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Abstract 

 
Cyanobacteria are key members of modern photosynthetic microbial mats, by providing 

organic matter and nutrients to the ecosystem. With their innovation of oxygenic photosynthesis 

(OP) over 2 billion years ago and the wide distribution of microbial mats in the geologic record, 

cyanobacteria have shaped Earth’s redox history. Select modern cyanobacteria are also capable 

of anoxygenic photosynthesis using sulfide (AP), an older metabolism than OP and a less-

understood biological mechanism that limited the rise of oxygen. This dissertation used 

molecular and ecological techniques to investigate modern anoxygenic cyanobacteria. In 

Chapter I, I outline the current understanding of AP cyanobacterial mats in modern and ancient 

ecosystems. In Chapter II, I described the genome of a cultured AP cyanobacterium, 

Geitlerinema sp. PCC9228. Genomic analysis of Geitlerinema revealed numerous adaptations to 

low-oxygen and sulfidic conditions, which were potentially prevalent for much of Earth’s 

history. I applied knowledge of cyanobacterial genetic adaptation to AP from Geitlerinema, to 

the microbial mats of Middle Island Sinkhole (MIS), a submerged sinkhole impacted by low-O2, 

sulfur-rich groundwater. In Chapter III, I characterized the impact of seasonally changing light 

conditions and geochemistry on the microbial community (16S rRNA genes and metagenomics) 

and its function (metaproteomics). The dominant AP cyanobacteria, Phormidium and 

Planktothrix, are abundant and active in summer when light is highest. In contrast, when light is 

lower in autumn, sulfide-oxidizing bacteria are more active. The shift in microbial community 

function has implications for oxygen and sulfur cycling in the mat. In Chapter IV, I applied 



 xv 

metagenomics and metaproteomics to distinct mat morphotypes in MIS. I observed flat purple 

cyanobacterially-dominated mat (‘flat’), conical purple mat (‘fingers’), white-pigmented mat 

(‘white’), and a mottled purple/brown pigmented mat (‘giraffe’). The cyanobacterial community 

shifted from Phormidium and Planktothrix in fingers and some flat mat, to Pseudanabaena and 

Spirulina in giraffe and white mats. Sulfide-oxidizing bacteria and sulfate-reducing bacteria were 

widely observed in all mat types. The genomes and proteins suggest functional niche similarity 

with regard to sulfide and oxygen cycling between abundant cyanobacteria in different mats. 

Understanding the role of cyanobacteria in shaping the function and appearance of modern 

microbial mats informs the interpretation of the chemical environment, metabolisms, and 

biogeochemical impact of microbial mats through Earth history.  

 



 1 

Chapter I: Introduction 

 

Through their wide geographical range, diverse metabolisms, and prevalence in geologic 

history, photosynthetic microbial mats have fundamentally transformed Earth’s surface. 

Cyanobacteria are pivotal members of these mats through their hallmark metabolism, oxygenic 

photosynthesis (OP), which provides O2 and organic carbon that sustains a network of interacting 

microbial metabolisms within mats. The innovation of OP was instrumental in Earth’s oxidative 

shift in the Proterozoic Era, and the proliferation of free O2 in the atmosphere shaped the 

nitrogen, carbon, sulfur, iron, and oxygen cycles (Lyons et al., 2014). Widely available O2 is 

linked to the maturation of the sulfur cycle, and the emergence of aerobic heterotrophy and other 

metabolisms that continue to function in extant mats (Butterfield, 2009; Catling et al., 2005; Fike 

et al., 2015). In modern microbial mats we continue to observe dynamic microbially-mediated 

redox conditions similar to those of early Earth. Exploring contemporary microbial mats as 

analogs to the ancient mats that proliferated on Earth provides insight into the organisms and 

metabolisms responsible for the development and moderation of biogeochemical cycling in past 

and current systems. 
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1.1 The role of cyanobacteria in oxygen and sulfur cycling 

Oxygenic photosynthesis was the most influential biological mechanism behind the 

significant accumulation of free O2 in the atmosphere during the Great Oxidation Event (GOE) 

2.4-2.1 billion years ago (Ga) (Lyons et al., 2014). The coupling of two photosystems to oxidize 

H2O may have occurred as early as the Archean (Planavsky et al., 2014; Xiong et al., 2000), but 

geochemical conditions permitted substantial permanent atmospheric O2 accumulation only in 

the Proterozoic (Holland, 2002). Though the GOE refers to Earth’s first widespread shift in 

oxidation, the biological and geological processes responsible for the subsequent 2 Ga of 

protracted and low atmospheric oxygenation until the rise to near modern levels during the 

Neoproterozoic Oxidation Event 0.6 Ga (Canfield & Teske, 1996; Fike et al., 2015), are still 

under debate. 

A biological mechanism that may have slowed the rise of O2 is anoxygenic 

photosynthesis (AP) using sulfide as the electron donor (Johnston et al., 2009). AP relies upon 

H2S and other electron donors that are easier to oxidize than H2O, the electron donor for OP. 

This metabolism transfers electrons from H2S oxidation to photosystem I, producing elemental 

sulfur instead of free O2. Though euxinia was once thought to be pervasive and enduring 

throughout the Proterozoic (Canfield, 1998), more recent models suggest that ferruginous 

conditions dominated, with only episodic and/or regional euxinia (Planavsky et al., 2011; 

Poulton et al., 2010; Reinhard et al., 2013). With periods of euxinia throughout the Archean and 

Proterozoic, being equipped for sulfide exposure through AP would have conveyed a metabolic 

advantage to these flexible cyanobacteria in shifting redox conditions. Before the advent of OP, 

AP was likely an important source of organic matter to ecosystems (Hamilton et al., 2016; 

Johnston et al., 2009), but its contribution to modern ecosystems is not well known. The products 
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of AP, elemental sulfur or sulfur intermediates, may be recycled by AP organisms or other sulfur 

cycling microorganisms (Haas et al., 2018), whose products in turn stimulate AP. However, the 

role of this metabolism in the ancient sulfur cycle, the interactions between functional groups, 

and how they interface with environmental conditions are not well understood. Much remains 

unknown about the distribution of AP in ancient cyanobacteria, the impact of AP in modern 

ecosystems, and the influence of AP on overall O2 production. 

Modern cyanobacteria have a range of responses to sulfide. When exposed to even 1-10 

uM of sulfide, enough to inhibit electron transport to photosystem II ( Miller & Bebout, 2004; 

Oren et al., 1979), cyanobacteria may either completely shut down OP, partially perform OP, 

facultatively switch between OP and AP, or completely switch to AP (Cohen et al., 1986). In 

general, cyanobacteria that regularly experience sulfidic conditions are more tolerant of higher 

sulfide levels than those with infrequent or no exposure ( Miller & Bebout, 2004). Sulfide also 

impacts functioning of other bacteria and mitochondria (Theissen et al., 2003). To detoxify 

sulfide, organisms can use sulfide-quinone reductase (SQR, encoded by sqr) to oxidize sulfide 

(Theissen et al., 2003). In AP cyanobacteria, SQR transfers electrons from H2S oxidation to 

plastoquinone, which is the intersection point between photosystems I and II (Klatt, de Beer, et 

al., 2016). The different versions of sqr in cyanobacteria point to a complicated evolutionary 

history of AP. At least three variants of sqr have been identified in cyanobacteria (Dick et al., 

2018; Grim & Dick, 2016): type I is most widely seen in AP cyanobacteria but is most closely 

related to green sulfur bacteria type IV (Marcia et al., 2010), type II likely originated in ancestral 

bacteria coping with sulfidic conditions in the late Proterozoic and is observed across different 

domains and phyla (Theissen et al., 2003), and type VI which is most closely related to sqr 

expressed in green sulfur bacteria at high sulfide levels (Chan et al., 2009). The diverse 
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phylogenetic history of cyanobacterial sqr suggests lateral gene transfer occurred between GSB 

and cyanobacteria in sulfidic environments, providing the ability to couple sulfide oxidation with 

phototrophic growth to cyanobacteria (Gregersen et al., 2011).  

Recent research has further elucidated the physiological response of AP cyanobacteria to 

redox changes. Modern AP cyanobacteria need a prolonged sulfide ‘priming’ period to 

synthesize SQR (Bronstein et al., 2000; Klatt, Al-Najjar, et al., 2015), suggesting the time and 

concentration of H2S exposure dictates the onset of AP. Further, within those capable of 

simultaneous AP and OP, O2 production has been observed to decrease with increasing H2S 

levels (Cohen et al., 1986; Klatt, Al-Najjar, et al., 2015; Klatt, de Beer, et al., 2016). Light may 

also influence the balance of AP and OP, due to OP needing both photosystems but AP requiring 

only photosystem I and thus less light to operate (Klatt, de Beer, et al., 2016; Klatt, Meyer, et al., 

2016). These nuanced responses and adaptations to sulfide exposure reflect different modern 

habitats and redox conditions (Miller & Bebout, 2004), but draw upon adaptations that have been 

shaped through evolutionary history. However, our ability to infer sulfide physiologies and the 

distribution of AP cyanobacteria from the geologic record is extremely limited. 

 

1.2 The geobiological role of microbial mats 

Microbial mats are found in a wide range of ecosystems across Earth, from extremes of 

temperature in ice-covered Antarctic lakes (Sumner et al., 2015) and hydrothermal hot springs 

(Ward et al., 2006), to temperate coastal shelves (Noffke, 2010) and submerged sinkholes 

(Biddanda et al., 2006; Ruberg et al., 2008). Mats are hotspots of biogeochemistry in that they 

condense diverse microorganisms, metabolisms, and geochemical gradients into sub-millimeter 

scales (Dick et al., 2018). As well as being globally distributed, mats are found throughout Earth 
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history and are the oldest records of life (Bosak et al., 2013; Lalonde & Konhauser, 2015; Noffke 

& Awramik, 2013; Stal, 2012). Modern mats harbor physical characteristics and microbial 

morphotypes similar to fossil mats, and present tangible analogs to aid in understanding the 

geologic record (Noffke, 2010). 

Photosynthetic microbial mats are a consortium of phylogenetically and functionally 

diverse microorganisms that depend upon each other for metabolism and biogeochemical cycling 

(Konhauser, 2009; Paerl et al., 2000). Cyanobacteria and other phototrophs dominate the 

surfaces of mats, where they receive light for photosynthesis. They are also pioneers and 

stabilizers of biofilms through production of extracellular polymers (Stal, 2012). Redox 

gradients, ultimately influencing availability of electron donors and acceptors, dictate the 

abundance and presence of other functional groups in the mat (Konhauser, 2009). Heterotrophs 

such as aerobic bacteria and sulfate-reducing bacteria depend on organic matter from 

phototrophs and the availability of their electron acceptor, such as O2 or SO4
2-. These as well are 

sourced from the environment or from other microbes such as cyanobacteria and sulfide 

oxidizers. As such, while laminated and structured microbial mats are used as modern day 

analogs to stromatolites and microbialites (Noffke & Awramik, 2013), just as often mats are an 

interwoven network of distinct microbes without clear physical separation between functional 

groups or layers (Konhauser, 2009; Stal, 2012). 

Microbial mats are of interest in understanding metabolically flexible cyanobacteria 

because AP members are typically found in microbial mats (Dick et al., 2018). Additionally, all 

known AP cyanobacteria are filamentous, a morphology that has been observed throughout the 

fossil record (Schirrmeister et al., 2013). Filamentous cyanobacteria are a regular fixture of 

photosynthetic microbial mats, and include taxa such as Planktothrix, Geitlerinema, and 
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Phormidium sp. This polyphyletic morphology is also observed in sulfide-oxidizing bacteria, 

such as Beggiatoa sp. which are a staple of sulfidic microbial mats (Flood et al., 2014). 

Beggiatoa are found in both marine and freshwater systems, and use nitrate or oxygen to oxidize 

sulfide and other reduced forms of sulfur from either hydrothermal sources or sulfate-reducing 

bacteria in sediments (MacGregor et al., 2013; Mussmann et al., 2007; Sharrar et al., 2017). The 

sulfide-oxidizing enzyme SQR is often found in Beggiatoa (Sharrar et al., 2017), as well as the 

Sox gene pathway for the oxidation of thiosulfate and/or the reverse dissimilatory sulfite 

reductase (rDsr) pathway to oxidize elemental sulfur to sulfite (Mussmann et al., 2007). Both of 

these genes can be transferred laterally (Gregersen et al., 2011). In different settings, filamentous 

cyanobacteria and sulfide-oxidizing bacteria can promote the formation of mats of similar 

appearance—cyanobacteria in photic systems, Beggiatoa in deeper settings (Flood et al., 2014).  

On a diel cycle, cyanobacteria and sulfide oxidizers experience redox shifts in response to 

the functioning or nightly shutdown of OP (and thus the delivery of O2), and the infiltration of 

H2S and methane from deeper in the mat. Both sulfide-oxidizing bacteria and cyanobacteria can 

migrate in response to their physicochemical environment. Movement of Beggiatoa members in 

the mat is primarily motivated by their dual requirements for sulfide and oxygen/nitrate (Flood et 

al., 2014). Typically, Beggiatoa and other filamentous sulfide-oxidizing bacteria will adjust their 

position with respect to redox shifts (Klatt, Meyer, et al., 2016), whereas cyanobacteria switch to 

fermentation when experiencing diel patterns of darkness (Stal, 2012). Cyanobacteria exhibit 

phototaxis, positioning themselves vertically in the mat to optimizing light harvesting (Biddanda 

et al., 2015). These migrations of bacteria are believed to produce layers in microbial mats, but 

the potential for preservation varies greatly and depends on the geochemical environment (Stal, 

2012). 
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In these systems, microbes are both shapers of, and responders to, geochemical cycles. 

On a diurnal scale, mats can be oxic during the daytime due to photosynthesis, but with the 

depletion of light and/or increase in sulfide, anoxic or euxinic conditions can set in (Canfield & 

Marais, 1993). Conditions can also change seasonally, as light levels and nutrient availability 

change throughout the year (Paerl et al., 2000). Microbial mats experience redox challenges, 

such as euxinia or anoxia, on geologically short temporal scales such as diurnal or seasonal 

cycles, that are similar to those faced by ancestral microbial mats during Earth’s large-scale 

geochemical shifts. Investigations into the functionality and assembly of microbial mats on these 

short temporal scales are thus windows into the ecology of ancient microbial mats.  

 

1.3 Molecular methods to study anoxygenic photosynthetic cyanobacterial genes and 
ecology 

Physiological and molecular studies on cultures built the foundation of our understanding 

of anoxygenic photosynthetic cyanobacteria. The canonical AP cyanobacterium, Geitlerinema 

sp. PCC 9228 (formerly Oscillatoria limnetica) was first cultured in the 1970s (Cohen et al., 

1975), physiologically described throughout the 1980s (Cohen et al., 1986 and references 

therein), and used as a reference for the first sqr sequence in the 1990s (Arieli et al., 1994; 

Theissen et al., 2003). Throughout that time a handful of other cyanobacteria were tested for AP 

(Garlick et al., 1977) and sulfide tolerances were described for some cyanobacteria (Miller & 

Bebout, 2004). However, by nature these culture-based approaches are limited to studying the 

organisms capable of laboratory growth and manipulation, and their ex situ growth may not 

represent in situ conditions and ecological interactions. Molecular techniques provide genetic 

and genomic investigations into cultures as well as natural communities with AP cyanobacteria. 
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Meta-omics approaches harness modern high throughput nucleotide sequencing 

technology suitable to investigating model organisms and natural ecosystems (Dick & Lam, 

2015). By targeting different molecular pools (DNA and proteins), meta-omics approaches can 

untangle the identity of microbes in a natural community, the likely metabolisms they are 

performing, and the expression of functions (Dick, 2019). DNA fingerprinting through marker 

gene (e.g. 16S rRNA gene) analysis is a survey of microbial members and answers the question: 

who is there? Metagenomics takes this a step further by analyzing the DNA content of whole 

communities, and informing us of potential function in a microbial community: what genes does 

a specific organism have?  With modern Illumina-based sequencing, metagenomics is powerful 

enough to reconstruct known and novel microbial genomes from diverse environments, and 

broaden our scope of the tree of life (Hug et al., 2016). Metaproteomics relies upon metagenomic 

references and mass spectrometry to identify the pool of proteins in a whole community. The 

detection of a protein indicates actual expression of function: what proteins have been 

synthesized to satisfy biochemical requirements? 

This dissertation uses meta-omics to investigate AP and OP cyanobacteria at each end of 

the spectrum of community complexity, from a cyanobacterial culture to a benthic microbial 

mat. To investigate the genetic repertoire of AP cyanobacteria, in Chapter II I evaluated a draft 

genome of Geitlerinema sp. PCC 9228. I identified genes related to both photosynthetic modes 

and nitrogen fixation that equip Geitlerinema for life in fluctuating H2S, O2, and light 

availability. Geitlerinema possesses three types of psbA, a gene encoding essential proteins for 

photosynthesis, likely cued to oxygen and/or light availability. The regulation of oxygen/light-

replete, microaerobic, and anoxic versions of psbA is necessary for nitrogen fixation, an O2-

sensitive process. Genes controlling nitrogen fixation in Geitlerinema are present in nitrogen-
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fixing archaea and select anaerobic bacteria, but have not been previously investigated in 

cyanobacteria. Geitlerinema encodes two types of sqr, which may be cued to different sulfide 

concentrations and trace metal (arsenic) exposure. The first thorough physiological 

characterization of anoxygenic cyanobacteria was conducted 40 years ago using Geitlerinema, 

but despite advances in gene sequencing and analysis, its genome was not evaluated until this 

dissertation project. The genome of Geitlerinema broadens the known suite of genes 

underpinning cyanobacterial photosynthetic modes and nitrogen fixation, and their potential 

metabolic connectedness. Such genes may have been required for cyanobacteria to cope with 

fluctuating redox gradients that dominated Earth’s early environments, and modern extreme 

systems. 

In Chapters III and IV, I apply our understanding of the genetic foundation for AP 

established in Chapter II and in previous studies to a natural cyanobacterial mat in Middle 

Island Sinkhole (MIS), a modern O2-poor aquatic environment in Lake Huron, Michigan. 

Sulfate-rich groundwater bathes the sinkhole, and bacterial sulfate reduction in the mat and 

sediment provides sulfide to AP cyanobacteria Phormidium and Planktothrix, as well as sulfide-

oxidizing bacteria (Beggiatoa) (Biddanda et al., 2015; Nold, Pangborn, et al., 2010; Voorhies et 

al., 2012; 2016). In Chapter III, I investigated the impact of seasonality on the function 

(metaproteomics) and community structure (16S rRNA gene analysis) of the sulfur-cycling 

microbial population in MIS, over multiple years and seasons. Light intensity and groundwater 

chemistry change seasonally, which can impact the growth and function of AP cyanobacteria 

Phormidium and Planktothrix, sulfide-oxidizing Beggiatoa, and sulfate-reducing 

deltaproteobacteria. Cyanobacteria are abundant and dominate the community functional profile 

in summer months. When light levels decrease in autumn, Beggiatoa and sulfate reducers are 
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more abundant and active in the microbial mat. This research is the first to describe the protein 

signatures of discrete populations of sulfur cycling organisms, including AP cyanobacteria, in a 

low-oxygen, sulfidic mat. By shaping the microbial community from the top down, these 

seasonal dynamics may influence the balance of oxygen production in microbial mats on longer 

temporal scales. 

In Chapter IV, I leverage metagenomics and metaproteomics to explore the microbial 

communities in several visually distinct microbial mat morphologies in MIS, to understand the 

linkage between microbial function and mat appearance. In 2015-2017, field surveys 

documented four mat morphotypes (flat purple mat, conical purple ‘finger’ mats, flat white mat, 

and mottled purple/brown ‘giraffe’ mat) with different spatiotemporal distributions. Sampling 

each mat type multiple times, I recovered hundreds of metagenome-assembled-genomic bins 

(MAGs) that represented cyanobacteria, sulfide-oxidizing gamma- and epsilonproteobacteria, 

sulfate-reducing deltaproteobacteria, and other bacterial members of the mat. Near-complete 

representative MAGs belonging to Pseudanabaena sp. and Spirulina sp. were the most often 

observed in cyanobacteria in white and giraffe mats, whereas representative Phormidium and 

Planktothrix bins were more often observed in white and finger mats. The presence of different 

sqr and psbA versions in these MAGs suggest functional redundancy between cyanobacteria in 

the different morphotypes. Two distinct sulfate-reducing deltaproteobacterial MAGs with 

differences in their spatiotemporal range have putatively different responses to oxygen 

conditions. Similarly, the spatiotemporal abundances of sulfide-oxidizing MAGs belonging to 

Gammaproteobacteria and Epsilonproteobacteria may also be related to oxic/sulfidic conditions 

and the abilities to metabolize sulfide using nitrate instead of oxygen, and sulfur 

disproportionation. This shift in the microbial sulfur cyclers manifested in the proteomic profiles, 
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with proteins belonging to Pseudanabaena, Spirulina, sulfide oxidizers, and sulfate reducers 

more abundant in giraffe and white mats compared to finger mats. The connection between 

microbial activity and mat morphotype in early-Earth analog microbial mats informs our 

interpretation of the putative function of microbes and their interaction with geochemical 

conditions in preserved mats. 
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2.1 Abstract 

Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a 

potentially influential but poorly constrained force on Earth’s biogeochemistry. Their versatile 

metabolism may have boosted primary production and nitrogen cycling in euxinic coastal 

margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the 

accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the 

low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence 

of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica ‘Solar Lake’, a mat-forming 

diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based 

anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes 

protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses 

indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 
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protein used for oxygen-sensitive processes. Another version is phylogenetically similar to 

cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the 

third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has 

the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative 

transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr 

and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide 

concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting 

previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional 

hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. 

Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial 

strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic 

mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic 

cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible 

oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the 

regulation, evolutionary context, and biogeochemical implications of these co-occurring 

metabolisms in Earth history.  

 

2.2 Introduction 

With a long evolutionary history and wide ecological success, cyanobacteria are pivotal 

mediators of Earth’s geochemical cycles, most notably through oxygenic photosynthesis (OP). 

This metabolism emerged early in cyanobacteria (Blankenship, 2010; Farquhar et al., 2010), and 

oxygenic cyanobacteria that colonized newly formed continental margins and shallow seas in the 

Archean (Reddy and Evans, 2009; Lalonde and Konhauser, 2015) were the leading mechanism 
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for partial oxygenation of these shallow regions (Planavsky et al., 2014; Satkoski et al., 2015). 

Although, cyanobacterial OP is the major biological force behind Earth’s oxygenation 

(Blankenship, 2010; Crowe et al., 2013; Planavsky et al., 2014), the biological and geological 

processes that influence cyanobacterial oxygen production and thus underpin Earth’s 

oxygenation are still under debate (Lyons et al., 2014).  

The balance of oxygenic and anoxygenic photosynthesis (AP) has been proposed as a 

biological mechanism to explain the delay and variability in oxygenation (Johnston et al., 2009). 

This includes competition between AP bacteria and OP cyanobacteria, interactions between 

different cyanobacterial groups with varying degrees of AP or OP specialization, as well as 

cellular regulation of the photosynthetic modes within metabolically flexible cyanobacterial 

groups. Atmospheric oxygenation is considered key evidence for OP, but the emergence and 

development of AP in cyanobacteria is less clear. Assuming an early evolution of photosynthetic 

flexibility in cyanobacteria, AP cyanobacteria may have had an important role in sustaining 

ancient ecosystems from the end of the Archean through the Proterozoic, especially in times of 

global and local variability of O2, fixed nitrogen, and alternative electron donors for 

photosynthesis such as H2S and Fe(II) (Canfield, 1998; Scott et al., 2008; Lyons et al., 2014; 

Sperling et al., 2015).  

Molecular innovations equipped cyanobacteria for OP and nitrogen fixation in a dynamic 

environment. The development of OP required the linkage of two light-driven reaction centers: 

photosystem II, which produces oxygen from the oxidation of water; and photosystem I, which 

transfers electrons from plastoquinone to ferredoxin (Blankenship, 2002). This coupled system 

capitalized on the wide availability of H2O compared to more limited supply of electron donors 

for AP such as Mn(II), Fe(II), and H2S (Blankenship, 2002). Homologous proteins D1 and D2, 
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encoded by the psbA and psbD genes, form the core of PSII and anchor the water oxidizing 

complex (Ferreira et al., 2004; Fischer et al., 2015). Modern cyanobacteria have multiple 

versions of psbA to cope with different oxygen levels and light regimes (Mohamed et al., 1993). 

Cyanobacterial adaptations to an aerobic lifestyle are also reflected in the nif genes for nitrogen 

fixation, which initially emerged in methanogens in an anoxic environment (Raymond et al., 

2004; Boyd et al., 2011). Reflecting increasing oxygen levels, cyanobacterial genomes lost and 

recruited nitrogenase (nif)-related genes, and shifted expression patterns and regulation that 

enabled nitrogen fixation in an oxic world (Boyd et al., 2015).  

Studies of modern cyanobacteria have provided insights into how sulfide may have 

modulated the balance of OP and AP in ancient ecosystems. The influence of sulfide on 

cyanobacterial photosynthesis ranges from complete inhibition at even low levels of H2S to 

resilience or resistance to sulfide toxicity. In some cyanobacteria, sulfide exposure may induce 

AP (Cohen et al., 1986; Miller and Bebout, 2004), which does not include PSII and thus does not 

produce O2. Instead, the sulfide quinone reductase (SQR, coded for by the sqr gene) oxidizes 

sulfide to sulfur and transfers electrons to PSI (Arieli et al., 1994; Theissen et al., 2003). Such 

AP cyanobacteria have been documented in hypersaline lakes (Cohen et al., 1975a), sinkholes 

(Voorhies et al., 2012), and sulfidic springs (Chaudhary et al., 2009; Bühring et al., 2011; Klatt 

et al., 2016). Studied cyanobacteria have different mechanisms for the transition between OP and 

AP, such as protein synthesis (Oren and Padan, 1978), a dependence on light quantity and 

spectrum, and kinetics and affinities between enzymes and quinones (Klatt et al., 2015a). The 

physiology of AP cyanobacteria and their potential importance in modern and ancient 

ecosystems have been previously explored, yet the genomic basis for this flexible metabolism is 

poorly understood.  
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Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica ‘Solar Lake’, is a model 

anoxygenic photosynthetic cyanobacterium. The organism was cultured from the low-light 

sulfidic hypolimnion of Solar Lake, below a layer of green and purple sulfur bacteria (Cohen et 

al., 1975b). Filamentous cyanobacteria such as Geitlerinema are rare in oxic and well-

illuminated surface waters, and most numerous in the euxinic hypolimnion at which they receive 

a fraction of surface irradiance (Cohen et al., 1977b). In laboratory experiments at light 

intensities similar to or higher than in situ levels, Geitlerinema performs OP, but transitions fully 

to sulfide-based AP at micromolar concentrations of sulfide (Cohen et al., 1986). Under sulfidic 

conditions, Geitlerinema can also fix nitrogen and produce hydrogen (Belkin and Padan, 1978; 

Belkin et al., 1982). Its SQR has been isolated (Arieli et al., 1994), sequenced (Bronstein et al., 

2000), and phylogenetically characterized (Pham et al., 2008; Marcia et al., 2010a; Gregersen et 

al., 2011). Geitlerinema is a model organism for studying the physiology of flexible AP/OP, 

diazotrophic cyanobacteria and their influence on modern and ancient systems. In this study, we 

analyzed a draft genome of Geitlerinema and characterized the genes related to nitrogen fixation, 

AP, and OP. These results provide a genomic foundation for metabolic flexibility in response to 

varying sulfide, oxygen, and light levels that was observed in previous physiology studies 

(Belkin and Padan, 1978; Belkin et al., 1982; Cohen et al., 1986; Shahak et al., 1987).  

 

2.3 Materials and Methods 

Culturing and Sequencing. The original strain was isolated from the sulfidic water column of 

Solar Lake, Israel (Cohen et al., 1975b), and was kindly provided by A. Oren for culturing. A 

monoalgal culture was grown in modified Chu’s 11 in Turks Island Salts medium at room 

temperature (average 22.0◦C) and ambient light in a 125 mL Erhlenmeyer flask. We extracted 
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whole community DNA using the MPBio FastDNA SpinKit and Fastprep-24 Bead Beater (MP 

Biomedicals, Solon, OH, USA) following the default protocol, except that 0.3 g of beads were 

used for bead beating. DNA was quantified using Quant-IT PicoGreen (Invitrogen, Grand Island, 

NY, USA) and submitted to the University of Michigan DNA Sequencing Core for library 

preparation and Illumina HiSeq 2 × 100 bp paired-end sequencing.  

 

Assembly. Using wrappers provided at https://github.com/Geo-omics/ scripts, reads were 

dereplicated with custom perl scripts, trimmed using Sickle (version 1.33) (Joshi and Fass, 

2011), and assembled using IDBA-UD (version 1.1.1) (Peng et al., 2012) with the following 

parameters: –mink 65 –maxk 85 – step 10 –pre_correction. Tetranucleotide frequency was used 

to bin scaffolds by emergent self-organizing maps (Dick et al., 2009), with a minimum contig 

length of 500 bp and a window size of 10,000 bp (Figure SI 2.1). The cyanobacterial bin of 

scaffolds >1000 bp in length was submitted to the Integrated Microbial Genomes Expert Review 

(IMG- ER) automated pipeline from Joint Genomes Institute (JGI) for annotation of genes and 

pathways (IMG accession number: 2660238729; Supplementary Table S1). Raw reads, 

assembled scaffolds, and gene annotations were submitted to NCBI (project: PRJNA302164).  

 

Phylogenetic Analysis. Phylogenetic analyses of genes of interest (Table 2.1) was performed 

with maximum likelihood and the PROTGAMMAGTR algorithm in RAxML 8.1.15 and 

bootstrapped 1000 times (Stamatakis, 2014). psbA, sqr, and nifHDK gene phylogenies included 

44 cyanobacterial isolate genomes and genomic bins from Hot Lake and Middle Island Sinkhole 

cyanobacterial mat metagenomes (Cole et al., 2014; Voorhies et al., 2016; Supplementary Table 

S2). Each of these cyanobacterial genome has at least one sqr gene, and 30 of the 44 genomes 
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have a nifHDK gene set. sqr and nifHDK genes from Sulfuricurvum kujiense YK-1 DSM 16994, 

and other bacterial sqr genes (Table SI 2.3) were included for context. Translated genes (amino 

acid sequences) were aligned with clustal-omega (version 1.2.0) (Sievers et al., 2011). 

Alignments for nifH, nifD, and nifK were concatenated, and the concatenated alignment was used 

for analysis. Halothece halophytica chlLNB genes were used to root the nifHDK tree (Boyd et 

al., 2015). Flavocytochrome c:sulfide dehydrogenase (FCSD) genes formed an outgroup for the 

sqr tree (Marcia et al., 2010a). The most divergent psbA from Gloeobacter kilaueensis JS-1 was 

used as an outgroup for the psbA tree (Cardona et al., 2015). Phylogenetic trees were drawn with 

FigTree version 1.4.2 (Rambaut, 2012).  

 

2.4 Results 

Overview  

The 4.77 Mb draft genome of Geitlerinema sp. PCC 9228 (henceforth “Geitlerinema”) 

contains 3,969 protein coding genes on 195 scaffolds. Coverage is on average 905x across the 

genome. The genome has 100% of universally conserved bacterial genes expected to be present 

(Raes et al., 2007; Alneberg et al., 2014).  

 

Carbon Metabolism  

Geitlerinema has key genes coding for proteins involved in photosynthetic and 

respiratory electron flow, including photosystem II (psbADBCEFO), succinate dehydrogenase 

(sdhABC), type-1 NADPH dehydrogenase (ndhA-M), cytochrome b6f (petADBCEJ), 

photosystem I (psaABCDEFK), and cytochrome c oxidation (coxABC) (Supplementary Table 

S1; Mulkidjanian et al., 2006). It has genes for the Calvin- Benson-Bassham cycle, carbon 
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dioxide concentrating proteins (ccmK1 K2 MN ), and Rubisco large and small subunits (rbcLS) 

for carbon fixation (Figure 2.1). Superoxide dismutase genes (sodC and sodN) to cope with 

superoxide formation during photosynthesis and aerobic respiration are also present in the 

genome. In ancestral cyanobacteria, these enzymes would have been critical for defense against 

increased production of reactive oxygen species alongside increasing O2 fluxes (Blank and 

Sánchez-Baracaldo, 2010; Fischer et al., 2016).  

Geitlerinema has genes encoding a complete tricarboxylic acid (TCA) cycle, including 2-

oxoglutarate dehydrogenase and succinyl CoA synthase to link synthesis of 2-oxoglutarate 

through succinyl-coA with succinate (Steinhauser et al., 2012). The genome also has the genes 

for acetolactate synthases and succinate-semialdehyde dehydrogenase to interconvert 2-OG and 

succinate through succinic semialdehyde in an alternative closure to the TCA cycle (Zhang and 

Bryant, 2011). Though it has shc, encoding for squalene-hopene cyclase, Geitlerinema lacks the 

hpnP gene for hopanoid methylation (Ricci et al., 2015). 2-methylhopanes, derived from 2-

methylhopanoids, have been used as a bacterial biomarker in the geologic record (Summons and 

Lincoln, 2012). Geitlerinema has genes for acyl- ACP reductase and fatty aldehyde 

decarbonylase, key enzymes in an alkane biosynthesis pathway unique to cyanobacteria 

(Schirmer et al., 2010; Coates et al., 2014).  

In the chlorophyll synthesis pathway, we identified both the aerobic oxidative ester 

cyclase chlE common to all cyanobacteria (Mulkidjanian et al., 2006), and the oxygen 

independent ester cyclase bchE. Functional bchE is common in anoxygenic phototrophic bacteria 

such as green sulfur bacteria and heliobacteria (Sousa et al., 2013), and is only rarely present in 

cyanobacteria, such as Synechocystis sp. PCC 6803 (Minamizaki et al., 2008). Geitlerienema has 

the light-dependent NADPH- protochlorophyllide oxidoreductase that produces chlorophyllide in 
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the penultimate step of the pathway. This gene originated in cyanobacteria and is limited to 

cyanobacteria and phototrophic eukaryotes (Blankenship, 2002; Yang and Cheng, 2004). 

However, the genome lacks the light-independent oxidoreductase chlLNB, which allows for 

chlorophyll synthesis in the dark and is observed in all photosynthetic phyla (Blankenship, 

2002). Due to their homology, Geitlerinema’s genes for nifHDK are the closest matches to H. 

halophytica’s chlLNB. Coverage estimates for nifHDK genes are consistent with the rest of the 

genome, indicating there was no mis-assembly of chlLNB reads into nifHDK genes.  

 

Nitrogen Metabolism  

The cyanobacterial genome has genes for a variety of pathways of nitrogen acquisition, 

including an ammonia transporter gene amt, cyanate lyase cynS, nitrate/nitrite transporters narK 

and focA, and nitrate assimilation-related genes nitrate and nitrite reductases nirA, nirC, and 

narB (Figure 2.1). The cyanobacterium also has urea transporters (urtABCD), urease genes 

(ureABCDFG), and genes for transport of neutral, branched, and polar amino acids.  

Geitlerinema has a comprehensive operon for nitrogen fixation (nifVXSU, nifHDKEB; 

Raymond et al., 2004). Additional nitrogenase-related proteins are located on the same contig 

(iscA, nifI1I2, ferredoxin, nifN; Figure 2.2; Boyd et al., 2015). iscA is commonly observed in 

aerobic diazotrophs, and its recruitment into the genome is linked to a transition to aerobic 

lifestyle (Boyd et al., 2015). The cyanobacterium has glnB, a member of the PII signal 

transduction protein family that regulates nitrogen-related proteins, and ntcA, which controls 

expression of glnB (Forchhammer, 2004). The nifI1I2 gene is also a member of the PII protein 

family, but is characteristic of diazotrophic anaerobes that regulate their nitrogenase activity 

post-translation, such as Desulfovibirio and Clostridium (Boyd et al., 2015).  
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Phylogenetic analysis shows that nifHDK genes from Geitlerinema clusters with those 

from two cultured cyanobacterial genomes (Pleurocapsa sp. 7327, Microcoleus chthonoplastes) 

and a cyanobacterial genome-from-meta genomic bin (Phormidium OSCR; bootstrap = 100; 

Figure SI 2.2). Like Geitlerinema, their nitrogenase operons also hold nifI1 I2 . Geitlerinema 

has a bidirectional NiFe hydrogenase gene set (hoxEFUYH and hoxW) with its transcriptional 

regulator (lexA) and hydrogenase maturation proteins (hypBAEDC) (Figure 2.1). Unlike 

Geitlerinema, typical nitrogen-fixing cyanobacteria have an uptake hydrogenase (hupSL) to 

consume H2 produced in nitrogen fixation. hupSL is under similar transcriptional regulation as 

nitrogen acquisition genes like dinitrogenase, making expression of hupSL dependent on nitrogen 

limitation (Tamagnini et al., 2007). In contrast, the bidirectional hydrogenase can be present in 

both diazotrophic and non-diazotrophic cyanobacteria and is expressed under more diverse 

conditions. It may, for instance, be used in fermentation or to direct electrons during 

photosynthesis (Tamagnini et al., 2007). Geitlerinema produces hydrogen during sulfide-

dependent AP in the presence of bioavailable nitrogen, as well as in the absence of CO2, 

suggesting the nitrogenase-independent hox gene set may be responsible for hydrogen evolution 

(Belkin and Padan, 1978; Belkin et al., 1982).  

 

Photosystem II Assembly  

The core proteins in photosystem II are encoded by psbA and psbD (Blankenship, 2002). 

Geitlerinema has one version of psbD and three versions of the psbA gene (Figure 2.1). The 

standard psbA, hereafter referred to as psbA3, is in a large clade of typical oxygenic psbA 

designated “group 4” after (Cardona et al., 2015) (Figure 2.3). All but one of the isolate 

genomes in this analysis have at least one copy of this form of psbA, which is used in OP in 
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aerobic conditions (Table SI 2.2). Coverage estimates and paired-end information suggest that 

Geitlerinema has two copies of psbA3. It is the sole gene on its contig, and pairs of reads that 

map to the ends of the psbA3 match to the ends or beginnings of four other contigs. Those 

portions have 100% identity to the ∼80 bp beginning and end of psbA3. The De Bruijn graph-

based assembly algorithm used in this analysis frequently prematurely assembles identical copies 

of genes (Nagarajan and Pop, 2013). The approach accurately assembled the two copies of 

psbA3, but could not automatically bridge the copies.  

One additional version of psbA, henceforth referred to as psbA1, has 85% sequence 

identity to psbA3 (blastx). psbA1 is located in a different operon but on the same scaffold near 

ntcA and photosynthetic subunits psbN and psbH. psbA1 is in a well-supported clade with genes 

from Geitlerinema sp. PCC 7105 (2510100750) and Geitlerinema sp. BBD 1991 

(BBD_1000995126; bootstrap = 81; Figure 2.3). This gene is also in a larger “group 2” 

(Cardona et al., 2015) that includes psbA genes from cyanobacterial genomic bins 

(MIS_1001011011, MIS_100039089) sourced from a low-oxygen cyanobacterial mat in the 

Middle Island Sinkhole (Voorhies et al., 2016). Group 2 genes encode D1 proteins used under 

growth conditions that do not favor water oxidation (Cardona et al., 2015), such as heterotrophy 

in the dark (Park et al., 2013), photosynthetic electron transport inhibition (Kiss et al., 2012), or 

oxygen- sensitive processes such as nitrogen fixation (Toepel et al., 2008; Wegener et al., 2015). 

Finally, the third variant, psbA2, is 59–88% similar to psbA1 (discontinuously; tblastx), and 90% 

similar to psbA3 (over 99% of their lengths; blastx). psbA2 is in a clade with genes from a 

Middle Island Sinkhole cyanobacterium (MIS_100299244), Geitlerinema sp. BBD1991 

(BBD_1000995127) and Phormidium sp. OSCR (2609132164; bootstrap = 94). Proteins from 

these “group 3” psbA genes (Cardona et al., 2015) are expressed under microaerobic conditions, 
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with modified electron transfer to cope with the changing redox environment (Figure 2.1; Sicora 

et al., 2004, 2009; Sugiura et al., 2012).  

 

Sulfide Oxidation  

Two copies of the gene for sulfide quinone reductase, sqr, are in the genome of 

Geitlerinema (Figure SI 2.4). This gene is involved in the oxidation of sulfide for detoxification 

or to harvest electrons for AP, such as in purple and green sulfur bacteria (Theissen et al., 2003; 

Marcia et al., 2009, 2010a; Gregersen et al., 2011). Each sqr is located upstream of arsenic 

resistance arsR-type genes, putatively involved in transcriptional regulation of sqr under 

conditions such as sulfide exposure (Nagy et al., 2014). One sqr, referred to as sqr1 hereafter, 

matches the previously cloned and sequenced sqr gene of Geitlerinema (Bronstein et al., 2000). 

This enzyme mediates the reduction of plastoquinone and oxidation of sulfide in sulfide-

dependent AP (Arieli et al., 1994). On the sqr phylogenetic tree, Geitlerinema’s canonical sqr 

groups with other cyanobacterial versions that are considered type I (Marcia et al., 2010a; 

Gregersen et al., 2011; bootstrap = 100; Figure 2.4; Figure SI 2.5). Hydrogen sulfide affinities 

for cyanobacterial sqr in this cluster are high, with Km in the micromolar range (Arieli et al., 

1991; Bronstein et al., 2000). Geitlerinema, Coleofasciculus (formerly Microcoleus), Halothece, 

and proteobacterial members in this cluster have been shown to grow with this sqr on sulfide-

induced AP (Oren and Padan, 1978; Cohen et al., 1986; Jørgensen et al., 1986; Schütz et al., 

1999).  

The second sqr gene, referred to as sqr2 hereafter, is 25–50% identical over 

discontinuous fragments to the sqr1 gene (tblastx). It is most similar (tblastx 48–63% identity to 

overlapping fragments that span the length of the gene) to that of Chloroherpeton thalassium 
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ATCC35110, a green sulfur bacterium, with similar identity to the sqr genes of other sulfur-

oxidizing bacteria. sqr2 clusters phylogenetically with two other cyanobacterial sqr 

[Geitlerinema sp. PCC 7105 and BBD 1991 (bootstrap = 97)], among a group of known type VI 

versions (bootstrap = 100; Figure 2.4; Figure SI 2.5). They include sqr from thiotrophic 

proteobacteria (Marcia et al., 2010a) and green sulfur bacteria (Gregersen et al., 2011), including 

that of Chlorobium tepidum used in sulfide oxidation when sulfide exceeds 4 mM (Chan et al., 

2009).  

 

Trace Metal Resistance  

Arsenic resistance genes arsB (an arsenite efflux pump) and arsC (arsenate reductase; 

Slyemi and Bonnefoy, 2011; van Lis et al., 2013), and arsR, the putative regulatory protein of 

sqr, are in an arsRBC operon downstream of sqr2. Upstream of sqr2 are genes encoding 

glutathione S-transferase and a multidrug efflux pump (Figure SI 2.4). Another arsB is located 

downstream of sqr1 but in a different operon. In combination with arsB, two arsenite-tranporting 

ATPases arsA genes are present in the genome, one located on the same scaffold as the 

nitrogenase gene suite and the other on the longest scaffold in the dataset. Geitlerinema does not 

have known arsenite oxidizing genes (aioAB, arxA) or respiratory arsenate reductase genes 

(arrA), based on gene annotation and BLAST searches against known genes (Hoeft et al., 2010; 

Slyemi and Bonnefoy, 2011). It has an annotated chromate transporter (chrA) on another scaffold 

that has 52% positive match (blastp) to a similarly annotated gene in Synechocystis sp. PCC6803 

that functions as an arsenite uptake transporter for arsenite oxidation (Nagy et al., 2014; Figure 

2.1). On another scaffold, a gene belonging to the DUF302 protein superfamily of unknown 

function is quite similar (75% positive, 56% identical blastp) to a Synechocystis gene in the sqr1 
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plasmid operon, as well as to a potential arsenic oxidase gene in Agrobacterium (61% positive, 

44% identical, blastp; Nagy et al., 2014). Geitlerinema also has a methyltransferase similar (84% 

positive, blastx) to the arsM gene of Synechocystis used in arsenite methylation for detoxification 

(Yin et al., 2011).  

 

2.5 Discussion 

Previous investigations of cyanobacterial cultures capable of OP and sulfide-dependent 

AP targeted physiology, biochemistry, and limited genetic analyses (Cohen et al., 1986; Arieli et 

al., 1994; Bronstein et al., 2000; Miller and Bebout, 2004; Klatt et al., 2015a). However, the 

broader genetic characteristics of this cyanobacterial metabolic flexibility have not been 

thoroughly evaluated. In this study, we analyzed the genome of a model anoxygenic 

photosynthetic cyanobacterium, Geitlerinema sp. PCC 9228. The organism was isolated from a 

sulfidic, low- light environment, and numerous physiology studies have documented its ability to 

fix nitrogen, its high affinity for sulfide, and its oxygenic and anoxygenic photosynthetic 

capabilities (Cohen et al., 1975b, 1986; Belkin et al., 1982). We comprehensively evaluated the 

draft genome of Geitlerinema for key metabolic genes for oxygen, nitrogen, and carbon cycling, 

and provide the genetic evidence of its metabolic versatility.  

 

Photosynthesis Is Optimized for Light and Redox. 

Our results indicate that Geitlerinema sp. PCC 9228 and other sulfide-tolerant and/or 

sulfide-using cyanobacteria have multiple different types of psbA genes that are inferred to meet 

physiological and biochemical needs under changing light and redox conditions. The psbA gene 

encodes the D1 protein that directly supports the water-oxidizing cluster in PSII (Ferreira et al., 
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2004; Fischer et al., 2015). Due to its role in water oxidation, this protein experiences high levels 

of oxidative damage and degradation. By impacting water oxidation, changes in redox such as 

sulfide inhibition of the water oxidizing complex in PSII (Miller and Bebout, 2004) and/or non-

optimal light conditions lead to excessive energy (Klatt et al., 2015b) and influence the risk and 

magnitude of oxidative damage to D1 (Aro et al., 1993). Thus, cyanobacteria that experience 

such dynamic conditions may use another of the multiple psbA genes in their genomic repertoire 

under different light and oxygen regimes to mitigate oxidative damage (Schaefer and Golden, 

1989; Campbell et al., 1999; Sicora et al., 2009; Gan et al., 2014; Cardona et al., 2015; Ho et al., 

2016). Geitlerinema has two copies of psbA for OP under high oxygen and/or light levels (both 

psbA3; group 4), one gene for non- oxygen evolving PSII (psbA1; group 2), and one gene for 

microaerobic conditions (psbA2; group 3; Figures 2.1 and 2.3). We infer that these distinct 

photosynthetic genes reflect the adaptation of Geitlerinema to a variably lit, low-oxygen, and 

sulfidic lifestyle.  

During high light conditions, when Geitlerinema conducts OP (Cohen et al., 1975a, 

1986), the psbA3 (group 4) genes are likely used to reduce photoinhibition and oxidative stress, 

as observed in Synechococcus sp. PCC 7942, Synechocystis sp. PCC6803, and 

Thermosynechococcus elongatus (Schaefer and Golden, 1989; Sicora et al., 2006; Kós et al., 

2008; Sugiura et al., 2010). Other cyanobacteria synthesize identical D1 proteins from different 

genes at high light versus regular light conditions (Sugiura et al., 2010). Two copies of psbA3 in 

its genome may equip Geitlerinema to continue OP in times of sufficient and/or high light, such 

as when mixed up into the epilimnion or in holomixis. Given that psbA3 clusters with standard 

and high-light variant genes (Figure 2.3), it remains to be seen if one or both of Geitlerinema’s 
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two copies of psbA3 is cued to the different light intensities the organism may experience in its 

natural habitat.  

The psbA1 and psbA2 genes likely provide Geitlerinema with the flexibility to conduct 

photosynthesis and nitrogen fixation under varying oxygen and/or sulfide concentrations. With 

sufficient light, the cyanobacterium may rely upon psbA2 (group 3), which is keyed for 

microaerobic conditions. Changing redox environment promotes synthesis of psbA2-like variants 

(group 3) in Thermosynechococcus elongatus (Sugiura et al., 2012) and Synechocystis sp. 

PCC6803 (Sicora et al., 2004). However, light levels are lower than required for OP in the 

hypolimnion of Solar Lake, the prime habitat of Geitlerinema. Together with continuous sulfide 

exposure, these conditions often favor AP in cyanobacteria (Klatt et al., 2015a, 2016) and in 

green sulfur bacteria (Hanson et al., 2013; Findlay et al., 2015). Groups 2 and 3 psbA genes in 

the current study are in close chromosomal proximity to sqr genes (Figure 2.3), suggesting an 

intriguing but currently untested linkage between modified PSII and sulfide exposure. 

Alternative D1 proteins have been hypothesized to be directly involved in the transfer of 

electrons from donors other than water (Murray, 2012), such as in sulfide oxidation during 

nitrogen fixation (Becraft et al., 2015; Olsen et al., 2015). However, whether alternative D1 

proteins are directly participating in this unusual photochemistry or serve to inactivate PSII in 

AP, remains to be tested.  

Very little sulfide is required to limit OP in Geitlerinema (Cohen et al., 1986), and in the 

transition between oxygenic to AP, continuous exposure induces synthesis of proteins such as 

SQR (Arieli et al., 1991). SQR has a higher affinity for plastoquinone than PSII (Klatt et al., 

2015a), thus in this induction period and with continual sulfide exposure, Geitlerinema may also 

reformulate its photosystem II machinery to reduce oxygen production. Finally, the psbA1 (group 
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2) gene is also likely used to disable oxygen production during times of nitrogen fixation. Non-

oxygen producing group 2 enzymes have been implicated as structural ‘placeholders’ that may 

allow oxygen-sensitive processes such as nitrogen fixation to occur (Sicora et al., 2009; Murray, 

2012; Wegener et al., 2015). Further experiments targeting gene and protein expression will 

confirm the physiological roles of the variant psbA genes.  

Variant psbA genes such as those observed in Geitlerinema likely permitted ancestral and 

potentially AP-capable cyanobacteria to meet metabolic requirements in dynamic 

physicochemical conditions. The importance of AP cyanobacteria and their metabolisms on 

Archean and Proterozoic oxygen levels is linked to the timing of OP. Mat-forming cyanobacteria 

in modern hypersaline and hot spring ecosystems likely face the same environmental challenges 

as their stromatolite-forming ancestors (Stal, 1995; Grotzinger and Knoll, 1999). As in modern 

systems, the metabolisms and mat-building lifestyles of ancestral cyanobacterial populations 

would have promoted light and redox dynamics on spatial (depth) and temporal (diel) scales 

(Canfield, 2005; Blank and Sánchez-Baracaldo, 2010; Lalonde and Konhauser, 2015; Sumner et 

al., 2015). Genomic and physiological studies on contemporary mat-forming cyanobacteria and 

their responses to changing environmental parameters, such as different versions of psbA keyed 

to light and/or oxygen levels, inform potential genetic and physiological strategies in ancient 

cyanobacteria. Given the long geologic history of variable and low atmospheric oxygen 

concentrations, the first appearance of alternative psbA in cyanobacteria is uncertain. The 

functional differences and potential heterotachy in these homologous genes dictate caution when 

evaluating their timing and evolutionary order. However, the basal arrangements of group 2 to 

group 3/4, and group 3 to group 4 in the phylogenetic tree hint at an ancestral development of 

water oxidation when atmospheric oxygen was low (Cardona et al., 2015). The perpetuation of 
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diverse and evolutionarily old psbA genes in cyanobacterial genomes allow for efficient 

metabolic functioning regardless of oxygen levels/needs (Murray, 2012). These variant genes 

were likely retained in cyanobacterial genomes for oxygen-sensitive processes, such as nitrogen 

fixation, in an increasingly oxidizing environment.  

 

Nitrogen Acquisition Strategies in Variable Redox Conditions. 

Geitlerinema has a suite of genes for uptake of nitrogen (nitrate, nitrite, urea) as well as 

nitrogen fixation through a comprehensive nitrogenase gene suite (Figures 2.1 and 2.2). Sulfide-

dependent AP was measured in select strains grown in nitrogen-replete media, including 

Geitlerinema sp. PCC 9228, Coleofasciculus chthonoplastes, and Pseudanabaena FS39, 

suggesting nitrate assimilation occurs under AP conditions (Cohen et al., 1986; Klatt et al., 

2015a). Geitlerinema is also capable of AP-dependent nitrogen fixation (Belkin et al., 1982), 

potentially using sulfide to scavenge residual oxygen or donate electrons to nitrogenase (Stal, 

2012).  

Clues about the cyanobacterial transition from an anaerobic to aerobic lifestyle are 

apparent in regulatory genes for nitrogen acquisition. Due to its evolution under anoxia and strict 

requirement for anaerobic conditions, cyanobacterial diazotrophy in an increasingly oxidizing 

environment required new adaptations (Boyd et al., 2011; Stüeken et al., 2015). In the nif operon 

of Geitlerinema is nifI1I2, which encodes a signal transduction protein of the PII family that is 

present in diazotrophic archaea and select anaerobic bacteria, but has not been studied in 

cyanobacteria (Forchhammer, 2004; Boyd et al., 2015). In those organisms, NifI1I2 inhibits 

nitrogenase activity when the cell is no longer nitrogen limited (Kessler et al., 2001). 

Geitlerinema’s nifHDK gene suite is phylogenetically grouped with those from three other 
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cyanobacterial genomes that also have nifI1I2 in their nitrogenase operons (Figure SI 2.2), and 

members of this cluster are adapted to low-oxygen and/or sulfidic conditions. C. chthonoplastes 

can continue to operate OP at low sulfide concentrations and is also capable of sulfide-dependent 

AP (Cohen et al., 1986). Similar to Geitlerinema and its psbA1, Pleurocapsa sp. PCC 7327 also 

has a psbA gene that codes for a rogue D1 protein typically used in anoxic conditions (Wegener 

et al., 2015). 

 

Geitlerinema Possesses Genetic Versatility for Sulfide Oxidation. 

Sulfide quinone reductase (SQR, encoded by sqr) oxidizes sulfide to elemental sulfur, 

and this process can be coupled with lithotrophic or phototrophic growth in bacteria and archaea 

or detoxification of sulfide in eukaryotes (Theissen et al., 2003; Marcia et al., 2010a). The 

genome of Geitlerinema sp. PCC 9228 holds two sqr operons. The first operon has the well- 

studied high-affinity sqr1 (type I), which is translated after a few hours of exposure to 

micromolar levels of H2S (Oren and Padan, 1978) and enables Geitlerinema to grow by sulfide- 

based AP (Cohen et al., 1986). The transcriptional regulatory gene arsR, located downstream of 

sqr1, likely controls its expression (Nagy et al., 2014). Though lateral gene transfer has 

distributed various sqr types among bacteria, archaea, and eukarya (Theissen et al., 2003), type I 

sqr genes in cyanobacteria such as Geitlerinema sqr1 form a distinct and well-supported 

cyanobacterial phylogenetic subclade within a bacterial clade (Figure 2.4). This cyanobacterial 

clade includes genes from AP- capable or sulfide-tolerant members such as C. chthonoplastes, 

Synechocystis sp. PCC6803, H. halophytica, and Geitlerinema sp. BBD (Cohen et al., 1986; 

Theissen et al., 2003; Marcia et al., 2010a; Nagy et al., 2014; Den Uyl et al., 2016). SQR is an 

evolutionarily ancient enzyme that was widespread in organisms during the Proterozoic 
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(Theissen et al., 2003), during which the oceans had variable redox conditions including euxinia. 

Although the evolutionary history of sqr in cyanobacteria appears to be complex and remains 

unresolved, the sqr1 gene is thought to be endogenous to cyanobacteria (Theissen et al., 2003). 

As a critical component of sulfide-based AP, this gene would have enabled ancestral 

cyanobacteria to thrive during the Proterozoic, when periods of photic zone euxinia would have 

favored AP and tempered oxygen production (Johnston et al., 2009). Whether the endogenous 

type I SQR may have permitted ancestral cyanobacteria to oxidize sulfide for energy, or 

cyanobacteria retooled this detoxifying enzyme for AP, is an open question.  

The role of the second sqr operon in Geitlerinema is unknown. In addition to sulfide 

consumption through sqr1-based AP (Oren and Padan, 1978), Geitlerinema has a second sulfide 

donation site on the immediate donor side of PSI, which is not inducible (i.e., does not require 

protein synthesis) and does not significantly contribute to proton translocation (Shahak et al., 

1987). However, this response operates at even higher concentrations of sulfide (Km in the mM 

range) without saturation (Shahak et al., 1987; Arieli et al., 1991). The enzyme mediating this 

response to high sulfide is unknown, thus it could be encoded by this sqr2. Only 10 of the 44 

cyanobacterial genomes and genomic bins examined in this study (including Geitlerinema sp. 

PCC 9228) have more than one version of sqr. Seven genomes in this subset, such as 

Synechocystis sp. PCC6803 (Nagy et al., 2014), each have two versions sqr, one of which is 

phylogenetically similar to sqr1, and the other a eukaryotic homolog (type II). Only three 

genomes, all of them Geitlerinema species, have genes phylogenetically similar to sqr2 (type VI) 

as well as an sqr1-like version. The sulfide physiology of Geitlerinema sp. PCC7105 is 

unknown, but Geitlerinema sp. BBD is a known sulfide-resistant photosynthetic cyanobacterium 

(Den Uyl et al., 2016). Green sulfur bacteria, thiotrophic proteobacteria, and members of 
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Aquificaceae have multiple versions of sqr or homologs with a range of sulfide affinities. 

Aquifex aeolicus expresses its types I and VI sqr, similar to Geitlerinema’s sqr1 and sqr2, even 

when not growing thiotrophically (Marcia et al., 2010a,b). On the other hand, Chlorobium is 

capable of sulfide-dependent growth at mM H2S by using its type VI sqr, and other versions are 

used at lower sulfide concentrations (Chan et al., 2009). Phylogenetic clustering of sqr2 with 

green sulfur bacterial sqrs, including one used at high sulfide levels, supports a similar role in 

Geitlerinema. Like sqr1, sqr2 also has a transcriptional regulatory gene arsR in the operon. 

These observations raise the possibility that Geitlerinema is capable of growing phototrophically 

on different sulfide levels through its sqr1 and sqr2. Our results also suggest that such versatility 

was likely achieved through a combination of evolutionary processes including vertical descent 

within ancestral cyanobacteria (sqr1, type I clade) as well as lateral transfer from other groups 

(sqr2, type VI clade). When these genes became part of the AP-cyanobacterial repertoire is 

uncertain.  

Chromosomal examination of cyanobacterial sqr and groups 2 and 3 psbA genes 

underscores a potential relationship between sulfide exposure and reformulation of the water- 

oxidizing complex in periods of AP and/or OP. Of the evaluated cyanobacterial genomes with 

sqr, 15 of the genomes have sqr types I, II, or VI in close genetic proximity to low-oxygen or 

anaerobic psbA genes. These genomes include metagenomic bins from Middle Island Sinkhole, 

where sulfide-based AP has been demonstrated (Voorhies et al., 2012), two other species of 

Geitlerinema, four Cyanothece species, and two Leptolyngbya species, among others. Because of 

variable contig lengths, it is unknown if psbA1 and/or psbA2 of Geitlerinema sp. PCC 9228 are 

in proximity to one or both of its sqr genes. However, the small intergenetic spaces between 

anoxygenic/micro-oxygenic psbA varieties and sqr in the other genomes hints at potential linked 
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transcriptional regulation of these genes. Additionally, of the cyanobacterial sqr genes, 27 were 

in close proximity to arsR- like transcriptional regulators. These genes and conditions of their 

expression are an attractive target for further studies.  

 

Potential Trace Metal Oxidation.  

Different versions of sqr in Geitlerinema sp. PCC 9228 may also be linked to trace metal 

metabolism and resistance. In close proximity to sqr2 there are genes for arsC, arsB, arsR, and 

glutathione (GST) S-transferase, and on other contigs there are genes for arsenite transporting 

ATP-ases arsA, another arsB, a methyltransferase similar to arsenite methylator arsM, and a 

chromate transporter similar to a cyanobacterial arsenite importer. These genes are involved in 

arsenate reduction, arsenite transport, transcriptional regulation, and mediation of arsenic 

resistance (Oden et al., 1994; Mukhopadhyay et al., 2002; Cameron and Pakrasi, 2010; Slyemi 

and Bonnefoy, 2011). Synechocystis sp. PCC6803 uses an arsR gene to regulate genomic 

arsBHC expression during arsenic exposure (López-Maury et al., 2003), and is able to grow in 

mM concentrations of arsenite and arsenate (Sánchez-Riego et al., 2014). An arsR-like 

transcriptional regulator is also adjacent to sqr1 in Geitlerinema (Bronstein et al., 2000), and the 

proximity of arsR to sqr2 suggests a similar regulatory role. Arsenic resistance genes are widely 

distributed among bacteria and archaea, and may be found in environments that do not have 

measurable arsenite (Mukhopadhyay et al., 2002; Oremland and Stolz, 2005). The hydrology of 

the habitat of Geitlerinema, Solar Lake, is driven primarily by seawater seepage through the sand 

bar, with minor meteoric input (Cohen et al., 1977a). Usual sources of arsenic, such as 

hydrothermal hot springs in hypersaline environments or weathering of arsenic- rich clays 

(Oremland et al., 2009), are absent from this system. As such, these genes may have been 
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inherited from ancestral cyanobacteria inhabiting a metal-rich environment (Oremland et al., 

2009), be used to detoxify other metals such as antimony (Nagy et al., 2014), or cope with 

reactive oxygen species and oxidative stress (Latifi et al., 2009; Takahashi et al., 2011).  

The proximity of the sqr2 to arsenic-related genes (arsRBC, glutathione S-transferase), 

taken together with experimental results from related organisms and genes, hints at an 

unexplored potential metabolism in Geitlerinema: AP using arsenite as the electron donor, as in 

anoxygenic bacteria (Kulp et al., 2008; Hoeft et al., 2010; Edwardson et al., 2014). Oscillatoria- 

like cyanobacterial biofilms in an arsenic-rich hot spring, and Synechocystis sp. PCC 6803, can 

perform light-dependent arsenite oxidation (Kulp et al., 2008; Nagy et al., 2014). In 

Synechocystis sp. PCC 6803, the same sqr and arsR genes from its plasmid sqr operon, which 

enable light-dependent sulfide oxidation, are expressed during arsenite (As(III)) oxidation in the 

light (Nagy et al., 2014). The cyanobacterium imports arsenite through a chromate transporter 

(suoT, on the same plasmid operon), stores mM arsenite intracellularly without detriment, and 

exports excess arsenite through arsB (Nagy et al., 2014). The arrangement of Geitlerinema’s 

arsenic-related genes on its sqr2 operon is similar to the plasmid sqr operon of Synechocystis sp. 

PCC 6803. Arsenite oxidation has been linked to electron transfer to quinones (Jiang et al., 2009) 

and energetics support the potential of cyanobacterial plastoquinone as an arsenite oxidant (Nagy 

et al., 2014), but this pathway has not been explored in cyanobacteria. The co-transcription of 

sqr1 in Synechocystis with arsenite uptake genes during arsenite exposure (Nagy et al., 2014), 

and the well-characterized electron-stripping mechanism of sqr1 on sulfide (Arieli et al., 1994), 

hints at a role for sqr in arsenite oxidation.  

Arsenite-dependent cyanobacterial AP is intriguing due to the role of arsenite-based 

primary production on ancient Earth. Arsenic was likely more abundant on Earth’s surface 
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during the Archean than present (Oremland et al., 2009). In anoxic marine basins that dominated 

the biosphere 2.7 Ga, arsenite- dependent microbial autotrophy putatively cycled nitrogen, 

carbon, and arsenic (Sforna et al., 2014). This metabolism continues in modern hypersaline hot 

springs and subsurface aquifers that have elevated arsenic levels (Oremland and Stolz, 2005; 

Kulp et al., 2008; Hoeft et al., 2010). The genome of Geitlerinema lacks proteobacterial arsenite-

oxidizing genes, and instead has genes similar to those used for light-dependent arsenite 

oxidation in Synechocystis sp. PCC 6803 (Nagy et al., 2014). Verifying arsenite-dependent AP in 

cyanobacteria, and conclusively linking the sqr2 gene in Geitlerienema to that process, would 

clarify the potential role of anoxygenic cyanobacteria in arsenic cycling in both modern and 

ancient ecosystems.  

In summary, analysis of the genome of Geitlerinema sp. PCC9228 complements prior 

physiology studies by providing the genetic foundation for its metabolisms of nitrogen fixation, 

facultative OP, and sulfide-based AP. We find multiple versions of psbA, encoding a key protein 

for water oxidation, which may enable a sensitive response to varying conditions of light, oxygen 

and sulfide. Nitrogen fixation is linked to oxygen level and production via the nifI1I2 regulator in 

the nif operon and via non-oxygen producing psbA, respectively. Multiple versions of sqr likely 

address a range of sulfide concentrations and may also be linked to responses to metals and 

oxidative stress and perhaps even arsenite oxidation. Aerobic versatility encoded in the genome 

of Geitlerinema, coupled with diazotrophic regulation and concentration-specific sulfide 

responses, permit Geitlerinema to thrive in periodic sulfidic, microoxic, and poorly lit conditions 

of Solar Lake (Cohen et al., 1975a). Such dynamic geochemical conditions likely also challenged 

cyanobacteria during variable sulfide and oxygen levels of the Archean and Proterozoic 

(Satkoski et al., 2015; Sperling et al., 2015). This study of Geitlerinema and its unique gene 
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assemblage addresses both the ambiguous role of Archean cyanobacteria in oxygen 

production/mitigation prior to the development of OP and the Great Oxidation Event, as well as 

the contributions of AP cyanobacteria to Proterozoic biogeochemistry. The phylogeny and 

diversity of genes responsible for metabolic versatility in Geitlerinema suggest a blend of genetic 

strategies for the anoxic early environment—such as methanogen-like modulation of nitrogen 

fixation and non-water oxidizing photosynthetic proteins—with post-oxidation strategies such as 

specific photosynthetic proteins for micro-oxic as well as oxic conditions, and different SQRs for 

fluctuating sulfide concentrations. Phototrophs capable of versatile AP/OP, such as 

Geitlerinema, would have had the advantage over organisms metabolically limited to either oxic 

or sulfidic conditions. Their continuous photosynthesis likely supported other microorganisms 

with fixed nitrogen and carbon, sulfide removal, and intermittent oxygen production. 

Furthermore, conditional production of oxygen at variable concentrations would have had strong 

influences on the structure and metabolic needs of their associated microbial communities 

through development of oxygen refugia and/or oases. Further research into Geitlerinema’s 

growth and transcriptional regulation will uncover the fine-tuned response of AP/OP 

cyanobacteria to changing redox conditions. In turn, we can relate the scope of these dual 

metabolisms and their modern physiologies to their ancestors’ impacts on ecology and 

geochemistry as Earth slowly and discontinuously became oxygenated.  
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2.8 Tables and Figures 

Table 2.1 Integrated Microbial Genomes (IMG) accession numbers of genome and select 
genes of interest of Geitlerinema sp. PCC 9228.  

Description  IMG ID  

Genome ID  2660238729 

nifH 2663545465 

nifD 2663545468 

nifK 2663545469  

psbA1 2663545011 

psbA2 2663544218 

psbA3 2663548115 

sqr1 2663545736 

sqr2 2663547046 
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Figure 2.1. Metabolic schematic of Geitlerinema sp. PCC 9228. Genes for major processes 
[psbA1-3, sqr1, ccm, rbcLS, nifHDK, hox, arsABC, ure, urt, focA, narK, amt, glutathione S-
transferase (GST)], and associated regulatory genes (arsR, ntcA, nifI1I2) are presented. 
Suppression of functions is indicated with red dashed lines ending in a flat line. Other 
interactions are indicated with black dashed lines ending with open circles. Transfer and 
production of key reactants and products are indicated with solid lines. Putative arsenite 
import is indicated with a dotted line, and anoxygenic photosynthesis-related processes have 
a solid blue line.  
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Figure 2.2. Schematic of nitrogenase genes in Geitlerinema sp. PCC 9228. nifXSU, iscA, 
nifHI1I2DK, fdxN, and nifENB are arranged in an apparent operon. nifV and a regulatory 
arsenic-related gene arsA are located upstream of the nifHDK operon.  
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Figure 2.3. Phylogenetic tree of psbA. Genes are colored by groups 1–4 modeled after 
(Cardona et al., 2015). The outgroup is a Gloeobacter kilaueensis JS psbA, which is most 
similar to psbD and is unable to oxidize water (Cardona et al., 2015). Purple indicates group 
1, red genes belong to group 2, orange genes are members of group 3, and blue standard 
psbAs belong to group 4. Genetic proximity to sqr types I (green circle), II (maroon squares), 
and VI (blue stars) sqr genes are indicated. Fourteen psbA genes are five or fewer genes from 
sqr, and the largest gap is 19 genes. Geitlerinema sp. PCC 9228 has members of groups 2–4.  
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Figure 2.4. Phylogenetic tree of sulfide quinone reductase (sqr). Genes are colored by types 
I–VI modeled after (Marcia et al., 2010a). Bacterial FCSD (yellow) includes representatives 
of flavocytochrome c:sulfide dehydrogenase. Green sulfur bacteria have sqr belonging to 
types III (orange), V (light blue), IV (dark green), and VI (blue). Cyanobacterial sqr are 
limited to types I (light green), II (red), and VI. Proximity to psbA versions on the same 
contig (see Figure 3) are indicated with red circles (group 2) and brown stars (group 3). No 
sqr genes in this analysis were genetically proximal to groups 1 or 4 psbA genes. 
Geitlerinema sp. PCC 9228 has types VI and I sqr.  
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2.9 Appendix A 

Supporting Information 

Table SI 2.1. This and next 3 pages: IMG accession numbers of genome and genes 
analyzed from Geitlerinema sp. PCC 9228.   

Description IMG ID gene 
photosystem II P680 reaction center D1 protein-1 2663545011 psbA1 
photosystem II P680 reaction center D1 protein-2 2663544218 psbA2 
photosystem II P680 reaction center D1 protein-3 2663548115 psbA3 
sulfide:quinone oxidoreductase 1 2663545736 sqr1 
sulfide:quinone oxidoreductase 2 2663547046 sqr2 
photosystem I P700 chlorophyll a apoprotein A1 2663545162 psaA 
photosystem I P700 chlorophyll a apoprotein A2 2663545352 psaB large fragment 1089bp 
photosystem I P700 chlorophyll a apoprotein A2 2663545589 psaB large fragment 1098bp 
photosystem I P700 chlorophyll a apoprotein A2 2663545163 psaB fragment 483bp 
photosystem I P700 chlorophyll a apoprotein A2 2663544697 psaB fragment 483bp 
photosystem I P700 chlorophyll a apoprotein A2 2663546384 psaB fragment 84bp 
photosystem I P700 chlorophyll a apoprotein A2 2663545213 psaB fragment 84bp 
photosystem I subunit 7 2663546302 psaC 
photosystem I subunit 2 2663546891 psaD 
photosystem I subunit 4 2663544894 psaE 
photosystem I subunit 3 2663544496 psaF 
photosystem I subunit 8 2663544693 psaI 
photosystem I subunit 10 2663546545 psaK 
photosystem I subunit 11 2663544694 psaL 
photosystem I subunit 12 2663545652 psaM 
succinate dehydrogenase subunit A 2663545631 sdhA 
succinate dehydrogenase subunit B 2663547796 sdhB 
succinate dehydrogenase subunit C 2663544771 sdhC 
NADH dehydrogenase subunit H 2663546838 ndhA 
NADH dehydrogenase subunit N 2663546346 ndhB 
NADH dehydrogenase subunit A 2663545237 ndhC 
NADH dehydrogenase subunit M 2663545570 ndhD 
NADH dehydrogenase subunit M 2663545034 ndhD 
NADH dehydrogenase subunit M 2663545915 ndhD 
NADH dehydrogenase subunit M 2663544356 ndhD 
NADH dehydrogenase subunit K 2663546835 ndhE 
NADH dehydrogenase subunit L 2663545571 ndhF 
NAD(P)H-quinone oxidoreductase subunit 5 2663545035 ndhF 
NAD(P)H-quinone oxidoreductase subunit 5 2663544357 ndhF 
NADH dehydrogenase subunit J 2663546836 ndhG 
NADH dehydrogenase subunit D 2663546817 ndhH 
NAD(P)H-quinone oxidoreductase subunit I 2663546837 ndhI 
NAD(P)H-quinone oxidoreductase subunit J 2663545235 ndhJ 
NADH dehydrogenase subunit B 2663545236 ndhK 
NAD(P)H-quinone oxidoreductase subunit L 2663545074 ndhL 
NAD(P)H-quinone oxidoreductase subunit M 2663546659 ndhM 
NAD(P)H-quinone oxidoreductase subunit N 2663547377 ndhN 
apocytochrome f 2663547308 petA 
cytochrome b6 2663545656 petB 
cytochrome b6-f complex iron-sulfur subunit 2663544168 petC 
cytochrome b6-f complex iron-sulfur subunit 2663544784 petC 
cytochrome b6-f complex iron-sulfur subunit 2663547307 petC 
cytochrome b6-f complex subunit 4 2663545657 petD 
plastocyanin 2663548000 petE 
ferredoxin 2663545357 petF 
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ferredoxin 2663545748 petF 
ferredoxin 2663547777 petF 
cytochrome b6-f complex subunit 5 2663546903 petG 
ferredoxin--NADP+ reductase 2663546780 petH 
cytochrome b6-f complex subunit 7 2663545911 petM 
cytochrome b6-f complex subunit 8 2663545827 petN 
cytochrome c6 2663546305 petJ 
cytochrome c6 2663547966 petJ 
photosystem II P680 reaction center D2 protein N/A psbD 
photosystem II CP47 chlorophyll apoprotein 2663547980 psbB 
photosystem II CP43 chlorophyll apoprotein 2663546355 psbC 
photosystem II CP43 chlorophyll apoprotein 2663546353 psbC 
photosystem II CP43 chlorophyll apoprotein 2663547553 psbC 
photosystem II cytochrome b559 subunit alpha 2663545240 psbE 
photosystem II cytochrome b559 subunit beta 2663545241 psbF 
photosystem II PsbH protein 2663545025 psbH 
photosystem II PsbI protein 2663547338 psbI 
photosystem II PsbJ protein 2663545243 psbJ 
photosystem II PsbK protein 2663545201 psbK 
photosystem II PsbL protein 2663545242 psbL 
photosystem II PsbM protein 2663547055 psbM 
PsbN protein 2663545026 psbN 
photosystem II oxygen-evolving enhancer protein 1 2663547292 psbO 
photosystem II oxygen-evolving enhancer protein 2 2663545303 psbP 
photosystem II PsbT protein 2663547981 psbT 
photosystem II PsbU protein 2663547487 psbU 
photosystem II cytochrome c550 2663546873 psbV 
photosystem II cytochrome c550 2663546874 psbV 
photosystem II PsbX protein 2663544266 psbX 
photosystem II PsbY protein 2663544160 psbY 
photosystem II PsbZ protein 2663547094 psbZ 
photosystem II Psb27 protein 2663547854 psb27 
photosystem II protein 2663544713 psb28 
photosystem II Psb28-2 protein 2663547285 psb28-2 
cytochrome c oxidase subunit 1 2663547835 coxA 
cytochrome c oxidase subunit 2 2663547834 coxB 
cytochrome c oxidase subunit 3 2663547836 coxC 
carbon dioxide concentrating mechanism protein CcmK 2663545038 ccmK1 
carbon dioxide concentrating mechanism protein CcmK 2663545037 ccmK2 
carbon dioxide concentrating mechanism protein CcmL 2663547648 ccmL 
carbon dioxide concentrating mechanism protein CcmM small-chain 2663545041 ccmM 
carbon dioxide concentrating mechanism protein CcmM small-chain 2663545040 ccmM 
carbon dioxide concentrating mechanism protein CcmM 2663545039 ccmM 
carbon dioxide concentrating mechanism protein CcmO 2663545231 ccmO 
carbon dioxide concentrating mechanism protein CcmN 2663545042 ccmN 
ribulose 1,5-bisphosphate carboxylase large subunit 2663545044 rbcL 
rubisco chaperonin 2663545045 rbcX 
ribulose 1,5-bisphosphate carboxylase small subunit 2663545046 rbcS 
nickel superoxide dismutase 2663547183 sodN 
superoxide dismutase, Fe-Mn family 2663545076 sodC 
2-oxoglutarate dehydrogenase 2663544142  
succinyl-CoA synthetase alpha subunit 2663546151 sucD 
succinyl-CoA synthetase (ADP-forming) beta subunit 2663545720 sucC 
acetolactate synthase, large subunit 2663546224 ilvB, ilvG, ilvI 
acetolactate synthase, large subunit 2663545283 ilvB, ilvG, ilvI 
acetolactate synthase, small subunit 2663545134 ilvH, ilvN 
succinate-semialdehyde dehydrogenase / glutarate-semialdehyde 
dehydrogenase 

2663546225 gabD 

squalene-hopene cyclase 2663547443 shc 
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anaerobic magnesium-protoporphyrin IX monomethyl ester cyclase 2663545681 bchE 
anaerobic magnesium-protoporphyrin IX monomethyl ester cyclase 2663545682 bchE 
Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase 2663547315 chlE 
Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase 2663545872 chlE 
cyanate lyase 2663544394 cynS 
nitrate/nitrite transporter 2663544392 narK 
ferredoxin-nitrite reductase 2663544395 nirA 
formate/nitrite transporter focA/nirC 2663544393 focA/nirC 
ferredoxin-nitrate reductase 2663544391 narB 
ammonium transporter 2663545067 amt 
urease subunit gamma 2663547720 ureA 
urease subunit beta 2663547721 ureB 
urease 2663544172 ureC 
urease accessory protein 2663544955 ureD 
urease accessory protein 2663546629 ureF 
urease accessory protein 2663546627 ureG 
urea-binding protein 2663546626 urtA 
urea transport system substrate-binding protein 2663546591 urtA 
urea ABC transporter membrane protein 2663546625 urtB 
urea ABC transporter membrane protein 2663546624 urtC 
urea ABC transporter ATP-binding protein 2663546623 urtD 
urea ABC transporter ATP-binding protein 2663546622 urtE 
homocitrate synthase NifV 2663545460 nifV 
nitrogen fixation protein NifB 2663545461 nifX 
cysteine desulfurase 2663545462 nifS 
Fe-S cluster assembly protein NifU 2663545463 nifU 
iron-sulfur cluster assembly protein 2663545464 iscA 
Mo-nitrogenase iron protein subunit NifH 2663545465 nifH 
nitrogen regulatory protein P-II family 2663545466 nifI1 
nitrogen regulatory protein P-II family 2663545467 nifI2 
nitrogenase molybdenum-iron protein alpha chain 2663545468 nifD 
Mo-nitrogenase MoFe protein subunit NifK 2663545469 nifK 
(2Fe-2S) ferredoxin 2663545470 fdxN 
nitrogenase molybdenum-cofactor synthesis protein NifE 2663545471 nifE 
nitrogenase molybdenum-iron protein NifN 2663545472 nifN 
nitrogen fixation protein NifB 2663545473 nifB 
nitrogen regulatory protein P-II family 2663546645 glnB 
hydrogenase nickel incorporation protein HypA/HybF 2663545443 hypA 
hydrogenase nickel incorporation protein HypB 2663545442 hypB 
hydrogenase expression/formation protein HypD 2663545445 hypD 
hydrogenase expression/formation protein HypE 2663545444 hypE 
Hydrogenase maturation protein, carbamoyltransferase HypF 2663547362 hypF 
NAD(P)-dependent nickel-iron dehydrogenase diaphorase component subunit 
HoxE 

2663544431 hoxE 

NAD(P)-dependent nickel-iron dehydrogenase flavin-containing subunit 2663544432 hoxF 
NAD(P)-dependent nickel-iron dehydrogenase diaphorase component subunit 
HoxU 

2663544433 hoxU 

NAD(P)-dependent nickel-iron dehydrogenase subunit HoxY 2663544434 hoxY 
NAD(P)-dependent nickel-iron dehydrogenase catalytic subunit 2663544435 hoxH 
hydrogenase maturation protease 2663544439 hoxW 
LexA-binding, inner membrane-associated putative hydrolase 2663545182 lexA 
global nitrogen regulator NtcA, cyanobacterial 2663545019 ntcA 
GST 2663547047 GST 
multidrug efflux pump 2663547048 multidrug efflux pump 
padR 2663547050 padR 
arsenite efflux ATP-binding protein ArsA 2663545455 arsA 
transcriptional regulator, ArsR family 2663545310 arsR 
arsenite efflux ATP-binding protein ArsA 2663546112 arsA 
arsenical pump membrane protein 2663545756 arsB 
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transcriptional regulator, ArsR family 2663547029 arsR 
arsenite transporter, ACR3 family 2663547028 arsB 
arsenate reductase 2663547027 arsC 
chromate transporter 2663547951 chrA 
Methyltransferase domain-containing protein 2663546259 arsM 
Uncharacterized conserved protein DUF302 2663544170  
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Table SI 2.2. This and next page: IMG accession numbers of cyanobacterial genomes and 
genomic bins used in phylogenetic analysis, and associated nifHDK, psbA, and sqr genes. 
Phylogenetic clustering of psbA (G1-4) from (Cardona et al. 2015) and this study, and sqr 
(Type I-VI) from (Marcia, Ermler, et al. 2010; Gregersen et al. 2011) are indicated. 

O
rganism

G
enom

e
sqr

type (I-V
I)

psbA
type (1-4)

N
ear a sqr?

nifH
nifD

nifK
sqr

psbA
nifH

nifD
nifK

641228474
641249573

I
641249569

2
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Y
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II
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4
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2
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Y

P_324416.1
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646567632

4
W

P_011318925.1
2507262048

2507473384
I

2507473379
3

2507473384
W

P_019496967
W
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Table SI 2.3. This and next page: IMG accession numbers and/or NCBI accession numbers for 
bacterial and archaeal sqr genes used in phylogenetic analysis. Phylogenetic Type I-VI from 
(Marcia, Ermler, et al. 2010; Gregersen et al. 2011) are indicated.   

Taxonomy IMG Type NCBI 
Acidithiobacillus caldus ATCC 51756  645601439 V ZP_05293376 
Allochromatium vinosum DSM 180  646614749 FCSD ADC62031 
 646615811 IV YP_003444098 
 646614854 VI YP_003443166 
Aquifex aeolicus VF5  2626082283 FCSD WP_010880096 
 637020913 I NP_214500 
 637019911 VI NP_213539 
Archaeoglobus fulgidus DSM 4304  2626084382 III NP_069393  
Arcobacter nitrofigilis DSM 7299  646813006 IV YP_003654976 
Beggiatoa sp. PS  2623997857 FCSD N/A 
 2623999446 I N/A 
Chlorobaculum parvum NCIB 8327  642719719 III YP_001998682 
 642719525 V YP_001998488 
 642719655 VI YP_001998618 
Chlorobium chlorochromatii CaD3  637772625 III YP_378420 
Chlorobium ferrooxidans DSM 13031  639205487 VI ZP_01385814 
Chlorobium limicola DSM 245  642667635 FCSD YP_001942098 
 642668978 III YP_001943408 
 642669995 IV-X YP_001944405 
Chlorobium tepidum TLS  637115970 III NP_661917 
 637115039 IV NP_661023 
 2625429993 V WP_010932556 
 637116031 VI NP_661978 
Chloroflexus aurantiacus  641374563 II YP_001637460 
Chloroherpeton thalassium ATCC 35110  642716529 III YP_001995567 
 642718266 IV YP_001997268 
 642717392 VI YP_001996408 
Halorhodospira halophila SL1  639856132 II YP_001003231 
Magnetospirillum magnetotacticum MS-1  2647168683 III WP_009869729 
Pelodictyon luteolum DSM 273  637768096 III YP_374002 
 637768098 IV YP_374004 
 637770077 IV-X YP_375931 
 637769162 VI YP_375032 
Persephonella marina EX-H1  643743980 IV-X YP_002731229 
 643743019 VI YP_002730289 
Pyrobaculum aerophilum IM2  2626325586 Unk WP_011008794 
 2626325734 III WP_011008939 
 2626325581 III WP_011008789 
Rhodobacter capsulatus DSM155  2599098232 I CAA66112 
Rhodopseudomonas palustris HaA2  637882945 VI YP_484673 
Rhodopseudomonas palustris TIE-1  642711469 FCSD YP_001990584 
Schizosaccharomyces pombe  638219068 II NP_596067 
Staphylococcus aureus RF122  637815000 II YP_415550 
Sulfolobus tokodaii JCM 10545  2625416567 III WP_010978596 
 2625414418 V WP_010980568 
 2625416529 VI WP_010978633 
Sulfuricurvum kujiense DSM 16994  649793590 IV YP_004060860 
 649793598 VI YP_004060868 
Sulfurimonas autotrophica DSM 16294  648191284 V YP_003891564 
Thermoplasma volcanium  2625869763 V BAB60371 
Thiobacillus denitrificans ATCC 25259  637710930 I YP_315983 
 637710092 I YP_315165 
Thiomicrospira crunogena XCL-2  637786115 VI YP_391650 
Thiomonas intermedia K12  646801664 I YP_003643765 
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 646802624 V YP_003644708 
 646800883 V YP_003642999 
 646800239 VI YP_003642362 
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Figure SI 2.1. Emergent self-organized map (ESOM) of Geitlerinema sp. PCC 9228 
genomic contigs, clustered on the basis of tetranucleotide frequency.  
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Figure SI 2.2. Phylogenetic tree of nifHDK. The clade with Geitlerinema sp. PCC 9228 

includes three other cyanobacterial genomes that also have nifI1I2. The outgroup is the 
homologous chlLNB gene suite from Halothece halophytica.  
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Figure SI 2.3. Full phylogenetic tree of psbA (with non-collapsed clades). Genes are 
colored by groups 1–4 modeled after (Cardona et al., 2015). The outgroup is a 
Gloeobacter kilaueensis JS psbA that is most like psbD and is unable to oxidize water. 
Purple indicates group 1, red genes belong to group 2, orange genes are members of 
group 3, and blue standard psbAs belong to group 4. Genetic proximity to types I (green 
circle), II (maroon squares), and VI (blue stars) sqr genes are indicated. Fourteen psbA 
genes are five or fewer genes from sqr, and the largest gap is 19 genes. Geitlerinema sp. 
PCC 9228 has members of groups 2–4.  
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Figure SI 2.4. Schematic of sqr operons in Geitlerinema sp. PCC 9228. (A) Canonical sqr (type 
I) with regulatory gene arsR collocated downstream. (B) Novel sqr (type VI) with arsR, 
arsenite transport gene arsB, and arsenate reductase arsC all downstream, and glutathione S-
transferase and a multidrug efflux pump are upstream.  
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Figure SI 2.5. Full phylogenetic tree of sulfide quinone reductase (sqr). Genes are colored by 
types I–VI modeled after (Marcia et al., 2010a). Bacterial FCSD (yellow) includes 
representatives of flavocytochrome c:sulfide dehydrogenase. Green sulfur bacteria have sqr 
belonging to types III (orange), V (light blue), IV (dark green), and VI (blue). Cyanobacterial 
sqr are limited to types I (light green), II (red), and VI. Proximity to psbA versions on the 
same contig (see Figure 3; Supplementary Figure S3) are indicated with red circles (group 2) 
and brown stars (group 3). No sqr genes in this analysis were genetically proximal to groups 
1 or 4 psbA genes. Geitlerinema sp. PCC 9228 has types VI and I sqr.  
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Chapter III:  Seasonal Shifts in Community Composition and Proteome in a Sulfur-
Cycling Cyanobacterial Mat 

 

3.1 Abstract 

In phototrophic microbial mats, cyanobacteria provide nutrients, fixed carbon, and 

oxygen through photosynthesis. Due to the reliance of cyanobacteria on light for photosynthesis, 

seasonality and changing irradiance alter their metabolisms, which can impact the population 

structure and metabolisms of other microbes in the mat. In this study, we explored temporal 

shifts in irradiance, water chemistry, community structure and function of a microbial mat in 

Middle Island Sinkhole (MIS), a low-oxygen, sulfate-rich, submerged environment. Mixing 

between low-oxygen groundwater and well-oxygenated lake water controls MIS water 

chemistry, which along with light varies with season. Through both 16S rRNA gene sequencing 

and quantitative proteomics profiles, we observed a relationship between the changing 

environment and the activity and abundance of cyanobacterial (Phormidium, Planktothrix) 

populations. In summer and across the seasons, the differential abundance of wavelength-

specific phycobiliproteins and key metabolic proteins suggests a physiological response of the 

cyanobacterial community to different light levels. Sulfide-oxidizing bacteria, namely Beggiatoa, 

were abundant and metabolically active in the microbial mat, and likely interdependent on sulfur 

reducers and the cyanobacteria. The abundance and identity of dominant sulfate-reducing 

bacteria shift throughout the year, indicating changing environmental conditions and niches for 

sulfate-reducing bacteria. Our study reveals that in addition to altering the light conditions for 
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cyanobacterial photosynthesis, seasonal variation extends as well to the sulfur cycling bacteria in 

this microbial mat. This temporal perspective aids our understanding of diversity and metabolic 

functions through different seasons in this and other temperate microbial mat systems. 

 

3.2 Introduction 

Through the innovation of oxygenic photosynthesis (OP), cyanobacteria shaped the 

geosphere and biosphere by driving the rise of oxygen ~2.4 Ga (Lyons et al., 2014). In modern 

systems, cyanobacteria are a core constituent of photosynthetic microbial mats by providing 

organic matter, fixed nitrogen, and O2 for other microorganisms and their metabolisms (Dick et 

al., 2018). These cyanobacterial products stimulate the metabolism of other microbes such as 

sulfate-reducing bacteria, sulfide-oxidizing bacteria, and methanogens, which contribute to 

geochemical fluxes such as methane and sulfide (Bolhuis et al., 2014). Alternatively, anoxygenic 

photosynthetic (AP) cyanobacteria that use H2S can sustain microbial mats in sulfidic conditions 

that are toxic to most cyanobacteria (Biddanda et al., 2015; de Beer et al., 2017; Klatt, Meyer, et 

al., 2016). Though AP is an infrequently observed metabolism in cyanobacteria, nearly all AP 

cyanobacteria are mat formers (Dick et al., 2018). With their diverse metabolic functions and 

ecological strategies, cyanobacteria are geared to establish microbial mats in both ubiquitous and 

extreme environments not unlike those of early Earth.  

Oxygenic cyanobacteria can inhabit different niches and present as different ecological 

species, or ecotypes, based on adaptations to light levels and wavelengths of light (Ward et al., 

2006). For example, Planktothrix rubescens, commonly found in deeper stratified lakes and 

equipped with pigments that capture the blue-green light that is dominant at depth, performs 

optimally in low light intensities (Oberhaus et al., 2007). Oxygenic Phormidium-dominated 
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cyanobacterial mats were more common and more productive at shallower depths in an Antarctic 

ice-covered lake (Moorhead et al., 1997). Distinct OP cyanobacterial mats dominated by 

oscillatorial members similar to Phormidium and Planktothrix were located at different optimal 

depths in various ice-covered Antarctic lakes based on the amount of light that passed through 

the ice (Hawes & Schwarz, 2001).  

When photosynthetic conditions shift, cyanobacteria respond by modulating their cellular 

content of proteins (the “proteome”). To maximize light harvesting in changing conditions, 

cyanobacteria regulate the amount of phycobiliproteins (Hihara et al., 2001) and adjust their 

pigment content through complementary chromatic acclimation (CCA) (Bryant, 1982). 

Adjusting their phycobiliprotein contents permit cyanobacteria to most effectively capture the 

available light when both the quantity and quality of irradiance changes. Previous studies have 

identified shifts in other cyanobacterial proteins under variable photosynthetic conditions 

(Cobley et al., 2002). Thioredoxins target a variety of processes and proteins involved with 

photosynthesis, including Rubisco in carbon fixation and phycobiliproteins in light harvesting 

(Florencio et al., 2006). Cyanobacteria that experience prolonged darkness tightly control ATP 

synthase, essential in both photosynthesis and respiration (Imashimizu et al., 2011). Such 

changes in protein expression and synthesis allow cyanobacteria to adapt to their changing 

environment, and survive under stress. 

Light levels are also tightly intertwined with the balance of AP and OP and the redox 

geochemistry of cyanobacterial mats. For metabolically flexible cyanobacteria, sulfide is often 

the preferred electron donor over water, thus sulfide-driven AP controls OP such that in the 

presence of sulfide no OP will take place (Klatt, Al-Najjar, et al., 2015). Higher light levels 

stimulate higher rates of AP and faster depletion of sulfide. If rates of sulfide consumption 
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sufficiently outpace rates of sulfide supply (e.g., from diffusion or local sulfate reduction), then 

sulfide is depleted and OP takes over. Hence, oxygenic cyanobacteria may produce oxygen oases 

in hypoxic conditions (Sumner et al., 2015). AP, OP, and light are intertwined due to the 

differential employment of photosystems I and II (PSI and PSII) in these photosynthetic modes. 

AP uses only PSI, and thus requires less light energy than OP (Klatt, de Beer, et al., 2016). To 

date, studies on cyanobacterial light adaptation have characterized geochemical cycling of in situ 

OP/AP populations on diel scales (Hamilton et al., 2018; Klatt, Meyer, et al., 2016); the 

molecular responses of AP and OP cyanobacteria to the seasonally changing environment are 

unknown. 

In addition to light, physical and geochemical gradients influence the abundance and 

activities of microbes in mat systems. In a typical mat, diverse phototrophs including 

cyanobacteria, photosynthetic eukaryotes such as diatoms, and anoxygenic phototrophs, may be 

found at mat surfaces, but light availability, sulfide concentration, and temperature define their 

contribution to primary production (Camacho et al., 2005; Cohen et al., 1975). Low oxygen 

levels can constrain eukaryotic populations but benefit anoxygenic phototrophs, who also have a 

lower light limit than oxygenic counterparts. Both oxygen and sulfide influence sulfide oxidizers, 

who depend on both oxygen availability and abundant sulfide, and sulfate reducers, some of 

whom may tolerate low oxygen levels (Canfield & Marais, 1991). In such systems located at 

high latitudes, seasonality may be a strong influence on the environment. Weather-driven events 

as well as yearly cycles can shift the delivery of nutrients and light to microbial populations 

(Bolhuis et al., 2014). Thus sampling to capture the temporal variability in the environment 

provides a better ecological picture of microbial mats. 
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We observe flexible AP/OP cyanobacteria (Phormidium sp.) in the low-oxygen microbial 

mats of Middle Island Sinkhole, Lake Huron (MIS) (Voorhies et al., 2012). Located 23 m deep, 

MIS is bathed in low-oxygen, high-sulfate groundwater (Ruberg et al., 2008). Sulfate-reducing 

bacteria in the mat and sediment provide H2S for the AP cyanobacteria and sulfide-oxidizing 

bacteria (Kinsman-Costello et al., 2017). To understand the relationship between environment 

and microbial community and function, from June to September in multiple years we measured 

select environmental parameters likely to be influenced by seasonality (light, groundwater 

chemistry), analyzed microbial community composition and structure via 16S rRNA genes, and 

evaluated proteins to untangle key microbial functions. Ultimately, these interactions between 

geochemical gradients, microbial members, and physicochemical parameters shape the microbial 

composition, dominant metabolisms, and biogeochemical functioning of the mat.  

 

3.3 Materials and methods 

Sample collection. We sampled the microbial community of Middle Island Sinkhole (located at 

45° 11.914 N, 83° 19.671 W), a 23.0 m deep sinkhole of approximately 125 m length and 100 m 

width in Lake Huron (Baskaran et al., 2016; Kinsman-Costello et al., 2017; Ruberg et al., 2008). 

We collected samples once in 2009, and one to three times a year between 2011-2015. Scuba 

divers from the NOAA Thunder Bay National Marine Sanctuary collected intact flat purple mat 

and sediment cores using 20 x 7 cm clear polycarbonate tubes and rubber stoppers. Cores were 

kept upright, in the dark and on ice or at 4˚C until they were sampled within 48 hr of collection. 

Microbial mat was removed intact from cores, homogenized, stored in 2mL microcentrifuge 

tubes, and frozen at -80˚C until DNA extraction. 
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Physicochemical measurements. To measure photosynthetically available radiation (PAR) at 

23.0 m depth in the sinkhole, we used a LiCor LI-192 underwater quantum sensor (LiCor 

Biotechnology) (sampled in 2009-2013, and 2017), a compact optical profiling system for UV 

light in natural waters (UV C-OPS; Biospherical Instruments Inc.) (Cory et al., 2016) (in 2014), 

a hyperspectral profiler (HyperPro II profiler, Sea-Bird) (2015-2016), and HOBO loggers 

mounted 0.25 – 0.75 m above the sediment surface (Onset Computer Corporation) (in 2014-

2017). Because HOBO loggers measured light in lux or lumens, their light measurements were 

calibrated to PAR quantitation through hyperspectral profiling of the 23.0 m-deep light field at 

the same time as the loggers. k-attenuation coefficients were calculated from the linear 

relationship  

𝑙𝑛(𝐼!") = 𝑙𝑛(𝐼!)− 𝑘(𝐷 − 23) 

where I is irradiance at the last measured depth D in meters in vertical profiles obtained through 

LiCor, C-OPs, and HyperPro II instruments. These k values were used to project HOBO-

acquired values to uniform depth at 23.0 m. 

To identify seasonal changes in MIS groundwater chemistry, divers collected 60 mL 

syringes of groundwater at specific locations in the sinkhole for conductivity and water stable 

isotope measurements. Specific conductivity in 2014-2018 was measured using a handheld probe 

(Yellow Springs Instruments Inc.), as well as calculated from ionic composition. We measured 

major element anion concentrations in water samples including chloride (Cl-), fluoride (Fl-), 

bromide (Br2-), sulfate (SO4
2-), and nitrate (NO3

-) using electrolytic-suppression ion 

chromatography (Dionex, Thermo Scientific). We measured concentrations of major cation 

elements including calcium (Ca2+), sodium (Na+), potassium (K+), and magnesium (Mg2+) with 

inductively coupled plasma-optical emission spectroscopy (ICP-OES, Perkin Elmer). Sulfate 
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measurements are reported from samples collected in 2012-2013 (Kinsman-Costello et al., 

2017), as well as samples newly collected in 2014-2016. We measured δ18O and δD in select 

samples from 2015-2018 to trace the influence of water reservoirs and mixing in the 

groundwater. Isotope measurements were performed on a Picarro L2130-i cavity ringdown 

spectrometer with an A0211 high-precision vaporizer and attached autosampler (Picarro). The 

Picarro ChemCorrect software was used to monitor samples for organic contamination. Precision 

was better than 0.1‰ and 0.3‰ for δ18O and δD, respectively. For that analysis, we also 

measured samples from a fountain outside the Alpena, Michigan library in late summer and 

autumn, which based on its source depth (1267 feet below surface) putatively taps the same 

aquifer as the source of MIS groundwater (Ruberg et al., 2008). We compared surface water 

measurements in this study to previous measurements (Baskaran et al., 2016; Jasechko et al., 

2014). Using those measurements, we established the Alpena library fountain and surface water 

as endpoints of a linear mixing model to explain the observed values in the sinkhole. Values 

were also compared to the Great Lakes mean water line (Jasechko et al., 2014). 

 

Light manipulation experiments. To evaluate whether light is the dominant influence on 

community structure, we conducted in situ (n = 3) and laboratory (n = 7) experiments that altered 

the intensity of light available to the microbial mat. In situ, we deployed nylon mesh tents that 

reduced light intensity by 50% or 90% over 1 m2 areas of microbial mat. We collected intact 

microbial mat and sediment cores from these tented areas, as well as mat adjacent and outside 

the tented areas, one day and 6-9 days after initial deployment, and for some 36-39 days after 

initial deployment. These samples were processed the same as other field samples for DNA 

extraction. In the laboratory, we used 60mL syringes to subsample freshly collected mat and 
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sediment cores. These “microcores” were kept at 8-10˚C in water baths filled with sinkhole 

groundwater source, and subjected to 100%, 50%, or 10% of in situ light intensity. We used 

colored film to maintain a light field similar to in situ conditions underwater (Rosco, Stamford, 

CT). Incubations proceeded for up to 82 days, and we sampled initially every 2-3 days for 1 

week to capture the most rapid change in community structure, then a final time point at 6 to 82 

days. We had one field and four laboratory experiments that began in autumn, and two field and 

three laboratory experiments that began in late summer. At sampling time points, we collected up 

to 0.25g wet mat material and immediately froze them at -80˚C until DNA extraction. 

 

DNA preparation and sequencing. We extracted up to 0.5 g of wet mat material using a 

modified version of the MPBio Fast DNA Spin Kit for Soil (MP Biomedical, Santa Anna, CA, 

USA). In summary, 0.3 g of beads (corresponding to one large bead, seven medium beads, and 

an equal volume of small beads), sodium phosphate buffer, and MT buffer was used to 

chemically and mechanically lyse cells, in either the FastPrep instrument for 45 s (samples up to 

2013), or horizontal lysis on a vortex mixer for 10 min at speed 7 (2014-2015). After protein 

precipitation, DNA was cleaned, pelleted, and resuspended in up to 100 uL nuclease-free water. 

DNA was stored at 4˚C for immediate quantification and -20˚C for long term. 

We used the PicoGreen assay (Invitrogen, Carlsbad, CA, USA) to quantitate double 

stranded DNA. Samples were diluted to between 1-25 ng/uL and submitted to the University of 

Michigan Host Microbiome Core for Illumina library preparation and sequencing (Kozich et al., 

2013; Seekatz et al., 2015). Bacterial primers 515F/806R were used to amplify the 16S rRNA 

gene v4 region in a reaction mixture consisting of 5 µL of 4 µM equimolar primer set, 0.15 µL of 

AccuPrime Taq DNA High Fidelity Polymerase, 2 µL of 10x AccuPrime PCR Buffer II (Thermo 
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Fisher Scientific), 11.85 µL of PCR-grade water, and 1-10 µL of DNA template. Thermocycling 

was an initial denaturation at 95˚C for 2 min, 30 cycles of 95˚C for 20 s, 55˚C for 15 s, 72˚C for 

5 min, and a final extension of 72˚C for 10 min. PCR products were cleaned and normalized 

using SequalPrep Normalization Plate Kit (Thermo Fisher Scientific), then quantified and pooled 

equimolarly according to Kapa Biosystems Library qPCR MasterMix (ROX Low) Quantification 

kit for Illumina platforms. An Agilent Bioanalyzer kit confirmed library size and purity, and the 

library pool was sequenced on the Illumina MiSeq using a 500 cycle V2 kit with 15% PhiX for 

diversity.   

 

Quantitative proteomics. Technical replicates of samples from June (n = 3), July (n = 4), and 

October (n = 3) 2015 were evaluated through quantitative proteomics. From 0.25 to 5.0g of wet 

mat material, proteins were extracted, isobarically labeled, and analyzed on LC-MS/MS as 

described in (Waldbauer et al., 2017). Briefly, proteins were extracted from mat material using a 

denaturing and reducing extraction buffer (1% SDS, 10% glycerol, 10 mM dithiothreitol, 200 

mM Tris, pH 8) at 95˚C for 20 min. Cysteines were alkylated by addition of 40 mM 

iodoacetamide and incubation in the dark for 30 min. Where not otherwise specified, all solid 

reagents were dissolved in LC/MS-grade water (Fisher Optima). Proteins were purified by a 

modified eFASP (enhanced filter-aided sample preparation) protocol (Erde et al., 2014), using 

Vivacon 500 concentrators (30 kDa nominal cutoff, Sartorius). Proteins were digested with MS- 

grade trypsin (Thermo Pierce) at 37 °C overnight, and peptides were eluted from the 

concentrator and dried by vacuum centrifugation. Peptide isobaric labeling is described at 

protocols.io (dx.doi.org/10.17504/protocols.io.d2i8cd). The C-terminal of peptides was labeled 

with either 18O or 16O, and the N-terminal of peptides was demethylated with either dideuterated 
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(D2) formaldehyde (16O-labeled) or unlabeled (H2) formaldehyde (18O-labeled). A standard 

composed of all samples was also labeled and run alongside samples to provide quantitative 

comparison between samples and between separate runs.  

We used protein sequences predicted from previously generated metagenomes (Voorhies 

et al., 2016) to identify proteins, and metagenome-assembled genomic bins refined through 

anvi’o (Eren et al., 2015) to link proteins to specific organisms. Briefly, we used ‘anvi-gen-

contigs-database’ to profile the metagenomic co-assembly of 15 samples from 2007-2012. The 

software used Prodigal v2.6.0 (Hyatt et al., 2010) to call genes, and identified single-copy genes 

belonging to Bacteria (Campbell et al., 2013) and Archaea (Rinke et al., 2013) through HMMER 

(Eddy, 2011). Commands ‘anvi-centrifuge’ and anvi-import-taxonomy’ incorporated gene-level 

taxonomy calls into the database made using centrifuge (Kim et al., 2016). ‘anvi-profile’ 

reconciled the mapped reads against the co-assembly to generate differential coverage and 

tetranucleotide frequency (tnf) information in a profile database, with a minimum scaffold length 

of 5000 bp. A combination of automated binning using CONCOCT (Alneberg et al., 2014) and 

refinement based off of tnf and coverage generated 69 metgenome-assembled-genomic bins 

(MAGs). To recover additional scaffolds that were not long enough (likely due to the assembler 

not reconciling these highly conserved contigs), we retained cyanobacterially identified bins and 

iteratively compared tnf and coverage of scaffolds that were 2500-5000bp, 1500-2500bp, and 

1000-1500bp long. Our oscillatorial cyanobacterial bins had 96.4% completion/8.63% 

redundancy (unknown Oscillatorial, 4.4Mbp), 94.96%/97.12% (Phormidium, 12.5Mbp), 

82.01%/62.59% (Planktothrix, 6.8Mbp), as well as a 5.1Mbp collection of cyanobacterial 

scaffolds that were not able to be confidently binned. Additional bins of interest are listed in 

Table SI 3.1. 
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16S rRNA gene bioinformatic analysis. Raw pairs of sequencing reads (250 bp) were quality 

trimmed and merged using ‘iu-merge-pairs’, which is a program in illumina-utils (available from 

https://github.com/merenlab/illumina-utils) (Eren et al., 2013), using minimum quality score of 

25, minimum overlap of 200 bp, and at points of divergence in the overlap the higher quality 

basecall was retained. Merged reads with five or fewer mismatches were kept for Minimum 

Entropy Decomposition v. 2.1 (Eren et al., 2014) using the following parameters: -d 4 -N 3 --

min-substantive-abundance 5 -V 3 --relocate-outliers. We used GAST (Huse et al., 2008) to call 

taxonomy using the curated SILVA database, and confirmed with BLASTN against SILVA 123 

(Pruesse et al., 2007) (bacteria and archaea), and PhytoRef (Decelle et al., 2015) (chloroplasts). 

mothur v. 1.33 (Schloss et al., 2009) was used to check for chimeras de novo, and putatively-

chimeric nodes that did not have taxonomy assigned via SILVA 123 and GAST were removed. 

We searched for sulfate-reducing genera in the Deltaproteobacteria using a taxonomic search for 

“sulf” or “thio”. The read analysis is outlined here: https://hackmd.io/s/r1CGeQs_G 

 

Statistical analyses. We used the R statistical environment (R Core Team, 2015) in RStudio 

(RStudio Team, 2014) to analyze nodes and proteins. For environmental samples, we used 

Morisita-Horn metric to calculate a distance matrix on Hellinger-transformed bacterial relative 

abundances, as input for nonmetric multidimensional scaling (NMDS) with autotransformation = 

TRUE. For correlation network analyses, we retained bacterial genera that were at least 0.1% of 

the total community (n = 67). We generated one network using rcorr on a Bray-Curtis distance 

matrix calculated from the read counts of genera, and after a Benjamini-Hochberg false 

discovery rate correction, we retained all correlations p < 0.001. We used CoNetinR (Faust & 
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Raes, 2016) to generate three additional network matrices using Spearman’s rho correlation, 

Pearson correlation, and Bray-Curtis, implementing the ReBoot procedure as described in the 

original CoNet (Faust & Raes, 2012) and Benjamini-Hochberg FDR correction, to keep 

correlations p < 0.001. The final correlation network contained nodes and edges whose direction 

(positive or negative) were supported by all four matrices, with the edges representing the 

average of the measures. The final network was visualized in Gephi and in a correllogram via 

corrplot, with the standard deviation of the mean in the lower triangle. We used amova 

(Excoffier et al., 1992) in the R package pegas (Paradis, 2010) for testing significant difference 

in bacterial community structure between months and seasons, and LEFSE in the Galaxy Project 

(Afgan et al., 2018) to identify taxa as biomarkers for seasons and months; those taxa are 

indicated with significance values. For evaluation of differential abundance of proteins between 

seasons, we calculated the weighted mean and weighted standard deviation of the log2normalized 

abundance ratios of samples taken from the same month. Paired t-tests (p < 0.05) corrected with 

Benjamini-Hochberg false discovery rate were used to retain significantly different weighted 

mean abundances. 

 

3.4 Results 

Light is predictably seasonal.  

We measured PAR over several years with varying frequency and methods. For each 

month, an average and quartiles of maximum daily light intensity were calculated from the 

summarized daily maxima and the episodic measurements. The highest average daily maximum 

PAR we observed in a month was 106 µmol photons m-2 s-1 in July, and the lowest was 2.93 

µmol m-2 s-1 in March (Figure 3.1). k-extinction coefficients for PAR ranged from 0.12 to 0.14, 
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were not related to season, and were consistent with previous measurements in oligotrophic Lake 

Huron (Yousef et al., 2017). Our observations of the microbial mat were limited to months May-

June (hereafter referred to as “early summer”), July-August (“late summer”), and September-

October (“autumn”). Within that timeframe PAR is generally highest in July, and lowest in May 

and October. The lowest observed light values were recorded via loggers deployed over multiple 

months in the sinkhole 0.25 m – 0.75 m above the sediment surface. While it is to be expected 

that light is generally lower in the winter in a temperate aquatic system, these low measurements 

may be also compounded by one or a combination of turbidity in the water column due to 

phytoplankton growth, microbial mat overgrowth on the loggers, and episodic shading from 

clouds, snow and/or ice. 

The quality of light also varied between seasons in Middle Island Sinkhole. Based on 7 

hyperspectral profiles of wavelengths between 348-801 nm in 2015-2016, at 23 m depth in the 

MIS arena the most available wavelengths of light are blue-green (Figure SI 3.1, Table SI 3.2). 

As expected, the amount of blue and green light is directly related to overall PAR availability, 

whereas in all casts red light is generally below 0.002 µmol m-2 s-1 nm-1. In the visible spectrum, 

red wavelengths are the first to be absorbed in the water column, so the lack of red light at 23 m 

depth is unsurprising.  

We observed subtle differences in availability of other wavelengths of light (Figure SI 

3.2). The average attenuation coefficient for green light (530-570 nm) in July (average of four 

casts: k = 0.109 ± 0.007 m-1) was generally higher than in June (average of 2 casts k = 0.099 ± 

0.009 m-1) and October (1 cast, k = 0.103 m-1) (Table SI 3.3), indicating green light is more 

rapidly attenuated in late summer than in the other months. Hyperspectral profiles (n = 2) at an 

open water site outside of the sinkhole (Kinsman-Costello et al., 2017) in June 2015 were not 
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different from those in the sinkhole, indicating that water column dynamics are similar between 

the two sites. On the other hand, attenuation of red light (620-670 nm) does not change between 

the seasons (average k in June = 0.382 ± 0.041 m-1, July = 0.381 ± 0.034 m-1, October = 0.373 m-

1), corroborating largely physical influences (such as DOM absorption in the upper water 

column) on red light availability are similar throughout the year.  

 

Groundwater chemistry is distinct and seasonally variable in the sinkhole.  

Water venting from the sinkhole alcove is thermally and chemically distinct from 

overlying Lake Huron water, and as it flows through the sinkhole it slowly mixes with lake water 

(Baskaran et al., 2016; Ruberg et al., 2008). Generally, the specific conductivity of Alpena 

fountain was on average 5171 µS cm-1, groundwater as it vented from the dominant source 

(hereafter referred to as “alcove groundwater source”) was on average 2732 µS cm-1, and it 

attenuated to an average of 1813 µS cm-1 as it distributed in the bowl-shaped arena of the 

sinkhole (hereafter referred to as “MIS arena water”) (Table 3.1, Figure SI 3.3). These are 

higher than lake surface water (226 µS cm-1), and are similar to previously reported values for 

MIS (Baskaran et al., 2016). 

As expected for reservoirs removed from atmospheric influence, groundwater source and 

MIS water were depleted in both δ18O and δD compared to lake surface (Table 3.2, Figure 3.2). 

The source varied between -10.1 to -11.6‰ for δ18O and -71.0 to -79.1‰ for δD. The δ18O and 

δD values for MIS water were -8.83 to -10.37‰ and -62.29 to -71.88‰ respectively. Isotope 

values for the Alpena fountain were tightly constrained and even more depleted compared to the 

sinkhole (-12.11 to -12.42‰ δ18O and -82.62 to -86.91‰ δD), and the lake surface was relatively 

enriched in δ18O (-6.99 to -7.25‰) and δD (-52.04 to -54.10‰). The metric d-excess, the 
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difference between measured δD and expected δD calculated from measured δ18O and the Great 

Lakes Mean Water Line (GLWL) (Jasechko et al., 2014), was highest for Alpena fountain 

samples, on average 10.48‰, and predictably decreased with increasing proportion of surface 

water. Groundwater source samples (d-excess = 8.17-10.40‰) and MIS water (d-excess = 4.83-

6.34‰) had increasingly higher amounts of surface water (average d-excess = 1.03‰) (Figure 

SI 3.4). Our measured d-excess for surface waters is within range of the previously measured d-

excess for a wide distribution of samples from the surface of Lake Huron (Jasechko et al., 2014).  

We also identified seasonal variability in groundwater chemistry. We constructed a linear 

mixing model using the δ18O and δD values of the surface and the Alpena library fountain as 

endpoints (Figure 3.2), allowing us to estimate the proportion of these two endmembers in other 

water samples. (It is possible that the groundwater source from the aquifer mixes with lake water 

beneath the lake, such as in a hyporheic zone, en route to MIS, however we are not able to 

measure this impact.) The proportion of water in the sinkhole layer that is sourced from the 

groundwater aquifer increases from early to late summer, and decreases late summer to autumn. 

Samples of MIS water from early summer contained on average 39% aquifer source water, and 

late summer water samples contained an average of 55% aquifer source water. In contrast, 

autumn sinkhole water samples had on average 47% aquifer source water. We observed a similar 

trend in the alcove source waters as well, and corroborated the linear mixing model using ion 

concentrations (SO4
2-, Fl-, Na+) (Figure SI 3.5). Increased meteoric recharge in spring and 

autumn from snowmelt and rain likely impacts the discharged water, leading to heavier values of 

δ18O and δD. Additionally, increased terrestrial runoff through late spring and storm-induced 

mixing in autumn also likely reduces the proportion of the aquifer source and enriches the 

isotopic signature of sinkhole water. 
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Variability in values of MIS water may be partially attributed to sampling location. While 

there are small local sources of groundwater around the circumference of the sinkhole arena, the 

largest source and dominant influence on the isotopic composition is from the alcove 

groundwater source. The proportion of surface water mixed into the groundwater layer generally 

increases with greater distance from the alcove source (Figure SI 3.6). Samples in 2015 were 

collected at random within the sinkhole, in 2016 in georeferenced locations, and in 2017-2018 at 

one specific location. The distance between these sampling locations and the alcove was as much 

as 50 m, thus samples taken farther from the groundwater source were more impacted by surface 

geochemistry. 

 

Microbial community structure varies seasonally.  

We evaluated the bacterial community observed in the microbial mat samples from 2009-

2015. Samples were categorized as “early summer” (from May and June, n = 9), “late summer” 

(July and August, n = 13), and “autumn” (September-October, n = 12). Diatom chloroplast 16S 

rRNA genes ranged in abundance from 0.14-44% (average: 12.4%) of all sequencing reads, 

belonged primarily to Bacillariophyta;Cymbellaceae (Table SI 3.4), and were removed from 

further analysis due to nonlinear relationships between 16S rRNA gene abundances and 

eukaryotes.  

Bacterial communities were dissimilar by month (AMOVA, p < 0.05) and by season (p < 

0.08) (Figure 3.3, Figure SI 3.7, Table SI 3.5). Early summer communities are dissimilar to 

autumn communities, and summer populations show a degree of mixing of the two seasonal 

groups. Select bacterial populations of interest varied in relative abundance between the seasons 

(Figure 3.4). Of the cyanobacteria, filamentous members Phormidium and Planktothrix were 
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most abundant in these samples. On a seasonal scale, Phormidium was more abundant in summer 

samples (on average 33 and 35% of the total bacterial community in early and late summer 

respectively) compared to autumn samples (4.2%) (LEFSe, p < 0.05), whereas Planktothrix is 

more frequently observed in autumn and early summer samples (8.4-8.0% compared to 1.9% in 

late summer) (LEFSe, p < 0.05) (Table SI 3.4). Other cyanobacterial groups were typically 5% 

or less of the community. 

Based on taxonomy, putative sulfur-oxidizing bacteria (hereafter “SOB”) in this 

community are primarily gammaproteobacterium Beggiatoa and a cohort of 5 

epsilonprotebacteria (Arcobacter, Sulfurospirillum, Sulfurovum, Sulfuricurvum, Sulfurimonas). 

Across seasons, Beggiatoa is at least as abundant (4.8-11%) as the pool of epsilonproteobacteria 

SOB (2.4-4.8%). Other gammaproteobacteria and epsilonproteobacteria comprised 0-5% of the 

community on average. Deltaproteobacteria, including putative sulfur and sulfate reducers 

(hereafter “SRB”) based on taxonomy such as Desulfonema and Desulfocapsa, ranged from 

4.8% on average of the total bacterial community in early summer samples to 13% in late 

summer and autumn (Table SI 3.6). Other proteobacterial members and Bacteroidetes each 

constitute 12-18% on average throughout the year. Firmicutes, Spirochaetes, and 

Verrucomicrobia were each on average 5% or less of the bacterial community. Other bacterial 

groups, including Acidobacteria, Chloroflexi, Chlorobi, and Planctomycetes, were infrequently 

observed (<1% typically). 

To evaluate whether light is the dominant influence on community structure, we 

conducted experiments in situ and in the laboratory. In laboratory incubations, we subjected 

microbial mat intact with sediment to either 100%, 50%, or 10% of in situ light intensity, all at 

temperatures representative of typical sinkhole source water (8-10˚C). In none of these 
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experiments did we observe a change in community structure related to light intensity (Figures 

SI 3.8 and 3.9). Unlike samples collected in situ, NMDS analysis on these light-manipulated 

samples performed poorly (stress > 0.18, data not shown), suggesting they were strongly 

divergent from an expected “core” composition based on season or light intensity. 

 

Populations of sulfur cyclers are linked.  

We used correlation network analysis to understand potential positive and negative 

relationships between the abundances of 60 bacterial genera in the microbial mat (Figure 3.5, 

Figure SI 3.10). All relationships evaluated were positive in direction, and had r ≥ 0.50. 

Beggiatoa was solely correlated with Desulfonema, which was also correlated with 

Bacteroidetes;Paludibacter and Desulfobacterium. Sulfuricurvum linked together other putative 

sulfide-oxidizing taxa (Sulfurospirillum, Sulfurovum) as well as Desulfobacterium. Sulfurovum 

in turn linked Sulfurimonas, Desulfocapsa, Desulfobulbus, Desulfomicrobium, and 

Desulfobacula to the group. Thiothrix, another sulfide-oxidizing gammaproteobacterium, was 

correlated with Desulfomicrobium. Planktothrix’s sole correlation was with Paludibacter. 

Phormidium was not correlated with any taxa.  

 

Increased abundance of putative sulfur reducers in autumn.  

The pool of SRB was larger in late summer and autumn samples (Table SI 3.6). Within 

this group, however, we observed some seasonal peaks in specific genera. Many taxa followed 

the pattern of Desulfonema, which was more abundant in late summer and autumn (5.9-6.0% 

compared to 0.34%, LEFSe, p < 0.05). In contrast, Desulfocapsa is more abundant in summer 

samples compared to autumn (average 2.7-3.0% versus 0.93%). Another SRB, Desulfotalea, is 



 89 

more abundant in early summer than later seasons (0.0012% vs 0.00061% in late summer and 

<0.0001% in autumn).  

 

Community function differs by season.  

Quantitative proteomics analyses showed that the abundances of specific proteins 

belonging to specific genomic bins varied across the seasons (Table SI 3.7). As with our 16S 

rRNA gene analysis, we divided the months into seasons (June considered early summer, July as 

late summer, September as autumn). Among proteins assigned to genome bins, Phormidium 

dominated the protein pool in early and late summer (5671 of 7795 total spectra in June and 

July), whereas diatom proteins (Bacillariophyta) were most abundant in autumn (348 of 657 

spectra observed in September). Across the dataset, 53% of observed spectra were attributed to 

phycobilisome-related proteins, of which Phormidium was the dominant contributor. It is likely 

that we collated multiple Phormidium strains in our MAG bin, and were not able to resolve 

proteins to strain level (Table SI 3.1). We were also unable to resolve several observed proteins 

to specific MAG bins (referred to as “unknown organism”). When possible, proteins were 

assigned taxonomy based on the protein’s contig in IMG. 

 Phormidium’s phycobiliproteins varied in abundance between seasons. Allophycocyanin 

subunits ApcA and ApcB of an A/B/C operon in Phormidium (3300002026_MIS_100162309-

11) were significantly more abundant in early and late summer compared to autumn (Figure 

3.6). An ApcF protein (3300002027_MIS_101595453) was less abundant in early summer 

compared to late summer. Other phycobilisome proteins composing phycoerythrin and 

phycocyanin had dynamic abundances across the seasons (Table SI 3.7). We observed PsaB, a 

photosystem I protein (3300002026_MIS_100342443), in significantly lower abundance in 
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autumn compared to late summer. Two Thioredoxin TrxA in Phormidium 

(3300002027_MIS_100354662 and 3300002027_MIS_101999963) were both significantly less 

abundant in autumn compared to the summer months.  

 Other Phormidium proteins related to growth and photosynthesis also varied in 

abundance between seasons. Chaperonin GroEL of an operon also containing GroES 

(3300002027_MIS_100694094-5) was significantly less abundant in autumn compared to the 

summer months. GroES of a different operon (3300002024_MIS_11767773) in Phormidium had 

a similar significant differential abundance. A ribosomal protein L12 RplL 

(3300002024_MIS_11047972) was significantly lower in autumn than in late summer. 

Superoxide dismutase (3300002024_MIS_10334211) and a rhodanese involved in sulfur cycling 

(3300002026_MIS_1001011015) and on the same contig as a microaerobic PsbA and a type B 

sulfide-quinone reductase (Grim & Dick, 2016), were abundant exclusively in summer and not 

observed in other months. Phormidium’s photosystem II protein PsbA was not recovered from 

these samples. We also were not able to measure SQR, the sulfide quinone reductase responsible 

for anoxygenic photosynthesis in cyanobacteria. 

 Planktothrix, the other dominant cyanobacterium in the mat, also had differential 

abundance patterns in photosynthesis-related proteins. CpeE of a CpeD/E operon 

(3300002024_MIS_10075351-2) was much more abundant in late summer than in early summer. 

AtpD the beta subunit of F0F1-type ATP synthase on an operon also containing the epsilon 

subunit (3300002027_MIS_100753761-2), as well as PsaD (3300002027_MIS_100129452), 

were much more abundant in late summer compared to autumn. A Pseudanabaena GroEL 

(3300002026_MIS_1000534011) was less abundant in early compared to late summer. 

Unknown cyanobacteria also had significantly differentially abundant phycoerythrin (Cpe), 
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phycocyanin (Cpc), and phycoerythrocyanin (Pec) proteins in summer compared to autumn 

(Figure 3.6, Table SI 3.7). 

We recovered at least two contigs of diatom chloroplast genome(s), of 65,732 bp and 

42,711 bp in length. We observed more MS/MS spectra belonging to diatom PsbA (22 across the 

dataset) compared to PsaA (6). Of the other significantly differentially abundant proteins, we 

observed the beta subunit of F0F1-type ATP synthase (3300002026_MIS_1000010375) from 

one contig, and the large subunit of Rubisco (3300002026_MIS_1000043450) from the other 

contig, in much lower abundance in late summer compared to the other season units. Another 

putative chloroplast contig (21,320 bp) contained a PsaF (3300002026_MIS_1000265837) in 

significantly lower abundance in late summer compared to the other months. The lengths of 

these contigs are not enough to represent 2 separate chloroplasts (Brembu et al., 2014), and may 

belong to the same chloroplast. 

Three other F0F1 ATP synthase subunits belonging to different organisms were also 

differentially abundant. A beta subunit belonging to Desulfotalea (3300002024_MIS_11625411) 

was more abundant in autumn compared to late summer. A diatom’s alpha subunit 

(3300002024_MIS_10280361) was more abundant in autumn compared to early summer. 

Additionally, another alpha subunit belonging to Chloroflexi;Anaerolinea 

(3300002024_MIS_10189961) was most abundant in late summer, and least abundant in 

autumn.  

Two Beggiatoa proteins, a glyceraldehyde 3-phosphate dehydrogenase GapA 

(3300002024_MIS_10898911) and an outer membrane protein (3300002027_MIS_101719261), 

were significantly more abundant in autumn compared to late summer, and not observed in early 

summer. A Betaproteobacteria;Rhodoferax FbaA fructose-bisphosphate aldolase 
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(3300002024_MIS_10200811) was more abundant in late summer compared to early summer. 

We observed a protein of unknown function, putatively an outer membrane protein 

(3300002026_MIS_100111357) that belonged to a Gammaproteobacteria;Methylococcaceae 

member, that was more abundant in autumn compared to late summer. 

Several proteins of unknown metagenome-assembled genomic bins had intriguing 

abundance patterns, but were not found to be significantly different across season units. A 

dissimilatory sulfite reductase gamma subunit DsrC (3300002027_MIS_100764955) and an 

alpha/beta subunit DsrA (3300002027_MIS_101406783), both putatively belonging to 

Beggiatoa were observed in higher abundance in autumn compared to late summer. Another 

Beggiatoa DsrA (3300002024_MIS_11408701) and DsrC (3300002024_MIS_11106572) were 

observed only in autumn. Additional proteins belonging to putative sulfide-oxidizing bacteria 

(Table SI 3.7) were observed exclusively or more often in autumn. A sulfate-reducing DsrA 

(3300002024_MIS_10135141) and DsrC (3300002027_MIS_101924972) were observed in late 

summer only. Similarly, a Desulfobacteraceae member’s beta subunit of adenosine-5'-

phosphosulfate reductase (3300002027_MIS_100225507), for dissimilatory sulfate reduction, 

was less apparent in autumn compared to summer.  

 

3.5 Discussion 

Microbial mats are ideal natural systems to examine the principles of microbial ecology 

because the organisms sort by metabolism and redox gradients into functional niches (Bolhuis et 

al., 2014; Ward et al., 1998). In this study, we examined the relationship between the 

physicogeochemical environment, microbial community composition, and important metabolic 

functions of a natural microbial mat in a temperate aquatic environment over several months and 
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years. The structure of the microbial community and the activities of key microbes such as the 

dominant cyanobacterium Phormidium, the dominant sulfide-oxidizer Beggiatoa, and sulfate and 

sulfur reducers shifts between seasons (Figure 3.7). Predictable and seasonal changes in light 

and water chemistry are the likely influences on these microbial members. These shifts in 

metabolism in tandem with shifts in physicochemistry invite further investigation into other 

microbial mat systems through the lens of temporal heterogeneity. 

To better characterize environmental drivers of seasonality in the microbial mat in the 

microbial mat, we measured physicochemical parameters that are likely to change over a year in 

the temperate Lake Huron sinkhole. In this system, we evaluated the changes in light (which has 

the potential to influence photosynthesis) and groundwater chemistry (which would determine 

sulfate delivery). Light peaked in summer months and was substantially lower in the other 

months. Within the months evaluated, water in MIS was more enriched in groundwater (and thus 

sulfate) in late summer. Due to different adaptations in light harvesting in cyanobacteria and 

sulfate reduction in the mat, these abiological parameters have the potential to shape community 

composition, metabolism, and oxygen and sulfide gradients. 

Seasonality, through the parameters of groundwater chemistry and irradiance, impacts the 

abundance and functions of the dominant cyanobacteria in the microbial mat (Figure 3.7). In 

addition to contributing to the oxygen budget through oxygenic photosynthesis, key 

cyanobacteria Phormidium and Planktothrix are implicated in sulfur cycling through anoxygenic 

photosynthetic (AP) gene sulfide quinone reductase (sqr) (Dick et al., 2018; Voorhies et al., 

2012). In addition, Phormidium, Planktothrix, and other filamentous cyanobacteria in the 

sinkhole have variant photosystem II (psbA) genes that are optimized for low oxygen conditions 

(Dick et al., 2018; Grim & Dick, 2016). Though we did not observe variant PsbA and SQR 
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proteins in our dataset, Phormidium and other cyanobacteria demonstrated a more nuanced 

response in different seasons.  

For photosynthesis, cyanobacteria absorb light through phycobilisomes, composed of a 

core of allophycocyanin, and linker phycobiliproteins, which may include phycoerythrin, 

phycocyanin, and phycoerythrocyanin. The most direct relationship we observed between our 

protein profiles, 16S rRNA gene data, and seasonality is evident in phycobiliprotein abundance. 

The abundance distribution of Phormidium allophycocyanin corresponds with its 16S rRNA 

gene relative abundance in that allophycocyanin was more abundant in early summer (May and 

June) and late summer (July and August) compared to autumn (September and October). 

Similarly, in these months light was most available. Previous pigment measurements in 

Phormidium-dominated terrestrial mats collected in autumn, identified higher concentrations of 

phycoerythrin with lower light conditions, but did not measure allophycocyanin (Snider et al., 

2017). In freshwater cyanobacteria, phycobiliprotein synthesis increased with increasing 

irradiance until reaching an optimum rate at 50-60 µmol m-2 s-1, after which the abundance of 

pigments decreases (Wyman & Fay, 1986) . Our dataset supports a positive relationship of 

allophycocyanin levels and photosynthetic growth in Phormidium with irradiance. Such a 

linkage invites investigation into using allophycocyanin measurements to quantify the abundance 

and/or relative growth rate of Phormidium in this and other mat systems.  

Seasonal changes in the abundance of particular phycobiliproteins, phycoerythrin and 

phycocyanin, were more complex. Different phycoerythrin and phycocyanin proteins are 

abundant at different times in the year (Table SI 3.7), suggesting the presence of multiple copies 

and isoforms of phycobilisome rod-core linker proteins in the Phormidium genome and/or strain 

heterogeneity in the Phormidium metagenome-assembled genomic bin (Guan et al., 2007; 
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Rinalducci et al., 2008). In complementary chromatic acclimation (CCA), cyanobacteria can 

either regulate synthesis of just phycoerythrin (group II organisms), or of both phycoerythrin and 

phycocyanin (group III organisms) (Tandeau de Marsac & Houmard, 1993). In terrestrial mats 

dominated by Phormidium, PE was more abundant than PC in autumn (Snider et al., 2017). 

Though in the absence of cultures we cannot confirm to which CCA group the MIS Phormidium 

belongs, different levels and/or isoforms of phycocyanin and phycoerythrin in the season units 

may be a response to changing light conditions.  

The higher abundance of Phormidium ribosomal proteins and GroESL proteins in late 

summer compared to autumn is likely a reflection of more favorable growth conditions for the 

cyanobacterium. GroEL and GroES chaperonins are required for growth (Georgopoulos & 

Welch, 1993), and their proportion in the proteome increases linearly with growth rate (Jahn et 

al., 2018). Further, increased light intensity increases expression of groESL promoters (Rajaram 

et al., 2014). In Synechocystis, groESL is not transcribed in the dark (Glatz et al., 1997), and the 

abundance of chaperonins and ribosomal proteins is constrained by light and carbon limitation 

(Jahn et al., 2018). 

Lower thioredoxin levels also corroborate suboptimal photosynthetic conditions for 

Phormidium in autumn. Light energy from photosystem I is used to reduce thioredoxin (TrxA), 

which interacts with enzymes in the Calvin cycle (carbon fixation) and oxidative pentose 

phosphate cycle (carbon catabolism) (Tandeau de Marsac & Houmard, 1993). By moderating 

levels of reduced TrxA, cyanobacteria control key cellular and metabolic processes, such as 

carbon fixation, nitrogen metabolism, oxidative stress response, and light harvesting 

(Blankenship, 2014). In Synechocystis sp. 6803, trxA transcripts decreased when the aerobic 

culture was transferred to lower light levels (Navarro et al., 2000; Pérez-Pérez et al., 2009). The 
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lower abundance of TrxA in autumn could reflect Phormidium’s lower relative abundance in 

autumn, but may also imply a shift in their metabolism due to changing photosynthetic 

conditions. Altogether, Phormidium’s differential abundance of phycobiliproteins, thioredoxin, 

and chaperonins reflects a change in growth rate and/or abundance of Phormidium linked to 

varying growing conditions with the season units. 

Temporal patterns in abundance of pigments from other cyanobacteria point to potential 

niche partitioning of the photosynthetic bacterial community. We observed abundance patterns 

of allophycocyanin, phycocyanin, and phycoerythrocyanin from Planktothrix, Pseudanabaena, 

and unknown oscillatorial cyanobacteria that were higher in summer than in autumn. 

Planktothrix’s statistically significant proteins--a phycoerythrin linker protein CpeE, the beta 

subunit of an ATP synthase, and a photosystem I component PsaD--were more abundant in late 

summer than in the other season units, suggesting higher photosynthetic activity during the late 

summer months. ATP synthesis is integral to photosynthesis and respiration in cyanobacteria, 

and is dependent upon light and redox conditions. The catalytic sites of the thylakoid membrane-

peripheral F1 component of F0F1 ATP synthase are on the 3 beta subunits (Hisabori et al., 

2013), which likely require greater synthesis during periods of increased activity. Given the 

higher abundance of Planktothrix phycoerythrin rod-linker protein CpeE and photosystem I 

PsaD, this increased ATP synthase activity in the summer is likely due to heightened 

photosynthesis. The detection of non-Phormidium pigments in our Phormidium-dominated 

proteomics dataset points to active light harvesting in these low-abundance members. As with 

Phormidum, it is possible that these organisms may modulate pigment content through CCA, an 

intriguing topic for future physiological studies on these organisms. The potential for niche 
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habitation through CCA or different light optima would permit these cyanobacteria to coexist in 

the microbial mat. 

Though abundance of eukaryotic 16S rRNA gene  (i.e., chloroplast sequences) is not a 

quantitative metric of growth or cell abundance, when diatom chloroplasts--mainly of 

Bacillariophyta; Cymbellaceae--were observed in early summer (on average 13% of the reads), 

proteins from their chloroplasts such as ATP synthase and Rubisco were also present. However, 

given their low 16S rRNA gene levels in autumn, diatoms were at the same time more active 

than expected. Two ATP synthase subunits belonging to diatoms were more abundant in autumn, 

when diatom 16S rRNA gene abundance is generally lower (on average 8.2% of the 16S rRNA 

gene reads). In fact, they contributed over half of the protein spectra in autumn. The 

overwhelming abundance of diatom proteins in autumn indicates these potentially less abundant 

members are nevertheless quite active.  

The differential abundance and changing functional profiles of sulfide-oxidizing bacteria 

and sulfur/sulfate-reducing deltaproteobacteria across the seasons have implications for sulfur 

and oxygen cycling in MIS (Figure 3.7). Beggiatoa is a dominant sulfur oxidizer in the sinkhole 

mat, contributing up to 35% of bacterial sequences. It is especially abundant in autumn, when we 

also observe higher abundances of key Beggiatoa proteins, such as glyceraldehyde 3-phosphate 

dehydrogenase, involved in the Calvin-Benson-Bassham cycle, an outer membrane protein likely 

involved in motility (Yu & Kaiser, 2006), and reverse dissimilatory sulfite reductase proteins. As 

a filamentous motile bacterium, Beggiatoa can move to an optimal vertical position of sulfide 

and oxygen within the microbial mat (Jørgensen & Revsbech, 1983). In stratified mats, 

Beggiatoa can constrain cyanobacterial photosynthesis by covering the mat and obscuring light 

(Klatt, Meyer, et al., 2016). Low light also reduces anoxygenic photosynthetic sulfide oxidation, 
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thus sulfide is more available for chemolithotrophs (Klatt, Meyer, et al., 2016). Taken together 

with light measurements and higher autumn sulfide levels previously measured (Kinsman-

Costello et al., 2017), the increased representation of these proteins, along with Beggiatoa’s 

higher relative abundance in 16S rRNA gene datasets, point to light as an indirect influence on 

the seasonal change in abundance of this sulfide oxidizer.    

The 16S rRNA gene abundance and proteomic profiles of sulfate-reducing 

deltaproteobacteria suggest interactions with Beggiatoa in the sulfur cycle in MIS. The 

correlation between relative abundances of Beggiatoa and Desulfonema, the most abundant SRB 

we observed, may reflect a metabolic interaction in which sulfide produced through 

Desulfonema’s sulfate reduction is used by Beggiatoa. The higher abundance of 

deltaproteobacterial SRB in late summer and autumn, corroborates previously observed higher 

sulfide availability in the mat and sediment later in the year (Kinsman-Costello et al., 2017). 

However, in this environment abundance does not always equate to increased functioning. The 

higher autumn abundance of an ATP synthase subunit of a putative sulfate reducer Desulfotalea, 

a psychrophile that thrives in cold systems (Rabus et al., 2004), indicates activity despite lower 

abundance in 16S rRNA gene datasets in autumn. Other proteins from unbinned sequences 

involved in sulfate reduction (DsrA, DsrC, ApsR) were observed in late summer samples either 

exclusively or in greater abundance. Desulfocapsa, another putative sulfur reducer that may grow 

through inorganic sulfur disproportionation as opposed to dissimilatory sulfate reduction (Finster 

et al., 2013; Janssen et al., 1996), is also abundant early in the year in contrast to Desulfonema. 

At up to 3.0% relative abundance, Desulfocapsa may play an as-of-yet unexplored role in 

metabolizing elemental sulfur, thiosulfate, and sulfite in the sinkhole. These glimpses into the 

distribution and activities of sulfate reducers and S disproportionators--key sources of sulfide to 
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the mat--shed light into their feedback and control on photosynthetic and chemosynthetic 

metabolisms.  

Proteins belonging to other bacteria point towards additional functionally important 

community members and metabolisms. Rhodoferax, a purple nonsulfur bacterium tolerant of 

cool conditions (Kaden et al., 2014; Madigan et al., 2000), was up to 20% of the bacterial 

community, and had a carbon fixation protein that was highly abundant in later summer. The 

ability of some to conduct photosynthesis (Madigan et al., 2000) hints at a supporting role for 

Rhodoferax in providing fixed carbon to the community. We observed an abundant putative 

outer membrane protein belonging to a gammaproteobacterial methanotroph in high abundance 

in autumn, supporting active methanogenesis in the system. Anareolinea (Chloroflexi), which we 

observed more often later in the year (up to 0.9% of the bacterial community), has an ATP 

synthase subunit more abundant in late summer. Characterized isolates of Anaerolineae are 

typically mesophiles found in anaerobic digesters and groundwater (Yamada, 2006), though 

genes for aerobic respiration and/or O2 detoxification were observed in cultured genomes as well 

as in two recent metagenome-assembled genomes recovered from sulfidic hot springs (Ward et 

al., 2018). Sulfide-tolerant Anaerolinea members capable of oxygen detoxification or flexible 

aerobic respiration would thrive through redox changes in this microbial mat underpinned by 

cyanobacterial photosynthesis. Additional genomic and proteomic examination and targeted 

cultivation of these and other microbial members would untangle their roles in oxygen and sulfur 

cycling in MIS. 

The patterns of community composition and proteomes described above suggest that 

seasonality in physicochemical conditions influences the dominant metabolisms and organisms 

in MIS cyanobacterial mats. Photosynthetically active irradiance (PAR) measured in the sinkhole 
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increased in early summer, peaked in late summer, and declined in autumn. In addition to 

quantity of light changing, the spectral quality of irradiance in the MIS water column varied 

between the measured months, which may impact the light harvesting pigments of cyanobacteria. 

Hyperspectral profiles in the sinkhole from 2015-2016 indicate green light (which phycoerythrin 

maximally absorbs) is most available in early summer, and least available in late summer, 

potentially due to growth of surface colonial cyanobacteria (Fahnenstiel & Carrick, 1991). As in 

marine environments, at 23 m deep in the sinkhole, red light is minimally available, and is not 

different between the seasons measured. The paucity of red light (which phycocyanin maximally 

absorbs) throughout the year suggests that modulating at least phycoerythrin abundance (group II 

response) would be the most likely response to changing light between the seasons. These 

dynamics in light intensity and quality have ramifications for the cyanobacterial pigment content, 

and promote growth of ecotypes optimized for different light niches. 

Seasonal patterns in sinkhole water chemistry may also impact delivery and availability 

of sulfate and other metabolic resources. δ18O/δD isotope and specific conductivity 

measurements confirm that the benthic water layer in the sinkhole is composed of seasonally-

changing proportions of Lake Huron surface water and venting sulfate-rich groundwater. 

Assuming that the composition of venting source groundwater is invariable across the year, our 

model suggests that early summer and autumn MIS waters have a higher proportion of surface 

water. The high proportion of venting source groundwater observed in late summer samples 

aligns with high delivery of sulfate to the system, which may impact microbial sulfur cycling. 

Sulfate measured in mat porewater and overlying groundwater (Kinsman-Costello et al., 2017) is 

slightly lower but fits our predictions from the linear mixing model. These data suggest that both 

the source groundwater as well as surface-driven factors, most importantly seasonal availability 
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of light, strongly influence sinkhole water chemistry, and their interactions have the potential to 

shape the metabolisms and structure of the microbial community. 

 

3.6 Conclusion 

In this study, we evaluated the relationship between seasonally-changing irradiance and 

water chemistry, and microbial community structure and function in the microbial mat of Middle 

Island Sinkhole. Our proteomics surveys highlighted the key role of cyanobacterial 

photosynthesis in the community, and revealed an active and dynamic community of sulfur-

oxidizing and sulfate-reducing bacteria within the mat. Proteins detected from other bacteria 

suggest that they play functionally important roles in the mat despite their lower abundance.  

The microbial community in summer experiences high light and plentiful sulfate, thanks 

to the elevated proportion of high-sulfate groundwater in the sinkhole. These conditions seem 

favorable for the growth of the dominant putative AP-cyanobacterium Phormidium, as well as a 

sulfide-tolerant cyanobacterium Planktothrix. Sulfate-reducing bacteria with potentially high O2 

tolerance thrive in summer, and are instrumental in transforming sulfate to sulfide for the AP 

cyanobacteria and sulfide-oxidizing bacteria. Physicochemical conditions change from summer 

to autumn, including less available light in the sinkhole due to lower solar irradiation, and lower 

sulfate delivery due to less groundwater and/or more surface water mixing into the sinkhole. 

Growth and photosynthesis of Phormidium is worse in autumn, but photosynthetic eukaryotes 

such as diatoms may have different optimal growth conditions and are thus abundant and active. 

The community of sulfate-reducing bacteria is also present in autumn, but the identity of its 

dominant members is different from summer potentially due to different ideal sulfate and O2 
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conditions. Sulfide-oxidizing bacteria, especially Beggiatoa, are highly abundant and active in 

autumn, and may play a greater role in S cycling than AP cyanobacteria. 

Our results headline the responses of a putatively anoxygenic photosynthetic 

cyanobacterial community to shifting irradiance, thereby affecting the C, S, and O budgets. 

Importantly, this linkage between cyanobacterial activity, sulfur cycling, and seasonally-

changing environment encourages interpretations of mats in the geological record relative to 

seasonality. Our research adds to the understanding of how microbial mats respond to dynamic 

environments over seasonal time scales. 
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3.9 Tables and Figures 

Table 3.1 Specific conductivity in water parcels. Units are in µS cm-1.    
  

Date Season Alpena Alcove Arena Surface 
20120531 Early summer   1821  
20120725 Late summer   1930  
20120927 Autumn 4798  1883  
20130509 Early summer   1793  
20130718 Late summer  3331 2086  
20130928 Autumn   1825  
20140724 Late summer  4058 1702 245 
20140924 Autumn 5543 3574 1790 249 
20150731 Late summer  2431 1916 237 
20150731 Late summer   2161 188 
20151007 Autumn  2012 1948 229 
20160609 Early summer  1461 1880 219 
20160609 Early summer   1640  
20160722 Late summer   1170 217 
20160928 Autumn   1979 255 
20170809 Late summer  2258 1856 218 
20170810 Late summer   1821 205 
20170910 Autumn   1787  
20170926 Autumn   1839  
20170927 Autumn   1695  
20170928 Autumn   1387  
20180710 Late summer   1985  
Average  5171 2732 1813 226 
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Table 3.2  δ18O and δD measured in water samples from Alpena fountain, MIS Arena water 
and specific locations in the arena (when available), the Alcove groundwater source of the 
sinkhole, and the surface of the lake above the sinkhole. 

     
Date Location Sample Name Year δ18O δD 
20151007 Alpena ALP.2015.008 2015 -12.19 -83.80 
20151007 Alpena ALP.2015.014 2015 -12.12 -82.62 
20170912 Alpena ALP.2017.Sept 2017 -12.32 -84.24 
20170810 Alpena ALP.2017.Aug 2017 -12.42 -86.91 
20180710 Alpena ALP.2018.July 2018 -12.11 -83.25 
20150731 Arena MIS.2015.042 2015 -9.73 -68.77 
20151007 Arena MIS.2015.077 2015 -10.37 -71.88 
20160609 P4 MIS2016.009 2016 -9.73 -67.99 
20160609 P10 MIS2016.016 2016 -9.18 -65.86 
20160609 G MIS2016.023 2016 -8.98 -65.08 
20160928 D3-D4 MIS.2016.Arena D3-4 2016 -9.30 -65.18 
20160928 A6-B6 MIS.2016.325 2016 -9.04 -64.30 
20160928 lush MIS.2016.328 2016 -9.53 -67.17 
20170531 P7 MIS.2017.012 2017 -8.84 -63.00 
20170531 P7 MIS.2017.013 2017 -8.83 -62.29 
20170810 P7 MIS.2017.083 2017 -10.25 -71.42 
20180710 P7 P7.2018.July 2018 -9.87 -70.04 
20150604 Alcove MIS.2015.008 2015 -11.43 -77.96 
20150731 Alcove MIS.2015.047 2015 -11.47 -78.34 
20151007 Alcove MIS.2015.079 2015 -10.14 -70.99 
20160609 Alcove MIS2016.001 2016 -11.36 -77.52 
20160928 Alcove MIS.2016.322 2016 -11.28 -77.69 
20170531 Alcove MIS.2017.005 2017 -11.54 -78.32 
20170809 Alcove MIS.2017.062 2017 -11.53 -78.53 
20170810 Alcove MIS.2017.080 2017 -11.60 -79.14 
20150604 Surface MIS.2015.001 2015 -7.13 -52.87 
20151007 Surface MIS.2015.073 2015 -7.14 -53.24 
20160609 Surface MIS2016.026 2016 -7.06 -52.54 
20160928 Surface MIS.2016.319 2016 -6.99 -52.04 
20170531 Surface MIS.2017.002 2017 -7.12 -52.43 
20170809 Surface MIS.2017.056 2017 -7.21 -52.39 
20170810 Surface MIS.2017.077 2017 -7.25 -53.20 
20180710 Surface SFC.2018.July 2018 -7.20 -54.10 
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Figure 3.1 Maximal daily light observed each month in the sinkhole. For each month, daily 
maximum light values from logged data (2014-2017) and recorded light from episodic 
measurements (2009-2016) (grey transparent circles) were summarized in box and whisker 
plots and averaged per month. Boxes represent the 25-75th percentiles with whiskers covering 
the minimum and maximum values. The average is plotted with the thick line.  
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Figure 3.2 Measured δ18O in water samples by location and season, and proportion of surface 
water in samples. Measured values are plotted in colored circles and summarized with box 
and whisker plots. The average δ18O values for Alpena fountain and surface were used as 
end-members in a linear mixing model to estimate the proportion of surface water in each 
sample (grey triangles). 
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Figure 3.3 Nonmetric multidimensional scaling plot relating bacterial community structure in 
samples by season. A Morisita-Horn distance matrix was calculated from Hellinger-
transformed bacterial relative abundances, and used to plot NMDS. Samples in May 
(diamonds) and June (squares) are colored green for early summer, July samples are white 
circles, and samples from September (upright triangles), and October (lower triangles) are 
colored pink. 
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Figure 3.4 Relative abundance of relevant bacterial taxonomic groups in samples, grouped 
by season. Relative abundances of key genera were summed and presented, and classes and 
phyla without those genera are represented. 
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Figure 3.5 Correlation network between relative abundances of key genera. Bray-Curtis 
distance matrix was calculated from read counts of genera and used to generate a correlation 
network. Only significant (p < 0.001) positive (r ≥ 0.6) correlations between specific 
organisms are plotted in random colors. 
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Figure 3.6 Significantly differentially abundant proteins observed in each season. Weighted-
mean log2-normalized observations of proteins were used in paired t-tests to determine 
significant changes in abundance. The results of paired significance testing between two 
season units are presented in the right hand columns: for example, proteins more abundant in 
early summer versus late summer are noted with “E > L”. Proteins are grouped by MAG bin, 
and described by function. 
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Figure 3.7 Changing physicochemical environment, functions and membership of the sulfur-
cycling microbial mat in MIS. In summer (left), light intensity is high and cyanobacteria, 
dominated by oxygenic photosynthetic Phormidium and Planktothrix, are abundant and 
active. Sulfate is abundant and sulfate-reducing bacteria (SRB) provide sulfide, putatively 
used by Phormidium in anoxygenic photosynthesis. In autumn (right), light intensity and 
concentrations of sulfate are lower. SRB typically found lower in the sediment dominate 
sulfide production, and Beggiatoa is active and abundant. Diatoms supplant the 
cyanobacterial photosynthetic community. 
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3.10 Appendix B 

Supplemental Information 

Table SI 3.1. Summary table of metagenome-assembled-genomic (MAG) bins from MIS 
metagenomic co-assembly of 15 samples. Our oscillatorial cyanobacterial bins had 96.4% 
completion/8.63% redundancy (unknown Oscillatorial, 4.4Mbp), 94.96%/97.12% 
(Phormidium, 12.5Mbp), 82.01%/62.59% (Planktothrix, 6.8Mbp), as well as 5.1Mbp of 
cyanobacterial scaffolds that were not able to be confidently binned. 

B
in N

am
e 

T
axonom

y 

T
otal length 

(bp) 

N
um

ber 
contigs 

N
50 

G
C

 C
ontent 

(%
) 

C
om

pletion 
(%

) 

R
edundancy 

(%
) 

Bin_10_1 Oxalobacteraceae 1399360 102 14694 52.2 83.5 0.7 
Bin_10_2 None 8793166 1065 8429 54.4 40.1 25.9 
Bin_1_1_2 Unknown 3697586 235 19988 58.1 87.8 0.0 
Bin_1_1_3 Unknown 2426406 236 10340 59.8 79.9 0.7 
Bin_1_1_4 Unknown_ 

Betaproteobacteria 
2692753 288 9561 56.7 81.3 2.9 

Bin_1_2_1 Unknown 32047170 3420 9539 56.2 100.0 513.7 
Bin_1_2_2 Unknown 3959061 339 13750 54.8 74.1 1.4 
Bin_1_2_3 Desulfomicrobiaceae 1971419 184 11209 60.1 38.8 0.0 
Bin_1_2_4 Verrucomicrobiaceae 2691273 293 9464 60.5 57.6 0.7 
Bin_2_1 Unknown 43596255 4158 11296 39.3 100.0 982.7 
Bin_2_1_1 Unknown 3435637 107 55038 48.3 95.7 1.4 
Bin_2_2 Prolixibacteraceae 10282644 1303 7720 39.2 91.4 158.3 
Bin_2_3 Unknown 4088197 269 19807 39.3 92.8 2.9 
Bin_2_4 Bacteriovoracaceae 3220591 137 32252 41.5 87.1 2.2 
Bin_2_5 Chitinivibrionaceae 4044161 360 12352 44.0 80.6 7.2 
Bin_3_1 Unknown 26754205 2357 12395 39.7 93.5 363.3 
Bin_3_2 Pseudanabaenaceae 330214 20 19027 43.4 4.9 0.0 
Bin_3_3 Unknown 25549780 2621 9636 43.3 96.4 379.1 
Bin_3_4 Unknown 3335697 298 12662 51.3 89.9 4.3 
Bin_4_1 Comamonadaceae 4464091 437 11208 59.6 92.1 73.4 
Bin_4_2 Comamonadaceae 4626934 192 33064 58.3 85.6 2.2 
Bin_4_3_1 Spirochaetaceae 3855763 203 27591 56.7 87.8 1.4 
Bin_4_3_2 Unknown 3686202 224 22146 58.1 82.0 2.2 
Bin_4_3_3 Comamonadaceae 3478904 360 9789 60.3 71.2 8.6 
Bin_4_3_4 Unknown 3051872 248 14317 61.2 75.5 1.4 
Bin_4_3_5 Comamonadaceae 2561953 248 11544 58.7 75.5 1.4 
Bin_4_3_6 Thiobacillaceae 2169430 214 11226 59.2 76.3 0.7 
Bin_4_4 Comamonadaceae 3519382 181 24907 61.7 95.0 0.7 
Bin_5_1 Unknown 8296834 1051 7928 45.7 88.5 95.0 
Bin_5_1_1 Oscillochloridaceae 2838987 206 16267 49.6 85.6 2.2 
Bin_5_2 Gallionellaceae 3964793 445 8827 48.5 83.5 53.2 
Bin_5_3 Anaerolineaceae 4097665 193 30506 50.3 85.6 0.0 
Bin_5_4 Desulfobacteraceae 3672135 217 21210 45.4 97.1 1.4 
Bin_5_5 Desulfobacteraceae 4525442 478 9962 45.6 87.1 2.2 
Bin_5_6 Unknown 1993497 236 8446 52.6 74.1 1.4 
Bin_5_7 Unknown 4463472 401 12458 46.4 61.9 1.4 
Bin_5_8 Methylococcaceae 2679520 199 15693 41.3 92.1 2.2 
Bin_6_2_1 Unknown 2784637 345 8051 37.0 61.2 1.4 
Bin_6_2_2 Unknown 3998633 434 9474 37.8 67.6 0.0 
Bin_6_2_3 Unknown 1565326 222 6928 32.3 61.9 0.0 
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Bin_6_3 Helicobacteraceae 2205377 58 60466 37.6 98.6 0.7 
Bin_6_4 Unknown 4567808 305 19067 33.9 97.1 0.7 
Bin_6_5 Unknown 5045492 570 9270 37.7 82.7 65.5 
Bin_6_6 Helicobacteraceae 2227546 83 39393 42.1 96.4 2.9 
Bin_6_8 Unknown 3469702 357 10098 37.1 81.3 4.3 
Bin_6_9 Campylobacteraceae 1969826 18 16832

7 
30.9 97.8 0.7 

Bin_6_9_1 Paludibacteraceae 3068346 236 15389 36.8 76.3 2.2 
Bin_7_1 Comamonadaceae 1887820 188 10541 65.7 71.9 1.4 
Bin_7_2 Unknown 3548243 264 15864 70.4 59.7 0.7 
Bin_7_3 Unknown 3910175 248 19011 68.5 84.2 2.2 
Bin_7_4 Unknown 5226942 268 25696 60.0 95.7 0.7 
Bin_7_5 Unknown 3094174 314 10652 68.2 46.8 0.0 
Bin_7_6 Unknown_Burkholderiales 2119882 272 7621 67.2 46.0 4.3 
Bin_7_7 Unknown 3882231 175 28826 68.4 94.2 2.9 
Bin_7_8 Unknown_Betaproteobacte

ria 
2826391 131 33263 58.6 74.1 3.6 

Bin_7_9 Paludibacteraceae 3708936 283 16092 37.2 84.9 0.0 
Bin_8_1 Flavobacteriaceae 2595863 182 18366 31.6 66.9 0.7 
Bin_8_2 None 27397424 2633 11361 29.2 84.2 82.7 
Bin_9_3 Unknown 3787733 260 17794 42.6 84.9 2.2 
Bin_9_4 Unknown 2448590 206 13927 34.3 90.6 0.0 
Bin_9_5 Unknown 6620208 323 32199 37.6 91.4 2.9 
Bin_9_cyano_1 Microcoleaceae 18617 3 6498 41.3 0.0 0.0 
Bin_9_cyano_2 Microcoleaceae 1337148 158 8092 40.6 11.5 0.0 
Bin_Oscillatoriales_3 Pseudanabaenaceae 4377283 576 15153 42.1 96.4 8.6 
Bin_Phormidium Microcoleaceae 12463200 5269 2679 43.4 95.0 97.1 
Bin_Planktothrix Unknown 6801343 3689 1761 42.9 82.0 62.6 
Bin_Unknown_Cyano Unknown 3755319 2862 1269 43.6 56.1 24.5 
Ribosomal_16S Unknown 585160 52 13169 46.2 17.3 0.0 
UNBINNED_CONTIGS Unknown 63752146 7447 8469 53.2 100.0 1028.8 
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Table SI 3.2. Calculated quantities of green (530-570 nm) and red (620-670 nm) light at 23m 
depth in the sinkhole in June 2015, October 2015, and July 2016, from hyperspectral casts. 
   

Date Available green (530-570 nm) light 
(µmol photons) 

Available red (620-670 nm) light 
(µmol photons) 

20150606 35.1 0.07 
20160720 14.3 0.04 
20160727 17.4 0.08 
20151008 25.0 0.06 
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Table SI 3.3. Light quality and quantity metrics from hyperspectral profiles. Seven 
hyperspectral casts in MIS arena and 2 open water casts were conducted in 2015-2016, from 
which we determined k-extinction coefficients and available energy (µmol photons m-2 s-1 
nm-1) for each measured wavelength of light between 350-800 nm. This summarizes the k-
extinction coefficient and energy at depth for the range of green wavelengths (530-570 nm) 
and the range of red wavelengths (620-670 nm), per cast, per day, and per month. 

20150606 
cast 1 

20150606 
cast 2 

20160720 
cast 1 

20160720 
cast 2 

20160727 
cast 1 

20160727 
cast 2 

20151008 
cast 1 
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cast 3 

20150606 
cast 4 

  

0.093 
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0.107 

0.103 
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Table SI 3.4. The relative abundance of diatom 16S rRNA gene reads in each sample, 
categorized by sample name and season unit. 
Sample Name Sample Number Relative abundance of reads (%) 
MIS.0609.01.000 Early summer.1 0.80 
MIS.0611.03.000 Early summer.2 0.14 
M3-3 Early summer.3 11.77 
MIS.0513.01.000 Early summer.4 13.57 
MIS.0513.02.000 Early summer.5 16.34 
MIS.0513.03.000 Early summer.6 21.43 
MIS.0513.04.000 Early summer.7 44.39 
MIS.2015.027A-2 Early summer.8 5.12 
MIS.2015.027A-3 Early summer.9 6.25 
M1-1 Late summer.1 39.12 
MIS.0713.03.000 Late summer.2 3.23 
MIS.0713.07.000 Late summer.3 20.28 
MIS.0713.08.000 Late summer.4 41.24 
MIS.0713.09.000 Late summer.5 3.92 
MIS.0713.11.000 Late summer.6 1.16 
MIS.0714.013_mat Late summer.7 12.60 
MIS.0714.020_mat Late summer.8 21.53 
MIS.0714.024_mat Late summer.9 16.36 
MIS.0714.028.000 Late summer.10 0.42 
MIS.2015.060A-2 Late summer.11 2.11 
MIS.2015.060B-2 Late summer.12 30.52 
MIS.2015.060G Late summer.13 9.65 
MIS.0912.LK1.000a Autumn.1 1.78 
MIS.0912.LK1.000b Autumn.2 6.07 
MIS.0912.LK3.000 Autumn.3 0.42 
MIS.0912.LK4.000 Autumn.4 1.33 
MIS.0912.LK5.000 Autumn.5 7.17 
MIS.0912.LK6.000 Autumn.6 1.31 
MIS.0914.003_mat Autumn.7 16.66 
MIS.0914.015.000A Autumn.8 1.99 
MIS.0914.020_mat Autumn.9 5.18 
MIS.0914.021_mat Autumn.10 3.30 
MIS.2015.100A-2 Autumn.11 31.25 
MIS.2015.100B-2 Autumn.12 22.32 
 
SeasonUnit Mean relative abundance of reads (%) Standard deviation 
Early summer 13.31 13.65 
Late summer 15.55 14.27 
Autumn 8.23 9.89 
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Table SI 3.5. This and next page: The average and standard deviation of relative abundances of 
key taxonomic groups by season unit. 

Taxon SeasonUnit Mean (%) Standard Deviation 
(%) 

Cyanobacteria;Phormidium Early summer 33.55 15.94 
Cyanobacteria;Phormidium Late summer 35.55 23.92 
Cyanobacteria;Phormidium Autumn 4.19 3.96 
Cyanobacteria;Planktothrix Early summer 8.05 7.83 
Cyanobacteria;Planktothrix Late summer 1.88 4.36 
Cyanobacteria;Planktothrix Autumn 8.43 11.54 
Cyanobacteria;Spirulina Early summer 0.02 0.03 
Cyanobacteria;Spirulina Late summer 0.04 0.09 
Cyanobacteria;Spirulina Autumn 0.55 1.65 
Cyanobacteria;Pseudanabaena Early summer 0.00 0.01 
Cyanobacteria;Pseudanabaena Late summer 0.01 0.03 
Cyanobacteria;Pseudanabaena Autumn 0.15 0.30 
Other Cyanobacteria Early summer 4.36 2.48 
Other Cyanobacteria Late summer 2.47 1.96 
Other Cyanobacteria Autumn 2.43 1.42 
Epsilonproteobacteria S-oxidizers Early summer 4.81 5.07 
Epsilonproteobacteria S-oxidizers Late summer 2.41 1.93 
Epsilonproteobacteria S-oxidizers Autumn 3.11 1.66 
Other Epsilonproteobacteria Early summer 0.06 0.08 
Other Epsilonproteobacteria Late summer 0.22 0.30 
Other Epsilonproteobacteria Autumn 0.96 1.26 
Gammaproteobacteria;Beggiatoa Early summer 4.78 7.40 
Gammaproteobacteria;Beggiatoa Late summer 5.25 4.11 
Gammaproteobacteria;Beggiatoa Autumn 10.79 12.19 
Other Gammaproteobacteria Early summer 2.27 1.46 
Other Gammaproteobacteria Late summer 2.20 1.89 
Other Gammaproteobacteria Autumn 5.55 2.93 
Deltaproteobacteria;Desulfonema Early summer 0.34 0.45 
Deltaproteobacteria;Desulfonema Late summer 5.95 5.95 
Deltaproteobacteria;Desulfonema Autumn 6.06 4.97 
Deltaproteobacteria;Desulfocapsa Early summer 2.67 1.99 
Deltaproteobacteria;Desulfocapsa Late summer 3.00 2.57 
Deltaproteobacteria;Desulfocapsa Autumn 0.94 0.88 
Other Deltaproteobacteria Early summer 1.85 1.19 
Other Deltaproteobacteria Late summer 3.06 2.53 
Other Deltaproteobacteria Autumn 5.76 2.03 
Other Proteobacteria Early summer 16.44 5.23 
Other Proteobacteria Late summer 9.13 5.27 
Other Proteobacteria Autumn 12.25 6.19 
Acidobacteria Early summer 0.33 0.17 
Acidobacteria Late summer 0.52 0.55 
Acidobacteria Autumn 1.09 0.38 
Bacteroidetes Early summer 14.73 4.72 
Bacteroidetes Late summer 15.52 6.44 
Bacteroidetes Autumn 18.31 6.92 
Chlorobi Early summer 0.13 0.08 
Chlorobi Late summer 0.31 0.39 
Chlorobi Autumn 0.78 0.39 
Chloroflexi Early summer 0.23 0.11 
Chloroflexi Late summer 0.94 1.37 
Chloroflexi Autumn 1.75 0.68 
Firmicutes Early summer 1.16 0.87 
Firmicutes Late summer 3.46 5.56 
Firmicutes Autumn 2.80 1.50 
Planctomycetes Early summer 0.24 0.15 
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Planctomycetes Late summer 0.93 1.00 
Planctomycetes Autumn 1.60 0.73 
Spirochaetes Early summer 1.12 1.07 
Spirochaetes Late summer 1.98 1.56 
Spirochaetes Autumn 2.87 1.46 
Verrucomicrobia Early summer 1.42 0.96 
Verrucomicrobia Late summer 2.07 2.66 
Verrucomicrobia Autumn 5.07 2.46 
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Table SI 3.6. This and next 3 pages: The average and standard deviation of relative abundances 
of Deltaproteobacterial putative sulfate reducers in each season unit. 

Taxon Season Unit Mean 
(%) 

Standard 
deviation 
(%) 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;De
sulfarculus 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;De
sulfarculus 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;De
sulfarculus 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;Ot
her 

Autumn 0.06 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;Ot
her 

Early summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfarculales;Desulfarculaceae;Ot
her 

Late summer 0.02 0.05 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatibacillum 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatibacillum 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatibacillum 

Late summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatiferula 

Autumn 0.03 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatiferula 

Early summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfatiferula 

Late summer 0.01 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacter 

Autumn 0.03 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacter 

Early summer 0.01 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacter 

Late summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacterium 

Autumn 0.85 0.52 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacterium 

Early summer 0.19 0.15 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacterium 

Late summer 0.34 0.40 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacula 

Autumn 0.31 0.21 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacula 

Early summer 0.03 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfobacula 

Late summer 0.12 0.12 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfococcus 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfococcus 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfococcus 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfofaba 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfofaba 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfofaba 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea Autumn 6.06 4.97 
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e;Desulfonema 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfonema 

Early summer 0.84 1.62 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfonema 

Late summer 5.29 5.57 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulforegula 

Autumn 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulforegula 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulforegula 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfosarcina 

Autumn 0.15 0.18 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfosarcina 

Early summer 0.02 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfosarcina 

Late summer 0.07 0.19 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfotignum 

Autumn 0.01 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfotignum 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Desulfotignum 

Late summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Other 

Autumn 0.24 0.16 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Other 

Early summer 0.03 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobacteracea
e;Other 

Late summer 0.32 0.83 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobacterium 

Autumn 0.59 0.35 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobacterium 

Early summer 0.22 0.22 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobacterium 

Late summer 0.48 0.56 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobulbus 

Autumn 0.20 0.12 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobulbus 

Early summer 0.14 0.20 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfobulbus 

Late summer 0.10 0.09 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfocapsa 

Autumn 0.94 0.88 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfocapsa 

Early summer 2.40 1.84 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfocapsa 

Late summer 2.72 2.38 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfopila 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfopila 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfopila 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulforhopalus 

Autumn 0.03 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulforhopalus 

Early summer 0.01 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulforhopalus 

Late summer 0.02 0.04 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfotalea 

Autumn 0.00 0.00 
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Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfotalea 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfotalea 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfurivibrio 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfurivibrio 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Desulfurivibrio 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Other 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Other 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Desulfobulbaceae;
Other 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Nitrospinaceae;Ni
trospinaceae 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Nitrospinaceae;Ni
trospinaceae 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Nitrospinaceae;Ni
trospinaceae 

Late summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Other Autumn 0.06 0.06 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Other Early summer 0.00 0.01 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfobacterales;Other Late summer 0.02 0.04 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfohalobiace
ae;Desulfovermiculus 

Autumn 0.03 0.02 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfohalobiace
ae;Desulfovermiculus 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfohalobiace
ae;Desulfovermiculus 

Late summer 0.01 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfomicrobia
ceae;Desulfomicrobium 

Autumn 0.22 0.19 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfomicrobia
ceae;Desulfomicrobium 

Early summer 0.21 0.20 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfomicrobia
ceae;Desulfomicrobium 

Late summer 0.18 0.25 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfonatronac
eae;Desulfonatronum 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfonatronac
eae;Desulfonatronum 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfonatronac
eae;Desulfonatronum 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionac
eae;Desulfovibrio 

Autumn 0.10 0.05 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionac
eae;Desulfovibrio 

Early summer 0.04 0.06 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionac
eae;Desulfovibrio 

Late summer 0.04 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfurellales;Desulfurellaceae;Oth
er 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfurellales;Desulfurellaceae;Oth
er 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfurellales;Desulfurellaceae;Oth
er 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Desulfuromonas 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Desulfuromonas 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Desulfuromonas 

Late summer 0.00 0.00 
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Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Other 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Other 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Other 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Pelobacter 

Autumn 0.03 0.05 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Pelobacter 

Early summer 0.02 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Desulfuromona
daceae;Pelobacter 

Late summer 0.02 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geobacter 

Autumn 0.34 0.49 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geobacter 

Early summer 0.32 0.39 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geobacter 

Late summer 0.11 0.12 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geothermobacter 

Autumn 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geothermobacter 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Geobacteraceae
;Geothermobacter 

Late summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Other Autumn 0.05 0.04 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Other Early summer 0.00 0.01 
Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonadales;Other Late summer 0.02 0.03 
Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfobacca 

Autumn 0.01 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfobacca 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfobacca 

Late summer 0.00 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfomonile 

Autumn 0.03 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfomonile 

Early summer 0.01 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophaceae;
Desulfomonile 

Late summer 0.02 0.03 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophobacte
raceae;Desulfovirga 

Autumn 0.01 0.01 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophobacte
raceae;Desulfovirga 

Early summer 0.00 0.00 

Bacteria;Proteobacteria;Deltaproteobacteria;Syntrophobacterales;Syntrophobacte
raceae;Desulfovirga 

Late summer 0.00 0.01 
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Table SI 3.7.  This and next 2 pages: Weighted averages of log2-normalized abundances of 
proteins across season unit. Log2-normalized abundances and spectral abundance of proteins 
in samples from respective season units were used to generate weighted averages and 
standard deviations (when a protein was observed in more than 1 sample in each season unit). 
Proteins found to be significantly differentially abundant between early and late summer are 
noted with "a", between early summer and autumn with "b", and between late summer and 
autumn with "c".        

        
Protein Short 

name 
System Organism Early 

summer 
Late 
summer 

Autumn Significant 
relationships 

3300002024_MIS_
10189961 

AtpA Central 
metabolism 

Anaerolinea -0.74 ± 
0.13 

0.17 ± 
0.2 

-1.92 ± 
0.25 

abc 

3300002024_MIS_
10898911 

GapA Calvin-Benson-
Bassham Cycle 

Beggiatoa  -1.87 ± 
1.11 

1.36 ± 
0.21 

c 

3300002024_MIS_
11408701 

DsrA Sulfide oxidation Beggiatoa   -0.12  

3300002027_MIS_
101406783 

DsrA Sulfide oxidation Beggiatoa  -2.13 ± 
1.26 

0.37 ± 
0.98 

 

3300002027_MIS_
101719261 

OMP Central 
metabolism 

Beggiatoa  -2.48 ± 
1.39 

1.38 ± 
0.39 

c 

3300002024_MIS_
11106572 

DsrC Sulfide oxidation Beggiatoa   0.42  

3300002027_MIS_
100764955 

DsrC Sulfide oxidation Beggiatoa  -2.67 ± 
1.21 

-0.97 ± 
1.18 

 

3300002026_MIS_
1000010375 

AtpD Central 
metabolism 

Chloroplast 
genome 

-0.01 ± 
0.25 

-3.37 ± 
0.49 

-1.37 ± 
0.48 

ac 

3300002026_MIS_
1000043450 

Rubisco Carbon fixation Chloroplast 
genome 

0.21 ± 
0.18 

-3.21 ± 0 -0.92 ± 
0.11 

b 

3300002027_MIS_
100225507 

ApsR Sulfate reduction Desulfobacterac
eae 

 -0.06 ± 
0.95 

-1.32 ± 
0.18 

 

3300002024_MIS_
11625411 

AtpD Central 
metabolism 

Desulfotalea -3.75 -2.25 ± 
0.92 

0.24 ± 
0.48 

c 

3300002024_MIS_
10280361 

AtpA Central 
metabolism 

Diatom -0.01 ± 
0.24 

-3.19 -1.43 ± 
0.41 

b 

3300002024_MIS_
10574951 

Actin  Eukaryote 1.09 ± 
0.42 

-1.77 ± 
0.3 

-1.49 ± 
0.23 

ab 

3300002027_MIS_
100411962 

Ubiquitin  Eukaryote 0.01 -3.64 ± 
0.85 

0 ± 0.3 c 

3300002026_MIS_
100111357 

OMP Central 
metabolism 

Methylococcace
ae 

 -2.29 ± 
0.85 

1.93 ± 0.3 c 

3300002026_MIS_
1001557613 

CpeB Photosynthesis Oscillatorial -2.91 ± 
1.16 

-0.49 ± 
0.33 

-3.74 ± 
0.12 

c 

3300002024_MIS_
11047972 

L7/L12 Central 
metabolism 

Phormidium -1.02 ± 
0.9 

-0.17 ± 
0.14 

-2.25 ± 
0.32 

c 

3300002024_MIS_
11767773 

GroES Central 
metabolism 

Phormidium 0.43 ± 
0.29 

0.92 ± 
0.29 

-2.87 ± 
0.2 

bc 

3300002027_MIS_
100694095 

GroEL Central 
metabolism 

Phormidium -0.62 ± 
0.42 

0.35 ± 
0.31 

-2.59 ± 
0.19 

bc 

3300002024_MIS_
11788891 

SOD Photosynthesis Phormidium 0.14 ± 
0.25 

0.07 ± 
0.29 

  

3300002027_MIS_
100354662 

TrxA Photosynthesis Phormidium 2.95 ± 
0.47 

 -0.11 ± 
0.18 

b 

3300002027_MIS_
101999963 

TrxA Photosynthesis Phormidium 0.35 ± 
0.45 

0.2 ± 0.3 -3.32 ± 
0.48 

bc 

3300002026_MIS_
100342443 

PsaB Photosynthesis Phormidium -0.22 ± 
0.68 

-0.09 ± 
0.18 

-1.44 ± 
0.24 

c 

3300002026_MIS_
1001623010 

ApcB Photosynthesis Phormidium 0.12 ± 
0.36 

0.03 ± 
0.28 

-1.7 ± 
0.15 

bc 
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3300002026_MIS_
100162309 

ApcA Photosynthesis Phormidium 1.54 ± 
0.54 

0.7 ± 
0.34 

-1.69 ± 
0.19 

bc 

3300002027_MIS_
101595453 

ApcF Photosynthesis Phormidium -0.62 ± 
0.01 

0.17 ± 
0.3 

-1.53 a 

3300002027_MIS_
101997101 

ApcF Photosynthesis Phormidium -2.21 -0.52   

3300002026_MIS_
1001623011 

ApcC Photosynthesis Phormidium 0.42 ± 
0.74 

   

3300002027_MIS_
101997102 

GS Central 
metabolism 

Phormidium -3.22 0.76 ± 
0.67 

  

3300002027_MIS_
100694094 

GroES Central 
metabolism 

Phormidium 2.31 ± 
0.06 

   

3300002027_MIS_
101905325 

Cation 
transport 
ATPase 

 Phormidium  -0.1   

3300002027_MIS_
100217005 

CpeC Photosynthesis Phormidium -0.49 -0.24 ± 
0.5 

  

3300002027_MIS_
100523011 

CpcC Photosynthesis Phormidium -2.43 0.48 ± 
0.32 

  

3300002027_MIS_
101945691 

CpeE Photosynthesis Phormidium -0.83 ± 
0.04 

0.41 ± 
0.15 

-2.34 ± 
0.29 

abc 

3300002027_MIS_
101945692 

CpeD Photosynthesis Phormidium -4.28 0.86 ± 
0.41 

  

3300002027_MIS_
100155491 

CpcB Photosynthesis Phormidium 2.42 ± 
0.84 

-2.58 ± 
1.29 

-1.45 ± 
0.39 

ab 

3300002027_MIS_
100155492 

CpcA Photosynthesis Phormidium 0.84 ± 
2.03 

   

3300002027_MIS_
100217001 

CpeA Photosynthesis Phormidium -2.52 ± 
0.55 

0.05 ± 
0.31 

-4.04 ± 
2.25 

a 

3300002027_MIS_
100217002 

CpeB Photosynthesis Phormidium -1.62 ± 
0.48 

-0.08 ± 
0.09 

-1.26 ± 
1.4 

 

3300002027_MIS_
100523012 

CpcA Photosynthesis Phormidium -1.01 ± 
0.17 

-0.47 ± 
0.55 

-3.65 ± 
0.38 

bc 

3300002027_MIS_
100523013 

CpcB Photosynthesis Phormidium -1.8 ± 
0.2 

0.33 ± 
0.38 

-0.94 ± 
1.31 

a 

3300002027_MIS_
101905321 

CpcB Photosynthesis Phormidium -2.89 ± 
0.58 

0.1 ± 
0.13 

-1.43 ± 
0.49 

a 

3300002027_MIS_
101906971 

CpeA Photosynthesis Phormidium 1 ± 0.33 -2.22 ± 
1.4 

-0.5 ± 
0.45 

b 

3300002027_MIS_
101906972 

CpeB Photosynthesis Phormidium 1.55 ± 
0.45 

-1.87 ± 
1.34 

-0.76 ± 
0.53 

ab 

3300002027_MIS_
101849361 

Cna 
protein B-
type 
domain 

Central 
metabolism 

Phormidium 3.56 ± 
0.01 

1.33 ± 
0.26 

 a 

3300002026_MIS_
1001011015 

PspE Sulfur cycling Phormidium  1.3   

3300002027_MIS_
100753761 

AtpD Central 
metabolism 

Planktothrix -1.99 ± 
0.89 

0.41 ± 
0.49 

-2.26 ± 
0.15 

c 

3300002027_MIS_
100129452 

PsaD Photosynthesis Planktothrix -0.41 ± 
1.11 

0.45 ± 
0.32 

-2.89 ± 
0.13 

c 

3300002024_MIS_
10075351 

CpeE Photosynthesis Planktothrix -0.92 ± 
0.27 

1.29 ± 
0.28 

-2.77 a 

3300002024_MIS_
10075352 

CpeD Photosynthesis Planktothrix -1.92 -0.12 ± 
0.39 

-1.5  

3300002026_MIS_
1000534011 

GroEL Central 
metabolism 

Pseudanabaena -1.94 ± 
0.66 

0.4 ± 
0.34 

-3.65 ± 
1.02 

a 

3300002026_MIS_
1000265839 

PsaA/Psa
B 

Photosynthesis Putative 
chloroplast 
genome 

-0.18 ± 
0.06 

 -1.03 ± 
0.55 

 

3300002026_MIS_ PsaF Photosynthesis Putative -0.09 ± -4.79 ± -1.58 ± ac 



 132 

1000265837 chloroplast 
genome 

0.31 1.25 0.66 

3300002026_MIS_
1000265832 

PsaL Photosynthesis Putative 
chloroplast 
genome 

0.03 ± 
0.36 

-4.31 -0.01 ± 
0.2 

 

3300002024_MIS_
10200811 

Fba Carbon fixation Rhodoferax -2.7 ± 
0.31 

0.18 ± 
0.5 

 a 

3300002026_MIS_
1000340919 

GTPase Central 
metabolism 

SOB   0.39  

3300002026_MIS_
1000443213 

L14 Central 
metabolism 

SOB   0.47 ± 
0.21 

 

3300002026_MIS_
100330993 

GS Central 
metabolism 

SOB   -0.93  

3300002026_MIS_
1003449713 

GroES Central 
metabolism 

SOB  -0.38 0.16  

3300002024_MIS_
10135141 

DsrA Sulfate reduction SRB  -0.14 ± 0   

3300002027_MIS_
101924972 

DsrC Sulfate reduction SRB  -0.08 ± 
1.58 

  

3300002026_MIS_
1000769710 

PecC Photosynthesis Unknown 
cyanobacterium 

1.8 ± 1.1 -3.63 ± 
1.36 

-2.34 ± 
0.29 

a 

3300002026_MIS_
1000769711 

CpcG Photosynthesis Unknown 
cyanobacterium 

0.71 ± 
1.31 

-4.04 ± 
0.65 

-2.16 ± 
0.35 

ac 

3300002026_MIS_
100076979 

PecA Photosynthesis Unknown 
cyanobacterium 

0.15    

3300002027_MIS_
101689572 
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Figure SI 3.1. Quantities of light available at 23 m in the MIS arena or in the open water 
outside of MIS (“open”) from hyperspectral casts. The available light (y-axis) is plotted 
for each wavelength (x-axis) of PAR. Different sampling days are represented with 
colors, and separate casts from the same day are in solid or dashed lines. 

 
 

Green light Red light0.0

0.5

1.0

400 500 600 700 800
Wavelength (nm)Li

gh
t a

t e
ac

h 
wa

ve
le

ng
th

 a
t 2

3 
m

 d
ep

th
 (µ

m
ol

 p
ho

to
ns

 m
−2

s−
1 nm

−

Location, Date, and Cast

MIS 20150606 cast 1

MIS 20150606 cast 2

Open 20150606 cast 3

Open 20150606 cast 4

MIS 20160720 cast 1

MIS 20160720 cast 2

MIS 20160727 cast 1

MIS 20160727 cast 2

MIS 20151008 cast 1



 134 

Figure SI 3.2. Calculated k-extinction coefficients at 23 m in the MIS arena or away 
from the arena (“open”) from hyperspectral casts. The extinction coefficient (y-axis) is 
plotted for each wavelength (x-axis) of PAR. Different sampling days are represented 
with colors, and separate casts from the same day are in solid or dashed lines. 
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Figure SI 3.3. Specific conductivity measured with hand-held probe or calculated from 
ion chemistry (IC and ICPMS) in water samples. Units are µS cm-1. 
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Figure SI 3.4. Deviations from the Great Lakes Mean Water Line, d-excess (difference 
between measured δD and modeled δD from Great Lakes Mean Water Line,) for water 
samples at each location per season. The mean for each season is presented as the colored 
horizontal line, and box and whiskers summarize 25-75th percentiles of observations 
(colored circles). 
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Figure SI 3.5. Measured ion concentrations in water samples compared to predicted ion 
concentrations based on δ18O-derived linear mixing model. Colored points represent 
measurements of ions of interest (sulfate, chloride, fluoride, sodium, potassium, 
magnesium, and calcium), and the horizontal colored line is the mean measured 
concentration per season unit. For each season, the gray box represents the mean 
predicted concentrations and standard deviations using the concentrations measured in 
Alpena fountain and the isotope-derived linear mixing model between surface water and 
Alpena fountain water. 
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Figure SI 3.6. δ18O and modeled percentage of groundwater at specific locations in MIS 
arena in 2016. Samples collected in late summer are marked red, and autumn samples are 
white. 
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Figure SI 3.7. Relative abundance of relevant bacterial taxonomic groups in samples, 
grouped by month and year. Relative abundances of key genera were summed and 
presented, and classes and phyla without those genera are represented. 
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Figure SI 3.8. Change (Δ) in relative abundance of key bacterial taxa in light-
manipulation experiments conducted in summer. Relative abundances at day 0 are 
normalized to in situ relative abundances from the collection day. The subsequent values 
are normalized to the relative abundance of the taxa at the prior timepoint. Ribbons show 
the range of Δ between replicates. Samples at 100% in situ light intensity are plotted in 
red, those at 50% in situ light intensity in green, and those at 10% in situ light intensity in 
blue. 
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Figure SI 3.9. Change (Δ) in relative abundance of key bacterial taxa in light-
manipulation experiments conducted in autumn. Relative abundances at day 0 are 
normalized to in situ relative abundances from the collection day. The subsequent values 
are normalized to the relative abundance of the taxa at the prior timepoint. Ribbons show 
the range of Δ between replicates. Samples at 100% in situ light intensity are plotted in 
red, those at 50% in situ light intensity in green, and those at 10% in situ light intensity in 
blue. 
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Figure SI 3.10. Correlation network showing significant (p < 0.001) relationships in 
relative abundances of 60 genera. Bray-Curtis distance matrix was calculated from read 
counts of genera and used to generate a correlation network. 
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Figure SI 3.11. Heatmap of significant correlations between abundances of bacterial 
genera. The upper right triangle shows the strength of the average correlation (0 to 1) 
calculated from 4 distance matrices. The lower left triangle shows the standard deviation 
of the mean correlation. Genera are clustered by similarity in correlation patterns.  
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Chapter IV: Functional Overlap of Sulfur Cycling Bacteria Between Microbial Mat 
Morphotypes 

 

4.1 Abstract 

Microbial mats with diverse morphologies are widespread in the geologic record, but 

inferring their taxonomic composition, metabolisms, and environmental settings remains a 

challenge. Investigations of extant mats with settings similar to ancient Earth can reveal the links 

between mat geochemistry, morphology, and microbiology. In this study, we analyzed microbial 

community structure (16S rRNA genes and metagenomics), function (metagenomics and 

metaproteomics), and geochemistry (microsensors) in different mat morphotypes (flat purple, 

finger mat, white mat, and giraffe mat) observed in Middle Island Sinkhole, a submerged 

sinkhole in which the benthic environment is impacted by low-O2, sulfur-rich groundwater. 

Community structure and function were substantially different between the mat types. Flat mats 

were classified into two groups, characterized by their dominant cyanobacteria (either 

Phormidium or Spirulina and Pseudanabaena) and spatiotemporal range. Phormidium was most 

abundant in finger mat and select flat mat, and was significantly abundant in their proteomes. In 

giraffe and white mats, sulfide-oxidizing gammaproteobacteria and epsilonproteobacteria, 

sulfate-reducing deltaproteobacteria, and cyanobacteria Pseudanabaena and Spirulina were 

abundant and metabolically active based on their proteomic abundance. In contrast to these 

differences in community composition, measurements of H2S and O2 vertical profiles and rates 

of oxygenic and H2S-based anoxygenic photosynthesis in the cyanobacterial mats show similar 
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microscale geochemical environments and photosynthesis across mat morphotypes, implying 

that different taxonomic groups perform similar key ecosystem functions. Metagenomics 

revealed similar gene content encoding capacity for low-O2 lifestyles and sulfide-based 

anoxygenic photosynthesis (AP) between Phormidium and Pseudanabaena, and Planktothrix 

and Spirulina, suggesting niche similarity between these pairs of cyanobacteria in different mats. 

Various groups of sulfate-reducing bacteria and sulfide-oxidizing bacteria were also 

differentially abundant and functionally active across different mat types, likely due to 

differences in O2 tolerance (sulfate-reducing bacteria) and in N and S metabolisms (sulfide-

oxidizing bacteria) inferred from the metagenomes. While the core proteome was largely 

conserved between mat morphotypes, the shifts in relative abundances of functional guilds of 

bacteria, and their significant differences in protein abundances in each mat type, point to a 

subtle shift in the sulfur-cycling mat community. Although the environmental drivers of these 

shifts remain unclear, our exploration of the connection between geochemistry, taxonomic 

diversity, and metabolic functions in geologically-relevant mat morphological types highlights 

the complexity behind ecological interpretations of microbial mats throughout Earth history. 

 

4.2 Introduction 

Microbial mats are dynamic ecosystems that showcase the linkage between organisms, 

metabolisms, and biogeochemical cycling. Environmental changes, such as shifts in light that 

impact photosynthetic activity in cyanobacteria, often induce concerted metabolic responses in 

different functional groups of microorganisms that manifest in changes in the mat appearance 

(Bosak et al., 2009; Bradley et al., 2017; Hamilton et al., 2018; Reyes et al., 2013). Geochemical 

variability, including changes in oxygen concentration, influence abundance and physical 
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positioning of sulfide-oxidizing bacteria and sulfate reducers in mats relative to O2 due to their 

different ranges of aerotolerance and energetic requirements (Baumgartner et al., 2006; Klatt, 

Meyer, et al., 2016). Additionally, bacterial sulfate reduction (Visscher et al., 2000) and 

cyanobacterial photosynthesis (Kraus et al., 2018; Pepe-Ranney et al., 2012) can alter the local 

geochemical environment and influence lithification and mineral precipitation in mats. Such 

interactive processes have been implicated in the morphological appearances and preservation of 

microbial mats in the Archean and Proterozoic (Noffke & Awramik, 2013; Stal, 2012). Because 

of their consolidation of microbes and metabolisms, and their broad temporal range, microbial 

mats are important biogeochemical systems throughout Earth history. 

The dynamics between microbes and metabolisms in modern mats have been 

extrapolated to understand metabolisms, microbes, and biogeochemical cycling in mats 

preserved in the geological record. Mats can hold both body fossils (preserved cells) as well as 

trace fossils (indicators of microbial activity). Common preserved mat types that are attributable 

to cyanobacteria include laminae, wrinkled structures, and conical or domal mat (Bosak et al., 

2013; Noffke, 2010). A thorough spatiotemporal census of mat morphotype and distribution has 

been limited to mineralizing and laminating stromatolites and microbialites, whereas 

microbially-induced sedimentary structures are not as widely surveyed (Noffke & Awramik, 

2013). Flat mats are observed throughout the geological record, whereas the oldest wrinkled or 

ripple-patterned mat is ~2.9 Ga (Noffke et al., 2003), and domal cones have been observed only 

since the Great Oxidation Event 2.4-2.1 Ga (Bosak et al., 2009). Phototactic growth of 

cyanobacteria and their relative orientation to the surface has been used to explain layering in 

fossil mats (Stal, 2012). Upward growth and formation of cones has been attributed to phototaxis 

as well, though trapped gases underlying the mat may also contribute to their structure (Bosak et 
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al., 2009; Noffke, 2010). Cyanobacterial mats can leave behind “wrinkle marks” in the sediment 

with wavy ridges and pits, but trapping of gases such as O2 or H2S under the EPS-rich mat, or 

other bacterial activities, can also generate mottled condensed mat in some areas (Flood et al., 

2014; Noffke, 2010; Porada et al., 2008). Because of these diverse mechanisms of formation, 

mat morphotypes have not been strictly attributed to specific geochemical environments. For 

example, domal or cone structures in the fossil record have been interpreted to be O2 oases 

(Bosak et al., 2009) but they could just as well have been from the upward ballooning of mats by 

sediment-derived H2S (Noffke, 2010) or methane (Bosak et al., 2009). 

Though we frequently use modern microbial mats as analogs to early Earth ecosystems, a 

critical gap remains in understanding the phylogenetic and ecological similarities between 

inhabitants of contemporary and ancient mats. Microbial mats are behind the formation of 

microbialites, biogenic stromatolites, and microbially induced sedimentary structures, and 

preserved cell morphologies are used to infer organism groups responsible for these structures. 

However, in modern microbiology cell shape and size are often not informative with regard to 

taxonomy, and thus fossilized forms lack information about community membership, 

metabolisms, and ecological interactions (Bosak et al., 2013; Bradley et al., 2017; Noffke & 

Awramik, 2013). Despite the extensive phylogenetic diversity in modern microbial taxa (Hug et 

al., 2016), most major biogeochemical cycles are driven by a limited set of core metabolic 

pathways and biochemical structures (Falkowski & Godfrey, 2008; Louca et al., 2018). 

Oxygenic photosynthesis (OP) arose in cyanobacteria (Xiong et al., 2000), and evidence exists 

for methanogenesis having an archaeal origin (Woese, 1987), but other key metabolisms, such as 

aerobic respiration (Brochier-Armanet et al., 2009; Soo et al., 2017), anoxygenic photosynthesis 

(AP) (Raymond et al., 2002; Shih et al., 2017), and sulfide oxidation (Anantharaman et al., 
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2014), have been subjects of wide and recent lateral gene transfer between microorganisms 

across the tree of life (Gogarten & Townsend, 2005). With the widespread distribution of key 

metabolisms such as AP and sulfide oxidation across multiple lineages, in diverse microbial 

communities there can exist functional redundancy wherein phylogenetically distinct but 

coexisting members can perform the same metabolic function, forming functional groups or 

guilds (Fukami, 2015; Hubbell, 2005; Louca et al., 2018). Under similar environmental 

constraints, different taxa can occupy the same functional niche in different microbial 

ecosystems, complicating the relationship between phylogeny and ecology. 

Classifying organisms by functional group or guild can be difficult when the same 

organism performs multiple distinct metabolisms, such as cyanobacteria capable of both OP and 

AP using sulfide. Metabolically flexible cyanobacteria have been observed in microbial mats in 

hypersaline lakes (Cohen et al., 1975), hot springs (Garcia Pichel & Castenholz, 1990), sulfidic 

cave systems (Klatt, Meyer, et al., 2016), and karst sinkholes (Hamilton et al., 2018; Voorhies et 

al., 2012). Instead of using both photosystems I (PSI) and II (PSII) and oxidizing water as they 

would for OP, AP cyanobacteria transfer electrons from H2S to PSI using sulfide quinone 

reductase (SQR), and do not employ PSII (Arieli et al., 1994; Klatt, de Beer, et al., 2016). AP 

and sulfide physiologies are not ancestral traits in cyanobacteria (Dick et al., 2018; Miller & 

Bebout, 2004; Sanchez-Baracaldo et al., 2005), complicating the relationship between functional 

role and phylogeny in AP cyanobacteria. Such metabolically flexible cyanobacteria are inferred 

to have inhabited chemically-stratified Proterozoic seas and have been implicated in Earth’s 

delayed oxygenation (Johnston et al., 2009). However, in the modern world, with its oxic surface 

and scarcity of sulfide in sunlit habitats, AP cyanobacteria are restricted to mats and biofilms in 

extreme settings (Cohen et al., 1975; Hamilton et al., 2018; Klatt, de Beer, et al., 2016; Klatt, 
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Meyer, et al., 2016). Exploring the ecology of metabolically flexible cyanobacteria in microbial 

mats will elucidate their role in modern biogeochemical cycling, and allow better assessments of 

their impact on oxygenation in Earth history. 

 Middle Island Sinkhole (MIS) is a submerged sinkhole in Lake Huron, Michigan with 

microbial mats that experiences seasonal shifts in irradiance and mixing of high-sulfate, low O2 

groundwater with fresh lake water (Chapter III). AP-capable cyanobacteria, sulfate-reducing 

bacteria, and sulfide-oxidizing bacteria form a coherent microbial mat above organic-rich 

sediment (Biddanda et al., 2009; Rico & Sheldon, 2019; Ruberg et al., 2008; Voorhies et al., 

2012). In this study, we describe the appearance, microbial composition and function, and 

geochemical fluxes of four mat morphotypes observed in MIS from 2015-2017. Domal uplifted 

“finger” mat, white unpigmented flat mat, flat purple mat, and mottled “giraffe” patterned mat 

were functionally and geochemically distinct. We observed the bacterial community and 

functional profile shift in flat purple mat over the measured years, presumably due to bacterial 

interactions and responses to their changing environment. We explore the relationship between 

guilds of various metabolic functions (photosynthesis, sulfide oxidation, and sulfate reduction), 

mat appearance, and impact on geochemical cycling in these discrete mat types. 

 

4.3 Methods and materials 

Sample collection. We sampled Middle Island Sinkhole (located at 45° 11.914 N, 83° 19.671 

W), a 23.0 m deep sinkhole of approximately 125 m length and 100 m width in Lake Huron 

(Baskaran et al., 2016; Ruberg et al., 2008). Multiple mat morphotypes were collected: flat 

purple mat (June, July, and October 2015; June, July and September 2016; and June, August, and 

September 2017); purple “finger” mats with a domal, uplifted structure (June 2015, July 2016, 
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and June 2017); giraffe mat, so called for cm-scale darker pigmented borders surrounding lighter 

pigmented areas (July 2016; at other times we did not observe that mat morphotype); and flat 

white mat (July 2016 and September 2017). Sampling in July 2016 occurred with respect to a 

transect grid (Figure SI 4.1), with mats collected either by the “D” line, along the “A” line, or 

the area from “A6” to “C4”. Scuba divers from the NOAA Thunder Bay National Marine 

Sanctuary collected intact mat and sediment cores using 20 x 7 cm clear polycarbonate tubes and 

rubber stoppers. Cores were kept upright, in the dark and on ice or at 4˚C until sampling within 2 

hr of collection. Microbial mat was removed intact from cores, homogenized, stored in 2mL 

microcentrifuge tubes, and frozen at -80˚C until DNA extraction. Samples were subjected to 

sequencing of the 16S rRNA gene, metaproteomics, and/or shotgun metagenomics (Table SI 

4.1). 

 

Micrometer scale geochemical measurements. Microsensors for O2, H2S, and pH were prepared 

and calibrated as previously described (Revsbech and Ward 1983; Jeroschewski et al., 1996; de 

Beer et al., 1997). Laboratory measurements (2015 and 2016, multiple profiles) focused on flat 

purple and finger mats, and in situ measurements covered flat purple mat near the D line (2016), 

giraffe mat in the A4-C5 area (2016), and flat white mat (2017). Sensors were positioned and 

visually inspected to be located at the mat surface to determine the sediment-water interface or 

‘0’ position. Measurements in the laboratory were conducted with a micromanipulator and 

stepper-motor for each probe. In the laboratory, rates of gross oxygenic photosynthesis were 

calculated using a light-dark shift approach (Revsbech and Jorgensen, 1983), and anoxygenic 

photosynthesis was resolved by dosing the mat with sulfide during light-dark shifts (Klatt, Haas, 

et al., 2015). Halogen lamps and blue-green theatre film (Rosco, Stamford, CT) were used to 
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produce a light regime of 58-79 µmol photons m-2 s-1 with similar light fields as in situ. In situ 

field measurements were conducted with an automated deployed micromanipulator with two 

probes for each parameter arranged within a circular frame, measuring at alternate steps in depth 

(de Beer et al., 2017). Field deployments were for 24 h cycles and took advantage of the natural 

light field (maximal daily intensity of 30-57 µmol photons m-2 s-1). For flux estimates from in 

situ profiles (n = 2 each mat type), due to the probes’ destruction of the substrate in their descent, 

measurements at approximately 2 PM (1400) local time were used.  

 

DNA preparation and sequencing. We extracted up to 0.5 g of wet mat material using a 

modified version of the MPBio Fast DNA Spin Kit for Soil (MP Biomedical, Santa Anna, CA, 

USA). In summary, 0.3 g of beads (corresponding to one large bead, seven medium beads, and 

an equal volume of small beads), sodium phosphate buffer, and MT buffer was used to 

chemically and mechanically lyse cells, in either the FastPrep instrument for 45 s (samples up to 

2013), or horizontal lysis on a vortex mixer for 10 min at speed 7 (2014-2015). After protein 

precipitation, DNA was cleaned, pelleted, and resuspended in up to 100 µL nuclease-free water. 

DNA was stored at 4˚C for immediate quantification and -20˚C for long term. 

We used the PicoGreen assay (Invitrogen, Carlsbad, CA, USA) to quantitate double 

stranded DNA. Samples were normalized to between 1-25 ng/µL and submitted to the University 

of Michigan Host Microbiome Core for Illumina library preparation and sequencing (Kozich et 

al., 2013; Seekatz et al., 2015). Bacterial primers 515F/806R were used to amplify the 16S rRNA 

gene v4 region in a reaction mixture consisting of 5 µL of 4 µM equimolar primer set, 0.15 µL of 

AccuPrime Taq DNA High Fidelity Polymerase, 2 µL of 10x AccuPrime PCR Buffer II (Thermo 

Fisher Scientific), 11.85 µL of PCR-grade water, and 1-10 µL of DNA template. Thermocycling 
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was an initial denaturation at 95˚C for 2 min, 30 cycles of 95˚C for 20 s, 55˚C for 15 s, 72˚C for 

5 min, and a final extension of 72˚C for 10 min. PCR products were cleaned and normalized 

using SequalPrep Normalization Plate Kit (Thermo Fisher Scientific), then quantified and pooled 

equimolarly according to Kapa Biosystems Library qPCR MasterMix (ROX Low) Quantification 

kit for Illumina platforms. An Agilent Bioanalyzer kit confirmed library size and purity, and the 

library pool was sequenced on the Illumina MiSeq using a 500 cycle V2 kit with 15% PhiX for 

diversity.   

Fifteen samples representing fingers (n = 3), flat mat (5), a mixture of flat mat and finger 

(2), white mat (2) and giraffe mat (sampling a ridge, a pit, and homogenized material, n = 3) 

(Table SI 4.1) were shotgun sequenced for metagenomics at the UM DNA Sequencing Core. 

Briefly, DNA was sheared to an average size of 350bp and prepared for Illumina sequencing 

using the SMARTer PrepX kits (Clontech). Sequencing was done on three lanes of Illumina 

HiSeq 4000 2x150bp sequencing, multiplexing 6-7 samples per lane.  

 

16S rRNA gene bioinformatic analysis. Raw pairs of sequencing reads (250 bp) were quality 

trimmed and merged using ‘iu-merge-pairs’, which is a program in illumina-utils (available from 

https://github.com/merenlab/illumina-utils) (Eren et al., 2013), using minimum quality score of 

25, minimum overlap of 200 bp, and at points of divergence in the overlap the higher quality 

basecall was retained. Merged reads with five or fewer mismatches were kept for Minimum 

Entropy Decomposition v. 2.1 (Eren et al., 2014) using the following parameters: -d 4 -N 3 --

min-substantive-abundance 5 -V 3 --relocate-outliers. We used GAST (Huse et al., 2008) to call 

taxonomy using the curated SILVA database, and confirmed with BLASTN against SILVA 123 

(Pruesse et al., 2007) (bacteria and archaea), and PhytoRef (Decelle et al., 2015) (chloroplasts). 
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mothur v. 1.33 (Schloss et al., 2009) was used to check for chimeras de novo, and putatively-

chimeric nodes that did not have taxonomy assigned via SILVA 123 and GAST were removed. 

We searched for sulfate-reducing genera in the Deltaproteobacteria using a taxonomic search for 

“sulf” or “thio”. The read analysis is outlined here: https://hackmd.io/s/r1CGeQs_G. 

 

Metagenomic analysis. Raw reads were quality controlled using FastQC (Simon Andrews, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which dereplicated reads, removed 

sequencing adapters, and trimmed low quality ends. High quality reads were assembled using 

MEGAHIT v1.1.3 using --mink 21 --maxk 141 --step 12 (Li et al., 2015). Samples were 

individually assembled, and we used EukRep (West et al., 2018) to extract putatively-

prokaryotic contigs. On the contigs not flagged as putatively eukaryotic, we used METABAT 

(Kang et al., 2015) to generate metagenome assembled genomes (MAGs) using tetranucleotide 

frequencies and differential coverage. We used EMIRGE (Miller et al., 2011) to assemble reads 

into 16S rRNA genes and read mapping to match assembled 16S rRNA genes to MAGs. For 

those genes not found in MAG bins we used bandage (Wick et al., 2015) to link them to binned 

contigs via their de Brujin graphs. We used Prodigal v2.6.3 (Hyatt et al., 2010) to call genes on 

the non-eukaryotic contigs. Bins from each sample were compared against each other, and a 

‘consensus’ bin for each MAG was determined using dRep (Olm et al., 2017). Bins were 

retained that were at least 30% complete, at most 50% contaminated, and had at most 75% strain 

heterogeneity according to CheckM (Parks et al., 2015), and compared in dRep using ANImf 

algorithm of at least similarity 99.0%. Representative bins for select taxa, based off the best 

completion/contamination/strain heterogeneity metrics, as well as individual assemblies were 

uploaded to IMG/ER for analysis. Assembly statistics are provided in Table 4.1. 
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Quantitative proteomics. Samples of each mat type observed over the years (Table SI 4.1) were 

evaluated with quantitative proteomics. From 0.25 to 5.0g of wet mat material, proteins were 

extracted, isobarically labeled, and analyzed on LC-MS/MS as described in (Waldbauer et al., 

2017). Briefly, proteins were extracted from mat material using a denaturing and reducing 

extraction buffer (1% SDS, 10% glycerol, 10 mM dithiothreitol, 200 mM Tris, pH 8) at 95˚C for 

20 min. Cysteines were alkylated by addition of 40 mM iodoacetamide and incubation in the 

dark for 30 min. Where not otherwise specified, all solid reagents were dissolved in LC/MS-

grade water (Fisher Optima). Proteins were purified by a modified eFASP (enhanced filter-aided 

sample preparation) protocol (Erde et al., 2014), using Vivacon 500 concentrators (30 kDa 

nominal cutoff, Sartorius). Proteins were digested with MS- grade trypsin (Thermo Pierce) at 37 

°C overnight, and peptides were eluted from the concentrator and dried by vacuum 

centrifugation. Peptide isobaric labeling is described at protocols.io 

(dx.doi.org/10.17504/protocols.io.d2i8cd). The C-terminal of peptides was labeled with either 

18O or 16O, and the N-terminal of peptides was demethylated with either dideuterated (D2) 

formaldehyde (16O-labeled) or unlabeled (H2) formaldehyde (18O-labeled).  A standard composed 

of all samples was also labeled and run alongside samples to provide quantitative comparison 

between samples and between separate runs. We used protein sequences predicted from our de 

novo sequence metagenomes to identify proteins, and metagenome-assembled genomic bins as 

described above to link proteins to specific organisms.  

 

Statistical analyses. We used the R statistical environment (R Core Team, 2015) in RStudio 

(RStudio Team, 2014) to analyze nodes and proteins. We used Morisita-Horn metric to calculate 
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a distance matrix on Hellinger-transformed bacterial relative abundances, as input for nonmetric 

multidimensional scaling with autotransformation = TRUE. We used ‘amova’ (Excoffier et al., 

1992) in the R package ‘pegas’ (Paradis, 2010) for testing significant difference in bacterial 

community structure between mat morphotypes. We use the relative abundances of 

cyanobacterial 16S rRNA genes to sub-classify flat mat samples. To calculate the phylogenetic 

relatedness of the bacterial community between mat morphotypes, we used the function 

‘ses.mntd’ in package ‘picante’ (Kembel et al 2010). We aligned the top 1000 most abundant 

bacterial sequences using clustal-omega (Sievers et al., 2011), and made a phylogenetic tree in 

RAxML-ng v. 0.8.0 (available at https://github.com/amkozlov/raxml-ng) (Stamatakis, 2014) 

using the GTR+G4 model of evolution and bootstrapped 1000 times. The phylogenetic tree and 

the abundance matrix of the top 1000 nodes were input to ‘ses.mntd’ to generate the nearest-

taxon-index (NTI). Kruskal-Wallis testing (p < 0.05) determined if NTI varied by mat 

morphotype. 

For evaluation of differential abundance of proteins between mat morphotype (between 

flat mat subtypes, and between fingers, giraffe mat, white mat, and flat mat subtypes), we used 

Kruskal-Wallis testing (p < 0.05) of groups of proteins. We calculated the weighted mean and 

weighted standard deviation of the log2-normalized abundance ratios of samples taken from the 

same mat type. Plotting of heatmaps and bubble charts was done in ‘ggplot2’ (Wickham, 2009). 

To compare clustering of samples by proteomics profiles to clustering by 16S rRNA gene 

abundances, we calculated a Bray-Curtis distance matrix in the ‘vegan’ package (Oksanen et al., 

2015) on the abundance of cyanobacterial nodes of samples that were also evaluated with 

proteomics, and a Gower distance matrix on the normalized log2 abundances of proteins with 

more than one observation, as inputs for cladograms. Ordering of samples in each cladogram was 
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compared to evaluate the relationship of mat morphotype on clustering. The package 

‘dendextend’ (Galili, 2015) was used to plot cladograms. 

 

4.4 Results 

Mats grouped into four broad morphotypes.  

We categorized mat samples based on their morphological appearance in situ. Flat purple 

mats were the most often observed and most widely distributed morphotype throughout the 

sampling period, being seen in every sampling trip from 2015-2017 (Figure 4.1-A, B). They 

were characterized by their purple/brown pigmentation, and ranged in thickness from a thin < 1 

mm to gelatinous 5 mm. Occasionally, this purple layer could be peeled away from a tan or grey 

underlying layer above the sediment. Conical finger structures (Figure 4.1-C) were purple mat 

that protruded from the sediment, putatively due to buoyant methane and sulfide gas diffusing 

from sediments below (Voorhies et al., 2012). They were most often observed in early and late 

summer months, were between 2-30 cm in height, and scattered throughout the MIS area. Giraffe 

mat (Figure 4.1-D) was characterized by cm-long and thick, dark purple pigmented borders 

surrounding lighter purple pigmented middles. From visual observation, there was little to no 

elevation change between the darker borders and lighter areas. Of all the mat morphotypes, 

giraffe was most limited in its spatiotemporal range, being observed only in July 2016 in the A-C 

area between transects 3-6 (Figure SI 4.1). White mat (Figure 4.1-E) was more often observed 

later in the year. It had a similar range of thickness to purple mat, but lacked the purple surface, 

and infrequently had a thin (< 1 mm) purple or greenish-yellow layer underneath.  

 

Fluxes of H2S and O2 vary by mat type.  
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Microsensor measurements of both in situ and ex situ mats determined that sulfide fluxes 

from sediments into the mat varied only subtly across morphotypes (Table 4.2). Total in situ 

sulfide (Stot) fluxes from the sediment into giraffe and purple mat were of similar magnitude 

(0.26 – 0.55 µmol Stot m-2 s-1).  The range observed in white mat (0.07 to 0.91) was as large as 

the variability in fingers (0.06 to 0.43) and flat mat measured ex situ (0.41 to 0.92). Depth 

integrated gross rates of oxygenic photosynthesis were 0 in white mat, whereas it was of similar 

magnitude in other mats measured in situ and ex situ (1.26 – 2.86 µmol O2 m-2 s-1). A higher flux 

of O2 from photosynthesis in the mat escapes to the water column in giraffe mat (1.19 to 1.66 

µmol O2 m-2 s-1) and fingers (1.29 to 1.59, average 1.42) than in ex situ flat mat (1.39 to 2.86, 

average 1.34 µmol O2 m-2 s-1) and in situ flat mat (0.94 to 1.51). Ex situ measurements 

documented high rates of H2S-based anoxygenic photosynthesis in flat mat (0.93 to 2.49 µmol 

Stot m-2 s-1) compared to fingers (0.09 to 0.21). Because the electron difference between OP and 

AP is 2 electrons (Klatt, de Beer, et al., 2016), the potential rate of CO2 fixation via OP in flat 

mat is 2.3 to 3 times higher than via AP. The much lower measured rates of AP in fingers leads 

to a potential rate of CO2 fixation via OP that is 12 to 35 times higher than via AP. We were 

unable to measure anoxygenic photosynthesis in situ due to the requirement of finely controlling 

light in order to measure it (Klatt, de Beer, et al., 2016). 

 

Distinct bacterial communities characterize mat morphotypes.  

The relative abundances of different cyanobacteria, epsilonproteobacterial and 

gammaproteobacterial sulfide oxidizers (“eSO” and “gSO”, respectively), and 

deltaproteobacterial sulfate reducers (“SRB”) varied by mat type (AMOVA, p < 0.01) (Figure 

4.2). Phormidium was the most abundant cyanobacterial group in fingers, whereas Spirulina and 
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Pseudanabaena were the most abundant cyanobacteria in giraffe and white mat. Planktothrix 

and other cyanobacteria were typically 10% or less of the community. Of the sulfide-oxidizing 

bacteria, Beggiatoa were dominant in most samples, though in select white mat and flat mat 

samples, eSO were more abundant. Desulfonema and Desulfocapsa were the most abundant 

putative SRB in the mats, and did not vary in abundance between mat type. Members of 

Bacteroidetes, Chloroflexi, Spirochaetes, Verrucomicrobia, Chlorobi, and Planctomycetes were 

altogether generally 25% or less, but in some instances up to 50%, of the bacterial community. 

Giraffe mat and white mat were relatively cohesive in community structure compared to flat and 

finger mat (Figure SI 4.2).  

Within flat mat (Figure 4.3, Figure SI 4.3), further molecular characterization revealed 

two subtypes with different cyanobacterial community compositions and spatiotemporal ranges. 

The relative abundances of the dominant cyanobacteria (Phormidium, Spirulina and 

Pseudanabaena) and eSO changed over the years. Samples collected prior to July 2016 had a 

higher relative abundance of Phormidium compared to the other groups, and the overall 

community composition of these samples was similar, with all grouping together in one clade 

(Figure 4.3). Samples from 2016 were more variable in their relative abundances of 

cyanobacterial community members. Generally, in July 2016 the samples collected near the A5-

C5 transects had more Spirulina and Pseudanabaena (Figure 4.2, the cluster of samples from 

MIS.2016.60D to MIS.2016.278, all giraffe samples, and white samples MIS.2016.205 to 

MIS.2016.280), whereas those with more Phormidium were located near the D transect (sample 

cluster MIS.2016.062D to MIS.2016.Y.00.C, Figure SI 4.1). Autumn 2016 samples were more 

similar to the seasonal average and had higher abundances of Phormidium (Figure 4.3) 

(Chapter III). Samples from 2017 were more stable in composition compared to 2016, but 
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grouped primarily with Pseudanabaena and Spirulina-rich samples (Figure 4.3), and within the 

evaluated bacterial groups, are typically <65% Phormidium, <50% ESOB, and >50% Spirulina 

and Pseudanabaena (Figure SI 4.3). Fingers were an exception to this trend; Phormidium was 

enriched in the fingers of 2015-2016 as well as the surface of finger mat in 2017 

(MIS.2017.036B). However, Spirulina and Pseudanabaena formed a large part of the 

community in the layers underlying the surface of the finger (MIS.2017.037B, MIS.2017.038B). 

Because of the variability in cyanobacterial community structure in flat mat (Figure 4.2), 

we used the cyanobacterial 16S rRNA gene profiles to classify flat mat into either flat 

Phormidium-dominated mat (“flat-P mat”) or flat Spirulina and Pseudanabaena-dominated mat 

(“flat-SP mat”). This categorization separated flat mat samples into two clades (Figure 4.3). 

Twenty-two samples had a higher abundance of Phormidium than of Spirulina and 

Pseudanabaena, and thus were flat-P mat, whereas 36 samples had a higher abundance of 

Spirulina and Pseudanabaena (>45%) than Phormidium and were considered flat-SP mat. 

Bacterial richness varied in the mat morphotypes. Pseudanabaena was the most abundant 

cyanobacterial genus in one sample, MIS.2017.124B, but its relatively low abundances of 

Spirulina, Phormidium, and Planktothrix compared to other cyanobacteria grouped it with flat-P 

samples (Figure 4.3). However, for additional analyses it is considered a member of flat-SP 

mats. Flat mat samples with a higher abundance of Phormidium have the greatest diversity of 

bacteria (2957 ± 960 nodes). Mat samples with more Pseudanabaena and Spirulina, which 

included flat mat, giraffe mat, and white mat, had intermediate richness (2279 ± 986 nodes, 2434 

± 1014 nodes, and 2516 ± 1025 nodes, respectively). Finger mats had the lowest observed 

richness, of 1200 ± 388 nodes.  
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Phylogenetic evaluation of the bacterial communities in the different mat morphotypes 

was determined using nearest-taxon-index (NTI) (Figure SI 4.4). Organisms that are more 

phylogenetically similar are more likely to occupy the same functional niche, so a high NTI 

(>2.0) indicates the observed taxa are more closely related than a randomly assembled 

community, and suggests environmental processes have selected for phylogenetically conserved 

traits (“niche-based assembly”). In contrast, a low NTI (< -2.0) occurs for communities in which 

the observed taxa are more distantly related than by chance, and corresponds to environmental 

filtering for divergent traits (Kembel, 2009). An intermediate NTI value (-2 to 2) suggests that 

neutral assembly processes are more responsible for the assembly of the community. A mean 

NTI of the communities that is < 0 indicates more overdispersion than average, or > 0 more 

clustering than average (Kembel, 2009). In our analyses of mat types, the mean NTI values for 

each group were not significantly different from each other. The average NTI for giraffe mat and 

white mat were 0.05 ± 0.16 and 0.12 ± 0.36 respectively, suggesting stochastic processes are 

behind community assembly. Flat-SP mat (mean NTI = 0.19 ± 0.32), flat-P mat (0.22 ± 0.32) and 

finger mat (0.37 ± 0.47) have slightly positive NTI, suggesting more clustering in the community 

than average.  

 

Evidence for differential oxygen and sulfur cycling in metagenome-assembled-genomic 

bins. 

Each metagenome sequencing dataset had between 96.6M and 167M reads. The fifteen 

metagenomes generated over 12Gbp of assemblies that had a total of 1.93M contigs representing 

bacteria and archaea. We extracted between 9 and 115 metagenome-assembled-genomic bins 

(MAGs) from each metagenome, and using dRep to dereplicate genomically-similar MAGs from 
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different samples, constructed 377 clusters of MAGs (Table 4.1). Based on CheckM and 

EMIRGE results (as well as BLAST queries of known AP cyanobacterial genes of interest 

(psbA, sqr, nifHDK) for cyanobacteria) we identified clusters of Phormidium bins (6 genomes), 

Spirulina bins (10 genomes), Pseudanabaena bins (10 genomes), Planktothrix bins (4 genomes), 

Desulfonema bins (5 genomes), Desulfobacteraceae bins (11 genomes), a gammaproteobacterial 

cluster (3 genomes, referred to as Gamma_bin_8), a separate gammaproteobacterial cluster (10 

genomes, referred to as Gamma_bin_15), an epsilonproteobacterial cluster with two genomes 

recovered from white mats (referred to as Campbylobacterales_bin_11), and individual clusters 

of epsilonproteobacteria named for their deepest phylogenetic resolution 

(Helicobacteraceae_bin_66, Sulfurimonas_bin_83, Campylobacterales_bin_108, 

Campylobacterales_bin_21, Sulfurospirillum_bin_34, Sulfurospirillum_bin_16, 

Sulfurimonas_bin_40) (Table 4.4, Figure 4.4). Only the bins of Phormidium, Spirulina, and 

Desulfonema recruited EMIRGE-assembled 16S rRNA genes that confirmed their taxonomy. 

The representative Phormidium MAG possesses two sqr genes that classify as type I 

(found in AP cyanobacteria) and II (for sulfide detoxification in bacteria) (Marcia et al., 2010) 

(Figure SI 4.5). It also has groups 2, 3, and 4 psbA genes for different O2 levels from anaerobic 

to standard/high light conditions (Cardona et al., 2015). Phormidium has a nitrogenase gene suite 

nifHDK for nitrogen fixation, although it is phylogenetically different from the previously 

described Phormidium nifHDK (Grim & Dick, 2016; Voorhies et al., 2012), and a bidirectional 

hydrogenase hox gene suite to recover hydrogen from nitrogen fixation (Tamagnini et al., 2007). 

It is equipped with phycocyanin cpcAB and phycoerythryin cpeAB genes for harvesting light at 

red and green wavelengths (Tandeau de Marsac & Houmard, 1993), and 68 ATP-binding 
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cassette transporters for mineral and organic ions including sulfate, molybdate, phosphate, amino 

acids, metals, vitamin B-12, and lipopolysaccharides. 

The representative Planktothrix MAG also possesses a sqr gene, of the type II variety 

typically for sulfide detoxification. Like Phormidium, Planktothrix also has cpcAB and cpeAB, 

but does not have the genes for nitrogen fixation (Figure 4.4). Additionally, its two psbA genes 

are suited for microaerobic and standard O2 conditions. It also has hox bidirectional hydrogenase 

and has many of the same transporters as Phormidium. The Spirulina representative MAG has a 

type I sqr (Figure SI 4.5) and a group 3 psbA. While it encodes for cpcAB, it lacks cpeAB 

phycoerythrin pigment genes. Pseudanabaena also lacks cpeAB but possesses cpcAB. Like 

Phormidium, Pseudanabaena has nifHDK, groups 2, 3, and 4 psbA genes, and two sqr genes of 

types I and VI, the latter more related to green sulfur bacterial sqr transcribed at high sulfide 

levels (Chan et al., 2009). Both Spirulina and Pseudanabanea have hox bidirectional 

hydrogenases and similar transporters to Phormidium. 

The SRB bins attributed to Desulfonema and Desulfobacteraceae are both equipped for 

dissimilatory sulfate reduction (Figure 4.4). The representative Desulfonema genome has two 

terminal oxidases, a cytochrome c oxidase coxABCD and a cytochrome bd quinol oxidase 

cydAB, with the former usually operating at higher oxygen levels than that latter (Rabus et al., 

2004; Ramel et al., 2013). Desulfonema also has a membrane-bound [NiFe]-hydrogenase hyd for 

H2 oxidation that may be coupled to O2 reduction with its bd oxidase (Ramel et al., 2013). The 

representative Desulfobacteraceae also has cydAB but not the cox suite. In addition, 

Desulfobacteraceae has membrane-bound [NiFe]-hydrogenases hyd and hya, the latter of which 

may be involved in recovering hydrogenase activity after exposure to oxygen radicals (Tremblay 

& Lovley, 2012). 
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The gSO bins both possess nifHDK for nitrogen fixation, narGH for nitrate reduction, 

and cbb3 oxidase for O2 reduction at low O2 levels (Morris & Schmidt, 2013). Gamma_bin_8 

has a complete reverse dissimilatory sulfate reduction pathway (reverse dsr, apr, sat), and fccAB 

to transform H2S into S0 (Mussmann et al., 2007). Gamma_bin_8 also has hox bidirectional 

hydrogenase that is analogous to bidirectional hydrogenases used by cyanobacteria to recover H2 

from diazotrophy (Tamagnini et al., 2007) and by purple sulfur bacteria for both dark 

fermentative and thiosulfate-driven light-dependent H2 production (Rákhely et al., 2007), but has 

not been described in chemoautotrophic sulfide oxidizers. Gamma_bin_15 lacks the apr gene, 

but has sqr for sulfide oxidation, psr gene for sulfur disproportionation, and hya and hyd 

hydrogenases. In Beggiatoa, these hydrogenases may couple H2 oxidation with sulfur reduction 

(Schmidt et al., 1987). 

 The eSO bins with high completion and low contamination metrics were primarily 

recovered from white mat samples, though three were recovered from different fingers 

(Sulfurospirillum_bin_34 and Sulfurospirillum_bin_16) and a flat mat sample from giraffe mat 

(Sulfurimonas_bin_40) (Figure 4.4, Table SI 4.2). Genes for flagellar assembly were observed 

in Sulfurospirillum_bin_16, Sulfurimonas_bin_40, Sulfurospirillum_bin_34, and 

Sulfurimonas_bin_83, and generally complete reverse TCA cycles were observed in all bins. 

Additionally, all bins had [NiFe] hydrogenases, transporters for zinc and phospholipids, and 

most bins with higher genome recovery had additional transporters, for compounds such as 

molybdate, phosphate, lipopolysaccharides, cobalt, and nickel (Table SI 4.2). The cluster 

referred to as Campylobacterales_bin_11 has two genomes with three sqr genes, of types II, IV, 

and V, for the oxidation of sulfide (Figure SI 4.5), and tst thiosulfate sulfurtransferase to reduce 

thiosulfate to sulfite. Neither genes for adenosine 5-phosphate sulfate reductase (APS) nor 
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sulfide oxidoreductase (SOR), for indirect or direct sulfite oxidation, are observed in the cluster 

(Takai et al., 2005). The cluster has nifHDK nitrogenase genes, cbb3 cytochrome c oxidase (high 

O2 affinity) (Sievert et al., 2008) and a low-[O2] cydAB cytochrome bd oxidase. Its group I 

hydrogenase is a typical membrane-bound uptake hydrogenase, whereas its group IV 

hydrogenase may be involved in energy and H2 production (Vignais & Billoud, 2007). 

Sulfurimonas_bin_83 has sqr genes of types II and IV, a complete denitrification 

pathway, a cbb3 cytochrome c oxidase, a group I [NiFe] hydrogenase and a group III 

bidirectional hydrogenase (Vignais & Billoud, 2007). Helicobacteraceae_bin_66 has two sqr 

genes of type II, and one each of types IV and V. Additionally, of all the eSO genomes evaluated 

it is only one of two with any of the Sox cluster, soxABXY (soxD was not identified) for complete 

oxidation of reduced sulfur compounds such as thiosulfate to sulfate (Sievert et al., 2008). 

Helicobacteraceae_bin_66 also has cydAB, group I [NiFe] hydrogenase, and transporters and 

genes for assimilatory nitrate reduction. Campylobacterales_bin_108 has types IV and VI sqr 

genes, genes for assimilatory nitrate reduction as well as nifHDK, and cytochrome c oxidase. 

Campylobacterales_bin_21 has two sqr type II genes and sqr type IV, cytochrome bc1 complex 

oxidase, and a group IV [NiFe] hydrogenase. Both of the bins found from finger metagenomes, 

Sulfurospirillum_bin_34 and Sulfurospirillum_bin_16, have one sqr type II gene, cytochrome 

cbb3 oxidase, cytochrome bd oxidase, group IV [NiFe] hydrogenase, and several transporters. 

Sulfurospirillum_bin_16 has genes for dissimilatory nitrate reduction, whereas 

Sulfurospirillum_bin_34 has additional groups I and II [NiFe] uptake hydrogenases, and genes 

involved in nitrite, nitroalkane, hydroxylamine, and nitrile metabolism, but not for transporting 

nitrate. The bin recovered from flat purple mat near giraffe mat, Sulfurimonas_bin_40, has the 

other sox cluster observed in the eSOs (soxABCYZ) as well as sqr types IV and VI, and phs for 
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thiosulfate disproportionation (Sharrar et al., 2017). It also has cytochrome cbb3 oxidase, 

nifHDK, and groups I and III [NiFe] hydrogenases.  

Based off MAG recovery estimates from different samples, 16S rRNA gene levels, and 

proteomics information, these cyanobacterial, gSO, eSO, and SRB MAG bins are generally 

enriched in specific mat types (Table 4.4). Pseudanabaena and Spirulina are distributed 

throughout giraffe mat and flat mat samples that were collected near giraffe mat. Additionally, 

they were in finger samples from 2016 and 2017, but not from 2015. Phormidium and 

Planktothrix were frequently found in finger metagenomes from 2015 and 2017, and sparingly 

distributed throughout other mat types. Members of the Desulfobacteraceae cluster were found 

primarily in flat purple and white mat near giraffe mat as well as the giraffe metagenomes, one of 

the 2015 finger metagenomes, and a Phormidium-dominated flat mat from July 2016. 

Desulfonema cluster members were obtained from the ridge of the giraffe mat and the 

homogenized giraffe mat sample, flat mat near giraffe mat, and Phormidium-dominated flat mat 

from July 2016. Gamma_bin_8 members were obtained from giraffe mat and a flat mat sample 

near giraffe mat, whereas Gamma_bin_15 representatives were recovered from finger 

metagenomes from 2015 and 2017, and flat white and purple mat. All but two eSO bins were 

recovered from white or purple mat collected near giraffe mat, and the other two eSO bins were 

obtained from finger metagenomes from 2015 and 2016.  

 

Mat proteomes do not align with community composition or morphotype.   

To assess how the proteome varied as a function of community structure and mat type, 

we constructed a dendrogram from the Bray-Curtis distance matrix of the cyanobacterial 16S 

rRNA gene abundances of samples for which we had paired 16S rRNA gene profiles and 
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proteomic profiles (Figure 4.5). We used the previously mentioned abundance cutoff to 

categorize flat mat samples as either flat-P or flat-SP. Comparison of dendrograms revealed 

disconnects between community composition and proteome. In the 16S rRNA gene dendrogram 

(Figure 4.5-A), in one broad clade (group 1) are all samples from 2015 (fingers and flat mat), 

one finger sample from 2017 that was enriched in Phormidium, and select flat and white mat 

from 2016 that had a higher abundance of Phormidium than other cyanobacteria. In the other 

broad clade (group 2) are all giraffe mat samples and all but one sample from 2017, which 

covered fingers and white mat. Also in this clade are flat mat samples that are more abundant in 

Spirulina and Pseudanabaena than Phormidium. This grouping by year and mat type was not 

translated directly to the dendrogram from the proteomics profiles (Figure 4.5-B). We observed 

three broad clades that mixed different mat morphotypes. One clade (group A) had many finger 

mat samples from 2015 and 2016, and flat mat samples from 2016 that were Phormidium-

dominant in the 16S rRNA gene profiles. The largest clade in the proteomics profile (group B) 

encompassed all the white mat samples (collected in 2016 and 2017), all the giraffe mat samples, 

fingers collected in 2017, and the remaining flat mat samples. A small clade (group C) contained 

only flat mat samples from July 2016 that generally had more Spirulina and Pseudanabaena, 

except for one sample (MIS.2016.120C) whose 16S rRNA gene profile grouped in the 

Phormidium-dominant clade. The discrepancy between cladograms drawn from cyanobacterial 

community structure and total community functioning is likely due to the metabolic roles of 

other bacteria in the microbial assemblage being more widely observed in mats, than just 

cyanobacterial metabolisms, as discussed below. 

 

Functional profiles of flat, white, giraffe, and finger mats are distinct.  
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Across the samples we observed 2571 unique proteins that were grouped into 53 

taxonomic groups. Given the distribution of flat mats across multiple clades in the proteomic 

dendrogram, for proteomic abundance testing we categorized the proteomics profiles of flat mats 

by the 16S rRNA gene dendrogram (Figure 4.5-B). This yielded a group of 13 flat mat samples 

that had more Phormidium than Spirulina and Pseudanabaena (flat-P), and a group of 9 flat mat 

samples that had more Spirulina and Pseudanabaena (flat-SP). Because of the strong differences 

in diversity, community composition, and dendrogram clustering, we explored the difference in 

protein abundance between these two mat types. After significance testing and quality control, 

comparison of the proteomics between these two flat mat types identified 74 proteins that 

significantly (p < 0.05) differed in abundance, of which 27 belonged to gSO and cyanobacteria 

(Figure 4.6). All Phormidium proteins, as well as half the Planktothrix proteins, that were 

significantly differentially abundant were more abundant in the flat-P mats, whereas the 

remaining significant Planktothrix proteins and those belonging to Pseudanabaena and Spirulina 

were more abundant in flat-SP mats (Figure 4.6). Phormidium’s proteins were involved in 

processes ranging from photosynthesis, carbon fixation, pigment production, and ribosomes; half 

the proteins each identified in Planktothrix, Pseudanabaena, and Spirulina were for 

phycoerythrin alpha subunit CpeA, phycocyanin alpha subunit CpcAB, and allophycocyanin beta 

subunit ApcB.  

Sulfide-oxidizing gammaproteobacterial proteins were generally more abundant in flat-

SP mat than in flat-P mat, and reflected processes such as signal transduction, oxidative 

phosphorylation, sulfur metabolism, and core processes. Interestingly, gSO proteins more 

abundant in flat-P mat than in flat-SP mat include a [NiFe] hydrogenase HybA and BisC, a 

protein that is involved in denitrification and DMSO reductase (Hoffmann et al., 1995, Nonaka 
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et al., 2006) (Figure 4.6). A sulfide-oxidizing betaproteobacterium, most closely related to 

Sulfuritortus, had a CcmK that was significantly more abundant in flat-P mat (Figure 4.6). 

Between flat-P mat, flat-SP mat, finger mat, giraffe mat, and white mat, we identified 77 

proteins that differed significantly in their weighted mean log2-normalized abundances (Figure 

4.7, Figure SI 4.6). Forty of these proteins belonged to the dominant cyanobacteria 

(Phormidium, Planktothrix, Spirulina, and Pseudanabaena), SRB, or gSO. As with the prior 

comparison between the different types of flat purple mats, many Phormidium proteins related to 

photosynthesis, carbon fixation, and ribosomes were more abundant in fingers and flat-P mat 

than in other mat types. However, two Phormidium proteins related to ribosomes and growth 

were as abundant in giraffe mat as in finger and flat-P mat (Figure 4.7). Several 

phycobiliproteins belonging to other cyanobacteria were significantly differentially abundant 

between mat types. Phycoerythrin CpeA and phycocyanin CpcAB belonging to Planktothrix 

were more abundant in flat-SP mat and finger mat than in other mat types, though CpcAB had 

high variability in observed abundances (Figure 4.7). In addition to being abundant in flat-SP 

mat, Pseudanabaena’s CpcA was also highly abundant in flat-SP, giraffe, and white mat, 

compared to finger and flat-P mat.  

Proteins belonging to gSO and SRB were involved in growth and metabolism, and were 

more abundant in flat-SP, giraffe, and white mats than in the other mat types. This included a 

gSO rDsrA protein involved in sulfide oxidation (Figure 4.7). gSO cytochrome proteins PetA 

and PetC were most abundant in giraffe and white mats. No proteins belonging to eSO were 

found to be significantly differentially abundant across the five mat types. 

Several proteins that were not assigned to MAGs were significantly differentially 

abundant between mat morphotypes (Figure 4.7). Unidentified cyanobacterial phycobiliproteins 
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CpeAB from the same contig (Ga0371429_10072573-4) were highly abundant in giraffe mat. 

Another organism’s CpeB (Ga0371430_10473701) was most abundant in flat-SP and giraffe 

mat, whereas a third cyanobacterium’s CpeB (Ga0371429_10798201) was most abundant in flat-

P and finger mats. Surprisingly, a fourth cyanobacterium CpeA (Ga0371436_11380134) was 

more abundant in flat-P and white mats (Figure 4.7). A DsrB protein was more abundant in flat 

mats than in other mat types. Other proteins involved in sulfur metabolism AprB 

(Ga0371430_10776051), translation (RpsA, FusA), and porins were more abundant in giraffe 

and white mats. 

 

The core proteome of MIS mats.  

Of the 2571 proteins observed in the dataset, 738 were observed in 3 or more mat types 

and not significantly differentially abundant between them (Table SI 4.3). These cosmopolitan 

proteins are sourced from 27 taxa representing 64 MAG bins, as well as 16 bins without 

taxonomy. Of the binned proteins, Phormidium contributed 131, followed by 

Gammaproteobacteria (81), Gammaproteobacterium_bin_15 in particular (22), sulfate-reducing 

members Desulfobacteraceae (43) and Desulfobulbaceae (2), Spirulina (23), Pseudanabaena 

(15), and Planktothrix (8). Two proteins from epsilonproteobacterial sulfide oxidizers and two 

from methanotrophic Methylococcaceae are also observed in the core proteome. The core 

proteins represent 22 different metabolic processes, such as ABC transporters; metabolism of 

carbon, hydrogen, sulfur, and nitrogen; photosynthesis; transcription, translation, and other 

genetic information processing; and metabolism of cofactors, vitamins, terpenoids, and 

polyketides.  
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Photosynthesis was the most represented process (93 proteins), primarily of 

allophycocyanin subunits ApcAB, phycocyanin subunits CpcAB, phycoerythrin subunits 

CpeAB, electron transport proteins PetABCFHJ, photosystem I proteins PsaABCDEFL, and 

photosystem II proteins PsbABCEHOPUV. Carbon metabolism was the next most represented 

process (86), and included proteins like Rubisco RbcSL, pyruvate orthophosphate dikinase 

PpdK, transkelotase TktAB, carbon dioxide concentrating mechanisms CcmKM, and 

glyceraldehyde 3-phosphate dehydrogenase Gap. Translation-involved proteins (85) included 

large and small subunit ribosomal proteins, and elongation factors. Genetic information 

processing proteins (68) were also abundant in the core proteome, such as chaperones GroEL, 

GroES, and DnaK, cell division protease FtsH, and ATP-dependent Clp protease. Also in the 

core proteome were ATPase subunits and other proteins in oxidative phosphorylation (40), 

proteins in signaling and cellular processes (32) like porins and peroxiredoxin, signal 

transduction proteins (29) such as actins and cytochromes, and sulfur metabolism proteins (23) 

such as adenylylsulfate reductase Apr subunits, dissimilatory sulfite reductase Dsr proteins, Fcc 

sulfide dehydrogenase, anaerobic dimethyl sulfoxide reductase subunits Dms, and SoxY. We 

observed several proteins related to mitigating oxidative stress in the core proteome. A 

superoxide dismutase (SOD) and a peroxiredoxin belonging to Phormidium were abundant in 

finger and flat mats. Pseudanabaena had two peroxiredoxin proteins that were abundant in 

fingers, giraffe, and flat-SP mats. SODs, peroxiredoxins, and cytochrome c peroxidases 

belonging to gammaproteobacteria and unknown members were also abundant in many mat 

types. 
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4.5 Discussion 

Studies of the morphological appearance and metabolisms of modern microbial mats are 

critical to understanding the mechanisms of formation of microbial structures in the geologic 

record. In this research, we evaluated the community structure, functional composition, and 

geochemical cycling in distinct mat morphotypes observed in Middle Island Sinkhole, a low O2 

submerged sinkhole in Lake Huron, Michigan analogous to a Proterozoic microbial system (Rico 

& Sheldon, 2019). Bacterial community composition differed between flat microbial mat of 

either purple or white coloration, domal uplifted purple mat (fingers), and mottled purple/brown 

mat (giraffe mat). Between select mat types, variation in geochemical fluxes indicates room for a 

biological role in differential biogeochemical cycling. Metabolic differences in cyanobacteria, 

sulfur-oxidizing bacteria, and sulfate-reducing bacteria observed in metagenomes from the 

different mat types, and the presence of a cosmopolitan protein core across mat types, suggests 

functional overlap between members for H2S, SO4
2-, and O2 cycling. The interaction of these 

organisms’ biogeography and abundance, their potential and observed differences in H2S and O2 

metabolism, and observed geochemical fluxes, is not clearly linked to the emergence and 

persistence of mat morphotypes.  

 

Different cyanobacteria are functional counterparts in mat morphotypes. 

Community structure and composition dramatically shifted between mat types observed 

in 2015 to 2017. Fingers and flat purple mats collected in 2015 had high proportions of 

Phormidium and Planktothrix compared to other cyanobacteria, as well as an abundance of 

Beggiatoa and Desulfonema members. Purple flat mats collected in 2016 were more 

heterogeneous, with mats in specific sampling locations having a higher proportion of 

Pseudanabaena and Spirulina (near giraffe mat, the A5-C5 transect, Figure SI 4.1) than of 
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Phormidium (near D transect). Flat mat samples collected after 2016 were more widely 

distributed throughout the MIS area, and reflected an overall shift in the community composition 

towards more Pseudanabaena and Spirulina (Figure 4.2). Fingers are relative havens for 

Phormidium despite the overall shift in the bacterial community structure. Sampling for white 

mat occurred primarily in July 2016 and September 2017, however white mat was observed but 

not sampled in MIS at other times in summer and autumn months.  

The shift in dominant cyanobacteria from Phormidium and Planktothrix to 

Pseudanabaena and Spirulina in flat mats and the similarity of key S, O, and N cycling genes in 

their genomes, suggests functional analogy between cyanobacterial groups. Both Phormidium 

and Pseudanabaena have two sqr genes of different types, multiple versions of psbA genes, and 

nifHDK genes to fix nitrogen, suggesting this pair of cyanobacteria may be equipped to occupy 

the same functional niche of a versatile AP cyanobacterium. Different versions of PsbA are 

linked to varying O2 and light levels. Group 2 anaerobic psbA, group 3 microaerobic psbA, and 

group 4 standard/high-light psbA (Cardona et al., 2015) would allow Phormidium and 

Pseudanabaena to adjust their capacity for O2 evolution, thus facilitating nitrogen fixation (Aro 

et al., 1993; Blankenship, 2014; Sicora et al., 2009). Given that sulfide inhibits water oxidation, 

which occurs in PSII (Miller & Bebout, 2004), group 2 psbA may also be involved in sulfide 

metabolism, such as deactivating PSII when oxidizing sulfide in AP (Becraft et al., 2015; 

Murray, 2012; Olsen et al., 2015). On the other hand, Spirulina and Planktothrix do not have 

nifHDK and possess only one sqr, and 1-2 versions of psbA (either groups 3+4 or only group 4). 

Pseudanabaena and Spirulina are primarily abundant and more active in the proteomes of giraffe 

mat, and white and purple mat collected near giraffe mat in July 2016 and as well as mats 

sampled in 2017, whereas Phormidium and Planktothrix are most abundant and active in fingers 
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and flat mat collected prior to July 2016. The similar rates of gross oxygenic photosynthesis in 

purple, finger, and giraffe mat are also consistent with the conclusion that the metabolically 

dominant cyanobacterial members in those mats, namely Phormidium and Pseudanabaena, may 

be functionally similar. 

While many similarities exist between the cyanobacteria observed between different mat 

types, a crucial difference between the genomes of dominant cyanobacteria of giraffe and co-

located white and purple mats, and the cyanobacteria of fingers and other flat mats, may be in 

their light harvesting capabilities. The recovered genomes of Pseudanabaena and Spirulina both 

lack cpeAB genes for phycoerythrin, which capture green light (560 nm maximal absorption) 

(Bryant, 1982). They both have red-light-harvesting cpcAB phycocyanin (620 nm maximal 

absorption) genes, and Spirulina additionally encodes for phycoerythrocyanin, which captures 

wavelengths between 570-595 nm. Our genomic recoveries of each cyanobacterium were above 

90%, which would suggest we effectively sequenced their genomes and thus did not miss cpeAB 

due to lack of depth. Though the two sequenced representative genomes of Spirulina cultures do 

not have cpeAB and only one has pecAB, the lack of cpeAB in Pseudanabaena is unexpected, 

given that four sequenced cultures’ genomes code for phycoerythrin. In contrast, both the MIS 

representative genomes of Planktothrix and Phormidium encode for cpcAB as well as cpeAB, 

which other cultured members of their genera share. These phycobilisome proteins improve light 

harvesting in cyanobacteria: phycoerythrin or phycoerythrocyanin passes energy to phycocyanin, 

which transfers energy to allophycocyanin (Bryant, 1982). Only those that synthesize 

phycoerythrin are capable of complementary chromatic adaptation, which allows organisms to 

fine tune their pigment contents in response to changes in light intensity (Bryant, 1982). 

Phycoerythrin may be key for organisms thriving in low light conditions. Phycoerythrin-
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synthesizing cyanobacteria have lower light requirements for optimal growth rate than 

cyanobacteria that synthesize only phycocyanin (Wyman & Fay, 1986). Further, with increasing 

light, rate of phycoerythrin synthesis compared to rate of phycocyanin synthesis declines 

(Wyman & Fay, 1986). In Synechococcus PCC 6301, the ratio of phycocyanin to 

allophycocyanin is higher at lower light intensities (Tandeau de Marsac & Houmard, 1993).  

Given the lack of phycocyanin in their genomes, the success and relative proliferation of 

Pseudanabaena and Spirulina in the mats suggests that light is not a limiting condition for their 

growth. As in marine systems, in the water column of MIS, red light rapidly attenuates with 

depth, leaving blue-green light most available at 23 m (Chapter III). Generally, light levels are 

highest in summer (Chapter III), but in July 2016 when Pseudanabaena and Spirulina were 

widely observed in the mats, the average daily maximal light intensity was 25-50% less than 

observed in 2015 and 2017. It is possible that the low light levels observed in 2016 may have 

been related to phytoplankton growth and organic matter in the water column. In Lake Huron, 

green light is generally least available in summer due to growth of surface colonial cyanobacteria 

(Fahnenstiel & Carrick, 1991), though we did not observe obvious surface phytoplankton blooms 

at MIS in 2016. We did not see evidence for low light levels impacting growth of Phormidium, 

since their proteins were highly abundant in mats throughout 2016. Given the lower available 

light in summer 2016 and the lack of genes to harvest green light, the high relative abundances of 

Spirulina and Pseudanabaena in the mat seems unrelated to light conditions.  

 The success of Pseudanabaena and Spirulina in the MIS microbial mats may be tied to 

improved fitness over other cyanobacteria, putatively due to more efficient energy use and/or 

ecological dependence on other community members. Pseudanabaena and Spirulina genomes 

were between 96-99% complete, and up to 4.6 Mbp in size and 4828 genes, whereas for 
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Phormidium and Planktothrix we recovered 92-93% representing a considerably larger 5668-

5692 genes and 5.5-5.9 Mbp (Table 4.4). Even accounting for strain heterogeneity of 15-30% 

contributing redundancy to the MAG, the genomes of Phormidium and Planktothrix are larger 

than those of Pseudanabaena and Spirulina. The representative genomes of Pseudanabaena and 

Spirulina are smaller than available sequenced cultures (4.9-5.6 Mbp), and when using the 

cultures’ coding densities (the number of genes per 1000 bp) to extrapolate the size of our 

representative MAGs, they should be between 5.0-5.2 Mbp. (A similar application to the 

representative Phormidium and Planktothrix genomes would yield expected genome sizes of 5.7-

7.2 Mbp.) Increased variability in environmental conditions leads to microbes with larger 

genomes and a larger number of genes (Bentkowski et al., 2015). In contrast, more limiting 

environments host organisms with smaller genomes to minimize resource requirements for e.g. 

replication and protein synthesis (Giovannoni et al., 2014). Ecological interdependence is higher 

in communities with organisms of smaller genome sizes. In part due to their reduced number of 

genes, these microbes rely upon interactions with other organisms to acquire nutrients and 

resources (Anantharaman et al., 2016; Zelezniak et al., 2015). In freshwater systems, free-living 

organisms with smaller genomes rely upon metabolic compounds from other organisms (Garcia 

et al., 2018). In contrast, members of particle-associated communities tend to have larger 

genomes, putatively for greater metabolic flexibility to handle the dynamics in resource 

availability, and these communities are more diverse (Schmidt, 2018). In MIS, though their 

genomes were smaller than other cyanobacteria, the number of transporters in the representative 

Pseudanabaena and Spirulina cyanobacterial genomes did not differ from Phormidium and 

Planktothrix (63-72). Further, a higher abundance of Pseudanabaena and Spirulina and their 

smaller genomes characterize samples with less diverse bacterial communities. Due to the 
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extracellular polymeric substances (EPS) that bind the mat together (Voorhies et al., 2012), as 

well as the high density of microorganisms in mats (Dick et al., 2018), the microbial mats of MIS 

may buffer their inhabitants from strong environmental perturbations and nutrient limitations. 

This cohort of organisms likely facilitates ecological interdependencies for Pseudanabaena and 

Spirulina that balance their smaller genome sizes and improve their competitiveness against 

Phormidium and Planktothrix. 

Functional niche overlap between the cyanobacteria can also influence overall 

community composition. To understand if environmental pressures are influencing the 

morphotypes’ bacterial communities, we employed nearest-taxon-index (NTI) to evaluate the 

phylogenetic relatedness of organisms in each community. Abiotic environmental processes that 

impose selective pressures would filter for phylogenetically-conserved traits and lead to higher 

phylogenetic relatedness between coexisting taxa than by chance (Kembel, 2009; Stegen et al., 

2012). On the other hand, communities that experience ecologically neutral or stochastic 

processes would host taxa that would not compete with each other and thus do not overlap in 

niche. Competition between coexisting taxa should drive ecological differentiation, eventually 

leading to high phylogenetic diversity in the community (Stegen et al., 2012; Violle et al., 2011). 

As a result, taxa that are more closely related may inhabit the same ecological niche, whereas 

more distantly related organisms will have more dissimilar niches, reduced competition, and 

better coexistence (Violle et al., 2011). The mean NTI values for each mat type group were not 

significantly different from each other, but they were all above 0 (Figure SI 4.4), suggesting a 

greater role for environmental filtering for conserved traits than random processes. Finger mats 

had the highest mean NTI of 0.37, and also had the lowest observed bacterial richness of the 

mats. From these characteristics, one potential conclusion is that environmental perturbations in 
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finger mats are relatively reduced, and there is little competition for niche space. The same 

cannot be said for flat-Phormidium mat, which had the most diverse mats and the next highest 

mean NTI of 0.22. Samples in which Spirulina and Pseudanabaena were more abundant than 

Phormidium, which includes many flat mats, and the giraffe and white mats, had mean NTIs that 

were positive but closer to 0, and intermediate in bacterial richness compared to fingers and other 

flat mat samples. With apparently neutral processes controlling community assembly and 

average richness in these mats, the abundance of Pseudanabaena and Spirulina may be related to 

reduced stressors in their environment, lack of niche overlap in the mats, and favorable 

ecological interactions with other microbes.  

 

Differential capacity for sulfur cycling seen in phylogeny of genes and distribution of 

organisms. 

The distribution of sqr genes throughout the evaluated eSO bins, and the morphotype-

related abundance of these members, point to a linkage between sulfide physiologies and distinct 

geochemical environments in each mat type. All of the eSO members of white and purple mats 

collected near giraffe mat have 2 or 3 sqr type genes, whereas finger eSO members have only 

type II sqr. Though it is not clear if all the eSO members of white and purple mats are related to 

Sulfurimonas, all of them have type IV sqr, which in Sulfurimonas members is likely from a 

common ancestor and not from lateral gene transfer like other sqr can be acquired (Gregersen et 

al., 2011; Han & Perner, 2015). In Chlorobaculum tepidum, types IV and VI sqr are expressed 

when grown between 2-4 mM H2S and above 4 mM respectively (Chan et al., 2009). Sulfide 

fluxes were generally highest in white mat compared to the other mat types (Figure 4.5), making 

different-affinity sqr genes a valuable asset to sulfide response in these members. Type II sqr 
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have a reportedly low affinity for H2S (Km ~ millimolar) (Marcia et al., 2010), and in the 

evaluated eSO are found in four of the white mat MAGs/clusters and the finger MAGs. These 

type II sqr genes phylogenetically group together (Figure SI 4.5) in a broader clade that includes 

cyanobacterial, yeast, and proteobacterial type II sqr. 

Fingers experienced much lower sulfide flux from the sediment than other mat types; 

because they are uplifted from the sediment, essentially all sulfide is locally sourced from sulfate 

reducers in the mat, and is consumed by AP cyanobacteria and SO bacteria. Because of the 

potentially low [H2S] observed in fingers, genes encoding for only low-affinity H2S type II sqr in 

finger eSOs may not be solely for sulfide response. Synechocystis sp. PCC 6803 expresses its 

AP-involved sqr to detoxify arsenite (Nagy et al., 2014). Zn and other trace metals are 

micronutrients and readily incorporate into organic matter. Epsilonproteobacteria have ribosomal 

genes optimized for low-Zn environments (Chen et al., 2009), and though MIS groundwater is 

elevated in zinc compared to surrounding and surface Lake Huron water, trace metals such as Zn 

complex with sulfide in the presence of sulfate reduction and thus are not bioavailable (Huerta-

Diaz and Morse, 1992). Zn, Ni, Cu, and Fe are enriched in microbial mats where active sulfate 

reduction is occurring (Huerta-Diaz et al., 2012; Rico, 2019), and when they are remobilized 

during sulfide-oxidizing denitrification, type II sqr may play a role in heavy metal tolerance 

(Han & Perner, 2015). All the eSO evaluated have transporters for zinc, and over half have some 

or all the genes for denitrification, suggesting that in addition to sulfide oxidation, these sqr type 

II genes may be involved in metal metabolism. 

The distribution of the dominant cyanobacteria and their genes among the different mats 

also suggest potential links between geochemical conditions and mat morphotypes. All the 

evaluated cyanobacteria have 1-2 sqr genes. Phormidium, Spirulina, and Pseudanabaena have 
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the type I sqr identified in culture-based studies of AP, but Phormidium and Pseudanabaena 

have an additional sqr. However, the second sqr in Pseudanabaena is of type VI, previously 

found in a few cultures (Grim & Dick, 2016) and only recently implicated in AP in 

cyanobacteria (Hamilton et al., 2018), whereas Phormidium’s second sqr and Planktothrix’s sole 

sqr is of type II with low H2S affinity and typically for sulfide detoxification (Marcia et al., 

2010). The phylogeny of sqr in cyanobacteria points to horizontal gene transfer from other 

lineages, such as green sulfur bacteria (Gregersen et al., 2011; Sanchez-Baracaldo et al., 2005). 

Given that cyanobacteria and gSO share many genes through HGT (Flood et al., 2014), it is 

possible that these additional sqr genes in Phormidium and Pseudanabaena may have been 

acquired from bacterial neighbors such as gammaproteobacteria, to address varying sulfide 

and/or metal availability in their mats.  

Differences in the dominant putative sulfide-oxidizing group between mat types may be 

linked to geochemical environments. In some mats, namely select white and flat mats from 2016, 

eSO members were dominant, whereas in a majority of other mats, Beggiatoa and other 

gammaproteobacteria were more abundant. Shifts between gammaproteobacteria-dominated and 

epsilonproteobacteria-dominated community composition in other systems has been related to 

concentrations of H2S and electron donor. In H2S-rich shallow hydrothermal vents, eSO 

members such as Sulfurovum were key pioneer organisms in the mat, and gSO members such as 

Thiomicrospira became more abundant in more established communities (Patwardhan et al., 

2018). In Frassasi Spring streams, gammaproteobacteria were more abundant than 

epsilonproteobacteria in biofilms because the O2 concentrations were higher than what eSO 

prefer (Macalady et al., 2006). Epsilonproteobacteria can couple denitrification with oxidation of 

reduced sulfur compounds such as sulfide and thiosulfate (Brettar et al., 2006; Bruckner et al., 
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2012). Given that many of the evaluated eSO genomic bins were recovered from two white mats 

in which cyanobacteria were not dominant, whereas the gammaproteobacterial clusters sourced 

most of their members from flat purple or giraffe mat, it is likely that concentrations of H2S 

and/or O2 determine the dominant sulfur oxidizer. In the evaluated white mats, 

epsilonproteobacteria that were not dependent upon cyanobacterially-produced O2 are 

predominant sulfur oxidizers, whereas in the cyanobacterially-dominated mats 

gammaproteobacterial sulfide oxidizers are dominant. 

The sulfate-reducing bacterial genomes evaluated in this research highlight adaptations to 

different redox conditions in the microbial mat. Sulfate reducers are not limited to anoxic 

conditions in microbial mats (Canfield & Marais, 1991; Jørgensen & Bak, 1991), and different 

members have varying O2 tolerances (Cypionka et al., 1985; Sass et al., 1997). 

Desulfobacteraceae;Desulfonema members have been found to thrive in oxic microbial mats 

(Minz et al., 1999), and they are the most abundant sulfate-reducing member in the MIS 

microbial mats (Figure 4.2). Further, the metagenomic bins and their distribution across mats 

suggest the existence of multiple ecotypes of Desulfobacteraceae with different aerotolerances 

and/or capacities for electron donors. The Desulfonema cluster grouped five MAGs sourced from 

only mats sampled in 2016, including giraffe mat and flat purple mat. The Desulfobacteraceae 

cluster included 11 genomes of varying completion from all mat types over the years. The 

Desulfonema representative genome possesses two oxidases for reducing O2 at different levels, a 

bd-quinol oxidase and a cytochrome c oxidase for higher O2 levels than the bd type (Rabus et al., 

2004; Ramel et al., 2013). Sulfate-reducing bacteria may use cytochrome c oxidase to detoxify 

(Ramel et al., 2013) reduce O2, coupled with oxidation of organic compounds, inorganic sulfur 

compounds, and H2 (Dannenberg et al., 1992; Dilling & Cypionka, 1990; Hardy & Hamilton, 
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1981). The Desulfobacteraceae MAG has only a cytochrome bd-quinol oxidase, which has a 

high O2 affinity and been involved more in O2 detoxification than in energy production (Ramel 

et al., 2013). The distribution of the Desulfobacteraceae MAG in finger and flat mat samples, 

which typically have higher O2 flux than other samples, is surprising if its oxidase is best suited 

for O2 detoxification and not aerobic respiration.  

 

Distinct organisms are responsible for core functions that are preserved across mat types. 

Our proteomic investigation revealed subtle functional shifts between the observed mat 

morphotypes. Corroborating abundance patterns based on 16S rRNA genes, Phormidium was 

significantly more active in finger and flat-Phormidium dominated mats, and less active in other 

mat types (Figure 4.6). Significantly differentially abundant gammaproteobacterial and 

deltaproteobacterial proteins were observed in higher abundance in flat-Spirulina and 

Pseudanabaena mat, giraffe, and white mat. These proteins typically represented core processes 

such as ribosomes and chaperones, but also revealed the involvement of these organisms in O, S, 

C, and N cycling. Distinct phycobiliproteins were significantly differentially abundant in the 

morphotypes, supporting the role of functional niches and potentially chromatic adaptation for 

Phormidium, Planktothrix, Pseudanabaena, and other cyanobacteria. We also observed 

significantly higher abundance of two protein subunits of reverse dissimilatory sulfite reductase 

and adenylylsulfate reductase in flat Spirulina and Pseudanabaena-dominated mats, giraffe and 

white mats, suggesting heightened sulfide oxidation in these mat types.  

Though a select group of potentially influential proteins were significantly differentially 

abundant between mats, nearly 1/3 of observed proteins were cosmopolitan and not different in 

abundance across mats (Table SI 4.3). The IMG-assigned taxonomies of the contigs hosting 
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these cosmopolitan proteins point to a core functional group of organisms. Judging from protein 

abundance, Phormidium, gammaproteobacteria, and deltaproteobacteria are substantial members 

of this core group. Cyanobacteria Spirulina, Pseudanabaena, and Planktothrix also contribute 

proteins to the cosmopolitan core, but are far less often observed compared to Phormidium. 

These core functional members cover many instrumental processes such as photosynthesis, 

carbon metabolism, translation, and sulfur metabolism. Indeed, photosynthetic proteins were the 

most widely observed in the core proteome, and indicate the operation of both photosystems I 

and II. The abundances and distribution of superoxide dismutase, peroxiredoxins, and 

peroxidases suggest that cyanobacteria, gammaproteobacteria, and other members are 

responding to oxidative stress. Sulfur metabolism, such as sulfate reduction and sulfur oxidation, 

is also occurring in most mat types. The abundance of chaperones and ribosomes and their 

distribution among many taxa, point to active growth of these organisms in the core functional 

group. Indeed, these processes underpinned by organisms such as Phormidium, 

gammaproteobacterial sulfide oxidizers, and deltaproteobacterial sulfate reducers, may not vary 

significantly in magnitude between the mat types, and it is the  and/or subtle environmental 

differences of key proteins of select organisms that may give rise to the different morphological 

appearances. 

 

Mat morphotypes as an expression of their environment filtering for cyanobacteria. 

Our study determined that mat morphotypes in MIS have distinct community structures. 

The dominant cyanobacteria were different in abundance between the finger, giraffe mat, white 

mat, and flat mat morphotypes. Similarly, abundances and identities of the sulfate-reducing 

bacteria and sulfide-oxidizing bacteria were different between the mat types. While the 
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composition and structure of the bacterial communities varied, the number of proteins that 

differed between mat types was a fraction of the pool of proteins that were observed across many 

mat types. Our previous research determined that seasonality is a strong influence on the 

bacterial community, likely through changes in groundwater chemistry and/or light quantity. 

However, many of the mat morphotypes evaluated in this current study occurred in the same 

season, often within 50 m of each other. Further, except for the lack of photosynthesis in white 

mats and a much-reduced rate of AP in fingers, fluxes of total sulfide and O2 were invariable 

between mat types. Thus a question emerging from this research is, what caused the appearance 

and distribution of the MIS mat morphotypes?  

It is striking to note the proliferation of Pseudanabaena and Spirulina members in the 

mat starting from 2016. Prior to 2016, Spirulina and Pseudanabaena were each 1% or less of the 

bacterial community (Chapter III) and were not effectively resolved in prior metagenomes 

(Voorhies, 2014). In one sample from October 2014 they reached their previously observed 

maximum abundance of 6% and 1% for Spirulina and Pseudanabaena respectively, before we 

sampled in 2016. Thereafter, these cyanobacteria became staples of the bacterial community. 

Our proteomics dataset points to lower protein abundance of Phormidium (and thus lower 

growth) and higher abundance of Pseudanabaena and other cyanobacterial proteins (higher 

growth) in giraffe, white, and Spirulina and Pseudanabaena-dominated mat. These signatures 

imply that the increased relative abundance of non-Phormidium members in these mats is likely 

due to growth conditions that favor Pseudanabaena and Spirulina. After 2016 the dominance of 

Phormidium is limited to finger mats, as evident in the 16S rRNA gene and proteomic profiles.  

Favorable growth conditions for Pseudanabaena may be related to temperature, salinity, 

and depth. When cultures of Phormidium and Pseudanabaena from polar environments were 
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subjected to different growth temperatures, Phormidium is more successful at cooler 

temperatures (4-8˚C) and Pseudanabaena is more successful at warmer temperature (16-23˚C) 

(Kleinteich et al., 2012). In Lake Huron, though the groundwater source remains at a constant 

8.4˚C throughout the year, mixing with the dynamic water column changes the physicochemical 

regime in the sinkhole arena. While we did not target long-term shifts in the overlying lake water 

of the sinkhole, warming in the Great Lakes in the last decade (Zhong et al., 2019) likely altered 

the physicochemical properties of the water column and impacted the benthic diatom community 

of coastal areas in Lake Huron (Sivarajah et al., 2018), leaving room for such influences in MIS. 

Other environmental parameters that impact the distribution Phormidium and Pseudanabaena in 

microbial mats, such as salinity and depth, may be less influential in MIS. In Antarctic lakes 

influenced by hypersaline brine or brackish water, typically Phormidium was more abundant 

than Pseudanabaena members (Pessi et al., 2016). Within a depth gradient in Lake Fryxell, 

Pseudanabaena was more abundant in shallower, beige mats whereas Phormidium was more 

abundant in pink-pigmented ridge and prostrate mats that are more prevalent in deeper mats on 

the shelf (Jungblut et al., 2016). Light optima, sulfide tolerance, and ability to withstand 

physicochemical stress determines depth niches for cyanobacteria in other microbial mats 

(Bradley et al., 2017; Jungblut et al., 2016; Noffke, 2010; Pepe-Ranney et al., 2012; Wilmeth et 

al., 2018).  

These experiments focused on axenic cultures, or related depth and salinity changes to 

differences in the growth of Phormidium and Pseudanabaena. In MIS, without clear differences 

in the measurements of the geochemical environment that we made (e.g. sulfide and oxygen 

profiles), it is likely that microbial interspecies interactions may influence community 

composition. The flat mats dominated by Pseudanabaena and Spirulina had lower observed 
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species richness than Phormidium-dominated mats. Generally, the sulfide-oxidizing community 

in Phormidium-dominated mats (including fingers) was more even between 

gammaproteobacteria and epsilonproteobacteria, and we observed a higher abundance of other 

cyanobacteria as well. Metagenomic evidence suggests these organisms may have more diverse 

potential biogeochemical influences, than those found in Pseudanabaena and Spirulina mats. 

However, with only a fraction of non-cyanobacterial proteins significantly differing between the 

two mat types, the impact of these microbes on the growth of Pseudanabaena and Phormidium is 

not well understood. Further work on the optimal growth conditions for MIS cyanobacteria can 

untangle whether Phormidium and Pseudanabaena are so functionally similar that subtle shifts 

in ecological conditions can influence which cyanobacterium reigns supreme, and whether they 

have responses and functions that shape the mat appearance. 

The MIS environment is generally the same throughout and experiences the same 

groundwater source, and our broad geochemical measurements indicated no substantial 

difference in O2 and H2S flux between cyanobacterial mat types. We did not capture any smaller-

scale sediment-derived geochemical differences, if they were present, between the areas in which 

the mat types are primarily found. Changes in the physicochemical environment are able to 

induce bottom-up shifts in the appearance of microbial mats. For example, an EPS-rich microbial 

mat can trap gases underneath, increasing pressure under the mat and causing it to uplift into the 

‘gas dome’ mat type (Noffke, 2010). Modern mats in coastal environments at the right depth and 

experiencing the right tidal frequency will generate kinneyia wrinkle structures (Herminghaus et 

al., 2016). At the depth of MIS with its ~1 m layer of groundwater, tidal frequencies in the basin 

generated from the imbalance between the cold, high-conductivity groundwater and fresh 

overlying lake water, could generate ripple patterns of the right wavelength that would yield 
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giraffe mat (Herminghaus et al., 2016). A hydrodynamic model such as this would have to be 

refined to interpret the localization of giraffe mat to only one area of the sinkhole.  

Our understanding of the biological and environmental mechanisms behind the formation 

of microbial mats in the geologic record, has been significantly deepened thanks to investigations 

in extant settings (Noffke, 2010). Yet without clear linkages between geochemical fluxes, 

microbial community structure, and metabolic functioning in the mat morphotypes observed in 

MIS, our study posits caution in inferring metabolisms from preserved morphotypes. Sulfide-

oxidizing bacteria have rarely been implicated in the formation of preserved microbial mats 

because of the importance paid to phototrophs, but they are abundant and active members in the 

MIS mats and are key mat members in chemotrophic communities (Flood et al. 2014). AP is not 

a widely observed metabolism among cyanobacteria, yet in MIS this capability may be present in 

dominant cyanobacteria in discrete mat types. Even in fingers, the uplifted mats most similar to 

cones, AP is likely an important process in depleting locally produced sulfide, yet cones and 

domes in the geologic record have been interpreted to be O2 oases that are observed only after 

the GOE (Bosak et al., 2009; Bradley et al., 2017). Though the processes behind the appearance 

and distribution of morphotypes in MIS are not yet well known, the presence of core functional 

groups and metabolisms across these mats, and the consistency in geochemical fluxes, 

complicates the biogeochemical role of different mat morphotypes in Earth history. 

 

4.6 Conclusion 

The Middle Island Sinkhole mat morphotypes we evaluated in this study hosted 

taxonomically and functionally diverse microbial communities. This spatiotemporal evaluation is 

in contrast to previous perspectives of MIS mats being stable, low-diversity ecosystems 
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(Voorhies, 2014). These mats are similar in appearance to those observed in the geologic record, 

and are ideal systems in which to explore the link between functional similarities, geochemistry, 

and phylogenetic relationship. A small pool of significantly differentially abundant proteins from 

key organisms, subtle variations in geochemical cycling, and local physicochemical differences 

may play a role in the morphological appearance of mats. The differing distributions, proteomic 

abundances, and genome sizes of cyanobacteria with similar S, O, and N metabolizing genes in 

distinct mats implicates functional similarity between microbes that characterize select mat 

morphotypes. Despite prominent differences in appearance, these mats also host common 

metabolic guilds of sulfate-reducing bacteria and sulfide-oxidizing bacteria. Finally, the 

metaproteomic profiles presented here provide opportunities for untangling the functional 

interactions of microbes in extreme ecosystems, and a framework for potential metabolisms in 

ancient mats. 
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4.9 Tables and Figures 

Table 4.1 Sequencing and assembly results of metagenomic datasets. 
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Table 4.2 Estimates of S and O fluxes and photosynthetic rates measured in situ in flat 

purple, giraffe, and white mat, and ex situ in finger and flat purple mat.  
  
 In situ 

30-57 µmol photons m-2 s-1 
Ex situ 
58-79 µmol photons m-2 s-1 

 Purple Giraffe White Fingers Purple 
Net OxyPhoto (µmol O2 m-2 s-1) 1.44 to 

2.22 
1.79 to 2.36 0 1.26 to 1.59 1.39 to 2.86 

AnoxyPhoto (µmol Stot m-2 s-1) ND ND ND 0.09 to 0.21 0.93 to 2.49 
O2 flux into water column (µmol 
O2 m-2 s-1) 

0.94 to 
1.51 

1.19 to 1.66  -0.04 to -0.26 0.67 to 1.83 0.35 to 2.12 

Stot upward flux into mat (µmol 
Stot m-2 s-1) 

0.26 to 
0.46 

0.29 to 0.55 0.07 to 0.91 0.06 to 0.43 0.41 to 0.92 
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Table 4.3 Presence/absence and grouping of key genes in cyanobacterial genomes: psbA, 
sqr, nif, cpe, cpc 
Metabolism Gene Phormidium Planktothrix Pseudanabaena Spirulina 
Photosynthesis psbA group 2 (anoxic) X  X  

psbA group 3 
(microaerobic) 

X X X  

psbA group 4 (oxic) X X X X 
Pigments phycoerythrin X X   

phycocyanin X X X X 
phycoerythrocyanin    X 

Sulfur cycling sqrI (high H2S affinity) X  X X 
sqrII (sulfide 
detoxification) 

X X   

sqrVI (low H2S 
affinity) 

  X  

Nitrogen 
fixation 

nifHDK X  X  
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Table 4.4 This and next 2 pages: Completion and redundancy estimates for MAG bins of 
interest. Asterisked * bins indicate representative bin for further analyses. 
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new_117910_bin_1_46_c
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Flat white 
by giraffe 

96.78 2.79 7.14 2.59 4521637 

new_107397_bin_11_cya
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Flat white 
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95.36 5.54 28.12 3.98 4102370 
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Flat A 91.47 8.1 6.82 7.55 4164679 
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no.fa 
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Giraffe pit 93.1 10.97 0 10.97 4164513 

new_117912_bin_1_cyan
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D es ul fo ne m a  
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117912_bin.8.fa Giraffe 
ridge 

76.21 1.97 40 1.18 3023799 

117913_bin.26.fa Giraffe 94.64 23.78 90.24 2.32 4408069 
117915_bin.18.fa Flat D 82.09 3.91 71.43 1.12 3536614 
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107395_bin.45.fa Flat A 50.2 0.97 100 0.00 2473442 
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by giraffe 
73.04 3.1 71.43 0.89 3478934 

* 107397_bin.13.fa Flat white 
by giraffe 

90.75 3.58 75 0.90 5329193 

107398_bin.21.fa Flat A 54.6 1.47 80 0.29 2621878 
117907_bin.1.fa Finger 87.85 5.94 75 1.49 4809721 
117909_bin.21.fa Flat A 76.68 1.67 80 0.33 3467608 
117910_bin.56.fa Flat A 66.71 2.69 100 0.00 3443140 
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Figure 4.1 Distinct mat morphotypes observed in MIS from 2015-2017. A: Flat purple mat 
dominated by Phormidium. B: Flat purple mat dominated by Spirulina and Pseudanabaena. 
C: Finger mat. D: Giraffe mat. E: White mat.
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Figure 4.2 The relative abundances of 16S rRNA genes belonging to cyanobacteria, sulfur 
cycling bacteria (Gammaproteobacteria and Epsilonproteobacteria), sulfate-reducing bacteria 
(Deltaproteobacteria), and other abundant bacterial clades in mats. Samples are grouped by 
morphological appearance (finger, white, giraffe, flat), and labeled by collection year, month, 
and name.  
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Figure 4.3 Dendrogram classifying the flat mat samples by the abundance of 16S rRNA 
genes from various cyanobacterial taxa. Only the abundances of cyanobacterial nodes were 
used in generating a Bray-Curtis distance matrix, which was the input for a dendrogram. In 
black are all samples in which the relative abundance of Spirulina and Pseudanabaena are 
more than 45% of the sequences assigned to Spirulina, Pseudanabaena, Phormidium, and 
Planktothrix. In red are all samples in which Phormidium was more abundant. 
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Figure 4.4 Next page: Key bacterial MAGs in each mat morphotype. A: Finger mat. B: 
Giraffe mat. C: White mat. Phormidium-dominated flat purple mat and Spirulina and 
Pseudanabaena-dominated flat purple mat are similar to A and B respectively. Important 
genes in biogeochemical cycling are shown. Oxygen-cycling genes are in blue and include: 
psbA photosystem II D1 protein, groups 2, 3, and 4; cpcAB phycocyanin and cpeAB 
phycoerythrin; cytochrome cbb3, bd-quinol, and c oxidases cbb3, cyd, and cox respectively. 
Sulfur-cycling genes are in green shades and include: sqr sulfide quinone reductase, types I, 
II, IV, and VI; sat, apr, dsr for dissimilatory sulfate reduction (SRBs) or sulfide oxidation 
(gSOs); sox for thiosulfate oxidation; and psr for polysulfide oxidation. Nitrogen-cycling 
genes are in purple and include: nifHDK nitrogenase; narGH, nirA, narB for nitrate 
reduction; napAB and nrfAH for nitrate reduction; denitrification with napAB, nirS, norBC, 
and nosZ;  [NiFe] hydrogenases of groups I, II, III, and IV are NiFe hyd, hya, hox, and hyf, 
respectively. Transporters are in small, unlabeled rectangles and include sulfate, nitrate, 
molybdate, tungstate, phosphate, zinc, cobalt, nickel, manganese, iron, lipopolysaccharides, 
and phospholipids. 
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Figure 4.5 Comparative dendrograms of samples with paired 16S rRNA gene profiles and 
proteomics profiles. Samples are colored by mat type: white mat is black, giraffe mat is red, 
finger mat is green, flat-P mat is light blue, and flat-SP mat is dark blue. The dendrogram of 
the Bray-Curtis dissimilarity matrix on the relative abundances of cyanobacterial 16S rRNA 
genes (A) clusters samples by abundances of Phormidium, Spirulina, and Pseudanabaena. 
The proteomic dendrogram based off a Gower dissimilarity matrix on the proteins’ log2-
normalized abundances (B) does not preserve the grouping as seen in the 16S rRNA gene-
based dendrogram.  
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Figure 4.6 Heatmap of significantly differentially abundant proteins between flat-
Phormidium mat and flat-Spirulina and Pseudanabaena mat, observed in specific taxa/bins. 
These proteins belonging to betaproteobacterial sulfide oxidizers (Betaproteobacteria SO), 
deltaproteobacterial sulfate reducers (SRB), gamamproteobacterial sulfide oxidizers, 
Planktothrix, Phormidum, Pseudanabaena, and Spirulina, are plotted by metabolic function 
and gene name. Proteins with higher weighted mean log2-normalized abundances are plotted 
in warm grey colors, whereas proteins with lower abundances are plotted in cool grey colors. 
Proteins whose weighted means are larger than their standard deviations are plotted with 
black borders, whereas other proteins have weighted means are less than their standard 
deviations and are variably represented in samples of the same mat type. 
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Figure 4.7 Heatmap of significantly differentially abundant proteins in mat morphotypes 
grouped by taxa/bin and metabolic function. Proteins with higher weighted mean log2-
normalized abundances are plotted in warm grey colors, whereas proteins with lower 
abundances are plotted in cool grey colors.  
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4.10 Appendix C 

Supplemental Information 

Table SI 4.1 This and next 2 pages: List of samples by mat type evaluated with 16S, 
metagenomics, and quantitative community proteomics. 

Mat type Sample Year Month 16S rRNA gene 
sequenced 

Meta-
proteomics 

Meta-
genomics 

Finger MIS.2015.027 2015 June 2 3 1 
Finger MIS.2015.060 2015 July 3 4 1 
Finger MIS.2016.030 2016 June 1 2 1 
Finger MIS.2016.061 2016 July  1  
Finger MIS.2017.036 2017 June 1 1 1 
Finger MIS.2017.037 2017 June 1 1 1 
Finger MIS.2017.038 2017 June 1 1  

Flat MIS.2015.100 2015 October 2 3  
Flat MIS.2016.033 2016 June 1 1 1 
Flat MIS.2016.060 2016 July 2 4 1 
Flat MIS.2016.063 2016 July 2 1  
Flat MIS.2016.120 2016 July 1 1  
Flat MIS.2016.121 2016 July  1  
Flat MIS.2016.122 2016 July  1  
Flat MIS.2016.123 2016 July 2 1  
Flat MIS.2016.124 2016 July 1   
Flat MIS.2016.125 2016 July 1   
Flat MIS.2016.135 2016 July 2 1 1 
Flat MIS.2016.136 2016 July 1   
Flat MIS.2016.144 2016 July 1   
Flat MIS.2016.156 2016 July 1   
Flat MIS.2016.201 2016 July 1   
Flat MIS.2016.215 2016 July 1   
Flat MIS.2016.231 2016 July 1   
Flat MIS.2016.250 2016 July 1   
Flat MIS.2016.255/ 

MIS.2016.257 
2016 July 1 1 1 

Flat MIS.2016.265 2016 July 1   
Flat MIS.2016.267 2016 July 1   
Flat MIS.2016.273 2016 July 1   
Flat MIS.2016.278 2016 July 1   
Flat MIS.2016.062 2016 July 2 1  
Flat MIS.2016.152 2016 July 2 1  
Flat MIS.2016.153 2016 July 1   
Flat MIS.2016.154 2016 July 1 1  
Flat MIS.2016.155 2016 July 1 1  
Flat MIS.2016.Y.00 2016 July 3  1 
Flat MIS.2016.Sept.A 2016 September 3   
Flat MIS.2016.Sept.B 2016 September 1 1  
Flat MIS.2016.Sept.C 2016 September 2 1  
Flat MIS.2017.020 2017 May 1   
Flat MIS.2017.021 2017 May 1   
Flat MIS.2017.033 2017 June 1   
Flat MIS.2017.034 2017 June 1   
Flat MIS.2017.035 2017 June 1   
Flat MIS.2017.042 2017 August 1   
Flat MIS.2017.043 2017 August 1   
Flat MIS.2017.044 2017 August 1   
Flat MIS.2017.105 2017 September 1   
Flat MIS.2017.106 2017 September 1   
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Flat MIS.2017.107 2017 September 1   
Flat MIS.2017.124 2017 September 1   
Flat MIS.2017.125 2017 September 1   
Flat MIS.2017.120 2017 September 1   
Flat MIS.2017.121 2017 September 1   
Flat MIS.2017.122 2017 September 1   

Giraffe MIS.2016.G.00 2016 July 3  1 
Giraffe MIS.2016.213/ 

MIS.2016.214 
2016 July 1 1 1 

Giraffe MIS.2016.217 2016 July 1   
Giraffe MIS.2016.223 2016 July 1   
Giraffe MIS.2016.226/ 

MIS.2016.227 
2016 July 1 1  

Giraffe MIS.2016.202/ 
MIS.2016.203 

2016 July 1 1  

Giraffe MIS.2016.221/ 
MIS.2016.222 

2016 July 1 1 1 

Giraffe MIS.2016.229 2016 July 1   
White MIS.2016.205 2016 July 1   
White MIS.2016.210 2016 July 1   
White MIS.2016.253 2016 July 1   
White MIS.2016.258 2016 July 1   
White MIS.2016.262 2016 July 1   
White MIS.2016.270 2016 July 1   
White MIS.2016.275/ 

MIS.2016.277 
2016 July 1 1 1 

White MIS.2016.280/ 
MIS.2016.281 

2016 July 1 1 1 

White MIS.2017.108 2017 September 1 1  
White MIS.2017.109 2017 September 1 1  
White MIS.2017.110 2017 September 1   
White MIS.2017.111 2017 September 1 1  
White MIS.2017.112 2017 September 1 1  
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Table SI 4.2 Genes of interest identified in epsilonproteobacterial sulfide-oxidizing MAGs. X 
indicates presence of complete gene. Asterisk * indicates partial set of genes for metabolism. 
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Table SI 4.3 Next 25 pages: Proteins that were not significantly differentially abundant 
between mat morphotypes, and were observed in at least 3 mat types. 
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subunit/uncharacterized protein w
ith N

A
D

-binding 
dom

ain and iron-sulfur cluster

A
m

ino acid 
m

etabolism

G
a0371428_1010771

-0.85
0.18

0.29
0.85

1.33
Phorm

idium
C

O
G

0493, 
C

O
G

1144
gltD

/porD
N

A
D

PH
-dependent glutam

ate synthase beta 
subunit-like oxidoreductase/Pyruvate/2-

oxoacid:ferredoxin oxidoreductase delta subunit

A
m

ino acid 
m

etabolism

Log2-norm
alized abundance in
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G

a0371429_10444373
0.65

0.04
-0.24

N
A

1.48
G

am
m

aproteobacteria
C

O
G

0493, 
C

O
G

1232, 
C

O
G

1144

gltD
/porD

/h
em

Y

N
A

D
PH

-dependent glutam
ate synthase beta 

subunit-like oxidoreductase/Protoporphyrinogen 
oxidase/Pyruvate/2-oxoacid:ferredoxin 

oxidoreductase delta subunit

A
m

ino acid 
m

etabolism

G
a0371431_10224013

0.10
0.04

-1.01
N

A
N

A
Verrucom

icrobiaceae
K

O
:K

00789
m

etK
S-adenosylm

ethionine synthetase 
A

m
ino acid 

m
etabolism

G
a0371428_1148462

-0.02
-0.57

N
A

N
A

-0.56
Phorm

idium
K

O
:K

00789
m

etK
S-adenosylm

ethionine synthetase 
A

m
ino acid 

m
etabolism

G
a0371428_1029051

N
A

0.79
0.54

1.15
N

A
U

nbinned
K

O
:K

03072
secD

preprotein translocase subunit SecD
B

acterial secretion 
system

G
a0371430_11686422

-0.09
0.36

-1.35
N

A
0.50

U
nbinned

K
O

:K
01961

accC
acetyl-C

oA
 carboxylase, biotin carboxylase subunit 

C
arbon m

etabolism

G
a0371428_1007462

-0.81
-0.01

0.06
N

A
1.01

G
am

m
aproteobacteria

K
O

:K
01637

aceA
isocitrate lyase

C
arbon m

etabolism

G
a0371428_1033043

N
A

0.37
0.46

N
A

0.92
G

am
m

aproteobacteria
K

O
:K

01682
acnB

aconitate hydratase 2 / 2-m
ethylisocitrate 

dehydratase 
C

arbon m
etabolism

G
a0371429_10687486

-0.06
-0.30

-0.22
N

A
-0.23

C
om

am
onadaceae

K
O

:K
01682

acnB
aconitate hydratase 2 / 2-m

ethylisocitrate 
dehydratase 

C
arbon m

etabolism

G
a0371429_10665311

-1.04
-0.39

0.53
-0.81

N
A

U
nbinned

K
O

:K
01682

acnB
aconitate hydratase 2 / 2-m

ethylisocitrate 
dehydratase 

C
arbon m

etabolism

G
a0371430_11290381

-2.29
-0.21

-0.05
-0.63

0.62
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

01682
acnB

aconitate hydratase 2 / 2-m
ethylisocitrate 

dehydratase 
C

arbon m
etabolism

G
a0371428_1017936

-0.10
1.01

0.06
1.79

0.60
D

esulfobacteraceae
K

O
:K

14138
acsB

acetyl-C
oA

 synthase 
C

arbon m
etabolism

G
a0371428_1084271

-0.62
1.97

1.14
N

A
N

A
U

nbinned
K

O
:K

14138
acsB

acetyl-C
oA

 synthase 
C

arbon m
etabolism

G
a0371428_1097791

-1.29
0.54

0.28
1.40

1.39
U

nbinned
K

O
:K

14138
acsB

acetyl-C
oA

 synthase 
C

arbon m
etabolism

G
a0371428_1058232

-0.12
0.13

-0.11
1.24

N
A

D
esulfobacteraceae

K
O

:K
01895

A
C

SS, acs
acetyl-C

oA
 synthetase 

C
arbon m

etabolism
G

a0371428_1161471
0.84

-0.70
0.84

0.95
N

A
D

esulfobacteraceae
K

O
:K

01895
A

C
SS, acs

acetyl-C
oA

 synthetase 
C

arbon m
etabolism

G
a0371428_1093253

-0.42
-0.66

0.40
0.38

0.81
U

nbinned
K

O
:K

01895
A

C
SS, acs

acetyl-C
oA

 synthetase 
C

arbon m
etabolism

G
a0371428_1158462

0.90
-0.44

-0.18
1.59

0.77
U

nbinned
K

O
:K

01895
A

C
SS, acs

acetyl-C
oA

 synthetase 
C

arbon m
etabolism

G
a0371428_1041777

0.67
-0.96

-3.32
N

A
N

A
Phorm

idium
K

O
:K

01895
A

C
SS, acs

acetyl-C
oA

 synthetase 
C

arbon m
etabolism

G
a0371427_10462513

-1.56
-0.09

-1.04
N

A
N

A
N

A
K

O
:K

01623
A

LD
O

fructose-bisphosphate aldolase, class I 
C

arbon m
etabolism

G
a0371428_1059043

-0.59
-0.55

0.50
N

A
N

A
Phorm

idium
K

O
:K

03738
aor

aldehyde:ferredoxin oxidoreductase
C

arbon m
etabolism

G
a0371429_11024881

0.01
0.18

1.33
1.29

N
A

Spirulina
K

O
:K

08696
ccm

K
carbon dioxide concentrating m

echanism
 protein 

C
cm

K
C

arbon m
etabolism

G
a0371429_11067534

-1.85
1.51

-0.19
0.20

N
A

B
etaproteobacteria

C
O

G
4577

ccm
K

carbon dioxide concentrating m
echanism

 protein 
C

cm
K

C
arbon m

etabolism

G
a0371429_10397192

N
A

-0.70
1.40

2.73
1.69

U
nbinned

K
O

:K
08696

ccm
K

carbon dioxide concentrating m
echanism

 protein 
C

cm
K

C
arbon m

etabolism

G
a0371428_1083423

0.59
0.10

-1.23
1.34

-1.39
Phorm

idium
K

O
:K

08696
ccm

K
carbon dioxide concentrating m

echanism
 protein 

C
cm

K
C

arbon m
etabolism

G
a0371428_1083425

-0.41
-0.03

-2.69
N

A
-1.54

Phorm
idium

K
O

:K
08698

ccm
M

carbon dioxide concentrating m
echanism

 protein 
C

cm
M

C
arbon m

etabolism

G
a0371428_1017938

-0.80
0.07

-0.76
N

A
N

A
D

esulfobacteraceae
K

O
:K

00194
cdhD

, acsD
acetyl-C

oA
 decarbonylase/synthase, C

O
D

H
/A

C
S 

com
plex subunit delta 

C
arbon m

etabolism

G
a0371428_1017935

-0.11
1.48

-0.18
N

A
0.14

D
esulfobacteraceae

K
O

:K
00197

cdhE, acsC
acetyl-C

oA
 decarbonylase/synthase, C

O
D

H
/A

C
S 

com
plex subunit gam

m
a 

C
arbon m

etabolism

G
a0371428_1017937

0.83
1.78

0.84
-0.21

N
A

D
esulfobacteraceae

K
O

:K
00198

cooS, acsA
anaerobic carbon-m

onoxide dehydrogenase 
catalytic subunit 

C
arbon m

etabolism

G
a0371428_1065798

-0.32
1.35

-0.03
N

A
N

A
D

esulfobacteraceae
K

O
:K

00198
cooS, acsA

anaerobic carbon-m
onoxide dehydrogenase 

catalytic subunit 
C

arbon m
etabolism
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G

a0371433_10792051
-0.86

0.83
-0.70

N
A

N
A

U
nbinned

K
O

:K
00382

D
LD

, lpd, 
pdhD

dihydrolipoam
ide dehydrogenase 

C
arbon m

etabolism

G
a0371428_1122321

-0.47
0.22

0.36
-0.05

0.73
G

am
m

aproteobacteria
K

O
:K

00626
E2.3.1.9, 

atoB
acetyl-C

oA
 C

-acetyltransferase 
C

arbon m
etabolism

G
a0371427_10935021

-0.08
0.37

-0.94
N

A
N

A
N

A
K

O
:K

01100
E3.1.3.37

sedoheptulose-bisphosphatase 
C

arbon m
etabolism

G
a0371427_10935022

-0.81
0.40

-0.78
N

A
2.07

N
A

K
O

:K
01100

E3.1.3.37
sedoheptulose-bisphosphatase 

C
arbon m

etabolism

G
a0371428_1010121

-0.37
0.35

0.33
0.71

0.95
G

am
m

aproteobacteria
K

O
:K

01610
E4.1.1.49, 

pckA
phosphoenolpyruvate carboxykinase (ATP) 

C
arbon m

etabolism

G
a0371428_1095852

1.11
0.13

0.71
1.39

0.92
U

nbinned
K

O
:K

01689
EN

O
, eno

enolase 
C

arbon m
etabolism

G
a0371428_10693614

-0.05
0.55

-2.69
N

A
N

A
Phorm

idium
K

O
:K

01689
EN

O
, eno

enolase 
C

arbon m
etabolism

G
a0371428_1139862

-1.71
0.32

0.13
-1.51

0.38
G

am
m

aproteobacteria
K

O
:K

03841
FB

P, fbp
fructose-1,6-bisphosphatase I 

C
arbon m

etabolism

G
a0371428_1080931

-0.18
2.14

0.85
N

A
N

A
D

esulfobacteraceae
K

O
:K

00123
fdoG

, fdhF, 
fdw

A
form

ate dehydrogenase m
ajor subunit

C
arbon m

etabolism

G
a0371428_1035722

0.85
1.61

0.63
0.28

0.96
U

nbinned
K

O
:K

01938
fhs

form
ate--tetrahydrofolate ligase 

C
arbon m

etabolism
G

a0371431_11444881
N

A
2.03

0.57
-0.18

N
A

D
esulfobacteraceae

K
O

:K
01938

fhs
form

ate--tetrahydrofolate ligase 
C

arbon m
etabolism

G
a0371429_102515718

0.59
N

A
1.25

3.87
N

A
Spirulina

K
O

:K
00150

gap2
glyceraldehyde-3-phosphate dehydrogenase 

(N
A

D
(P)) 

C
arbon m

etabolism

G
a0371431_11310401

1.36
0.01

-0.44
N

A
N

A
U

nbinned
K

O
:K

00150
gap2

glyceraldehyde-3-phosphate dehydrogenase 
(N

A
D

(P)) 
C

arbon m
etabolism

G
a0371428_10321818

0.20
-0.35

-2.49
N

A
-1.64

Phorm
idium

K
O

:K
00150

gap2
glyceraldehyde-3-phosphate dehydrogenase 

(N
A

D
(P)) 

C
arbon m

etabolism

G
a0371476_12652433

-0.71
0.39

-0.66
N

A
N

A
B

acteroidales
K

O
:K

00134
G

A
PD

H
, 

gapA
glyceraldehyde 3-phosphate dehydrogenase 

C
arbon m

etabolism

G
a0371427_10933292

-0.74
0.34

-0.59
N

A
N

A
U

nbinned
K

O
:K

00134
G

A
PD

H
, 

gapA
glyceraldehyde 3-phosphate dehydrogenase 

C
arbon m

etabolism

G
a0371428_1026342

-1.04
0.40

-0.12
-1.19

0.27
U

nbinned
K

O
:K

00134
G

A
PD

H
, 

gapA
glyceraldehyde 3-phosphate dehydrogenase 

C
arbon m

etabolism

G
a0371437_10077301

N
A

0.14
0.45

-0.65
0.47

U
nbinned

K
O

:K
00134

G
A

PD
H

, 
gapA

glyceraldehyde 3-phosphate dehydrogenase 
C

arbon m
etabolism

G
a0371429_10545512

0.13
-0.28

-0.78
N

A
-0.14

N
A

K
O

:K
00134

G
A

PD
H

, 
gapA

glyceraldehyde 3-phosphate dehydrogenase 
C

arbon m
etabolism

G
a0371428_1006394

0.11
-0.14

-2.74
N

A
-1.77

Phorm
idium

K
O

:K
00134

G
A

PD
H

, 
gapA

glyceraldehyde 3-phosphate dehydrogenase 
C

arbon m
etabolism

G
a0371431_102970814

N
A

-1.23
0.82

4.39
1.44

Pseudanabaena
K

O
:K

11532
glpX

-SEB
P

fructose-1,6-bisphosphatase II / sedoheptulose-1,7-
bisphosphatase 

C
arbon m

etabolism

G
a0371428_1170091

-0.58
0.30

0.32
N

A
N

A
U

nbinned
K

O
:K

00600
glyA

, 
SH

M
T

glycine hydroxym
ethyltransferase 

C
arbon m

etabolism

G
a0371428_1011905

-0.03
-0.17

-3.50
N

A
N

A
Phorm

idium
K

O
:K

00600
glyA

, 
SH

M
T

glycine hydroxym
ethyltransferase 

C
arbon m

etabolism

G
a0371428_1028563

2.14
0.69

0.68
0.93

0.45
G

am
m

aproteobacteria
K

O
:K

00031
ID

H
1, 

ID
H

2, icd
isocitrate dehydrogenase 

C
arbon m

etabolism

G
a0371428_1027273

1.96
1.36

0.77
0.09

1.29
G

am
m

aproteobacteria
K

O
:K

08691
m

cl
m

alyl-C
oA

/(S)-citram
alyl-C

oA
 lyase 

C
arbon m

etabolism
G

a0371428_1011716
0.78

2.10
0.40

2.00
N

A
D

esulfobacteraceae
K

O
:K

00024
m

dh
m

alate dehydrogenase 
C

arbon m
etabolism

G
a0371428_11001619

4.07
-0.13

0.45
1.24

N
A

C
hloroflexaceae

K
O

:K
00024

m
dh

m
alate dehydrogenase 

C
arbon m

etabolism
G

a0371428_1072331
-3.93

0.23
0.41

0.64
0.70

G
am

m
aproteobacteria

K
O

:K
00024

m
dh

m
alate dehydrogenase 

C
arbon m

etabolism
G

a0371428_1034841
-0.43

0.05
0.04

N
A

N
A

G
am

m
aproteobacteria

K
O

:K
00850

pfkA
, PFK

6-phosphofructokinase 1 
C

arbon m
etabolism

G
a0371428_1174682

0.09
0.73

0.32
N

A
N

A
U

nbinned
K

O
:K

00927
PG

K
, pgk

phosphoglycerate kinase 
C

arbon m
etabolism

G
a0371427_11111981

-1.55
0.15

-1.21
-2.21

-1.53
N

A
K

O
:K

00927
PG

K
, pgk

phosphoglycerate kinase 
C

arbon m
etabolism

G
a0371429_10928611

-0.63
0.23

-0.63
-0.29

0.64
N

A
K

O
:K

00927
PG

K
, pgk

phosphoglycerate kinase 
C

arbon m
etabolism

G
a0371428_10035615

0.06
-0.31

-2.61
N

A
-1.18

Phorm
idium

K
O

:K
03737

por, nifJ
pyruvate-ferredoxin/flavodoxin oxidoreductase 

C
arbon m

etabolism



 221 

 
G

a0371428_10864012
1.14

-0.59
0.30

-0.08
N

A
C

hloroflexaceae
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371428_1014861

-1.64
-0.17

0.16
0.05

-0.34
G

am
m

aproteobacteria
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371428_1070691

0.00
0.56

0.60
0.63

0.55
U

nbinned
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371429_10134122

-0.87
0.02

0.28
-1.66

-1.02
G

am
m

aproteobacteria
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371431_11479611

0.37
0.30

-0.06
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371431_10438991

0.51
-0.75

0.00
N

A
N

A
U

nbinned
K

O
:K

01006
ppdK

pyruvate, orthophosphate dikinase 
C

arbon m
etabolism

G
a0371428_1056121

N
A

0.18
0.48

-0.27
N

A
U

nbinned
K

O
:K

01720
prpD

2-m
ethylcitrate dehydratase 

C
arbon m

etabolism
G

a0371477_1268713
1.91

2.28
-1.53

N
A

0.07
U

nbinned
K

O
:K

01601
rbcL

ribulose-bisphosphate carboxylase large chain 
C

arbon m
etabolism

G
a0371428_1105941

N
A

-2.02
-2.42

N
A

-3.01
U

nbinned
K

O
:K

01601
rbcL

ribulose-bisphosphate carboxylase large chain 
C

arbon m
etabolism

G
a0371430_10798471

N
A

-0.23
-3.17

-3.71
-1.42

U
nbinned

K
O

:K
01601

rbcL
ribulose-bisphosphate carboxylase large chain 

C
arbon m

etabolism
G

a0371430_11454571
N

A
1.14

-0.18
N

A
1.93

U
nbinned

K
O

:K
01601

rbcL
ribulose-bisphosphate carboxylase large chain 

C
arbon m

etabolism
G

a0371432_10469211
N

A
0.88

0.91
2.27

1.45
U

nbinned
K

O
:K

01601
rbcL

ribulose-bisphosphate carboxylase large chain 
C

arbon m
etabolism

G
a0371437_10430384

N
A

2.68
0.93

2.86
2.59

Porphyrom
onadaceae

K
O

:K
01601

rbcL
ribulose-bisphosphate carboxylase large chain 

C
arbon m

etabolism
G

a0371428_10128315
-0.50

-0.89
-2.02

-0.68
-1.65

Phorm
idium

K
O

:K
01601

rbcL
ribulose-bisphosphate carboxylase large chain 

C
arbon m

etabolism
G

a0371429_104460910
-1.99

0.23
-0.72

N
A

N
A

U
nbinned

K
O

:K
01602

rbcS
ribulose-bisphosphate carboxylase sm

all chain 
C

arbon m
etabolism

G
a0371429_10997221

1.00
-0.77

-0.24
N

A
N

A
U

nbinned
K

O
:K

01602
rbcS

ribulose-bisphosphate carboxylase sm
all chain 

C
arbon m

etabolism
G

a0371428_10128317
-0.68

0.19
-3.42

N
A

-4.63
Phorm

idium
K

O
:K

01602
rbcS

ribulose-bisphosphate carboxylase sm
all chain 

C
arbon m

etabolism
G

a0371429_10652475
1.33

0.57
-0.16

N
A

N
A

O
scillatoria

K
O

:K
01783

rpe, R
PE

ribulose-phosphate 3-epim
erase 

C
arbon m

etabolism
G

a0371427_10022211
-1.23

0.92
N

A
N

A
-0.37

N
A

K
O

:K
01783

rpe, R
PE

ribulose-phosphate 3-epim
erase 

C
arbon m

etabolism
G

a0371428_1023286
0.43

-0.49
-3.22

N
A

N
A

Phorm
idium

K
O

:K
01783

rpe, R
PE

ribulose-phosphate 3-epim
erase 

C
arbon m

etabolism
G

a0371427_10289651
-0.01

0.55
-0.47

N
A

1.48
U

nbinned
K

O
:K

00615
tktA

, tktB
transketolase 

C
arbon m

etabolism

G
a0371428_1038202

-0.68
0.76

0.24
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

00615
tktA

, tktB
transketolase 

C
arbon m

etabolism

G
a0371428_1046621

N
A

0.35
0.33

0.30
0.47

G
am

m
aproteobacteria

K
O

:K
00615

tktA
, tktB

transketolase 
C

arbon m
etabolism

G
a0371429_10297617

0.09
-0.31

-2.89
-2.97

N
A

U
nbinned

K
O

:K
00615

tktA
, tktB

transketolase 
C

arbon m
etabolism

G
a0371429_10778891

0.03
0.04

-0.96
N

A
0.58

U
nbinned

K
O

:K
00615

tktA
, tktB

transketolase 
C

arbon m
etabolism

G
a0371428_1089327

0.24
-0.26

-2.95
N

A
-2.59

Phorm
idium

K
O

:K
00615

tktA
, tktB

transketolase 
C

arbon m
etabolism

G
a0371428_1057891

1.11
-0.03

0.36
0.10

N
A

G
am

m
aproteobacteria

K
O

:K
01803

TPI, tpiA
triosephosphate isom

erase (TIM
) 

C
arbon m

etabolism
G

a0371435_104584211
N

A
N

A
-0.10

-0.13
0.67

B
acteria

K
O

:K
01803

TPI, tpiA
triosephosphate isom

erase (TIM
) 

C
arbon m

etabolism
G

a0371427_10192601
0.12

0.59
-0.54

N
A

N
A

U
nbinned

K
O

:K
11262

A
C

A
C

A
acetyl-C

oA
 carboxylase / biotin carboxylase 1 

C
entral m

etabolism
G

a0371429_10103132
0.03

0.49
-0.57

N
A

N
A

U
nbinned

K
O

:K
11262

A
C

A
C

A
acetyl-C

oA
 carboxylase / biotin carboxylase 1 

C
entral m

etabolism
G

a0371427_11114311
-0.09

0.80
-0.57

N
A

N
A

N
A

K
O

:K
11262

A
C

A
C

A
acetyl-C

oA
 carboxylase / biotin carboxylase 1 

C
entral m

etabolism

G
a0371428_1074023

-0.09
0.37

-2.63
N

A
N

A
U

nbinned
K

O
:K

03564
B

C
P, 

PR
X

Q
, 

D
O

T5
peroxiredoxin Q

/B
C

P
C

entral m
etabolism

G
a0371437_10094462

-1.73
0.00

-0.82
-1.69

N
A

C
yanobium

K
O

:K
03867

B
G

LU
T

U
D

P-glucose:tetrahydrobiopterin 
glucosyltransferase 

C
entral m

etabolism

G
a0371428_1006358

0.09
-0.38

-4.22
N

A
N

A
Phorm

idium
K

O
:K

01955
carB

carbam
oyl-phosphate synthase large subunit

C
entral m

etabolism
G

a0371476_10587331
-0.50

-0.96
N

A
N

A
-1.38

U
nbinned

K
O

:K
02337

dnaE
D

N
A

 polym
erase III subunit alpha 

C
entral m

etabolism
G

a0371431_11497684
N

A
0.31

-1.25
-0.11

N
A

C
om

am
onadaceae

K
O

:K
02337

dnaE
D

N
A

 polym
erase III subunit alpha 

C
entral m

etabolism

G
a0371428_1129145

0.29
-0.33

-2.52
N

A
-0.63

Phorm
idium

K
O

:K
00688

E2.4.1.1, 
glgP, PY

G
starch phosphorylase 

C
entral m

etabolism

G
a0371428_1008222

-0.03
0.14

-1.86
N

A
N

A
Phorm

idium
K

O
:K

01792
E5.1.3.15

glucose-6-phosphate 1-epim
erase

C
entral m

etabolism
G

a0371428_1074934
0.42

-0.53
-2.76

N
A

N
A

Phorm
idium

K
O

:K
01802

E5.2.1.8
peptidylprolyl isom

erase 
C

entral m
etabolism

G
a0371437_11062241

-0.95
-0.29

-0.80
N

A
0.45

U
nbinned

C
O

G
1376

erfK
Lipoprotein-anchoring transpeptidase ErfK

/SrfK
 

[C
ell w

all/m
em

brane/envelope biogenesis]
C

entral m
etabolism

G
a0371427_10653031

-2.10
0.15

0.38
N

A
N

A
N

A
K

O
:K

00647
fabB

3-oxoacyl-[acyl-carrier-protein] synthase I
C

entral m
etabolism

G
a0371427_11246911

0.68
0.22

-0.37
N

A
N

A
U

nbinned
K

O
:K

09458
fabF

3-oxoacyl-[acyl-carrier-protein] synthase II
C

entral m
etabolism

G
a0371476_10160692

-1.31
0.28

-0.83
-0.88

N
A

U
nbinned

K
O

:K
00059

fabG
3-oxoacyl-[acyl-carrier protein] reductase

C
entral m

etabolism
G

a0371428_1165442
-0.99

-0.89
0.09

N
A

N
A

C
hloroflexaceae

K
O

:K
00059

fabG
3-oxoacyl-[acyl-carrier protein] reductase

C
entral m

etabolism
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G

a0371430_10763253
1.72

0.32
0.49

N
A

N
A

C
om

am
onadaceae

K
O

:K
00059

fabG
3-oxoacyl-[acyl-carrier protein] reductase

C
entral m

etabolism
G

a0371429_11102001
-1.67

0.55
-0.57

N
A

-0.57
N

A
K

O
:K

00059
fabG

3-oxoacyl-[acyl-carrier protein] reductase
C

entral m
etabolism

G
a0371428_1086202

N
A

0.15
0.11

N
A

0.37
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

00208
fabI

enoyl-[acyl-carrier protein] reductase I
C

entral m
etabolism

G
a0371427_10668501

-1.08
0.45

-1.00
N

A
N

A
N

A
K

O
:K

00208
fabI

enoyl-[acyl-carrier protein] reductase I
C

entral m
etabolism

G
a0371428_1070952

0.55
-0.78

-3.23
N

A
N

A
Phorm

idium
C

O
G

0633
fdx

Ferredoxin
C

entral m
etabolism

G
a0371431_11166831

-1.61
-1.47

-1.95
N

A
N

A
U

nbinned
K

O
:K

07407
galA

, rafA
alpha-galactosidase 

C
entral m

etabolism
G

a0371428_1001304
N

A
0.20

0.65
0.95

N
A

G
am

m
aproteobacteria

K
O

:K
02437

gcvH
glycine cleavage system

 H
 protein

C
entral m

etabolism

G
a0371428_1067011

N
A

0.59
0.06

N
A

0.58
U

nbinned
K

O
:K

01652
ilvB

, ilvG
, 

ilvI
acetolactate synthase I/II/III large subunit 

C
entral m

etabolism

G
a0371429_10478307

N
A

0.33
0.32

0.39
N

A
C

om
am

onadaceae
K

O
:K

01653
ilvB

, ilvG
, 

ilvI
acetolactate synthase I/II/III large subunit 

C
entral m

etabolism

G
a0371428_1127552

0.26
-0.30

0.16
0.02

0.79
G

am
m

aproteobacteria
K

O
:K

00053
ilvC

ketol-acid reductoisom
erase 

C
entral m

etabolism

G
a0371428_1102213

-0.33
0.16

0.07
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

01687
ilvD

dihydroxy-acid dehydratase 
C

entral m
etabolism

G
a0371428_1028161

0.14
-0.46

-2.13
N

A
N

A
U

nbinned
K

O
:K

01687
ilvD

dihydroxy-acid dehydratase 
C

entral m
etabolism

G
a0371437_10801504

N
A

0.13
-1.68

-1.69
N

A
B

acteria
K

O
:K

04487
iscS, N

FS1
cysteine desulfurase 

C
entral m

etabolism
G

a0371428_1046011
0.27

0.19
-2.41

N
A

N
A

U
nbinned

K
O

:K
16149

K
16149

1,4-alpha-glucan branching enzym
e

C
entral m

etabolism

G
a0371429_10037341

N
A

-1.47
-0.44

N
A

-1.56
U

nbinned
K

O
:K

16881
K

16881
m

annose-1-phosphate guanylyltransferase / 
phosphom

annom
utase 

C
entral m

etabolism

G
a0371428_1050994

-0.47
0.55

-0.03
0.07

0.95
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

00052
leuB

3-isopropylm
alate dehydrogenase

C
entral m

etabolism

G
a0371427_10652301

0.14
-0.26

0.42
N

A
1.60

U
nbinned

C
O

G
1304

lldD
FM

N
-dependent dehydrogenase, includes L-lactate 

dehydrogenase and type II isopentenyl diphosphate 
isom

erase
C

entral m
etabolism

G
a0371430_11136663

-2.30
1.18

0.08
N

A
N

A
M

ethylococcaceae
K

O
:K

06078
lpp

m
urein lipoprotein

C
entral m

etabolism
G

a0371428_1027081
0.48

0.31
-2.14

N
A

N
A

Phorm
idium

C
O

G
1109

m
anB

Phosphom
annom

utase
C

entral m
etabolism

G
a0371429_10357402

-0.73
0.72

-0.04
-0.95

0.50
B

acteroidales
C

O
G

4799
m

m
dA

A
cetyl-C

oA
 carboxylase, carboxyltransferase 

com
ponent

C
entral m

etabolism

G
a0371428_1139223

0.18
0.43

-2.48
N

A
N

A
Phorm

idium
K

O
:K

00940
ndk, N

M
E

nucleoside-diphosphate kinase 
C

entral m
etabolism

G
a0371437_11015641

N
A

-0.50
2.63

1.30
1.79

U
nbinned

K
O

:K
00346

nqrA
N

a+-transporting N
A

D
H

:ubiquinone 
oxidoreductase subunit A

 
C

entral m
etabolism

G
a0371427_10825782

-0.81
0.02

-0.71
N

A
0.99

N
A

C
O

G
4770

pccA
A

cetyl/propionyl-C
oA

 carboxylase, alpha subunit
C

entral m
etabolism

G
a0371427_10825781

-1.26
0.16

-0.73
N

A
N

A
N

A
K

O
:K

01965
PC

C
A

, 
pccA

propionyl-C
oA

 carboxylase alpha chain 
C

entral m
etabolism

G
a0371428_1031514

0.26
0.08

-2.20
N

A
N

A
Phorm

idium
C

O
G

0628
perM

Predicted PurR
-regulated perm

ease PerM
C

entral m
etabolism

G
a0371428_1008562

-1.64
0.61

0.41
0.47

N
A

G
am

m
aproteobacteria

K
O

:K
00023

phbB
acetoacetyl-C

oA
 reductase

C
entral m

etabolism
G

a0371428_1080104
-0.04

0.73
-0.04

1.06
N

A
D

esulfobacteraceae
K

O
:K

01908
prpE

propionyl-C
oA

 synthetase 
C

entral m
etabolism

G
a0371430_11271411

2.78
N

A
1.80

0.99
N

A
C

om
am

onadaceae
K

O
:K

01908
prpE

propionyl-C
oA

 synthetase 
C

entral m
etabolism

G
a0371428_1010197

N
A

0.37
0.44

N
A

0.45
G

am
m

aproteobacteria
K

O
:K

00831
serC

, 
PSAT1

phosphoserine am
inotransferase 

C
entral m

etabolism

G
a0371429_10559433

-0.66
0.12

0.33
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

00831
serC

, 
PSAT1

phosphoserine am
inotransferase 

C
entral m

etabolism

G
a0371428_1139542

-0.76
0.10

0.36
N

A
0.40

U
nbinned

C
O

G
2930

SY
LF

Lipid-binding SY
LF dom

ain
C

entral m
etabolism

G
a0371429_10808012

1.95
-0.56

0.44
N

A
0.81

U
nbinned

K
O

:K
03671

trxA
Thiol-disulfide isom

erase or thioredoxin 
C

entral m
etabolism

G
a0371437_10026872

-2.61
0.00

-0.72
N

A
N

A
U

nknow
n

K
O

:K
00050

ttuD
hydroxypyruvate reductase 

C
entral m

etabolism
G

a0371430_10989101
0.50

0.26
-0.34

-0.53
1.39

U
nbinned

C
O

G
5272

U
B

I4
U

B
I4

C
entral m

etabolism
G

a0371427_10546782
-0.06

0.23
-1.17

N
A

N
A

U
nbinned

K
O

:K
12447

U
SP

U
D

P-sugar pyrophosphorylase 
C

entral m
etabolism

G
a0371428_1017902

0.38
-0.62

0.25
0.27

0.70
U

nbinned
K

O
:K

01447
xlyA

B
N

-acetylm
uram

oyl-L-alanine am
idase

C
entral m

etabolism
G

a0371428_10321814
0.76

0.41
-3.53

N
A

N
A

Phorm
idium

K
O

:K
09747

ybaB
C

onserved D
N

A
-binding protein Y

baB
 

C
entral m

etabolism
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G

a0371428_10929710
0.28

-0.32
-2.37

N
A

N
A

Phorm
idium

K
O

:K
06872

ygcG
U

ncharacterized m
em

brane protein Y
gcG

, contains 
a TPM

-fold dom
ain

C
entral m

etabolism

G
a0371428_1148093

-2.11
-0.12

0.00
-0.39

-1.40
D

esulfobacteraceae
K

O
:K

13954
yiaY

alcohol dehydrogenase 
C

entral m
etabolism

G
a0371430_11700771

-0.26
-0.23

0.72
0.76

-0.16
U

nbinned
K

O
:K

13954
yiaY

alcohol dehydrogenase 
C

entral m
etabolism

G
a0371428_1034314

-1.04
0.05

0.02
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

03694
clpA

ATP-dependent C
lp protease ATP-binding subunit 

C
lpA

G
enetic inform

ation 
processing

G
a0371428_1015831

-0.54
-0.25

-0.95
N

A
N

A
U

nbinned
K

O
:K

03695
clpB

ATP-dependent C
lp protease ATP-binding subunit 

C
lpB

G
enetic inform

ation 
processing

G
a0371428_1077077

-0.35
0.03

-0.73
N

A
1.43

U
nbinned

K
O

:K
03696

clpC
ATP-dependent C

lp protease ATP-binding subunit 
C

lpC
G

enetic inform
ation 

processing

G
a0371428_10254622

-0.21
-0.37

-1.44
N

A
N

A
Phorm

idium
K

O
:K

03696
clpC

ATP-dependent C
lp protease ATP-binding subunit 

C
lpC

G
enetic inform

ation 
processing

G
a0371428_1033912

-0.94
0.34

0.24
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

04043
dnaK

, 
H

SPA
9

m
olecular chaperone D

naK
G

enetic inform
ation 

processing

G
a0371428_10770740

-0.08
0.90

-1.03
N

A
N

A
U

nbinned
K

O
:K

04043
dnaK

, 
H

SPA
9

m
olecular chaperone D

naK
G

enetic inform
ation 

processing

G
a0371428_1124291

-0.85
0.77

0.40
N

A
N

A
U

nbinned
K

O
:K

04043
dnaK

, 
H

SPA
9

m
olecular chaperone D

naK
G

enetic inform
ation 

processing

G
a0371428_1008409

-0.69
-0.65

-0.67
0.08

-0.80
Phorm

idium
K

O
:K

04043
dnaK

, 
H

SPA
9

m
olecular chaperone D

naK
G

enetic inform
ation 

processing

G
a0371439_10074801

0.12
0.04

-0.28
N

A
N

A
U

nbinned
C

O
G

1651
dsbG

Protein-disulfide isom
erase [Posttranslational 

m
odification, protein turnover, chaperones]

G
enetic inform

ation 
processing

G
a0371428_1067583

-0.30
0.50

0.07
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_10108185

-0.45
0.11

-1.03
N

A
N

A
U

nbinned
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_1064711

0.36
0.33

-2.24
N

A
N

A
U

nbinned
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371427_10268294

-0.94
1.13

-1.15
N

A
N

A
N

A
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_10154211

0.71
-0.04

-0.11
N

A
N

A
Phorm

idium
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_1077515

0.09
-0.41

-2.96
N

A
N

A
Phorm

idium
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_1120204

0.16
-0.16

-1.38
N

A
N

A
Phorm

idium
K

O
:K

03798
ftsH

, hflB
cell division protease FtsH

 
G

enetic inform
ation 

processing

G
a0371428_1001084

-0.19
-0.34

0.28
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

03531
ftsZ

cell division protein FtsZ
G

enetic inform
ation 

processing

G
a0371428_1001591

-0.23
-0.44

-1.37
N

A
N

A
U

nbinned
K

O
:K

03531
ftsZ

cell division protein FtsZ
G

enetic inform
ation 

processing

G
a0371428_10225730

0.22
0.16

-2.26
N

A
N

A
Phorm

idium
K

O
:K

03531
ftsZ

cell division protein FtsZ
G

enetic inform
ation 

processing

G
a0371428_1050945

-1.36
1.86

-0.50
N

A
N

A
D

esulfobacteraceae
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371428_10770741

0.34
0.38

-0.48
N

A
-1.07

U
nbinned

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371428_1143251

N
A

0.20
0.23

0.39
0.51

U
nbinned

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371429_10905038

1.51
-1.40

0.59
N

A
N

A
Spirulina

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing
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G
a0371429_10293661

-0.97
-0.70

-1.41
-1.55

-0.45
U

nbinned
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371429_10583261

-0.38
1.69

0.61
1.31

0.67
U

nbinned
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371429_10897941

-1.52
1.07

0.26
N

A
N

A
U

nbinned
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371430_10698632

N
A

1.52
0.69

0.79
1.50

C
om

am
onadaceae

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371430_10030721

N
A

0.76
0.13

1.07
1.22

U
nbinned

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371430_11007881

1.30
1.47

-0.20
N

A
N

A
U

nbinned
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371430_11857721

-2.09
0.36

0.50
N

A
1.02

U
nbinned

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371439_10843976

-0.28
0.28

-0.91
N

A
N

A
C

yanobacteria
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371427_10073762

-0.17
0.54

-0.43
N

A
2.07

N
A

K
O

:K
04077

groEL
chaperonin G

roEL
G

enetic inform
ation 

processing

G
a0371427_10690031

-0.51
0.30

-1.09
N

A
N

A
N

A
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371428_1025303

-0.03
-0.02

-2.21
-0.54

-0.85
Phorm

idium
K

O
:K

04077
groEL

chaperonin G
roEL

G
enetic inform

ation 
processing

G
a0371428_1050944

N
A

1.53
0.55

2.15
N

A
D

esulfobacteraceae
K

O
:K

04078
groES, 
H

SPE1
chaperonin G

roES
G

enetic inform
ation 

processing

G
a0371428_1087013

4.30
N

A
-0.59

3.25
N

A
C

hloroflexaceae
K

O
:K

04078
groES, 
H

SPE1
chaperonin G

roES
G

enetic inform
ation 

processing

G
a0371428_1101062

-0.46
0.27

0.42
0.81

1.26
U

nbinned
K

O
:K

04078
groES, 
H

SPE1
chaperonin G

roES
G

enetic inform
ation 

processing

G
a0371429_10583262

1.75
-0.82

0.36
N

A
N

A
U

nbinned
K

O
:K

04078
groES, 
H

SPE1
chaperonin G

roES
G

enetic inform
ation 

processing

G
a0371428_1129073

-1.84
0.96

-0.28
-0.47

-0.45
N

A
K

O
:K

11251
H

2A
histone H

2A
G

enetic inform
ation 

processing

G
a0371428_1129072

-1.77
3.56

0.43
N

A
N

A
N

A
K

O
:K

11252
H

2B
histone H

2B
G

enetic inform
ation 

processing

G
a0371428_1013262

-0.55
0.71

-0.24
N

A
N

A
N

A
K

O
:K

11254
H

4
histone H

4
G

enetic inform
ation 

processing

G
a0371428_1037201

-1.14
0.52

0.02
N

A
N

A
D

esulfobacteraceae
K

O
:K

04079
H

SP90A
, 

htpG
m

olecular chaperone H
tpG

G
enetic inform

ation 
processing

G
a0371430_11668711

-1.87
-0.01

-0.50
0.35

-0.37
D

esulfobulbaceae
K

O
:K

04079
H

SP90A
, 

htpG
m

olecular chaperone H
tpG

G
enetic inform

ation 
processing

G
a0371429_10921972

-1.05
0.85

0.00
N

A
N

A
U

nbinned
K

O
:K

09490
H

SPA
5, B

IP
heat shock 70kD

a protein 5
G

enetic inform
ation 

processing

G
a0371427_10261561

-0.49
0.83

-0.07
N

A
N

A
N

A
K

O
:K

09490
H

SPA
5, B

IP
heat shock 70kD

a protein 5
G

enetic inform
ation 

processing

G
a0371427_10261562

1.31
0.26

-0.10
N

A
N

A
N

A
K

O
:K

09490
H

SPA
5, B

IP
heat shock 70kD

a protein 5
G

enetic inform
ation 

processing

G
a0371428_1031054

0.68
0.09

-0.21
-0.44

0.69
D

esulfobacteraceae
K

O
:K

03530
hupB

D
N

A
-binding protein H

U
-beta

G
enetic inform

ation 
processing

G
a0371428_10384815

0.44
0.24

-1.52
N

A
N

A
Phorm

idium
K

O
:K

03530
hupB

D
N

A
-binding protein H

U
-beta

G
enetic inform

ation 
processing
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G
a0371428_1053391

0.21
0.30

0.32
N

A
1.40

G
am

m
aproteobacterium

_117
915_bin_15

K
O

:K
05788

ihfB
, him

D
integration host factor subunit beta

G
enetic inform

ation 
processing

G
a0371428_1051672

0.65
-0.25

-0.57
N

A
N

A
Phorm

idium
K

O
:K

11996
M

O
C

S3, 
U

B
A

4
adenylyltransferase and sulfurtransferase 

G
enetic inform

ation 
processing

G
a0371428_1009433

N
A

-0.13
0.40

1.56
0.62

G
am

m
aproteobacteria

K
O

:K
03569

m
reB

rod shape-determ
ining protein M

reB
 and related 

proteins
G

enetic inform
ation 

processing

G
a0371427_10876452

-0.89
0.17

-0.40
N

A
0.66

N
A

K
O

:K
11294

N
C

L, N
SR

1
nucleolin

G
enetic inform

ation 
processing

G
a0371428_10409916

-0.02
0.10

-2.85
N

A
N

A
Phorm

idium
K

O
:K

03768
ppiB

peptidyl-prolyl cis-trans isom
erase B

G
enetic inform

ation 
processing

G
a0371428_1010194

N
A

0.72
0.16

1.13
N

A
G

am
m

aproteobacteria
K

O
:K

03769
ppiC

peptidyl-prolyl cis-trans isom
erase C

 
G

enetic inform
ation 

processing

G
a0371428_1016701

-1.13
0.53

0.09
0.41

0.61
G

am
m

aproteobacteria
K

O
:K

03769
ppiC

peptidyl-prolyl cis-trans isom
erase C

 
G

enetic inform
ation 

processing

G
a0371428_1000222

N
A

0.19
0.10

N
A

1.35
G

am
m

aproteobacteria
K

O
:K

03770
ppiD

peptidyl-prolyl cis-trans isom
erase D

G
enetic inform

ation 
processing

G
a0371428_1115969

0.34
0.42

-2.22
N

A
N

A
Phorm

idium
K

O
:K

03969
pspA

phage shock protein A
G

enetic inform
ation 

processing

G
a0371476_12556645

-1.41
0.33

-0.36
N

A
2.11

Porphyrom
onadaceae

K
O

:K
07568

queA
S-adenosylm

ethionine:tR
N

A
 ribosyltransferase-

isom
erase 

G
enetic inform

ation 
processing

G
a0371476_11992081

-1.32
1.39

0.02
N

A
N

A
U

nbinned
C

O
G

2003
radC

D
N

A
 repair protein R

adC
, contains a helix-hairpin-

helix D
N

A
-binding m

otif
G

enetic inform
ation 

processing

G
a0371435_10426612

N
A

N
A

-0.29
-1.59

-1.90
U

nknow
n

K
O

:K
06179

rluC
23S rR

N
A

 pseudouridine955/2504/2580 synthase 
G

enetic inform
ation 

processing

G
a0371431_10032531

0.36
-0.01

-0.18
-1.15

0.86
N

A
K

O
:K

03500
rsm

B
, sun

16S rR
N

A
 (cytosine967-C

5)-m
ethyltransferase 

G
enetic inform

ation 
processing

G
a0371428_1059433

-0.32
0.44

0.54
N

A
N

A
U

nbinned
K

O
:K

03545
tig

trigger factor
G

enetic inform
ation 

processing

G
a0371428_10083814

-0.01
0.10

-2.47
N

A
N

A
Phorm

idium
K

O
:K

03545
tig

trigger factor
G

enetic inform
ation 

processing

G
a0371428_1132216

-1.33
0.05

0.52
-0.12

0.67
G

am
m

aproteobacteria
K

O
:K

07235
tusD

, dsrE
tR

N
A

 2-thiouridine synthesizing protein D
G

enetic inform
ation 

processing

G
a0371428_1140251

1.13
1.37

0.95
2.02

0.71
D

esulfobacteraceae
K

O
:K

11179
tusE, dsrC

tR
N

A
 2-thiouridine synthesizing protein E 

G
enetic inform

ation 
processing

G
a0371428_1018575

-1.11
-0.34

0.45
-0.02

0.81
G

am
m

aproteobacteria
K

O
:K

11179
tusE, dsrC

tR
N

A
 2-thiouridine synthesizing protein E 

G
enetic inform

ation 
processing

G
a0371428_1067131

-0.58
0.36

0.25
2.08

N
A

N
A

K
O

:K
11179

tusE, dsrC
tR

N
A

 2-thiouridine synthesizing protein E 
G

enetic inform
ation 

processing

G
a0371436_10658062

-0.17
-1.72

-1.55
N

A
N

A
B

acteroidetes
K

O
:K

09710
ybeB

ribosom
e-associated protein

G
enetic inform

ation 
processing

G
a0371428_1058832

0.00
0.98

0.35
1.58

0.92
G

am
m

aproteobacterium
_117

915_bin_15
C

O
G

0437
hybA

Fe-S-cluster-containing dehydrogenase com
ponent H

ydrogen m
etabolism

G
a0371428_1042153

0.85
1.32

0.22
N

A
0.79

G
am

m
aproteobacteria

C
O

G
0437

hybA
Fe-S-cluster-containing dehydrogenase com

ponent H
ydrogen m

etabolism

G
a0371429_10376383

N
A

-0.09
0.62

0.70
N

A
C

hloroflexi
K

O
:K

00864
glpK

, G
K

glycerol kinase 
Lipid m

etabolism

G
a0371428_1008389

-0.50
0.31

-1.22
N

A
N

A
Phorm

idium
C

O
G

1977
m

oaD
M

olybdopterin converting factor, sm
all subunit 

[C
oenzym

e transport and m
etabolism

]

M
etabolism

 of 
cofactors and 

vitam
ins
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G

a0371476_11779023
-2.26

1.24
N

A
-0.26

N
A

D
esulfobacteraceae

K
O

:K
03474

pdxJ
pyridoxine 5-phosphate synthase 

M
etabolism

 of 
cofactors and 

vitam
ins

G
a0371428_1058401

N
A

0.20
0.48

0.47
0.76

U
nbinned

K
O

:K
00325

pntB
H

+-translocating N
A

D
(P) transhydrogenase 

subunit beta 

M
etabolism

 of 
cofactors and 

vitam
ins

G
a0371428_1095737

0.51
-0.07

-3.47
N

A
-2.42

Phorm
idium

pfam
09150

carot_N
orange carotenoid protein/transport factor 2 (N

TF2)-
like protein

M
etabolism

 of 
terpenoids and 

polyketides
G

a0371430_11233411
2.38

-1.60
0.92

N
A

N
A

U
nbinned

pfam
13750

big_3_3
B

acterial Ig-like dom
ain (group 3)

N
A

G
a0371428_1021431

-0.41
N

A
-0.51

0.28
N

A
U

nbinned
pfam

03160, 
pfam

03160, 
pfam

03160
calx_beta

C
alx-beta dom

ain
N

A

G
a0371430_10421511

-0.17
1.04

0.20
N

A
1.10

U
nbinned

C
O

G
3291, 

C
O

G
3291, 

C
O

G
3291

C
O

G
3291

PK
D

 repeat [Function unknow
n]

N
A

G
a0371428_1101276

0.27
1.11

0.22
1.05

0.71
G

am
m

aproteobacteria
C

O
G

3597
C

O
G

3597
U

ncharacterized conserved protein, D
U

F697 
fam

ily [Function unknow
n]

N
A

G
a0371428_1017712

0.24
-0.19

-2.10
N

A
N

A
Phorm

idium
C

O
G

4249
C

O
G

4249
U

ncharacterized protein, contains caspase dom
ain 

[G
eneral function prediction only]

N
A

G
a0371476_11475011

N
A

0.40
-0.30

-1.33
-0.67

B
acteria

C
O

G
4333

C
O

G
4333

uncharacterized protein
N

A
G

a0371429_11051161
2.84

-0.91
0.83

N
A

N
A

U
nbinned

C
O

G
4803

C
O

G
4803

U
ncharacterized m

em
brane protein 

N
A

G
a0371428_1046923

-0.51
0.16

1.11
N

A
N

A
G

am
m

aproteobacteria
C

O
G

4902
C

O
G

4902
U

ncharacterized protein [Function unknow
n]

N
A

G
a0371428_1123412

-0.84
0.00

0.10
N

A
N

A
G

am
m

aproteobacteria
C

O
G

5490
C

O
G

5490
U

ncharacterized protein [Function unknow
n]

N
A

G
a0371428_10322158

0.56
-0.34

-3.95
N

A
N

A
Phorm

idium
pfam

11320
D

U
F3122

Protein of unknow
n function in C

yanobacteria 
(D

U
F3122)

N
A

G
a0371429_10640613

-0.11
-0.23

-2.13
N

A
N

A
U

nbinned
pfam

11866
D

U
F3386

Protein of unknow
n function (D

U
F3386)

N
A

G
a0371428_1005742

-0.14
0.30

-3.43
N

A
N

A
Phorm

idium
pfam

13319
D

U
F4090

Protein of unknow
n function (D

U
F4090)

N
A

G
a0371428_1068282

2.11
0.64

0.41
N

A
N

A
N

A
pfam

13511
D

U
F4124

D
om

ain of unknow
n function (D

U
F4124)

N
A

G
a0371428_1111861

0.04
-1.09

0.08
N

A
0.26

U
nbinned

pfam
14467

D
U

F4426
D

om
ain of unknow

n function (D
U

F4426)
N

A
G

a0371428_1007893
-0.21

-0.33
0.12

0.47
0.70

G
am

m
aproteobacteria

pfam
16137

D
U

F4845
D

om
ain of unknow

n function (D
U

F4845)
N

A
G

a0371428_10964911
-0.10

0.03
-0.12

N
A

N
A

G
am

m
aproteobacteria

pfam
06051

D
U

F928
D

om
ain of U

nknow
n Function (D

U
F928)

N
A

G
a0371428_1088923

2.22
0.37

0.79
N

A
1.45

G
am

m
aproteobacteria

pfam
00350

dynam
in_N

D
ynam

in fam
ily

N
A

G
a0371428_1051382

0.55
0.59

-0.34
N

A
N

A
U

nbinned
pfam

03065
G

lyco_hydr
o_57

G
lycosyl hydrolase fam

ily 57
N

A

G
a0371427_10410021

-1.13
0.40

-1.08
N

A
N

A
N

A
C

O
G

1346
lrgB

Putative effector of m
urein hydrolase [C

ell 
w

all/m
em

brane/envelope biogenesis]
N

A

G
a0371427_10997131

-1.49
0.40

0.25
N

A
N

A
U

nbinned
pfam

03650
M

PC
U

ncharacterized protein fam
ily (U

PF0041)
N

A

G
a0371476_10963821

N
A

1.00
-1.77

N
A

-2.23
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371476_12230653

0.88
0.72

-0.53
N

A
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1031523

0.38
1.47

0.51
N

A
N

A
D

esulfobacteraceae
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1048264

0.22
-0.49

-0.76
0.10

-0.49
D

esulfobacteraceae
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1051362

-0.09
0.93

-0.54
0.11

-0.07
D

esulfobacteraceae
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1155815

0.21
1.03

-0.39
1.17

N
A

D
esulfobacteraceae

H
ypo-rule 
applied

N
A

N
A

N
A
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G

a0371428_1007443
0.05

0.51
0.32

1.29
1.22

G
am

m
aproteobacterium

_117
915_bin_15

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1110232

N
A

1.62
0.25

1.89
N

A
G

am
m

aproteobacterium
_117

915_bin_15
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1135553

-0.06
0.46

0.78
0.43

N
A

G
am

m
aproteobacterium

_117
915_bin_15

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_10259610

N
A

0.40
0.74

1.83
N

A
C

hloroflexaceae
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1139257

1.45
0.22

-0.45
2.31

N
A

C
hloroflexaceae

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1014892

-1.04
0.05

-0.09
-0.55

0.13
G

am
m

aproteobacteria
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1086063

-1.31
-0.24

0.36
N

A
N

A
G

am
m

aproteobacteria
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1111232

0.41
-0.21

0.35
N

A
1.00

G
am

m
aproteobacteria

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1074672

-0.11
-0.50

0.72
1.11

0.98
D

esulfobacteraceae
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1005411

0.71
-0.85

-3.72
N

A
-2.96

U
nbinned

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1021302

-0.45
0.58

0.40
N

A
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1037311

-2.56
0.84

0.45
2.71

N
A

U
nbinned

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1048691

-0.09
-0.08

0.65
N

A
0.61

U
nbinned

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1066471

0.45
0.39

0.42
0.35

0.66
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1071765

0.67
-0.56

-4.46
N

A
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1080451

-1.15
-0.41

0.27
-0.78

-0.33
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1104831

0.63
0.68

0.53
N

A
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1105191

N
A

-0.08
-0.14

N
A

-0.59
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1117172

0.06
0.02

-0.69
N

A
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1142532

0.51
-0.24

0.22
0.99

N
A

U
nbinned

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1147141

N
A

1.66
0.57

0.84
N

A
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1162181

-0.90
0.26

-0.07
-0.39

0.21
U

nbinned
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371427_10176892

0.15
0.18

-0.44
N

A
N

A
N

A
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371427_10402231

-1.69
0.49

-0.64
N

A
N

A
N

A
C

O
G

0526
N

A
N

A
N

A

G
a0371427_10573131

0.03
0.30

-1.65
N

A
-1.23

N
A

H
ypo-rule 
applied

N
A

N
A

N
A



 228 

 
G

a0371427_10722331
-1.59

-1.34
N

A
N

A
-1.15

N
A

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371427_10947111

-0.23
0.49

-1.15
N

A
1.42

N
A

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371427_11201192

-0.64
-0.01

-0.80
N

A
N

A
N

A
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371429_10193611

0.63
0.27

-0.76
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371429_10277401
-0.86

0.28
-1.40

-0.63
0.10

N
A

N
A

N
A

N
A

N
A

G
a0371429_10294031

N
A

0.12
0.30

0.03
0.76

N
A

N
A

N
A

N
A

N
A

G
a0371429_10305275

2.44
1.80

-1.48
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371429_10419341
1.22

0.10
-1.04

N
A

2.12
N

A
N

A
N

A
N

A
N

A
G

a0371429_10427001
1.52

N
A

0.95
2.32

0.88
N

A
N

A
N

A
N

A
N

A
G

a0371429_10438631
-1.60

-0.01
-0.24

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371429_10442322

-2.09
0.56

-0.76
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371429_10698911
-0.01

0.65
-0.36

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371429_10718331

-0.17
-0.06

-0.30
N

A
0.84

N
A

N
A

N
A

N
A

N
A

G
a0371429_10738081

-1.29
0.14

-0.07
-0.39

-0.31
N

A
N

A
N

A
N

A
N

A
G

a0371429_10798091
-0.93

-0.22
-0.72

-1.50
-0.14

N
A

N
A

N
A

N
A

N
A

G
a0371429_11041357

1.39
1.20

-1.06
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371429_11090491
0.22

0.32
-0.24

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371430_10011381

1.04
0.45

-1.69
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371430_10012642
N

A
0.53

0.40
N

A
0.57

N
A

N
A

N
A

N
A

N
A

G
a0371430_10180451

0.80
-0.72

-2.34
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371430_10256303
0.81

0.90
0.06

N
A

2.12
N

A
N

A
N

A
N

A
N

A
G

a0371430_10286661
-1.27

0.61
0.60

0.50
0.22

N
A

N
A

N
A

N
A

N
A

G
a0371430_10300221

1.47
0.94

0.46
N

A
1.09

N
A

N
A

N
A

N
A

N
A

G
a0371430_10693502

-1.20
-0.31

-0.04
0.45

1.25
N

A
N

A
N

A
N

A
N

A
G

a0371430_10806141
0.41

-0.54
N

A
N

A
-1.80

N
A

N
A

N
A

N
A

N
A

G
a0371430_10877745

1.46
0.91

0.42
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371430_10922231
-0.96

-0.68
0.61

-1.04
-0.15

N
A

N
A

N
A

N
A

N
A

G
a0371430_11060401

-1.56
0.46

0.38
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371430_11079521
N

A
-0.19

0.70
N

A
0.96

N
A

N
A

N
A

N
A

N
A

G
a0371430_11331913

-2.80
-1.63

0.11
0.20

-0.12
N

A
N

A
N

A
N

A
N

A
G

a0371431_10026731
N

A
N

A
-0.32

-0.84
-1.23

N
A

N
A

N
A

N
A

N
A

G
a0371431_10064023

1.45
-0.10

0.37
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371431_10602293
-1.40

0.52
-1.86

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371431_106037325

-1.28
0.02

-1.54
N

A
-0.70

N
A

N
A

N
A

N
A

N
A

G
a0371431_10759852

0.14
-0.37

-0.81
N

A
1.24

N
A

N
A

N
A

N
A

N
A

G
a0371431_11093833

-1.61
-1.29

-1.69
N

A
-1.65

N
A

N
A

N
A

N
A

N
A

G
a0371431_11242061

1.24
1.32

-1.20
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371432_10132042
-0.24

N
A

-0.75
-0.81

0.01
N

A
N

A
N

A
N

A
N

A
G

a0371432_10198881
-0.05

0.20
-0.41

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371432_10272731

N
A

0.85
0.94

N
A

1.74
N

A
N

A
N

A
N

A
N

A
G

a0371432_10310671
-0.47

0.33
-0.71

N
A

-0.24
N

A
N

A
N

A
N

A
N

A
G

a0371434_10703411
N

A
1.96

-0.14
N

A
2.26

N
A

N
A

N
A

N
A

N
A

G
a0371434_10804241

0.80
2.44

-1.24
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371434_11097334
1.15

-2.02
-0.59

N
A

-0.08
N

A
N

A
N

A
N

A
N

A
G

a0371435_11398831
N

A
-2.16

0.06
N

A
-0.59

N
A

N
A

N
A

N
A

N
A

G
a0371435_12388952

0.35
-0.02

-0.88
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371436_10117326
0.09

0.16
-2.20

N
A

N
A

N
A

N
A

N
A

N
A

N
A



 229 

 
G

a0371436_114888211
0.32

1.30
-0.07

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371437_10389522

-0.97
-0.77

-1.05
N

A
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371437_10629121
-0.63

-0.44
0.60

-2.44
N

A
N

A
N

A
N

A
N

A
N

A
G

a0371437_11171172
0.33

-0.09
N

A
-2.78

-1.14
N

A
N

A
N

A
N

A
N

A
G

a0371477_1217341
0.20

-0.43
-0.19

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
a0371428_1001543

0.80
-0.45

-3.95
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1003886

0.43
1.31

-3.09
-1.71

0.51
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1006233

0.39
-0.15

-3.26
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1008504

0.05
0.50

-3.02
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1025554

-1.76
1.23

N
A

N
A

-1.61
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1050145

0.83
0.27

-3.06
N

A
-0.19

Phorm
idium

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_1059606

0.46
-0.58

-2.44
N

A
-1.20

Phorm
idium

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_10639620

0.19
0.87

-1.98
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_10877726

0.46
0.62

-1.76
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_11001728

0.83
0.16

-2.07
N

A
N

A
Phorm

idium
H

ypo-rule 
applied

N
A

N
A

N
A

G
a0371428_11295414

-0.05
-0.20

-2.99
N

A
0.54

Phorm
idium

H
ypo-rule 
applied

N
A

N
A

N
A

G
a0371427_10318683

-0.65
-0.07

-0.63
N

A
N

A
N

A
pfam

13460
N

A
D

_bindi
ng_10 

N
A

D
(P)H

-binding
N

A

G
a0371428_1039624

0.11
0.81

-3.62
N

A
N

A
Phorm

idium
pfam

04966
oprB

C
arbohydrate-selective porin, O

prB
 fam

ily
N

A

G
a0371429_10537741

1.21
-2.28

0.47
1.22

0.38
Spirulina

pfam
04966, 

pfam
00395

oprB
/SLH

C
arbohydrate-selective porin, O

prB
 fam

ily/S-layer 
hom

ology dom
ain

N
A

G
a0371429_10080561

3.13
-0.28

0.70
N

A
N

A
U

nbinned
pfam

04966, 
pfam

00395
oprB

/SLH
C

arbohydrate-selective porin, O
prB

 fam
ily/S-layer 

hom
ology dom

ain
N

A

G
a0371429_10233701

2.12
-0.22

-2.25
-2.09

-1.12
U

nbinned
pfam

04966, 
pfam

00395
oprB

/SLH
C

arbohydrate-selective porin, O
prB

 fam
ily/S-layer 

hom
ology dom

ain
N

A

G
a0371429_10999365

0.43
0.50

-3.27
N

A
0.08

U
nbinned

pfam
04966, 

pfam
00395

oprB
/SLH

C
arbohydrate-selective porin, O

prB
 fam

ily/S-layer 
hom

ology dom
ain

N
A

G
a0371431_104222215

N
A

0.41
0.94

3.57
0.95

Pseudanabaena
pfam

04966, 
pfam

00395
oprB

/SLH
C

arbohydrate-selective porin, O
prB

 fam
ily/S-layer 

hom
ology dom

ain
N

A

G
a0371428_1003484

0.59
0.30

-2.79
N

A
-2.80

Phorm
idium

pfam
04966, 

pfam
00395

oprB
/SLH

C
arbohydrate-selective porin, O

prB
 fam

ily/S-layer 
hom

ology dom
ain

N
A

G
a0371428_1024769

-0.55
-0.16

-0.33
-0.76

1.92
Phorm

idium
pfam

04966, 
pfam

00395
oprB

/SLH
C

arbohydrate-selective porin, O
prB

 fam
ily/S-layer 

hom
ology dom

ain
N

A

G
a0371428_1026451

0.46
0.79

-2.43
N

A
N

A
Phorm

idium
pfam

04966, 
pfam

00395
oprB

/SLH
C

arbohydrate-selective porin, O
prB

 fam
ily/S-layer 

hom
ology dom

ain
N

A

G
a0371431_11013295

2.23
N

A
0.76

N
A

0.73
Planktothrix

pfam
04966, 

pfam
00395

oprB
/SLH

C
arbohydrate-selective porin, O

prB
 fam

ily/S-layer 
hom

ology dom
ain

N
A

G
a0371476_10000431

N
A

0.96
0.51

-0.04
1.49

G
am

m
aproteobacteria

pfam
07691

PA
14

insert in bacterial beta-glucosidases
N

A
G

a0371429_10980632
N

A
-2.92

0.29
0.07

0.43
G

am
m

aproteobacteria
pfam

07691
PA

14
insert in bacterial beta-glucosidases

N
A



 230 

 
G

a0371430_11398266
-0.70

-0.11
-0.05

0.42
1.49

C
om

am
onadaceae

pfam
09361

phasin_2
Phasin protein

N
A

G
a0371428_1055704

-0.60
N

A
0.33

0.04
N

A
G

am
m

aproteobacteria
pfam

13609
porin_4

G
ram

-negative porin
N

A
G

a0371429_10652881
2.85

N
A

0.79
1.72

N
A

U
nbinned

pfam
04151

PPC
B

acterial pre-peptidase C
-term

inal dom
ain

N
A

G
a0371430_10832612

3.16
-0.85

0.52
N

A
N

A
N

A
pfam

04151
PPC

B
acterial pre-peptidase C

-term
inal dom

ain
N

A
G

a0371428_1040881
0.57

-0.08
-2.94

-1.73
N

A
U

nbinned
pfam

17210
sdrD

SdrD
 B

-like dom
ain

N
A

G
a0371428_1046022

0.16
0.51

-3.51
N

A
-1.20

U
nbinned

pfam
17210, 

pfam
17210

sdrD
SdrD

 B
-like dom

ain
N

A

G
a0371429_10415953

0.53
-0.34

0.95
0.49

0.97
G

am
m

aproteobacteria
pfam

17210
sdrD

SdrD
 B

-like dom
ain

N
A

G
a0371430_11455791

0.30
1.16

-0.38
N

A
N

A
U

nbinned

pfam
17210, 

pfam
17210, 

pfam
17210, 

pfam
17210

sdrD
SdrD

 B
-like dom

ain
N

A

G
a0371437_10083838

-2.30
0.27

-0.15
N

A
N

A
C

am
pylobacterales

C
O

G
3381

torD
C

ytoplasm
ic chaperone TorD

 involved in 
m

olybdoenzym
e TorA

 m
aturation [Posttranslational 

m
odification, protein turnover, chaperones]

N
A

G
a0371439_10101874

-0.39
N

A
-1.06

-1.34
0.75

C
ryom

orphaceae
pfam

13517, 
pfam

13517, 
pfam

13517
V

C
B

S
R

epeat dom
ain in V

ibrio, C
olw

ellia, 
B

radyrhizobium
 and Shew

anella
N

A

G
a0371429_10383762

-0.02
0.53

-0.39
N

A
2.46

N
A

pfam
00094

V
W

D
von W

illebrand factor type D
 dom

ain
N

A
G

a0371428_10412415
0.49

-0.63
-3.03

N
A

N
A

Phorm
idium

pfam
07444

Y
cf66_N

 
Y

cf66 protein N
-term

inus
N

A

G
a0371428_1055589

0.63
0.26

-2.81
N

A
N

A
Phorm

idium
C

O
G

3103
ygiM

U
ncharacterized conserved protein Y

giM
, contains 

N
-term

inal SH
3 dom

ain, D
U

F1202 fam
ily [G

eneral 
function prediction only]

N
A

G
a0371428_1037704

0.19
-0.25

-2.77
N

A
N

A
U

nbinned
C

O
G

5492, 
C

O
G

5492
yjdB

U
ncharacterized conserved protein Y

jdB
, contains 

Ig-like dom
ain [G

eneral function prediction only]
N

A

G
a0371428_1042154

N
A

1.31
-0.09

-0.44
0.50

G
am

m
aproteobacteria

C
O

G
0243

bisC
A

naerobic selenocysteine-containing 
dehydrogenase 

N
itrogen m

etabolism

G
a0371428_1094771

N
A

0.37
0.70

N
A

1.11
U

nbinned
C

O
G

0243
bisC

A
naerobic selenocysteine-containing 

dehydrogenase 
N

itrogen m
etabolism

G
a0371429_10398651

N
A

-0.08
0.15

1.25
0.21

U
nbinned

C
O

G
0243

bisC
A

naerobic selenocysteine-containing 
dehydrogenase 

N
itrogen m

etabolism

G
a0371430_10058331

0.13
0.49

0.16
-0.17

N
A

U
nbinned

C
O

G
0243

bisC
A

naerobic selenocysteine-containing 
dehydrogenase 

N
itrogen m

etabolism

G
a0371429_10005272

-1.42
0.27

0.31
N

A
N

A
N

A
K

O
:K

00262
E1.4.1.4, 

gdhA
glutam

ate dehydrogenase (N
A

D
P+) 

N
itrogen m

etabolism

G
a0371429_10301142

-0.80
1.01

0.57
N

A
N

A
N

A
K

O
:K

00262
E1.4.1.4, 

gdhA
glutam

ate dehydrogenase (N
A

D
P+) 

N
itrogen m

etabolism

G
a0371429_10439143

-0.69
0.08

-0.49
-1.15

-0.42
N

A
K

O
:K

00262
E1.4.1.4, 

gdhA
glutam

ate dehydrogenase (N
A

D
P+) 

N
itrogen m

etabolism

G
a0371428_1003843

-1.85
-0.43

-0.22
-1.14

-0.73
G

am
m

aproteobacteria
K

O
:K

01915
glnA

glutam
ine synthetase 

N
itrogen m

etabolism
G

a0371429_108364118
0.66

N
A

1.00
3.39

N
A

Spirulina
K

O
:K

01915
glnA

glutam
ine synthetase 

N
itrogen m

etabolism
G

a0371428_1005633
0.17

-0.59
-1.97

N
A

0.46
Phorm

idium
K

O
:K

01915
glnA

glutam
ine synthetase 

N
itrogen m

etabolism
G

a0371428_1013542
-0.07

0.60
0.22

1.02
1.32

U
nbinned

K
O

:K
04752

glnK
nitrogen regulatory protein P-II 2

N
itrogen m

etabolism

G
a0371428_1042152

-0.29
1.56

-0.58
N

A
N

A
G

am
m

aproteobacteria
C

O
G

3301
nrfD

Form
ate-dependent nitrite reductase, m

em
brane 

com
ponent N

rfD
N

itrogen m
etabolism

G
a0371430_10963327

N
A

3.11
0.12

N
A

2.44
M

ethylococcaceae
K

O
:K

10945
pm

oB
-

am
oB

m
ethane/am

m
onia m

onooxygenase subunit B
 

N
itrogen m

etabolism

G
a0371428_1022982

-0.28
0.24

0.51
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

01081
E3.1.3.5

5'-nucleotidase
N

ucleotide 
m

etabolism



 231 

 
G

a0371428_1063502
-0.12

-0.27
-2.13

-0.03
N

A
Phorm

idium
K

O
:K

00088
guaB

IM
P dehydrogenase

N
ucleotide 

m
etabolism

G
a0371429_10224212

-0.34
-0.01

-0.66
N

A
N

A
U

nbinned
K

O
:K

02137
ATPeF0O

, 
ATP5O

, 
ATP5

F-type H
+-transporting ATPase subunit O

 
O

xidative 
phosphorylation

G
a0371429_10224021

1.09
0.81

-0.36
0.14

0.76
N

A
K

O
:K

02133
ATPeF1B

, 
ATP5B

, 
ATP2

F-type H
+-transporting ATPase subunit beta 

O
xidative 

phosphorylation

G
a0371430_10480262

-0.83
-0.34

-0.89
N

A
N

A
N

A
K

O
:K

02133
ATPeF1B

, 
ATP5B

, 
ATP2

F-type H
+-transporting ATPase subunit beta 

O
xidative 

phosphorylation

G
a0371429_11093461

0.10
-0.07

-0.29
N

A
N

A
N

A
K

O
:K

02145
ATPeV

1A
, 

ATP6A
V-type H

+-transporting ATPase subunit A
 

O
xidative 

phosphorylation

G
a0371428_10108146

-0.34
0.10

-0.51
N

A
0.20

U
nbinned

K
O

:K
02109

ATPF0B
, 

atpF
F-type H

+-transporting ATPase subunit b 
O

xidative 
phosphorylation

G
a0371428_10108147

-1.78
0.73

-0.77
N

A
N

A
U

nbinned
K

O
:K

02109
ATPF0B

, 
atpF

F-type H
+-transporting ATPase subunit b 

O
xidative 

phosphorylation

G
a0371429_11096493

1.79
-0.17

-2.10
N

A
N

A
U

nbinned
K

O
:K

02109
ATPF0B

, 
atpF

F-type H
+-transporting ATPase subunit b 

O
xidative 

phosphorylation

G
a0371430_10349932

0.83
0.03

0.29
N

A
-0.50

U
nbinned

K
O

:K
02109

ATPF0B
, 

atpF
F-type H

+-transporting ATPase subunit b 
O

xidative 
phosphorylation

G
a0371428_1014306

0.05
-0.10

-2.31
-2.70

-2.04
Phorm

idium
K

O
:K

02109
ATPF0B

, 
atpF

F-type H
+-transporting ATPase subunit b 

O
xidative 

phosphorylation

G
a0371428_1016895

0.07
0.59

0.02
0.11

1.08
D

esulfobacteraceae
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371428_1095981

-0.52
0.59

0.58
0.62

-0.25
D

esulfobacteraceae
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371428_1005231

-2.18
0.23

0.46
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371429_11097802

0.81
N

A
2.27

4.09
N

A
Spirulina

K
O

:K
02111

ATPF1A
, 

atpA
F-type H

+/N
a+-transporting ATPase subunit alpha 

O
xidative 

phosphorylation

G
a0371429_10719711

-0.79
0.26

0.25
0.17

0.92
G

am
m

aproteobacteria
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371429_10940201

-0.54
0.42

-0.21
N

A
N

A
B

acteroidales
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371429_10269981

-0.30
-0.22

0.63
-3.71

N
A

U
nbinned

K
O

:K
02111

ATPF1A
, 

atpA
F-type H

+/N
a+-transporting ATPase subunit alpha 

O
xidative 

phosphorylation

G
a0371429_10436002

-0.09
N

A
1.24

2.41
1.65

U
nbinned

K
O

:K
02111

ATPF1A
, 

atpA
F-type H

+/N
a+-transporting ATPase subunit alpha 

O
xidative 

phosphorylation

G
a0371429_11096491

-0.98
-0.64

-1.20
-2.20

-0.27
U

nbinned
K

O
:K

02111
ATPF1A

, 
atpA

F-type H
+/N

a+-transporting ATPase subunit alpha 
O

xidative 
phosphorylation

G
a0371431_109985717

0.79
0.70

0.37
N

A
N

A
Planktothrix

K
O

:K
02111

ATPF1A
, 

atpA
F-type H

+/N
a+-transporting ATPase subunit alpha 

O
xidative 

phosphorylation

G
a0371476_10045734

1.55
-0.16

0.33
N

A
N

A
B

acteroidales
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371428_1113412

N
A

1.91
0.75

1.10
1.66

B
acteroidales

K
O

:K
02112

ATPF1B
, 

atpD
F-type H

+/N
a+-transporting ATPase subunit beta 

O
xidative 

phosphorylation

G
a0371428_10108159

-0.65
0.72

-0.53
-0.06

0.09
U

nbinned
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation



 232 

 
G

a0371428_1118821
0.13

0.59
0.56

-0.66
1.42

U
nbinned

K
O

:K
02112

ATPF1B
, 

atpD
F-type H

+/N
a+-transporting ATPase subunit beta 

O
xidative 

phosphorylation

G
a0371429_10405824

-0.56
1.27

0.32
N

A
N

A
Sulfurospirillum

 16
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371429_10691745

0.47
N

A
0.51

N
A

0.64
Spirulina

K
O

:K
02112

ATPF1B
, 

atpD
F-type H

+/N
a+-transporting ATPase subunit beta 

O
xidative 

phosphorylation

G
a0371430_10365353

0.78
0.17

-0.05
-0.96

1.75
C

om
am

onadaceae
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371438_1122111

1.59
N

A
1.04

2.84
N

A
U

nbinned
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371428_1162232

0.15
0.52

-0.03
0.06

1.92
N

A
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371428_1014658

-0.02
-0.31

-1.72
-1.54

-1.43
Phorm

idium
K

O
:K

02112
ATPF1B

, 
atpD

F-type H
+/N

a+-transporting ATPase subunit beta 
O

xidative 
phosphorylation

G
a0371428_10108148

-1.31
0.87

-0.35
N

A
N

A
U

nbinned
K

O
:K

02113
ATPF1D

, 
atpH

F-type H
+-transporting ATPase subunit delta 

O
xidative 

phosphorylation

G
a0371429_11096492

0.90
-0.34

-2.30
N

A
N

A
U

nbinned
K

O
:K

02113
ATPF1D

, 
atpH

F-type H
+-transporting ATPase subunit delta 

O
xidative 

phosphorylation

G
a0371428_10108160

0.10
0.06

-0.64
N

A
2.10

U
nbinned

K
O

:K
02114

ATPF1E, 
atpC

F-type H
+-transporting ATPase subunit epsilon 

O
xidative 

phosphorylation

G
a0371428_1014659

-0.09
0.04

-2.49
N

A
N

A
Phorm

idium
K

O
:K

02114
ATPF1E, 

atpC
F-type H

+-transporting ATPase subunit epsilon 
O

xidative 
phosphorylation

G
a0371428_1016894

0.34
1.37

0.50
N

A
N

A
D

esulfobacteraceae
K

O
:K

02115
ATPF1G

, 
atpG

F-type H
+-transporting ATPase subunit gam

m
a 

O
xidative 

phosphorylation

G
a0371428_10143010

0.18
-0.40

-2.76
N

A
-0.72

Phorm
idium

K
O

:K
02115

ATPF1G
, 

atpG
F-type H

+-transporting ATPase subunit gam
m

a 
O

xidative 
phosphorylation

G
a0371429_10255114

N
A

0.64
0.97

N
A

1.49
G

am
m

aproteobacteria
K

O
:K

00413
C

Y
C

1, 
C

Y
T1, petC

ubiquinol-cytochrom
e c reductase cytochrom

e c1 
subunit 

O
xidative 

phosphorylation

G
a0371428_1158876

-0.64
0.35

0.01
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

00428
cytC

P
cytochrom

e c peroxidase
O

xidative 
phosphorylation

G
a0371428_1021391

N
A

-1.49
-1.48

N
A

1.88
U

nbinned
K

O
:K

00428
cytC

P
cytochrom

e c peroxidase
O

xidative 
phosphorylation

G
a0371427_11075022

-0.24
0.67

-0.64
N

A
N

A
U

nbinned
K

O
:K

01507
ppa

inorganic pyrophosphatase 
O

xidative 
phosphorylation

G
a0371427_11115173

0.13
0.22

-0.31
N

A
N

A
N

A
K

O
:K

00235
SD

H
B

, 
SD

H
2

succinate dehydrogenase (ubiquinone) iron-sulfur 
subunit 

O
xidative 

phosphorylation
G

a0371429_10621063
0.20

-0.81
0.12

-1.50
0.18

U
nknow

n
K

O
:K

02092
apcA

allophycocyanin alpha subunit 
Photosynthesis

G
a0371429_11105074

-2.01
-1.24

0.14
1.82

1.35
Pseudanabaena

K
O

:K
02092

apcA
allophycocyanin alpha subunit 

Photosynthesis
G

a0371429_10689267
-0.08

-2.41
-0.02

0.86
-1.01

Spirulina
K

O
:K

02092
apcA

allophycocyanin alpha subunit 
Photosynthesis

G
a0371434_10335453

-0.05
-0.55

-3.15
-2.23

-1.48
U

nbinned
K

O
:K

02092
apcA

allophycocyanin alpha subunit 
Photosynthesis

G
a0371429_10621062

0.25
-0.86

0.18
-1.41

-0.50
U

nknow
n

K
O

:K
02093

apcB
allophycocyanin beta subunit 

Photosynthesis
G

a0371429_11105073
-0.98

-0.49
1.28

1.60
0.77

Pseudanabaena
K

O
:K

02093
apcB

allophycocyanin beta subunit 
Photosynthesis

G
a0371429_10689268

-0.11
-2.00

-0.01
0.46

-1.46
Spirulina

K
O

:K
02093

apcB
allophycocyanin beta subunit 

Photosynthesis
G

a0371429_10347211
1.73

0.25
-2.65

2.64
N

A
U

nbinned
K

O
:K

02093
apcB

allophycocyanin beta subunit 
Photosynthesis

G
a0371439_10016595

0.38
-0.74

1.32
N

A
N

A
C

yanobacteria
K

O
:K

02093
apcB

allophycocyanin beta subunit 
Photosynthesis

G
a0371439_10663031

0.73
-2.91

N
A

N
A

-2.20
U

nbinned
K

O
:K

02093
apcB

allophycocyanin beta subunit 
Photosynthesis

G
a0371428_1168882

0.03
-0.08

-3.95
N

A
N

A
Phorm

idium
K

O
:K

02095
apcD

allophycocyanin-B
 

Photosynthesis
G

a0371428_1093111
-0.18

-0.12
-2.41

N
A

N
A

Phorm
idium

K
O

:K
02096

apcE
phycobilisom

e core-m
em

brane linker protein 
Photosynthesis

G
a0371428_1005632

-0.11
0.28

-3.59
N

A
-2.66

Phorm
idium

K
O

:K
02097

apcF
phycobilisom

e core com
ponent 

Photosynthesis



 233 

G
a0371434_10082331

-1.03
0.03

N
A

-1.60
-1.00

B
acteroidales

C
O

G
4447

C
O

G
4447

photosystem
 II stability/assem

bly factor-like 
uncharacterized protein

Photosynthesis

G
a0371429_11062711

0.04
0.78

-0.88
N

A
N

A
N

A
C

O
G

4447
C

O
G

4447
photosystem

 II stability/assem
bly factor-like 

uncharacterized protein
Photosynthesis

G
a0371427_11260832

N
A

-1.76
0.41

-1.62
-0.94

U
nbinned

K
O

:K
02284

cpcA
phycocyanin alpha chain 

Photosynthesis
G

a0371429_10538883
0.11

-1.46
-0.61

0.20
0.42

Spirulina
K

O
:K

02284
cpcA

phycocyanin alpha chain 
Photosynthesis

G
a0371436_10348192

0.92
2.01

0.45
0.80

1.57
U

nbinned
K

O
:K

02284
cpcA

phycocyanin alpha chain 
Photosynthesis

G
a0371439_10478956

0.80
-1.85

-2.26
N

A
-3.71

Pseudanabaena
K

O
:K

02284
cpcA

phycocyanin alpha chain 
Photosynthesis

G
a0371427_10317775

-1.52
-0.83

0.80
N

A
0.17

U
nbinned

K
O

:K
02285

cpcB
phycocyanin beta chain 

Photosynthesis
G

a0371427_11260831
0.40

-0.50
0.64

N
A

N
A

U
nbinned

K
O

:K
02285

cpcB
phycocyanin beta chain 

Photosynthesis
G

a0371429_10538882
-1.16

-2.89
-0.19

0.39
-1.80

Spirulina
K

O
:K

02285
cpcB

phycocyanin beta chain 
Photosynthesis

G
a0371430_10409153

0.33
0.05

-3.00
N

A
-1.36

U
nbinned

K
O

:K
02285

cpcB
phycocyanin beta chain 

Photosynthesis
G

a0371431_100675410
N

A
-0.91

0.94
1.05

2.15
Pseudanabaena

K
O

:K
02285

cpcB
phycocyanin beta chain 

Photosynthesis
G

a0371439_10321082
0.52

-0.39
-1.62

N
A

N
A

U
nbinned

K
O

:K
02285

cpcB
phycocyanin beta chain 

Photosynthesis
G

a0371429_10538884
0.78

-2.96
0.58

1.40
-1.68

Spirulina
K

O
:K

02286
cpcC

phycocyanin-associated rod linker protein 
Photosynthesis

G
a0371429_10575295

-0.21
0.58

-1.39
N

A
N

A
U

nbinned
K

O
:K

02286
cpcC

phycocyanin-associated rod linker protein 
Photosynthesis

G
a0371429_10538885

1.58
N

A
1.62

N
A

0.45
Spirulina

K
O

:K
02287

cpcD
phycocyanin-associated, rod 

Photosynthesis
G

a0371429_11067193
1.03

N
A

2.25
3.93

N
A

Spirulina
K

O
:K

02290
cpcG

phycobilisom
e rod-core linker protein 

Photosynthesis
G

a0371431_10128548
1.62

N
A

1.89
1.01

N
A

Pseudanabaena
K

O
:K

02290
cpcG

phycobilisom
e rod-core linker protein 

Photosynthesis
G

a0371428_1092973
-0.05

0.17
-2.66

N
A

-0.82
Phorm

idium
K

O
:K

02290
cpcG

phycobilisom
e rod-core linker protein 

Photosynthesis

G
a0371427_10096134

-1.71
0.33

0.61
N

A
N

A
U

nknow
n

K
O

:K
05376

cpeA
, m

peA
phycoerythrin alpha chain 

Photosynthesis

G
a0371435_10476131

N
A

1.59
-0.08

N
A

2.25
U

nbinned
K

O
:K

05376
cpeA

, m
peA

phycoerythrin alpha chain 
Photosynthesis

G
a0371428_10877741

-0.63
-0.13

-2.00
-1.44

-2.11
Phorm

idium
K

O
:K

05376
cpeA

, m
peA

phycoerythrin alpha chain 
Photosynthesis

G
a0371436_11380135

-1.95
-1.97

-1.93
-0.48

0.97
U

nbinned
K

O
:K

05377
cpeB

, m
peB

phycoerythrin beta chain 
Photosynthesis

G
a0371437_10994253

-3.19
-0.17

-0.47
N

A
N

A
C

yanobium
K

O
:K

05377
cpeB

, m
peB

phycoerythrin beta chain 
Photosynthesis

G
a0371437_10438781

-1.71
2.91

0.55
-0.17

1.72
U

nbinned
K

O
:K

05377
cpeB

, m
peB

phycoerythrin beta chain 
Photosynthesis

G
a0371431_10732495

-1.86
-1.64

0.05
-2.17

-0.42
Planktothrix

K
O

:K
05377

cpeB
, m

peB
phycoerythrin beta chain 

Photosynthesis

G
a0371429_10235543

0.39
0.57

-0.92
N

A
N

A
U

nbinned
K

O
:K

05378
cpeC

, m
peC

phycoerythrin-associated linker protein 
Photosynthesis

G
a0371431_107324913

0.70
N

A
0.79

0.14
N

A
Planktothrix

K
O

:K
05379

cpeD
, m

peD
phycoerythrin-associated linker protein 

Photosynthesis

G
a0371429_10512061

-0.40
0.44

-1.32
N

A
-0.39

N
A

K
O

:K
08907

LH
C

A
1

light-harvesting com
plex I chlorophyll a/b binding 
protein 1 

Photosynthesis

G
a0371429_10565811

-1.83
0.04

-0.78
N

A
N

A
N

A
K

O
:K

08907
LH

C
A

1
light-harvesting com

plex I chlorophyll a/b binding 
protein 1 

Photosynthesis

G
a0371429_11033275

0.12
0.20

-0.91
-0.20

-0.64
N

A
K

O
:K

08907
LH

C
A

1
light-harvesting com

plex I chlorophyll a/b binding 
protein 1 

Photosynthesis

G
a0371428_1148081

0.23
-3.44

-0.47
N

A
-0.11

U
nbinned

K
O

:K
02630

pecC
phycoerythrocyanin-associated rod linker protein 

Photosynthesis
G

a0371429_10534538
-0.05

-3.72
1.01

N
A

N
A

Spirulina
K

O
:K

02630
pecC

phycoerythrocyanin-associated rod linker protein 
Photosynthesis

G
a0371429_10251643

0.42
-2.56

-2.94
N

A
-1.51

U
nbinned

K
O

:K
02634

petA
apocytochrom

e f 
Photosynthesis

G
a0371428_10108179

-1.00
-0.14

-0.75
-2.06

-0.74
U

nbinned
K

O
:K

02635
petB

cytochrom
e b6 

Photosynthesis
G

a0371428_10726411
-0.57

0.14
-2.64

N
A

N
A

Phorm
idium

K
O

:K
02635

petB
cytochrom

e b6 
Photosynthesis

G
a0371428_1105171

-0.43
-0.12

-2.75
N

A
N

A
U

nbinned
K

O
:K

02636
petC

cytochrom
e b6-f com

plex iron-sulfur subunit 
Photosynthesis



 234 

 

 

G
a0371429_10691252

-0.43
-0.17

-2.30
N

A
N

A
O

scillatoria
K

O
:K

02636
petC

cytochrom
e b6-f com

plex iron-sulfur subunit 
Photosynthesis

G
a0371428_10322150

0.44
-0.72

-4.32
N

A
-1.61

Phorm
idium

K
O

:K
02636

petC
cytochrom

e b6-f com
plex iron-sulfur subunit 

Photosynthesis
G

a0371428_10315114
0.77

-0.20
-3.25

N
A

-1.89
Phorm

idium
K

O
:K

02639
petF

ferredoxin 
Photosynthesis

G
a0371429_101458613

-0.84
0.85

-3.41
N

A
-3.15

Phorm
idium

K
O

:K
02639

petF
ferredoxin 

Photosynthesis
G

a0371427_10397601
-1.06

-0.01
-1.23

-3.04
-0.78

N
A

K
O

:K
02641

petH
ferredoxin--N

A
D

P+ reductase 
Photosynthesis

G
a0371428_1136681

0.49
-0.40

-2.80
N

A
N

A
Phorm

idium
K

O
:K

02641
petH

ferredoxin--N
A

D
P+ reductase 

Photosynthesis
G

a0371429_10183096
1.24

-0.51
-1.84

N
A

N
A

O
scillatoria

K
O

:K
08906

petJ
cytochrom

e c6 
Photosynthesis

G
a0371428_1032528

0.57
-0.09

-4.15
N

A
N

A
Phorm

idium
K

O
:K

08906
petJ

cytochrom
e c6 

Photosynthesis
G

a0371428_1010812
-1.22

0.35
-0.83

-0.38
-0.72

U
nbinned

K
O

:K
02689

psaA
photosystem

 I P700 chlorophyll a apoprotein A
1 

Photosynthesis
G

a0371428_10070625
0.24

-0.27
-3.16

N
A

-1.32
Phorm

idium
K

O
:K

02689
psaA

photosystem
 I P700 chlorophyll a apoprotein A

1 
Photosynthesis

G
a0371429_10535265

-0.90
-0.17

0.52
1.07

0.61
Pseudanabaena

K
O

:K
02690

psaB
photosystem

 I P700 chlorophyll a apoprotein A
2 

Photosynthesis
G

a0371428_1077072
N

A
-0.68

-1.21
N

A
2.16

U
nbinned

K
O

:K
02691

psaC
photosystem

 I subunit V
II 

Photosynthesis
G

a0371428_1010221
-0.06

0.30
-1.34

N
A

-0.92
Phorm

idium
K

O
:K

02691
psaC

photosystem
 I subunit V

II 
Photosynthesis

G
a0371429_10055136

1.73
N

A
0.52

-0.09
-1.14

Spirulina
K

O
:K

02692
psaD

photosystem
 I subunit II 

Photosynthesis
G

a0371431_10887161
N

A
-0.90

0.58
1.96

1.63
Pseudanabaena

K
O

:K
02692

psaD
photosystem

 I subunit II 
Photosynthesis

G
a0371428_10108186

-0.27
0.43

-0.82
N

A
N

A
U

nbinned
K

O
:K

02693
psaE

photosystem
 I subunit IV

 
Photosynthesis

G
a0371429_10585196

1.72
N

A
1.58

2.16
N

A
Spirulina

K
O

:K
02693

psaE
photosystem

 I subunit IV
 

Photosynthesis
G

a0371428_1109561
1.02

0.22
-2.62

N
A

N
A

Phorm
idium

K
O

:K
02693

psaE
photosystem

 I subunit IV
 

Photosynthesis
G

a0371428_1010814
-0.30

0.00
-0.92

-0.53
0.95

U
nbinned

K
O

:K
02694

psaF
photosystem

 I subunit III 
Photosynthesis

G
a0371429_10878384

N
A

N
A

0.86
2.26

2.01
Pseudanabaena

K
O

:K
02694

psaF
photosystem

 I subunit III 
Photosynthesis

G
a0371429_10691084

0.38
N

A
0.32

1.20
N

A
Spirulina

K
O

:K
02694

psaF
photosystem

 I subunit III 
Photosynthesis

G
a0371429_10583822

0.96
-0.89

0.23
-0.36

-0.38
U

nbinned
K

O
:K

02694
psaF

photosystem
 I subunit III 

Photosynthesis
G

a0371428_1043625
-0.67

-0.41
-3.50

N
A

-3.58
Phorm

idium
K

O
:K

02694
psaF

photosystem
 I subunit III 

Photosynthesis
G

a0371428_1010819
-1.02

-0.20
-1.35

-2.11
-0.84

U
nbinned

K
O

:K
02699

psaL
photosystem

 I subunit X
I 

Photosynthesis
G

a0371428_1003884
-0.86

0.32
-1.64

-2.45
-1.82

Phorm
idium

K
O

:K
02699

psaL
photosystem

 I subunit X
I 

Photosynthesis
G

a0371428_1009538
0.53

0.23
-2.15

N
A

N
A

Phorm
idium

K
O

:K
08902

psb27
photosystem

 II Psb27 protein 
Photosynthesis

G
a0371428_1089492

0.43
-0.26

-2.94
N

A
-1.30

Phorm
idium

K
O

:K
08903

psb28
photosystem

 II 13kD
a protein 

Photosynthesis
G

a0371428_10770751
-0.68

0.03
-0.99

-0.95
0.14

U
nbinned

K
O

:K
02703

psbA
photosystem

 II P680 reaction center D
1 protein 

Photosynthesis
G

a0371429_105730310
0.36

0.98
0.52

N
A

N
A

U
nbinned

K
O

:K
02703

psbA
photosystem

 II P680 reaction center D
1 protein 

Photosynthesis
G

a0371428_10020420
-0.85

0.77
-0.94

N
A

N
A

Phorm
idium

K
O

:K
02703

psbA
photosystem

 II P680 reaction center D
1 protein 

Photosynthesis
G

a0371428_1040383
0.23

-0.12
-1.57

-0.29
-1.08

Phorm
idium

K
O

:K
02704

psbB
photosystem

 II C
P47 chlorophyll apoprotein 

Photosynthesis
G

a0371428_1088461
0.32

-0.19
-1.70

N
A

-2.34
U

nbinned
K

O
:K

02705
psbC

photosystem
 II C

P43 chlorophyll apoprotein 
Photosynthesis

G
a0371429_10343112

0.35
-0.64

0.35
N

A
N

A
Spirulina

K
O

:K
02705

psbC
photosystem

 II C
P43 chlorophyll apoprotein 

Photosynthesis
G

a0371428_10108113
0.50

0.45
-0.50

N
A

-1.50
U

nbinned
K

O
:K

02707
psbE

photosystem
 II cytochrom

e b559 subunit alpha 
Photosynthesis

G
a0371428_10108137

-1.41
1.68

-0.58
N

A
N

A
U

nbinned
K

O
:K

02709
psbH

photosystem
 II PsbH

 protein 
Photosynthesis

G
a0371431_11172544

0.76
-0.68

-2.08
N

A
0.17

U
nbinned

K
O

:K
02716

psbO
photosystem

 II oxygen-evolving enhancer protein 1 
Photosynthesis

G
a0371429_10558172

-0.68
0.36

-0.66
N

A
N

A
N

A
K

O
:K

02716
psbO

photosystem
 II oxygen-evolving enhancer protein 1 

Photosynthesis

G
a0371428_1042066

0.06
-0.27

-3.05
N

A
-2.09

Phorm
idium

K
O

:K
02716

psbO
photosystem

 II oxygen-evolving enhancer protein 1 
Photosynthesis

G
a0371428_1088502

0.20
-0.26

-2.64
N

A
-0.97

Phorm
idium

K
O

:K
02717

psbP
photosystem

 II oxygen-evolving enhancer protein 2 
Photosynthesis

G
a0371429_10584901

3.18
N

A
0.46

N
A

0.56
U

nknow
n

K
O

:K
02719

psbU
photosystem

 II PsbU
 protein 

Photosynthesis
G

a0371428_1069368
-0.30

-0.17
-3.25

N
A

N
A

Phorm
idium

K
O

:K
02719

psbU
photosystem

 II PsbU
 protein 

Photosynthesis
G

a0371428_10108167
-0.90

-0.18
-0.99

-1.85
-0.55

U
nbinned

K
O

:K
02720

psbV
photosystem

 II cytochrom
e c550 

Photosynthesis
G

a0371431_11188266
2.92

-0.19
1.35

N
A

N
A

Planktothrix
K

O
:K

02720
psbV

photosystem
 II cytochrom

e c550 
Photosynthesis

G
a0371427_10390301

0.17
0.43

-1.04
N

A
N

A
N

A
pfam

11264
TH

F1
Thylakoid form

ation protein
Photosynthesis



 235 

 
G

a0371428_10108182
-0.89

0.23
-0.82

N
A

0.88
U

nbinned
K

O
:K

03405
chlI, bchI

m
agnesium

 chelatase subunit I 
Porphyrin and 

chlorophyll 
m

etabolism

G
a0371429_10983511

N
A

1.12
-0.99

N
A

-0.72
U

nbinned
pfam

00504
C

hloroa_b-
bind

C
hlorophyll A

-B
 binding protein

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1027461

-0.25
0.62

-3.03
N

A
N

A
U

nbinned
K

O
:K

10960
chlP, bchP

geranylgeranyl diphosphate/geranylgeranyl-
bacteriochlorophyllide a reductase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1066381

-0.06
-0.03

0.15
1.28

N
A

Phorm
idium

K
O

:K
10960

chlP, bchP
geranylgeranyl diphosphate/geranylgeranyl-

bacteriochlorophyllide a reductase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1042062

0.44
-0.06

-0.88
N

A
N

A
Phorm

idium
K

O
:K

00228
C

PO
X

, 
hem

F
coproporphyrinogen III oxidase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1071265

-0.54
-0.17

-3.21
N

A
N

A
Phorm

idium
K

O
:K

01885
EA

R
S, gltX

glutam
yl-tR

N
A

 synthetase 
Porphyrin and 

chlorophyll 
m

etabolism

G
a0371428_1146843

0.14
-0.99

-2.76
N

A
N

A
Phorm

idium
K

O
:K

01749
hem

C
, 

H
M

B
S

hydroxym
ethylbilane synthase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371429_10750353

-1.21
0.33

-0.73
N

A
N

A
Pseudanabaena

K
O

:K
01845

hem
L

glutam
ate-1-sem

ialdehyde 2,1-am
inom

utase 
Porphyrin and 

chlorophyll 
m

etabolism

G
a0371429_10220502

-0.75
0.89

0.01
N

A
N

A
U

nbinned
K

O
:K

01845
hem

L
glutam

ate-1-sem
ialdehyde 2,1-am

inom
utase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1010701

-0.23
-0.24

-0.10
0.55

0.12
Phorm

idium
K

O
:K

01845
hem

L
glutam

ate-1-sem
ialdehyde 2,1-am

inom
utase 

Porphyrin and 
chlorophyll 
m

etabolism

G
a0371428_1034552

0.55
-0.36

-1.69
N

A
-0.71

Phorm
idium

K
O

:K
00510

H
M

O
X

1
hem

e oxygenase 1 
Porphyrin and 

chlorophyll 
m

etabolism
G

a0371476_12167301
0.31

-0.47
-0.04

-0.23
-1.17

U
nbinned

K
O

:K
05692

A
C

TB
_G

1
actin beta/gam

m
a 1

Signal transduction
G

a0371429_10013692
1.67

4.08
1.18

N
A

N
A

U
nbinned

K
O

:K
05692

A
C

TB
_G

1
actin beta/gam

m
a 1

Signal transduction
G

a0371430_11561625
0.29

2.33
0.01

N
A

N
A

G
am

m
aproteobacteria

K
O

:K
05692

A
C

TB
_G

1
actin beta/gam

m
a 1

Signal transduction
G

a0371430_10792511
0.29

0.13
-0.01

0.85
-0.04

N
A

K
O

:K
05692

A
C

TB
_G

1
actin beta/gam

m
a 1

Signal transduction

G
a0371435_10292621

-0.06
0.68

-0.80
-0.93

N
A

U
nbinned

C
O

G
0784

cheY
signal transduction histidine kinase/C

heY-like 
chem

otaxis protein
Signal transduction

G
a0371428_1021734

-0.69
-0.36

-0.07
-0.32

-0.30
G

am
m

aproteobacteria
C

O
G

4564
C

O
G

4564
Signal transduction histidine kinase 

Signal transduction
G

a0371431_10923372
N

A
-0.29

-0.85
1.79

N
A

D
esulfobacteraceae

C
O

G
4564

C
O

G
4564

Signal transduction histidine kinase 
Signal transduction

G
a0371428_1028773

-0.25
0.72

N
A

1.46
0.37

Phorm
idium

C
O

G
4564

C
O

G
4564

Signal transduction histidine kinase 
Signal transduction

G
a0371437_11153703

N
A

0.02
-0.36

N
A

-1.03
D

esulfobulbaceae
C

O
G

5001
C

O
G

5001
Predicted signal transduction protein containing a 
m

em
brane dom

ain, an EA
L and a G

G
D

EF dom
ain

Signal transduction

G
a0371428_1121972

-0.68
0.47

-0.03
1.54

N
A

G
am

m
aproteobacterium

_117
915_bin_15

K
O

:K
08738

C
Y

C
cytochrom

e c 
Signal transduction

G
a0371428_1016702

-0.27
0.76

0.08
1.22

0.40
G

am
m

aproteobacteria
K

O
:K

08738
C

Y
C

cytochrom
e c 

Signal transduction

G
a0371428_1165834

0.32
0.50

-0.09
N

A
N

A
G

am
m

aproteobacteria
C

O
G

4654, 
C

O
G

4654
cytC

552
C

ytochrom
e c551/c552

Signal transduction



 236 

 
G

a0371428_1148763
N

A
0.20

-0.17
N

A
0.50

G
am

m
aproteobacterium

_117
915_bin_15

C
O

G
2863, 

C
O

G
2863

cytc553
cytochrom

e c553
Signal transduction

G
a0371428_1109513

-0.22
0.29

0.38
0.26

1.72
G

am
m

aproteobacteria
C

O
G

2863, 
C

O
G

2863
cytc553

cytochrom
e c553

Signal transduction

G
a0371428_1157634

-0.26
0.84

0.21
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

11688
dctP

C
4-dicarboxylate-binding protein D

ctP 
Signal transduction

G
a0371428_1007002

2.44
-0.02

0.79
0.76

N
A

G
am

m
aproteobacteria

K
O

:K
04771

degP, htrA
serine protease D

o 
Signal transduction

G
a0371428_10456819

-0.07
0.60

-3.44
N

A
-2.94

Phorm
idium

C
O

G
5126

FR
Q

1
C

a2+-binding protein, EF-hand superfam
ily

Signal transduction
G

a0371428_1006979
0.47

0.71
-1.36

-0.68
N

A
Phorm

idium
K

O
:K

04751
glnB

nitrogen regulatory protein P-II 1 
Signal transduction

G
a0371428_1036062

-1.21
0.52

0.84
N

A
N

A
U

nbinned
K

O
:K

03406
m

cp
m

ethyl-accepting chem
otaxis protein 

Signal transduction
G

a0371429_11115202
2.94

0.34
-3.03

N
A

-2.01
O

scillatoria
K

O
:K

02650
pilA

type IV
 pilus assem

bly protein PilA
 

Signal transduction
G

a0371430_10026961
-1.95

1.92
0.56

N
A

-0.41
G

am
m

aproteobacteria
K

O
:K

02650
pilA

type IV
 pilus assem

bly protein PilA
 

Signal transduction

G
a0371427_10277512

-0.93
-0.10

-0.60
N

A
-0.21

U
nbinned

K
O

:K
05863

SLC
25A

4S, 
A

N
T

solute carrier fam
ily 25 (m

itochondrial adenine 
nucleotide translocator), m

em
ber 4/5/6/31

Signal transduction

G
a0371428_1058032

-0.23
0.09

0.41
N

A
-0.48

G
am

m
aproteobacteria

K
O

:K
04564

SO
D

2
superoxide dism

utase, Fe-M
n fam

ily 
Signal transduction

G
a0371427_10956933

-0.54
0.48

0.00
N

A
N

A
N

A
K

O
:K

04564
SO

D
2

superoxide dism
utase, Fe-M

n fam
ily 

Signal transduction
G

a0371428_1042954
0.43

0.26
-2.55

N
A

N
A

Phorm
idium

K
O

:K
04564

SO
D

2
superoxide dism

utase, Fe-M
n fam

ily 
Signal transduction

G
a0371428_1010818

0.00
0.21

-0.85
N

A
N

A
U

nbinned
C

O
G

0464
spoV

K
A

A
A

+-type ATPase, SpoV
K

/Y
cf46/V

ps4 fam
ily

Signal transduction

G
a0371428_1040424

0.55
-0.24

-3.41
N

A
N

A
Phorm

idium
C

O
G

0589
uspA

N
ucleotide-binding universal stress protein, U

spA
 

fam
ily

Signal transduction

G
a0371428_1063971

-0.14
-0.27

-3.38
N

A
N

A
Phorm

idium
C

O
G

0589, 
C

O
G

0589
uspA

N
ucleotide-binding universal stress protein, U

spA
 

fam
ily

Signal transduction

G
a0371476_12819442

N
A

N
A

-0.64
-1.20

-1.46
U

nbinned
K

O
:K

08641
vanX

zinc D
-A

la-D
-A

la dipeptidase 
Signal transduction

G
a0371429_10661834

0.83
N

A
1.78

3.56
N

A
Pseudanabaena

C
O

G
0678

ahp1
Peroxiredoxin [Posttranslational m

odification, 
protein turnover, chaperones]

Signaling and cellular 
processes

G
a0371431_10792484

2.63
N

A
2.06

3.12
N

A
Pseudanabaena

C
O

G
0678

ahp1
Peroxiredoxin [Posttranslational m

odification, 
protein turnover, chaperones]

Signaling and cellular 
processes

G
a0371428_1006397

-0.04
-0.45

-3.03
N

A
-2.20

Phorm
idium

C
O

G
0678, 

C
O

G
0695

ahp1/grxC
Peroxiredoxin/G

lutaredoxin [Posttranslational 
m

odification, protein turnover, chaperones]
Signaling and cellular 

processes

G
a0371427_10012382

-1.97
0.87

-0.92
N

A
-0.39

U
nbinned

K
O

:K
17099

A
N

X
A

13
annexin A

13
Signaling and cellular 

processes

G
a0371429_10046591

-0.39
0.41

-0.49
N

A
N

A
N

A
K

O
:K

06758
C

H
L1

L1 cell adhesion m
olecule like protein

Signaling and cellular 
processes

G
a0371430_10886383

N
A

0.55
0.16

1.97
N

A
N

A
K

O
:K

06758
C

H
L1

L1 cell adhesion m
olecule like protein

Signaling and cellular 
processes

G
a0371476_10940982

0.01
-0.16

-0.92
N

A
N

A
B

acteria
C

O
G

5555
C

O
G

5555
C

ytolysin, a secreted calcineurin-like phosphatase
Signaling and cellular 

processes

G
a0371428_1036385

-0.76
0.27

0.47
N

A
0.41

G
am

m
aproteobacterium

_117
915_bin_15

C
O

G
1555

com
EA

D
N

A
 uptake protein C

om
E and related D

N
A

-
binding proteins

Signaling and cellular 
processes

G
a0371428_1116812

-0.11
0.44

0.63
N

A
1.35

G
am

m
aproteobacteria

C
O

G
1555, 

C
O

G
1555

com
EA

D
N

A
 uptake protein C

om
E and related D

N
A

-
binding proteins

Signaling and cellular 
processes

G
a0371429_10415483

2.52
1.03

-1.21
N

A
N

A
O

scillatoria
C

O
G

3678
cpxP

Periplasm
ic protein refolding chaperone Spy/C

pxP 
fam

ily [Posttranslational m
odification, protein 

turnover, chaperones]

Signaling and cellular 
processes

G
a0371428_1136712

-0.66
-0.29

0.04
-0.15

0.59
G

am
m

aproteobacteria
K

O
:K

03386
E1.11.1.15, 

PR
D

X
, 

ahpC

peroxiredoxin (alkyl hydroperoxide reductase 
subunit C

) 
Signaling and cellular 

processes

G
a0371429_10317684

0.89
0.99

0.53
N

A
N

A
U

nbinned
K

O
:K

03386
E1.11.1.15, 

PR
D

X
, 

ahpC

peroxiredoxin (alkyl hydroperoxide reductase 
subunit C

) 
Signaling and cellular 

processes
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G

a0371430_10087181
2.67

-0.95
0.67

N
A

N
A

U
nbinned

K
O

:K
03386

E1.11.1.15, 
PR

D
X

, 
ahpC

peroxiredoxin (alkyl hydroperoxide reductase 
subunit C

) 
Signaling and cellular 

processes

G
a0371428_1011739

-1.42
-0.16

0.26
N

A
-0.18

G
am

m
aproteobacteria

C
O

G
2825

hlpA

Periplasm
ic chaperone for outer m

em
brane 

proteins, Skp fam
ily [C

ell w
all/m

em
brane/envelope 

biogenesis, Posttranslational m
odification, protein 

turnover, chaperones]

Signaling and cellular 
processes

G
a0371430_10342382

0.00
0.51

-0.52
N

A
N

A
U

nbinned
C

O
G

1360
m

otB
Flagellar m

otor protein M
otB

Signaling and cellular 
processes

G
a0371428_1142061

0.33
0.65

0.88
N

A
N

A
D

esulfobacteraceae
C

O
G

2885
om

pA
O

uter m
em

brane protein O
m

pA
 and related 

peptidoglycan-associated (lipo)proteins
Signaling and cellular 

processes

G
a0371430_11825691

-2.02
-0.15

-0.29
N

A
N

A
C

om
am

onadaceae
C

O
G

3203
om

pC
O

uter m
em

brane protein (porin)
Signaling and cellular 

processes

G
a0371431_10215442

0.56
0.10

-0.38
-0.13

-0.08
U

nbinned
C

O
G

3203
om

pC
O

uter m
em

brane protein (porin)
Signaling and cellular 

processes

G
a0371428_1017782

0.09
0.27

0.31
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

07275
om

pW
outer m

em
brane protein

Signaling and cellular 
processes

G
a0371429_101937210

0.96
-1.86

1.03
0.89

0.16
Spirulina

C
O

G
3659

oprB
C

arbohydrate-selective porin O
prB

Signaling and cellular 
processes

G
a0371428_10154212

0.19
-0.16

-3.03
N

A
N

A
Phorm

idium
K

O
:K

18640
parM

plasm
id segretation protein ParM

Signaling and cellular 
processes

G
a0371431_10276152

N
A

1.00
-1.19

N
A

-1.33
B

acteroidales
C

O
G

1520, 
C

O
G

1520
PQ

Q
O

uter m
em

brane protein assem
bly factor B

am
B

, 
contains PQ

Q
-like beta-propeller repeat [C

ell 
w

all/m
em

brane/envelope biogenesis]

Signaling and cellular 
processes

G
a0371428_1008633

0.14
-0.32

0.07
0.07

1.62
G

am
m

aproteobacteria
C

O
G

3793
terB

Tellurite resistance protein
Signaling and cellular 

processes

G
a0371428_1089324

0.13
-0.59

-3.05
N

A
-2.54

Phorm
idium

K
O

:K
05795

terD
tellurite resistance protein TerD

Signaling and cellular 
processes

G
a0371428_1173461

-0.91
0.04

-0.49
N

A
N

A
N

A
K

O
:K

07374
TU

B
A

tubulin alpha
Signaling and cellular 

processes

G
a0371429_10274112

0.77
2.91

0.95
N

A
N

A
N

A
K

O
:K

07374
TU

B
A

tubulin alpha
Signaling and cellular 

processes

G
a0371428_1061033

-0.19
0.49

0.50
0.91

1.93
N

A
K

O
:K

07375
TU

B
B

tubulin beta
Signaling and cellular 

processes

G
a0371428_1059183

0.08
0.60

0.91
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

06207
typA

, bipA
G

TP-binding protein
Signaling and cellular 

processes

G
a0371428_1027441

0.00
0.29

1.00
N

A
N

A
Phorm

idium
K

O
:K

06207
typA

, bipA
G

TP-binding protein
Signaling and cellular 

processes

G
a0371427_10089442

-3.10
0.65

-0.38
N

A
N

A
Flavobacterium

C
O

G
0210

uvrD
Superfam

ily I D
N

A
 or R

N
A

 helicase
Signaling and cellular 

processes

G
a0371432_10776291

-1.78
-1.16

N
A

N
A

-3.76
U

nbinned
C

O
G

4646, 
C

O
G

0827
ytxK

A
denine-specific D

N
A

 m
ethylase, N

12 class 
Signaling and cellular 

processes

G
a0371427_10872941

-2.00
0.17

-0.42
-0.87

-1.02
N

A
K

O
:K

06630
Y

W
H

A
E

14-3-3 protein epsilon
Signaling and cellular 

processes
G

a0371428_1052838
-0.80

0.60
-0.18

-0.73
-0.01

D
esulfobacteraceae

K
O

:K
00394

aprA
adenylylsulfate reductase, subunit A

 
Sulfur m

etabolism
G

a0371428_1154663
-0.86

0.54
-0.13

N
A

N
A

D
esulfobacteraceae

K
O

:K
00394

aprA
adenylylsulfate reductase, subunit A

 
Sulfur m

etabolism
G

a0371430_10214921
-0.12

-0.48
-0.13

0.86
-0.08

U
nbinned

K
O

:K
00394

aprA
adenylylsulfate reductase, subunit A

 
Sulfur m

etabolism
G

a0371428_1052837
0.27

0.05
-0.24

1.39
0.71

D
esulfobacteraceae

K
O

:K
00395

aprB
adenylylsulfate reductase, subunit B

 
Sulfur m

etabolism
G

a0371428_1154662
-0.32

-0.25
0.10

N
A

N
A

D
esulfobacteraceae

K
O

:K
00395

aprB
adenylylsulfate reductase, subunit B

 
Sulfur m

etabolism
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G

a0371429_10465142
1.47

-1.13
1.44

1.98
N

A
Spirulina

C
O

G
1404

aprE
Serine protease, subtilisin fam

ily [Posttranslational 
m

odification, protein turnover, chaperones]
Sulfur m

etabolism

G
a0371428_1010041

-0.62
0.37

0.12
-0.03

1.25
U

nbinned
K

O
:K

07306
dm

sA
anaerobic dim

ethyl sulfoxide reductase subunit A
 

Sulfur m
etabolism

G
a0371428_1013401

-1.30
0.53

0.02
0.88

1.11
U

nbinned
K

O
:K

07306
dm

sA
anaerobic dim

ethyl sulfoxide reductase subunit A
 

Sulfur m
etabolism

G
a0371428_1122881

-0.84
0.37

-0.06
-0.11

-0.57
U

nbinned
K

O
:K

07306
dm

sA
anaerobic dim

ethyl sulfoxide reductase subunit A
 

Sulfur m
etabolism

G
a0371428_1010042

-2.09
0.16

0.39
-0.14

1.10
U

nbinned
K

O
:K

07307
dm

sB
anaerobic dim

ethyl sulfoxide reductase subunit B
 

Sulfur m
etabolism

G
a0371430_10128293

N
A

N
A

-0.30
0.47

-0.26
U

nbinned
K

O
:K

07307
dm

sB
anaerobic dim

ethyl sulfoxide reductase subunit B
 

Sulfur m
etabolism

G
a0371428_10649910

0.19
1.09

-0.06
N

A
N

A
D

esulfobacteraceae
K

O
:K

11180
dsrA

dissim
ilatory sulfite reductase alpha subunit 

Sulfur m
etabolism

G
a0371428_1163591

-0.58
1.43

0.73
N

A
N

A
D

esulfobacteraceae
K

O
:K

11180
dsrA

dissim
ilatory sulfite reductase alpha subunit 

Sulfur m
etabolism

G
a0371428_1135681

-0.51
0.17

0.37
N

A
0.02

U
nbinned

K
O

:K
11180

dsrA
dissim

ilatory sulfite reductase alpha subunit 
Sulfur m

etabolism
G

a0371428_1064999
-1.16

1.48
-0.02

N
A

N
A

D
esulfobacteraceae

K
O

:K
11181

dsrB
dissim

ilatory sulfite reductase beta subunit 
Sulfur m

etabolism
G

a0371429_10640591
N

A
0.46

0.64
N

A
-0.15

G
am

m
aproteobacteria

K
O

:K
11181

dsrB
dissim

ilatory sulfite reductase beta subunit 
Sulfur m

etabolism
G

a0371430_11014352
-0.31

0.50
0.13

0.94
N

A
U

nbinned
K

O
:K

11181
dsrB

dissim
ilatory sulfite reductase beta subunit 

Sulfur m
etabolism

G
a0371428_1009684

N
A

-0.02
0.45

0.74
0.79

G
am

m
aproteobacterium

_117
915_bin_15

C
O

G
2210

dsrE2
Peroxiredoxin fam

ily protein [Energy production 
and conversion]

Sulfur m
etabolism

G
a0371428_1107443

-0.75
-0.09

0.29
1.33

0.43
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

17229
fccB

sulfide dehydrogenase 
Sulfur m

etabolism

G
a0371428_1036098

0.41
-1.15

0.63
N

A
1.57

U
nbinned

K
O

:K
17229

fccB
sulfide dehydrogenase 

Sulfur m
etabolism

G
a0371428_10322164

0.53
-0.52

-2.76
N

A
N

A
Phorm

idium
C

O
G

0491
gloB

G
lyoxylase or a related m

etal-dependent hydrolase, 
beta-lactam

ase superfam
ily II

Sulfur m
etabolism

G
a0371428_1146203

-0.54
1.28

0.39
N

A
N

A
D

esulfobacteraceae
K

O
:K

00958
sat, m

et3
sulfate adenylyltransferase 

Sulfur m
etabolism

G
a0371428_1044222

-0.27
-0.38

0.09
N

A
N

A
G

am
m

aproteobacterium
_117

915_bin_15
K

O
:K

17226
soxY

sulfur-oxidizing protein SoxY
 

Sulfur m
etabolism

G
a0371431_11327791

0.01
-0.30

-0.47
N

A
N

A
U

nbinned
pfam

14250
abrB

A
brB

-like transcriptional regulator
Transcription

G
a0371428_1092934

-0.42
0.36

-2.12
N

A
N

A
Phorm

idium
pfam

14250
abrB

A
brB

-like transcriptional regulator
Transcription

G
a0371431_10471572

0.68
N

A
1.06

N
A

-2.55
Planktothrix

pfam
14250

abrB
A

brB
-like transcriptional regulator

Transcription

G
a0371435_11867512

-0.26
0.81

-3.18
N

A
-3.60

U
nbinned

C
O

G
1747

C
O

G
1747

U
ncharacterized N

-term
inal dom

ain of the 
transcription elongation factor G

reA
 [Function 

unknow
n]

Transcription

G
a0371428_1038013

-0.86
0.30

0.47
0.15

1.08
G

am
m

aproteobacteria
K

O
:K

03704
cspA

cold shock protein
Transcription

G
a0371428_1080056

-0.01
-0.58

-0.32
N

A
N

A
C

hloroflexaceae
C

O
G

1396
hipB

Transcriptional regulator, contains X
R

E-fam
ily 

H
TH

 dom
ain

Transcription

G
a0371428_1034392

-1.57
0.18

-0.05
-1.15

0.29
G

am
m

aproteobacteria
K

O
:K

13643
iscR

R
rf2 fam

ily transcriptional regulator, iron-sulfur 
cluster assem

bly transcription factor
Transcription

G
a0371428_10200626

0.51
0.31

0.07
N

A
N

A
Phorm

idium
K

O
:K

03040
rpoA

D
N

A
-directed R

N
A

 polym
erase subunit alpha 

Transcription
G

a0371428_1048482
-0.93

0.68
N

A
0.32

N
A

G
am

m
aproteobacteria

K
O

:K
03043

rpoB
D

N
A

-directed R
N

A
 polym

erase subunit beta 
Transcription

G
a0371428_1057691

0.03
-0.46

-1.06
N

A
N

A
U

nbinned
K

O
:K

03043
rpoB

D
N

A
-directed R

N
A

 polym
erase subunit beta 

Transcription
G

a0371428_1114431
-1.07

0.30
1.43

N
A

0.39
U

nbinned
K

O
:K

07315
rsbU

_P
phosphoserine phosphatase R

sbU
/P

Transcription

G
a0371428_1132821

-0.84
0.60

-0.45
-1.38

0.25
B

acteroidales
K

O
:K

01883
C

A
R

S, cysS
cysteinyl-tR

N
A

 synthetase 
Translation

G
a0371429_11098151

-0.87
0.17

-0.35
-0.84

-1.26
N

A
K

O
:K

03231
EEF1A

elongation factor 1-alpha
Translation

G
a0371427_11071181

-0.27
0.10

-0.30
N

A
N

A
N

A
K

O
:K

03233
EEF1G

elongation factor 1-gam
m

a
Translation

G
a0371428_1074933

0.19
-0.10

-1.29
N

A
N

A
Phorm

idium
K

O
:K

02356
efp

elongation factor P
Translation

G
a0371437_10520791

N
A

-0.19
-0.89

N
A

1.18
D

esulfobacteraceae
C

O
G

1234
elaC

R
ibonuclease B

N
, tR

N
A

 processing enzym
e

Translation
G

a0371428_1029151
N

A
0.48

0.31
N

A
0.65

U
nbinned

K
O

:K
02838

frr
ribosom

e recycling factor
Translation

G
a0371428_1065611

-2.38
0.44

0.34
N

A
0.90

G
am

m
aproteobacteria

K
O

:K
02355

fusA
, G

FM
, 

EFG
elongation factor G

Translation

G
a0371435_12621271

-0.45
-0.15

-1.84
N

A
N

A
U

nbinned
K

O
:K

02519
infB

, 
M

TIF2
translation initiation factor IF-2

Translation
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G

a0371436_11038001
-0.72

-0.57
-1.04

N
A

N
A

Proteobacteria
C

O
G

0456
rim

I
R

ibosom
al protein S18 acetylase R

im
I and related 

acetyltransferases
Translation

G
a0371428_10108174

-0.06
-0.01

-0.06
N

A
N

A
U

nbinned
K

O
:K

02863
R

P-L1, 
M

R
PL1, 

rplA
large subunit ribosom

al protein L1 
Translation

G
a0371428_1050872

-0.26
0.06

0.34
1.14

0.83
U

nbinned
K

O
:K

02863
R

P-L1, 
M

R
PL1, 

rplA
large subunit ribosom

al protein L1 
Translation

G
a0371428_1138623

-0.71
0.12

0.58
-0.96

0.20
U

nbinned
K

O
:K

02864
R

P-L10, 
M

R
PL10, 

rplJ
large subunit ribosom

al protein L10 
Translation

G
a0371429_10939732

0.19
0.30

-1.84
N

A
N

A
N

A
K

O
:K

02864
R

P-L10, 
M

R
PL10, 

rplJ
large subunit ribosom

al protein L10 
Translation

G
a0371428_1023948

-0.03
0.27

-3.62
N

A
N

A
Phorm

idium
K

O
:K

02864
R

P-L10, 
M

R
PL10, 

rplJ
large subunit ribosom

al protein L10 
Translation

G
a0371428_1023946

0.49
-0.28

-4.76
N

A
N

A
Phorm

idium
K

O
:K

02867
R

P-L11, 
M

R
PL11, 

rplK
large subunit ribosom

al protein L11 
Translation

G
a0371428_10200632

-0.41
0.30

-2.81
N

A
N

A
Phorm

idium
K

O
:K

02876
R

P-L15, 
M

R
PL15, 

rplO
large subunit ribosom

al protein L15 
Translation

G
a0371428_1049578

0.41
-0.70

-2.46
N

A
N

A
Phorm

idium
K

O
:K

02887
R

P-L20, 
M

R
PL20, 

rplT
large subunit ribosom

al protein L20 
Translation

G
a0371428_10200644

0.05
0.16

-3.04
N

A
N

A
Phorm

idium
K

O
:K

02890
R

P-L22, 
M

R
PL22, 

rplV
large subunit ribosom

al protein L22 
Translation

G
a0371429_10628481

-0.85
0.35

-0.68
N

A
N

A
N

A
K

O
:K

02891
R

P-L22e, 
R

PL22
large subunit ribosom

al protein L22e 
Translation

G
a0371428_10770737

-0.92
0.45

-0.46
N

A
N

A
U

nbinned
K

O
:K

02892
R

P-L23, 
M

R
PL23, 

rplW
large subunit ribosom

al protein L23 
Translation

G
a0371428_10200647

-0.02
-0.10

-2.46
N

A
N

A
Phorm

idium
K

O
:K

02892
R

P-L23, 
M

R
PL23, 

rplW
large subunit ribosom

al protein L23 
Translation

G
a0371428_1077883

-0.61
0.53

0.11
N

A
N

A
N

A
K

O
:K

02895
R

P-L24, 
M

R
PL24, 

rplX
large subunit ribosom

al protein L24 
Translation

G
a0371428_1063716

0.32
1.22

-0.04
N

A
N

A
G

am
m

aproteobacteria
K

O
:K

02897
R

P-L25, 
rplY

large subunit ribosom
al protein L25 

Translation

G
a0371427_10625753

-0.12
-0.33

-0.62
N

A
N

A
N

A
K

O
:K

02901
R

P-L27e, 
R

PL27
large subunit ribosom

al protein L27e 
Translation

G
a0371428_1120034

N
A

0.71
0.25

N
A

0.80
G

am
m

aproteobacteria
K

O
:K

02902
R

P-L28, 
M

R
PL28, 

rpm
B

large subunit ribosom
al protein L28 

Translation

G
a0371428_10770739

-1.55
0.45

0.00
N

A
N

A
U

nbinned
K

O
:K

02906
R

P-L3, 
M

R
PL3, 

rplC
large subunit ribosom

al protein L3 
Translation
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G

a0371431_10193591
N

A
0.28

0.60
N

A
0.25

U
nbinned

K
O

:K
02906

R
P-L3, 

M
R

PL3, 
rplC

large subunit ribosom
al protein L3 

Translation

G
a0371428_1049579

-0.05
-0.48

-1.71
N

A
-0.31

Phorm
idium

K
O

:K
02916

R
P-L35, 

M
R

PL35, 
rpm

I
large subunit ribosom

al protein L35 
Translation

G
a0371428_1047431

0.27
-0.24

0.34
N

A
N

A
U

nbinned
K

O
:K

02926
R

P-L4, 
M

R
PL4, 

rplD
large subunit ribosom

al protein L4 
Translation

G
a0371429_10472722

-1.17
0.58

0.28
N

A
N

A
U

nbinned
K

O
:K

02926
R

P-L4, 
M

R
PL4, 

rplD
large subunit ribosom

al protein L4 
Translation

G
a0371437_11599363

-0.30
-2.35

N
A

N
A

0.56
U

nknow
n

K
O

:K
02931

R
P-L5, 

M
R

PL5, 
rplE

large subunit ribosom
al protein L5 

Translation

G
a0371428_1060731

0.64
-0.16

0.32
-0.33

0.26
U

nbinned
K

O
:K

02933
R

P-L6, 
M

R
PL6, 

rplF
large subunit ribosom

al protein L6 
Translation

G
a0371436_10433123

0.42
0.40

0.04
-1.19

N
A

U
nbinned

K
O

:K
02933

R
P-L6, 

M
R

PL6, 
rplF

large subunit ribosom
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Figure SI 4.1 Map of MIS sampling scheme in July 2016. Shown in red is the transect along 
which sampling was conducted in July 2016. The spokes from the origin closest to the 
Alcove are, clockwise, D, C, B, and A. Radiating from the origin O are cross lines 1, 2, 3, 4, 
5, and 6. Phormidium-dominated flat mat was collected along the D line. Giraffe mat was 
observed from B4-A6. Other samples of flat purple mat and flat white mat were collected 
along the A line, and from A5-C5.  
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Figure SI 4.2 Nonmetric multidimensional scaling plot (NMDS) of the bacterial communities of 
different mat types. NMDS was conducted on a Morisita-Horn dissimilarity matrix calculated 
from the relative bacterial abundances. Samples are categorized by month (symbol outline 
color), year (symbol shape), and mat type (symbol fill color). Giraffe mat samples and white 
mat samples clustered with each other. Flat mat and finger mat collected in 2016 and 2017 
were variable in composition and dissimilar to 2015 material. 
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Figure SI 4.3 Ternary diagram categorizing flat mat samples by relative abundances of 
Phormidium, epsilonproteobacterial SOB (ESOB), and the sum of Spirulina and 
Pseudanabaena, among the sum of these members. Samples in the “Phormidium” corner had 
a higher relative abundance of Phormidium compared to the other 2 groups, and samples 
from pre-July 2016 typically fell in this triangle. Samples from 2016 are distributed 
throughout the ternary diagram. Samples from 2017 are typically <65% Phormidium, <50% 
ESOB, and >50% Spirulina and Pseudanabaena.  
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Figure SI 4.4 Histogram of the nearest-taxon-index (NTI) of the bacterial communities of 
different mat morphotypes. The average NTI for each community is plotted as the solid 
vertical line. 
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Figure SI 4.5  Phylogeny of sqr genes evaluated from MAGs. They are classified according to 
(Marcia et al. 2010). 
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Figure SI 4.6 Heatmap of significantly differentially abundant proteins in mat morphotypes 
grouped by taxa/bin and metabolic function. Proteins with higher weighted mean log2-
normalized abundances are plotted in warm/light grey colors, whereas proteins with lower 
abundances are plotted in cool/dark grey colors. Proteins whose weighted means are larger 
than their standard deviations are plotted in the color gradient, whereas proteins that are 
variably represented in samples of the same mat type, and thus have weighted means are less 
than their standard deviations, are shown in the grey gradient.  

 

SRB

Weighted mean < Standard deviation



 249 

Chapter V: Conclusions and Future Directions 

 

5.1 Introduction 

In this chapter, I summarize the major conclusions of the dissertation chapters, and 

outline potential future directions of research. My dissertation leveraged ‘omics approaches to 

answer questions about the genetics and ecology of anoxygenic photosynthetic cyanobacteria in 

culture and in natural communities: What is the genomic foundation for metabolic flexibility in 

an anoxygenic photosynthetic cyanobacterium in a variably sulfidic, low-oxygen environment? 

What is the impact of seasonality on the community structure and functioning of a natural AP 

cyanobacterial mat? What are the relationships between microbial community functioning, 

geochemical cycling, and the morphological appearance of microbial mats? 

To answer these questions, Chapter II described the genome of a model organism for 

studying anoxygenic photosynthesis, Geitlerinema sp. PCC 9228, with a focus on genes involved 

in AP, OP, and nitrogen fixation. Geitlerinema was the first described culture of an AP 

cyanobacterium, but its genome was not sequenced and described until this research. This was 

the first study to identify genes indicative of a low-O2 lifestyle previously described only in non-

cyanobacteria. Chapter III evaluated the shift in physicochemical environment and community 

structure and functioning of the Middle Island Sinkhole microbial mat over multiple years and 

seasons. This study revealed that there are substantial seasonal shifts in the abundance and 

functioning of sulfur cycling microbes in the mat, including putative AP cyanobacteria, sulfate-

reducing deltaproteobacteria, and sulfide-oxidizing gammaproteobacteria, and provided evidence 



 250 

that these shifts are linked to light and groundwater chemistry. Chapter IV described the 

metagenomes and metaproteomes of distinct mat morphological types observed in Middle Island 

Sinkhole. This study relates the functioning of key sulfur cycling bacteria to the morphotypes of 

mats that appear similar to those observed in the fossil record. 

 

5.2 Metabolic genes and pathways for life at low-O2 in anoxygenic photosynthetic 
cyanobacteria 

A crucial advancement from this dissertation is the establishment of the genetic repertoire 

for AP cyanobacteria to thrive in a variable sulfidic, low-O2 habitat (Grim & Dick, 2016). 

Genome sequences provide a molecular record to reconstruct the evolutionary history of 

cyanobacterial AP through Earth history (Dick et al., 2018; Soo et al., 2017). Previous 

physiological studies determined the sulfide-induced changes in photosynthetic mode, nitrogen 

metabolism, and sulfide metabolism in Geilterinema (Belkin & Padan, 1978; Cohen et al., 1986). 

In Chapter II, I phylogenetically described the key genes involved in Geitlerinema’s 

photosynthetic modes. Geitlerinema is not unusual in that it has multiple psbA genes for the D1 

protein, the water-oxidation site of photosystem II: one copy of an anaerobic group 2 psbA, one 

copy of microoxic group 3 psbA, and two copies of a standard oxic/high-light psbA. However, 

my contextualization of psbA genes in terms of phylogeny and genomic neighborhood identified 

a potential relationship between the use of variant psbA genes in AP. Select other cyanobacterial 

genomes with sqr genes had groups 2 and 3 psbA genes in close chromosomal proximity to their 

sqr, including two other Geitlerinema species (Den Uyl et al., 2016) and a metagenome-

assembled-genomic contig from Middle Island Sinkhole metagenomes (Voorhies et al., 2012). 

Due to the draft status of its genome and the difficulty in bridging genomic contigs, it is 

unknown if Geitlerinema sp. PCC 9228 has collocated psbA and sqr genes. However, this study 
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presents the possibility of alternative D1 proteins being involved in AP, such as to inactive PSII 

or to participate in electron transfer from donors other than water, e.g., sulfide (Becraft et al., 

2015; Murray, 2012; Olsen et al., 2015). Testing this potential concerted metabolic reworking 

between OP and AP, using e.g. transcriptomics and proteomics, is an intriguing hypothesis for 

future studies with Geitlerinema and other AP cultures. 

In addition to its well-described high affinity sulfide-quinone reductase (SQR) (Arieli et 

al., 1994; Bronstein et al., 2000; Grim & Dick, 2016; Marcia et al., 2010; Pham et al., 2008), 

Geitlerinema also has a second putative sulfide-donation site on the immediate donor side of PSI 

that responds to high (~mM) H2S concentrations (Arieli et al., 1991; Shahak et al., 1987), but the 

role of this metabolism and the genes involved (including whether it is SQR) have not been 

described. In Chapter II, I identified multiple sqr versions in Geitlerinema and other 

cyanobacterial genomes. Geitlerinema holds a type I cyanobacterial sqr with a high H2S affinity 

(Km = 44 µM) (Shahak et al., 1987), as well as a type VI sqr most similar to green sulfur 

bacterial sqr transcribed at mM H2S concentrations (Chan et al., 2009). Given that so few 

cyanobacteria possess it, the role of type VI sqr in cyanobacterial sulfur metabolism is not well 

described. In Leptolyngbya sp. strain hensonii, type VI sqr is likely involved in AP and has an 

apparent H2S affinity of Km = 0.05 to 0.2 mM (Hamilton et al., 2018). The elevated Km of 

Leptolyngbya’s sqr type VI compared to type I sqr hints at the use of Geitlerinema’s type VI sqr 

at elevated H2S levels. In its natural environment, Geitlerinema thrives in the hypolimnion of 

Solar Lake, with low-light mM H2S. In those conditions, light may be the limiting factor for AP 

growth rather than H2S availability. However, when mixed in the water column and exposed to 

different light and sulfide levels, Geitlerinema may employ its variable sqr and/or psbA genes to 

maintain homeostatic photosynthetic growth. This additional sqr is an attractive target for future 
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physiological studies to elucidate the shifts in AP cyanobacterial metabolism with shifting redox 

conditions. 

Geitlerinema’s ability to fix nitrogen under AP has been described (Belkin & Padan, 

1978; Belkin et al., 1982), but the combination of AP and diazotrophy has not been further 

explored, especially at a genetic level, in cyanobacteria. Chapter II identified unexpected 

nitrogen regulation genes and potential metabolic strategies in AP cyanobacteria. Geitlerinema 

and another AP cyanobacterium, Coleofaciscus chthonoplastes, have nifI1I2 nitrogenase 

regulatory genes that have been previously observed only in diazotrophic archaea and anaerobic 

bacteria that regulate their nitrogenase activity post-translation (Boyd et al., 2015; Forchhammer, 

2004). Additionally, the proximity of Geitlerinema’s group 2 psbA gene to ntcA, a transcriptional 

regulator of nitrogen metabolism genes (Forchhammer, 2004), presents an unexplored interface 

between carbon fixation and nitrogen acquisition under O2-limiting conditions. Very little is 

known about genetic regulation of cyanobacterial nitrogen acquisition under sulfidic conditions. 

Pseudanabaena FS39, a strain isolated from sulfidic Frasassi Springs, assimilates nitrate when 

conducting AP but cannot grow without provided ammonium or nitrate (Klatt, Al-Najjar, et al., 

2015). Previous physiological studies of AP growth in Geitlerinema, C. chthonoplastes, and 

Leptolyngbya sp. strain hensonii have occurred in nitrogen-replete media, suggesting nitrate 

assimilation occurs under AP conditions (Cohen et al., 1986; Hamilton et al., 2018). In 

Geitlerinema, translation of its group 2 psbA under anaerobic conditions may prevent O2 

production and allow for nitrogen fixation, which in turn may necessitate regulation of nitrogen 

metabolic genes via ntcA. These findings motivate future investigations into carbon, nitrogen, 

and sulfur metabolic fine-tuning in AP cyanobacteria. 
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5.3 Seasonal dynamics in the functioning and abundance of sulfur-cycling microbial mat 

Genomic analyses of the dominant Phormidium and Planktothrix members in the low-O2 

Middle Island Sinkhole microbial mat indicated the potential for them to perform the observed 

anoxygenic photosynthesis in the mat (Voorhies et al., 2012). Phormidium possesses a type I, 

high H2S affinity sqr which is involved in AP in cyanobacteria, whereas Planktothrix encodes 

for a type II sqr typically employed for sulfide detoxification (Grim & Dick, 2016). Phormidium 

and Planktothrix have groups 3 and 4 psbA genes for microaerobic/dynamic redox conditions as 

well as standard growth, but Phormidium additionally has a group 2 psbA for anaerobic 

processes (Grim & Dick, 2016). A cyanobacterial nifHDK nitrogenase gene suite was also 

observed in the metagenomes and new binning efforts assign it to Phormidium, suggesting that it 

may fix nitrogen to alleviate nitrogen stress that may occur due to nitrogen loss during 

denitrification, which is active in the mat (Voorhies, 2014). During anoxic conditions or to 

prevent O2 production, e.g., for the purpose of facilitating nitrogen fixation, Phormidium may 

utilize group 2 psbA to disable water oxidation in photosystem II, a mechanism not likely 

available to Planktothrix due to the absence of this variant in the genome. 

The combination of these gene suites suggests a greater degree of metabolic versatility 

through varying O2, H2S, and nitrogen stress conditions in Phormidium compared to 

Planktothrix. Though sqr in Phormidium has not been confirmed to participate in AP, its 

phylogenetic grouping with known-AP cyanobacterial sqr points to Phormidium being a key AP 

organism. In contrast, Planktothrix and its type II sqr may survive sulfidic conditions through 

sulfide detoxification or sulfide oxidation without phototrophic growth.  

An important conclusion from my dissertation is that the seasonally-changing 

physicochemical environment affects the functioning and abundance of sulfur cycling microbes 

in a natural community. In Chapter III, 16S rRNA gene level analyses revealed temporal 
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patterns in bacterial populations in MIS microbial mats. Cyanobacteria, dominated by putative 

AP members Phormidium and sulfide-tolerant Planktothrix, were most abundant in early and late 

summer months. Sulfate-reducing bacteria were most abundant in late summer, and in autumn 

the bacterial community was dominated by sulfide-oxidizing bacteria, primarily Beggiatoa. 

Additionally, Planktothrix was the more abundant cyanobacterial member in autumn. This shift 

in the community structure is most likely due to changing cyanobacterial growth conditions: 

when light levels were highest, and when the water chemistry was most enriched in high-sulfate 

groundwater, Phormidium cyanobacteria were more abundant.  

Chapter III presents the first description of proteomic signatures of discrete populations 

of AP cyanobacteria, sulfide-oxidizing bacteria, and sulfate-reducing bacteria in a low-oxygen, 

sulfidic cyanobacterial mat. The linkage of these community dynamics to light and/or 

geochemical conditions has implications for the balance between different cyanobacteria with 

distinct functional niches, the functioning of photosynthetic modes in AP cyanobacteria, and 

shifting redox environment. The proteomic and 16S rRNA gene data in Chapter III corroborates 

the proposed metabolic flexibility of Phormidium compared to Planktothrix, as seen in their 

genetic content. Of the cyanobacteria, it is the most abundant in 16S rRNA gene and proteomic 

profiles, especially in summer months. The higher significant abundance of Phormidium 

allophycocyanin (a key light harvesting protein), thioredoxin, and chaperone proteins in summer 

months correlates with better growth conditions, namely high light levels. These observations in 

a natural community are consistent with results from cyanobacterial cultures that growth rates 

and abundance of ribosomal proteins are positively related (Jahn et al., 2018).  

This study also revealed the potential for cyanobacterial niche adaptation in MIS mat, an 

ecological strategy not previously considered in this low-diversity system. The improved 
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metagenomic binning and proteomic surveys in Chapter III showed that not only were 

phycobiliproteins the most abundant protein in the system, but that Phormidium and many 

different cyanobacteria have different types of phycobiliproteins that are differentially abundant 

throughout the seasons. Planktothrix and other cyanobacterial photosynthetic proteins were 

significantly higher in summer, not lower as one might expect should they be directly competing 

with Phormidium for optimal light conditions. Additionally, the multiple phycocyanin and 

phycoerythrin proteins that were significantly variably abundant in the metagenome-assembled-

genome of Phormidium potentially reflect multiple strains and/or the ability for Phormidium to 

conduct complementary chromatic adaptation (CCA). During CCA, cyanobacteria that encode 

for phycoerythrin are capable of modulating synthesis of PE alone or phycoerythrin along with 

phycocyanin (Bryant, 1982). Cyanobacterial cultures have furthered our understanding of the 

regulation and environmental conditions behind CCA (Bezy et al., 2011; Bryant, 1982; Gan et 

al., 2014), and in natural mat communities, different cyanobacteria position themselves in the 

mat for optimal light conditions (Hawes & Schwarz, 2001; Oberhaus et al., 2007; Sumner et al., 

2015). Though the MIS cyanobacteria remain unculturable, laboratory manipulations of light 

availability on microbial mat could untangle possible light adaptation, including CCA, in the 

dominant cyanobacteria. Our research positions MIS as an intriguing natural setting in which to 

explore niche complementarity, light adaptation, and the interspecific interaction of 

metabolically flexible cyanobacteria potentially capable of CCA. 

While we were unable to extract proteomic evidence of AP, several of the significantly 

abundant Phormidium proteins are related to both modes of AP and OP (light harvesting and 

carbon fixation), as well as protein synthesis and growth. Thioredoxin, a key protein involved in 

the Calvin cycle and oxidative pentose phosphate cycle (Blankenship, 2014), and pigment 
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protein allophycocyanin are required for both photosynthetic modes to operate, and were most 

abundant in summer. The shift in Phormidium proteomic abundance between summer and 

autumn is tied to less favorable growth conditions in autumn, which manifests in the 16S rRNA 

gene relative abundance data. In autumn when light levels are lower, the relative abundances of 

Phormidium proteins and marker genes are lower than those of other mat members. At that time, 

while Planktothrix is relatively more abundant in the mat, it is likely due to a lower relative 

abundance of Phormidium rather than better growth conditions for Planktothrix, given that the 

dominant autotroph proteomic signatures in autumn are Beggiatoa sulfide-oxidizing bacteria and 

diatoms.  

In MIS sulfide-oxidizing bacteria present an additional biological intersection for the 

sulfur and oxygen cycles, in that they rely upon O2 from the photosynthesizers or overlying lake 

water to oxidize H2S. Beggiatoa are pivotal members of chemosynthetic communities that 

produce organic carbon, fix nitrogen, and remove sulfide from the environment (Flood et al., 

2014). Likely when light conditions are poor for cyanobacteria, such as during low light levels at 

the beginning and end of the day, in autumn and by extension winter, Beggiatoa in MIS may 

perform the role of AP cyanobacteria in depleting sulfide.  

Diatoms are present in the mat surface throughout the year (Nold, Zajack, et al., 2010), 

but the impacts of diatoms in the MIS community functioning and O2 budget were previously 

unexplored. The proteomics data in Chapter III highlight the diatoms as integral primary 

producers, with photosynthetic and carbon fixation proteins especially abundant in autumn. The 

proteomics data also provided evidence for an active sulfate-reducing bacterial community in the 

cyanobacterial mat. O2 tolerance is an essential trait for such microbes that thrive among AP/OP 

cyanobacteria and diatoms (Canfield & Marais, 1991). Further, active sulfate reduction within 



 257 

the mat is potentially a local and important source of sulfide to sulfide-oxidizing members, as 

opposed to sulfide diffusing from sediment sulfate reduction. These results reveal how the 

interplay of metabolic activities of specific populations shapes community function. The 

proteomics datasets also provide a rich framework for studying functional mechanisms by which 

mat-forming cyanobacteria in extreme environments deal with changing light levels and 

geochemistry. 

 

5.4 Functional redundancy within cyanobacteria, sulfate-reducing bacteria, and sulfide-
oxidizing bacteria across different mat morphotypes 

Microbial mats are present in the geologic record for over 3.5Ga in a variety of forms in 

stromatolites, microbialites, and microbially induced sedimentary structures (Noffke et al., 2013; 

Nutman et al., 2016; Tice & Lowe, 2004). Studies of modern mats indicate that different 

mechanisms of formation and microbial metabolisms may influence their appearance. Physical 

processes such as tides and flooding, and metabolisms that precipitate minerals can determine 

biofilm thickness (Stal, 2012). Additionally, gas-producing metabolisms such as oxygenic 

photosynthesis can uplift mats from underlying sediment (Bosak et al., 2009; Noffke, 2010). 

However, distinct microbial mat types are rarely observed at the same time, in the same place 

under homogenous environmental conditions. Chapter IV presents a concerted metagenomic, 

metaproteomic, and geochemical approach to target the relationship between geochemical 

cycling, microbial functioning, and the morphology of coexisting microbial mats that appear 

similar to those that appear in the geologic record. My multifaceted characterization of four 

geologically-relevant mat morphotypes (finger, giraffe, flat purple, and flat white mats) observed 

in a short spatiotemporal frame in Middle Island Sinkhole, revealed unexpected microbial and 

functional diversity in these microbial mats. The subtle differences in microbial functioning and 
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the subsequent influences on their interactions with geochemical cycling may play a role in the 

distinct appearances of the mats. 

A key advancement from Chapter IV is the expansion of our knowledge of the 

metabolic capacity of cyanobacterial mats in low-O2 environments. My investigations 

documented a core shift in the cyanobacterial community of MIS from 2015-2017. Previously, 

the genome of a dominant strain of Phormidium, and partial genomes of a less abundant strain of 

Phormidium as well as Planktothrix and other oscillatorial members, were described in MIS 

fingers and mats (Voorhies et al., 2012; 2016). In the current study, the contemporary MIS mats 

are dominated by new strain(s) of Phormidium, Planktothrix, and two previously rare 

cyanobacteria, Pseudanabaena and Spirulina. 16S rRNA gene surveys indicated that either 

Phormidium or the pair of Pseudanabaena and Spirulina were dominant in the mats, but not both 

at the same time. Further coupled ‘omics and geochemical measurements on mats characterized 

by the dominance of these different cyanobacteria may uncover the impact of this shifting 

phototrophic community on sulfide and oxygen cycling in MIS and other analog systems. 

Extreme environments tend to restrict diversity in microbial mats (Stal, 2012), and previous 

surveys have determined MIS mats to have relatively low diversity (Kinsman-Costello et al., 

2017; Nold, Pangborn, et al., 2010; Voorhies et al., 2012). Interspecific competition occurs 

between phylogenetically related organisms that perform the same metabolism and prefer the 

same habitat niche (Stegen et al., 2012; Violle et al., 2011). Results from comparative genomics 

suggest that Phormidium and Pseudanabaena may occupy similar functional niches. They both 

have cyanobacterial sqr genes implicated in anoxygenic photosynthesis, variant psbA genes that 

may be synthesized at different O2 levels, and nifHDK nitrogenase gene suites for fixing 

nitrogen. A crucial difference between the two genomes is that Pseudanabaena lacks 
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phycoerythrin to absorb green light, and has a substantially smaller genome than Phormidium. 

These differences are also paralleled in the genome comparison of Spirulina and Planktothrix, 

with Spirulina having a smaller genome and synthesizing phycoerythrocyanin instead of 

phycoerythrin. A smaller genome is a strategy observed in genome streamlining, and improves 

competitiveness of organisms due to a reduced requirement for resources for replication 

(Giovannoni et al., 2014). While Pseudanabaena and Spirulina may have similar niches to 

Phormidium and Planktothrix, their smaller genomes may impart an energetic advantage that 

manifests in the abundance data. Thus with environmental conditions putatively limiting 

available niche space in this low-diversity system, the emergence of these new cyanobacterial 

members, particularly of Pseudanabaena and Spirulina, begs further investigation into the 

competition and/or ecological succession that occurred in the MIS cyanobacterial mat. 

Chapter IV also presents novel insights into the metabolisms and diversity of sulfide-

oxidizing epsilonproteobacteria and gammaproteobacteria in the microbial mats. Beggiatoa and 

other gammaproteobacteria have been implicated in sulfur cycling in MIS and related mats, 

(Kinsman-Costello et al., 2017; Nold, Pangborn, et al., 2010; Sharrar et al., 2017). However,  

epsilonproteobacteria are relatively rare in these mats, thus their genome sequences and 

metabolic potential are largely unknown. Metagenomes of MIS mat morphotypes yielded two 

abundant metagenome-assembled-genome bins (MAGs) of gammaproteobacterial sulfide 

oxidizers, and eight MAGs of epsilonproteobacterial sulfide oxidizers. The dominant 

gammaproteobacterium in giraffe mat, Gamma_bin_8, possesses the bidirectional hydrogenase 

analogous to cyanobacteria, and reverse dissimilatory sulfite reductase pathway and related 

genes, whereas the gammaproteobacterium sourced from diverse mat types, Gamma_bin_15 may 

perform sulfide oxidation and sulfur disproportionation along with hydrogen oxidation.  
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All the epsilonproteobacterial MAGs encode 1-3 sqr genes, and at least one cytochrome 

and hydrogenase, but vary in their putative affinities for H2S and O2, and ability to metabolize 

H2. Two finger-endemic Sulfurospirillum MAGs have one sqr each, and are equipped for 

denitrification and dissimilatory nitrate reduction, aerobic respiration at both high and low [O2], 

and H2 production. Epsilonproteobacteria primarily observed in white and flat-Spirulina and 

Pseudanabaena mat have 2-3 sqr genes potentially expressed for different H2S conditions and/or 

metal detoxification, 1-2 hydrogenases, typically one cytochrome, and pathways for 

denitrification, nitrogen fixation, or nitrate reduction. In other systems with 

gammaproteobacteria and epsilonproteobacteria, the availability of O2 (Macalady et al., 2006) 

and the stage of ecological succession in the mat (Patwardhan et al., 2018) were related to which 

sulfide-oxidizing group was dominant. Higher O2 and more established mats tend to have higher 

relative abundances of gammaproteobacteria than of epsilonproteobacteria. These sulfide 

oxidizers appear to differ in their ability to metabolize O2, H2, and forms of sulfur and nitrogen, 

which may be related to their distribution and abundance in different mat types. While it is 

unclear if the age of the observed MIS mats varied, geochemical measurements indicated 

photosynthetic O2 production was nonexistent in white mat, and of similar rates in the other 

mats. This research invites follow up into the metabolic importance of epsilonproteobacteria, and 

their ecological interactions with gammaproteobacteria and other microbes, in MIS and other 

phototrophic mats. 

Our investigations lead to the hypothesis that the shift in dominant cyanobacteria, sulfide 

oxidizers, and sulfate reducers in the microbial mats is related to differences in biogeochemical 

cycling. In addition to the geochemical environments varying by mat type, key proteins varied 

significantly in abundance. Measurements indicate that mat-derived O2 flux and depth-integrated 
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oxygenic photosynthetic rates are comparable between all mats except white mat. Proteins 

belonging to Phormidium were significantly higher in abundance in finger and select flat mats in 

which Phormidium and Planktothrix were most abundant, and in lower abundance in giraffe, 

white and other mats in which Pseudanabaena and Spirulina were abundant. In contrast, other 

cyanobacterial proteins were more abundant in giraffe, white, and Spirulina and Pseudanabaena 

dominated flat mats. Because these proteins were related to photosynthesis and/or basic 

metabolic functions, these proteomes provide evidence for more favorable growth conditions for 

Phormidium in fingers and select flat mats, and better growth conditions for other cyanobacteria 

in giraffe, white and other flat mats. The functional similarity between 

Phormidium/Pseudanabaena and Planktothrix/Spirulina, as seen in their gene content, may help 

explain similar geochemical measurements in cyanobacterially-dominated mats. 

This research highlights the importance of sulfate-reducing bacteria in the mat locally 

providing sulfide to the community. The two different sulfate-reducing MAGs may have 

different O2 tolerances, based on their cytochromes: the Desulfonema primarily found in giraffe 

and purple mat dominated by Spirulina and Pseudanabaena has both high- and low-O2 affinity 

cytochromes, whereas the Desulfobacteraceae MAG found throughout many mat types has a 

high-O2 affinity cytochrome. Proteins belonging to sulfate-reducing bacteria were also more 

abundant in white mat, and cyanobacterial mat in which Spirulina and Pseudanabaena were 

dominant, than in fingers and flat-Phormidium dominated mat. Total sulfide (Stot) is less 

available in fingers and more available in ex situ flat purple mat, but these values in flat and 

giraffe mats were not wildly variable, and their similar ranges to O2 flux from the mat indicate 

near complete aerobic consumption with photosynthetic O2. Laboratory experiments measured 

AP in fingers and flat-Phormidium dominated mat, though we were unable to confirm AP in situ 
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in flat and giraffe mat through microsensors or proteomics. But just like Phormidium, 

Pseudanabaena and potentially Spirulina are equipped for AP. The low Stot in fingers compared 

to the sediment-attached mats, the similar magnitude of Stot and O2 fluxes in flat and giraffe 

mats, and the documented AP in mats, reflects a disconnect between sulfide sources and sinks: if 

all the measured sulfide can be consumed by gamma- and epsilonproteobacterial aerobic sulfide 

oxidation, but AP is occurring, then another sulfide source must be available. Thus 

cyanobacterial AP but may be partially driven from cryptic sulfide sources, such as sulfur 

disproportionation in the capable sulfide-oxidizing MAG members, or likely more significantly, 

localized sulfate reduction from the deltaproteobacterial MAG members.  

Geochemical and molecular characterization of white mat in Chapter IV sheds new light 

into the role of chemotrophs in forming microbial mats. Generally, white mat has little to no O2 

and a wide Stot range, and hosts primarily sulfide-oxidizing epsilonproteobacteria and the more 

versatile Gamma_bin_15. Many proteins belonging to gamamproteobacterial sulfide oxidizers 

were significantly more abundant in giraffe, white, and Spirulina and Pseudanabaena-dominant 

mats, suggesting favorable growth conditions in these mat types compared to finger and 

Phormidium-dominated mats. From their genomes, these sulfur-cycling bacteria are equipped to 

handle and variable H2S and O2, and may rely upon water-column derived O2 more so than 

photosynthetically-sourced O2, or other electron acceptors such as nitrogen or sulfur species. 

Because sulfide oxidizers and cyanobacteria can generate similar mat features (Flood et al., 

2014), this research presents a counterpoint to the importance of cyanobacteria in generating mat 

structures similar to those observed in the geologic record 

New metagenomes coupled with quantitative metaproteomes of distinct mat morphotypes 

enabled unprecedented insight into the potential and actual functioning of these mats. While the 
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MAGs suggested key mat-specific genetic differences in cyanobacterial AP and OP, levels of 

aerotolerance in sulfate reducers, and different strategies of sulfur metabolism in sulfide-

oxidizing bacteria, we observed nearly 1/3 of proteins were shared across multiple mat types and 

invariable in abundance. Many of these identifiable proteins belonged to Phormidium and were 

involved in photosynthesis, but just as many were sourced from Gammaproteobacteria, or were 

involved in carbon metabolism. Additionally, sulfur metabolism proteins such as subunits of 

dissimilatory sulfite reductase (in sulfate-reducing bacteria) and rDsr (in sulfide-oxidizing 

bacteria) were widely observed in the mats. This core proteome confirms that despite their 

morphological differences, these mats are hotspots of photosynthesis, sulfate reduction, and 

sulfide oxidation, and the identity (and thus functional potential) of key phototroph(s) and sulfide 

oxidizer(s) may subtly influence biogeochemistry. 

 

5.5 Synthesis 

For over 40 years, our understanding of anoxygenic photosynthetic cyanobacteria has 

been limited to physiological and molecular studies in cultured representatives. Thanks to 

methodological and technological improvements in molecular and geochemical techniques in the 

last ten years, our understanding of the ecology of AP cyanobacteria in natural assemblages has 

begun to improve (de Beer et al., 2017; Hamilton et al., 2018; Klatt, de Beer, et al., 2016; Klatt, 

Meyer, et al., 2016). The research in this dissertation combines ‘omics methods with 

geochemical measurements to describe the genetic signature of low-O2 lifestyles in AP 

cyanobacteria (Chapter II), characterize the role of seasonality in the functioning and 

community composition of low-O2 cyanobacterial mats (Chapter III), and headlined an 

investigation of the relationship between microbial mat appearance, metabolisms, and 
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geochemistry (Chapter IV). Phylogenetic contextualization of metabolic genes in oxygenic and 

anoxygenic photosynthesis, and nitrogen and sulfur metabolism in Geitlerinema sp. PCC 9228 in 

Chapter II provided a foundation for analyzing the protein signatures of metagenome-

assembled-genomic bins (MAGs) from seasonally-influenced mats in Chapter III, as well as the 

differential cyanobacterial MAGs and their protein abundances in distinct microbial mats 

described in Chapter IV. Seasonally changing light and geochemistry cascades into the protein 

signatures of cyanobacteria, sulfate-reducing deltaproteobacteria, and sulfide-oxidizing 

gammaproteobacteria. Chapter III highlights the need to explore cyanobacterial mats on 

temporal scales longer than diel cycles, such as seasonal or yearly cycles. Microbial mats of 

distinct morphological appearances are observed throughout Earth history in coastal ecosystems, 

but the ecological factors responsible for mat morphotypes in early-Earth analog systems are 

little known. Chapter IV presents a multifaceted metagenomics, metaproteomics, and 

geochemical investigation to explore the interaction of microbial metabolism, geochemistry, and 

community composition in microbial mat morphotypes that have been observed in the geologic 

record. These results invite additional investigation into the ecology of sulfur cycling members—

namely anoxygenic photosynthetic cyanobacteria, sulfate-reducing bacteria, and sulfide-

oxidizing bacteria—in microbial mats, past and present. 

 

5.6 References 

Arieli, B., Padan, E., & Shahak, Y. (1991). Sulfide-induced Sulfide-Quinone Reductase Activity 
in Thylakoids of Oscillatoria limnetica. Journal of Biological Chemistry, 266(1), 104–
111. 

Arieli, B., Shahak, Y., Taglicht, D., Hauska, G., & Padan, E. (1994). Purification and 
characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic 
photosynthesis in Oscillatoria limnetica. Journal of Biological Chemistry, 269(8), 5705–
5711. 



 265 

Becraft, E. D., Wood, J. M., Rusch, D. B., Kühl, M., Jensen, S. I., Bryant, D. A., et al. (2015). 
The molecular dimension of microbial species: 1. Ecological distinctions among, and 
homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial 
mat of Mushroom Spring, Yellowstone National Park. Frontiers in Microbiology, 6. 
https://doi.org/10.3389/fmicb.2015.00590 

Belkin, S., & Padan, E. (1978). Sulfide-dependent hydrogen evolution in the cyanobacterium 
Oscillatoria limnetica. FEBS Letters, 94(2), 291–294. https://doi.org/10.1016/0014-
5793(78)80959-4 

Belkin, S., Arieli, B., & Padan, E. (1982). Sulfide dependent electron transport in Oscillatoria 
limnetica. Israel Journal of Botany. https://doi.org/10.1080/0021213X.1982.10676943 

Bezy, R. P., Wiltbank, L., & Kehoe, D. M. (2011). Light-dependent attenuation of phycoerythrin 
geneexpression reveals convergent evolution of greenlight sensing in cyanobacteria. 
Proceedings of the National Academy of Sciences, 108(45), 18542–18547. 
https://doi.org/10.1073/pnas.1107427108/-/DCSupplemental 

Blankenship, R. E. (2014). Molecular mechanisms of photosynthesis (1st ed.). Blackwell Science 
Ltd. 

Bosak, T., Liang, B., Sim, M. S., & Petroff, A. P. (2009). Morphological record of oxygenic 
photosynthesis in conical stromatolites. Proceedings of the National Academy of 
Sciences of the United States of America, 106(27), 10939–10943. 
https://doi.org/10.1073/pnas.0900885106 

Boyd, E. S., Costas, A. M. G., Hamilton, T. L., Mus, F., & Peters, J. W. (2015). Evolution of 
Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism. 
Journal of Bacteriology, 197(9), 1690–1699. https://doi.org/10.1128/JB.02611-14 

Bronstein, M., Schütz, M., Hauska, G., Padan, E., & Shahak, Y. (2000). Cyanobacterial Sulfide-
Quinone Reductase: Cloning and Heterologous Expression. Journal of Bacteriology, 
182(12), 3336–3344. https://doi.org/10.1128/JB.182.12.3336-3344.2000 

Bryant, D. A. (1982). Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in 
Cyanobacteria. Journal of General Microbiology, 128, 835–844. 

Canfield, D. E., & Marais, Des, D. J. (1991). Aerobic sulfate reduction in microbial mats. 
Science, 251, 1471–1473. 

Chan, L.-K., Morgan-Kiss, R. M., & Hanson, T. E. (2009). Functional Analysis of Three 
Sulfide:Quinone Oxidoreductase Homologs in Chlorobaculum tepidum. Journal of 
Bacteriology, 191(3), 1026–1034. https://doi.org/10.1128/JB.01154-08 

Cohen, Y., Jørgensen, B. B., Revsbech, N. P., & Poplawski, R. (1986). Adaptation to Hydrogen 
Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria. Applied and 
Environmental Microbiology, 51(2), 398–407. 



 266 

de Beer, D., Weber, M., Chennu, A., Hamilton, T. L., Lott, C., Macalady, J., & M Klatt, J. 
(2017). Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and 
sulfidic spring. Environmental Microbiology, 19(3), 1251–1265. 
https://doi.org/10.1111/1462-2920.13654 

Den Uyl, P. A., Richardson, L. L., Jain, S., & Dick, G. J. (2016). Unraveling the Physiological 
Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease 
Community Members through Genomic Analysis of a Mixed Culture. PloS One, 11(6), 
e0157953. https://doi.org/10.1371/journal.pone.0157953 

Dick, G. J., Grim, S. L., & Klatt, J. M. (2018). Controls on O2 Production in Cyanobacterial 
Mats and Implications for Earth's Oxygenation. Annual Review of Earth and Planetary 
Sciences, 46(1), 123–147. https://doi.org/10.1146/annurev-earth-082517-010035 

Flood, B. E., Bailey, J. V., & Biddle, J. F. (2014). Horizontal gene transfer and the rock record: 
comparative genomics of phylogenetically distant bacteria that induce wrinkle structure 
formation in modern sediments. Geobiology, 12(2), 119–132. 
https://doi.org/10.1111/gbi.12072 

Forchhammer, K. (2004). Global carbon/nitrogen control by P IIsignal transduction in 
cyanobacteria: from signals to targets. FEMS Microbiology Reviews, 28(3), 319–333. 
https://doi.org/10.1016/j.femsre.2003.11.001 

Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). 
Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. 
Science, 345(6202), 1312–1317. https://doi.org/10.1126/science.1256963 

Giovannoni, S. J., Thrash, J. C., & Temperton, B. (2014). Implications of streamlining theory for 
microbial ecology. The ISME Journal, 8(8), 1553–1565. 
https://doi.org/10.1038/ismej.2014.60 

Grim, S. L., & Dick, G. J. (2016). Photosynthetic Versatility in the Genome of Geitlerinema sp. 
PCC 9228 (Formerly Oscillatoria limnetica “Solar Lake”), a Model Anoxygenic 
Photosynthetic Cyanobacterium. Frontiers in Microbiology, 7(590), 1144. 
https://doi.org/10.3389/fmicb.2016.01546 

Hamilton, T. L., Klatt, J. M., de Beer, D., & Macalady, J. L. (2018). Cyanobacterial 
photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain 
hensonii. The ISME Journal, 12(2), 568–584. https://doi.org/10.1038/ismej.2017.193 

Hawes, I., & Schwarz, A. M. J. (2001). Absorption and utilization of irradiance by 
cyanobacterial mats in two ice‐covered antarctic lakes with contrasting light climates. 
Journal of Phycology, 37(1), 5–15. https://doi.org/10.1046/j.1529-
8817.1999.014012005.x 

Jahn, M., Vialas, V., Karlsen, J., Maddalo, G., Edfors, F., Forsström, B., et al. (2018). Growth of 
Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation 
Proteins. CellReports, 25(2), 478–486.e8. https://doi.org/10.1016/j.celrep.2018.09.040 



 267 

Kinsman-Costello, L. E., Sheik, C. S., Sheldon, N. D., Allen Burton, G., Costello, D. M., 
Marcus, D., et al. (2017). Groundwater shapes sediment biogeochemistry and microbial 
diversity in a submerged Great Lake sinkhole. Geobiology, 15(2), 225–239. 
https://doi.org/10.1111/gbi.12215 

Klatt, J. M., Al-Najjar, M. A. A., Yilmaz, P., Lavik, G., de Beer, D., & Polerecky, L. (2015). 
Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a 
sulfidic spring. Applied and Environmental Microbiology, 81(6), 2025–2031. 
https://doi.org/10.1128/AEM.03579-14 

Klatt, J. M., de Beer, D., Häusler, S., & Polerecky, L. (2016). Cyanobacteria in Sulfidic Spring 
Microbial Mats Can Perform Oxygenic and Anoxygenic Photosynthesis Simultaneously 
during an Entire Diurnal Period. Frontiers in Microbiology, 7(116), 440. 
https://doi.org/10.3389/fmicb.2016.01973 

Klatt, J. M., Meyer, S., Häusler, S., Macalady, J. L., de Beer, D., & Polerecky, L. (2016). 
Structure and function of natural sulphide-oxidizing microbial mats under dynamic input 
of light and chemical energy. The ISME Journal, 10(4), 921–933. 
https://doi.org/10.1038/ismej.2015.167 

Macalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S., & Mariani, 
S. (2006). Dominant microbial populations in limestone-corroding stream biofilms, 
Frasassi cave system, Italy. Applied and Environmental Microbiology, 72(8), 5596–5609. 
https://doi.org/10.1128/AEM.00715-06 

Marcia, M., Ermler, U., Peng, G., & Michel, H. (2010). A new structure‐based classification of 
sulfide:quinone oxidoreductases. Proteins: Structure, Function, and Bioinformatics, 
78(5), 1073–1083. https://doi.org/10.1002/prot.22665 

Murray, J. W. (2012). Sequence variation at the oxygen-evolving centre of photosystem II: a new 
class of “rogue” cyanobacterial D1 proteins. Photosynthesis Research, 110(3), 177–184. 
https://doi.org/10.1007/s11120-011-9714-5 

Noffke, N. (2010). Geobiology: Microbial mats in sandy deposits from the Archean Era to today 
(pp. 1–198). Springer Science & Business Media. 

Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially Induced Sedimentary 
Structures Recording an Ancient Ecosystem in the ca.3.48 Billion-Year-Old Dresser 
Formation, Pilbara, Western Australia. Astrobiology, 13(12), 1103–1124. 
https://doi.org/10.1089/ast.2013.1030 

Nold, S. C., Pangborn, J. B., Zajack, H. A., Kendall, S. T., Rediske, R. R., & Biddanda, B. A. 
(2010). Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and 
Environmental Microbiology, 76(1), 347–351. https://doi.org/10.1128/AEM.01186-09 

Nold, S. C., Zajack, H. A., & Biddanda, B. A. (2010). Eukaryal and archaeal diversity in a 
submerged sinkhole ecosystem influenced by sulfur-rich, hypoxic groundwater. Journal 
of Great Lakes Research, 36(2), 366–375. https://doi.org/10.1016/j.jglr.2010.02.014 



 268 

Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J., & Chivas, A. R. (2016). 
Rapid emergence of life shown by discovery of 3,700-million-year-old microbial 
structures. Nature, 1–12. https://doi.org/10.1038/nature19355 

Oberhaus, L., Briand, J. F., Leboulanger, C., Jacquet, S., & Humbert, J. F. (2007). Comparative 
effects of the quality and quantity of light and temperature on the growth of Planktothrix 
agardhii and P. rubescens. Journal of Phycology, 43(6), 1191–1199. 
https://doi.org/10.1111/j.1529-8817.2007.00414.x 

Olsen, M. T., Nowack, S., Wood, J. M., Becraft, E. D., LaButti, K., Lipzen, A., et al. (2015). The 
molecular dimension of microbial species: 3. Comparative genomics of Synechococcus 
strains with different light responses and in situ diel transcription patterns of associated 
putative ecotypes in the Mushroom Spring microbial mat. Frontiers in Microbiology, 6, 
604. https://doi.org/10.3389/fmicb.2015.00604 

Patwardhan, S., Foustoukos, D. I., Giovannelli, D., Yücel, M., & Vetriani, C. (2018). Ecological 
Succession of Sulfur-Oxidizing Epsilon- and Gammaproteobacteria During Colonization 
of a Shallow-Water Gas Vent. Frontiers in Microbiology, 1–16. 
https://doi.org/10.3389/fmicb.2018.02970 

Pham, V. H., Yong, J.-J., Park, S.-J., Yoon, D.-N., Chung, W.-H., & Rhee, S.-K. (2008). 
Molecular analysis of the diversity of the sulfide : quinone reductase (sqr) gene in 
sediment environments. Microbiology, 154, 3112–3121. 
https://doi.org/10.1099/mic.0.2008/018580-0 

Shahak, Y., Arieli, B., Binder, B., & Padan, E. (1987). Sulfide-dependent photosynthetic electron 
flow coupled to proton translocation in thylakoids of the cyanobacterium Oscillatoria 
limnetica. Archives of Biochemistry and Biophysics, 259(2), 605–615. 
https://doi.org/10.1016/0003-9861(87)90527-3 

Sharrar, A. M., Flood, B. E., Bailey, J. V., Jones, D. S., Biddanda, B. A., Ruberg, S. A., et al. 
(2017). Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed 
Chemosynthetic Microbial Mats in the Lake Huron Basin. Frontiers in Microbiology, 8, 
2104. https://doi.org/10.3389/fmicb.2017.00791 

Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W., & Hugenholtz, P. (2017). On the origins of 
oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science, 355(6332), 
1436–1440. https://doi.org/10.1126/science.aal3794 

Stal, L. J. (2012). Cyanobacterial Mats and Stromatolites. In B. A. Whitton (Ed.), Ecology of 
Cyanobacteria II (pp. 65–125). Dordrecht: Springer Netherlands. 
https://doi.org/10.1007/978-94-007-3855-3_4 

Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic 
assembly processes in subsurface microbial communities, 6(9), 1653–1664. 
https://doi.org/10.1038/ismej.2012.22 

Sumner, D. Y., Hawes, I., Mackey, T. J., Jungblut, A. D., & Doran, P. T. (2015). Antarctic 



 269 

microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology, 43(10), 
887–890. https://doi.org/10.1130/G36966.1 

Tice, M. M., & Lowe, D. R. (2004). Photosynthetic microbial mats in the 3,416-Myr-old ocean. 
Nature, 431(7008), 549–552. https://doi.org/10.1038/nature02888 

Violle, C., Nemergut, D. R., Pu, Z., & Jiang, L. (2011). Phylogenetic limiting similarity and 
competitive exclusion. Ecology Letters, 14(8), 782–787. https://doi.org/10.1111/j.1461-
0248.2011.01644.x 

Voorhies, A. A. (2014, January 24). Investigation of microbial interactions and ecosystem 
dynamics in a low O2 cyanobacterial mat. 

Voorhies, A. A., Biddanda, B. A., Kendall, S. T., Jain, S., Marcus, D. N., Nold, S. C., et al. 
(2012). Cyanobacterial life at low O2: community genomics and function reveal 
metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. 
Geobiology, 10(3), 250–267. https://doi.org/10.1111/j.1472-4669.2012.00322.x 

 
 


