features, which enables direct comparison of the effect sizes across the genome.

Because low MAF SNPs have low statistical power to be detected as significant QTL

at low effect sizes, these SNPs are biased to have large QTL effect sizes. We therefore

removed QTL SNPs with MAF < 0.2. We pruned the QTL SNPs to retain SNPs with

r2 < 0.8 after sorting by p value of association as described above using PLINK [152];

[22]. Since the causal SNP for the QTL signal is unknown, we also considered SNPs

in high linkage disequilibrium at r2 > 0.99 with the lead QTL SNPs which were ob-

tained using vcftools[30] and 1000 genomes phase 3 reference vcf specified above. We

observed higher eQTL enrichment in annotations with increasing the r2 thresholds,

which is indicative of a higher signal to noise ratio. A previous study analyzing LCL

eQTL also showed that functional enrichment decreased rapidly from the best eQTL

towards lower ranked eQTL [94]. We compared the absolute QTL effect sizes of loci

(QTL index SNP or SNP with r2 > 0.99 with the index SNP) that overlapped each

GM12878 annotation. We used the Wilcoxon rank sum test to identify significant

differences between effect sizes of eQTL overlapping each annotation.

To test if there may be confounding from other genomic properties such as the dis-

tance between the eQTL eSNP to eGene and number of SNPs in high LD with the

lead SNP could also influence the eQTL effect size, we calculated the contribution

of the underlying regulatory annotation on the effect size while accounting for these

factors. We modeled the eQTL effect size in a linear regression using the Python

statsmodels library where we included a regulatory annotation indicator variable

encoding eQTL overlap by a stretch enhancer or HOT region annotation and the
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following two covariates: (1) absolute distance of the eQTL lead SNP to its corre-

sponding eGene TSS and (2) total number of SNPs in high LD (r2 > 0.99 with the

lead SNP) that overlapped the annotation. eQTLs that overlapped both annotations

were not considered. Summary statistics of this regression model are presented in 2.1.

To calculate the statistical power for eQTL analysis after Bonferroni correction

based on a linear regression, we used the powerEQTL.SLR function from the pow-

erEQTL R package [38] (v0.1.3; https://rdrr.io/cran/powerEQTL/ ). For eQTLs

overlapping each annotation, we used the eQTL effect sizes representing the 10th to

90th percentile values and calculated power by using the following parameters: MAF

= 0.2, type I error rate = 0.0005, total number of tests = 1000,000, standard deviation

of the error term = 0.4 and sample size N = 250.

2.5.8 Comparison of allelic bias effect sizes in annotations

To determine SNP allelic bias in GM12878 ATAC-seq data, we used the publicly

available data [17]. Adapters were trimmed using cta (v. 0.1.2; https://github.

com/ParkerLab/cta), and reads mapped to hg19 using bwa mem [96] (default options

except for the -M flag; v. 0.7.15-r1140). Bam files were filtered for high-quality auto-

somal read pairs using samtools [98] view (-f 3 -F 4 -F 8 -F 256 -F 2048 -q 30; v. 1.3.1).

WASP [194] (version 0.2.1, commit 5a52185; using python version 2.7.13) was used

to adjust for reference mapping bias; for remapping the reads as part of the WASP

pipeline, we used the same mapping and filtering parameters described above for the

initial mapping and filtering. Duplicates were removed using WASPs rmdup pe.py

script. We used the phased GM12878 VCF file downloaded from ftp://ftp-trace.

ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.1/GRCh37/HG001_

GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.1_

highconf_phased.vcf.gz. To avoid potential artifacts associated with double-counting
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alleles, overlapping read pairs were clipped using bamUtil clipOverlap (v. 1.0.14;

http://genome.sph.umich.edu/wiki/BamUtil: clipOverlap). The bam files from

the samples in Table 2.2 were then merged to create a single GM12878 bam file us-

ing samtools merge. We filtered for heterozygous autosomal SNPs with minimum

coverage of 30. Since the power to detect allelic bias depends upon the read cov-

erage at the SNP, SNPs with lower coverage are biased toward having higher effect

sizes at any given level of statistical significance. To prevent this type of bias, we

randomly down-sampled reads at each heterozygous SNP to a total of 30 reads with

base quality of at least 20. We then counted the number of reads containing each

allele. We used a two-tailed binomial test that accounted for reference allele bias to

evaluate the significance of the allelic bias at each SNP (as described previously [196];

implemented in a custom perl script). We did not test SNPs in regions blacklisted

by the ENCODE Consortium because of poor mappability (wgEncodeDacMapabil-

ityConsensusExcludable.bed and wgEncodeDukeMapabilityRegionsExcludable.bed).

We then selected SNPs that show significant allelic bias at a nominal threshold of

binomial test p value < 0.05 and used BEDtools intersect to identify the set of nom-

inally significant SNPs overlapping each annotation. We defined the effect size of

allelic bias as the absolute deviation from expectation given by the absolute differ-

ence between the observed and expected fraction of reads mapping to the reference

allele. We also compared the allelic bias effect sizes while only considering SNPs with

MAF > 0.2.

2.6 Data Availability

Supplementary material is available at FigShare. Workflows for analyses as de-

scribed below were run using Snakemake [86]. All analysis steps and code to facili-

tate reproducibility of this work are openly shared at GitHub https://github.com/

ParkerLab/regulatoryAnnotations_comparisons. Static version of scripts and
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Table 2.2: GM12878 ATAC-seq sample information

GEO accession Run accession Cell type Cell count Replicate

GSM1155957 SRR891268 GM12878 50000 rep1
GSM1155958 SRR891269 GM12878 50000 rep2
GSM1155959 SRR891270 GM12878 50000 rep3
GSM1155960 SRR891271 GM12878 50000 rep4
GSM1155961 SRR891272 GM12878 500 rep1
GSM1155962 SRR891273 GM12878 500 rep2
GSM1155963 SRR891274 GM12878 500 rep3

all processed data are deposited to Zenodo https://zenodo.org/record/1413623#

.W8f2x1JRfpB

2.7 Acknowledgements and publication

The results presented in this chapter have been published in [195]. I thank Steve

for his ideas, insight and contributions for this work. I also thank all the other authors

for their contributions.

52

https://zenodo.org/record/1413623#.W8f2x1JRfpB
https://zenodo.org/record/1413623#.W8f2x1JRfpB


CHAPTER III

Understanding the Genetics of Gene Expression in

Human Pancreatic Islets

3.1 Abstract

Genome-wide association studies (GWAS) have identified >400 independent sin-

gle nucleotide polymorphisms (SNPs) that modulate the risk of type 2 diabetes (T2D)

and related traits. However, the pathogenic mechanisms of most of these SNPs re-

main elusive. Here, we examined genomic, epigenomic, and transcriptomic profiles in

human pancreatic islets to understand the links between genetic variation, chromatin

landscape, and gene expression in the context of T2D. We first integrated genome

and transcriptome variation across 112 islet samples to produce dense cis-expression

quantitative trait loci (cis-eQTL) maps. Further integration with chromatin state

maps for islets and other diverse tissue types revealed that cis-eQTLs for islet spe-

cific genes are specifically and significantly enriched in islet stretch enhancers (SEs).

High resolution chromatin accessibility profiling using ATAC-seq in two islet sam-

ples enabled us to identify specific transcription factor (TF) footprints embedded in

active regulatory elements, which are highly enriched for islet cis-eQTL. Aggregate

allelic bias signatures in TF footprints enabled us de novo to reconstruct TF bind-

ing affinities genetically, which support the high-quality nature of the TF footprint
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predictions. Interestingly, we found that T2D GWAS loci were strikingly and specifi-

cally enriched in islet Regulatory Factor X (RFX) footprints. Remarkably, within and

across independent loci, T2D risk alleles that overlap with RFX footprints uniformly

disrupt the RFX motifs at high information content positions. Together, these results

suggest that common regulatory variations have shaped islet TF footprints and the

transcriptome, and that a confluent RFX regulatory grammar plays a significant role

in the genetic component of T2D predisposition.

3.2 Introduction

Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet

dysfunction and insulin resistance in peripheral tissues. >90% of T2D SNPs identified

through genome wide association studies (GWAS) reside in non-protein coding regions

and are likely to perturb gene expression rather than alter protein function [129]. In

support of this, we and others recently showed that T2D GWAS SNPs are significantly

enriched in enhancer elements that are specific to pancreatic islets [142, 144, 189].

The critical next steps to translate these islet enhancer T2D genetic associations into

mechanistic biological knowledge are (a) identifying the putative functional SNP(s)

from all those that are in tight linkage disequilibrium (LD), (b) localizing their target

gene(s), and (c) understanding the direction-of-effect (increased or decreased target

gene expression) conferred by the risk allele. Two recent studies performed integrative

analyses of genome variation and gene expression variation across human islet samples

to identify cis expression quantitative trait loci (cis-eQTL) that linked T2D GWAS

SNPs to target genes [44, 193]. However, the transcription factor (TF) molecular

mediators of the islet cis-eQTL remain poorly understood and represent important

links to upstream pathways that will help untangle the regulatory complexity of T2D.
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3.3 Results

3.3.1 Integrated analysis of transcriptome and epigenome islet data

To build links between SNP effects on regulatory element use and gene expression

in islets, we performed strand-specific mRNA sequencing of 31 pancreatic islet tissue

samples to an average depth of 100M paired end reads. In parallel, we analyzed

unstranded mRNA-seq data for 81 islet samples from a previous study [44]. We

subjected both datasets to the same quality control and processing. We additionally

completed dense genotyping of the 31 islet samples and downloaded genotypes for 81

previously described islet samples [44]. Phasing and imputation yielded a final set of

6,060,203 autosomal SNPs (Methods) present in both datasets with an overall minor

allele count (MAC) >10. To identify SNPs affecting gene expression within 1 Mb of

the most upstream transcription start site (TSS), we performed separate cis-eQTL

analyses for the two sets of islet samples, and combined the cis-eQTL results via

meta-analysis. We identified 3,964 unique autosomal cis-eQTL lead SNPs for 3,993

genes at a 5% false discovery rate (FDR).

Next, we integrated chromatin immunoprecipitation followed by sequencing (ChIP-

seq) data for 5 histone modifications across islets [142, 162] and 30 diverse tissues with

publicly available datasets (Table 3.1) [186, 125, 17] using ChromHMM [40, 43, 41].

This produced 13 unique and recurrent chromatin states (Fig. 3.1A, chromatin state

tracks; Fig. 3.2) including promoter, enhancer, transcribed, and repressed regions,

which were annotated after analyzing overlap enrichments with the chromatin states

reported by the Roadmap Epigenome Consortium [186] for matching cell types. To

identify specific regulatory element sites within these chromatin states, we profiled

open chromatin in two islets using the assay for transposase-accessible chromatin-

sequencing (ATAC-seq) [147] (Fig. 3.1A, ATAC-seq tracks). Our high-depth ATAC-

seq data (>1.4B reads across both islets) allowed us to identify transcription factor
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Table 3.1: NSC and RSC scores for H3K27ac and H3K4me3 datasets used in this
study

(TF) DNA footprints using the CENTIPEDE algorithm (13) (Methods). We as-

signed regulatory state and TF footprint status to every islet cis-eQTL based on the

annotation of SNPs with r2 >0.8 with the lead SNP (Fig. 3.1B). We used iterative

conditional analyses [162] to identify 28 T2D and related quantitative trait GWAS

SNPs that could be islet cis-eQTL signals (Fig. 3.1C; Dataset S1: Conditional anal-

ysis results for GWAS SNP-gene pairs that were significant in the original eQTL

analysis; Dataset S2: Epigenetic annotation for SNPs in r2 ≥ 0.8 with the GWAS

variants included in Dataset S1). Given the modest eQTL signals at most of these

loci, conditional analysis in larger islet samples cis-eQTL signals will likely change

this list.

As an example, T2D GWAS index SNP rs1535500 occurs at the KCNK16 lo-

cus and the risk allele results in a glutamate substitution at alanine 277 (A277E).
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Figure 3.1: Integrated genomic, epigenomic, and transcriptomic analyses of human
pancreatic islets. (A) An overview of diverse molecular profiling data types used
in this study. Integrative molecular profiling (open chromatin, ATAC-seq; chromatin
states; RNA-seq) highlights islet-specific signatures at the KCNK17 locus. (B) Plot of
strength of association (y axis) for significant islet cis-eQTLs colored by chromatin-
state annotation (A) by chromosomal location (x axis); diamonds indicate SNPs
overlapping ATAC-seq footprints. An interactive version of this plot can be found at
theparkerlab.org/tools/isleteqtl/. (C) Plot of strength of islet cis-eQTL association
for T2D and related trait GWAS SNPs after conditional analysis to identify variants
likely independent of stronger cis- eQTL signals for the same gene by chromosomal
position and annotated as in B. The plot includes all GWAS SNPgene pairs with
FDR < 0.05 in original cis- eQTL analysis. The dotted red line represents the P
value threshold for FDR < 0.05 based on the conditional analysis. (D) Islet cis-
eQTL associated with KCNK17 expression highlighted for comparison with molecular
profiling tracks in A. (E) Plot of normalized KCNK17 expression in islet samples
and cis-eQTL risk allele dosage. (F) Functional validation of KCNK17 cis-eQTL
at its promoter region. The haplotype containing alleles associated with T2D risk
and increased KCNK17 expression (rs10947804-C, rs12663159-A, rs146060240-G, and
rs34247110-A) shows higher transcriptional activity than the haplotype with nonrisk
alleles. The cloned region is indicated at the top of A. Relative luciferase activity is
given as mean SD of four to five independent clones per haplotype normalized to
empty vector. Significance was evaluated using a two-sided t test.
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Figure 3.2: Thirteen-chromatin-state model built from histone modification ChIP-seq
data generated using ChromHMM [43] for 33 cell types. (A) Each graph represents
the overlap enrichment for 18 cell types of each of our 13 generated chromatin states
with the Roadmap Epigenomics [186] reported states. (B) Renaming of generated 13
states (Original State) according to Roadmap Epigenomics overlap enrichments (New
State) in A. (C) State numbers, histone mark emission probabilities, state names, and
percentage genomic coverage of each chromatin state in human islets.
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This change was implicated in increasing the KCNK16 basal channel activity and

cell surface localization when tested in a mouse model [197]. Our analysis revealed

that rs1535500 is not associated with KCNK16 expression (Fig. 3.3). Interestingly,

the rs1535500 risk allele is associated with increased expression of the neighboring

potassium channel gene KCNK17 (Fig. 3.1D, E). We observed that rs1535500 is in

high linkage disequilibrium (LD) (r2>0.95) with four SNPs (rs10947804, rs12663159,

rs146060240 and rs34247110) that are located in an islet promoter chromatin state;

all but rs34247110 are located in an ATAC-seq peak (Fig. 3.1A). Motivated by the

overlap with islet regulatory annotations, we cloned two different copies of the 473 bp

DNA sequence surrounding these SNPs, one containing the T2D risk alleles for each

of the 4 SNPs (risk haplotype), and the other containing the non-risk alleles (non-

risk haplotype). We performed luciferase reporter assays in the mouse insulinoma

(MIN6) beta cell line to test the transcriptional activity of these two clones. Both

clones exhibited promoter activity ( 10-fold increased compared to empty vector)

but the T2D risk haplotype showed significantly greater (24%, p=0.03) transcrip-

tional activity than the non-risk haplotype (Fig. 3.1F). This suggests that one or

more of these T2D risk variants cause increased regulatory activity in islets. We

note these findings highlight a complex functional genetic architecture for a sin-

gle haplotype that results in regulatory activity linked to one gene (KCNK17) and

coding variation in another (KCNK16). Together, these results illustrate how inte-

grated analyses help to identify potential causal SNPs associated with islet expres-

sion and T2D risk. To enable easy, in-depth exploration of our integrated genome-

wide results, we created an interactive islet cis-eQTL and chromatin state browser

(http://theparkerlab.org/tools/isleteqtl/).
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Figure 3.3: (A) LocusZoom plot showing that a T2D GWAS SNP (rs1535500/chr6:
39284050, hg19, purple; other variants in LD colored according to r2) is not associated
with KCNK16 expression in islets. (B) Plot for normalized KCNK16 expression and
rs1535500 risk allele dosage from mRNA-seq and genotyping data in islet samples.

3.3.2 Common and islet-specific gene eQTLs are enriched in different

chromatin states

To understand the regulatory architecture of islet eQTLs, we measured their co-

occurrence with different classes of chromatin states across diverse tissues, including

stretch enhancers (SEs), defined as enhancer chromatin states ≥3kb long. These tend

to mark cell identity regions and have been shown to harbor tissue-specific GWAS

SNPs [142, 153]. We calculated genome wide enrichment for cis-eQTL overlaps with

these features while controlling for minor allele frequency, distance to TSS, and the

number of SNPs in LD [160]. cis-eQTLs were enriched in active chromatin states such

as promoter, and genic enhancer in islets, while inactive states such as polycomb re-

pressed were depleted for such overlaps across multiple tissues (Fig. 3.4). Reasoning

that this common enrichment pattern across diverse tissues may be largely driven

by cis-eQTLs of commonly expressed housekeeping genes, we sought to classify cis-

eQTLs by the islet expression specificity of their associated genes. To measure gene

expression specificity in islets, we analyzed RNA-seq data from 16 additional tissues
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from the Illumina Human Body Map 2.0 project. We used an information theory

approach to define the islet expression specificity index (iESI, 3.5, also see Methods)

as in our previous skeletal muscle study [162]. iESI values near zero represent lowly

and/or ubiquitously expressed genes whereas values near one represent genes that are

highly and specifically expressed in islets. We divided genes into quintiles based on

the ascending iESI (3.5). We assigned eQTLs for these genes to their respective iESI

quintile and estimated enrichment of each set in chromatin annotations. Interest-

ingly, while eQTLs across iESI quintile bins were similarly enriched in islet promoter

states, eQTL enrichment in active and SE states increased concomitantly with the

islet specificity (3.6). As an example, we found that the cis-eQTL for the KCNA6

gene (3.7A) which is expressed in islets with high specificity (KCNA6 iESI = 0.78),

overlapped islet-specific enhancer states (3.7B). We note that this cis-eQTL locus

does not overlap a known T2D GWAS locus. When we restricted our enrichment

analysis to ATAC-seq peaks in SE states, we saw a stronger trend toward increas-

ing enrichment by iESI quintile (3.6). These results indicate a strong link between

active regulatory chromatin architecture and the genetic control of cell-specific gene

expression.

To further identify and dissect regulatory regions critical for islet-specific gene ex-

pression, we sought to distinguish between shared and tissue specific enhancer chro-

matin states. We performed k-means clustering for active enhancer chromatin states

across 31 cells/tissues (Methods). This method segregated enhancer regions based on

activity across diverse tissues; for example, cluster 13 is islet specific, while cluster 3 is

liver specific (Fig. 3.7C). We compared these enhancer clusters with SE annotations

across tissues and found that tissue specific clusters, such as the islet-specific cluster

13, indeed displayed high enrichment for islet SEs (Fig. 3.7D). Likewise, in other

tissues, tissue-specific enhancer clusters were enriched for the corresponding tissues

SEs (Fig. 3.7D). Next, we asked if islet cis-eQTL were enriched in specific enhancer
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Figure 3.4: Fold enrichment of islet eQTLs in chromatin states across cells/tissues.
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Figure 3.5: iESI. (A) Heat map showing mean FPKM for genes expressed in different
tissues when binned by iESI quintiles. (B) Scatterplots showing FPKM for genes
expressed in different tissues vs. the iESI. (C) Distribution of iESI by quintile of
expression.
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Figure 3.6: Enrichment of islet cis-eQTLs binned into quintiles by target gene iESI
in islet active TSS and stretch enhancer chromatin states (red) and consensus islet
intersect ATAC-seq peaks (present in both islet samples) in these states (blue). ∗ P
< 0.05 from GREGOR analysis.
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Figure 3.7: Common and islet-specific gene eQTLs are enriched in different chromatin
states. (A) LocusZoom plot of an islet cis-eQTL in the KCNA6 locus. (B) The
cis-eQTL for KCNA6, which is in the top quintile of the iESI (iESI 5), overlaps
an islet-specific enhancer state. (C) Active enhancer clustering (y axis) across cell
types (x axis) reveals cell-specific enhancer regions. Cluster 13 is islet-specific. (D)
Degree of overlap of enhancer clusters with stretch enhancers from four cell types.
Islet stretch enhancers show the strongest overlap with islet-specific enhancer cluster
13, whereas GM12878 stretch enhancers show the strongest overlap with GM12878-
specific enhancer cluster 1. The Jaccard statistic was normalized per column, so
that values range from zero (no overlap) to one (maximum observed overlap). (E)
Enrichment of islet eQTLs across enhancer clusters reveals that the full set of eQTLs
(column 1) is enriched across multiple enhancer clusters, whereas eQTLs for islet-
specific genes (iESI quintile 5; column 5) are enriched in the islet-specific enhancer
cluster 13. Gray bars indicate nonsignificant after Bonferroni correction.
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clusters and observed enrichment in multiple clusters (Fig. 3.7E). We then stratified

the cis-eQTLs by iESI quintile and repeated this analysis. Notably, islet cis-eQTLs

for genes in iESI quintile 5 only showed significant enrichment in the islet specific en-

hancer cluster 13 (p-value = 1.2×10-8, fold enrichment = 1.91, Fig. 3.7E). Together,

these results demonstrate that islet tissue-specific genetic regulatory architecture is

enriched in islet-specific enhancers and SEs.

3.3.3 Islet eQTL are enriched in islet ATAC-seq peaks and DNA foot-

prints

Chromatin state maps identify regulatory regions such as promoters and enhancers

but lack the resolution to pinpoint specific sites that may be bound and regulated

by a TF. To refine the link between genetic variation, TF binding sites, and gene

expression, we leveraged the high-resolution ATAC-seq data to identify in vivo puta-

tive TF binding sites. We employed CENTIPEDE as previously described to predict

whether TF motif occurrences in ATAC-seq peaks are bound or unbound by the cor-

responding TF [162, 147]. This approach detected high-quality footprints for many

TFs, including the general CCCTC-binding factor (CTCF) and the more islet spe-

cific TF Regulatory Factor X (RFX) (Fig. 3.8A, B). Fig. 3.8A depicts the integrated

chromatin and transcriptional landscape at RFX6, a gene that exhibits islet-specific

expression (iESI = 0.94, iESI quintile bin = 5). Notably, we detect RFX footprints

in islet SEs near RFX6 (Fig. 3.8A), suggesting an autoregulatory mechanism that,

based on recent studies [144, 157], may indicate RFX6 is an islet core transcriptional

regulatory gene. We detected periodic, nucleosome-sized spikes in the ATAC-seq

signal adjacent to the CTCF footprint regions (Fig. 3.8B), consistent with its re-

ported nucleosome-phasing properties [47]. Comparing ATAC-seq profiles from islets

to those of skeletal muscle tissue [162], adipose tissue [4] and a lymphoblastoid cell

line (GM12878) [17], we found that islet ATAC-seq peaks occurred preferentially in
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islet promoter and enhancer chromatin states (Fig. 3.9). Islet cis-eQTLs were highly

enriched in multiple TF footprint motifs (p-value range: 5.1×10-5 - 5.0×10-23; fold

enrichment range: 2.02-6.67) but not in non-footprint motifs (Fig. 3.8C, Dataset S3,

Methods). These results suggest a strong link between SNPs at TF binding sites in

relevant tissues and gene regulation.

To detect motif occurrences that could be altered by the presence of alleles not in

the reference genome, we developed a personalized phased SNP-aware genome motif

scanning procedure to determine where a motif occurs (Methods). This allowed us to

identify motif instances even when multiple non-reference alleles occur within a few

base pairs of each other. We observed significant enrichment for islet cis-eQTLs in the

set of TF footprint motifs identified only from this haplotype phase-aware scanning

approach (that is, the motifs are missed even when a single SNP-aware motif scan-

ning approach is used) in islet samples (p-values: Islet1=4.6×10-5, Islet2=4.0×10-7;

Islet-intersect=0.0014; 3.10). Given the informative chromatin accessibility allelic

analyses in recent studies (20, 21), we next asked if we could recreate known TF

position weight matrices (PWMs) (Fig 3.8D, row 1) based on the allele-specific bias

at heterozygous SNPs within TF footprint motifs. To do this, we identified every

heterozygous site in a given TF footprint motif, calculated the allelic bias in ATAC-

seq signal at these positions, and retained all SNPs with significant bias (Fig. 3.8D,

row 3; Methods). We constructed the PWM using the degree of allelic bias for the

over-represented alleles (Fig. 2D, row 2). This allelic bias-based PWM (Fig. 3.8D

row 2) closely matched the canonical PWM for the corresponding TF (Fig. 3.8D,

row 1), providing an in vivo verification of the cognate PWM. We consider this a

genetically reconstructed PWM. There was a larger difference in the PWM score for

the two alleles of allelic bias SNPs than for the two alleles of matched 1000G SNPs

occurring in the same motif (RFX p-value=0.018; CTCF p-value=0.023) (3.11). To

further verify that the allelic bias-based genetically reconstructed PWMs were not

67



Figure 3.8: Nucleotide resolution islet ATAC-seq profiling nominates regulatory mech-
anisms. (A) RFX6 locus with expression (RNA-seq), chromatin states, open chro-
matin (ATAC-seq), and footprints for CTCF and RFX in islets. (B) Density plots
indicating normalized sequence coverage of ATAC-seq from two human islet samples
at sites overlapping CTCF (motif = CTCF known2) and RFX (motif = RFX2 4) mo-
tifs. (C) Log twofold enrichment of islet cis-eQTLs in TF footprint motifs compared
with their enrichment in TF nonfootprint motifs. TFs for which footprint and non-
footprint motifs overlap four or more eQTL SNPs are shown. Blue shows significant
enrichment in footprints only (Bonferroni corrected P < 0.05). No significant en-
richment was observed in any TF nonfootprint motif. (D) Reconstruction of CTCF
(motif = CTCF known2) and RFX (motif = RFX2 4) motifs using ATAC-seq TF
footprint allelic bias data. Row 1: original motif PWM. Row 2: PWM genetically
reconstructed using the overrepresented alleles (and extent of overrepresentation) for
SNPs with significant ATAC-seq allelic bias. Row 3: count of nucleotides in SNPs with
significant allelic bias. Row 4: PWM reconstructed using the count of nucleotides for
heterozygous SNPs in the TF footprint. Row 5: count of nucleotides in heterozygous
SNPs in the TF footprint.
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Figure 3.9: Enrichment of islet, muscle, GM12878, and adipose ATAC-seq peaks
(columns) in chromatin states across diverse tissues (y axis). Consensus (islet inter-
section) and individual (islets 1 and 2) islet ATAC-seq peaks show enrichment for
active chromatin states in islets, which is more pronounced at TSS-distal (>5 kb
from TSS) regions. Muscle (column 4), GM12878 (column 5), and adipose (column
6) ATAC-seq peak calls show similar trends with chromatin states from matched tis-
sues. Note that TSS-distal ATAC-seq peaks from the islet intersect dataset overlap
islet active enhancers more than any other chromatin state in islets. Note also that
the level of islet enhancer overlap is larger than enhancer overlap in any other tissue.
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Figure 3.10: Enrichment of islet cis-eQTLs (5% FDR) in ATAC-seq TF footprints
that are only detected using phased SNP-aware scans (Materials and Methods). ∗ P
<0.05 from GREGOR analysis.

simply reflecting the allelic composition of SNPs in the motifs, we constructed the

PWMs using the allele count for all TF footprint heterozygous SNPs observed at each

position (where each observed SNP contributed two alleles) and found the resulting

PWMs had little information and little similarity to the cognate motifs used to scan

across the genome (Fig. 3.8D, rows 4 and 5). Collectively, these results reinforce

the potential of ATAC-seq and allelic footprinting analyses to identify relevant and

potentially causal TF binding changes in the genetic control of gene expression.

3.3.4 T2D GWAS loci are enriched in RFX footprints and T2D risk alleles

disrupt the motifs at independent locations

Given the strong enrichment for islet cis-eQTL in diverse TF footprints, we next

sought to identify T2D GWAS SNPs that might regulate gene expression by modu-

lating TF binding. We found that T2D-associated SNPs were significantly enriched

in islet RFX TF footprints (p-value range 1.5×10-5 - 8.3×10-9 for five RFX TF family

members fold enrichment range 7.46 - 30.06 (Fig. 3.12A, Dataset S4)). In contrast,

we did not see significant enrichment of T2D associated SNPs in islet non-footprint
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Figure 3.11: SNPs that show allelic bias in ATAC-seq data (ab; blue box plot) ex-
hibit larger effects on the predicted TF binding site motifs compared with randomly
sampled 1000G SNPs (1000G; red box plot) overlapping the same footprint in islet
1. The y axis shows absolute value of the delta score [delta = log10(FIMO P value
of alternate sequence) (log10(FIMO P value of reference sequence))]. P values of the
comparisons were determined by the Wilcoxon rank sum of test. (A) Footprints motif
= RFX2 4. (B) Footprint motif = CTCF known2.
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RFX TF motifs (Methods) or in GM12878 TF footprints (Fig. 3.12A). The RFX

family of transcription factors recognize X-box motifs and have highly evolutionarily

conserved DNA binding domains (22), which may explain why similar motifs from

many RFX family members are enriched. Gaulton et al. (2015) observed enrich-

ment of T2D GWAS SNPs in FOXA2 ChIP-seq binding sites in islet tissues (23).

We observed 13.5 fold enrichment of T2D-associated SNPs in islet FOX TF foot-

prints (p=2.8×10-5, slightly less significant than the Bonferroni threshold of 2.5×10-5,

Dataset S4).

Studies of autoimmune disease have found that disease associated variants often

occur near but not in TF motifs (24). We therefore asked if T2D-associated SNPs

were enriched in regions flanking RFX footprints motifs (excluding footprint itself)

(n=22). We found that regions flanking RFX footprint motifs were enriched for T2D

associated SNPs and that the enrichment decreased with increasing distance from

footprint motif (Fig. 3.13). The flanking enrichment was lower than in the RFX

TF footprints. In contrast, we did not see enrichment of T2D associated SNPs in,

non-footprint RFX TF motifs or in the regions flanking the non-footprint RFX TF

motifs (Fig. 3.13).

We next assessed the potential effects of the risk and non-risk alleles for 9 T2D

associated SNPs at 5 independent loci on RFX TF binding (Methods) (Fig. 3.12B).

For each SNP, the non-risk allele was the highest probability nucleotide in the RFX

position weight matrix (PWM), and thus the risk allele was predicted to disrupt the

motif (Fig. 3.12B and C black boxes). At two of the five loci, the T2D GWAS risk

alleles were associated with significantly increased gene expression in our conditional

eQTL analysis: KCNK17 (KCNK16 locus, Fig. 3.1B, C, E) and ABCB9 (PITPNM2

locus, Fig. 3.1C). Other loci might have not been detectable as eQTLs due to state

specific regulation or small effect sizes. The observation that T2D risk alleles at

multiple loci confluently disrupt RFX motifs provides a hypothesis that could explain
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Figure 3.12: T2D GWAS enrichment at islet footprints reveals confluent RFX motif
disruption. (A) T2D GWAS SNPs are significantly enriched in RFX motifs in islet
footprints but not in control motifs or footprints from a nondisease-relevant cell type
(GM12878). TF motifs for which footprints overlap four or more T2D GWAS SNPs
are shown. The red line indicates Bonferroni multiple testing threshold. (B) T2D-
associated SNPs that overlap high information content (>1 bit) positions in RFX
motifs. The highest scoring RFX footprints are reported for each T2D GWAS SNP.
Act. Enh., active enhancer; Act. TSS, active TSS; Wk. Transc., weak transcribed.
∗ Chromatin-state annotation overlapping the SNP. † Because RFX motifs in C are
organized by alignment to the longest RFX3 1 motif, motifs overlapping rs10947804
and rs1716165 correspond to the reverse complement sequence. Therefore, risk and
nonrisk alleles are also reported as reverse complement relative to the plus strand
sequence. (C) Alignment of highest scoring RFX footprint at each SNP; the boxes
indicate the SNP overlap positions. Note that, in every case, the risk allele disrupts
that motif.

the mechanism of a subset of T2D associated variants.

3.4 Discussion

We have integrated genome, epigenome, and transcriptome variation and created

maps to better understand the genetic control of islet gene expression. Comparison of

these maps with T2D GWAS SNPs has helped identify potential disease mechanisms.

For example, the risk allele of the coding SNP rs1535500 has been implicated to
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Figure 3.13: Enrichment for T2D GWAS SNPs in regions flanking merged RFX
footprint (red) and nonfootprint (blue) motifs.

increase KCNK16 activity and cell surface localization in a mouse model [197]. Other

risk alleles in SNPs in high LD with rs153550 are associated with increased expression

of the neighboring potassium channel gene KCNK17. KCNK16 and KCNK17 are two

pore domain background K+ channels, members of the TWIK related alkaline pH

activated K+ channel (TALK) family [54, 106]. Both genes are expressed in islets

with high specificity (KCNK16 iESI = 0.98; KCNK17 iESI = 0.76). KCNK16 has

been implicated in regulating electrical excitability and glucose stimulated insulin

secretion (GSIS) [197]. The KCNK17 gene is not present in the mouse genome. It

is possible that the T2D risk haplotype at this locus may have multiple effects that

collectively disrupt beta cell K+ signaling and glucose stimulated insulin secretion by

simultaneously over-activating KCNK16 and over-expressing KCNK17.

We find that T2D GWAS associated SNPs are significantly enriched in RFX TF

footprint motifs and are almost significantly enriched in FOX TF footprint motifs. We

find consistent disruption of islet RFX footprint motifs by T2D risk alleles, including

at the KCNK17 locus. Lizio et al. found that knockdown of RFX6 results in increased

expression of KCNK17 [104] which is consistent with the T2D risk allele disrupting TF

binding and increasing target gene expression. At other T2D GWAS loci, such as the
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MPHOSPH9 locus, (index SNP rs1727313), two or three T2D GWAS SNPs in high

LD are each predicted to have risk alleles that coordinately disrupt independent RFX

footprint motifs (Fig. 3.12B, C). We and others [142, 29, 59] previously described the

presence of multiple SNPs in enhancers at individual GWAS loci. Our current results

build on this concept to include the possibility of multiple confluent disruptions of

similar TF motifs in the same locus. Collectively, these results indicate that T2D

risk may in part be propagated through genetic modulation of RFX binding in islets.

Indeed, our study shortlists only a subset of T2D associated variants as candidates

which should be functionally dissected in vivo.

Among the RFX TFs, RFX6 is expressed in islets with high specificity (iESI =

0.94; 3.14) and is involved in pancreatic progenitor specification, endocrine cell dif-

ferentiation, maintaining beta cell functional identity, and controlling glucose home-

ostasis [212, 167, 169]. Beta cell-specific deletion of RFX6 results in impaired insulin

secretion [145, 21]. Individuals that are heterozygous for a frameshift mutation in

RFX6 have increased 2-hour glucose levels [75]. Importantly, rare autosomal reces-

sive mutations that alter DNA-contacting amino acids in the DNA binding domain of

RFX6 result in Mitchell-Riley syndrome, which is characterized by neonatal diabetes

[167]. Although RFX6 was not in our motif database, a recent report found it to be

highly similar to the other RFX family motifs [104], consistent with the expectation

for highly conserved DNA binding domains [2]. Our findings could represent a novel

connection between rare coding variation in the islet master TF RFX6 [169, 145]

and common non-coding variation in multiple target sites for this TF. The impact

of these variations mirror the expected effect on organismal physiology, with cod-

ing variants that result in neonatal diabetes and non-coding variants that result in

later onset T2D. This study for the first time implicates impaired RFX-dependent

transcriptional responses in genetic susceptibility to T2D and nominates new mech-

anistic hypotheses about the molecular genetic pathogenesis of this complex disease.
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Figure 3.14: RFX gene expression (FPKM) across islets and 16 Illumina Body map
2.0 tissues. The iESI quintile for each RFX gene is labeled in the islet columns.
RFX6 has the highest iESI (0.94) among all RFX TF genes.

Following up on the reported loci to functionally validate this hypothesis could help

in better understanding T2D mechanisms. Given that most other GWAS SNPs are

non-coding, this approach could be used to identify other master TF and multiple

target site relationships.

3.5 Materials and Methods

Islet procurement and processing We procured the islet samples used in this study

from the Integrated Islet Distribution Program (IIDP), the National Disease Re-
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search Interchange (NDRI), or ProdoLabs. 31 islets (age=45.3 +/- 11.9 years; 52%

male; BMI=27.2+/-4.3 kg/m2) passed mRNA-seq and genotype QC steps (see be-

low). Islets were shipped overnight from the distribution centers. Upon receipt, we

pre-warmed islets to 37 C in shipping media for 1-2 hours prior to harvest. Ap-

proximately 2500-5000 islet equivalents (IEQ) from each organ donor were harvested

for RNA isolation. We transferred 500-1000 IEQ to tissue culture-treated flasks and

cultured as in (1); genomic DNA isolated from islet explant cultures was used for

genotyping.

3.5.1 SNP genotyping, sample and genotype QC

Genomic DNA was genotyped at the Genetic Resources Core Facility (GRCF)

of the Johns Hopkins Institute of Genetic Medicine on the HumanOmni2.5-4v1 H

BeadChip array (Illumina, San Diego, CA, USA): minimum call rate was 97.14%. We

mapped the Illumina array probe sequences to the hg19 genome assembly using BWA.

We excluded SNPs with ambiguous probe alignments, SNPs with 1000 Genomes phase

1 variants with minor allele frequency of ≥ 1% or greater within 7bp of the 3’ end of

probes, or call rates <95%. All alleles were oriented relative to the reference.

We identified no individuals with ≥ 3rd degree relatedness using KING [112].

We performed principal components analysis using PLINK 1.9(http://www.cog-

genomics.org/plink2/general_usage) on 60,714 SNPs with minor allele count (MAC)

>5 and r2 <0.2, after excluding SNPs from regions of high LD [151]. 33 self-reported

Caucasian samples and one sample of unknown ethnicity clustered together by princi-

pal components analysis (PCA). One sample self-reported to be of Caucasian ancestry

did not cluster with the others and was excluded for eQTL analyses.

Fadista et al. graciously provided genotypes of their 89 islet samples for the Il-

lumina HumanOmniExpress 12v1C BeadChip [44]. We processed the probes and

genotypes as described above. We identified no individuals with ≥ 3rd degree relat-
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edness. We performed PCA as described above using 86,502 LD pruned SNPs. All

89 samples clustered together in the PCA analysis.

3.5.2 RNA isolation, mRNA-seq library preparation and mRNA sequenc-

ing

We extracted and purified total RNA from 2000-3000 islet equivalents (IEQ) us-

ing Trizol (Life Technologies). RNA quality was confirmed with Bioanalyzer 2100

(Agilent); samples with RNA integrity number (RIN) >6.5 were prepared for mRNA

sequencing. We added External RNA Control Consortium (ERCC) spike-in controls

(Life Technologies) to one microgram of total RNA. We generated PolyA+, stranded

mRNA RNA-sequencing libraries for each islet using the TruSeq stranded mRNA

kit according to manufacturers protocol (Illumina). Each islet RNA-seq library was

barcoded, pooled into 12-sample batches, and sequenced over multiple lanes of HiSeq

2000 to obtain an average depth of 100 million 2 x 101 bp sequences.

3.5.3 mRNA-seq processing and QC

We retained RNA-seq reads passing the Illumina chastity filter and mapped reads

to a reference sequence composed of ERCC control fragments and all chromosomes

and contigs from hg19, excluding alternate haplotypes, replacing the mitochondrial

sequence (chrM) with the Cambridge Reference Sequence, and masking the pseu-

doautosomal region on chromosome Y. We aligned reads using STAR (version 2.3.1y)

[37] with default parameters and a splice junction catalog based on Gencode v19 [61].

Non-uniquely mapping reads and read pairs with unpaired alignments were discarded.

Duplicate read pairs, i.e. those mapping to the same coordinates, were retained.

RNA-seq QC was performed at the level of readgroups (i.e. a library on a lane)

using QoRTs [62]. We inspected the comprehensive set of QC metrics generated by

QoRTs for outlying libraries, lanes, and sequencing runs. We used the 92 ERCC RNA
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spike-in controls and in-house scripts to assess library quality and batch effects, and to

check the accuracy of the strand-specific protocol [76]. We also performed a principal

components analysis (PCA) on the matrix of expression data. The QoRTs and PCA

processes revealed two outlying sample libraries. One sample showed extreme 3 bias

in gene body coverage, and the other showed low gene diversity and was a strong

outlier by PCA. In addition, we excluded one sample that was reportedly Caucasian,

but was an outlier in the genotype PCA (see above). These three libraries were

removed, leaving 31 islet samples for analysis.

To confirm sample identity and check for contamination, we compared SNP chip

genotypes to RNA-seq alignments in annotated exonic regions using verifyBamID

[78], using the –maxDepth 100 option to avoid having highly-expressed genes bias

the estimate of contamination. No sample showed contamination >0.78%.

We aligned the non-strand-specific RNA-seq reads from Fadista et al. [44] with

the same version of STAR to the same hybrid reference genome. Again, we discarded

non-uniquely mapped reads and read pairs with unpaired alignment, and we retained

duplicate pairs. We performed QC using QoRTs, and PCA of the expression data, as

described above, and identified one outlier library. In addition, comparison of SNP

chip genotypes to RNA-seq alignments with verifyBamID identified two swapped

samples, and five samples that had greater than 2% estimated contamination in the

RNA-Seq sample. We removed all eight samples, leaving 81 samples to be analyzed.

3.5.4 Expression quantification

To study regulatory variation, we performed analyses at the gene level. Def-

initions for all transcriptome features were based on GENCODE v19 [61], which

annotates a total of 57,820 genes: 20,345 protein-coding, 13,870 long non-coding

RNAs, and 14,206 pseudogenes. We ignored pseudogenes for all downstream analyses.

We counted fragments mapping to genes using htseq-count v0.5.4 [6] (http://www-
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huber.embl.de/users/anders/HTSeq/doc/count.html) and calculated FPKM val-

ues for each gene.

We processed data from Fadista et al. in the same way, except that counts of

genes were performed in a non-strand-specific manner, consistent with the RNA-seq

libraries.

3.5.5 Imputation

We excluded SNPs with: MAC <1, Hardy-Weinberg equilibrium p-value < 10-6,

absolute alternate allele frequency difference >0.2 compared to the 1000G EUR sam-

ple and A/T or C/G SNPs with MAF >0.2. This left 2,057,703 autosomal SNPs for

subsequent imputation. We performed autosomal SNP imputation using a two-step

strategy [71] with the haplotypes from 1000G phase3 v5 [179] as the reference panel.

To improve phasing quality given the small number of islet samples, we pre-phased

our islet samples together with the 2,504 reference panel samples using ShapeIT ver-

sion 2 [33]. We then imputed genotypes with Minimac2 [48]. We retained 8,377,422

imputed variants with a MAC ≥ 1 and r2 ≥ 0.3.

For the 81 Fadista et al. islet samples, we removed SNPs, and prephased and

imputed genotypes as described above. We used 692,118 SNPs for imputation. We

retained 9,758,857 imputed variants with a MAC ≥ 1 and r2 ≥ 0.3.

3.5.6 cis-eQTL meta-analysis

We performed separate cis expression quantitative trait (cis-eQTL) analysis for

our islets (n=31) and Fadista et al. islets (n=81) and combined the results using meta-

analysis. We performed PCA (using the same procedure described in the genotype QC

section) separately on these two sets of samples. We considered for analysis 6,060,203

SNPs that were present in both studies and had a combined MAC ≥ 10. We tested

SNPs within 1 Mb of the most upstream TSS of each gene using Matrix eQTL [165].
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We included in the analysis 19,360 genes present in both sets of samples (out of 26,845

genes present in our islets and 19,650 present in Fadista et al. islets). For individual i

and gene j, to generate the gene expression value Yij, we inverse normalized FPKMji

for each gene j. We then performed factor analysis via PEER [170, 171] on the inverse

normalized FPKM (specifying from 1 to 60 factors to optimize the detection of cis-

eQTLs (below) and including age, sex, the top 2 genotype-based principal components

and and for our islet samples only experimental batch , as covariates in the model),

and inverse normalized the resulting residuals. We used the linear regression model

with an additive genetic effect:

Yij = α + βjsGis + εij

where is the intercept, Gis is the imputed allele count for SNP s for individuals i, js

is the regression coefficient of the imputed allele count for SNP s on transformed gene

expression Yij and ij is a normally distributed error term with mean 0 and variance

σ2.

We used false discovery rate (FDR) [174] to account for multiple testing and

considered as significant associations with FDR ≤ 5%. We expect that removing

technical and biological variation via PEER will increase power to detect cis-eQTLs

[162]. For each study we report results using number of PEER factors that maximized

the number of eQTLs on chromosome 20 at FDR ≤ 5%: 30 for our islets and 32 for

Fadista et al.

For each SNP-gene pair we combined the results from our islet samples and Fadista

et al. using a sample-sized weighted meta-analysis [205] and report p-values based

on this analysis. In addition, we performed a fixed-effects inverse variance-weighted

meta-analysis [205] and report eQTL effect sizes from this analysis. We do not report

p-values from this analysis as we found the p-values were consistently inflated. We

present results for SNPs present in both studies (MAC≥1) and with MAC ≥ 10 in
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the combined study.

Gene-based cis-eQTLs for GWAS variants for T2D and related traits We compiled

a list of 225 SNPs with p-value <5 x 10-8 in GWAS (GWAS SNPs) for T2D, fasting

glucose, fasting glucose adjusted for BMI, fasting insulin, fasting insulin adjusted for

BMI, 2-hr glucose, 2-hr glucose adjusted for BMI, and fasting proinsulin from the

NHGRI GWAS catalog [203] and carried out manual curation of the literature to

create a comprehensive list that was up-to-date as of May 2014. Of these 225 GWAS

SNPs, 214 were tested in our cis-eQTL analysis for a total of 3,995 GWAS SNP-

gene pairs. To identify GWAS variant cis-eQTLs that may be independent of other

stronger cis-eQTLs for the same gene, we performed iterative conditional analysis on

each of the 3,995 GWAS SNP-gene pairs. For each GWAS SNP-gene pair and study

we used the linear regression model with an additive genetic effect:

Yij = α + βjGWASGiGWAS + εij

where GiGWAS is the imputed allele count for the GWAS SNP for individuals i,

jGWAS, is the regression coefficient of the imputed allele count for the GWAS SNP,

and Gis is the set of SNPs within 1Mb of the most upstream TSS. We combined the

results from our samples and Fadista et al. islets using meta-analysis as described

above. If ≥ 1 SNP had a meta-analysis p-value < 1.2 x 10-4 (corresponding to the

p-value threshold for gene-based cis-eQTLs with FDR <5%) we retained the SNP

with the most significant p-value in the model and repeated the procedure until no

added SNP had a p-value <1.2 × 10-4. This procedure corresponds to performing

step-wise forward selection of SNPs within 1Mb of the most upstream TSS based

on the results of the meta-analysis at each step (using a stopping threshold p-value

of 1.2 × 10-4). The conditional p-value for a given GWAS SNP is the p-value for

βtextsubscriptjGWAS from the final model. We considered as significant conditional

associations with FDR ≤ 5% based on the 3,995 GWAS SNP-gene pairs.
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3.5.7 Functional validation of eQTL variant activity and direction of ef-

fect

We maintained the MIN6 mouse insulinoma beta cell line [128] as previously de-

scribed [89]. We amplified a 473-bp genomic region containing rs10947804, rs12663159,

rs146060240 and rs34247110 from human DNA (primers: 5’-GCCAGGTAAGCCAGGTA-

3’ and 5’-GAGTGCGGTTTCCAGAAGTC-3’) and cloned it into the pGL4.10 pro-

moterless vector (Promega) as previously described [89]. The region was cloned in

the forward orientation with respect to KCNK17 transcription and includes the pro-

moter, 5UTR, and the first 34 codons of KCNK17. We performed site-directed

mutagenesis with the QuikChange Lightning Site-Directed Mutagenesis Kit (Ag-

ilent) to change the KCNK17 start codon from ATG to AGG to prevent inter-

ference with translation and function of the luciferase protein. We amplified the

KCNK17-increasing and decreasing haplotypes. The haplotype of alleles associated

with higher KCNK17 expression (risk haplotype) includes rs10947804-C, rs12663159-

A, rs146060240-G, and rs34247110-A. The haplotype associated with lower KCNK17

expression (non-risk haplotype) includes rs10947804-T, rs12663159-C, rs146060240-

deletion, and rs34247110-G. We performed luciferase assays as previously described

[89]. We plated 200,000 cells per well in a 24-well plate and transfected after 24 hours.

We co-transfected 250 ng of haplotype plasmid and 80 ng Renilla plasmid in dupli-

cate wells using Lipofectamine LTX (Life Technologies) and assayed luciferase activity

48 hours post-transfection. For the KCNK17-increasing haplotype, we transfected 4

independent clones and for the KCNK17-decreasing haplotype we transfected 5 in-

dependent clones. Each independent clone was transfected in duplicate. Quantified

luciferase activity was normalized to empty vector (EV) and we tested for difference

in luciferase activity between haplotypes using a two-sided t-test. We observed the

same transcriptional effect in three separate experiments.
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3.5.8 Analysis of islet-specific expression

We used an information theory approach [161, 64] to score genes based on islet

expression level and specificity relative to the panel of 16 diverse Illumina Human

Body Map 2.0 tissues. We first calculated expression (x) in FPKM values for all

Gencode v19 genes across a representative islet sample and each of the 16 tissues in

the Body Map 2.0 data. We calculated the relative expression of each gene (g) in

islets compared to all 17 tissues (t) as p:

pg,islet =
xg,islet∑17
n=1 xg,t

We next calculated the entropy for expression of each gene across all 17 tissues as

H:

Hg = −
17∑
n=1

pg,tlog2(pg,t)

Following previous studies (24, 25), we defined islet tissue expression specificity

(Q) for each gene as:

Qg,islet = Hg − log2(pg,islet)

To aid in interpretability, we divided Q for each gene by the maximum observed

Q and subtracted this value from 1 and refer to this new score as the islet expression

specificity index (iESI):

iESIg = 1− Qg,islet

Qmax,islet

iESI scores near zero represent lowly and/or ubiquitously expressed genes and

scores near 1 represent genes that are highly and specifically expressed in islets. We

divided genes and subsequently the associated eQTL variants associated into quintiles
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as shown in Fig. 3.5, 3.6, 3.7E) based on the iESI score. The division by quintile

provided an average sample size of 618 lead eQTL variants in each bin, which we

then used to compute enrichments in genomic features. In our previous analysis

of skeletal muscle, we used a decile approach as we detected lead eQTLs in >90%

of testable genes [162], whereas here we detected a lower number of eQTLs, 3,964,

and thus used a quintile approach. To depict a higher-resolution partitioning of

genes based on the iESI score, we used a deciles in the interactive eQTL browser

(http://theparkerlab.org/tools/isleteqtl/).

3.5.9 Chromatin state analyses

We collected cell/tissue ChIP-seq reads for H3K27ac, H3K27me3, H3K36me3,

H3K4me1, and H3K4me3, and input from a diverse set of publically available data

[186, 43, 125, 142]. Collectively, these data represent 31 cells/tissues (shown in Fig.

S6C), as well as 8 additional human and rodent datasets included for other ongo-

ing projects. We performed read mapping and integrative chromatin state analyses

in a manner similar to our previous reports (20, 29), and followed quality control

procedures reported by the Roadmap Epigenomics study [186]. Briefly, we mapped

reads using BWA [97] (version 0.5.8c), removed duplicates using samtools, and fil-

tered for mapping quality score of at least 30. To assess the quality of each dataset,

we performed strand cross correlation analysis using phantompeakqualtools (v2.0,

http://code.google.com/p/phantompeakqualtools) [186]. To select cells/tissues

for ChromHMM to learn chromatin states, and following the Roadmap Epigenomics

practices, for each tissue we performed QC on the most well-defined peak datasets,

H3K27ac and H3K4me3. We required each of these two marks within a tissue/cell

to have normalized strand cross-correlation (NSC) > 0.8 and relative strand cross-

correlation (RSC) score >1.1. Islets and 32 other cell/tissue types out of 39 passed

this criteria. The failed samples are consistent with the Roadmap Epigenomics study
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analyses: the 5 brain tissues and ES-HUES64 did not pass this criteria. To more

uniformly represent data sets with different sequencing depths, we randomly subsam-

pled each data set containing >20M mapped reads to a depth of 20M. Chromatin

states were learned jointly from the 33 cell/tissues that passed QC by applying the

ChromHMM (version 1.10) hidden Markov model (HMM) algorithm at 200 bp reso-

lution to the 5 chromatin marks and input [43, 41, 40]. We ran ChromHMM with a

range of possible states, and selected a 13 state model as it most accurately captured

information from higher state models and provided sufficient resolution to identify bi-

ologically meaningful patterns in a reproducible way. We have used this state selection

procedure in previous analyses [162, 142]. To assign biological function names to our

states that are consistent with previously published states, we performed enrichment

analyses in ChromHMM comparing our states to the states reported by Roadmap

Epigenomics (in their extended 18 state model) [186] for 18 matched cells/tissues

(Fig. S1). We assigned the name of the Roadmap state that was most strongly en-

riched in each of our states. We then applied our chromatin state model to obtain

chromatin state segmentations for the 6 cell/tissue types which were not used to learn

the model using ChromHMM MakeSegmentation.

3.5.10 Clustering by enhancer states across tissues

To identify patterns of active enhancer chromatin state calls across cell and tissues,

we performed k-means clustering using 200bp genomic windows where ChromHMM

posterior probability for active enhancer state 1 or 2 was greater than 0.95 in at least

one cell/tissue type used in this study. We identified an optimal number of clusters

by plotting the within group sum of squares versus number of clusters for a range of

k, and selected k=60 which corresponded to the elbow in the plot. We performed

k-means clustering using the Hartigan-Wong algorithm with 10,000 iterations and 50

random starts.
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3.5.11 Overlap of enhancer clusters with stretch enhancers

We called stretch enhancers for all cells/tissues in our chromatin state segmenta-

tions as in our previous work [162, 142] by merging adjacent enhancer states (Active

Enhancer 1 and 2, Weak Enhancer and Genic Enhancer) in a given tissue and iden-

tifying contiguous regions ≥ 3kb. We quantified the overlap between each enhancer

cluster and stretch enhancers for islets, liver, H1 and GM12878 using the Jaccard

statistic in BEDtools [154]. In Fig. 3.7C, we normalized the Jaccard statistic within

each column such that the maximum is set to 1.

Enrichment of genetic variants in genomic features We calculated the enrichment

of lead islet cis-eQTL or lead T2D GWAS SNPs (including SNPs in r2 ≥ 0.8 with

the lead SNP (SNPs in LD)) in features such as chromatin states, stretch enhancers,

enhancer clusters, transcription factor footprint or non-footprint motifs using GRE-

GOR [160]. TF non-footprint motifs (shown in Fig. 3.8C and 3.12A and B), are

defined as TF motifs that are not called as footprints in either of the islet samples.

For eQTL enrichment, we included the lead cis-eQTL SNP for genes significant at a

given FDR threshold. The enrichment trends were consistent across different FDR

thresholds (5%, 1%, and 0.1%), with more stringent sets having slightly more pro-

nounced trends. We report here the results for the FDR ≤ 5% set. For T2D GWAS

SNP enrichment, we aimed to use independent T2D association signals, i.e. reported

lead T2D SNPs that were not in LD with each other. We sorted the list of lead

GWAS SNPs (defined in section Gene-based cis-eQTLs for GWAS variants for T2D

and related traits) by p-value of association with T2D and sequentially removed SNPs

with r2 > 0.2 with a higher ranked SNP.

For each input SNP, 500 control SNPs were selected that matched the input SNP

for MAF, distance to the gene, and number of SNPs in r2 ≥ 0.8. Fold enrichment

is calculated as the number of loci at which the index SNP (or SNP in LD) overlaps

the feature over the mean number of loci at which the matched control SNPs (or
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SNPs in LD) overlap the same feature. This process accounts for the length of the

features as longer features will have more overlap by chance with control SNP sets.

We used the following parameters in GREGOR: r2 threshold (for inclusion of SNPs

in linkage disequilibrium (LD) with the lead eQTL or T2D GWAS SNP) = 0.8, LD

window size = 1Mb, and minimum neighbor number = 500. For both eQTL and

GWAS SNP enrichment of TF footprint and non-footprint motifs, we report results

for SNP-feature overlaps ≥ 4 to avoid artifacts due to low overlaps.

3.5.12 Open chromatin profiling (ATAC-seq)

We profiled chromatin accessibility in islets from 2 human organ donor samples,

which were genotyped using methods identical to the other samples (see above),

using the assay for transposase-accessible chromatin-sequencing (ATAC-seq). Ap-

proximately 50-100 islet equivalents from each sample were transposed in triplicate

following the methods in [17]. ATAC-seq replicates were barcoded and sequenced 2

x 125 bp on a HiSeq 2000 to combined total depths of >831M reads for islet 1 and

>585M reads for islet 2.

For each library, we performed read alignment, duplicate removal, and filtering as

described in our previous study [162]. We next pooled all replicates for each sample

and called peaks using MACS2 (https://github.com/taoliu/MACS), version 2.1.0,

with flags -g hs –nomodel –shift -100 –extsize 200 -B –broad –keep-dup all, retaining

all peaks that satisfied a 5% FDR.

3.5.13 Haplotype-aware PWM scans

To detect potential TFBSs in a haplotype-aware manner, we generated person-

alized diploid genomes from the phased, imputed genotypes for each of two islet

samples, using vcf2diploid (v0.2.6a, [156]). We scanned each haplotype using FIMO

with PWMs from ENCODE [83], JASPAR [118], and Jolma et al. [77]. We ran
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FIMO using the observed nucleotide frequencies from the hg19 reference (40.9% GC)

and the default p-value cutoff (1x10-4). We converted the resulting hits to reference

coordinates using chainSwap and liftOver with -minMatch=0.1, and merged the re-

sults from the two haplotypes into a single set of results per motif per sample. As an

example, for islet 1, this procedure produced a total of 2.16B motif matches from our

motif database. Of these, 610,544 (0.0283%) are not detected in a single-SNP aware

motif scanning procedure.

3.5.14 ATAC-seq footprints

We used CENTIPEDE [147] to call footprints in the islets ATAC-seq data. Briefly,

for each PWM scan result, we built a matrix encoding the number of TN5 integration

events at a region 100 bp from each motif occurrence. To increase the amount of

information given as input for the algorithm, we split the ATAC-seq signal into three

different categories based on the diverse fragment length distribution: 36-149bp, 150-

324bp, and 325-400bp. We considered any given motif occurrence bound if both

the CENTIPEDE posterior probability was ≥ 0.99 and its coordinates were fully

contained within an ATAC-seq peak.

3.5.15 Genetic reconstruction of position weight matrices using ATAC-

seq footprint allelic bias data

Previous studies have identified signatures of allelic bias in chromatin accessibil-

ity data at TF footprints [119, 134]. Motivated by this, we used the heterozygous

genotype calls from our islet ATAC-seq samples and the alleles observed in the reads

to quantify allelic bias in regions of open chromatin (ATAC-seq TF footprints). To

diminish reference allele mapping bias of our mapped ATAC-seq reads, we used the

WASP mapping pipeline and duplicate removal tool [194] (downloaded from GitHub

on Feb. 19, 2016). To avoid double-counting alleles that may be covered by each read
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in a pair as a result of occurring on a short fragment, we clipped overlapping read

pairs using the ClipOverlap function of BamUtil. We included properly paired and

mapped reads with mapping quality of ≥ 30 and base quality of ≥ 20. We restricted

our analyses to the set of heterozygous SNPs calls within each sample (see above for

genotype information). For each SNP we counted the number of reads containing

each allele. Because we did not have sufficient statistical power to call allelic bias

at SNPs with low coverage, we included only SNPs with ≥ 20x coverage to reduce

the multiple testing burden. To help protect against mapping artifacts, we excluded

SNPs with ≤ 2x coverage for either allele.

We used a two-tailed binomial test that accounted for reference allele bias to eval-

uate the significance of the allelic bias at each SNP in each sample. We estimated the

allelic bias expected under the null for each sample and reference-alternate allele pair

as previously described [94]. Briefly, for each sample and for each reference-alternate

allele pair (e.g. AG and GA are separate ref-alt allele pairs) we calculated the expected

fraction of reference alleles (fracRef) as the sum of the reference allele count divided

by the sum of the total allele count for SNPs of a given reference-alternate allele pair.

To prevent SNPs of high coverage from biasing the fracRef, we downsampled SNPs

with coverage in the top 25th percentile to 30x coverage and used the downsampled

reference allele and total count. To prevent SNPs of low coverage from biasing the

mean fracRef, only SNPs with a total read coverage ≥ 30 were used. We used the

observed sample- and allele-pair-specific fracRef as the true fracRef under the null hy-

pothesis of no ASE in the binomial test. We did not test SNPs in regions blacklisted

by the ENCODE Consortium due to poor mappability (wgEncodeDacMapability-

ConsensusExcludable.bed and wgEncodeDukeMapabilityRegionsExcludable.bed) [9].

We performed the binomial test using Rs binom.test and multiple testing correc-

tion using the ’qvalue’ command in Bioconductors qvalue R package (version 2.2.2,

http://github.com/jdstorey/qvalue; [174]. We considered SNPs with q-value <
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0.05 as having significant allelic bias.

For each motif, we reconstructed the PWM using variants with significant ATAC-

seq footprint allelic bias. To create the PWM for each motif, we took all significant

allelic bias SNPs at position j with over-represented nucleotide i, and summed their

absolute allelic deviations from the adjusted expected fracRef (sample-specific and

allele pair-specific, as calculated in the previous section). The resulting matrix of

values for nucleotide i at position j is a reflection of the number of allelic biased SNPs

of nucleotide i at position j and the unevenness of their imbalance toward nucleotide

i. We summed the values in the matrices for the two islet samples and used them to

create a PWM, so that the genetically reconstructed motifs represent the combined

data from both samples.

As a control, at each motif, we also reconstructed the PWM by summing the

counts of nucleotide i at position j for all SNPs (biased + unbiased) in the motif.

3.5.16 Effect of ATAC-seq footprint SNPs with allelic bias on predicted

TFBS strength for CTCF and RFX motifs

Given that we were able to reconstruct PWMs with ATAC-seq allelic bias results,

we sought to address whether the two alleles from SNPs with significant allelic bias

had larger differences in their PWM score than the alleles of randomly chosen SNPs

occurring within the same footprints. We calculated PWM scores for the reference

and alternate allele version of each sequence using the FIMO tool as described above.

For each SNP, we used the FIMO p-value to calculate a SNP effect score (delta) as

follows: delta = -log10(p-value of alternate sequence) - (-log10(p-value of reference

sequence)). We then measured the delta score for all allelic bias SNPs overlapping

a TF footprint for CTCF known2 and RFX2 4 motifs. We constructed a null set

of SNPs by choosing a random set of 1000G SNPs with matching MAF and TSS-

distance that also overlap the same footprints. We evaluated the difference in the
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absolute (delta score) distributions with a Wilcoxon rank sum test. These results are

shown in Supplementary figure S9.

3.5.17 T2D GWAS loci overlap with RFX footprints

We performed enrichment analysis for T2D associated SNPs (T2D GWAS SNP

and SNPs in r2 ≥ 0.8 with the GWAS SNP) to overlap with TF footprint and non-

footprint motifs as described above. We selected TF motifs with less than 100,000

footprint occurrences genome wide in either of the Islet samples or GM12878 to help

ensure specificity of binding; 1995 out of 2,870 TF motifs passed this criteria. In

Fig. 3.12C, we show T2D associated SNPs that occur at high information content

(> 1) positions in their respective RFX PWM. For each shown T2D associated SNP,

we used our phased genotype calls to determine the T2D associated SNP risk allele

(given the T2D GWAS SNP risk allele). Multiple RFX footprints can be called at

the same SNP due to motif similarity; we report the motif from the highest scoring

PWM. In Fig. 3.12D we used TOMTOM [60] to align the different RFX motifs using

the longest (RFX3 1) as the seed.
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CHAPTER IV

Analyses of Islet eQTL and T2D GWAS Along

with Epigenomic Data to Elucidate Gene

Regulatory Mechanisms

4.1 Abstract

One of the main difficulties for the identification of functional processes through

which genomics regions implicated in complex diseases identified via genome-wide

studies (GWAS) resides in the limited access to relevant tissues or the difficulties to

define good proxy tissues for genetic studies. We generated expression quantitative

trait loci (eQTL) in aggregated published and newly generated human islet RNA-

Seq data (n=420), to provide a detailed landscape of the genetic regulation of gene

expression in a tissue relevant for Type 2 Diabetes (T2D) development. Thorough

integration with eQTLs from GTEx, we report an enrichment of T2D and glycemic

GWAS variants associated to beta-cell dysfunction in islets compare to other tissues

and variants associated to insulin resistance. The integration with islet chromatin

states derived from histone modification data, identified a high proportion (80%) of

islet eQTLs overlap in islet ATAC-seq peaks and islet active TSS chromatin states

and revealed a relationship between TF footprint motif and the effect sizes of eQTLs.

Integrating T2D and glycemic traits GWAS information, we also identify 23 loci with
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evidence for co-localization of islet eQTLs, including TCF7L2, HMG20A, MADD and

two independent signals at DGKB. Together, our findings illustrate the advantages

of functional and regulatory studies in tissues relevant for diseases, while expanding

our machinist insights into complex traits association loci activity with an expanded

list of putative transcripts implicated in T2D development.

4.2 Introduction

Over the past decade, analysis of GWAS data has generated a growing inventory

of genomic regions implicated in T2D predisposition and variation in diabetes-related

glycemic traits. However, progress in defining the mechanisms whereby these associ-

ated variants mediate their impact on disease-risk has been relatively slow. One major

reason is that at least 90% of the associated signals map to non-coding sequence. This

complicates efforts to connect T2D-associated variants with the transcripts and net-

works through which they exert their effects [180, 181, 49, 164, 110].

For many common, multifactorial diseases, one valuable approach for addressing

this variant-to-function challenge is to use expression quantitative trait loci (eQTL)

mapping to characterize the impact of disease-associated regulatory variants on the

expression of nearby genes [50]. Demonstrating that a disease-risk variant co-localizes

with a cis-eQTL signal is consistent with a causal role for the transcript concerned

in disease development. Such hypotheses can then be subject to more direct eval-

uation, for example, by perturbing the gene in suitable cellular or animal models.

However, eQTL signals often show marked tissue-specificity. The power to detect

mechanistically-informative expression effects is therefore, at least in part, dependent

on assaying expression data from sufficient numbers of samples across the range of

disease-relevant tissues [50]. Appropriate interpretation of GWAS-eQTL signal co-

localization analyses also needs to consider physiological and genomic data which may

95



point to the specific tissue most likely to be mediating disease-risk at a given locus

[110, 111].

The pathogenesis of T2D involves dysfunction across multiple tissues, most obvi-

ously pancreatic islets, adipose, muscle, liver, and brain. Risk variants that influence

T2D predisposition through processes active in each of these tissues have been re-

ported (e.g. MC4R in brain [192], KLF14 in adipose, TBC1D4 in muscle [130],

ADCY5 in islets [188], GCKR in liver [159]). However, a range of physiological and

genomic analyses consistently point to islet dysfunction as having the greatest con-

tribution to T2D risk [110, 36, 206]. For example, genome-wide enrichment analyses

highlight the particularly strong relationship between T2D-risk variants and regula-

tory elements active in human islets [142, 144, 196, 188].

Research access to human pancreatic islet material is largely limited to samples

accessible from a subset of cadaveric organ donors, and consequent scarcity has com-

promised efforts to characterize the regulation of human islet expression. The human

pancreatic samples examined in GTEx14 are of limited value, since islets constitute

only 1% of total pancreas. Previous studies have demonstrated the potential of islet

gene expression information to characterize T2D effector genes such as MTNR1B and

ADCY5 [196, 44, 193], but the sample sizes examined to date have been modest: the

largest published human islet RNA-Seq data includes only 118 samples [193].

We constituted the integrated network for systematic analysis of pancreatic islet

RNA expression (insPIRE) consortium as a vehicle for the aggregation and joint anal-

ysis of available human islet RNA-Seq data [196, 44, 193]. Here, we report on analyses

of 420 human islet preparations which provide a detailed landscape of the genetic reg-

ulation of gene expression in this key tissue, and its relationship to mechanisms of
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T2D predisposition. This research addresses a series of questions with relevance be-

yond the specific example of T2D. When a disease-relevant tissue is missing from

reference datasets such as GTEx, what additional value accrues from dedicated ex-

pression profiling from that missing tissue? What is the impact of tissue heterogeneity

(cellular heterogeneity within the tissue of interest, and contamination with cells that

are not of direct interest) on the interpretation of eQTL data? What does the syn-

thesis of tissue specific epigenomic and expression data tell us about the coordination

of upstream transcription factor regulators of gene expression? And, finally, what in-

formation do tissue-specific eQTL analyses provide about the regulatory mechanisms

mediating disease predisposition?

4.3 Results

4.3.1 Characterization of genetic regulation of gene expression in islets

We combined pancreatic islet RNA-Seq and dense genome-wide genotype data

from 420 individuals. Data from 196 of these individuals have been reported previ-

ously [196, 44, 193]. We aggregated, and then jointly mapped and reprocessed, all

samples (median sequence-depth per sample, 60M reads) to generate exon- and gene-

level quantifications, using principal component methods to correct for technical and

batch variation (see Methods and Fig. 4.2).

To characterize the regulation of gene expression for the 17,914 protein coding and

long non-coding RNA (lncRNA) genes with quantifiable expression in these samples,

we performed eQTL analysis (fastQTL [139]) on both exon and gene-level expression

measures, using all 8.05×106 variants that pass quality control (QC) (see Methods).

This joint analysis of all 420 individuals identified 4,312 genes (eGenes) with sig-

nificant cis-eQTLs at the gene level (FDR<1%; cis defined as within 1Mb of the
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transcription start site (TSS)). Results of this joint analysis were highly-correlated

with those obtained from a fixed-effects meta-analysis of the four component stud-

ies, indicating appropriate control for the technical differences between the studies

(Methods). The complementary exon-level analysis, which can capture the impact of

variants influencing splicing as well as expression, detected 6,039 eGenes (FDR<1%,

Fig. 4.3) [131, 94]. Stepwise regression analysis (after conditioning on the lead vari-

ant) identified a further 1,702 independent eQTLs (involving 1,291 eGenes), giving

a total of 7,741 islet exon-level eQTLs. At the 1,291 eGenes with at least two inde-

pendent exon-eSNPs, although primary eSNPs (that is, the most significant signals

for each eGene) tended to be localized closer to the canonical TSS than secondary

eSNPs (Wilcoxon test P=6.3×10-30), there were 503 (39.0%) of these genes for which

the second eSNP identified during stepwise conditional analysis was more proximal

to the TSS (Fig. 4.3).

4.3.2 Tissue specific regulatory variation in islets

For many complex traits of biomedical interest, the cell types considered most rele-

vant to disease development are either entirely absent from large-scale eQTL datasets

or represent a minor component of the cellular content of assayed tissues. The value

of targeting the specific cell-types of interest for dedicated eQTL discovery - as op-

posed to relying on existing eQTL data from more accessible tissues remains unclear.

To examine this, we considered the degree to which the set of 6,039 exon-level islet

eGenes overlapped with eQTLs from 44 tissues (for which sample size >70) in the

version 6p release of GTEx [58]. To allow direct comparison with the InsPIRE data,

we reprocessed GTEx sequence data to generate exon-level eQTLs (Methods). Ap-

proximately 5% (337) of the 6,039 islet eGenes had no significant eQTLs (in exon-

or gene-level analyses) in any of the 44 GTEx tissues suggesting the islets eQTL

were strong enough to be detected with 420 samples, but maybe not active or strong
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Figure 4.1: Islet eQTL discovery. A: Proportion of islet eQTLs active in GTEx tis-
sues using P-value enrichment analysis (π1 estimate for replication). B: Comparison
between eQTLs discovered in islets and their pvalues in beta-cells (top figure, N=26)
and whole pancreas tissue from GTEX (bottom figure, n=149). The axes show the
-log10 Pvalue of the eQTL associations adjusted by the eQTL direction of effect with
respect to the reference allele.

enough to be significant in other tissues with the current sample size of GTEx. There-

fore, and rather than defining ’tissue-shared’ effects based on arbitrary thresholds, we

estimated the proportion of islet eQTLs active in other GTEx tissues using P-value

enrichment analysis (π1 [173]): the proportion of islet-eQTLs shared with other GTEx

tissues ranged from 40% (brain) to 73% (adipose). As previously reported14, there

was a positive linear relationship between these π1 measures and sample sizes for the

respective tissues in GTEx (Fig. 4.1A). However, π1 estimates for shared eQTL ef-

fects reached only 65% and 57% (respectively) for skeletal muscle (n=361), and whole

blood (n=338), the tissues with the largest representation in this version of GTEx.

These data demonstrate that there is a substantial component of tissue-specific

genetic regulation that could, at these sample sizes, only be detected in islets, illus-
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Figure 4.2: Principal component analysis (PCA) of the exon expression profiles per
sample included in the InsPIRE project. Samples were re-quantified and normalized
together to account for differences in the data production. The samples showed in the
PCA analysis the differences due to experimental processing differences, with internal
batch effects.
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Figure 4.3: eQTL analysis: Top left figure shows the log10 pvalue distribution of the
lead eSNP per gene around the transcription start site (TSS) of the genes in black.
Yellow values show the secondary signals discovered after conditional analysis. Both
the primary and secondary sSNPs show smaller pvalues around the TSS, however,
the secondary signals are significantly futher away from the TSS (top right plot).
The bottom plot shows the distance of the eSNPs around the TSS for those genes
with 2 indepdnetn eQTLs (N = 1,290). The difference in the Kb distance between
primary SNP (1st) and secondary SNP (2nd SNP as the highest variance explained
in expression) independent eSNPs significantly affecting the expression of the same
gene is expressed in negative values (left) if the primary eSNPs is closer to the TSS
than the secondary eSNPs (N = 788). Positive values identify those eGenes in which
the secondary eSNP is closer to the TSS than the primary (N = 503)
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trating the value of extending current expression profiling efforts to additional tissues

and cell-types of particular biomedical importance.

4.3.3 Cellular heterogeneity

The human islets analyzed in this, and other, studies include a mixture of cell

types, including the hormone-producing α, β and δ cells, and, given the limitations

of physical islet isolation, a variable amount of adherent exocrine material. From

the perspective of T2D pathogenesis, the transcriptomes of the former (particularly

α and β-cells) are of most interest. However, the eQTLs identified could have their

origins from any of the cellular components. We used a number of approaches to

address interpretative challenges resulting from this cellular heterogeneity.

First, we performed tissue deconvolution analysis to estimate the proportion of

exocrine contamination across the 420 InsPIRE islet samples: these analyses were

performed prior to the principal component adjustment used to generate the main

eQTL results. We used reference expression signatures for: (a) exocrine tissue (GTEx

pancreas data) [58]; (b) beta-cell; and (c) non-beta cells (the last two from a set of 26

human islet preparations which had been FAC-sorted using the zinc-binding dye New-

port Green to separate the beta-cell fraction). Estimates of the proportion of exocrine

pancreas contamination ranged from 1.8% to 91.8% (median 33.5%). These measures

of exocrine contamination were significantly correlated (r=0.50, P=2.8×10-15) with

independent estimates of exocrine content obtained at the time of islet collection by

dithizone staining of the preparations (available for 232 samples) (Fig. 4.4). Within

the endocrine fraction of the islet preparations, median estimates of beta-cell (58.8%,

IQR 43.2-66.9%) and non-beta-cell (41.2%, 33.1-56.8%) fractions correspond well to

estimates obtained through morphometric assessment [84]. In 34 samples from donors

annotated as having T2D, median estimates of beta-cell composition were lower than
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those from donors annotated as non-diabetic (n=330) (median 31.8% vs. 35.6%,

P=4.5×10-4, Fig. 4.4). This analysis provides independent confirmation, based on

transcriptomic signatures, of evidence from morphometric and physiological studies

that the functional mass of beta-cells is reduced in T2D [122, 19].

Second, we investigated the proportion of eQTL signals from InsPIRE islet RNA

profiles also active in GTEx tissues (see above) and confirmed that whole pancreas,

often naively-used as a surrogate for the T2D-relevant islet component, represents an

imperfect proxy for islet (π1=0.67 with our human islet data). The extent of this

eQTL overlap depends on study sample sizes and with GTEx v6p, the whole pan-

creas overlap is on a par with other tissues such as photo protected skin (π1=0.67)

and spleen (π1=0.61) This suggests pancreas and other tissues are equally useful to

infer genetic regulatory effects on expression, with the expectation that larger studies

will reduce the overlap across tissues while increasing the detection of tissue specific

regulatory effects.

The principal component adjustments we used to control for unwanted technical

variation during eQTL analysis were designed to account for some of the impact of

variation in sample purity. However, by correlating the data-generated PCs with cell

proportion estimates, we observed that, even when adjusting using 25 PCs, only 30%

of the variance attributable to variation in exocrine or beta-cell composition was

regressed out, requiring more than 107 PCs to remove 50% of the variance. This

suggests that some of the eQTLs here attributed to pancreatic islets may, in fact,

reflect exocrine pancreatic contamination. To evaluate this further, we compared the

sets of eQTLs identified in the InsPIRE islet samples with the highest and lowest

proportions of exocrine contamination (n=100 for each) and 100 randomly-selected

GTEx whole pancreas samples. Overlap between whole pancreas and islet eQTLs
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Figure 4.4: Cell deconvolution analysis. Top right plot shows the estimates of the
different types of cell considered in the 420 islets samples processed. The beta-cells
proportion composition form per sample corresponded to a median os 58.8%, and
41.2% for non-beta-cell fractions. Top left plot shows the percentage of purity for
islets as measured in dithizone staining of the 232 samples compare to the estimated
proportion of (beta-cells + other non-exocrine cell)/ total cell content in islets. The
correlation between measured values of purity was ρ = -0.5 (P=2.8×10-15). Bottom
plot shows the Percentage of Beta-cells expression detected in islets samples from
individuals identified as diabetics (T2D), compare to non-T2D individuals.
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Figure 4.5: Replication rate of pancreas eQTLs in 100 islets with high proportion of
exocrine expression (left) and in 100 islets with high proportion of beta-cells expres-
sion (right).

(using π1 [173]) was greater in islet samples with the highest exocrine contamination

(75% vs 64%) (Fig. 4.5). Although shared regulatory processes between acinar and

islet tissue are to be expected [168], these data suggest that apparent overlap in

regulatory signals between islet and whole pancreas may partly reflect the consequence

of the inadvertent exocrine contamination of islet data.

Of the 420 InsPIRE samples, beta-cell enriched transcriptomes were available

for 26 following FAC-sorting. These data allowed us to look for evidence of cell-type-

specific eQTL effects and attempt to identify the cellular source of the eQTLs detected

in the islet material. With this limited sample size, the only eQTL reaching signifi-

cance (and then only, at a less stringent threshold of FDR<5%) was at ADORA2B

(P=3.8×10-10, beta = -1.207): this signal was also detected in the InsPIRE islets

(P=3.9×10-51, beta = -0.656) and in GTEx pancreas (P=1.6×10-16 , beta = -0.737)

(Fig. 4.6). Of the 7,741 independent SNP-exon pairs significant in islets, 227 were
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Figure 4.6: eQTL for ADORA2B gene in islets, beta-cells and pancreas samples.
Each dot represent a SNPs in the cis window of ADORA2B and their distance in kb
to the TSS. The y-axis shows the -log10 of the P value for the association between
a given SNP and the expression of the same exon in ADORA2B. For all tissues, at
least one SNP was significant after multiple testing (FDR = 5%).

also significant in beta-cells at FDR<1%. By comparing the p-value distributions of

the eQTLs in islets vs beta-cells, we estimate that 46% of islet-eQTLs are active in

beta-cells (Fig. 4.1B).

To identify specific genes with cell-type-specific regulatory effects, we tested for

interactions between genotype and the beta-cell or exocrine cellular fraction estimates,

controlling for technical variables (Methods). We identified 18 islet cis-eQTLs with a

genotype-by-beta-cell proportion interaction and 8 with a genotype-by-exocrine cell

proportion interaction (FDR<1%). The former group included ADCY5, a member

of the adenylate cyclase family implicated as a T2D GWAS effector transcript by

several islet-eQTL studies [196, 155] and CCL2 (also known as MCP-1), a cytokine

implicated in type 1 diabetes (T1D) development [87].

We conclude that a substantial proportion of the regulation of gene expression

detected in pancreatic islets is derived from cell-specific effects. Ongoing efforts to
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Figure 4.7: eQTL in enrichment chromatin states. Islet eQTL overlap with chromatin
states and stretch/typical enhancers. Top: Number of islet eQTL in 13 islet chromatin
states and stretch and typical enhancers. Bottom: Fold enrichment of islet eQTL in
chromatin states calculated using GREGOR [160].

develop a single-cell view of islet transcriptional signatures should help to inform these

analyses, although the limited sample size of current single-cell transcriptomic studies

[202] and their lack of genotype information means they offer little direct insight into

the relationship between genetic variation and cell-type-specific transcript abundance.

4.3.4 Functional properties of islet genetic regulatory signals

Using previously-published islet chromatin states derived from histone modifica-

tion data12, we observed a significant enrichment of islet eSNPs in active islet chro-

matin states including active TSS (fold enrichment = 3.84, P = 5.5×10-206), active

enhancers (fold enrichment > 1.73, P < 4.8×10-04 between two enhancer states) and

stretch enhancers (fold enrichment = 1.57, P = 2.7×10-13), with concomitant deple-

tion of eSNPs in repressed and quiescent islet chromatin states (fold enrichment <

0.66, Fig. 4.7). This recapitulates the enrichment observed for T2D GWAS signals

within active islet chromatin Fig. 4.8 [142, 144, 196, 188].
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Figure 4.8: Enrichment for T2D GWAS loci to overlap islet chromatin states. Top:
Number of T2D GWAS loci occurring in each of the 13 islet chromatin states along
with stretch and typical enhancers. Bottom: Fold enrichment of T2D GWAS in
chromatin states calculated using GREGOR [160].

To explore further the chromatin context of islet eSNPs, we first asked whether

eSNP effect sizes (measured as the slope of the linear regression) were uniform across

the different underlying chromatin contexts in which they occur. We found a non-

uniform range of distributions (Fig. 4.9A): for example, eSNPs that overlap active

TSS chromatin states had significantly larger effects than those that overlap repressed

or weak-repressed polycomb chromatin states (Wilcoxon Rank Sum Test P=0.039).

Because chromatin states represent integrated histone mark patterns, and tran-

scription factors (TFs) are more likely to bind in open accessible DNA, we next

focused on regions of accessible chromatin within each of the chromatin states, us-

ing previously-published ATAC-seq (assay for transposase accessible chromatin fol-

lowed by sequencing) data from human islets [196]. As expected, a disproportionately

high proportion (80%) of islet eQTLs (based on the lead eSNP itself or proxy SNPs

with LD r2>0.99) overlap islet ATAC-seq peaks in islet-active TSS chromatin states.

More specifically, of the 646 islet eSNPs that overlap islet active TSS chromatin, 522
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Figure 4.9: Integration of Islet eQTL with epigenomic information reveals character-
istics of gene expression regulation. A: Distribution of absolute effect sizes for Islet
eQTLs in each Islet chromatin state. B: Distribution of absolute effect sizes for Islet
eQTL in ATAC-seq peaks in three Islet chromatin states. eQTL SNPs in ATAC-seq
peaks in stretch enhancers have significantly lower effect sizes than SNPs in ATAC-seq
peaks in active TSS and typical enhancer states. P values obtained from a Wilcoxon
rank sum test. C: Fold Enrichment for transcription factor footprint motifs to overlap
low vs high effect size islet eQTL SNPs. D: TF footprint motif directionality fraction
vs fold enrichment for the TF footprint motif to overlap islet eQTL. TF footprint
motif directionality fraction is calculated as the fraction of eQTL SNPs overlapping
a TF footprint motif where the base preferred in the motif is associated with in-
creased expression of the eQTL eGene. Significance of skew of this fraction from a
null expectation of 0.5 was calculated using Binomial test.
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Figure 4.10: Fraction of eQTLs in ATAC-seq peaks in chromatin states. A: Num-
ber of eQTL Islet eQTL overlapping with Islet chromatin states and stretch/typical
enhancers. B Number of Islet eQTL in Islet ATAC-seq peaks in chromatin states.
C: Fraction of Islet eQTL in ATAC-seq peaks in each chromatin states. An eQTL
overlap is considered if the eQTL lead eSNP or proxy SNP (LD r2 > 0.99) overlaps
the feature.

(80.8%) occur in the (ATAC-defined) open chromatin portion of that chromatin state

Fig. 4.10. We note that 49.7% of the islet active TSS chromatin state territory is

occupied by islet ATAC-seq broad-peaks.

When we examined the distribution of absolute effect sizes for eSNPs that oc-

cur within islet ATAC-seq peaks within active TSS, islet stretch enhancers, which

were defined as enhancer chromatin state segments longer than 3kb and were show

to be islet-specific [142] and typical enhancer (enhancer chromatin states smaller

than median size of 800bp) annotations, we found that eSNPs in stretch enhancers

had significantly lower effect sizes than those in either typical enhancer chromatin

(Wilcoxon Rank Sum Test P=0.0088) or active TSS chromatin states (P=0.0099)

(Fig. 4.9B). One important corollary of this observation that eSNPs in different

chromatin contexts have different regulatory effect sizes is that eSNPs in cell-specific
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stretch enhancers may be less detectable as eQTLs, and that higher sample sizes are

needed to ensure better powered discovery of eQTLs within these critical cell identity

regions.

We next sought to use the combination of islet chromatin state annotation and

eQTL data to identify TFs driving islet regulatory networks. For these analyses,

we used published TF footprint (in vivo predicted occupied TF motif binding sites)

results generated from human islet ATAC-seq data [196]. We previously reported en-

richment of selected TF footprint motifs at islet eSNPs, using a smaller islet expression

dataset [196]: here, the larger eSNP catalog allowed us to determine how eSNP ef-

fect size and target gene expression directionality is associated with base-specific TF

binding preferences. We partitioned eSNPs into two equally-sized bins representing

those with lower (absolute beta from regression <0.254) and higher (geq0.254) effect

sizes. Higher-effect size eSNPs were preferentially enriched (<1% FDR) for a subset

of footprint motifs, characteristic of islet-relevant TF families including KLF11 (mo-

tif=KLF13 1, P=5.3×10-6) and GLIS3 (motif GLIS3 1, P=5.2×10-6). Other sets of

footprint motifs, including those related to the RFX and ETS families of TFs, were

significantly enriched for low effect size eSNPs (P<2×10-4) (Fig. 4.9C). Collectively,

these results further demonstrate a relationship between local chromatin environment

at the level of a TF footprint motif and eSNP effect size.

Since TFs can act as activators, repressors, or both [42], we asked if eSNP alleles

that match the base preference at TF footprint motifs have a consistent directional

impact on gene expression. We defined a motif directionality fraction score for each

TF footprint motif by calculating the fraction of overlapping eSNP where the preferred

base in the motif was associated with increased expression of the eGene (Methods ’TF

motif directionality’). Directionality fractions indicate if the TF motifs are activating

(fraction near 1), repressive (fraction near 0), or show no preference (fraction near 0.5).

We found that the motif activity measures generated with this islet eQTL and ATAC-
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Figure 4.11: TF motif directionality comparison with MPRA activity. Transcription
factor motif activity scores from Sharpr MPRA in HepG2 cells [42] vs Motif direc-
tionality fractions from Islet eQTL and ATAC-seq TF footprinting data. TF Motifs
that were reported to be either activating or repressive (P¡0.01) from the MPRAs in
both HepG2 and K562 are shown.

seq footprint-based metric were largely concordant (Spearman’s r=0.64, P=8.110-

13) with orthogonal motif activity measures derived from massively parallel reporter

assays (MPRAs) performed in HepG2 and K562 cell lines [42] (Fig. 4.11). There were

99 motifs reported as consistently activating or repressive across HepG2 and K562

cell lines present in our study: for these, we tested whether the motif directionality

fraction deviated from null expectation (no preference for activator/repressor) using a

binomial test. We found that only 8% (n=8) of the motifs showed evidence of skewed

activator preference (<10% FDR; Fig. 4.9D). The activator motifs we identified

include many ETS family members, which have a known preference for transcriptional

activation [42].

Our analyses demonstrate how integrating diverse epigenomic information with

rich eQTL data can reveal characteristics of gene regulation and its regulators. While
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contrasting tissue-specific stretch enhancers with the more ubiquitous TSS states

in the context of eQTL effect sizes delineated the role of underlying chromatin on

function; integrating eQTL information with ATAC-seq and high-resolution TF foot-

printing revealed in vivo activities of these upstream regulators.

4.3.5 Islet eQTLs are enriched among T2D and glycemic GWAS variants

Diverse lines of evidence emphasize the contribution of reduced pancreatic islet

function to the development of T2D, and there is evidence, based on patterns of

association across diabetes-related quantitative traits, that many T2D GWAS loci act

primarily through their impact on insulin secretion [110, 111, 36, 188]. To examine the

relationships between T2D predisposition alleles and the tissue-specific regulation of

gene expression, we combined the human islet eQTL data with equivalent exon-level

information for 44 tissues available through GTEx (version 6p) [58]. We examined

122 GWAS lead variants with genome-wide significant associations to T2D (focusing

on 78 signals with the most pronounced effects on T2D risk as detected in 3 or 44

continuous glycemic traits relevant to T2D predisposition (including fasting glucose,

and beta-cell function (HOMA-B) in non-diabetic individuals) [163, 113, 175]. For

each of these GWAS lead variants, we extracted the lead eSNP from the 44 GTEx

tissues and the InsPIRE pancreatic islets. To determine the extent to which the lead

T2D GWAS variant showed tissue-specific enrichment for islet eQTL associations,

we compared these observed effect size estimates from the eQTLs to those derived

from a null distribution of 15,000 random eSNPs, matched to the GWAS SNPs with

respect to the number of SNPs in LD, distance to TSS, number of nearby genes and

minor allele frequency. We were particularly focused on the enrichment in eQTL

effect sizes at T2D/glycemic GWAS-associated variants for six tissues implicated in

T2D pathogenesis (subcutaneous adipose tissue, skeletal muscle, liver, hypothalamus,

islets and whole pancreas), plus whole blood for comparison (Fig. 4.13A, Fig. 4.12).
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Figure 4.12: Enrichment of GWAS loci in eQTL for GTEx tissues.

We included a set of 55 lead variants implicated by GWAS in predisposition to T1D

for comparison [138].

Across the 45 tissues, we detected significant enrichment for islet eQTLs amongst

variants associated with continuous glycemic traits (normalize enrichment score (NES)=1.27;

P=3.6×10-3). Apart from a modest signal in ovary (NES=1.13, P=0.02), there was

no enrichment in any other GTEx tissue. The enrichment for islet eQTLs for the

full set of 78 T2D variants was directionally consistent with the results for continuous

glycemic traits but did not reach nominal significance (NES=1.10; P=0.07). However,

T2D GWAS signals influence disease risk through physiological effects in multiple tis-

sues. In the subset (n=17) of the 78 T2D GWAS signals with the strongest evidence

(from patterns of association to other T2D-related traits) of mediation through re-

duced insulin secretion (implicating islet dysfunction) [111, 36, 206], we observed
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more marked enrichment of islet eQTL signals (NES=1.27; p=0.025). For this sub-

set there was no enrichment for eQTL effect sizes in whole pancreas (NES=0.90,

P=0.88). There was no enrichment of islet eQTL effects for the set of T1D as-

sociation signals, consistent with the consensus that most genetic risk for T1D is

mediated through immune mechanisms [138]. In the subset of 8 T2D GWAS signals

with the strongest evidence of mediation through defects in insulin action (n=8),

enrichment was seen in insulin target tissues such as liver (NES=1.10; P=0.03), adi-

pose tissue (NES=1.12; P=0.04) and brain cortex (NES=1.10; P=0.03), but not in

islets (NES=1.07, P=0.17). Similar patterns of eQTL enrichment were seen for a

broader, partly-overlapping, set of 53 lead variants influencing insulin sensitivity de-

rived from a multivariate GWAS [107]. These data reveal tissue-specific patterns of

genetic regulatory impact for variants at T2D- and glycemic-trait loci which mirror

the mechanistic inferences generated by physiological analysis of those signals. They

also highlight the importance of matching the tissue origin of the transcriptomic data

used for mechanistic inference, to the tissue-specific impact of each GWAS signal on

disease predisposition.

4.3.6 Identifying effector transcripts for T2D and glycemic traits

This evidence of generalized overlap between islet eQTLs and (selected) T2D

and/or glycemic GWAS signals motivates further efforts to characterize these re-

lationships at individual loci. Previous studies have identified GWAS signals dis-

playing apparent overlap between islet eQTLs and the T2D/glycemic GWAS signals

[196, 44, 193], but not all of these signals have been evaluated with respect to the

statistical evidence for co-localization (i.e. testing whether the eQTL and the GWAS

signals are likely to emanate from the same causal variants), and not all coincident

signals have replicated despite ostensibly similar designs and power.
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Figure 4.13: Functional validation of DGKB eQTL locus. A: Enrichment of eQTL
effect sizes in different GTEx tissues at T2D/glycemic GWAS-associated variants.
Numbers within square brackets denote the number of variants implicated for the
trait. Also shown are subsets of T2D GWAS associated with reduced insulin secretion
or islet beta cell dysfunction (T2D (BC)) or insulin resistance (T2D (IR)), type
1 diabetes (T1D) signals, insulin resistance (IR). B: Two independent islet eQTL
signals (lead SNP rs17168486 referred at as the 5’ signal and lead SNP rs10231021
referred to as the 3’ signal) are identified near the DGKB gene locus. Continued on
the next page.
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Figure 4.13: continued - These signals co-localize with two independent T2D GWAS
signals shown in C: where (rs17168486 referred to as the 5’ signal and lead SNP
rs2191349 referred to as the 3’ signal and. LD information was not available for
SNPs denoted by (X). D: Genome browser view of the region highlighted in purple
in (B) and (C) that contains the 3’ DGKB eQTL and T2D GWAS signals. Two
regulatory elements overlapping islet ATAC-seq peaks (element 1 highlighted in green,
element 2 highlighted in blue) were cloned into a luciferase reporter assay construct
for functional validation. E: Normalized DGKB gene expression levels relative to the
T2D risk allele dosage at the 3’ islet eQTL for DGKB lead SNP rs10231021. eQTL P
value adjusted to the beta distribution is shown. F: Log 2 Luciferase assay activities
(normalized to empty vector) in rat (832/13), mouse (MIN6) and human (endoC)
beta cell lines for the element 2 highlighted in blue in (D). Risk haplotype shows
significantly higher (P<0.05) activity than the non-risk haplotype in 832/13 and
MIN6, consistent with the eQTL direction shown in (F). P values were determined
using unpaired two-sided t-tests. G: Electrophoretic mobility shift assay (EMSA)
for probes with risk and non-risk alleles at the four SNPs overlapping the regulatory
element validated in (F) using nuclear extract from MIN6 cells.

There are multiple methods for evaluating the evidence for co-localization: these

make different assumptions and often lead to discrepant results [80]. In this analysis,

we focused on the co-localization evidence provided by two complementary algo-

rithms: COLOC, which assesses the differences in regression coefficients of variants

associated to two traits, and RTC (Regulatory Trait Concordance), which assesses the

differences in ranking of SNPs associated to one trait after conditioning on the most

associated SNP for the other trait [53, 140]. We detected evidence for co-localization

(with either method) of islet eQTLs at 23 GWAS loci, comprising 24 independent

signals (the DGKB hosts two signals), 16 of which reflect T2D associations and 8

glycemic traits. Evidence for co-localization was most compelling for 11 loci (12 sig-

nals) at which both RTC and COLOC provided strong support: including extending

confirmation of previously observed co-localizations at ADCY5, TCF7L2, HMG20A,

IGF2BP2 and DGKB [188, 20].

At other loci, we observe islet cis-eQTL co-localization for the first time. For

example, rs7903146, the lead variant at the T2D-risk signal at TCF7L2, co-localizes
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with islet expression of TCF7L2 (P=1.9×10-7) (Fig. 4.14), with the T2D-risk allele

increasing TCF7L2 expression (eQTL beta = 0.218). The same eQTL signal was also

detected in the smaller beta-cell-specific eQTL analysis (n=26; eQTL beta= 0.724;

P=1.0×10-3). Previous efforts to characterize the mechanism of action at this sig-

nal have demonstrated that the fine-mapped T2D-risk allele at rs7903146 influences

chromatin accessibility and enhancer activity in islets37, but evidence linking these

events to TCF7L2 expression has been missing. Indeed, recent studies have proposed

other nearby genes as possible effectors transcripts, such as ACSL5 [56]: however, we

found no evidence in any tissue (from GTEx or InsPIRE) to indicate that rs7903146

influences ACSL5 expression. The association between rs7903146 and TCF7L2 ex-

pression was restricted to islets, consistent with evidence that non-diabetic carriers

of the TCF7L2 risk-allele display markedly reduced insulin secretion [211].

Several previously-reported co-localizing signals were not observed in our exon-

eQTL based analysis. MTNR1B has shown consistent islet cis-eQTL signals across

multiple previous studies [193, 190], but was excluded from our exon-level analysis

due to low exonic-read coverage. However, in gene-level expression analyses, we once

again observed strong evidence of co-localization between the lead T2D GWAS variant

(rs10830963) and MTNR1B expression (P=5.3×10-21). At ZMIZ1, the previously-

reported cis-eQTL was nominally significant (rs185040218; P=3.0×10-5) but this

particular signal did not reach the 1% FDR threshold for inclusion in co-localization

testing.

At other loci, complex, but divergent, patterns of association between the eQTL

and T2D GWAS signals (likely reflecting the impact of multiple enhancers active in

different tissues to the T2D signal) challenged the assumptions of these co-localization

methods. At the ZBED3 locus for example, the association plots highlight two dis-
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Figure 4.14: TCF7L2 eQTL locus.

tinct T2D signals ( 500kb apart), and two islet eQTL signals for the PDE8B gene,

but only the signal at rs7708285 appears coincident (Fig. 4.15). COLOC detects

this as co-localization, but this configuration cannot easily be tested using RTC as

it restricts analysis to variants that lie between a single pair of recombination hotspots.

Finally, we attempted to further characterize eGenes that overlapped signals from

T2D and glycemic trait GWAS studies by assessing the impact of acute changes in

glycemic status on their expression in islets. We used data from a recent analysis of

human islets obtained from a set of T2D, and non-diabetic donors and focused on tran-

scripts that showed acute changes in expression when exposed to altered glucose levels

in culture (that is, islets from diabetic individuals cultured at normal glucose, and

islets from non-diabetic subjects cultured in high glucose) [141]. This revealed mul-

tiple islet eGenes, including STARD10, WARS, SIX3, NKX6-3 and KLHL42 which

may be of particular interest given that their expression in islets is regulated both by

T2D-associated variation and by acute changes in glucose exposure.
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Figure 4.15: PDF8B eQTL and T2D GWAS loci. Miami plot of the PDE8B eQTL
locus is shown on the top and the T2D GWAS locus is on the bottom.

4.3.7 Experimental validation at DGKB

The DGKB locus features two independent co-localizing signals: at both of these,

the T2D-risk allele is associated with increased islet expression of DGKB (Fig. 4.13A).

At the 5’ signal, the lead SNP for both the T2D GWAS and the islet cis-eQTL is

rs17168486. At the 3’ signal, the lead eSNP, rs10231021 (Fig. 4.13B), is in high LD

(r2=1, D’=1) with the lead GWAS variant rs10231021 (Fig. 4.13C). The pattern of

GWAS association signals for diabetes-related traits for both signals is consistent with

a primary impact on insulin secretion (implying islet dysfunction)5,7. We prioritized,

for functional analysis, variants that were in high LD (r2>0.8) with the lead SNPs

and located in islet ATAC-seq peaks (Fig. 4.13D).

At the 3’ signal, seven variants met these criteria: three (rs7798124, rs7798360

and rs7781710, Fig. 4.13D, ’element 1’) overlap an ATAC-seq peak shared across

islets, skeletal muscle and the lymphoblastoid cell line GM12878 [17] cell-line, and
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four others (rs10228796, rs10258074, rs2191348 and rs2191349, Fig. 4.13D ’element

2’) lie in a smaller but more islet-specific ATAC-seq peak. We cloned these putative

regulatory elements (Fig. 4.13D) into luciferase reporter constructs and performed

transcriptional reporter assays in three insulin-34secreting beta-cell models, including

human EndoC-βH1, rat INS1-derived 823/13 and mouse MIN6. Element 1 demon-

strated consistent enhancer activity across all three beta-cell lines but did not show

allelic differences consistent with the eQTL direction of effect Fig. 4.16. Element

2, when in forward orientation with respect to DGKB, showed reduced luciferase

expression in all three beta-cell lines compared to control. The T2D-risk haplotype

showed significantly higher expression than the non-risk haplotype in 832/13 (P =

1.910-4) and MIN6 cell-lines (P = 1.110-6): equivalent experiments in EndoC-βH1

showed a consistent trend, which did not reach significance (Fig. 4.13E). Luciferase

assays using element 2 in reverse orientation also showed consistent trends across all

three cell lines, reaching significance in 832/13 alone (Supp Figure S14). These data

suggest that T2D risk alleles alleviate regulatory element repression and are direc-

tionally consistent with the 3’ DGKB eQTL (Fig. 4.13F). In electrophoretic mobility

assays using MIN6 nuclear extract, three of the four ’element 2’ variants (rs10228796,

rs2191348, and rs2191349) showed allele-specific binding (Fig. 4.13G), supporting a

functional regulatory role.

At the 5’ eQTL, we focused attention on rs17168486, which was both the lead

cis-expression and GWAS SNP at the 5’ eQTL, and is located in an islet ATAC-seq

peak Fig. 4.18A. We cloned an element including this variant into luciferase reporter

constructs but observed no consistent allelic effects on transcriptional activity Fig.

4.18B.

121



Figure 4.16: Luciferase assay results for DGKB 3’ eQTL element 1. Log2 luciferase
assay activities (normalized to empty vector) in rat (832/13), mouse (MIN6) and
human (endoC) beta cell lines for the element 1 highlighted in green in Fig. 4.13D.
The element was cloned in both forward and reverse orientation with respect to the
DGKB gene. P values were determined using unpaired two-sided t-tests.

Figure 4.17: Luciferase assay results for DGKB 3’ eQTL element 2. Log2 luciferase
assay activities (normalized to empty vector) in rat (832/13), mouse (MIN6) and
human (endoC) beta cell lines for the element 2 highlighted in blue in Fig. 4.13D,
cloned in both forward and reverse orientation with respect to the DGKB gene. P
values were determined using unpaired two-sided t-tests.
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Figure 4.18: 5’ DGKB eQTL and T2D GWAS lead SNP 17168486 locus. A: Genome
browser shot of the 5’ DGKB eQTL along with ChIP-seq, ATAC-seq and chromatin
state profiles in Islets and other tissues. B. Luciferase assay activities (normalized to
empty vector) in rat (832/13) and mouse (MIN6) cell lines for the element containing
the T2D GWAS and islet eQTL lead SNP (rs17168486), cloned in both forward and
reverse orientation with respect to the DGKB gene. Differences between activities of
the risk and non-risk allele containing elements were non-significant.
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4.4 Discussion

In this manuscript, we used transcriptome sequencing in 420 human islet prepara-

tions to address issues that are of general relevance to the mechanistic interpretation

of non-coding association signals detected by GWAS, in addition to their specific im-

portance for T2D. We documented the degree to which RNA-sequencing of a disease-

relevant tissue missing from a reference data set (e.g. GTEx) provides access to

a more complete survey of eQTLs active in islets. We used this information to ex-

tend the number of GWAS signals for T2D and related glycemic traits that have been

shown to co-localise with islet eQTLs, providing clues to potential effector transcripts

at several of these loci. We have demonstrated how tissue heterogeneity (cellular het-

erogeneity within the tissue of interest, and contamination with cells that are not

of direct relevance) can complicate the interpretation of eQTLs co-localizing with

GWAS signals. We also integrated our eQTL catalogue with islet epigenomic data to

reveal effect size heterogeneity based on local chromatin context and to infer in vivo

TF directional activities. Finally, we used our results to nominate and experimentally

test causal SNPs at the DGKB locus, which displays coordinated regulatory effects

at two statistically independent T2D GWAS signals.

Several lines of evidence including analysis of the physiological association pat-

terns of T2D-associated alleles, and genome-wide enrichment analyses indicate that

many, though by no means all, established T2D association signals act through the

islet [206, 192, 130, 159]. One of the major motivations behind this study was to

bring an enhanced islet eQTL analysis to bear on the challenge of delivering robust

mechanistic inference to non-coding GWAS signals, with particular emphasis on the

identity of the effector transcripts that may mediate the downstream consequences

of the associated variants. At DGKB, evidence that both the T2D signals co-localize

with eQTLs with directionally-consistent impacts on DGKB expression in islets lends
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support to a causal role for DGKB in T2D predisposition.

However, it is important to emphasize some of the complexities of accurate in-

ference from the coincidence of eQTLs and GWAS signals. First, the RNA-seq data

from which these analyses are derived from human islets maintained in culture in

basal glycemic conditions. eQTL signals that are restricted to a subset of the cells

within those islets would have been hard to detect, and the same would be true for

genes whose expression is dependent on stimulation. Genes that mediate T2D-risk

through an impact on islet development may be under different transcriptional control

in adult islets: in some circumstances, this may incriminate co-localizing eGenes that

are not directly responsible for the phenotype. Similarly, given that not all T2D loci

act through the islet, some of the eQTLs detected may reflect tissue-specific regulation

that is not germane to the development of the diabetic phenotype. Reassuringly, for

the co-localizing loci we detected, we were able to perform analyses that are generally

supportive of the idea that their T2D effects are mediated through islet dysfunction.

For example, the islet eQTLs we detected were enriched in the subset of T2D and

glycemic loci for which the patterns of GWAS association indicate a primary effect

on insulin secretion.

Second, the confident assignment of co-localization can be difficult. There are a

diversity of algorithms to measure the evidence that two association signals (here,

a trait GWAS and an eQTL signal) are likely to reflect the same causal variants,

but agreement between them is not complete. An additional challenge arises from

the complex architecture of many GWAS signals that feature multiple overlapping

signals that require conditional decomposition before co-localization can be accu-

rately assigned. This is likely to be especially important when the sets of GWAS

and cis-eQTL signals at a given locus are not completely overlapping, such that clear
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co-localization at one of the contributing signals, can be masked by differences in the

overall shape of the association signals that confounds simplistic analysis.

Third, recent studies have shown that functionally constrained genes those that

are depleted for missense or loss of function variants are less likely to have eQTLs,

suggesting uniform intolerance of both regulatory and coding variation at the same

genes [95, 55]. Complementary studies focusing on regulatory elements have shown

that large, cell-specific stretch enhancers harbor smaller effect size eQTLs than ubiq-

uitous promoter regions 42 and that genes with more cognate enhancer sequence are

depleted for eQTLs43. The results we report are consistent with these observations:

we have shown that islet eQTLs that map to the islet stretch enhancers most fre-

quently implicated in GWAS regions have smaller eQTL effect sizes (and therefore

may be more difficult to detect). One consequence, for example, is that, at a GWAS

variant that has regulatory impact on multiple cis-genes, eQTL signals for bystander

genes (those not directly implicated in disease pathogenesis) may be easier to detect

than those that are actually mediating the signal.

Finally, it is important to emphasize that, even when co-localization has been ro-

bustly demonstrated between a GWAS signal and a tissue-appropriate eQTL signal,

this does not of itself implicate the eGene concerned as mediating disease predis-

position. Causal relationships other than ’variant to gene to disease’ are possible,

including the possibility the variant has separate (horizontally) pleiotropic effects on

both. Growing understanding of the extent of shared local regulatory activity and

regulatory pleiotropy makes such an alternative explanation all the more credible. In

our view, it is best to regard the genes highlighted by coincident GWAS and eQTL

signals as ’candidate’ effector transcripts, and to proceed to experimental approaches

that enable direct tests of causality. These may involve perturbing the gene across
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a range of disease-relevant cell-lines and animal models, and determining the impact

on phenotypic readouts that represent reliable surrogates of disease pathophysiology.

4.5 Materials and Methods

4.5.1 Pancreatic Islet sample collection and processing

Geneva samples: Islet sample procurement, mRNA processing and sequencing

procedure has been described in [137]. Briefly, Islets isolated from cadaveric pancreas

were provided by the Cell Isolation and Transplant Center, Department of Surgery,

Geneva University Hospital (Drs. T. Berney and D. Bosco) through the Juvenile

Diabetes Research Foundation (JDRF) award 31-2008-416 (ECIT Islet for Basic Re-

search Program). mRNA was extracted using RLT buffer (RNeasy, Qiagen) and total

RNA was prepared according to the standard RNeasy protocol. The original RNA

libraries were 49-bp paired-end sequenced however, in order to allow joint analysis

with the other available datasets for this study, mRNA samples were re-processed

using a 100-bp paired-end sequencing protocol. The library preparation and sequenc-

ing followed customary Illumina TruSeq protocols for next generation sequencing as

described in the original paper [137]. All procedures followed ethical guidelines at the

University Hospital in Geneva.

Lund Samples: Islet sample procurement, mRNA processing and sequencing pro-

cedure has been described in [44]. Along with the 89 islet samples previously published

in [44], we included 102 islet samples and processed these uniformly following the same

protocol. These islet samples were obtained from 191 cadaver donors of European an-

cestry from the Nordic Islet Transplantation Programme (http://www.nordicislets.org).

Purity of islets was assessed by dithizone staining, while measurement of DNA con-

tent and estimate of the contribution of exocrine and endocrine tissue were assessed
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as previously described [44]. Total RNA was isolated with the AllPrep DNA/RNA

Mini Kit following the manufacturer’s instructions (Qiagen), sample preparation was

performed using Illumina’s TruSeq RNA Sample Preparation Kit according to man-

ufacturer’s recommendations. The target insert size of 300 bp was sequenced using a

paired end 101 bp protocol on the HiSeq2000 platform (Illumina). Illumina Casava

v.1.8.2 software was used for base calling. All procedures were approved by the ethics

committee at Lund University. Oxford samples: Samples collected in Oxford and

Edmonton that were jointly sequenced in Oxford are included in this set of samples.

Islet sample procurement, mRNA processing and sequencing procedure has been de-

scribed in 16. To the 117 samples previously published (78 from Edmonton and 39

from Oxford), 57 samples were added and processed following similar protocols as be-

fore (27 from Edmonton and 30 from Oxford). Briefly, freshly isolated human islets

were collected at the Oxford Centre for Islet Transplantation (OXCIT) in Oxford, or

the Alberta Diabetes Institute IsletCore (www.isletcore.ca) in Edmonton, Canada.

Additional islets were obtained from the Alberta Diabetes Institute IsletCore’s long-

term cryopreserved biobank. Freshly isolated islets were processed for RNA and

DNA extraction after 13 days in culture in CMRL media. Cryopreserved samples

were thawed as described 45 [Lyon, et al., Endocrinology, 2016]. RNA was extracted

from human islets using Trizol (Ambion, UK or Sigma Aldrich, Canada). To clean

remaining media from the islets, samples were washed three times with phosphate

buffered saline (Sigma Aldrich, UK). After the final cleaning step 1 mL Trizol was

added to the cells. The cells were lysed by pipetting immediately to ensure rapid

inhibition of RNase activity and incubated at room temperature for ten minutes.

Lysates were then transferred to clean 1.5 mL RNase-free centrifuge tubes (Applied

Biosystems, UK). RNA quality (RIN score) was determined using an Agilent 2100

Bioanalyser (Agilent, UK), with a RIN score > 6 deemed acceptable for inclusion in

the study. Samples were stored at -80C prior to sequencing. Poly-A selected libraries
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were prepared from total RNA at the Oxford Genomics Centre using NEBNext ultra

directional RNA library prep kit for Illumina with custom 8bp indexes 46. Libraries

were multiplexed (3 samples per lane), clustered using TruSeq PE Cluster Kit v3,

and paired-end sequenced (100nt) using Illumina TruSeq v3 chemistry on the Illu-

mina HiSeq2000 platform. All procedures were approved by the Human Research

Ethics Board at the University of Alberta (Pro00013094), the University of Oxford’s

Oxford Tropical Research Ethics Committee (OxTREC Reference: 215), or the Ox-

fordshire Regional Ethics Committee B (REC reference: 09/H0605/2). All organ

donors provided informed consent for use of pancreatic tissue in research.

USA samples: Islet sample procurement, mRNA processing and sequencing has

been described in [196]. Briefly, 39 Islet samples from organ donors were received

from the Integrated Islet Distribution Program, the National Disease Research Inter-

change (NDRI), and Prodo- Labs. Total RNA from 2000-3000 islet equivalents (IEQ)

was extracted and purified using Trizol (Life Technologies). RNA quality was con-

firmed with Bioanalyzer 2100 (Agilent); samples with RNA integrity number (RIN)

> 6.5 were prepared for mRNA sequencing. We added the ERCC spike-in controls

(Life Technologies) to one microgram of total RNA. PolyA+, stranded mRNA RNA-

sequencing libraries were generated for each islet using the TruSeq stranded mRNA

kit according to manufacturer’s protocol (Illumina). Each islet RNA-seq library was

barcoded, pooled into 12-sample batches, and sequenced over multiple lanes of HiSeq

2000 to obtain an average depth of 100 million 2 x 101 bp sequences. All procedures

followed ethical guidelines at the National Institutes of Health (NIH.)

4.5.2 Beta-cell sample collection and processing

Sample collection, mRNA processing and sequencing procedure has been described

in [137]. To the 11 FAC sorted beta-cells population samples previously published,

129



we added 15 more samples that were processed following the same protocols. Briefly,

islets were dispersed into single cells, stained with Newport Green, and sorted into

’beta’ and ’non-beta’ populations as described previously [143]. The proportion of

beta (insulin), alpha (glucagon), and delta (somatostatin) cells in each population (as

percentage of total cells) was determined by immunofluorescence. mRNA extractions

as well as sequencing followed the same details described for islets samples processing

for the Geneva samples.

4.5.3 Read-mapping and exon quantification

The 100-bp sequenced paired-end reads were mapped to the GRCh37 reference

genome with GEM [116]. Exon quantifications were calculated for all elements anno-

tated in GENCODE v19 [61], removing genes with more than 20% zero read count.

All overlapping exons of a gene were merged into meta-exons with identifier of type

ENSG000001.1 exon.start.pos exon.end.pos, as described in [94]. Read counts over

these elements were calculated without using read pair information, except for ex-

cluding reads where the pairs mapped to two different genes. We counted a read in

an exon if either its start or end coordinates overlapped an exon. For split reads,

we counted the exon overlap of each split fragment, and added counts per read as

1/(number of overlapping exons per gene). Gene level quantifications used the sum

of all reads mapped to exons from the gene. Genes with more than 20% zero read

counts were removed.

4.5.4 Genotype imputation

Genotypes for all islet samples, including 19 beta-cell samples, were available

from omniexpress and omni2.5 genotype arrays. Quality of genotyping from the

shared SNPs in both arrays was assessed before imputation separately by removing

SNPs as follows: 1) SNPs with minor allele frequency (MAF) < 5%; 2) SNP geno-
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type success rate <95%; 3) Palindromic SNPs with MAF > 40%; 4) HWE < 1e-6;

5) Absence from 1000G reference panel; 6) Allele inconsistencies with 1000G refer-

ence panel; 7) Probes for same rsID mapping to multiple genomic locations (1000G

reference-consistent probe kept). Finally, samples were excluded if they had an over-

lap genotype success rate lower than 90%; and MAF differences larger than 20%

compared to the 1000G reported european MAF.

The two panels were separately pre-phased with SHAPEIT v2 [34] using the

IMPUTE2-supplied genetic maps. After pre-phasing the panels were imputed with

IMPUTE2 v2.3.1 [72] using the 1000 Genomes Phase I integrated variant set (March

2012) as the reference panel. SNPs with INFO score > 0.4 and HWE p > 1e-6 (for

chrX this was calculated from female individuals only) from each panel were kept. A

combined vcf for each chromosome was generated from the intersection of the checked

variants in each panel. Directly genotyped SNPs with a MAF < 1% (including the

exome-components of the chips not shared between all centres) were merged into the

combined vcfs: i) If SNPs were not imputed they were added and ii) If SNPs had been

imputed, the imputed calls for the individual were replaced by the typed genotype.

Dosages were calculated from the imputation probabilities (genotyped samples) or

genotype calls (WGS samples). For the 22 autosomes the dosage calculation was:

2x( (0.5*heterozygous call) + homozygous alt call). For chromosome X (where every

individual should be functionally hemizygous), the calculation was: (0.5*heterozy-

gous call) + homozygous alt call). Genotype calls for males can only be ’0/0’ and

’1/1’. The total number of variants available for analysis after quality assessment was

8,056,952.

For the 26 beta cell samples, 19 had genotypes available from omniexpress arrays,

whereas 7 had the DNA sequence available. Variant calling from DNA sequence has
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been previously described in [137]. Briefly, the Genome Analysis Toolkit (GATK)

1.5.31 [121] was used following the Best Practice Variant Detection v3 to call vari-

ants. Reads were aligned to the hg19 reference genome with BWA [97]. We used a

confidence score threshold of 30 for variant detection and a minimum base quality

of 17 for base calling. Good confidence (1% FDR) SNP calls were then imputed on

the 1000 Genomes reference panel and phased with BEAGLE 3.3.2 56. Imputation

of variants from samples with arrays genotyping were imputed together with geno-

types from individuals with islets samples as described before and then merged with

genotypes from DNA sequences. SNPs with INFO score > 0.4, HWE p > 1e-6 and

MAF > 5%, were kept for further analysis. The total number of variants available

for analysis after quality assessment was 6,847,993.

4.5.5 RNAseq quality assessment and data normalization

Heterozygous sites per sample were matched with genotype information to con-

firm the ID of the samples [177]. 11 samples did not match with their genotypes, 6 of

which would be corrected by identifying a good match. For the remaining samples,

no matches were found on the genotypes and they were removed from the dataset,

giving a total of 420 samples with genotypes. Raw read counts from exons and genes

were scaled to 10 million to allow comparison between samples with different libraries.

Scaled raw counts were then quantile normalized. We used principal component anal-

ysis (PCA) to evaluate the effects of unwanted technical variation and the expected

batch effects due to fact that the islet sample processing mRNA sequencing was per-

formed across four labs. We evaluated a) the optimal number of principal components

(PCs) for the discovery of eQTLs and b) the minimum number of PCs necessary to

control for laboratories of origin batch effects (Fig. 4.2). We performed eQTL discov-

ery controlling for 1,5,10, 20 30 40 and 50 PCs for expression, as well as gender, 4 PCs

derived from genotype data, and a variable defining the laboratory of origin (coded
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as: OXF, LUND, GEN and USA). After evaluation of the results, we conclude that

controlling for 20 PCs was optimal. To ensure that we controlled for batch effects

with these variables, we used a permutation scheme as follows: expression sample la-

bels and expression covariates were permuted within each of the 4 laboratories before

performing a standard eQTL analysis against non-permuted genotypes (and matched

PCs for genotypes) using different numbers of PCs for expression. Significant eQTLs

in any of these analyses are considered a false positive due to technical differences

across laboratories of origin of the samples. Our results indicate that 10PCs were

sufficient to minimize the number of false positives due to batch effects originating

from differences in processing of the islet samples (Fig. 4.2).

4.5.6 eQTL analysis

eQTL analysis for islets and beta-cells were performed using fastQTL [139] on 420

islets samples and 26 beta-cells samples with available genotypes. Cis-eQTL analysis

was restricted to SNPs in a 1MB window upstream and downstream the transcription

start site (TSS) for each gene and SNPs with MAF>1%. For the analysis of beta-cell

samples, we used a filter of MAF>5%. Exon-level eQTLs identified best exons-SNP

association per gene (using the group flag), while gene level eQTLs used gene quantifi-

cations and identified the best gene-SNP association. Variables included in the linear

models were the first 4 PCs for genotypes, the first 25 PCs for expression, gender

and a variable identifying the laboratory of origin of the samples. Significance for the

SNP-gene association was assessed using 1000 permutations per gene, correcting P

values with a beta approximation distribution 18. Genome-wide multiple testing cor-

rection was performed using the q-value correction [173] implemented in largeQvalue

[14].

To discover multiple independent eQTLs, we applied a stepwise regression proce-
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dure as described in [15]. Briefly, we started from the set of eGenes discovered in the

first pass of association analysis (FDR < 1%). Then, the maximum beta-adjusted

P value (correcting for multiple testing across the SNPs and exons) over these genes

was taken as the gene-level threshold. The next stage proceeded iteratively for each

gene and threshold. A cis-scan of the window was performed in each iteration, using

1,000 permutations and correcting for all previously discovered SNPs. If the beta

adjusted P value for the most significant exon-SNP or gene-SNP (best association)

was not significant at the gene-level threshold, the forward stage was complete and

the procedure moved on to the backward step. If this P value was significant, the

best association was added to the list of discovered eQTLs as an independent signal

and the forward step proceeded to the next iteration. The exon level cis-eQTL scan

identified eQTLs from different exons, but reported only the best exon-SNP in each

iteration. Once the forward stage was complete for a given gene, a list of associated

SNPs was produced which we refer to as forward signals. The backward stage con-

sisted of testing each forward signal separately, controlling for all other discovered

signals. To do this, for each forward signal we ran a cis scan over all variants in the

window using fastQTL, fitting all other discovered signals as covariates. If no SNP

was significant at the gene-level threshold the signal being tested was dropped, oth-

erwise the best association from the scan was chosen as the variant that represented

the signal best in the full model.

4.5.7 GTEx eQTLs

We identified exon level eQTLs for 44 GTEx tissues using fastQTL 18 following the

same procedure as for the islet eQTLs. Covariates included followed the previously

published number of PCs for expression [58] and included 15 PCs for expression for

tissues with less than 154 samples; 30 PCs for samples between 155 and 254 samples;

and 35 PCs for samples with more than 254 samples. Independent eQTLs from
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exons were identified as described for islets eQTLs. The proportion of shared eQTLs

between islet and beta-cell eQTLs and the eQTLs from GTEx tissues were identified

using Π1 [173].

4.5.8 Tissue de-convolution

To identify the contribution of the beta-cells, non-beta cells and exocrine com-

ponents (non-islets cell) expression to the total gene expression measure in islets

we performed an expression deconvolution analysis. Expression profiles from GTEx

whole pancreas was used as a model for the exocrine component of expression [58],

while FAC-sorted expression profiles from beta-cell and non-beta-cells from Nica et al

[137] were used to identify the fraction of expression derived from islets cells. First,

we performed differential expression analysis of a) exocrine versus whole islet samples;

b) beta-cell versus whole islet samples; c) non-beta-cell versus whole islet samples.

The top 500 genes from each analysis were combined, and a deconvolution matrix

of log2-transformed median expression values was prepared for each cell type. Next,

deconvolution was performed using the Bioconductor package DeconRNASeq 61.De-

convolution values per sample are included in the covariates file, together with the

expression values in the EGA submission.

4.5.9 Enrichment of eQTLs in T2D and glycemic GWAS

To perform an enrichment analysis of T2D and glycemic traits GWAS associa-

tions among eQTLs across tissues, we examined 78 T2D associated signals [49], and

44 variants from associations with continuous glycemic traits relevant to T2D predis-

position (including fasting glucose, and beta-cell function (HOMA-B) in non-diabetic

individuals) [163, 175, 114]. For each GWAS lead variant, we extracted the eQTL

with the greatest absolute effect size estimate from the results for all GTEx tissues

and the InsPIRE pancreatic islets. We then compared their observed effect size es-
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timates to those derived from a null distribution of 15,000 random variants matched

in terms of the number of SNPs in LD, distance to TSS, number of nearby genes and

minor allele frequency. For comparison with results observed for T2D loci, we also

included the set of 50 lead variants implicated by GWAS in predisposition to T1D

[138].

4.5.10 Co-localization of islet eQTL with T2D GWAS

Co-localization of GWAS variants and eQTLs were performed using both COLOC

[PMID: 24830394] and RTC [ref]. For the analysis using COLOC, all variants within

250 kilobase flanking regions around the index variants were tested for co-localization

using default parameters from the software were used on summary statistics from T2D

GWAS from [164] and fasting glucose [113]. GWAS variants and eSNPs pairs were

considered to co-localize if the COLOC score for shared signal was larger than 0.9.

RTC analysis was also performed using defaults parameters from the software with

a list of 86 lead GWAS variants for T2D and fasting glucose. Associations between

GWAS and gene expression were considered as co-localizing if RTC score was larger

than 0.9.

4.5.11 Chromatin states, Islet ATAC-seq and Transcription factor (TF)

footprints

We used a previously published 13 chromatin state model that included Pancre-

atic Islets along with 30 other diverse tissues [196]. Briefly, these chromatin states

were generated from cell/tissue ChIP-seq data for H3K27ac, H3K27me3, H3K36me3,

H3K4me1, and H3K4me3, and input control from a diverse set of publically avail-

able data [142, 186, 43, 125] using the ChromHMM program 65. Chromatin states

were learned jointly from 33 cell/tissues that passed QC by applying the ChromHMM

(version 1.10) hidden Markov model algorithm at 200-bp resolution to five chromatin
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marks and input 12. We ran ChromHMM with a range of possible states and selected

a 13-state model, because it most accurately captured information from higher-state

models and provided sufficient resolution to identify biologically meaningful patterns

in a reproducible way. As reported previously [196], Stretch Enhancers were defined

as contiguous enhancer chromatin state (Active Enhancer 1 and 2, Genic Enhancer

and Weak Enhancer) segments longer than 3kb, whereas Typical Enhancers were en-

hancer state segments smaller than the median length of 800bp [142].

We used the union of ATAC-seq peaks previously identified from two human islet

samples called using MACS2 v2.1.0 [196]. We also used previously published TF

footprints that were generated in a haplotype-aware manner using ATAC-seq and

genotyping data from the phased, imputed genotypes for each of two islet samples

using vcf2diploid v0.2.6a [196].

4.5.12 Filtering eQTL SNPs for epigenomic analyses

Since low MAF SNPs, due to low power, can only be identified as significant

eQTL SNP (eSNPs) with high eQTL effect sizes (slope or the beta from the lin-

ear regression), we observed that absolute effect size varies inversely with MAF Fig.

4.19. To conduct eQTL effect size based analyses in an unbiased manner, we se-

lected significant (FDR 1%) eSNPs with MAF >= 0.2. We then pruned this list to

retain the most significant SNPs with pairwise LD(r2)<0.8 for the EUR population

using PLINK 66 and 1000 genomes variant call format (vcf) files (downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) for reference

(European population). This filtering process resulted in N=3832 islet eSNPs.
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Figure 4.19: MAF filtering for eSNPs. MAF for islet eQTL eSNPs binned by absolute
effect size into equal sized, 50% overlapping bins. Bin 1 contains eSNPs with lowest
absolute effect sizes, bin 19 contains eSNPs with highest absolute effect sizes.

4.5.13 Enrichment of genetic variants in genomic features

To calculate the enrichment of islet eSNPs to overlap with genomic features such

as chromatin states and transcription factor (TF) footprint motifs, we used the GRE-

GOR tool [160]. For each input SNP, GREGOR selects 500 control SNPs matched for

MAF, distance to the gene, and number of SNPs in LD(r2) geq 0.99. A unique overlap

is reported if the feature overlaps any input lead SNP or its LD(r2)>0.99 LD SNPs.

Fold enrichment is calculated as the number unique overlaps over the mean number

of loci at which the matched control SNPs (or their LD(r2>)0.99 SNPs) overlap the

same feature. This process accounts for the length of the features, as longer features

will have more overlap by chance with control SNP sets. We used the following pa-

rameters in GREGOR for eQTL enrichment: r2 threshold (for inclusion of SNPs in

linkage disequilibrium (LD) with the lead eSNP) = 0.99, LD window size = 1Mb,

and minimum neighbor number = 500.

For enrichment of T2D GWAS SNPs in islet chromatin states, we downloaded

the list of T2D GWAS SNPs from [110]. We pruned this list to retain the most sig-
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nificant SNPs with pairwise LD(r2)<0.2 for the EUR population using PLINK [22]

and 1000 genomes vcf files (downloaded from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/) for reference (European population). This filtering

process resulted in N=378 T2D GWAS SNPs. We used GREGOR to calculate en-

richment using the following specific parameters: r2 threshold (for inclusion of SNPs

in linkage disequilibrium (LD) with the lead eSNP) = 0.8, LD window size = 1Mb,

and minimum neighbor number = 500

We investigated if footprint motifs were more enriched to overlap eQTL of high

vs low effect sizes. We sorted the filtered (as described above) eQTL list by absolute

effect size values and partitioned into two equally sized bins (N eSNPs = 1,916).

Since TF footprints were available for a large number of motifs (N motifs = 1,995),

the enrichment analysis had a large multiple testing burden and limited power with

1,916 eSNPs in each bin. Therefore, we only considered footprint motifs that were

significantly enriched (FDR <1%, Benjamini & Yekutieli method from R p.adjust

function, N motifs = 283) to overlap the bulk set of eSNPs (LD r2<0.8 pruned but not

MAF filtered, N eSNPs = 6,468) for enrichment to overlap the binned set of eSNPs.

This helped reduce the multiple testing burden. We then calculated enrichment for the

selected footprints to overlap SNPs in each bin using GREGOR with same parameters

as described above.

4.5.14 eSNP effect size distribution in chromatin states and ATAC-seq

peaks within chromatin states

We identified the islet eQTL eSNPs (after LD pruning and MAF filtering as de-

scribed above) occurring in chromatin states or ATAC-seq peaks within chromatin

states using BEDtools intersect [154]. Similar to the enrichment calculation proce-

dure, we considered a unique eQTL overlap if the lead eSNP or a proxy SNP with
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LD(r2)>0.99 occurred in these regions. We considered the effect size as the slope or

the beta from the linear regression for the eQTL overlapping each region. P values

were calculated using the Wilcoxon Rank Sum Test in R.

4.5.15 TF motif directionality analysis

For TF footprint motifs that were significantly enriched to overlap the full set

of islet eQTLs (after LD pruning to r2<0.8) with (FDR 1%, Benjamini & Yekutieli

method from R p.adjust function, N motifs = 283), we determined the overlap posi-

tion of the eSNP (pruned LD r2<0.8 lead eSNPs and their LD r2>0.99 proxy SNPs)

with each TF footprint motif. We considered instances where the eSNP overlapped

the TF footprint motif at a position with information content >= 0.7 and either the

eSNP effect or the non-effect allele was the most preferred base in the motif. We se-

lected TF footprint motifs that had 10 or more such eSNP overlap instances (N=278).

For each TF footprint motif and eSNP overlap, we re-keyed the direction of effect on

the target gene being positive or negative with respect to the most preferred base in

the motif. For each TF motif, we compiled the fraction of instances where the SNP

allele that was most preferred in the TF footprint motif (i.e. base with highest prob-

ability in the motif) associated with increased expression of the associated gene. We

refer to this metric as the motif directionality fraction where fraction near 1 suggests

activating and fraction near 0 suggests repressive preferences towards the target gene

expression. Motif directionality fraction near 0.5 suggests no activity preference or

context dependence. We compared our results to a previously published study that

quantified transcription activating or repressive activities based on massively parallel

reported assays in HepG2 and K562 cells 27. We then considered 99 motifs from

our analyses that were reported to have significant (P<0.01) activating or repressive

scores from MPRAs in both HepG2 and K562. With the null expectation of the motif

directionality fraction being equal to 0.5, i.e. TF binding equally likely to increase or

140



decrease target gene expression, we used a binomial test to calculate TF that show

significant deviation from the null (N = 8 at FDR < 10%).

4.5.16 Cell culture

MIN6 mouse insulinoma beta cells [128] were grown in Dulbecco’s modified Ea-

gle’s Medium (Sigma-Aldrich, St. Louis, Missouri/USA) with 10% fetal bovine serum,

1 mM sodium pyruvate, and 0.1 mM beta-mercaptoethanol. INS-1-derived 832/13

rat insulinoma beta cells (a gift from C. Newgard, Duke University, Durham, North

Carolina/USA) were grown in RPMI-1640 medium (Corning, New York/USA) sup-

plemented with 10% fetal bovine serum, 10 mM HEPES, 2 mM L-glutamine, 1 mM

sodium pyruvate, and 0.05 mM beta-mercaptoethanol. EndoC-βH1 cells (Endo-

cell) were grown according to (Ravassard et al., 2011) in Dulbecco’s modified Ea-

gle’s medium (DMEM; Sigma-Aldrich), 5.6mmol/L glucose with 2% BSA fraction V

fatty acid free (Roche Diagnostics), 50mol/L 2-mercaptoethanol, 10mmol/L nicoti-

namide (Calbiochem), 5.5g/ml transferrin (Sigma-Aldrich), 6.7ng/ml selenite (Sigma-

Aldrich), 100U/ml penicillin, and 100g/ml streptomycin. Cells were grown on coating

consisting of 1% matrigel and 2g/mL fibronectin (Sigma). We maintained cell lines

at 37 C and 5% CO2.

4.5.17 Transcriptional reporter assays

To test haplotypes for allele-specific effects on transcriptional activity, we PCR-

amplified a 765-bp genomic region (haplotype A) containing variants: rs7798124,

rs7798360, and rs7781710, and a second 592-bp genomic region (haplotype B) con-

taining variants: rs10228796, rs10258074, rs2191348, and rs2191349 from DNA of

individuals homozygous for each haplotype. We cloned the PCR amplicons into the

multiple cloning site of the Firefly luciferase reporter vector pGL4.23 (Promega, Fitch-

burg, Wisconsin/USA) in both orientations, as described previously [45]. Vectors are
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designated as ’forward’ or ’reverse’ based on the PCR-amplicon orientation with re-

spect to DGKB gene. We isolated and verified the sequence of five independent clones

for each haplotype in each orientation. For the 5’ eQTL a 250 bp construct contain-

ing the rs17168486 SNP (Origene) was subcloned into the Firefly luciferase reporter

vector pGL4.23 (Promega) in both orientations.

We plated the MIN6 (200,000 cells) or 832/13 (300,000 cells) in 24-well plates 24

hrs before transfections and the EndoC-βH1 cells (140.000 cells) plated 48H prior

to transfection. We co-transfected the pGL4.23 constructs with phRL-TK Renilla

luciferase reporter vector (Promega) in duplicate into MIN6 or 832/13 cells and in

triplicate for EndoC-βH1 cells. For the transfections we used Lipofectamine LTX

(ThermoFisher Scientific, Waltham, Massachusetts/USA) with 250 ng of plasmid

DNA and 80 ng Renilla for MIN6 cells, Fugene6 (Promega) with 720 ng of plasmid

and 80 ng Renilla for 832/13 cells per each welll and Fugene6 with 700 ng plasmid

and 10 ng renilla for EndoC-βH1 cells. We incubated the transfected cells at 37 C

with 5% CO2 for 48 hours. We measured the luciferase activity with cell lysates

using the Dual-Luciferase Reporter Assay System (Promega). We normalized Firefly

luciferase activity to the Renilla luciferase activity. We compared differences between

the haplotypes using unpaired two-sided t-tests. All experiments were independently

repeated on a second day and yielded comparable results.

4.5.18 Electrophoretic Mobility Shift Assays

Electrophoretic mobility shift assays were performed as previously described [45].

We annealed 17-nucleotide biotinylated complementary oligonucleotides (Integrated

DNA Technologies) centered on variants: rs10228796, rs10258074, rs2191348, and

rs2191349. MIN6 nuclear protein extract was prepared using the NE-PER kit (Thermo

Scientific). To conduct the EMSA binding reactions, we used the LightShift Chemi-
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luminescent EMSA kit (Thermo Scientific) following the manufacturer’s protocol.

Each reaction consisted of 1 g poly(dI-dC), 1x binding buffer, 10 g MIN6 nuclear

extract, 400 fmol biotinylated oligonucleotide. We resolved DNA-protein complexes

on nondenaturing DNA retardation gels (Invitrogen) in 0.5x TBE. We transferred

the complexes to Biodyne B Nylon membranes (Pall Corporation), and UV cross-

linked (Stratagene) to the membrane. We used chemiluminescence to detect the

DNA-protein complexes. EMSAs were repeated on a second day with comparable

results.
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CHAPTER V

Integrating Enhancer RNA Signatures with

Diverse Omics Data to Identify Characteristics of

Transcription Initiation in Pancreatic Islets

5.1 Abstract

Identifying active regulatory elements and their characteristics is critical to un-

derstand gene regulatory mechanisms and subsequently better delineating biological

mechanisms of complex disease/trait predisposition. Studies have shown that many

active enhancers are transcribed into enhancer RNA (eRNA). Here, we identify ac-

tively transcribed regulatory elements in human pancreatic islets in high genomic

resolution by generating eRNA profiles using cap analysis of gene expression (CAGE)

across 70 islet samples. We identify >10,000 clusters of CAGE tag transcription start

sites (TSS) or tag clusters (TCs) in islets, 20% of which are islet specific when com-

pared to CAGE TCs in other publicly available tissues. Islet TCs are most enriched

to overlap GWAS loci for islet-relevant traits such as fasting glucose. We integrated

islet CAGE profiles with diverse epigenomic information such as chromatin immuno-

precipitation followed by sequencing (ChIP-seq) profiles of five histone modifications
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and accessible chromatin profiles from the assay for transposase accessible chromatin

followed by sequencing (ATAC-seq), to understand how the underlying chromatin

landscape affects transcription. As expected, we observe that transcription largely ini-

tiates downstream of ATAC-seq peak summits. We identify that ATAC-seq informed

transcription factor binding sites (TF footprint motifs) for the RFX TF family are

highly enriched in transcribed regions occurring in enhancer associated chromatin,

whereas footprint motifs for the ETS family TFs are highly enriched in transcribed

regions with promoter associated chromatin. Using massively parallel reporter as-

says in a rat pancreatic islet beta cell line, we tested the activity of 3,240 islet TC

elements, 70% (2,206) of which show significant regulatory activity (5% FDR). This

work provides a high-resolution transcriptional regulatory map of human pancreatic

islets.

5.2 Introduction

T2D is a complex disease that is caused due to an interplay of factors such as

pancreatic islet dysfunction and insulin resistance in peripheral tissues such as fat

and muscle. GWASs to date have identified >240 loci that modulate risk for T2D

[110]. However, these SNPs mostly occur in non protein-coding regions and are

highly enriched to overlap islet-specific enhancer regions [182, 120, 189, 142, 144, 153].

This suggests the variants likely affect gene expression rather than directly altering

protein structure or function. Moreover, due to the correlated structure of common

genetic variations across genome, GWAS signals are usually marked by numerous

SNPs in high linkage disequilibrium (LD). Therefore, identifying causal SNP(s) is

extremely difficult using genetic information alone. These factors have impeded our

understanding of the molecular mechanisms by which genetic variants modulate gene

expression in orchestrating disease.

In order to understand gene regulatory mechanisms, it is essential to identify regu-
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latory elements at high genomic resolution, since these are most likely to house causal

variant(s). Active regulatory elements can be delineated by profiling covalent modifi-

cations of the histone H3 subunit such as H3 lysine 27 acetylation (H3K27ac) which

is associated with enhancer activity, H3 lysine 4 trimethylation (H3K4me3) which is

associated with promoter activity, among others. However, such chromatin modifi-

cation based methods identify regions of the genome that typically span hundreds

of base pairs. Since TF binding can affect gene expression, TF accessible regions

of the chromatin within these active enhancer and promoter elements can enable

identifying the regulatory element at a higher resolution. Numerous studies have uti-

lized this diverse information in islets to nominate causal gene regulatory mechanisms

[196, 193, 44, 188, 155, 188].

In the light of identifying active regulatory elements, studies have shown that

a subset of enhancers are also transcribed into enhancer RNA (eRNA), and that

transcription is a robust predictor of enhancer activity [7, 124]. eRNAs are nuclear,

short, mostly-unspliced, 5 capped and non-polyadenylated [7]. eRNAs have generally

shown to be bidirectionally transcribed with respect to the regulatory element [85,

123, 7], however, unidirectional transcription at enhancers has also been reported.

Previous studies have indicated that these transcripts could be stochastic output of

Pol2 and TF machinery at active regions, whereas in some cases, the transcripts

could serve important functions such as sequestering TFs or potentially assisting

in chromatin looping [79, 73, 100, 209]. Therefore, identifying active sites where

transcription initiates can pinpoint active regulatory elements at a higher genomic

resolution.

Genome-wide sequencing of 5’ capped RNAs using Cap Analysis of Gene Expres-

sion (CAGE) can detect transcription start sites (TSSs) and thereby profile tran-

scribed promoter and enhancer regions [85, 7]. CAGE-identified enhancers are two

to three times more likely to validate in vitro than non-transcribed enhancers de-
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tected by chromatin-based methods [7]. An advantage of CAGE is that it can be

applied on RNA samples from hard to acquire biological tissue such as islets and

does not require live cells that are imperative for other TSS profiling techniques such

as GRO-cap seq [28, 27, 105]. The functional annotation of the mammalian genome

(FANTOM5) project [183] has generated an exhaustive CAGE expression atlas across

573 primary cell types and tissues, including the pancreas. However, islets, that se-

crete insulin and are relevant for T2D and related traits, constitute only 1% of the

pancreas tissue. Therefore, pancreas transcriptome cannot accurately represent the

islet enhancer transcription landscape. Motivated by these reasons, we profiled the

islet transcriptomes using (CAGE). Here, we present the islet CAGE TSS atlas in

pancreatic islets and complement the omics compendium for the tissue.

5.3 Results

5.3.1 The CAGE landscape in human pancreatic islets

We analyzed transcriptomes in 70 human pancreatic islet samples obtained from

unrelated organ donors by employing CAGE on total RNA from each sample. To

enrich for the non poly-adenylated and short in size (<1kb) eRNA transcripts [7], we

performed polyA depletion and small fragment size selection (<1kb, methods CAGE

library preparation) to enrich for the eRNA transcript fraction. CAGE libraries were

prepared according to the non-Amplified non-Tagging Illumina Cap Analysis of Gene

Expression (MAF) protocol [135], and an 8 bp unique molecular identifier was added

to identify PCR duplicates. We sequenced CAGE libraries, performed quality control

(QC) and mapped to the hg19 genome and identified transcription start sites (TSSs)

or CAGE tags. We selected 51 samples that passed our QC measures (see methods) for

all further analyses. To identify regions with high density of transcription initiation

events, we called clusters of CAGE tags or tag clusters (TCs) using the paraclu [46]
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method in each islet sample. We then identified a consensus set of aggregated islets

TCs by merging TCs across samples in a strand-specific manner and retaining TC

segments that were supported by at least 10 individual samples (Methods, Fig. 5.1).

We identified 10,373 tag clusters with median length of 191 bp (Fig. 5.2), spanning a

total genomic territory of 2.5 Mb. To analyze characteristics of islet TCs and explore

the chromatin landscape underlying these regions, we utilized publicly available ChIP-

seq data for five histone modifications along with ATAC-seq data in islets [196].

We integrated the datasets for histone modifications, namely, promoter associated

H3K4me3, enhancer associated H3K4me1, active promoter and enhancer associated

H3K27ac, transcribed gene-associated H3K36me3 and repressed chromatin associated

H3K27me3 across islets and analyzed the data jointly with corresponding publicly

available ChIP-seq datasets for Skeletal Muscle, Adipose and Liver (included for other

ongoing projects) using ChromHMM [40, 43, 41]. This analysis produced 11 unique

and recurrent chromatin states (Fig. 5.3), including promoter, enhancer, transcribed,

and repressed states. Fig. 5.4A shows an example locus in the intronic region of the

ST18 gene where a TC identified in islets overlaps an active TSS chromatin state

and an ATAC-seq peak. The regulatory activity of this element was validated by the

VISTA project in an in vivo reporter assay in mouse embryos [198].

We next compared the islet TCs with CAGE peaks identified across across diverse

cell and tissue types by FANTOM project. Using CAGE profiles across hundreds

of cell/tissues, the FANTOM project identified peaks using a decomposition-based

peak identification (DPI) method [183], following which a set of robust peaks were

defined that included a CAGE TSS with more than 10 read counts and 1 TPM (tags

per million) in at least one sample. We observed that 77.8% of Islet TCs segments

overlapped (at least 1bp) with FANTOM robust peaks, and the total overlapping

region comprised 24% of the total Islet TC territory (Fig. 5.4B). To compare islet

TCs with individual FANTOM tissues, we identified TCs in each FANTOM human
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Figure 5.4: Islet CAGE tag cluster identification. A: Genome browser view of the
intronic region of the ST18 gene as an example locus where a TC is identified in islets
that overlaps an islet ATAC-seq peak and an active TSS chromatin state. This TC
also overlaps an enhancer element validated by the VISTA project [198]. B: Base-pair
level overlap between islet CAGE TC territory and FANTOM robust CAGE peaks. C:
Distribution of the number of tissues in which TCs identified by the FANTOM project
overlap each islet TC segment. D: Genome browser view of an example locus near the
AP1G2 gene that highlights an islet TC that is also identified in FANTOM tissues
(FANTOM TCs track is a dense depiction of TCs called across >120 tissues) (green
box), occurs in a ATAC-seq peak region in both islets and lymphoblastoid cell line
GM12878 (ATAC-seq track) and overlap active TSS chromatin states across numerous
other tissues. Another islet TC 34 kb distal to the AP1G2 gene is not identified as
a TC in other FANTOM tissues, occurs in an islet ATAC-seq peak and a more islet-
specific active enhancer chromatin state region (blue box). E: Enrichment of islet
TCs to overlap islet chromatin state annotations and other common annotations. F:
Enrichment of islet TCs to overlap GWAS loci of various disease/traits. Number of
loci for each trait are noted in parentheses.
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tissue using the paraclu method similarly as islets. For each Islet TC segment, we then

calculated the number of FANTOM tissues in which TCs overlapped the islet segment.

We observed that 20% of Islet TCs were unique, whereas about 60% of segments were

shared across 60 or more tissues (Fig. 5.4C). We highlight an example locus where

an islet TC in the AP1G2 gene occurs in active TSS chromatin states across multiple

tissues, and overlaps shared ATAC-seq peaks in islet and the lymphoblastoid cell line

GM12878 [17] (Fig. 5.4D). This region was also identified as a TC in FANTOM

tissues (Fig. 5.4D, green box). Another islet TC 34kb away however occurs in a

region lacking gene annotations, and overlaps a more islet-specific active enhancer

chromatin state and ATAC-seq peak (Fig. 5.4D, blue box). This region was not

identified as a TC in the 120 FANTOM tissues that were analyzed. These data

highlight that islet TCs comprise both shared and also islet-specific sites of active

transcription initiation.

We next asked if islet TCs preferentially occurred in certain genomic annotations.

We computed the enrichment of islet TCs to overlap islet annotations such as active

TSS and other chromatin states and islet ATAC-seq peaks. We also included static

annotations such as known gene promoters, coding, untranslated (UTR) regions, or

annotations such as super enhancers, or histone ChIP-seq peaks that were aggregated

across multiple cell types. We observed that Islet TCs were highly enriched to overlap

Islet active TSS states (> 60 fold, P=0.0001, Fig. 5.4E). This result is largely expected

since CAGE profiles transcription start sites where the underlying chromatin is more

likely to look like active TSS. TCs were also enriched to overlap islet ATAC-seq peaks,

which signifies that these regions of transcription initiation are bound by TFs, and 5

untranslated regions (UTRs).

To gauge if these transcribed elements could be relevant for diverse disease/traits,

we computed enrichment for TCs to overlap GWAS loci for >100 traits from the

NHGRI catalog [18]. We observed that traits such as Fasting Glucose (FGlu) (fold
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enrichment = 7.05, P value = 3.30×10-4), metabolic traits (fold enrichment = 6.44,

P value = 2.09×10-4) were the among the most highly enriched, highlighting the

relevance and of these transcribed elements for islets (Fig. 5.4E). GWAS loci for T2D

were also enriched in islet TCs (fold enrichment = 2.45, P value = 0.02). Since T2D

is orchestrated through a complex interplay between islet beta cell dysfunction and

insulin resistance in peripheral tissues, we reasoned that some underlying pathways

in T2D might be more relevant to islets than others. To explore this rationale, we

utilized results from a previous study that analyzed GWAS data for T2D along with

47 other diabetes related traits and identified clusters of related loci at the T2D

GWAS signals [191]. Interestingly, we observe that signals in the islet beta cell and

proinsulin cluster were highly enriched to overlap islet TCs (fold enrichment = 5.59,

P value = 0.004), whereas signals in the insulin resistance cluster were depleted (fold

enrichment = 0.91). These results suggest that islet TCs comprise active regulatory

elements relevant for traits specifically related to islet function.

5.3.2 Integrating CAGE TCs with epigenomic information

We further explored CAGE profiles relative to the underlying chromatin land-

scape to identify characteristics of transcription initiation. We first overlayed CAGE

profiles over accessible chromatin (ATAC-seq) profiles. Aggregated CAGE signal over

ATAC-seq narrow peak summits highlighted the characteristic divergent pattern of

transcription (Fig. 5.5A). Conversely, we anchored ATAC-seq signal over islet TC

centers and observed that the summit of the ATAC-seq signal lies upstream of the

TC center (Fig. 5.5B). We next asked if TF binding sites were more enriched to

occur upstream of TCs vs downstream. We utilized TF footprint motifs previously

identified using islet ATAC-seq data and TF DNA binding position weight matri-

ces (PWMs) [196]. These footprint motifs represent putative TF binding sites that

are also supported by accessible chromatin profiles, as opposed to TF motif matches
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that are only informed by DNA sequence. We observe that most TFs were more

enriched to occur in TCs and the 500bp upstream region as compared to TCs and

500 bp downstream region (Fig. 5.5C). These observations highlight that the region

upstream of the TC is most accessible and more TF binding events occur.

We next explored the characteristics of TCs that occurred in the two main reg-

ulatory classes - promoter and enhancers, relative to each other. We focussed on

transcribed, accessible regions in promoter and in enhancer states (TCs overlapping

ATAC-seq peaks within promoter or enhancer segments). We considered the prox-

imity of these elements to know gene TSSs and further classified the segments as

TSS proximal or distal using a 5kb distance threshold from the nearest protein cod-

ing genes (Gencode V19). We then interrogated the chromatin landscape at these

regions across 98 Roadmap Epigenomics cell types for which chromatin state an-

notations are publicly available (18 state extended model, see methods) [186]. We

observed that TSS proximal islet TCs in accessible islet TSS chromatin states were

nearly ubiquitously identified as TSS chromatin states across roadmap cell types (Fig.

5.5D, left). A fraction of TSS distal islet TCs in accessible islet TSS chromatin states

however were more specific for pancreatic islets (Fig. 5.5D, right). In contrast, we

observed that islet TCs in accessible islet enhancer chromatin states, both proximal

and distal to known gene TSSs were more specifically identified as enhancer states in

pancreatic islets (Fig. 5.5E). This pattern was more clear for pancreatic islets than

whole pancreas (Fig. 5.5D and E, labelled) which further emphasizes the differences

between epigenomic profiles for islets vs pancreas tissue.

Having observed differences in cell-type specificities in islet TCs in TSS vs en-

hancer states, we next asked if transcription factors displayed preferences to bind

in these regions. We observed that footprint motifs for regulatory factor X (RFX)

TF family were highly enriched (>3 fold, P value = 0.0001) in TCs in accessible

enhancers. On the other hand, TCs in accessible TSS regions were highly enriched
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Figure 5.5: Integrating Islet CAGE TCs with other epigenomic information reveals
characteristics of transcription initiation. A: Aggregate CAGE profiles over ATAC-seq
peak summits. B: Aggregate ATAC-seq profile over TC midpoints. C: Enrichment
of TF footprint motifs to overlap TC and 500 bp upstream region (y axis) vs TC
and 500 bp downstream region (x axis). D: Chromatin state annotations across
98 Roadmap Epigenomics cell types (using the 18 state extended model, [186]) for
TC segments that occur in islet active TSS chromatin state and overlap ATAC-seq
peaks. These segments were segregated into those occurring 5kb proximal (left) and
distal (right) to known protein coding gene TSS (Gencode V19). E: Chromatin state
annotations across 98 Roadmap Epigenomics cell types for TC segments that occur
in islet active enhancer chromatin state and overlap ATAC-seq peaks, segregated
into those occurring 5kb proximal (left) and distal (right) to known gene TSS. F:
Aggregate CAGE profiles centered and oriented relative to RFX5 known8 footprint
motifs occurring in 5kb TSS distal regions. G: Aggregate CAGE profiles centered
and oriented relative to ELK4 1 footprint motifs.
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to overlap footprint motifs of the E26 transformation-specific (ETS) TF family.

We observe divergent aggregate CAGE profiles over TF footprint motifs enriched

in enhancers for example RFX5 known8 footprint motifs in 5kb TSS distal regions

and ELK4 1 motif (Fig. 5.5G and H).

5.3.3 Experimental validation of transcribed regions

We next sought to experimentally validate the regulatory activity of islet TCs. We

utilized the massively parallel reporter assay platform wherein thousands of elements

can be simultaneously tested by including unique barcode sequences for each element

and determining the transcriptional regulatory activity using sequencing based bar-

code quantification. This approach is also known as the self-transcribing active regu-

latory region sequencing (STARR-seq) assay. We generated libraries of TC sequences

(198 bp elements) and cloned these along with unique 16 bp barcode sequences into

the STARR-seq vector, downstream of the GFP gene which was in control with the

SCP1 promoter. We transfected the STARR-seq libraries into rat beta cell insuli-

noma (INS1 832/13) cell line, extracted RNA and sequenced the barcodes. We added

8 bp unique molecular identifier (UMI) sequences before the PCR amplification of the

RNA libraries to enable accounting for and removing PCR duplicates while quantify-

ing true biological RNA copies. We then modeled the RNA and DNA barcode counts

in generalized linear models (GLMs) to model RNA and DNA counts for each barcode

using MPRAnalyze [8] to quantify transcriptional activity of the TC element inserts.

Our STARR-seq library included 6,798 insert elements (198 bp each) that overlapped

5,898 TCs. We selected barcodes that each had at least 10 DNA counts and non zero

RNA counts in at least one technical replicate, and selected insert elements that had

at least two of such qualifying barcodes. We had 3,240 such insert elements which we

then tested for significant activity in the STARR-seq assay. We observed that 68.1%

(N = 2,260) of these elements showed significant regulatory activity (5% FDR) (Fig.
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5.6A (top)). On classifying insert elements based on active TSS, enhancer or other

chromatin state overlap in islets, we observe that a larger fraction of TC elements

overlapping the active TSS state had significant transcriptional activity compared to

elements overlapping enhancer states, which was in turn higher than TCs in other

chromatin states (Fig. 5.6A (bottom)). We also observed that the STARR-seq activ-

ity Z scores for TC elements in active TSS states were higher than those in enhancer

states (Wilcoxon rank sum test P = 2.99×10-9) (Fig. 5.6B). Z scores for TCs that

overlapped ATAC-seq peaks were also significantly higher than those that did not

occur in peaks (Wilcoxon rank sum test P = 4.01×10-15) (Fig. 5.6C). Also, Z scores

for TCs proximal to gene TSSs were higher than TCs that were distal to gene TSS

locations (Wilcoxon rank sum test P = 4.21×10-9) (Fig. 5.6D). In Fig. 5.6E, we high-

light an islet TC for which we tested three insert elements (Fig. 5.6E, STARR-seq

elements track), which occurred in active TSS and enhancer states and overlapped

ATAC-seq peak. All three of the elements showed significant transcriptional activity

in our assay (Z score > 2.94, Z score P values < 0.001). Interestingly, while there are

no known gene TSS annotations in this region, clear islet polyA+ mRNA-seq profiles

that overlap the CAGE signal can be observed here. Another example TC locus that

occurred in the intronic region of the ABCC8 gene marked a region of islet-specific

enhancer chromatin state and overlapped an ATAC-seq peak (Fig. 5.6F). The regu-

latory activity of this region was previously validated in the pancreatic bud in mouse

embryos from a LacZ assay [142]. We included 39 insert elements that tiled this re-

gion (50 bp offset) (Fig. 5.6F, STARR-seq element track, which is a dense depiction

of these tiles) in the STARR-seq assay and observed significant activity in multiple

tiles within and neighboring the TC and the ATAC-seq peak (Fig. 5.6F, STARR-seq

Z scores track). Through these analyses we could experimentally validate a consider-

able proportion of TCs for transcriptional regulatory activity in a STARR-seq assay

in a rodent beta cell model system.
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Figure 5.6: Experimental validation of TCs using STARR-seq MPRA: A: (Top) Num-
ber and fraction of TCs identified as significantly active (5% FDR), nominally active
(P < 0.05) or non-significant in STARR-seq assay performed in rat beta cell insuli-
noma (INS1 832/13) cell line model. (Bottom) panel indicates the proportion of TCs
that overlapped active TSS, enhancer or other chromatin states that were identified
as active in STARR-seq assay. B. STARR-seq activity Z scores for TCs occurring in
active TSS, enhancer or other chromatins states. C: STARR-seq activity Z scores for
TCs that overlap ATAC-seq peak vs those that do not overlap peaks. D: STARR-seq
activity Z scores for TCs based on relative position (5kb TSS proximal or distal) to
known protein coding gene TSSs (Gencode V19). E: Example locus were TC elements
that occur in active TSS and enhancer chromatin state and overlap ATAC-seq peak
that were tested in the STARR-seq assay. The CAGE profile coincides with islet
mRNA profile that is detected despite no known gene annotation in the region and
the nearest protein coding gene is 6kb away. F: The intronic locus of the ABCC8
gene, where an islet TC overlaps an ATAC-seq peak and active enhancer chromatin
states. 198 bp tiles spanning the region shown in the STARR-seq elements track were
included in the assay.
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5.3.4 CAGE profiles augment functional genomic annotations to better

understand GWAS and eQTL associations

Observing characteristics of TCs in islets in different epigenomic contexts and

validating the activities of these elements, we next asked if islet TCs taken as an

additional layer of functional genomic information could supplement fine mapping

efforts in understanding GWAS or eQTL associations. We classified genomic annota-

tions utilizing different layers of epigenomic data such as histone modification based

chromatin states, accessible regions within these states and transcribed accessible

regions within these states. We then computed enrichment for T2D GWAS loci to

overlap these annotations using full GWAS summary statistics [110] using a Bayesian

hierarchical model implemented in the fGWAS tool [146]. This method allows using

not only the genome wide significant loci, instead, leveraging genome wide association

statistics such that marginal associations can also be accounted for. The prior prob-

abilities of a region of the genome containing an association and a SNP being causal

are then allowed to vary based on overlap with annotations. We observed that TCs in

accessible enhancer regions were the most highly enriched for T2D GWAS loci (Fig.

5.7A, left). We performed similar analysis using islet eQTL summary data [196],

where we observed that TCs in accessible regions in both enhancers and promoters

were most highly enriched (Fig. 5.7A, right). These data suggest that including TC

information with other functional genomics data help delineate more relevant regions

for gene expression and trait association signals.

We also asked if TCs or ATAC-seq data can be more informative in pinpointing

active elements within enhancers or promoters. We performed GWAS and islet eQTL

enrichment analyses for TCs and ATAC-seq peaks while conditioning on active TSS

or active enhancer chromatin states. We observed that TCs had a higher conditional

enrichment over enhancer states for T2D (5.7B) and ATAC-seq peaks. TCs also had

a higher conditional enrichment over enhancer and promoter states for islet eQTL loci
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Figure 5.7: Islet TCs along with ATAC-seq and chromatin state information sup-
plement GWAS finemapping efforts: Enrichment of T2D GWAS (A) or islet eQTL
(B) loci in annotations that comprise different levels of epigenomic information, in-
cluding including chromatin state, ATAC-seq and TCs. Annotations were defined
using combinations of these datasets such as accessible enhancers (ATAC-seq peaks
in enhancer states) transcribed accessible enhancers (TCs that overlap ATAC-seq
peaks in enhancer states) etc. Enrichment was calculated using fGWAS [146] us-
ing summary statistics from GWAS (in A) [110] or eQTL (in B) [196]. C: fGWAS
conditional enrichment analysis testing the contribution of annotations such as islet
TCs or ATAC-seq peaks after conditioning on histone-only based annotations such
as promoter and enhancer chromatin states in islets. D: Maximum SNP PPA per
FGlu GWAS locus when using a model including ATAC-seq (x axis) or TCs (y axis)
another annotation such a STARR-seq activity Z scores for TCs occurring in active
TSS, enhancer or other chromatins states. Continued on the next page.
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Figure 5.7: Continued - E: Genome browser view of the STARD10 gene locus where
T2D and Fasting Glucose GWAS SNPs and eQTL SNPs for the STARD10 gene
occur (left). STARD10 eQTL Lead and LD r2>0.8 proxy SNPs are shown in the
eQTL SNP track. Genome browser view on the right shows the region zooming in on
the lead eQTL SNP rs11603334 and another SNP rs1552225 (LD r2=1 with the lead
SNP) which overlaps an islet TC. Functional reweighting of Fasting Glucose GWAS
data using chromatin state, ATAC-seq and TC data resulted in the PPA of the SNP
rs1552225 = 0.772.

as compared to ATAC-seq peaks (5.7B). We then sought to reweight the GWAS pos-

terior probabilities of association (PPAs) by including these functional annotations in

order to fine-map Fasting glucose GWAS loci and compared the maximal SNP PPA

at each locus (Fig. 5.7C). We highlight one such region within the ARAP1 gene that

includes many variants in high LD. Variants at this T2D and FGlu GWAS locus are

identified as eQTL for the STARD10 gene [199] but not for ARAP1. The GWAS

and eQTL index SNP rs11603334 is in high LD (r2=1) with rs1552224. Including

TC information results in increased PPA of rs1552224 to 0.772. Without TC data

the PPA for both rs11603334 and rs1552224 and were 0.446. We observed significant

activity of the TC element that overlaps rs1552224 in our STARR-seq assay (Z score

= 4.90, Z score P value = 4.78×10-7). A previous study showed stronger evidence

for rs11603334 to be the causal variant [89], whereas another study pointed towards

another variant (rs140130268) as more likely causal [20] which highlights the complex-

ity at this locus. These analyses demonstrate the utility of transcription initiation

information to demarcate active regulatory elements at higher genomic resolution.

5.4 Discussion

We profiled transcription start sites in human pancreatic islets using CAGE. We

observe high enrichment of CAGE TCs in TSS chromatin states and ATAC-seq peaks

in islets, which expectedly reflects the chromatin landscape at regions where transcrip-

tion initiation occurs. Comparison of islet CAGE TCs with those identified across
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multiple tissues revealed that 20% of islet TCs were islet specific. Furthermore,

comparing the chromatin states underlying these TCs across multiple cell types and

tissues indicated that TCs that occur distal to known TSSs of protein coding genes

comprised of more islet specific promoter and enhancer chromatin states. These anal-

yses also highlighted the differences in TCs and their underlying chromatin contexts

between islets and pancreas tissues, which further demonstrate the need for molecu-

lar profiling in the islet tissue to better understand islet mechanisms. Islet TCs were

also enriched to overlap GWAS loci of fasting glucose and specifically the islet beta

cell related components of T2D loci, while being depleted for the insulin resistance

related components of T2D GWAS loci. These analyses demonstrate that islet TCs

mark active, specific and relevant Islet regulatory elements.

Our work revealed that transcribed and accessible enhancer regions were most

enriched to overlap TF footprint motifs for the RFX family of TFs. We previously

showed that RFX footprint motifs are confluently disrupted by T2D GWAS risk

alleles [196], which are enriched to occur in islet specific enhancer regions. These

observations together highlight the role of islet specific enhancer regions, and the

potential of ATAC-seq and CAGE profiling to identify the active regulatory elements

within these large enhancer elements at high genomic resolution.

Utilizing the STARR-seq enhancer MPRA approach, we observed that 68% of Islet

TCs induce significant transcriptional activity which highlights how CAGE identifies

active regulatory elements. A larger fraction of TCs that occurred in active TSS

chromatin states were significantly active than those occurring in active enhancer

or other chromatin states. The transcriptional activities of these active TSS state

overlapping TCs were also higher than the latter. We note here that only a small

fraction of TCs (0.4%) were identified to overlap the active enhancer state. Studies

have shown that gene distal transcripts are more unstable, which would therefore be

difficult to profile from a total RNA sample. Of course, given the relative instability of
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enhancer RNAs some chromatin-defined sites may be active but fall below the limits

of detection of CAGE. Therefore, it is understandable that islet CAGE profiling from

total RNA samples would comprise more stable promoter-associated RNA transcripts

and have lesser representation of weaker transcripts originating from enhancer regions.

In our previous work [195], we showed that genetic variants in more cell type-specific

enhancer regions have lower effects on gene expression (measured as eQTL effect sizes)

than the variants occurring in more ubiquitous promoter regions, in the un-stimulated

or basal cell state. This is consistent with our observation of lower transcriptional

activities and even low representation of transcription initiation identified in enhancer

state regions.

To better understand the mechanisms underlying GWAS loci, we interrogated the

potential of TC information in identifying the causal SNP(s) using functional fine

mapping approach (fGWAS). While most islet TCs overlapped islet ATAC-seq peaks

(>70%), we observed that regions supported by TCs, ATAC-seq peaks and enhancer

chromatin states (transcribed, accessible enhancer regions) were most enriched to

overlap T2D GWAS loci. This enrichment was higher than in regions only informed

by ATAC-seq peaks and enhancer chromatin states, indicating that the small set

of TCs in enhancer regions actually delineate highly relevant elements. Our work

demonstrates that transcription start site information profiled using CAGE in islets

can be used in addition to other relevant epigenomic information such as histone

mark informed chromatin states and chromatin accessibility in nominating relevant

variants and biological mechanisms.
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5.5 Materials and Methods

5.5.1 Islet Procurement and Processing

Islet samples from organ donors were received from the Integrated Islet Distribu-

tion Program, the National Disease Research Interchange (NDRI), and Prodo- Labs.

Islets were shipped overnight from the distribution centers. On receipt, we prewarmed

islets to 37 C in shipping media for 12 h before harvest; 2,5005,000 islet equivalents

(IEQs) from each organ donor were harvested for RNA isolation. We transferred

5001,000 IEQs to tissue culture-treated flasks and cultured them as in the work in

[52].

5.5.2 RNA isolation, CAGE-seq library preparation and sequencing

Total RNA from 2000-3000 islet equivalents (IEQ) was extracted and purified

using Trizol (Life Technologies). RNA quality was confirmed with Bioanalyzer 2100

(Agilent); samples with RNA integrity number (RIN) > 6.5 were prepared for CAGE

sequencing. 1ug Total RNA samples were sent to DNAFORM, Japan, where polyA

negative selection and size selection (<1000bp) was performed. Stranded CAGE-

sequencing libraries were generated for each islet sample using the () kit according

to manufacturers protocol (Illumina). Each islet CAGE-seq library was barcoded,

pooled into 24-sample batches, and sequenced over multiple lanes of HiSeq 2000 to

obtain an average depth of 100 million 2 x 101 bp sequences. All procedures followed

ethical guidelines at the National Institutes of Health (NIH).

5.5.3 CAGE data mapping and processing

Because read lengths differed across libraries, we trimmed all reads to 51 bp us-

ing fastx trimmer (FASTX Toolkit v. 0.0.14). Adapters and technical sequences

were trimmed using trimmomatic (v. 0.38; paired-end mode, with options ILLUMI-
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NACLIP:adapters.fa:1:30:7:1:true). To remove potential E. coli contamination, we

mapped to the E. coli chromosome (genome assembly GCA 000005845.2) with bwa

mem (v. 0.7.15; options: -M). We then removed read pairs that mapped in a proper

pair (with mapq ≥ 10) to E. coli. We mapped the remaining reads to hg19 using

STAR (v. 2.5.4b; default parameters). We pruned the mapped reads to high quality

autosomal read pairs (using samtools view v. 1.3.1; options -f 3 -F 4 -F 8 -F 256 -F

2048 -q 255). We then performed UMI-based deduplication using umitools dedup (v.

0.5.5; –method directional).

We selected Islet samples with strandedness measures>0.85 calculated from QoRTS

[62] for all downstream analyses. 50 Islet samples passed this threshold.

5.5.4 Tag cluster calling

We used the paralu method to identify clusters of CAGE start sites (CAGE tag

clusters) [46]. The algorithm uses a density parameter d and identifies segments

that maximize the value of Number of events − d ∗ size of the segment (bp). Here,

large values of d would favor small, dense clusters and small values of d would favor

larger more rarefied clusters. The method identifies segments over all values of d

beginning at the largest scale, where d = 0, where all of the events are merged into

one big cluster. It then calculates the density (events per nucleotide) of every prefix

and suffix of the big cluster. The lowest value among all of these densities is the

maximum value of d for the big cluster because at higher values of d the big cluster

will no longer be a maximal-scoring segment (because zero-scoring prefixes or suffixes

are not allowed).

We called TCs in each individual sample using raw tag counts, requiring at least 2

tags at each included start site and allowing single base-pair tag clusters (singletons)

if supported by >2 tags. We then merged the tag clusters on each strand across

samples. For each resulting segment, we calculated the number of islet samples in
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which TCs overlapped the segment. We included the segment in the consensus TCs

set if it was supported by independent TCs in at least 10 individual islet samples.

This threshold was selected based on comparing the number of tag clusters with the

number of samples across which support was required to consider the segment (Fig.

5.1).

5.5.5 Chromatin state analysis

We collected publicly available cell/tissue ChIP-seq data for H3K27ac, H3K27me3,

H3K36me3, H3K4me1, and H3K4me3 and input for Islets, Adipose and Skeletal

Muscle and Liver. Data for Adipose, Skeletal Muscle and Liver tissues were in-

cluded in the joint model for other ongoing projects. We performed read map-

ping and integrative chromatin-state analyses in a manner similar to that of our

previous reports and followed quality control procedures reported by the Roadmap

Epigenomics Study [186]. Briefly, we trimmed reads across datasets to 36bp and

overrepresented adapter sequences as shown by FASTQC (version v0.11.5, https:

//www.bioinformatics.babraham.ac.uk/projects/fastqc/) using cutadapt (ver-

sion 1.12) [117]. We then mapped reads using BWA (version 0.5.8c), removed dupli-

cates using samtools [98], and filtered for mapping quality score of at least 30. To

assess the quality of each dataset, we performed strand cross-correlation analysis us-

ing phantompeakqualtools (v2.0; code.google.com/p/phantompeakqualtools) [93].

We converted bam files for each dataset to bed using the bamToBed tool. To more

uniformly represent datasets with different sequencing depths across histone marks

and tissues, we randomly subsampled each dataset bed file to the mean depth for

that mark across the four included tissues. This allowed comparable chromatin state

territories across tissues and ensured that chromatin state territories were not heav-

ily driven by high sequencing depth. Chromatin states were learned jointly for the

three cell types using the ChromHMM (version 1.10) hidden Markov model algo-
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rithm at 200-bp resolution to five chromatin marks and input [40, 43, 41]. We ran

ChromHMM with a range of possible states and selected a 11-state model, because

it most accurately captured information from higher-state models and provided suf-

ficient resolution to identify biologically meaningful patterns in a reproducible way.

We have used this state selection procedure in previous analyses [162, 196]. To assign

biological function names to our states that are consistent with previously published

states, we performed enrichment analyses in ChromHMM comparing our states with

the states reported previously [196] for the four matched tissues. We assigned the

name of the state that was most strongly enriched in each of our states (Fig. 5.3).

5.5.6 ATAC-seq data analysis

We used previously published data for chromatin accessibility profiled using ATAC-

seq in islets from two human organ donor samples [196]. For each sample, we

trimmed reads to 36 bp (to uniformly process ATAC-seq from other tissues for

ongoing projects) and removed adapter sequences using Cutadapt (version 1.12)

[117], mapped to hg19 used bwa-mem (version 0.7.15-r1140) [96], removed dupli-

cates using Picard (http://broadinstitute.github.io/picard) and filtered out

regions blacklisted by the ENCODE consortium due to poor mappability (wgEn-

codeDacMapabilityConsensusExcludable.bed and wgEncodeDukeMapabilityRegion-

sExcludable.bed). For each tissue we subsampled both samples to the same depth so

that each tissue had overall similar genomic region called as peaks. We used MACS2

(https://github.com/taoliu/MACS), version 2.1.0, with flags -g hsnomodelshift -

100extsize 200 -Bbroadkeep-dup all, to call peaks and retained all broad-peaks that

satisfied a 1% FDR.
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5.5.7 Overlap enrichment between TCs and annotations

Enrichment for overlap between each pair of regulatory annotations in Figure

S1 was calculated using the Genomic Association Tester (GAT) tool [65]. To ask

if two sets of regulatory annotations overlap more than that expected by chance,

GAT randomly samples segments of one regulatory annotation set from the genomic

workspace (hg19 chromosomes) and computes the expected overlaps with the second

regulatory annotation set. We used 10,000 GAT samplings for each enrichment run.

GAT outputs the observed overlap between segments and annotation along with the

expected overlap and an empirical p-value.

5.5.8 GWAS data collection and LD pruning

We downloaded the GWAS data for various traits from the NHGRI website on

June 12, 2018 (file gwas catalog v1.0.2-associations e92 r2018-05-29.tsv from https:

//www.ebi.ac.uk/gwas/docs/file-downloads). We selected genome-wide signif-

icant GWAS SNPs (P <5×10-8) for traits for which the study included European

samples. To retain independent signals, we linkage diequilibrium (LD) pruned the

list of SNPs to retain SNPs with the most significant P values that had LD r2

<0.2 between each pair. This procedure was performed using the PLINK (v1.9)

tool [152, 22] clump option and 1000 genomes phase 3 vcf files (downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 ), subsetted to the Euro-

pean samples as reference. We selected traits that had >30 independent signals for

following analyses.

5.5.9 Enrichment of genetic variants in genomic features

Enrichment for genome wide association study (GWAS) variants for different traits

in Islet TCs was calculated using the Genomic Regulatory Elements and Gwas Over-

lap algoRithm (GREGOR) tool (version 1.2.1) [160]. Since the causal SNP(s) for the
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traits are not known, GREGOR allows considering the input lead SNP along with

SNPs in high linkage disequilibrium (LD) (based on the provided R2THRESHOLD

parameter) while computing overlaps with genomic features (such as islet TCs).

Therefore, as input to GREGOR, we supplied SNPs that were not in high linkage

disequilibrium with each other. For each input SNP, GREGOR selects 500 control

SNPs that match the input SNP for minor allele frequency (MAF), distance to the

nearest gene, and number of SNPs in LD. Fold enrichment is calculated as the num-

ber of loci at which an input SNP (either lead SNP or SNP in high LD) overlaps the

feature over the mean number of loci at which the matched control SNPs (or SNPs

in high LD) overlap the same features. This process accounts for the length of the

features, as longer features will have more overlap by chance with control SNP sets.

Specific parameters for the GWAS enrichment were: GREGOR: r2 threshold =

0.8. LD window size = 1Mb; minimum neighbor number = 500, population = Euro-

pean.

5.5.10 Comparison of features with Roadmap chromatin states

We downloaded the chromatin state annotations identified in 127 human cell types

and tissues by the Roadmap epigenomics project [186] after integrating ChIP-seq data

for five histone 3 lysine modifications (H3K4me3, H3K4me1, H3K36me3, H3K9me3

and H3K27me3) that are associated with promoter, enhancer, transcribed and re-

pressed activities, across each cell type. For each TC feature, for example, TCs in

ATAC-seq peaks within islet enhancer chromatin states, we identified segments oc-

curring proximal to (within 5kb) and distal from (further than 5kb) known protein

coding gene TSS (gencode V19 [61]). For each such segment, we identified the max-

imally overlapping chromatin state across 98 cell types publicly available from the

Roadmap Epigenomics project in their 18 state extended model using BEDtools in-

tersect. We then ordered the segments using clustering (hclust function in R) based
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on the gower distance metric (daisy function in R) for the roadmap state assignments

across 127 cell types.

5.5.11 Aggregate signal

We generated the ATAC-seq density plot over islet TC midpoints using the Agplus

tool (version 1.0) [109]. We used the ATAC-seq signal track for reads per 10 Million

to aggregate over stranded TCs.

To obtain CAGE tracks, we merged CAGE bam files for islet samples that passed

QC (see CAGE data processing section) and obtained the read 1 start sites or TSSs.

To better visualise the CAGE signal, we then flanked each TSS 10bp upstream and

downstream and normalized the TSS counts to 10M mapped reads. We generated

CAGE density plots over ATAC-seq narrow peak summits by using the agplus tool.

To obtain aggregate CAGE signal over TF footprint motifs, we oriented the CAGE

signal with respect to the footprint taken on the plus strand. We used HTSeq Ge-

nomicPosition method [6] to obtain the sum of CAGE signal at each base pair relative

to the footprint motif mid point.

5.5.12 fGWAS analyses and finemapping

fGWAS (version 0.3.6) [146] employs a Bayesian hierarchical model to determine

shared properties of loci affecting a trait. The model uses association summary level

data, divides the genome into windows generally larger than the expected LD patterns

in the population. The model estimates the probabilities that an association lies

in a window and that a SNP is causal. These probabilities are then allowed to

depend on genomic annotations, and are estimated based on enrichment patterns of

annotations across the genome using a Bayes approach. We used fGWAS with default

parameters for enrichment analyses for individual annotations in Fig. 5.7 A and B.

For each individual annotation, the model provided maximum likelihood enrichment
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parameters and annotations were considered as significantly enriched if the parameter

estimate and 95% CI was above zero.

We performed conditional analyses using the -cond option.

To reweight GWAS summary data based on functional annotation overlap, we used

the -print option in an fGWAS model run after including multiple annotations that

were individually significantly enriched. We included Active TSS, active enhancer,

stretch enhancer, quiescent and polycomb repressed annotations along with ATAC-

seq or TCs in a model to derive enrichment priors which can then be used to evaluate

both the significance and functional impact of associated variants in GWAS regions;

such that variants overlapping more enriched annotations carry extra weight.
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CHAPTER VI

Implications and Future Work

Through my dissertation work, I have analyzed large omics datasets to supple-

ment our understanding of gene regulatory mechanisms that underlie the associations

between genetic variation and disease traits such as T2D. Several important themes

have emerged from my work which are exciting avenues to further augment our un-

derstanding of how predisposition to complex disease is encoded in our non-coding

genome.

6.0.1 Regulatory buffering and the need for molecular context specific

studies

The regulatory nature of a majority of common disease associated variants mo-

tivated our investigation of regulatory regions across the genome. We asked asked

how the genetics of gene regulation differed across regulatory annotations that had

been defined using different sets of epigenomic marks - all of which were shown to

marked active regulatory regions. We observed that eQTL occurring in HOT regions

that represent mostly promoter-like regions had significantly higher effect sizes than

those occurring in more cell-specific stretch enhancers. This effect remained after

controlling for distance to the target gene. However, chromatin accessibility QTL

in stretch enhancers have significantly larger effect sizes compared to those in HOT
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regions. These observations were quite robust in that we observed these trends in

multiple cell/tissue types such as blood/K652 cell lines, LCL/GM12878 cell lines and

islet tissue.

These seemingly conflicting results indicated that the chromatin in the cell-specific

stretch enhancers was genetically primed for larger effects on accessibility, however,

genetic effects on modulation of gene expression were lower. We noted here that

both chromatin and expression QTLs analyzed were identified in the basal state for

the cells/tissues. A recent study showed that 60% of eQTL identified in stimulated

condition in macrophages were identified as chromatin QTL in the basal state [3].

Our observations and other supportive evidence suggest that lower effects on gene

expression in the basal state despite higher propensity for chromatin effects could be a

mechanism to ensure stable expression of critical genes in the basal state while priming

these for quick response to patho-physiologic stimuli. Similar inferences about robust

gene expression and enhancer redundancy have been reported recently. One such

study showed that dosage-sensitive genes have evolved robustness to the disruptive

effects of genetic variation by expanding their regulatory domains [201]. Others have

questioned if stretch/super enhancers are really different from other enhancers that

just happen to occur close-by [148]. Numerous studies perturbed elements within

these enhancers but showed conflicting results - some, where the perturbation affected

gene expression and others where there was no observable effect on gene expression,

again implying redundancy in gene regulation by individual components of super

enhancers [63, 166, 133, 207].

Considering regulatory annotations from a disease genetics perspective, I and oth-

ers have observed high enrichment of GWAS loci in trait-relevant stretch enhancers

(eg. T2D GWAS loci enriched in islet stretch enhancers, Rheumatoid Arthritis GWAS

loci enriched in lymphoblastoid cell line GM12878 stretch enhancers, Fasting Insulin

GWAS loci enriched in Adipose and Skeletal Muscle stretch enhancers among sev-
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eral such observations). However, eQTL loci, which have long been touted to help

identify the target genes of the GWAS signals through co-localization methods, are

highly enriched in promoter regions. The differences in the genetics of gene regula-

tion between these annotations that I have demonstrated could help reconcile why

many cis-eQTLs are shared across cell types and infrequently co-localize with GWAS

signals [103, 74, 58].

We hypothesize that cell-specific stretch enhancers drive critical responses to ex-

ternal stimuli and therefore some genetic associations with gene expression might be

evident only under relevant conditions. Stimuli such as nutrient conditions, stress

or hormone signaling could modulate TF abundance and localization which could

drive context-specific mechanisms. Therefore, one critical and exciting direction is

to understand the genetics of gene regulation under carefully selected stimulatory

conditions in relevant cell types. Studying the impact of genetic variants under such

contexts may be crucial for revealing functional convergence of disease-associated

variants. More specifically, we advocate conducting molecular QTL screens under

stimulus/treatment induced conditions with carefully considered sample sizes and

time points (Fig. 6.1 A and B).

Response studies have been limited in the T2D genomics literature. The poten-

tial of such studies however is demonstrated by other work that highlights context

specific effects. One such study explored a T2D GWAS variant (rs508419) that lies

in a skeletal muscle-specific active promoter region at the ANK1 locus [162, 208].

Human skeletal muscle eQTL data indicated that the T2D risk allele was associated

with higher ANK1 expression [162]. Interestingly, however, increased ANK1 protein

only affected glucose uptake when treated with insulin; there was no detectable ef-

fect of increased ANK1 protein under basal conditions. The same variant, however,

is associated with reduced expression of the transcription factor NKX6-3 in the islet

tissue [162, 196], representing a tissue-dependent effect of regulatory variants, and po-
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Figure 6.1: Context-specific xQTL mapping to better understand GWAS

tentially more complicated genetic architecture. Therefore, modelling environmental

stimuli in functional T2D genomic studies is both important and challenging.

The increased glucose levels in the body resulting from insulin resistance are crit-

ical environmental factors for the pancreatic islets. Therefore, glucose specific effects

on islet function can be assessed by culturing islets in low vs high glucose conditions

and profiling RNA (mRNA-seq) or open chromatin (ATAC-seq) followed by QTL

analysis to identify context specific molecular QTL (xQTL) in islets. Patient-derived

induced pluripotent stem cell (iPSC) lines differentiated towards the islet lineage

could also be useful for this purpose and better suited to culture in the laboratory.
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6.0.2 Single-cell molecular profiling approaches to dissect islet hetero-

geneity

It is important to note that islets are heterogeneously composed of multiple sub-

types (including alpha, beta, gamma and delta cells) that have diverse functions.

Recent developments in single cell assays followed by sequencing technologies, both

for measuring RNA (scRNA-seq) and open chromatin (scATAC-seq) therefore present

exciting avenues. For example, it is now possible to identify regulatory sites that are

specific to, say insulin secreting beta cells. scRNA-seq or scATAC-seq can be used to

define cell-type proportions, patterns of which when analyzed across individuals can

would identify cell-type proportion QTLs, where genetic variation influences propor-

tion of different subtypes. Performing these studies while considering basal or glucose

response contexts could again be invaluable in identifying context specific genetic ef-

fects on islet cell biology. Such studies could lead to a better understanding of islet

biology and potentially at T2D related trait GWAS loci.

6.0.3 Linking molecular profiling and xQTL information with GWAS and

identifying causal relationships

Genome-wide molecular profiling data can be jointly analyzed with GWAS sum-

mary data to help fine-map causal variants(s). For example, a hierarchical modeling

approach implemented in the fGWAS package [146] statistically models the prior

probabilities that a genomic region contains an association with the trait and that a

SNP in that region is causal, allowing these probabilities to vary based on the un-

derlying functional molecular profiles such as open chromatin. Therefore, statistical

integration of molecular profiling data, especially under specific contexts can further

enable identification of causal variants (Fig. 6.1 C). Next, to establish mechanistic

links between genetic effects on these molecular profiles and on the relevant trait such

as T2D, it should be determined if the same genetic variant drives the xQTL as well
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as the GWAS signal. Approaches that test for such co-localization between two sig-

nals have been established [53, 136, 70], (Fig. 6.1 C). Furthermore, potential causal

relationships between the xQTL and GWAS signals can be assessed using Mendelian

randomization [70]. For loci with 2 molecular profile QTLs, potential causal direction

between each pair can be assessed using the Causal Inference Test [127] and MR-

Steiger [67]; these tests provide complementary information. While molecular xQTL

data elucidates the genetics of the epigenomic or chromatin landscape, recently de-

veloped bayesian strategies [90] can further help determine causal interactions and

the relationships between multiple identified regulatory elements .

6.0.4 Functional follow up of prioritized variants

While mapping the epigenomic landscape and identifying genetic associations can

inform candidate regulatory regions and potentially causal variants, complementary

approaches are needed to functionally validate these effects. Massively parallel re-

porter assays (MPRAs) are one such tool that can be invaluable in functionally screen-

ing regulatory elements and identifying allelic effects. Since enhancers integrate and

transduce environmental signals to execute gene expression programs, studying the

impact of genetic variants under diverse conditions will be crucial for furthering our

understanding of disease-associated variants. Efforts towards more robust, accurate

and efficient MPRAs have been ongoing in the lab that enable correcting for PCR

duplicates by introducing unique molecular identifier sequences (UMIs), consider ef-

fects of different promoter sequences in the assay and also their placement relative to

the tested sequence among other advantages.

6.0.5 Concluding remarks

The results presented in this dissertation demonstrate that integrating informa-

tion from the epigenome, transcriptome and other diverse molecular domains can
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help understand how complex disease predisposition is encoded in the (mostly non-

coding) part of our genome. Moving forward, obtaining molecular profiles in different

environmental contexts and probing genetic associations, followed by computational

integration with emerging large-scale GWAS data could help partition swathes of

GWAS signals into coherent, tissue-specific subsets to shed light on underlying patho-

physiologies. Technological advancements will propel the field forward, for example,

further reduction in experimental and sequencing cost could enable increased sample

sizes in study design; development of more efficient and robust single cell experimen-

tal and analysis tools could supplement biological understanding at higher resolution;

more exhaustive trans-ethnic studies will enable higher power for signal discovery and

delineate a more complete picture of the genetic underpinnings of disease traits. Col-

lectively, such approaches could help reveal additional convergent functional contexts,

which could eventually enable higher-resolution patient stratification and determina-

tion of individualised risk.
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