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ABSTRACT

Outpatient clinics (OPCs) are quickly growing as a central component of the healthcare system.

OPCs offer a variety of medical services, with benefits such as avoiding inpatient hospitalization,

improving patient safety, and reducing costs of care. However, they also introduce new challenges

for appointment planning and scheduling, primarily due to the heterogeneity and variability in

patient characteristics, multiple competing performance criteria, and the need to deliver care within

a tight time window. Ignoring uncertainty, especially when designing appointment schedules, may

have adverse outcomes such as patient delays and clinic overtime. Conversely, accounting for

uncertainty when scheduling has the potential to create more efficient schedules that mitigate these

adverse outcomes. However, many challenges arise when attempting to account for uncertainty

in appointment scheduling problems. In this dissertation, we propose new stochastic optimization

models and approaches to address some of these challenges.

Specifically, we study three stochastic outpatient scheduling problems with broader applications

within and outside of healthcare and propose models and methods for solving them. We first

consider the problem of sequencing a set of outpatient procedures for a single provider (where each

procedure has a known type and a random duration that follows a known probability distribution),

minimizing a weighted sum of waiting, idle time, and overtime. We elaborate on the challenges

of solving this complex stochastic, combinatorial, and multi-criteria optimization problem and

propose a new stochastic mixed-integer programming model that overcomes these challenges in

contrast to the existing models in the literature. In doing so, we show the art of, and the practical

xvii



need for, good mathematical formulations in solving real-world scheduling problems.

Second, we study a stochastic adaptive outpatient scheduling problem which incorporates the

patients random arrival and service times. Finding a provably-optimal solution to this problem

requires solving a multi-stage stochastic mixed integer program (MSMIP), which in turn must

optimize a scheduling problem over each random arrival and service time for each stage. Given

that this MSMIP is intractable, we present two approximation based on two-stage stochastic mixed-

integer models and a Monte Carlo Optimization approach. In a series of numerical experiments, we

demonstrate the near-optimality of the appointment order (AO) rescheduling policy, which requires

that patients are served in the order of their scheduled appointments, in many parameter settings.

We also identify parameter settings under which the AO policy is suboptimal. Accordingly, we

propose an alternative swap-based policy that improves the solution of such instances.

Finally, we consider the outpatient colonoscopy scheduling problem, recognizing the impact of

pre-procedure bowel preparation (prep) quality on the variability of colonoscopy duration. Data

from a large OPC indicates that colonoscopy durations are bimodal, i.e., depending on the prep

quality they can follow two different probability distributions, one for those with adequate prep and

the other for those with inadequate prep. We define a distributionally robust outpatient colonoscopy

scheduling (DRCOS) problem that seeks optimal appointment sequence and schedule to minimize

the worst-case weighted expected sum of patient waiting, provider idling, and provider overtime,

where the worst-case is taken over an ambiguity set characterized through the known mean and

support of the prep quality and durations. We derive an equivalent mixed-integer linear program-

ming formulation to solve DRCOS. Finally, we present a case study based on extensive numerical

experiments in which we draw several managerial insights into colonoscopy scheduling.
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CHAPTER 1

Introduction

An outpatient clinic (OPC) is a medical facility designed for the treatment of outpatients, patients

who visit OPC for diagnostic or treatment purposes but do not at this time require hospital admission

(i.e., overnight stay). OPCs are becoming a central component in the healthcare system in part be-

cause they offer benefits such as diverse surgical and non-surgical specialties (e.g., endoscopic

procedures, chemotherapy treatment, etc.), avoiding inpatient hospitalization, high patient safety

outcomes, and low costs of care (Ahmadi-Javid et al., 2017).

Outpatient appointment planning and scheduling involve the design of a template schedule

consisting of appointment slots, into which patients are later assigned, often on a first-request-

first-scheduled basis (Riise et al., 2016). Outpatient appointment scheduling problems are typi-

cally modeled as single server sequencing and scheduling problems, considering a single medical

provider, and where a task or an activity represents each patient type. The quality of a schedule’s

performance is often a function of patient waiting time, provider idle time, and provider overtime.

Outpatient appointment scheduling problems are challenging, for a number of reasons. First,

multiple (heterogeneous) patient types may require different service times. Even patients of the

same type may vary in the required service time, and such variation is hard to predict in advance,

which may contribute to patient delay, provider idling, and provider overtime (Ahmadi-Javid et al.

(2017); Alexopoulos et al. (2008); Cayirli and Yang (2014); Deceuninck et al. (2018); Glowacka

et al. (2017); Gupta and Denton (2008); Klassen and Yoogalingam (2014)).
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Second, patients’ lack of punctuality is a common phenomenon in OPC, and it introduces addi-

tional complexity into the design and analysis of outpatient scheduling systems and increases OPC

operational costs (Deceuninck et al. (2018); Glowacka et al. (2017); Klassen and Yoogalingam

(2014)). Very late arrivals often create provider idling (and thus poor utilization of the clinic

resources) and, along with the random service durations, may increase the waiting time of the

subsequent appointments and provider overtime through the propagation of the delay, if there is

no buffer in the schedule to absorb it. Very early arrivals, on the other hand, may require the

provider to make challenging queuing decisions whether to serve them ahead of their scheduled

time (Deceuninck et al. (2018); Glowacka et al. (2017); Samorani and Ganguly (2016)).

Ignoring the heterogeneity and variability in patient characteristics when designing OPC ap-

pointment schedules may have adverse outcomes. For example, by only considering the average

values of service durations we could schedule unnecessarily long (respectively, short) time in be-

tween appointments, resulting in significant provider idling and/or overtime (respectively, patient

waiting). Conversely, accounting for uncertainty in the scheduling decision process has the poten-

tial to create efficient and robust schedules that mitigate these adverse outcomes. However, many

challenges arise when attempting to model and solve appointment scheduling problems subject to

uncertainty.

Despite the extensive amount of work that has been done within the field of stochastic (outpa-

tient) appointment scheduling, challenges remain (Ahmadi-Javid et al., 2017). This dissertation

contains three main chapters, each of which focuses on different challenging “offline” stochastic

outpatient scheduling problem with broader applications within and outside of healthcare (“of-

fline” in the sense that we make all scheduling decisions ahead of time) and proposes new models

and approaches for solving them. In the first two problems, the probability distributions of random

parameters are known, and so we leverage the ideas and tools of stochastic programming (SP). In

the SP approach, we look for scheduling decisions that minimize an expected weighted sum of the

scheduling metrics, where the expectation is taken with respect to the “known” joint distribution
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of random parameters (see, e.g., Birge and Louveaux (2011); Shapiro et al. (2009) for a thorough

introduction to SP).

In the third problem, the probability distributions of the random parameters are unknown. There-

fore, we leverage the ideas and tools of distributionally robust (DR) optimization to address this

uncertainty. In the DR approach, we look for scheduling decisions that minimize the worst-case

expected weighted sum of the scheduling metrics. Here, the worst-case is taken over an ambigu-

ity set. The ambiguity set is a family of distributions characterized by some known properties of

the unknown probability distributions of uncertain parameters (see, e.g., Bertsimas and Popescu

(2005); Bertsimas et al. (2010); Ben-Tal and Nemirovski (1998); Delage and Ye (2010); Esfahani

and Kuhn (2018); Scarf (1958); Shang and You (2018) and references therein).

The remainder of this dissertation is structured as follows. In Chapter 2, we present a new

stochastic mixed-integer linear program (SMILP) for the problem of sequencing a set of outpatient

procedures for a single provider (where each procedure has a known type and a random duration

that follows a known probability distribution associated with the procedure type) and determining

the associated scheduled start time for each procedure. Our objective is to minimize the expectation

of a weighted sum of patient waiting time, provider idling, and clinic overtime.

To provide context within the literature, we compare our SMILP model with those of Berg

et al. (2014) (an enhancement of Denton et al. (2007)) and Mancilla and Storer (2012), which are,

to the best of our knowledge, the only SMILPs for similar single-server stochastic appointment

sequencing and scheduling (SASS) problems. We analyze the three models both theoretically and

empirically, demonstrating where significant improvements in performance can be gained with our

proposed model. In doing so, we show the art of, and the practical need for, good mathematical

formulation in solving real-world scheduling (and mixed-integer programming) problems.

To the best of our knowledge, and according to the recent review of outpatient appointment

systems by Ahmadi-Javid et al. (2017), Chapter 2 (Shehadeh et al., 2019) presents the first rigorous

and computational analysis of models for SASS with stochastic service duration.
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One of the shortcomings of the scheduling models that we analyze in Chapter 2 is that they

ignore the uncertainty pertaining to patients’ arrival times and the possibility of rescheduling, i.e.,

resequencing to another position in the appointment sequence or declining to serve chronically

late patients. Therefore, in Chapter 3, we study a more general stochastic outpatient appointment

scheduling problem (SOASP) in which we incorporate the random patients’ arrival times, random

service durations, and adaptive rescheduling. Finding a provably optimal solution to this problem

requires solving a multi-stage stochastic mixed integer program (MSMIP) with an initial schedule

made in the first stage and rescheduling policy optimized in the subsequent stages.

In recognition that this MSMIP is intractable, we first consider a two-stage model (TSM) that

relaxes the non-anticipativity constraints of MSMIP, thus yielding a lower bound. Second, we

derive a family of valid inequalities to strengthen and improve the solvability of this TSM. Third,

we obtain an upper bound for the MSMIP by solving another TSM model, under the feasible

(and implementable) appointment order (AO) policy, which requires that patients are served in

the order of their scheduled appointments, enforcing non-anticipativity. Fourth, we propose a

Monte Carlo approach to evaluate the relative gap between these MSMIP bounds. Fifth, we show

that the MSMIP bounds are very close in many SOASP parameter settings, demonstrating the

near-optimality of the AO policy. We also identify parameter settings that result in a large gap.

Accordingly, we close by proposing an alternative swap-based policy that improves the solution in

such instances.

To the best of our knowledge, and according to the recent review of outpatient appointment sys-

tems by Ahmadi-Javid et al. (2017) and the literature review in Section 4.3, Chapter 3 presents the

first stochastic programming approach to SOASP that considers (1) patient heterogeneity, (2) op-

timizing both the initial appointment sequencing and scheduling decisions, and (3) the possibility

of rescheduling (i.e., resequencing or declining).

Finally, in Chapter 4, we consider the challenges of colonoscopy scheduling at the University

of Michigan Medical Procedures Unit (UM-MPU), an OPC that performs a variety of endoscopic
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procedures including a large number of colonoscopies. Colonoscopy, in particular, is the mainstay

of diagnosis and prevention for colorectal cancer (CRC), a leading cause of cancer-related deaths

worldwide (Anderson and Butterly, 2015; Singh et al., 2016; Zauber et al., 2012).

Scheduling colonoscopy yields an added challenge and complexity to the problems we address

in Chapters 2–3 for several reasons. First, there is significant variability in colonoscopy duration,

primarily due to the quality of pre-procedure bowel preparation (prep) that the patient must un-

dergo (Bechtold et al. (2016); Chokshi et al. (2012); Froehlich et al. (2005); Johnson et al. (2014);

Lebwohl et al. (2010); Rex et al. (2002, 2006)). Our analysis of the UM-MPU data suggests that

colonoscopy durations are “bimodal,” i.e., depending on the prep quality, they can follow one of

two different probability distributions, one for those with adequate prep and the other for those

with inadequate prep (see this analysis in Section 4.2). Unfortunately, when scheduling a patient,

it is not known at that time whether the patient will perform an adequate prep or not. Further-

more, there is a wide range of possible probability distributions for modeling the variability in

colonoscopy duration with adequate and inadequate prep.

Second, colonoscopy is often scheduled with an upper endoscopy. The variability in the du-

ration of the combined colonoscopy and upper endoscopy is primarily due to the variability in

colonoscopy duration (as a function of bowel prep). Moreover, the duration of a combined pro-

cedure is longer than that of a colonoscopy procedure. This requires the OPC managers to make

complex sequencing decisions about the order of colonoscopies and the combined upper endoscopy

and colonoscopy procedures.

Third, colonoscopy outcome is a function of the time of the day, possibly as a consequence of

provider fatigue as the day progress (see, e.g., Almadi et al. (2015); Singh et al. (2016)). As a

result, the provider often has a preference for earlier start times for those patients who are at high

risk of CRC. Accommodating provider preference and maintaining good operational performance

are challenging to trade off. For example, scheduling the combined procedure of a high-risk patient

first in the day may delay the start time of subsequent scheduled appointments.
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Finally, the UM-MPU data shows significant variability in patient’s actual arrival time relative

to their scheduled arrival time and the distribution of arrival time deviations is unknown.

The bimodality and ambiguity in the distribution of colonoscopy duration (as a function of

uncertain prep quality) prevent us from using the SP approaches in Chapters 2–3 (which assume

that we know the probability distributions of uncertain parameters) for colonoscopy scheduling.

We therefore define a DR outpatient colonoscopy scheduling (DROCS) problem that seeks optimal

appointment sequence and schedule to minimize the worst-case expected weighted sum of patient

waiting, provider idling, and provider overtime. Here, we take the worst-case over an ambiguity

set characterized by the known mean and support of the prep quality and durations. We derive an

equivalent mixed-integer linear program (MILP) formulation to solve DROCS.

Using the UM-MPU data, we then conduct extensive numerical experiments to draw insights

into colonoscopy scheduling. Specifically, we demonstrate that this DR approach can produce

schedules that (1) have a good operational performance (in terms of waiting time, idle time, and

overtime) under various probability distributions (and extreme scenarios) of the random parame-

ters, and (2) can accommodate provider (and patient) preference on appointment time while main-

taining a good operational performance as compared to the SP approach.

To the best of our knowledge, and according to the recent review of outpatient appointment

systems by Ahmadi-Javid et al. (2017), the work in Chapter 4 is the first to address the bimodal

ambiguity of colonoscopy (service) durations. We further contribute with a new DR model that

incorporates sequencing decisions and considers the ambiguity of two coexisting uncertainties of

colonoscopy duration (as a function of uncertain prep quality) and arrival time deviation.

Collectively, this dissertation addresses four salient challenges to efficient outpatient appoint-

ment scheduling under uncertainty: random service duration (Chapter 2), random arrival time

(Chapter 3), the possibility of rescheduling (Chapter 3), and bimodality and ambiguity of the dis-

tribution of service duration (Chapter 4). More broadly, this dissertation contributes to the liter-

ature on scheduling under uncertainty, and stochastic optimization with guidelines and methods
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to develop tractable and implementable scheduling (and mixed-integer programming) models and

approaches for real-world optimization problems under uncertainty.
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CHAPTER 2

Analysis of Models for the Stochastic Outpatient

Procedure Scheduling Problem

2.1 Introduction

In this chapter, we address the stochastic outpatient procedure scheduling problem (SOPSP), which

arises in outpatient procedure centers (OPCs). In this problem, we consider the perspective of an

OPC manager who must schedule the start times for a day’s worth of procedures for a single

provider, where each procedure has a known type and a random (non-negative) duration that fol-

lows a known probability distribution associated with the procedure type. Given the uncertainty

in procedure durations, the goal is to minimize the expectation of a weighted sum of total patient

waiting time (the time from the scheduled start of a procedure to its actual start), total provider idle

time (the time from the end of one procedure to the start of the next), and clinic overtime (the time

from the scheduled closing time of the clinic to the end of the last procedure of the day).

The SOPSP is computationally challenging to solve, for a number of reasons. First, it is a

complex combinatorial optimization problem, given the inherent implied sequencing problem that

underlies assigning appointment times to each patient (Ahmadi-Javid et al., 2017; Berg et al.,

2014; Mancilla and Storer, 2012). Second, the problem is inherently stochastic due to the uncer-

tainty in procedure durations. Finally, it is also a multi-criteria optimization problem, in which
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we must make trade-offs between longer spacing between appointments, which leads to reduced

patient delays, and shorter spacing, which leads to less provider idling and overtime (see, e.g., An-

tunes et al. (2016); Marler and Arora (2004); T’kindt and Billaut (2006) for a thorough discussion

multi-criteria optimization). More broadly, the SOPSP is a single-server stochastic appointment

sequencing and scheduling (SASS) problem, the underlying complexity of which has been studied

by several previous authors beginning with the seminal work of Welch and Bailey (1952) and Weiss

(1990) (see Ahmadi-Javid et al., 2017; Berg et al., 2014; Denton et al., 2010; Gupta, 2007; Gupta

and Denton, 2008; Mancilla and Storer, 2012, and references therein).

In addition to the value that the ability to solve this challenging SOPSP provides to OPC man-

agers, it also has relevance for many other applications, including scheduling of surgeries in an

operating room, ships in a port, exams in an examination facility, and more (Ahmadi-Javid et al.,

2017; Begen and Queyranne, 2011; Mancilla and Storer, 2012; Robinson and Chen, 2003; Sabria

and Daganzo, 1989). For example, it is a common practice for surgeries to initially be assigned

to a surgeon, date, and operating room several weeks or even months before their scheduled date.

The actual scheduled start times for these surgeries, however, are typically not set until a few days

in advance. It is at this point when the SOPSP can be solved to construct the final surgical schedule

and notify the patients when to report to the hospital (see Denton et al., 2010; Mancilla and Storer,

2012, and references therein for more details).

In this chapter, we present a new stochastic mixed-integer linear program (SMILP) using sam-

ple average approximation (SAA) for solving the SOPSP, with a focus both on tractability (i.e.,

being able to solve problem instances of realistic sizes in an acceptable amount of time) and imple-

mentability (i.e., proposing a model that can be easily translated into standard optimization soft-

ware packages, not requiring customized algorithmic development or tuning). To provide context

within the literature, we compare our model with those of Berg et al. (2014) (an enhancement of

Denton et al., 2007) and Mancilla and Storer (2012), which are, to the best of our knowledge, the

only SMILPs for SASS with waiting, idling, and overtime costs. We discuss the relative strengths
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and weaknesses of the three models and then compare them computationally under a common,

straightforward software implementation.

The remainder of this chapter is structured as follows. In Section 3.2, we present the relevant

literature. In Section 2.3, we introduce and analyze three mathematical models of the SOPSP: two

based on prior literature (Berg et al., 2014 and Mancilla and Storer, 2012), and a new model. After

that, in Section 2.4, we compare the computational performance of the three models and provide

some discussion and insights. Finally, we conclude and summarise this chapter in Section 2.5.

2.2 Literature Review

Outpatient scheduling problems have been an active area of research since the seminal work of

Welch and Bailey (1952). Comprehensive surveys of results obtained since then include Cayirli

and Veral (2003), Gupta and Denton (2008), and Ahmadi-Javid et al. (2017). Within this literature,

there are two primary approaches to stochastic appointment scheduling. The first is to develop and

evaluate scheduling heuristics, often through the use of simulation (see, for example, Ahmadi-Javid

et al., 2017; Ho and Lau, 1992; Klassen and Rohleder, 1996; Rohleder and Klassen, 2000; Vissers

and Wijngaard, 1979). The second is to construct models and design algorithms to find optimal

schedules through the use of queueing theory (see, for example, Bosch and Dietz, 2000; Jansson,

1966; Mercer, 1960; Sabria and Daganzo, 1989; Soriano, 1966; Vanden Bosch and Dietz, 2001,

and references therein), stochastic programming (see, for example, Berg et al., 2014; Denton and

Gupta, 2003; Mancilla and Storer, 2012; Robinson and Chen, 2003, and references therein), and,

more recently, robust and distributionally robust optimization (RO and DRO, respectively; see, for

example, Jiang et al., 2017; Mak et al., 2014, and references therein).

Herein, we present studies that are most relevant to this chapter: papers that use SMILP models

to address offline single-resource stochastic appointment sequencing and scheduling (SASS) prob-

lems that are similar to the SOPSP (“offline” in the sense that sequencing and scheduling decisions
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are all made ahead of time). We are interested in generating optimal solutions to the SOPSP

assuming knowledge of the distributions of appointment durations (a classic SASS assumption,

Ahmadi-Javid et al., 2017; Berg et al., 2014; Deceuninck et al., 2018), which rules out both the

heuristic approach (due to sub-optimality and lack of performance guarantees, Ahmadi-Javid et al.,

2017; Ho and Lau, 1992; Rohleder and Klassen, 2000; Klassen and Rohleder, 1996; Vissers and

Wijngaard, 1979) and the RO and DRO-based approaches (which assume distributional ambigu-

ity). Finally, as pointed out by Robinson and Chen (2003), queueing theory-based results and

algorithms are not appropriate for the SOPSP and other OPC scheduling problems which involve

serving a finite number of patients within fixed service hours (i.e., the queue never reaches a steady

state).

Papers that present models and algorithms for optimizing SASS decisions using SMILP fall into

two groups: those that focus on determining the optimal start times (or, equivalently, the inter-

arrival times) assuming that the sequence of patients (customers) is already fixed (e.g., through the

use of a heuristic, see, for example, Bosch and Dietz, 2000; Denton and Gupta, 2003; Erdogan

and Denton, 2013; Ge et al., 2013; Robinson and Chen, 2003; Vanden Bosch and Dietz, 2001, and

references therein), and those that focus on optimizing the sequencing and scheduling decisions

simultaneously. Since we consider both sets of decisions, we further limit the scope of this review

to the latter category. We refer the reader to the following studies: Ahmadi-Javid et al. (2017);

Berg et al. (2014); Cayirli et al. (2006, 2008); Creemers et al. (2012); Gupta and Denton (2008);

Rohleder and Klassen (2000); Salzarulo et al. (2016), and references therein, which demonstrate

the benefit of sequencing heterogeneous patient appointments based on their characteristics for

improving clinic performance and reducing costs compared to fixed sequence approaches. To the

best of our knowledge, and according to the recent review of outpatient appointment systems by

Ahmadi-Javid et al. (2017), papers by Denton et al. (2007), Berg et al. (2014), and Mancilla and

Storer (2012) are the ones most closely related to our work, addressing similar SASS problems

with waiting, idling, and overtime costs using SMILP.
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Denton et al. (2007) formulated the stochastic surgery scheduling problem in an operating room

(OR) as a two-stage SMILP with binary precedence variables and continuous time allowance vari-

ables in the first stage, and continuous waiting, idling, and overtime variables in the second stage.

They used the sample-average approximation approach (i.e., a scenario-based approach) to replace

the continuous distributions of surgery durations with approximate discrete distributions by con-

sidering a sample of N randomly generated scenarios. Since it was difficult to solve instances with

more than 4 surgeries, they proposed several sequencing heuristics and then obtained the optimal

surgery start times, for a fixed sequence, via the L-shaped algorithm (Birge and Louveaux, 2011)

described in Denton and Gupta (2003). Their results showed substantial potential reductions in

surgeon waiting, OR idling, and overtime costs by sequencing surgeries based on variances of

their durations compared to the schedule of the OR that the study considered.

In a slightly different setting, Berg et al. (2014) considered the problem of optimizing the book-

ing (number of patients to schedule) and appointment time decisions for outpatient procedures

under no-show and procedure durations uncertainties. The goal was to maximize profit, i.e., the

difference between the expected revenue and the expected variable cost of patient waiting time,

provider idle time, and overtime associated with scheduling patients. Since the revenue was

straightforward to compute, the paper focused on minimizing the expected variable cost deter-

mined by sequencing and scheduling decisions (a SASS problem which is, to some extent, sim-

ilar to the SOPSP). To that end, the paper extended and enhanced the SMILP model of Denton

et al. (2007) by including heterogeneous no-show probabilities and using both precedence and

assignment variables to strengthen the earlier model, and employed three exact solution meth-

ods: L-shaped, hybrid multi-cut L-shaped with scenario aggregation and ranking (to overcome

the computational burden of the original multi-cut method, see Birge and Louveaux, 1988), and

branch-and-bound with progressive hedging as a primal heuristic (Rockafellar and Wets, 1991).

While these methods were computationally competitive (relative to each other) in solving small

instances (≤ 5 patients), it was challenging to solve larger instances (10 patients), primarily due to
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the stochastic and combinatorial elements of the problem. Therefore, they proposed six sequenc-

ing heuristics based on standard deviations of procedure durations and no-show probabilities, and

illustrated the conditions under which some of these provided a near-optimal solution to the prob-

lem.

Mancilla and Storer (2012) formulated the surgery sequencing and scheduling problem in a

single operating room at a local hospital as a stochastic mixed-integer program with sample av-

erage approximation. The model differs from that of Denton et al. (2007) in the following two

ways. First, they replaced binary precedence variables with binary sequence position assignment

variables (previously proposed in Wagner, 1959). Second, they replaced continuous job time al-

lowance variables with continuous appointment (start) time variables. Additionally, using concepts

from Garey et al. (1976), they proved that for two scenarios and equal idling costs but different

waiting costs for each job, the finite scenario SAA problem is NP-complete. Therefore, to over-

come the computational burden of the sequencing decisions, they developed an algorithm to gen-

erate a near-optimal sequence, with the resulting linear subproblem of determining appointment

times solved within their algorithm using the CPLEX barrier method. Given that the SMILP stud-

ied in Mancilla and Storer (2012) is a variation of the one in Denton et al. (2007), and the one in

Berg et al. (2014) is stronger than Denton et al. (2007), in this chapter, we focus our analysis on

the models of Mancilla and Storer (2012) and Berg et al. (2014).

Finally, we point out the similarities and differences between single provider stochastic appoint-

ment sequencing and scheduling and single machine scheduling (SMS). At the outset, they look

similar: the provider can be thought of as a single machine, and procedures and their durations as

jobs and their processing times, respectively (see Forst, 1993; Lawler et al., 1993; Pinedo, 2016

for machine scheduling literature). Nevertheless, SASS is materially different from SMS. In SMS

problems, each job release time (the time at which the job becomes available for processing) is

typically exogenous (i.e., a parameter). In contrast, the appointment time in SASS, which can be

thought of as a release time at which the scheduled patient is presumably available for the proce-
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dure, is a decision variable. Furthermore, in the classic SMS problem, one scheduling criterion that

has received the most attention over the years is minimizing makespan (i.e., completing the last

job at the earliest possible time), which trivially minimizes overtime but does not consider patient

waiting time nor provider idle time. Our SMILP model, as well as those of Mancilla and Storer

(2012) and Berg et al. (2014), however, improve on some ideas from the seminal work of Wagner

(1959) and Pinto and Grossmann (1998) in the domain of deterministic single-machine jobs/tasks

sequencing and scheduling.

2.3 Stochastic Mixed-Integer Linear Programming Models of

the SOPSP

In this section, we present and analyze three SMILP formulations for the SOPSP. First, we define

the problem formally. Then, we present our SMILP formulation and the conditions under which it

is equivalent to two closely-related stochastic appointment sequencing and scheduling SMILPs in

the literature, those of Mancilla and Storer (2012) and Berg et al. (2014), which are also presented

for completeness.

2.3.1 Formal Statement of the Problem

We consider the problem of sequencing a set of procedures for a single provider (where each

procedure has a known type and a random, non-negative, duration that follows a known probability

distribution associated with the procedure type) and determining the associated scheduled start time

for each procedure. The performance metric is the weighted sum of three components, total patient

waiting time (the time from the scheduled start of a procedure to its actual start), total provider idle

time (the time from the end of one procedure to the start of the next), and overtime (the time from

the scheduled closing time of the clinic to the end of the last procedure of the day). Given a set of
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procedures, their sequence, their scheduled start times, and the distributions of their durations, the

expected value of this weighted sum can be estimated by averaging over finitely many realizations

(a sample) of procedure durations. This sample average is the objective function of the forthcoming

optimization problems. We make the following assumptions:

A1 A procedure is not permitted to start before its scheduled start time nor the completion time

of the previous procedure.

A2 Although patients may fail to show up to their appointments, we assume that those who do

show up are punctual, i.e., available at the scheduled start times of their procedures.

A3 The provider is always available at the start of the day, and immediately after each procedure.

A4 There is no opportunity to modify the schedule on the day of service, i.e., rescheduling dur-

ing the day or adding procedures (to accommodate walk-ins or emergencies) is not permitted.

The problem can be formulated as a two-stage SMILP with binary (for sequencing) and contin-

uous (for scheduling, i.e., start times) first-stage variables and continuous second-stage variables

representing what happens for each realization of procedure durations (waiting time, idle time,

and overtime), given the sequence of appointment times decided in the first stage. To incorporate

procedure duration uncertainty into the model, we use a sample average approximation (SAA) ap-

proach as in Robinson and Chen (2003), Denton et al. (2010), and Mancilla and Storer (2012).

That is, we generate a sample of N scenarios (each scenario consists of a vector of realizations of

procedure durations which are drawn independently from the distributions corresponding to each

patient’s type; a no-show patient can be represented by a realized procedure duration of 0), and

then optimize the sample average of the weighted sum of the three metrics using the stored sample.

(The technical details of sample average approximation approach are out of the scope of this chap-

ter, and we refer the reader to Homem-de Mello and Bayraksan, 2014; Kim et al., 2015; Kleywegt

et al., 2002; Mak et al., 1999, and references therein, for a thorough discussion.)
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Table 2.1: Notation Shehadeh et al. (2019).

Indices
p index of patients, or procedures, to be scheduled, p = 1, . . . , P
i index of positions in the sequence, or appointments, i = 1, . . . , P
n index of scenarios to be considered, n = 1, . . . , N
Parameters
λwi waiting time penalty for appointment i
λgi penalty for idle time between appointments i and i+ 1
λo overtime penalty
L planned length of clinic day
dnp duration of procedure p in scenario n

Scenario-independent (first-stage) variables
xi,p binary assignment variable indicating whether procedure p is assigned to appointment i
ti scheduled start time of appointment i

Scenario-dependent (second-stage) variables
sni actual start time of appointment i in scenario n
gni idle time after appointment i in scenario n
on overtime in scenario n.

2.3.2 Formulations of the Problem

Table 2.1 summarizes notation and some terminology used in our sample-average SMILP formu-

lation of the SOPSP. Note, in particular, that we use the term “appointment” to refer to a position

in the sequence, and use the terms “patient” and “procedure” interchangeably. Using this notation,

the problem can be formulated as follows:

(S) minimize
1

N

N∑
n=1

[
P∑
i=1

λwi · (sni − ti) +
P∑
i=1

λgi · gni + λo · on
]

(2.1a)

subject to
P∑
i=1

xi,p = 1 ∀p (2.1b)

P∑
p=1

xi,p = 1 ∀i (2.1c)

sni ≥ ti ∀i, n (2.1d)
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sni ≥ sni−1 +
P∑
p=1

dnp · xi−1,p ∀(i ≥ 2, n) (2.1e)

gni = sni+1 −

(
sni +

P∑
p=1

dnp · xi,p

)
∀(i < P, n) (2.1f)

on ≥

(
snP +

P∑
p=1

dnp · xP,p

)
− L ∀n (2.1g)

(gni , s
n
i ) ≥ 0 ∀(i, n) (2.1h)

on ≥ 0 ∀n (2.1i)

ti ≥ 0 ∀i (2.1j)

xi,p ∈ {0, 1} ∀(i, p) (2.1k)

In the above formulation, the objective function in (2.1a) is the sample average of the weighted

linear combination of the total waiting time, total idle time, and overtime cost. Constraints (2.1b)

and (2.1c) ensure that each procedure is assigned to one appointment and each appointment is

assigned one procedure. For every scenario n, constraints (2.1d) and (2.1e) require the actual start

time, sni , of the ith appointment to be no smaller than the scheduled start time, ti, and than the

completion time of the preceding appointment, i.e., the (i − 1)st appointment’s actual start time,

sni−1, plus the duration of the procedure assigned to it,
∑P

p=1 d
n
p ·xi−1,p. The ith appointment waiting

time is the difference between its actual and scheduled start time (i.e., sni − ti), which we include

in the objective function directly. Constraints (2.1f) define the idle time between two consecutive

appointments as the gap between the actual start time of an appointment and the completion time of

the preceding one. Constraints (2.1g) and (2.1i) define overtime (if any) as the positive difference

between the completion time of the last appointment and the clinic scheduled closing time, L.

Finally, the remaining constraints specify feasible ranges of the decision variables.

The formulation of Mancilla and Storer (2012) uses additional notation presented in Table 2.2.

Note that components of g are indexed differently in this model than in our formulation (2.1a)–
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Table 2.2: Additional notation Mancilla and Storer (2012).

Parameters
λwp waiting time penalty for procedure p
λgp idle time penalty for procedure p
Scenario-dependent (second-stage) variables
wni,p waiting time of procedure p in scenario n, if it is assigned to appointment i (0 otherwise)
gni,p idle time after procedure p in scenario n, if it is assigned to appointment i (0 otherwise)
en slack variable measuring early completion of the schedule in scenario n

(2.1k), but this slight abuse of notation allows us to emphasize the relationship between two sets

of variables representing idling times in the two models. The formulation of Mancilla and Storer

(2012) is as follows:

(M) minimize
1

N

N∑
n=1

[
P∑
i=1

P∑
p=1

λwp · wni,p +
P∑
i=1

P∑
p=1

λgp · gni,p + λo · on
]

(2.2a)

subject to
P∑
i=1

xi,p = 1 ∀p (2.2b)

P∑
p=1

xi,p = 1 ∀i (2.2c)

ti − ti+1 −
P∑
p=1

wni+1,p +
P∑
p=1

gni,p +
P∑
p=1

wni,p = −
P∑
p=1

dnp · xi,p ∀(i < P, n) (2.2d)

tP +
P∑
p=1

wnP,p − on + en = −
P∑
p=1

dnp · xP,p + L ∀n (2.2e)

wni,p ≤M i
1 · xi,p ∀(i, p, n) (2.2f)

gni,p ≤M2 · xi,p ∀(i, p, n) (2.2g)

(wni,p, g
n
i,p, o

n, en) ≥ 0 ∀(i, p, n) (2.2h)

ti ≥ 0 ∀i (2.2i)

xi,p ∈ {0, 1} ∀(i, p) (2.2j)
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As described in Mancilla and Storer (2012), the objective function in (2.2a) is the sample aver-

age of the weighted linear combination of the total waiting cost, total idling cost, and overtime cost.

Constraints (2.2b) and (2.2c) ensure that each procedure is assigned to one appointment, and each

appointment is assigned one procedure. Constraints (2.2d) define, for each scenario, the waiting

and idle time for every appointment. Constraints (2.2e) define overtime in scenario n. Constraints

(2.2f) and (2.2g) are logical constraints that enforce the relationship between variables wni,p, g
n
i,p,

and xi,p (here, M i
1, i = 1, . . . , P , and M2 are sufficiently large constants). Finally, the remaining

constraints specify feasible ranges of the decision variables.

It is well known that, in order to strengthen the formulation, the values of “Big-M” constants

in constrains such as (2.2f) and (2.2g) should be as small as possible without loss of optimality.

Mancilla and Storer (2012) recommend setting

M i
1 =

i−1∑
j=1

δj, i = 1, . . . , P,

where δj corresponds to the jth largest value of max
n=1,...,N

dnr − min
n=1,...,N

dnr over r = 1, . . . , P , and

M2 = max
p=1,...,P

{
max

n=1,...,N
dnp − min

n=1,...,N
dnp

}
.

We followed this suggestion in our computational experiments in Section 2.4.

The formulation of Berg et al. (2014) uses additional notation defined in Table 2.3, and is as

follows:

(B) minimize
1

N

N∑
n=1

[
P+1∑
p=1

P∑
p′=1

λwp,p′ · Anp′wnp,p′ +
P+1∑
p=1

P+1∑
p′=1

λgp,p′ · g
n
p,p′ + λo · on

]
(2.3a)

subject to
P+1∑
p′=1

rp,p′ ≤ 1 ∀p (2.3b)

19



P+1∑
p=1

P+1∑
p′=1

rp,p′ = P (2.3c)

xi,p + xi+1,p′ − 1 ≤ rp,p′ ∀(p, p′, i ≤ P )

(2.3d)
P+1∑
i=1

xi,p = 1 ∀p (2.3e)

P+1∑
p=1

xi,p = 1 ∀i (2.3f)

P+1∑
p=1

rp,P+1 = 1 (2.3g)

P+1∑
p=1

rP+1,p = 0 (2.3h)

xP+1,P+1 = 1 (2.3i)

wnp,p′ ≤Mn
1 rp,p′ ∀(p, p′, n) (2.3j)

gnp,p′ ≤M2rp,p′ ∀(p, p′, n)

(2.3k)

−
P+1∑
p′=1

wnp′,p +
P+1∑
p′=1

wnp,p′ −
P+1∑
p′=1

gnp,p′ = Anpd
n
p − yp ∀(p : p ≤ P, n)

(2.3l)
P+1∑
p=1

P∑
p′=1

gnp,p′ − on + en = L −
P+1∑
p=1

Anpd
n
p ∀n (2.3m)

rp,p′ , xi,p ∈ {0, 1} , yp ≥ 0 ∀(p, p′, i) (2.3n)

(wnp,p′ , g
n
p,p′ , o

n, en ≥ 0) ∀(p, p′, n)

(2.3o)

As described in Berg et al. (2014), this formulation uses a dummy procedure P + 1 that has zero

duration and is always assigned to the appointment slot P + 1. The objective function in (2.3a)
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Table 2.3: Additional notation Berg et al. (2014).

Indices
p, p′ indices for procedures, p, p′ = 1, . . . , P + 1

i index for appointments, i = 1, . . . , P + 1
Parameters
λwp,p′ sequence-dependent waiting cost for procedure p′ following procedure p
λgp,p′ sequence-dependent cost of idling between procedures p and p′

Anp binary attendance indicator for patient p in scenario n

Scenario-independent (first-stage) variables
rp,p′ binary precedence variable; equals 1 if and only if procedure p is followed by

procedure p′

yp time allotted to procedure p

Scenario-dependent (second-stage) variables
wnp,p′ sequence-dependent waiting time for procedure p′ when preceded by procedure p

in scenario n
gnp,p′ sequence-dependent idle time between procedures p and p′ in scenario n
en slack variable measuring early completion of the schedule in scenario n

is the sample average of the weighted linear combination of the total waiting cost, total idling

cost, and overtime cost. Constraints (2.3b) ensure that each procedure precedes at most one other

procedure. Constraints (2.3c) ensure that every procedure, except for the dummy procedure and the

first procedure, is included in exactly two precedence relationships. Constraints (2.3d) state that

a precedence relationship can only exist if that same relationship is defined by the appointment

assignment decisions. Constraints (2.3e) and (2.3f) require that each procedure is assigned to one

appointment, and each appointment is assigned one procedure. Constraints (2.3g)–(2.3i) ensure

that the dummy procedure will be the last procedure as defined by the binary precedence variables

and the appointment slot assignment variables. If procedure p does not precede procedure p′, the

associated sequence-dependent waiting and idle times will be 0 by constraints (2.3j) and (2.3k),

where Mn
1 and M2 are sufficiently large constants.

Constraints (2.3l) calculate the waiting and idle times associated with each procedure based on

the waiting time for the preceding procedure. The clinic’s overtime is defined by (2.3m). Finally,
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the remaining constraints specify feasible ranges of the decision variables. Berg et al. (2014) set

Mn
1 =

∑P
p=1 d

n
p , n = 1, . . . , N , and M2=L, which we also used in our computation experiments

in Section 2.4.

In the following discussion, we will refer to formulation (2.1) proposed in this chapter as (S)

(for Shehadeh et al.), and to formulations (2.2) of Mancilla and Storer (2012) and (2.3) of Berg

et al. (2014) as (M) and (B), respectively.

Note that each of the three models has different capabilities in handling various waiting and

idling cost structures. Our model (S) can handle situations where the costs are appointment-

specific, model (M) can handle situations where the costs are patient-specific, and model (B) can

handle situations where the costs depend on the sequence of patients in the schedule.

We also note that the models take different approaches to calculating waiting times and costs

in the presence of no-shows: both in model (M) and our model (S), waiting cost is incurred if

an appointment runs late, even if the patient assigned to the following appointment does not show

(indeed, a no-show patient is treated as a procedure with duration 0), while in model (B) no waiting

cost is incurred in this situation.

In the remainder of this chapter, we will consider the SOPSP under the following additional

assumptions: (i) zero no-show rate (i.e., Anp = 1 ∀(p, n)); (ii) identical waiting costs across ap-

pointments and procedures, i.e., λwi = λw ∀i, λwp = λw ∀p, and λwp,p′ = λw ∀(p, p′); and (iii) iden-

tical idling costs across appointments and procedures, i.e., λgi = λg ∀i, λgp = λg ∀p, and λgp,p′ =

λg ∀(p, p′). Under these assumptions, models (S), (M), and (B) are SMILP formulations of the

same SOPSP and are, therefore, equivalent. Table 2.4 presents the respective sizes, in terms of

number of variables and constraints, of the three formulations under these assumptions.

mnsbfhsdbfhj bdshjfbadhjsfvjhadsgvfjh dsvfghadsvfgdf
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Table 2.4: Sizes of formulations of the SOPSP with P procedures and N scenarios.

(B) (M) (S)

# Binary variables 2P 2 + 4P + 2 P 2 P 2

# Continuous variables P + 1 +N(2P 2 + 4P + 4) P +N(2P 2 + 2) P +N(2P + 1)

# First-stage constraints P 3 + 5P 2 + 11P + 10 P 2 + 3P P 2 + 3P

# Second-stage constraints N(4P 2 + 9P + 5) N(4P 2 + P + 2) 5NP

2.4 Computational Experiments

In this section, we present computational experiments that explore the size and characteristics of

the SOPSP instances that can be solved with the three SMILP formulations presented in Section

2.3.2. In Section 2.4.1, we describe the set of the SOPSP instances that we constructed for our

experiments, explain how we generated a testbed of sample average approximations (SAAs) for

each instance, and discuss other experimental settings. We then present results in Section 2.4.2,

comparing the computational performance of the three formulations.

2.4.1 Description of Experiments

To study the impact of a variety of problem characteristics on computational performance, we de-

veloped a set of divers SOPSP instances, in part based on prior literature, summarized in Table 2.5.

Each of the 14 instances is characterized by the number of procedures to be scheduled, the types of

procedures, and the number of procedures of each type (for example, Instance 1 involves schedul-

ing 4 procedures: two of type A, one of type C, and one of type J). Probability distributions of

procedure durations by type are contained in Table 2.6.

Instances 1–8, 10, and 11 were based on the data set provided as part of the AIMMS-MOPTA

5th Optimization Modeling Competition. For each procedure type, we used all procedure dura-

tion realizations provided in the data set to fit all valid parametric distributions using the open
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Table 2.5: Characteristics of SOPSP instances.

Instance # of Procedures # of Types Procedures to be scheduled (by type)

1 4 procedures 3 types (2A, 1C, 1J )
2 5 procedures 4 types (2A, 1G, 1H, 1J)
3 5 procedures 4 types (1A, 1D, 2G, 1J)
4 6 procedures 5 types (1A, 1B, 1F, 2G, 1H)
5 7 procedures 5 types (1C, 1D, 1F, 1H, 3J)
6 7 procedures 6 types (1A, 1B, 1D, 1E, 2G, 1J)
7 10 procedures 6 types (3A, 1C, 1D, 1G, 1I, 3J)
8 10 procedures 6 types (2A, 1B, 1D, 2G, 2I, 2J)
9 10 procedures 2 types (6CL, 4U)
10 11 procedures 8 types (2A, 1C, 2E, 1F, 1G, 1H, 2I, 1J)
11 11 procedures 6 types (2A, 2F, 1G, 2H, 2I, 2J)
12 12 procedures 2 types (9R, 3N)
13 16 procedures 2 types (12R, 4N)
14 20 procedures 2 types (15R, 5N)

source Matlab function allfitdist (Sheppard, 2012), selecting the distribution with the best

combination of the reported Goodness of Fit metrics (e.g., Akaike Information Criterion, Bayesian

Information Criterion, Negative of the Log Likelihood). Instance 9 was based on the problem stud-

ied by Berg et al. (2014), which includes procedures of two types: colonoscopies (CL) and upper

endoscopies (U). Instances 12–14 were based on the problem studied in Deceuninck et al. (2018),

where 75% of the patients are newly referred (N) and the remaining 25% are follow-up return (R)

patients. Accordingly, we constructed instances with up to 20 procedures, since this is by far the

maximum number of patients a single provider can see in a clinic session. In each instance, we

set L equal to the expected total duration of the P procedures, as is done in Mancilla and Storer

(2012), Berg et al. (2014), and others.

We considered three different sets of weights for the multi-criteria objective function: (i) λw =

λg = λo; (ii) λw = 1, λg = 0, λo = 10; and (iii) λw = 1, λg = 5, λo = 7.5. For the first set of

weights, each of the three objectives is equally important. The second set comes from Berg et al.

(2014), where it was motivated by the argument that instances with λg 6= 0 proved to be compu-

tationally easier. The third set comes from Deceuninck et al. (2018), where the authors assumed

that the overtime cost is 50% higher than the regular idling cost based on the OPC literature and
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Table 2.6: Distribution information for procedure duration, by type.

Procedure type Mean Variance Distribution
A 9.83 12.08 Lognormal
B 81.46 804.56 Normal
C 59.75 652.69 Lognormal
D 34.53 303.94 Lognormal
E 120.84 2.38e+3 Lognormal
F 47.76 232.06 Lognormal
G 43.94 469.86 Gamma
H 39.90 129.28 Lognormal
I 95.13 2.430e+3 Lognormal
J 19.51 99.36 Lognormal
U 12.05 188.57 Weibull

CL 30.96 58.75 Weibull
R 20.00 256.00 Lognormal
N 30.00 576.00 Lognormal

practice (Cayirli et al., 2006; Deceuninck et al., 2018). Note that, with these sets of weights, and

assuming zero no-show rate, formulations (S), (M), and (B) are equivalent.

We added symmetry-breaking constraints (see Denton et al., 2010; Berg et al., 2014; Ostrowski

et al., 2011) to all three models, recognizing that the durations of procedures of the same type are

identically distributed. In particular, let Pq be the set of procedures of type q, q = 1, . . . , Q. With-

out loss of generality, we can assume that procedures within each Pq are numbered sequentially.

We added the following symmetry-breaking constraints to all three models:

xi,p −
P∑
j>i

xj,p+1 ≤ 0 ∀i = 1, ..., P, ∀p : p, p+ 1 ∈ Pq, q = 1, . . . , Q, (2.4)

indicating that, if procedures p and p+ 1 are of the same type, p is scheduled before p+ 1.

For each of the 14 SOPSP instances and 3 sets of objective function weights, we generated 10

SAAs, for a total of 420 SAA instances, each with N =1,000 scenarios. Our choice of the sam-

ple size N was motivated by the trade-off between the computational effort required to solve the

resulting mixed-integer linear programs (MILPs) and the quality of approximation of the expected

value objective of SOPSP by its sample average. On the one hand, the sizes of MILP instances of

(S), (M), and (B) increase with N (see Table 2.4), and their solution times increase as well. As
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demonstrated in Section 2.4.2, using formulation (S), we were able to solve all the SAAs associated

with the SOPSP instances described in Table 2.5 with N =1,000 in a reasonable time.

On the other hand, optimal solutions of SAA instances with larger values of N are likely to be

closer to optimality with respect to the expected value objective of SOPSP. The research literature

on sample average approximation methods in stochastic optimization provides theoretical insights

as well as guidance for selecting a sample size from this perspective. In particular, the so-called

Monte Carlo Optimization (MCO) procedure can be used to calculate statistical lower and upper

bounds on the optimal value of SOPSP based on an optimal solution to its SAA approximation,

which in turn provide a statistical estimate of the relative approximation gap between the optimal

value of SOPSP and its SAA approximation (see Homem-de Mello and Bayraksan, 2014 and Kley-

wegt et al., 2002 and references therein for the description of the MCO methodology and other

technical details.).

Applying the MCO procedure to the formulation (S) with N =1,000, we estimated the relative

approximation gaps for the SOPSP instances described in Table 2.5 to range between 0.004%

and 0.9%, whereas larger sample sizes resulted in longer solution times without consistent and

significant improvements in the relative approximation gaps. Based on the above considerations,

we selected N =1,000 for our computational experiments.

We represented and solved the 420 SAA instances using the AMPL modeling language and

IBM ILOG CPLEX Optimization Studio (version 12.6.2). We used the default settings of the

solver since our experiments showed no consistent benefits of any parameter or settings tuning.

We imposed a solver time limit of 7,200 second (2 hours) for each SAA instance. We performed

all experiments on an HP workstation running Windows Server 2012 with two 2.10GHz Intel E5-

2620-v4 processors, each with 8 cores (16 total) and 128 GB shared RAM.
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Table 2.7: Solution times (in seconds) using model (S)

λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5
Inst Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max
1 2 3±0.34 3 3 3±1 7 3 3±0.2 7
2 10 13±2 17 8 11±3 17 4 5±0.9 7
3 8 9±0.9 11 5 5±0.4 6 5 6±0.6 7
4 33 41±6 55 21 23±2 26 23 25±2 28
5 53 65±9 77 44 51±6 60 41 49±5 57
6 99 111±7 122 52 58±8 80 57 70±8 79
7 215 276±46 334 153 176±36 276 168 197±28 248
8 237 284±24 310 140 170±29 242 205 226±18 269
9 57 70±8 85 44 55±6 61 46 53±4 58

10 588 769±105 937 178 226±37 293 233 270±33 342
11 660 770±37 987 254 357±61 460 251 326±43 375
12 83 107±12 123 70 78±5 86 100 116±11 130
13 363 466±59 551 242 297±35 349 455 512±55 602
14 862 1218±164 1464 930 1189 ±193 1500 461 549 ± 76 703

2.4.2 Discussion of Results

Recall that formulation (2.1) proposed in this chapter is designated by (S), and formulations (2.2)

of Mancilla and Storer (2012) and (2.3) of Berg et al. (2014) are designated by (M) and (B),

respectively. Henceforth, we will assume that constraints (3.8) are included in each of the models.

Using our proposed model (S), we were able to solve all 420 instances of the SAAs associated

with the SOPSP instances described in Table 2.5 within the imposed time limit of two hours. In

fact, solution times of the SAAs that correspond to instances 1–9, 10–11 under the second and

third weight sets, and 12– 13 were less than 10 minutes (see Table 2.7 for details). Moreover,

solution times of the SAAs that correspond to the largest (in terms of the number of procedures)

and the most complex SOPSP instance (which is somewhat less commonly encountered in prac-

tice), instance 14, were less than 25 minutes. These solution times are sufficient for real-world

implementation of model (S). Below, we compare the computational performance of model (S)

with models (M) and (B).
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Table 2.8: Ratios of solution times of models (B) and (S) on SAAs solved by both.

λw = λg = λo (a) λw = 1, λg = 0, λo = 10 (b) λw = 1, λg = 5, λo = 7.5 (b)
Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

6 31±29 116 4 33±27 107 8 51±35 138

[a] SOPSP Instances 1–6, 10 SAA instances each.
[b] SOPSP Instances 1–5, 10 SAA instances each.

Table 2.9: Ratios of solution times of models (B) and (S) on SAAs solved by both.

λw = λg = λo (a) λw = 1, λg = 0, λo = 10 (b) λw = 1, λg = 5, λo = 7.5 (b)
Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

6 31±29 116 4 33±27 107 8 51±35 138

[a] SOPSP Instances 1–6, 10 SAA instances each.
[b] SOPSP Instances 1–5, 10 SAA instances each.

2.4.2.1 Comparison with Model (B) of Berg et al. (2014)

Using model (B), we were able to solve 160 of the 420 SAA instances to optimality within two

hours, namely, all 60 SAAs that correspond to SOPSP Instances 1–6 and the first weight set, and

all 100 SAAs that correspond to Instances 1–5 with the second and third weight sets. We present

a comparison of solution times of these 160 SAAs by models (S) and (B) in Table 2.9. Observe

that model (B) takes from 6 to 138 times longer than model (S). We attribute the difference in

solution times to two primary reasons. First, as shown in Table 2.4, model (B) has significantly

more variables and constraints. As argued by Artigues et al. (2015); Catanzaro et al. (2015); Fortz

et al. (2017); Jünger et al. (2009); Keha et al. (2009); Klotz and Newman (2013); Morales-España

et al. (2016); Pochet and Wolsey (2006), this increase in model size often suggests an increase in

solution time for the linear programming (LP) relaxations. Second, as shown in Table 2.10, for all

420 SAAs, the LP relaxations obtained using model (S) were strictly tighter than using model (B),

by a factor of 1.11 to 3.48.

Finally, for the 260 SAAs that were not solved by model (B) in two hours, we report the relative

MIP (relMIP) gap, calculated as relMIP gap = UB−LB
UB × 100%, where UB is the best upper bound

and LB is the linear programming relaxation-based lower bound obtained at termination after 2

28



Table 2.10: Ratios of optimal objective values of LP relaxations of (S) and (B).

λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5
Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max
1.95 2.62±0.41 3.48 1.11 1.38±0.26 2.08 1.27 1.64±0.33 2.49

Table 2.11: Relative MIP gap at termination for SAAs not solved by (B) in two hours.

λw = λg = λo(a) λw = 1, λg = 0, λo = 10(b) λw = 1, λg = 5, λo = 7.5(b)
Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max
41% 54±0.08% 70% 19% 34±0.09% 53% 16% 40±0.09% 52%

[a] SOPSP Instances 7–12, 10 SAA instances each.
[b] SOPSP Instances 6–11, 10 SAA instances each.

hours. Of the 260 SAAs in question, 180 terminated with a relMIP gap between 16% and 70%

(see Table 2.11 for details), while the remaining 80 SAAs terminated without any feasible MIP

solutions (and thus no upper bound).

2.4.2.2 Comparison with Model (M) of Mancilla and Storer (2012)

Using model (M), we solved 340 of the 420 SAAs to optimality within the two hour time limit.

We present performance comparisons for these instances in Table 2.12. Table 2.13 identifies the

SOPSP instances that gave rise to the remaining 80 SAAs.

In exploring the difference in solution times between the two models, we first observe that

they have the same first-stage formulation. Furthermore, as we prove in Theorem 2.6.1 in Ap-

pendix 2.6.1, the LP relaxations of the two models have the same optimal objective values. In fact,

using the same proof techniques, we can show that, given any set of values of variables xi,p ∀(i, p)

that satisfy constraints (2.1b) and (2.1c) (which are identical to constraints (2.2b) and (2.2c)) and

0 ≤ xi,p ≤ 1 ∀(i, p), the optimal objective value obtained by optimizing the remaining (continu-

ous) variables will be the same for either model. This suggests that a branch-and-bound algorithm

would perform similarly on both models in terms of the number of nodes explored (recognizing

that there will be variability due to CPLEX preprocessing and implementation of branch-and-cut
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Table 2.12: Comparison of performance of models (M) and (S) on SAAs solved by both: solution
time, number of nodes, simplex iterations.

λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5
Ratio Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max
(M) sol. time
(S) sol. time 1.2 7±4 21 2 13±9 43 1.1 7±5 27

(M) nodes
(S) nodes 0.5 1±0.2 1.4 0.2 1±0.3 1.9 0.4 1±0.2 1.4

(M) iterations
(S) iterations 1 11±15 119 1 12±19 133 1 16±22 113

Table 2.13: Number of SAA instances that were not solved to optimality in the two hours by model
(M).

SOPSP Instance # λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5
10 10 5 4
11 10 10 0
13 6 2 3
14 10 10 10

instead of a traditional branch-and-bound). The ratios between the number of nodes explored by

CPLEX for the two models for the 340 SAAs solved by both are, indeed, on average equal to 1 for

each of the weight sets, as reported in Table 2.12.

Clearly, then, the difference in solution times between models (S) and (M) is primarily due

to differences in time spent exploring each node. This is supported further by Table 2.12 which

reports the ratios in the numbers of simplex iterations required to solve each instance using the two

models. The number of iterations is typically much larger for model (M), presumably as a result

of the significantly larger second-stage formulation (see Table 2.4).

Finally, for the 80 SAAs that were not solved by model (M) in 2 hours, the relMIP gap at

termination was 15% on average, with the maximum of 25%.

2.5 Conclusion and Chapter Summary

In this chapter, we presented a new stochastic mixed-integer linear programming model for the

SOPSP using a sample-average approximation. This problem considers the perspective of an OPC
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manager who must schedule the start times for a day’s worth of procedures (patients) for a single

provider, where each procedure has a known type and a random (non-negative) duration that fol-

lows a known probability distribution associated with the procedure type. Given the uncertainty

in procedure duration, the goal is to minimize the expectation of a weighted sum of patient wait-

ing time, provider idle time, and clinic overtime. Our model allows for appointment-dependent

waiting and idling costs, and treats patient no-shows as procedures with duration 0.

The SOPSP is a basic (yet still challenging) offline single-resource stochastic sequencing and

scheduling problem that has been studied in various forms by several previous authors. There-

fore, we compared our model with two closely-related models by Mancilla and Storer (2012) and

Berg et al. (2014) under assumptions that ensure their equivalence, and analyzed them both em-

pirically and theoretically. Computational results demonstrated where significant improvements in

performance could be gained with our proposed model.

In addition to empirical tractability, our modeling approach has the advantage of implementabil-

ity. Indeed, our proposed model performed well in the computational experiments that were per-

formed using commonly available computer resources, a standard optimization modeling tool, and

a commercial MILP solver with default settings — in other words, it did not require development

of any specialized algorithms or a time-consuming search for beneficial software parameter set-

tings. This is in contrast to previously-studied models of Mancilla and Storer (2012) and Berg

et al. (2014), which were used in conjunction with specially-developed algorithms or heuristics in

the original papers, but did not perform as well as our model with straightforward implementation.

Implementability in the above sense is necessary for an optimization-based decision support tool

to gain wide adoption in OPCs and other healthcare systems that do not have ongoing access to

support staff with optimization expertise, and thus is a valuable feature of our proposed model.

To the best of our knowledge, and according to the recent review of outpatient appointment

systems by Ahmadi-Javid et al. (2017), this chapter presents the first rigorous and computational

analysis of models for SOPSP.
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Credits: The results in this chapter are from “Analysis of Models for the Stochastic Outpatient

Procedure Scheduling Problem” Shehadeh et al. (2019), obtained jointly with Amy E.M Cohn, and

Marina A. Epelman.

2.6 Appendix

2.6.1 Comparison of Linear Programming Relaxations of Models (S) of (2.1)

and (M) of (2.2)

In this section, we compare the LP relaxations of models (S) of (2.1) and (M) of (2.2) under the

assumption that waiting and idling costs are identical across appointments and procedures, i.e.,

that λwi = λw and λgi = λg ∀i, and λwp = λw and λgp = λg ∀p. Since these two models take the

same approach to waiting time and cost calculations in case of patient no-shows (see discussion in

Section 2.3), we allow for no-shows, which would be represented as procedures with duration 0.

Theorem 2.6.1. Suppose λw > 0, and λg > 0 and/or λo > 0. The linear programming relaxations

of models (S) of (2.1) and (M) of (2.2) are equivalent. In particular, given an optimal solution to

the LP relaxation of (S), we can construct a feasible solution to the LP relaxation of (M) with the

same objective function value, and vice versa.

Proof. Suppose (x̂, t̂, ŝ, ĝ, ô) (with appropriately indexed components) is an optimal solution to

the LP relaxation of (S), which is obtained by replacing constraint (2.1k) with 0 ≤ x̂i,p ≤ 1 ∀(i, p).

Below, we construct a feasible solution (x̄, t̄, w̄, ḡ, ō, ē) to the LP relaxation of (M) with the same

objective value. (Recall that components of ĝ are indexed differently than those of ḡ.)

• Let x̄ = x̂ and t̄ = t̂. Since x̂ satisfies constraints (2.1b) and (2.1c), and 0 ≤ x̂i,p ≤ 1 ∀(i, p),

x̄ satisfies (2.2b) and (2.2c), and 0 ≤ x̄i,p ≤ 1 ∀(i, p). Similarly, since t̂ satisfies (2.1j)
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then t̄ satisfies (2.2i). Moreover, if symmetry-breaking constraints (3.8) are included in both

models, they will be satisfied by both x̂ and x̄.

• Let w̄ni,p = (ŝni − t̂i) · x̂i,p ∀(i, p, n). Due to constraints (2.1d), and since x̂i,p ≥ 0, w̄i,p ≥ 0

and thus satisfies constraints (2.2h). By construction, w̄i,p = 0 whenever x̂i,p = 0. Moreover,

in an optimal solution of the LP relaxation of (S), t̂ and ŝ will be chosen to ensure that the

values of ŝni − t̂i will not be excessive for any n as long as λw > 0 (otherwise, one would

be able to reduce the waiting component of the cost of the solution). Therefore, constraints

(2.2f) will be satisfied for sufficiently large M i
1, i = 1, . . . , P .

• Let ḡni,p = ĝni · x̂i,p ∀(i, p, n), which clearly satisfies (2.2h). By construction, ḡni,p = 0

whenever x̂i,p = 0. Moreover, in an optimal solution of the LP relaxation of (S), t̂ and ŝ will

be chosen to ensure that the values of ĝni will not be excessive for any n as long as λw > 0,

or λg > 0 or λo > 0 (otherwise, one will be able to reduce the waiting or idling/overtime

component of the cost of the solution). Therefore, constraints (2.2g) will be satisfies for

sufficiently large M2.

• Let ōn = ôn ∀n (which satisfies (2.2h)), and define ēn to satisfy equation (2.2e) ∀n.

It remains to verify that the vector (x̄, t̄, w̄, ḡ, ō, ē) defined above satisfies constraints (2.2d), and

ēn ≥ 0 ∀n.

First, we derive several helpful algebraic expressions. Given the formulae defining w̄ni,p and ḡni,p,

we have:
P∑
p=1

w̄ni,p =
P∑
p=1

(ŝni − t̂i) · x̂i,p = (ŝni − t̂i) ·
P∑
p=1

x̂i,p = ŝni − t̂i ∀(i, n) (2.5)

and
P∑
p=1

ḡni,p =
P∑
p=1

ĝni · x̂i,p = ĝni ·
P∑
p=1

x̂i,p = ĝni ∀(i, p), (2.6)

where the last equality, in both cases, is due to (2.1c). Using (2.5) and (2.6) and the definition of t̄,
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the left-hand side of (2.2d) can be re-written as

t̂i− t̂i+1− (ŝni+1− t̂i+1) + ĝni + (ŝni − t̂i) = −ŝni+1 + ĝni + ŝni = −
P∑
p=1

dnp x̂i,p = −
P∑
p=1

dnp x̄i,p, (2.7)

where the second equality follows from (2.1f), and the third one — from the definition of x̄. This

verifies constraints (2.2d).

Finally, using the definition of ên via (2.2e) and expression (2.5), we derive:

ēn = ōn + L −
P∑
p=1

dnp x̄P,p − t̄P −
P∑
p=1

w̄nP,P = ôn + L −
P∑
p=1

dnp x̂P,p − ŝnP ≥ 0

by (2.1g).

We conclude that (x̄, t̄, w̄, ḡ, ō, ē) defined above is a feasible solution to the LP relaxation of (M),

with objective function value

1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λww̄ni,p +
P∑
i=1

P∑
p=1

λgḡni,p + λoōn
]

=
1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λw(ŝni − t̂i) · x̂i,p +
P∑
i=1

P∑
p=1

λgĝni · x̂i,p + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) ·
P∑
p=1

x̂i,p +
P∑
i=1

λgĝni ·
P∑
p=1

x̂i,p + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) +
P∑
i=1

λgĝni + λoôn
]
,

i.e., equal to the optimal value of the LP relaxation of (S).

Conversely, suppose (x̄, t̄, w̄, ḡ, ō, ē) is an optimal solution to the LP relaxation of model (M) of

(2.2). We will construct a feasible solution (x̂, t̂, ŝ, ĝ, ô) to the LP relaxation of (S) with the same

objective value.

• Let x̂ = x̄, t̂ = t̄, and ô = ō, which satisfy constraints (2.1b), (2.1c), (2.1i), (2.1j), and
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0 ≤ x̂i,p ≤ 1 ∀(i, p). Moreover, if symmetry-breaking constraints (3.8) are included in both

models, they will be satisfied by both x̄ and x̂.

• Let ŝni =
∑P

p=1 w̄
n
i,p + t̄i and ĝni =

∑P
p=1 ḡ

n
i,p ∀(i, n). Due to (2.2h), ŝ and ĝ satisfy (2.1h),

and ŝ satisfies (2.1d).

With the above definitions, (2.1f) and (2.1e) readily follow from (2.2d) and (2.2h), and (2.1g)

follows from (2.2e) and nonnegativity of ē. Therefore, (x̂, t̂, ŝ, ĝ, ô) is a feasible solution to the LP

relaxation of model (S), with objective function value

1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) +
P∑
i=1

λgĝni + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λww̄ni,p +
P∑
i=1

P∑
p=1

λgḡni,p + λoōn
]
,

i.e., equal to the optimal value of the LP relaxation of (M). This complete the proof.

Similar analysis techniques can be used to show that the linear programming relaxation of model

(S) of (2.1) (and therefore (M) of (2.2)) is at least as tight as the linear programming relaxation of

model (B) of (2.3) under the additional assumption that the are no patient no-shows, which needs to

be made to account for different approaches to waiting time and cost calculations in these models.

Moreover, as illustrated in Table 2.10, linear relaxations of model (S) had larger optimal values,

i.e., were tighter, than linear relaxations of model (B) on all test instances in our computational

experiments.
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CHAPTER 3

Using Stochastic Programming to Solve the

Outpatient Appointment Scheduling Problem with

Random Service and Arrival Times

3.1 Introduction

Lack of punctuality is a common phenomenon among OPC patients (as well as the customers

in many other service industries with an appointment scheduling system), which introduces addi-

tional complexity into clinical operations and increases operational costs (Deceuninck et al. (2018);

Glowacka et al. (2017); Klassen and Yoogalingam (2014)). Late arrivals often create provider

idling (and thus poor utilization of the clinic resources) and, along with random service durations,

may increase the waiting time of the subsequent appointments and provider overtime through the

propagation of the delay, if there is no buffer in the schedule to absorb it. Very early arrivals, on the

other hand, may require the provider to make challenging queuing decisions as whether to serve

them ahead of the scheduled time. For example, not serving early arrivals can result in service

delay of the next on-time patient (Deceuninck et al. (2018); Glowacka et al. (2017); Samorani and

Ganguly (2016)).

Accounting for uncertainity and the possibility of rescheduling (i.e., resequencing or declining)
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in the scheduling decision process has the potential of mitigating these adverse outcomes. Most

of the existing literature on stochastic appointment scheduling (since Welch and Bailey (1952)),

however, focuses on addressing the variability in service duration only. Within the limited liter-

ature accounting for the stochastic arrival time, most studies ignore the sequencing decision and

only consider homogeneous patients (i.e., all service durations follow the same distribution) or

heterogeneous patients in a sequence found by heuristic approaches (see Deceuninck et al. (2018);

Klassen and Yoogalingam (2014); Zacharias and Yunes (2018) and references therein). In addi-

tion, most studies adopt the appointment order policy, i.e., the provider will serve the patients in

their scheduled appointment order (as opposed to the actual arriving order) and decline a patient if

he/she arrives later than the scheduled time by a certain amount of time (termed the grace period).

Although this policy is easy to implement and effective under many circumstances, to the best of

our knowledge, no literature has investigated its optimality (or suboptimality) in a rigorous manner.

In this chapter, we study a stochastic outpatient appointment scheduling problem (SOASP) for

OPC scheduling under stochastic arrival times and service durations. We consider an OPC manager

who needs to design an appointment schedule and a rescheduling policy for a single provider and

a set of patients, where each patient has a known type and associated probability distributions of

service duration and arrival time deviation (the difference between the scheduled and the actual

arrival times). The objective is to minimize the expected total weighted cost of patient waiting

time, provider idle time, and provider overtime.

The problem can be formulated as a multi-stage stochastic mixed-integer program (MSMIP)

with an initial schedule made in the first stage and rescheduling policy optimized in the subsequent

stages. Formulating and solving this MSMIP is challenging, largely because of the enormous size

of the scenario tree and the mixed-integer recourse variables (see Shapiro et al. (2009); Birge and

Louveaux (2011) and references therein for a thorough discussion on the difficulty of formulating

and solving MSMIP).

In recognition of these challenges, we first consider a two-stage model (TSM) that relaxes the
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non-anticipativity constraints of MSMIP (i.e., the OPC manager has the perfect information of

all uncertain parameters when making rescheduling decisions) and so yields a lower bound of

the optimal value of MSMIP. Second, we derive a family of valid inequalities to strengthen and

improve the solvability of this TSM. Third, we obtain an upper bound for MSMIP by solving

the TSM model under the appointment order policy. Fourth, we propose a Monte Carlo approach

to evaluate the relative gap between the MSMIP upper and lower bounds. Fifth, in a series of

numerical experiments, we show that these two bounds are very close in many SOASP parameter

settings, demonstrating the near-optimality of the appointment order (AO) policy. We also identify

parameter settings that result in a large gap. Accordingly, we close by proposing an alternative

swap-based policy that improves the solution in such instances. We also identify parameter settings

that result in a large gap in between these two bounds. Accordingly, we propose an alternative

policy based on neighbor-swapping. We demonstrate that this alternative policy leads to a much

tighter upper bound and significantly shrinks the gap.

The remainder of this chapter is structured as follows. In Section 3.2, we review the relevant

literature. In Section 3.3, we formally define SOASP as a MSMIP and present the two TSM

approximations. In Section 3.4, we propose a Monte Carlo approach to evaluate the relative gap

between the MSMIP upper and lower bounds. In Section 3.5, we report numerical results on (1)

the optimality and suboptimality of the appointment order policy and (2) the value of incorporating

the stochastic arrival times and service durations in the appointment scheduling problem. Finally,

we conclude and summarise this chapter in Section 3.6.

3.2 Literature Review

Most of the stochastic (outpatient) appointment scheduling studies (since the seminal work of

Welch and Bailey (1952)) assume patient punctuality and focus on homogenous patients. In the

following, we review the papers that consider patient heterogeneity and stochastic arrival times.
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Cayirli et al. (2006, 2008); Klassen and Rohleder (1996); Rohleder and Klassen (2000) demon-

strated how using patient characteristics, either for appointment sequencing or scheduling, can im-

prove the clinic performance and reduce the operational costs. More recent studies (see Chen and

Robinson (2014); Berg et al. (2014); Salzarulo et al. (2016) and references therein) also demon-

strated the relevance of recognizing different patient types in appointment sequencing. Salzarulo

et al. (2016), for example, described how data on patient characteristics and past appointments can

be used to predict patient service durations and illustrated how to incorporate this information into

effective scheduling decisions.

Patient stochastic arrival (often called patient unpunctuality) is a common phenomenon in OPC

and introduces complexity to the design and analysis of appointment scheduling. Several studies

have shown that both early and late arrivals disrupt clinic service operations (Alexopoulos et al.

(2008); Fetter and Thompson (1966); Glowacka et al. (2017)), increase inefficiencies and delays

(Deceuninck et al. (2018); Okotie et al. (2008)), decrease the service quality for punctual patients

Glowacka et al. (2017), and increase clinic operational costs (e.g., the provider overtime cost) and

implicit costs related to the perceived quality of service (e.g., decreased patient satisfaction) and

hence the reputability of the clinic (Cayirli and Veral (2003); Deceuninck et al. (2018); Glowacka

et al. (2017); Kocas (2015); Osuna (1985)). Stochastic arrival times can also lead to adverse op-

erational outcomes and challenging queueing issues (Deceuninck et al. (2018); Cayirli and Veral

(2003); Jiang et al. (2019); Klassen and Yoogalingam (2014)). For example, not serving an early

arrival (or waiting for a chronically late patient) can result in service delay of the next on-time

patient (Deceuninck et al. (2018); Glowacka et al. (2017); Samorani and Ganguly (2016)). There-

fore, it is worthwhile to design appointment schedules and resequencing policies that mitigate the

impacts of both early and late arrivals.

Most empirical studies on stochastic arrival times suggest that patients tend to arrive early in-

stead of being late (Brahimi and Worthington (1991); Cox et al. (1985); Fetter and Thompson

(1966); Klassen and Yoogalingam (2014); Klassen and Rohleder (1996); Klassen and Yoogalingam
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(2014)). Several studies used the normal, uniform, and exponential (for late patients) distributions

to model stochastic arrival deviation (see Alexopoulos et al. (2008); Cheong et al. (2013); Cox

et al. (1985); Tai and Williams (2012); White and Pike (1964) and references therein for a thor-

ough discussion on the distribution of stochastic arrivals). It is worth noting that all of these studies

observe that the stochastic arrival time deviation is independent of appointment time. In addition,

Williams et al. (2014) and Gneezy et al. (2011) studied the impacts of strategies that intend to mo-

tivate patient punctuality and discussed when and why some strategies might fail. Interventions to

reduce tardiness, for example, might potentially lead to increasing patient earliness. Therefore, as

pointed out by Deceuninck et al. (2018), it is better to incorporate the uncertainty of patient arrival

time in the schedule optimization process and develop policies to resequence appointments instead

of trying to change the patients’ arrival behavior.

Most of the existing literature on stochastic appointment scheduling focuses on the uncertainty

pertaining to service durations and/or patient no-shows. Within the few papers accounting for

stochastic arrival times, there are three primary approaches. The first approach employs heuris-

tics (often in conjunction with simulation approaches) to develop and adjust the scheduling pattern

(see Cayirli and Yang (2014); Cayirli et al. (2006); Cox et al. (1985); Fetter and Thompson (1966);

Glowacka et al. (2017); Klassen and Yoogalingam (2014); White and Pike (1964), and references

therein). Although these pioneering studies provide easy-to-implement scheduling rules, they lack

performance guarantee and often ignore the possibility of rescheduling (resequencing and declin-

ing). In this chapter, we incorporate rescheduling into our SOASP model and provide computable

performance guarantees.

The second approach employs pre-determined resequencing and rescheduling policies. For ex-

ample, Deceuninck et al. (2018) adopted the appointment order policy with 15- and 30-minute

grace periods (i.e., the provider will serve patients arriving within the grace period in the sched-

uled order, and decline or deem as a no-show any late patient coming after the expiration of his/her

grace period past the scheduled time). In addition, Deceuninck et al. (2018) proposed a local search
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algorithm based on the Lindley recursion (Lindley, 1952) to find an appointment schedule based

on a sequence found by a heuristic. Differently, Zhu et al. (2017) assumed that the provider will

serve a waiting patient regardless of the actual appointment time, and when multiple patients are

waiting, the provider will serve them by the order of their appointment times. Samorani and Gan-

guly (2016) studied the problem of whether an available provider should see an early patient right

away (preempt) or wait for the next scheduled patient. Based on simulation results, Samorani and

Ganguly (2016) reported the conditions under which the appointment order policy outperforms the

always-preempt policy (e.g., high-service-level clinics with low variability in patient lateness, long

service durations, and when patients tend to arrive early rather than late).

First-come-first-serve (FCFS) is another policy which designates that the provider serves the pa-

tients according to their actual arriving order, regardless of their initial scheduled order of arrival.

This policy often raise the concern that it (partially) conflicts with the goal of appointment schedul-

ing and can encourage the patients to arrive early and beat the appointment system (Deceuninck

et al. (2018); Cayirli and Veral (2003); Jiang et al. (2019)). In this chapter, we adopt the appoint-

ment order policy to obtain an upper bound on the optimal value of MSMIP. However, we do not

assume homogenous patients as in Samorani and Ganguly (2016) or a fixed appointment sequence

as in Deceuninck et al. (2018). Furthermore, we rigorously demonstrate the near-optimality of this

policy in a wide range of parameter configurations and propose an alternative and near-optimal

policy where this policy is suboptimal.

The third approach employs stochastic mixed-integer programming (SMIP) but, to the best of

our knowledge, only involves very few papers (Ahmadi-Javid et al. (2017)). Jiang et al. (2019)

proposed a stochastic linear program that considers stochastic arrival and adopts the appointment

order policy. Assuming patient homogeneity, they demonstrated how the optimal appointment

intervals change under different stochastic arrivals scenarios. This chapter aims to contribute to

this line of research. In contrast to Jiang et al. (2019), our SMIP approach considers (1) patient

heterogeneity, (2) optimizing both the initial appointment sequencing and scheduling decisions,
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and (3) the possibility of rescheduling (i.e., resequencing or declining).

3.3 Formulations of SOASP

In this section, we formally define SOASP as a multi-stage stochastic mixed-integer program and

present two approximations based on two-stage stochastic mixed-integer models (TSM). The first

approximation relaxes the non-anticipativity constraints of SOASP and yields a lower bound on

the optimal value of SOASP. The second approximation applies a (feasible) rescheduling policy

and yields an upper bound.

3.3.1 Formal Statement of the Problem

We consider the problem of sequencing a set of patients (appointments) for a single provider

and determining the associated scheduled appointment time for each appointment and an adap-

tive rescheduling (i.e., resequencing or declining) policy. Each patient has a known type and a

random service duration that follows a known probability distribution associated with the patient

type. The actual arrival time of each patient is random relative to their scheduled arrival time,

and the arrival time deviation follows a known probability distribution that is independent of the

scheduled arrival time.

The provider’s response to a patient’s arrival depends on three periods (parameters): a grace

period past the scheduled time, a rescheduling period past the grace period, and a decline period

past the rescheduling period (denoted by intervals G, R, and DE respectively in Figure 3.1). Pa-

tients arriving early (i.e., within interval E) or within the grace period (i.e., within interval G) are

guaranteed to be served in the scheduled AO. Patients arriving within the rescheduling period (i.e.,

within interval R) are subject to either resequencing (i.e., the provider will try to fit them within

the remaining sequence of appointments if possible) or declining (rescheduled to another day).
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Figure 3.1: An illustration of the provider’s response to patient’s arrival.
If a patient with scheduled arrival time t arrives any time before t + G, then s/he will be served
in the scheduled appointment order. If s/he arrives in between t + G and t + G + R, then s/he is
subject to resequencing or declining. If s/he arrives after t+G+R, then s/he will be declined.

Patients arriving within the decline period (i.e., within interval DE) are automatically declined.

The performance metric of scheduling is the weighted sum of three components: (i) patient

waiting time (the time from the later of the patient scheduled arrival time and actual arrive time

to the actual start time of his/her appointment), (ii) provider idle time (the time from the end of

one appointment to the start of the next), and (iii) provider overtime (time worked beyond the

scheduled working hours). Note that we do not incorporate the part of the waiting time due to the

early arrival of a patient. That is, if a patient arrives early (i.e., within interval E), his/her waiting

time is measured from his/her scheduled time. This is consistent with the prior literature (see, e.g.,

Gupta and Wang (2012); Cayirli and Veral (2003)).

Table 3.1 summarises the provider’s rescheduling decisions and the corresponding waiting time

calculations. We make the following assumptions:

A1. The set of patients (i.e., the total number of appointments and their types) are exogenously

determined (a standard assumption in the offline appointment scheduling literature that mim-

ics the OPC practice; see Ahmadi-Javid et al. (2017); Berg et al. (2014); Zhu et al. (2017)

and the references therein).

A2. The provider is always available at the start of the day, and immediately after the completion

of each appointment (Deceuninck et al. (2018); Berg et al. (2014)).
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Table 3.1: The provider’s response to patient’s arrival within the intervals defined in Figure 3.1
and waiting time calculations. Notation: AO is appointment order, RES is resequencing, DECL
is declining, t is scheduled arrival time, a is actual arrival time, u is arrival time deviation, i.e.,
u = a− t, and s is actual start time.

Arrival Interval Arrival time Provider’s response Waiting time
deviation

Early or punctual E u ≤ 0 AO s− t
Late but within the G 0 < u ≤ G AO s− agrace period
Late but within the R G < u ≤ G+R RES or DECL s− a (RES) or 0 (DECL)rescheduling period
Late but within the DE u > G+R DECL 0decline period

A3. The stochastic service duration and arrival time deviation (the difference between the sched-

uled and the actual arrival times) are independent of the scheduled time (Berg et al. (2014);

Deceuninck et al. (2018); Denton et al. (2007); Mancilla and Storer (2012)). For the stochas-

tic arrival time deviation, if a patient initially scheduled at 8 AM arrives at 8:20 AM (respec-

tively, 7:40 AM) then the stochastic arrival time deviation equals 20 minutes (respectively,

-20 minutes).

A4. The degree of the stochastic arrival time deviation of patient p, up, has a bounded support

[up, ūp], where up and ūp respectively are the lower and upper bounds on the stochastic arrival

time deviation of patient p.

A5. The scheduled times of two consecutive patients are separated by at least one grace period.

Note that if we don’t make this assumption, it could happen that patient i+ 1 arrives within

the overlap of his/her grace period and that of patient i. This would introduce ambiguity as

to whether the provider should take in patient i+1 at the arrival time or keep him/her waiting

to see if patient i would arrive within his/her grace period.

A6. The grace period and the rescheduling period are nonnegative, i.e., G ≥ 0 and R ≥ 0.

Furthermore, given assumption A5, P × G ≤ L, where P is the number of patients and L

the planned length of provider working hours.
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SOASP can be formulated as a multi-stage stochastic mixed-integer program (MSMIP). The

first stage of the MSMIP pertains to deciding the initial sequence and schedule (i.e., a sequence of

scheduled arrival times) of the patients, which are communicated to the patients before the start of

the day. In the subsequent stages, the MSMIP implements a policy that reschedules (resequences or

declines) the appointments according to the service durations and stochastic arrival times realized

up to each new arrival.

Unfortunately, formulating and solving this MSMIP is challenging for two reasons. First, even

in a simplified setting in which all random variables are discretized, the scenario tree of the MSMIP

can be enormous and grow exponentially in size with the number of patients. For example, if each

stage of the MSMIP represents a new patient arrival, then we need multiple random variables to

describe the system status at this stage, including which patient the new arrival pertains to, whether

this patient arrives in intervals E/G/R/DE, how many existing patients have entered/finished the

service, if the provider is currently busy/idle, etc. Second, each stage after the first stage involves

a set of binary and continuous decision variables pertaining to the rescheduling (resequencing or

declining) of appointments (see Shapiro et al. (2009); Birge and Louveaux (2011) and references

therein for a thorough discussion on the difficulty of formulating and solving MSMIP).

In recognition of the challenges of formulating and solving the MSMIP, we propose two TSMs

that respectively lead to a lower bound and an upper bound (and feasible solution) on the optimal

value of MSMIP.

3.3.2 TSM under Perfect Information

The first TSM relaxes the non-anticipativity constraints of the MSMIP. That is, the TSM assumes

that we possess perfect information (i.e., the realizations of all service durations and stochastic

arrival times) after deciding the initial sequence and schedule in the first stage. In this case, the

TSM reschedules (i.e., resequences or declines) all appointments based on the perfect information
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Table 3.2: Notation of the TSM formulations.

Indices
p patient index
i appointment index in the initial sequence
Parameters
P number of patients
cw
j unit waiting time cost of appointment j
cg
j unit provider idle time cost after appointment j
co unit provider overtime cost
G grace period
R rescheduling period
L planned length of provider working hours
Scenario-dependent parameters
dp realized service duration of patient p
up realized arrival time deviation of patient p

ep

{
1, if patient p arrives early (i.e., within interval E) or at the scheduled time,
0, otherwise.

τp

{
1, if patient p arrives within interval E or G,
0, otherwise.

δp

{
1, if patient p arrives within the rescheduling period (i.e., interval R),
0, otherwise.

πp

{
1, if patient p arrives within the decline period (i.e, interval DE),
0, otherwise.

K number of all patients who can be resequenced or declined , K ≡
∑P

p=1(δp + πp)

ξ random vector containing scenario-dependent parameters,
ξ = (d1, . . . , dP , u1, . . . , uP , e1, . . . , eP , τ1, . . . , τP , δ1, . . . , δP , π, . . . , πP ,K)

Scenario-independent (first stage) variables
xp,i

{
1, if patient p is initially assigned to appointment i,
0, otherwise.

ti scheduled arrival time of appointment i

Scenario-dependent (second-stage) variables
yi,j

{
1, if appointment i is resequenced to appointment j,
0, otherwise.

zj

{
1, if appointment j is declined ,
0, otherwise.

aj actual arrival time of appointment j
sj actual start time of appointment j
d̃j actual service duration of appointment j
wj waiting time of appointment j
gj server idle time before the start of appointment j
wP+1 provider overtime
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in the second stage. Table 3.2 summarizes the notation that we use in this TSM. Throughout this

subsection, we use the term “appointment” and “position” interchangeably to refer to a position in

the sequence, and for notational convenience, we suppress the scenario index ξ from the scenario-

dependent variables and parameters. We present the TSM under perfect information (TSM-PI) as

follows

vPI = minimize
x,t

Eξ[QPI(x, t, ξ)] (3.1a)

Subject to:
P∑
i=1

xp,i = 1, ∀p ∈ [P ] (3.1b)

P∑
p=1

xp,i = 1, ∀i ∈ [P ] (3.1c)

0 ≤ ti ≤ L, ∀i ∈ [P ] (3.1d)

ti+1 ≥ ti +G, ∀i ∈ [P − 1] (3.1e)

xp,i ∈ {0, 1}, ∀(p, i) ∈ [P ] (3.1f)

where [H] := {h ∈ N : 1 ≤ h ≤ H} for all H ∈ N and for each ξ, QPI(x, t, ξ) is defined as

QPI(x, t, ξ) = minimize
a,s,w,g

P∑
j=1

(
cw
jwj + cg

jgj
)

+ cowP+1 (3.2a)

Subject to: zj ≥
P∑
p=1

πpxp,j, ∀j ∈ [P ] (3.2b)

zj ≤
P∑
p=1

(1− τp)xp,j, ∀j ∈ [P ] (3.2c)

P∑
i=1

yi,j = 1− zj, ∀j ∈ [P ] (3.2d)

P∑
j=1

yi,j = 1− zi, ∀i ∈ [P ] (3.2e)

47



P∑
j=i+1

yi,j ≤
P∑
p=1

(1− τp)xp,i, ∀i ∈ [P − 1] (3.2f)

j∑
`=1

yk` ≤
P∑
p=1

(1− τp)xpi − yij + 1, ∀1 ≤ j ≤ i ≤ P, ∀k ∈ [i+ 1, P ]Z (3.2g)

d̃j =
P∑
p=1

P∑
i=1

dpxp,iyi,j, ∀j ∈ [P ] (3.2h)

aj =
P∑
i=1

(
ti +

P∑
p=1

upxp,i

)
yi,j, ∀j ∈ [P ] (3.2i)

sj ≥ aj, ∀j ∈ [P ] (3.2j)

sj ≥ sj−1 + d̃j−1, ∀j ∈ [2, P ]Z (3.2k)

wj ≥ sj − aj −Mj

(
zj +

P∑
p=1

P∑
i=1

epxp,iyi,j

)
, ∀j ∈ [P ] (3.2l)

wj ≥ sj −
P∑
i=1

tiyi,j −Mj

(
2− (1− zj)−

P∑
p=1

P∑
i=1

epxp,iyi,j

)
, ∀j ∈ [P ] (3.2m)

g1 = s1 (3.2n)

gj = sj −
(
sj−1 + d̃j−1

)
, ∀j ∈ [2, P ]Z (3.2o)

wP+1 ≥ sP + d̃P − L, (3.2p)

yi,j ∈ {0, 1}, ∀(i, j) ∈ [P ] (3.2q)

(gj, sj, wj, wP+1) ≥ 0, ∀j ∈ [P ] (3.2r)

where [2, P ]Z := {j ∈ N : 2 ≤ j ≤ P} for all P ∈ N. Objective (3.1a) minimizes the expected

total costs of patient waiting, provider idle time, and provider overtime. Constraints (3.1b) and

(3.1c) ensure that initially each patient is assigned to one appointment and each appointment is

assigned one patient, respectively. Constraints (3.1d) ensure that all scheduled appointments are

within the provider’s regular service hours [0, L]. Constraints (3.1e) ensure that the scheduled

appointment times of consecutive appointments are at least separated by the grace period (see
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assumptions A5–A6).

Recall that in TSM-PI we assume that we possess perfect information about the stochastic arrival

time deviations and service durations. For modeling convenience, we choose to treat any patient

with appointment declined (whether he/she arrives in interval DE, and thus is automatically de-

clined, or in interval R and the model declines him/her) as a “ghost” patient arriving at time 0 (this

ensures that the provider does not wait for his/her grace period to expire before moving on to the

next patient), and with zero service duration. We also force the waiting time of the “ghost” patient

to be zero, as explained below.

Constraints (3.2b)–(3.2g) determine the new sequence. Specifically, constraints (3.2b) specify

that if a patient p initially assigned to position j (i.e., xp,j = 1) arrives within the decline period

(within interval DE and so πp = 1) then this patient (and the corresponding appointment j) must

be declined. Constraints (3.2c) specify that if a patient p initially assigned to position j arrives any

time before the end of the grace period (i.e., within interval E or G and so τp = 1), then this patient

(and the corresponding appointment) must not be declined. Constraints (3.2d) specify that if a

patient initially assigned to appointment j is declined, then no appointment can be resequenced

to appointment j, i.e., yi,j = 0 ∀i (recall that we still “treat” patient j, as a “ghost” with zero

service duration). Constraints (3.2e) specify that if the initial appointment i is declined, then this

appointment cannot be resequenced to any other appointment.

Constraints (3.2f) specify that if a patient p initially assigned to appointment i arrives early or

within the grace period (i.e., within interval E or G and so τp = 1 by definition), then he/she

cannot be resequenced to an appointment later than i. Constraints (3.2g) specify that if a patient

initially assigned to appointment i arrives early or within the grace period, then any patients ini-

tially scheduled after him/her cannot be resequenced to an appointment before him/her. Note that,

under this global resequencing rule, if the patient initially assigned to appointment i arrives within

rescheduling period (i.e., interval R) and doesn’t get declined, then he/she can still be resequenced

to a position before i. For example, suppose that patients 1 and 2 arrive within interval E or G and
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patients 3 and 4 arrive within interval R. We are allowed to resequence them as 1–2–4–3 in this

case. However, neither 3 nor 4 can be resequenced before 1 or 2. This is reflected in constraints

(3.2g). Note that constraints (3.2d)–(3.2g) allow for the initial and the new positions to be the

same. In this case, j = i and so yi,i = 1.

Constraints (3.2h) determine the actual service duration of appointment j based on the new

sequence: if appointment j is declined (i.e., if zj = 1 and so yi,j = 0 for all i by constraints (3.2d))

then d̃j = 0; and if appointment j is not declined (i.e., if zj = 0 and so yi,j = 1 for some i) then

d̃j = dp if patient p is initially assigned to appointment i and then resequenced to appointment j

(i.e., xp,i = 1 and yi,j = 1). Note that constraints (3.2h) and some of the remaining constraints

of this TSM are nonlinear because of the bilinear terms xp,iyni,j (see constraints (3.2h)–(3.2i) and

(3.2l)–(3.2m) ) and tiyni,j (see constraints (3.2i)) In section 3.4.2, we propose strategies to linearize

these constraints.

Constraints (3.2i) determine the actual arrival time. Specifically, if patient p is initially assigned

to position i (i.e., xp,i = 1) and resequenced to position j (i.e., yi,j = 1 and zj = 0) then the actual

arrival time of appointment j is aj = ti + up. In contrast, if appointment j is declined (i.e., zj = 1

and so yi,j = 0 for all i = 1, . . . , P by (3.2d)) then aj = 0 (recall that this is a “ghost” patient

arriving at time zero by design). Constraints (3.2j)–(3.2k) specify that the actual start time of

appointment j, sj , is no smaller than the actual arrival time, aj , and no smaller than the completion

time of the preceding appointment, i.e., sj−1 + d̃j−1. Note that if appointment j is declined then

the corresponding “ghost” patient will start and complete at the completion time of the preceding

appointment sj−1 + d̃j−1 because aj = 0 and d̃j = 0 for all declined appointments by (3.2i) and

(3.2h).

Constraints (3.2l)–(3.2m) compute the waiting time based on the following four arrival time

scenarios (see the first and last columns of Table 3.1) with Mj representing a sufficiently large

constant. First, if patient p is initially assigned to appointment i, arrives early or at the scheduled

time (i.e., within interval E), and is resequenced to appointment j (i.e., xp,i = yi,j = 1), then τp = 1
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by definition and so zj = 0 by (3.2c), ep = 1 by definition, and
∑P

p=1

∑P
i=1 epxp,iyi,j = 1. It follows

that constraint (3.2l) is relaxed and wj = max{sj − ti, 0} by (3.2m) and (3.2r), i.e., the waiting

time of this patient is the difference between his/her actual start time and the scheduled arrival

time. Recall from Section 3.3.1 that, consistent with the prior literature, we do not incorporate the

part of the waiting time due to the early arrival of a patient (see, e.g., Gupta and Wang (2012);

Cayirli and Veral (2003)).

Second, if patient p is initially assigned to appointment i arrives late but within the grace period

(i.e., interval G), and is resequenced to appointment j, then τp = 1 by definition and so zj = 0 by

(3.2c), ep = 0 by definition,
∑P

p=1

∑P
i=1 epxp,iyi,j = 0, and aj = ti + up by (3.2i). It follows that

constraint (3.2m) is relaxed and wj = sj − aj by (3.2l), i.e., the waiting time of this late patient is

computed from his/her actual arrival time. Third, if patient p is initially assigned to appointment

i arrives late but within the rescheduling period (i.e., interval R) but does not get declined, and

resequenced to appointment j, then zj = 0, aj = ti + up by (3.2i), ep = 0 by definition, constraint

(3.2m) is relaxed, and wj = sj − aj by (3.2l). Fourth, if patient p initially assigned to appointment

j arrives within the decline period (i.e., interval DE), then πp = 1 by definition and so zj = 1 by

(3.2b), yi,j = 0 ∀i by (3.2d), and
∑P

p=1

∑P
i=1 epxp,iyi,j = 0. It follows that both (3.2l)–(3.2m) are

relaxed and wj = 0 by (3.2r), i.e., declined appointments yield zero waiting time.

Constraint (3.2n) computes the idle time before the first patient. Constraints (3.2o) computes

the idle time between two consecutive appointments. Constraints (3.2p) and (3.2r) compute the

provider overtime (if any) beyond the planned length of working hours. Finally, constraints (3.2q)–

(3.2r) specify binary and nonnegative restrictions on the decision variables.

Proposition 3.3.1. For a fixed grace period G and cost vectors cw, cg, and co, we have vPI ≤ v,

where v is the optimal value of the MSMIP.

Proof. Formulation (3.2) relaxes the nonanticaptivity constraints in the MSMIP. It follows that

v ≥ vPI.
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3.3.3 TSM under the Appointment Order Policy

The second TSM implements a fixed (feasible) rescheduling policy termed appointment order

policy (AO), which designates that (i) any patient arriving after his/her grace period (i.e., within

interval R or DE) gets declined and (ii) the remaining patients are served in the order of their initial

sequence regardless of their actual arrival times. Using the same notation in Table 3.2, we present

the TSM under AO (TSM-AO) as follows.

vAO = minimize
x,t

Eξ[QAO(x, t, ξ)] (3.3a)

Subject to: (3.1b)− (3.1f) forp = 1, . . . , P (3.3b)

where for each ξ, QAO(x, t, ξ) is defined as

QAO(x, t, ξ) = minimize
a,s,w,g

P∑
j=1

(
cw
jwj + cg

jgj
)

+ cowP+1 (3.3c)

Subject to: aj = tj +
P∑
p=1

(
upτp +G(1− τp)

)
xp,j, ∀j ∈ [P ] (3.3d)

sj ≥ aj, ∀j ∈ [P ] (3.3e)

sj ≥ sj−1 +
P∑
p=1

dpτpxp,j−1, ∀j ∈ [2, P ]Z (3.3f)

wj ≥ sj − aj −Mj

(
1 +

P∑
p=1

(ep − τp)xp,j

)
, ∀j ∈ [P ] (3.3g)

wj ≥ sj − tj −Mj

(
2−

P∑
p=1

(ep + τp)xp,j

)
, ∀j ∈ [P ] (3.3h)

g1 = s1, (3.3i)

gj = sj −

(
sj−1 +

P∑
p=1

dpτpxp,j−1

)
, ∀j ∈ [2, P ]Z (3.3j)
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wP+1 ≥ sP +
P∑
p=1

dpτpxp,P − L, (3.3k)

(gj, sj, wj, wP+1) ≥ 0, ∀j ∈ [P ] (3.3l)

Note that under the AO policy, the provider must wait for a patient till the end of his/her grace pe-

riod before becoming eligible to treat a subsequent patient (Deceuninck et al., 2018). For modeling

convenience, we choose to treat any patient arriving after the end of the grace period (i.e., within

interval R or DE) as a “ghost” patient arriving at t+G with zero service duration.

Objective (3.3a) minimizes the expected total costs of patient waiting, provider idle time, and

provider overtime. Constraints (3.3d) determine the actual arrival time. Specifically, if patient

p assigned to appointment j (i.e., xp,j = 1) arrives early or within the grace period (i.e., within

interval E or G) and so τp = 1 by definition, then aj = tj + up. In contrast, if this patient arrives

after the end of the grace period (i.e, within interval R or DE) and so τp = 0 by definition, then

this patient is declined and aj = tj +G, i.e., this patients is treated as a “ghost” patient arriving at

tj +G with zero service time, i.e.,
∑P

p=1 dpτpxp,j = 0.

Constraints (3.3e)–(3.3f) ensure that the actual start time is at least the arrival time of the patient

and at least the completion time of the previous patient. Note that if appointment j is declined then

the corresponding “ghost” patient p will start and complete at sj +
∑P

p=1 dpτpxp,j = max{aj =

tj + G, sj−1 +
∑P

p=1 dpτpxp,j−1} + 0 because τp = 0 and so
∑P

p=1 dpτpxp,j = 0. Collectively,

constraints (3.3d)–(3.3f) enforce the AO policy mathematically. For example, if patient 4 arrives

earlier than t3 + G (i.e., the expiration time of patient 3’s grace period), the provider whenever

becomes available will remain idle until one of the following two cases takes place: (1) patient

3 arrives before t3 + G and the provider starts serving patient 3, or (2) t3 + G expires, and the

provider declines patient 3 and starts serving patient 4.

Constraints (3.3g)–(3.3h) compute the waiting time based on the following three arrival time

scenarios with Mj representing a sufficiently large constant. First, if patient p is assigned to ap-
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pointment j (i.e., xp,j = 1) and arrives early or at the scheduled time (i.e., within interval E), then

ep = 1 and τp = 1 by definition, and thus
∑P

p=1(ep − τp)xp,j = 0, and
∑P

p=1(ep + τp)xp,j = 2. It

follows that constraint (3.3g) is relaxed and wj = max{sj − tj, 0} by constraints (3.3h) and (3.3l).

Second, if patient p is assigned to appointment j (i.e., xp,j = 1) and arrives within the grace period

(i.e., within interval G), then ep = 0 and τp = 1 by definition, and so
∑P

p=1(ep − τp)xp,j = −1

and
∑P

p=1(ep + τp)xp,j = 1. It follows that constraint (3.3h) is relaxed and wj = sj − aj by

constraint (3.3g). Third, if patient p assigned to appointment j arrives after the end of the grace

period (i.e, within interval R or DE), then ep = τp = 0 by definition and so
∑P

p=1(ep − τp) =∑P
p=1(ep + τp)xp,j=0. It follows that both (3.3g) and (3.3h) are relaxed and wj = 0 by (3.3l), i.e.,

declined appointments yield zero waiting time.

Constraint (3.3i) computes the idle time before the first patient. Constraints (3.3j) compute

the idle time between two consecutive appointments. Constraints (3.3k) and (3.3l) compute the

provider overtime beyond the planned length of working hours. Finally, constraints (3.3l) specify

nonnegative restrictions on the decision variables.

Proposition 3.3.2. For a fixed grace period G and cost vectors cw, cg, and co, we have v ≤ vAO.

Furthermore, vPI ≤ v ≤ vAO.

Proof. The appointment order policy is a feasible rescheduling policy to the MSMIP. It follows

that v ≤ vAO, and so vPI ≤ v ≤ vAO by Proposition 3.3.1.

3.4 Solution Approach

There are two well-known difficulties in obtaining an (exact) optimal solution to the TSM-PI in

(3.1) and TSM-AO in (3.3). First, evaluating the values of Eξ[QPI(x, t, ξ)] and Eξ[QAO(x, t, ξ)]

involves taking multi-dimensional integrals. Second, formulation (3.2) of QPI(x, t, ξ) involves

mixed-integer recourse variables, which makes QPI(x, t, ξ) non-convex and even discontinuous.
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In view of these two difficulties, we resort to approximation solution approaches.

In Section 3.4.1, we present a Monte Carlo approach to obtain near-optimal solutions to (3.1) and

(3.3). In Section 3.4.2, we propose several strategies to linearize and strengthen the formulation

(3.1), which helps improve the solution efficacy of the TSM-PI.

3.4.1 Monte Carlo Optimization

In the Monte Carlo approach, we replace the distribution of ξ with a (discrete) empirical distri-

bution based on N independent and identically distributed (i.i.d.) samples of the service durations

and arrival time deviations, and then we solve the SAA formulations of (3.1) and (3.3), which are

denoted formulations (3.4) and (3.5), respectively, and presented below. Note that, in the SAA for-

mulations (3.4)–(3.5), we associate all scenario-dependent parameters, variables, and constraints

with a scenario index n for all n = 1, . . . , N . For example, parameters dp are replaced by dnp

to represent the service durations realized in scenario n, and variables yi,j are replaced by yni,j

to represent the resequencing decisions in scenario n. In addition, constraints (3.2b)–(3.2r) and

(3.3d)–(3.3l) are incorporated in each scenario.

(SAA-PI) vPI
N = minimize

x,t,a,s,w,g
f̂ PI
N :=

1

N

N∑
n=1

P∑
j=1

(
cw
jw

n
j + cg

jg
n
j

)
+ cownP+1 (3.4a)

Subject to: (3.1b)− (3.1f) (3.4b)

(3.2b)− (3.2r), ∀n ∈ [N ] (3.4c)

(SAA-AO) vAO
N = minimize

x,t,a,s,w,g
f̂AO
N :=

1

N

N∑
n=1

P∑
j=1

(
cw
jw

n
j + cg

jg
n
j

)
+ cownP+1 (3.5a)

Subject to: (3.1b)− (3.1f) (3.5b)
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(3.3d)− (3.3l), ∀n ∈ [N ] (3.5c)

Note that the sample averages f̂ PI
N and f̂AO

N are unbiased estimators of the expected values f PI :=

Eξ[QPI(x, t, ξ)] and fAO := Eξ[QAO(x, t, ξ)] in (3.1) and (3.3), respectively (see Shapiro (2003);

Mak et al. (1999) and references therein). By the Law of Large Numbers and Shapiro (2003), we

have f̂ PI
N → f PI and f̂AO

N → fAO with probability one (w.p.1) as N → ∞ (Linderoth et al. (2006);

Homem-de Mello and Bayraksan (2014); Kleywegt et al. (2002)). It follows that vPI
N → vPI and

vAO
N → vAO w.p.1 as N → ∞, i.e., the optimal values of the SAA formulations (3.4) and (3.5)

converge to those of TSM-PI and TSM-AO, respectively, as the sample size N grows to infinity.

However, for a fixed sample of N scenarios, formulation (3.4) and (3.5) reduce to a mixed-integer

nonlinear program (MINLP) and a mixed-integer linear program (MILP), respectively. Hence,

one would expect the computational effort and solution time of solving the SAA formulations to

increase as the sample size increases.

Algorithm 3.1 summarizes the Monte-Carlo Optimization (MCO) algorithm that determines

an appropriate sample size N and obtains near-optimal solutions to the TSM-PI model based on

SAA formulations, and the algorithm for solving the TSM-AO model is similar. This algorithm

is based on the vanilla SAA method in Ahmed et al. (2002), Homem-de Mello and Bayraksan

(2014), Kleywegt et al. (2002), and Molina-Pariente et al. (2016) with some adaptations to our

TSM models.

Starting with an initial candidate value of N , the MCO algorithm proceeds as follows. First,

for m = 1, . . . ,M , we repeat the following steps. In step 1.1, we generate a sample of N i.i.d.

scenarios of service durations and arrival time deviations. In step 1.2, we solve the SAA formula-

tion of the TSM-PI with the scenarios generated in step 1.1 and record the corresponding optimal

objective value vmN and optimal schedule (x̂̂x̂x, t̂̂t̂t)mN . In step 1.3, we evaluate the objective function

value vmN ′ via Monte Carlo simulation of the schedule (x̂̂x̂x, t̂̂t̂t)mN with a sample of N ′ i.i.d. scenarios

of service durations and arrival time deviations.
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Algorithm 3.1: Monte Carlo Optimization (MCO) Method
Input: No is an initial sample size, M is number of replicates, N ′ is number of scenarios in the Monte Carlo

Simulation step, and ε is a termination tolerance.
Output: N is sample size, v̄N and v̄N ′ are respectively statistical lower and upper bounds on the optimal value

of the TSM, and AOIN is approximate optimality index.
Initialization: N := No

Step 1. MCO Procedure
for m = 1, ...,M, do

Step 1.1 Scenario Generation
- Generate N independent and identical distributed (i.i.d.) scenarios of service durations
dp = (d1p, ...., d

N
p )T and arrival time deviations up = (u1p, . . . , u

N
p )T for all p = 1, ..., P .

Step 1.2 Solving the SAA formulation
- Solve the SAA formulation in (3.4) with the scenarios generated in step 1.1 and record the

corresponding optimal objective value vmN and optimal schedule (x̂̂x̂x, t̂̂t̂t)mN .

Step 1.3 Cost Evaluation using Monte Carlo Simulation
- Generate N ′ i.i.d. scenarios of service durations d′

p = (d1p, ...., d
N ′

p )T and arrival time
deviations uuu′p = (u1p, . . . , u

N ′

p )T for all p = 1, ..., P .
- Use the schedule (x̂̂x̂x, t̂̂t̂t)mN and parameters (d′

p, uuu′p) to compute wn′

j , gn
′

j , and wn′

P+1 for all
n′ = 1, . . . , N ′, and evaluate the objective function v̂mN ′ as follows:

v̂mN ′ =
1

N ′

N ′∑
n′=1

P∑
j=1

(
cw
jw

n′

j + cg
jg

n′

j

)
+ cown′

P+1

end
Step 2. Compute the average of v̂mN and v̂mN ′ among the M replications

vN =
1

M

M∑
m=1

vmN vN ′ =
1

M

M∑
m=1

v̂mN ′

Step 3. Compute the Approximate Optimality Indix

AOIN =
vN ′ − vN
vN ′

Step 4. If AOIN satisfies a predetermined termination tolerance (i.e., |AOIN | < ε), terminate and output N ,
vN , vN ′ , and AOIN . Otherwise, update N ← 2N , and go to step1.

In step 2, we compute the average of vmN and vmN ′ among theM replications as vN = M−1
M∑
m=1

vmN

and vN ′ = M−1
M∑
m=1

v̂mN ′ , respectively. The statistical results in Mak et al. (1999) and Linderoth

et al. (2006) infer that vN and vN ′ are respectively statistical lower and upper bounds of the optimal

value of the TSM model. In step 3, we compute the approximate optimality index |AOIN =

(vN ′ − vN)/vN ′ | as a point estimate of the relative optimality gap between these two statistical
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bounds, and so AOIN serves as an approximate estimate of the optimality gap. Finally, if AOIN

satisfies a predetermined termination tolerance (i.e., |AOIN | < ε), the algorithm terminate and

output N , vN , vN ′ , and AOIN . Otherwise, we increase the sample size (i.e., N ← 2N ), and go to

step 1.

Finally, we can “warm start” Algorithm 3.1 from solved instances. That is, we can store the

output sample size N in a solved instance (i.e., N leads to a near-optimal solution to the TSM via

its SAA formulation) and set the initial sample size No=N when solving similar instances. This

can significantly speed up Algorithm 3.1.

We evaluate the gap between the two TSM approximations of SOASP, i.e., Gap := vAO−vPI

vPI ,

where vPI and vAO represent the optimal values of TSM-PI and TSM-AO, respectively. As v̄PI
N is a

statistical lower bound of vPI and vAO
N ′ is a statistical upper bound of vAO, we conservatively approx-

imate Gap by using the approximate (statistical) relative gap (ARG), where ARG :=
vAO
N′−v

PI
N

vPI
N

.

3.4.2 Strengthening the TSM-PI

As compared to the TSM-AO, the SAA formulation (3.4) of the TSM-PI is significantly more

difficult to solve for three main reasons. First, the formulation (3.4) is a mixed-integer nonlin-

ear programming (MINLP) because of the bilinear terms xp,iyni,j (see constraints (3.2h)–(3.2i) and

(3.2l)–(3.2m)) and tiyni,j (see constraints (3.2i) and (3.2m)). Second, as we consider rescheduling

(resequencing and declining) in the TSM-PI, the formulation (3.4) involves integer recourse vari-

ables yni,j and znj . Third, the search space of the rescheduling variables increases with the sample

size (i.e., the number of binary variables yni,j and znj grows linearly with the sample size N ). In the

following subsections, we strengthen the formulation (3.4) by linearization and valid inequalities.
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3.4.2.1 SMILP Reformulation

LetN EG be the set of all scenarios in which all patients arrive early or within the grace period (i.e.,

within interval E or G and so τnp = 1 and δnp = 0, for all p = 1, . . . , P and n ∈ N EG). In this set of

scenarios, the provider must follow the initial appointment order and not resequence any patient.

Accordingly, we have ynj,j = 1 and znj = 0 for all j = 1, . . . , P and n ∈ N EG. Therefore, the

nonlinear constraints (3.2h)–(3.2p) reduce to linear constraints (3.3d)–(3.3k) for all n ∈ N EG.

To linearize formulation (3.4) for all other scenarios n /∈ N EG, we define αni,j = tiy
n
i,j, ∀(i, j) ∈

[P ] and βnp,i,j = xp,iy
n
i,j, ∀(p, i, j) ∈ [P ] (where [H] := {h ∈ N : 1 ≤ h ≤ H} for all H ∈ N).

We also incorporate the following McCormick inequalities (3.6a)–(3.6b) and (3.6c)–(3.6d) for

variables αni,j and βnp,i,j , respectively.

αni,j − tmin
i y

n
i,j ≥ 0, αni,j − ti + tmax

i (1− yni,j) ≥ 0 (3.6a)

αni,j − tmax
i y

n
i,j ≤ 0, αni,j − ti + tmin

i (1− yni,j) ≤ 0 (3.6b)

βnp,i,j ≥ 0, βnp,i,j − yni,j − xp,i + 1 ≥ 0 (3.6c)

βnp,i,j − xp,i ≤ 0, βnp,i,j − yni,j ≤ 0 (3.6d)

where tmin
i and tmax

i are the minimum and maximum possible values of the scheduled time of ap-

pointment i, respectively. We derive a tight estimation of tmin
i and tmax

i in proposition 3.4.1, and we

relegate the proof to Appendix 3.7.1. We also relegate the resulting stochastic mixed-integer linear

program (SMILP) to Appendix 3.7.2.

Proposition 3.4.1. tmin
i ≤ ti ≤ tmax

i , where tmin
i = (i− 1)G and tmax

i = L− (P − i)G for all i ∈ [P ].

3.4.2.2 Valid Inequalities

We derive two families of valid inequalities to strengthen formulation (3.4). We summarize these

inequalities in the following proposition.

59



Proposition 3.4.2.

i∑
j=max{i−Kn,1}

yni,j ≥
P∑
p=1

τnp xp,i, ∀n ∈ [N ], ∀i ∈ [P ], (3.7a)

yni,i ≥ 1−
i∑

k=1

P∑
p=1

(1− τnp )xpk, ∀n ∈ [N ], ∀i ∈ [P ]. (3.7b)

where Kn ≡
∑P

p=1(δ
n
p + πnp ).

Proof. Inequalities (3.7a) specify that if a patient p initially assigned to appointment i arrives early

or within the grace period in scenario n (i.e., within interval E or G and so τnp = 1 by definition),

then he/she can only be resequenced to an appointment j among max{i − Kn, 1}, . . . , i. This is

because in each scenario n there are at most Kn many appointments before i that can either be

declined or be resequenced to be after i. Inequalities (3.7b) specify that if all patients in the first

i appointments arrive early or within the grace period, then appointment i must stay as i. This is

because (1) the patient in appointment i cannot swap with any patients before him/her as none of

them arrive after the grace period, and (2) he/she cannot swap with any patients after him/her as

he/she arrives before the start of the rescheduling period.

3.4.2.3 Tight Estimation of Big-M Coefficients

We derive a tight estimation of the Big-M coefficients involved in constraints (3.2l)–(3.2m) and

(3.3g)–(3.3h) in the following proposition, whose proof is relegated to Appendix 3.7.3. The tight

estimation strengthens the SAA formulations of both TSM-PI and TSM-AO.

Proposition 3.4.3. Mn
j = L+ max

p=1,...,P
{|unp |}+ (j − 1) max

p=1,...,P
{dnp} for j = 1, . . . , P and n ∈ [N ]

is a valid value for the Big-M constant in constraints (3.2l)–(3.2m) and (3.3g)–(3.3h).

60



3.4.2.4 Symmetry Breaking Inequalities

We apply symmetry breaking inequalities (see Denton et al., 2010; Berg et al., 2014; Shehadeh

et al., 2019; Ostrowski et al., 2011) to further strengthen the TSM formulations. Specifically, we

aggregate the patients into classes, each consisting of patients having a common patient type and

a common distribution of arrival time deviation. Suppose that we have Q classes and Pq be the

set of patients in class q, q = 1, . . . , Q. Without loss of generality, we can assume that patients

within each Pq are numbered sequentially. Accordingly, we add the following symmetry breaking

constraints to the TSM-PI and TSM-AO (and their SAA formulations):

xp,i −
P∑

j=i+1

xp+1,j ≤ 0, ∀i = 1, . . . , P, ∀p : p, p+ 1 ∈ Pq, q = 1, . . . , Q, (3.8)

indicating that, if patients p and p+ 1 are of the same class then p is scheduled before p+ 1.

3.5 Computational Results

In this section, we numerically study the approximate (statistical) relative gap ARG :=
vAO
N′−v

PI
N

vPI
N

between SOASP statistical upper vAO
N ′ and lower vPI

N bounds and the optimality of the appoint-

ment order policy under a range of parameter settings. In Section 3.5.1, we describe the set of

SOASP instances that we use in our experiments and discuss other experimental setups. In Sec-

tion 3.5.2, we obtain a near-optimal solution to the TSM-PI and TSM-AO via their SAA formula-

tions (specifically, tight statistical lower vPI
N and upper vAO

N ′ bounds on the optimal values of these

TSMs). In Section 3.5.3, we evaluate ARG between the statistical bounds on the optimal values

of these TSMs, demonstrating the near-optimality of the appointment order policy in a wide range

of SOASP parameter settings. We also identify parameter settings that result in a large gap and

accordingly propose an alternative rescheduling policy that significantly shrinks the gap in Sec-

tion 3.5.4. Finally, in Section 3.5.5, we demonstrate the benefits of incorporating uncertainty in
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Table 3.3: Characteristics and parameters of the the SOASP instances.

Parameter Value/Distribution
Number of Patients, P 12 patients
Patient mix Hetero1: (9 return, 3 new), Hetero2: (6 return, 6 new),

Homo1: (12 return), Homo2: (12 new)
Planned provider service hours, [0, L] [0, expected duration for the patient mix]
Service time distributions d(retrun) ∼ LogN(20, 162), d(new) ∼ LogN(30, 242)
Arrival time deviation distributions N(µu = −15, 0, σ2u = 102, 202), U [u = −40, u = 20, 40]
Grace periods, G 10, 15, 20
Rescheduling Period, R 90 minutes

outpatient appointment scheduling.

3.5.1 Description of Experiments

We use assumptions and parameters settings made in prior outpatient appointment scheduling lit-

erature to construct 60 SOASP instances characterized by four patient mixes, five distributions of

stochastic arrival time deviation, and three choices of the grace period. Each instance consists

of twelve patients based on a typical outpatient scheduling problem studied in Deceuninck et al.

(2018). Table 3.3 summarises the characteristics and parameters of these instances.

Heterogeneous instances (Hetero1 and Hetero2) consist of two types of patients; newly referred

(“new”) patients and followup (“return”) patients (a typical patient mix in OPCs; see Deceuninck

et al. (2018); Zhu et al. (2017) and references therein). Hetero1 is based on the problem studied

in Deceuninck et al. (2018), where 75% of the patients are return and the remaining 25% are new

patients. Hetero2 represents clinics where 50% of the patients are return and the remaining 50%

are new patients. Homogenous instances (Homo1 and Homo2) represent clinics where patients are

identical (i.e., of the same type).

The distributions for stochastic service duration of each patient type follow a lognormal distri-

bution, d(type) ∼ LogN(µd, σ
2
d) with mean µd and standard deviation σd as in Deceuninck et al.

(2018). The lognormal distribution is a typical distribution for service duration in the appointment

scheduling literature, and several empirical studies show how it accurately describes the shape of
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service duration distributions in a variety of service systems (see Cayirli et al. (2006); Gul et al.

(2011); Klassen and Rohleder (1996); Klassen and Yoogalingam (2014) and references therein).

Consistent with the literature (see, e.g., Cayirli et al. (2006); Deceuninck et al. (2018); Klassen

and Yoogalingam (2014)), we model the stochastic arrival time deviation u by: (1) normal distri-

bution, u ∼ N(µu, σ
2
u), with mean µu =-15 minutes, 0 minutes and standard deviation σu = 10

minutes, 20 minutes; and (2) uniform distribution U [u, u] with two intervals u ∼ U [−40, 20] and

u ∼ U [40, 40]. We select the value of the grace period, G, from the set {10, 15, 20} (e.g., G =15

minutes in Deceuninck et al. (2018)) and, unless stated otherwise, we consider a rescheduling pe-

riod of 90 minutes in the TSM-PI (i.e., the model automatically decline a late patient arriving after

G+ 90 minutes past his/her scheduled time).

Finally, we consider two different cost structures for the objective function: (1) Cost1: cw =

cg = co; and (2) Cost2: cw = 1, cg = 5, co = 7.5. For the first cost structure, each of the three

objectives is equally important (this is a classical assumption in the domain of outpatient appoint-

ment scheduling, see, e.g., Berg et al. (2014); Deceuninck et al. (2018)). The second cost structure

fixes the co/cg ratio to 1.5 as in Deceuninck et al. (2018), based on OPC practice (see Cayirli et al.

(2006) and Deceuninck et al. (2018) for detailed discussions). We also adopt the classical assump-

tion of identical waiting and idle time costs, i.e., cw = cw
j and cg = cg

j for all j = 1, . . . , P (see

Ahmadi-Javid et al. (2017); Deceuninck et al. (2018) and the references therein).

We implemented our TSMs and the Monte Carlo Optimization approach using the AMPL2016

Programming language calling CPLEX V12.6.2 as a solver with default settings (our experiments

showed no consistent benefits in any parameter tuning). We ran all experiments on an HP work-

station running Windows Server 2012 with two Intel E5-2620-v4 processor, each with 8-Cores (16

total), 2.10GHz CPUs, and 128 GB shared RAM.
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3.5.2 Obtaining Near-Optimal Solutions to the TSMs

For each SOASP instance and cost structure, we implemented the MCO algorithm in Section 3.4.1

with No = 5, M = 20, and ε = 0.1 (i.e., Algorithm 3.1 terminates with N , vN and vN ′ whenever

|AOIN | < 0.1, see step 4).

Tables 3.6 and 3.7 in Appendix 3.7.4 present the approximate optimality index (AOIN =

vN′−vN
vN′

) and the 95% confidence intervals (95%CI) of the statistical lower and upper bounds (vN

and vN ′ , receptively) on the objective values of TSM-PI and TSM-AO for each SOASP instance

under Cost1 and Cost2, respectively, at the termination of Algorithm 3.1. In 3.7.5, we present and

analyze the ranges of solution time of the TSM-PI and TSM-AO formulations for each SOASP

instance. Herein we summarize the key findings of the MCO algorithm.

Clearly, N = 100 and N = 200 scenarios of service durations and arrival time deviations

are sufficient to obtain a near-optimal solution to the TSM-PI and TSM-AO via their SAA for-

mulations. First, AOI100,200 ranges from 0.00 to 0.09 and from 0.00 to 0.06 for the TSM-PI and

TSM-AO, respectively. Second, the 95%CI of v PI, AO
N and v PI, AO

N ′ with N=100, 200 are very tight (i.e.,

have a small variance). These results qualify v PI
N and v AO

N ′ as tight statistical estimates for the lower

and upper bounds on the optimal value of each SOASP instance, respectively. In Section 3.5.3, we

compute and analyze the the statistical relative gap (ARG =
vAO
N′−v

PI
N

vPI
N

) between these two bounds.

Recall that during this experiment, we use M = 20 as the number of replication in the MCO Al-

gorithm (see step 1). The tightness of the 95%CI of vN and vN ′ suggests that M = 20 replications

are sufficient to get a tight confidence interval for both bounds. In other words, the standard error

estimates are small enough so that (statistically) we have high confidence in our conclusions about

these bounds.
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3.5.3 Evaluating ARG and the Optimality of the AO Policy

Table 3.4 presents ARG% =
vAO
N′−v

PI
N

vPI
N
× 100%. Recall that ARG is a conservative approximation

of the Gap = vAO−vPI

vPI between the two TSM approximations of SOASP. Hence, small ARG%

indicates that the AO policy is near-optimal. We observe the following about ARG% and the

optimality of the AO policy.

First, the AO policy is near-optimal in a wide range of parameter settings. Specifically, the

ARG% is small if (i) the patients arrive on time or early on average with a small variability in

arrival time or (ii) the grace period is relatively long. For example, ARG% ranges from 0.1% to

4% when u ∼ N(−15, 102) and a majority of ARG% are less than 7% when G = 15, 20. This

makes sense because under these parameter settings, the majority of the patients are on-time or

early (i.e., arrive within interval E or G) and so should be served in their scheduled order (i.e.,

according to AO).

Second, the AO policy becomes sub-optimal under high variability in arrival time and short grace

periods. For example, with G = 10 minutes, increasing the variability from u ∼ N(−15, 102) to

u ∼ N(−15, 202) increased the range of ARG% from 1–4% to 10–19%. In addition, ARG% is

significantly larger when the patients are likely to arrive after their grace periods (e.g., with G = 10

and u ∼ U [−40, 40], P(u > G) ≈ 0.38; see columns 10–11 in Table 4). This is because, in this

case, the AO policy declines all patients arriving in interval R or DE, which yields unnecessary

provider idling. In contrast, TSM-PI may reschedule some those arriving within interval R.

Third, in all parameter settings, the AO policy becomes closer to optimal (i.e., ARG% decreases)

as the grace period lengthens. This is particularly significant when there is a high degree in pa-

tient lateness (e.g., when u ∼ U [40, 40]) and when idling is costly (see, e.g., the last column of

Table 3.4). Intuitively, the longer the grace period, the lower the probability of arriving beyond

the grace period (i.e., within interval R or DE) and thus the less the number of patients to be

rescheduled. For example, with u∼ U [40, 40] and as G increases from 10 to 20, the probabilities
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of arriving beyond the grace period decreases from P(u > 10) ≈ 0.38 to P(u > 20) = 0.25.

3.5.4 Alternative Rescheduling Policy

We propose and evaluate the performance of an alternative rescheduling policy, which we call

Neighbor Swapping (NS), for those parameter settings under which the AO policy is suboptimal.

The NS policy has two schemes; a priority queueing scheme (in Algorithm 3.2) and a serving

scheme (in Algorithm 3.3). A patient receptionist can implement the NS policy as follows: (i)

using the priority queueing scheme, s/he maintains a priority queue of patients waiting for service

and updates the priority whenever a patient arrives, and (ii) using the serving scheme, s/he decides

whether the provider, whenever idle, should stay idle or start serving the patient with the highest

priority in the queue.

Note that the NS policy respects the appointment order of early and punctual arrivals and de-

prioritizes or even declines late patients. These two properties are particularly demanded in both

the OPC practice and the appointment scheduling literature (see, e.g., Deceuninck et al. (2018);

Glowacka et al. (2017) and the references therein).

We evaluate the performance of the NS policy for those parameters settings under which the

AO policy is sub-optimal (i.e., SOASP instances with large ARG% values, as marked in bold in

Table 3.4). First, we fix the initial appointment sequence and the corresponding scheduled arrival

time to the optimal ones to the TSM-AO. Second, for each R ∈ {5, 10, 0.5G,G, 2G, 3G} we

simulate appointment system under the NS policy for NNS=10,000 scenarios of service durations

and arrival time deviations (dnp , u
n
p ) for all p = 1, . . . , P and n = 1, . . . , NNS. For each each

n = 1, . . . , NNS, we compute wn, gn, wnP+1, and vNS = 1
NNS

∑NNS
n=1

∑P
j=1

(
cw
jw

n
j + cg

jg
n
j

)
+ cownP+1.

We repeat this simulation 20 times, each time with a new sample of NNS scenarios. Finally, we take

the average of the 20 objective function values to obtain vNS.
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Table 3.4: ARG% for each SOASP instance under two cost structures: (1) Cost1: cw = cg = co; and (2) Cost2: cw = 1, cg =
5, co = 7.5. Results are based on the average across 20 random instances for each combination of patient mix, stochastic arrival
distribution, grace period and cost structures. ARG% values greater than or equal to 10% are marked in bold.

Hetero1
G N(0,102) N(-15,102) kkkkkN(-15,202) kkkkkU[-40,20] kkkkkU[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
10 18% 17% 4% 1% 15% 12% 14% 29% 40% 65%
15 4% 2% 3% 1% 7% 4% 7% 11% 24% 49%
20 0.3% 0.1% 2% 0.3% 0.3% 2% 0.5% 3% 24% 29%

Hetero2
G N(0,102) N(-15,102) kkkkkN(-15,202) kkkkkU[-40,20] kkkkkU[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
10 15% 15% 3% 1% 14% 12% 16% 30% 27% 67%
15 5% 7% 4% 0.1% 6% 4% 7% 13% 28% 53%
20 0.3% 3% 1% 0.1 % 3% 1% 0.3 4% 26% 23%

Homo1
G N(0,102) N(-15,102) kkkkkN(-15,202) kkkkkU[-40,20] kkkkkU[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
10 10% 20% 1% 1% 12% 19% 14% 21% 29% 68%
15 2% 6% 1% 0.1 % 3% 4% 6% 6% 26% 52%
20 0.4% 1% 0.8% 0.1% 1% 2% 0.3% 0.2% 24% 29%

Homo2
G N(0,102) N(-15,102) kkkkkN(-15,202) kkkkkU[-40,20] kkkkkU[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
10 12% 18% 1% 1% 10% 18% 13% 20% 24% 73%
15 3% 3% 0.1% 1% 3% 4% 6% 7% 27% 54%
20 0.2% 0.6% 0.1% 0.3% 3% 2% 0.3% 0.7% 25% 34%
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Algorithm 3.2: Neighbor Swapping Policy–Priority Queueing Scheme
Input: scheduled arrival times {ti}Pi=1, grace period (G), rescheduling period (R)

1 for (all patients arriving at the clinic) do
2 Denote the set of the initial positions of patients currently waiting asW .
3 Denote the initial position of the current arrival (patient) as i.
4 if ai > ti +G+R then /* if the patient i arrives in interval DE. */
5 Decline this patient.
6 else
7 if ai ≤ ti +G then /* if the patient i arrives in interval E or G.

*/
8 This patient i has lower priority than all patients in {j ∈ W : j ≤ i− 1}, and higher

priority than all patients in {j ∈ W : j ≥ i+ 1}. /* respects the
appointment order of on-time patients. */

9 end
10 if ti +G < ai ≤ ti +G+R and ai ≤ ai+1 then /* if the patient i arrives

in interval R and earlier than patient (i+ 1). */
11 This patient i has lower priority than all patients in {j ∈ W : j ≤ i− 1}, and higher

priority than all patients in {j ∈ W : j ≥ i+ 1}. /* keep the order of i and
i+ 1. */

12 end
13 if ti +G < ai ≤ ti +G+R and ai > ai+1 then /* if the patient i arrives

in interval R and later than patient (i+ 1). */
14 This patient i has lower priority than all patients in {j ∈ W : j ≤ i− 1} ∪ {i+ 1}, and

higher priority than all patients in {j ∈ W : j ≥ i+ 2}. /* swap the order of
i and i+ 1. */

15 end
16 end
17 end

Note that the NS policy is a feasible rescheduling policy to SOASP. Therefore, vNS serves as a

statistical upper bound on the optimal value of SOASP. Accordingly, we compute ARG% under

NS as vNS−vPI
N

vPI
N

.

For those parameter settings under which the AO policy is sub-optimal (i.e., SOASP instances

with large ARG% values, as marked in bold in Table 3.4), Figures 3.2–3.3 compare ARG% under

the AO and NS policies for the Hetero and Homo instances, respectively. In addition, Table 3.9 in

Appendix 3.7.6 reports the best selection of rescheduling period R∗ from {5, 10, 0.5G,G, 2G, 3G}

associated with the minimum (i.e., tightest) vNS in each parameter setting. We observe from Fig-
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Algorithm 3.3: Neighbor Swapping Policy–Serving Scheme
Input: scheduled arrival times {ti}Pi=1, grace period (G), rescheduling period (R)

1 while (provider is idle) do
2 Denote the set of the initial positions of patients currently waiting asW .
3 Denote i∗ as the initial position of the patient with the highest priority inW .
4 Denote the current clock time as T .
5 if W = ∅ then /* no patients waiting for service. */
6 The provider should wait.
7 else
8 ifW 6= ∅ and T ≥ tj +G for all j = 1, . . . , (i∗ − 1) then /* all patients j,

with j ≤ i∗ − 1, either are late or have been served. */
9 The provider should start serving patient i∗. BREAK.

10 else
11 The provide should wait.
12 end
13 end
14 end

ures 3.2–3.3 that the NS policy significantly and consistently shrinks the ARG% in all challenging

parameter settings (i.e., those with high variability in arrival time and short grace periods). For ex-

ample the NS policy is near-optimal whenG = 10 and u ∼ {N(0, 102), N(−15, 202), U [−40, 20]}

with ARG% ranging from 2% to 16%. In addition, when u ∼ U [−40, 40], NS cuts the ARG% by

half on average from those obtained under AO. This indicates that the NS policy can effectively

reschedule the appointments and avoid unnecessary idling.

As shown in Table 3.11 in 3.7.7, the average number of declined appointments per day under

NS is approximately zero under G = 10 and u ∼ {N(0, 102), N(−15, 202), U [−40, 20]}, and

is significantly less than under the AO policy when u ∼ U [−40, 40]. This is another important

property of the NS policy because a declined patient will have to be rescheduled for another day,

which is inconvenient to the patient and has a cost to the system.

Finally, it is noteworthy to mention that we repeat the same simulation using the optimal sched-

ule to the TSM-PI as the initial schedule. The obtained results on the NS policy are similar. Addi-

tionally, we use the same simulation steps to evaluate the performance of the NS policy for those

parameter settings under which AO is near-optimal (i.e., SOASP instances with small ARG% val-
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(a) Hetero1, cw = cg = co (b) Hetero1, cw = 1, cg = 5, co = 7.5

(c) Hetero2, cw = cg = co (d) Hetero2, cw = 1, cg = 5, co = 7.5

Figure 3.2: Comparisons of the ARG% values under appointment order and neighbor swapping
policies for the Hetero instances.

ues in Table 3.4). The obtained ARG% values under NS are very similar to ARG% values obtained

under AO, demonstrating the near-optimality of NS under those parameter settings. This makes

sense because under these settings the majority of patients are punctual or early, and so should be

served in the appointment order according to both the priority queuing and serving schemes.

3.5.5 Value of Modeling Stochastic Arrivals

In this section, we demonstrate the benefit of modeling stochastic arrivals in outpatient appointment

scheduling. For each SOASP instance, we solve the TSM-AO twice, with one assuming punctual

arrivals (i.e., zero arrival time deviations) and the other considering stochastic arrivals. We denote

the obtained schedules as S0 and Su, respectively. We then evaluate the cost E[QAO(x, t, ξ)] of S0,

denoted as C0, by reevaluating the schedule S0 under a set of 10,000 scenarios with stochastic
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(a) Homo1, cw = cg = co (b) Homo1, cw = 1, cg = 5, co = 7.5

(c) Homo2, cw = cg = co (d) Homo2, cw = 1, cg = 5, co = 7.5

Figure 3.3: Comparisons of the ARG% values under appointment order and neighbor swapping
policies for the Homo instances.

arrivals, while Cu denotes the corresponding cost of Su. We compute the relative increase in cost

RC(punc) := C0−Cu

Cu × 100%.

We also compare Su with the well-known and widely employed deterministic schedule Sm that

assigns appointment slot to each patient by the mean service duration of his/her type. For all

heterogeneous instances, we use the optimal sequence to the TSM-AO to assign patient types to

appointments in Sm and fix the length of each appointment slot to the mean service duration of the

assigned type to it. We then obtain the cost Cm of ignoring uncertainty by reevaluating Sm under

a set of 10,000 scenarios with stochastic arrivals and service durations. We compute the relative

increase in cost RC(mean) := Cm−Cu

Cu × 100%.

Table 3.5 presents RC(punc) and RC(mean), including the average and maximum among all combi-

nations of patient mix and distribution of stochastic arrival time deviation. From this table, we

observe that the cost of Su (i.e., considering stochastic arrivals) is significantly lower than that of

71



Table 3.5: The average and maximum relative cost gaps RC(punc) and RC(mean) as functions of pa-
tient mix and stochastic arrival distributions. Results are based on 20 random instances for each
parameter setting.

Hetero1
N(0,102) N(-15,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
RC(punc)RC(punc)RC(punc) 18–31 7–18 10–24 1–14 17–26 6–20 7–20 7–18 26–28 40–46
RC(mean)RC(mean)RC(mean) 24–41 13–38 31–54 8–21 28–47 12–27 24–39 18–29 27–37 44–55

Hetero2
N(0,102) N(-15,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
RC(punc)RC(punc)RC(punc) 11–20 8–21 7–15 6–22 9–19 7–22 9–18 10–20 38–46 45–52
RC(mean)RC(mean)RC(mean) 16–20 15–34 25–42 8–25 17–32 14–31 18–34 22–32 34–47 70–78

Homo1
N(0,102) N(-15,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
RC(punc)RC(punc)RC(punc) 15–17 3–17 7–30 3–15 7–15 6–19 7–18 7–17 26–35 29–42
RC(mean)RC(mean)RC(mean) 19–28 15–32 25–59 8–22 19–34 12–25 13–28 15–26 13–32 23–40

Homo2
N(0,102) N(-15,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2 Cost1 Cost2
RC(punc)RC(punc)RC(punc) 13–16 10–21 9–27 7–22 10–23 8–20 8–18 10–32 28–32 27–40
RC(mean)RC(mean)RC(mean) 23–33 21–33 22–50 10–26 22–42 18–30 16–33 18–39 21–35 49–64

S0 (i.e., ignoring stochastic arrivals). Overall, the average and maximum RC(punc) range in 7%–

45% and 14%–52%, respectively (see Tables 3.11–3.12 in Appendix 3.7.8 for the improvement in

scheduling metric). In addition, we observe that the cost of Su (i.e., considering stochasticity) is

significantly lower than that of Sm (i.e., ignoring stochasticity). The average and maximum RC(mean)

range in 8%–70% and 20%–78%.

3.6 Conclusion and Chapter Summary

In this chapter, we studied SOASP for OPC scheduling under stochastic arrival times and service

durations. We consider for an OPC manager who needs to design an appointment schedule and

a rescheduling policy for a single provider and a set of patients, where each patient has a known

probability distribution of arrival time deviations and service durations. The objective is to mini-

mize the expected total cost of patient waiting time, provider idle time, and provider overtime.

By deriving two-stage approximations of SOASP and testing them in extensive numerical exper-
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iments, we show that the AO policy is near-optimal in a wide range of realistic parameter settings.

We also identify parameter settings that result in sub-optimality of the AO policy. Accordingly,

we propose an alternative policy based on neighbor-swapping that leads to a significantly better

performance.

To the best of our knowledge, and according to the recent review of outpatient appointment sys-

tems by Ahmadi-Javid et al. (2017), this chapter presents the first stochastic programming approach

to SOASP that considers (1) patient heterogeneity, (2) optimizing both the initial appointment se-

quencing and scheduling decisions, and (3) the possibility of rescheduling (i.e., resequencing or

declining).

3.7 Appendix

3.7.1 Proof of Proposition 3.4.1

Proposition 3.4.1 tmin
i ≤ ti ≤ tmax

i , where tmin
i = (i− 1)G and tmax

i = L− (P − i)G for all i ∈ [P ].

Proof. Recall that in Assumption A5 we assume that the scheduled times of two consecutive pa-

tients are separated by at least one grace period. This is ensured by constraints (3.1e). Given that

ti ≤ L by (3.1e), then the following bounds on the scheduled time are valid:

(i− 1)G ≤ ti ≤ L− (P − i)G, ∀i ∈ [P ] (3.9)

Therefore, we set tmin
i = (i− 1)G and tmax

i = L− (P − i)G in (3.6a)–(3.6b).
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3.7.2 SMILP Reformulation of the SAA Formulation (3.4)

v PI
N = minimize

a,s,w,g

1

N

N∑
n=1

P∑
j=1

(
cw
jw

n
j + cg

jg
n
j

)
+ cownP+1 (3.10a)

Subject to: (3.1b)− (3.1f)

(3.2b)− (3.2g) ∀n

(3.3d)− (3.3k) ∀n ∈ N EG

znj = 0, ∀j ∈ [P ], ∀n ∈ N EG

ynj,j = 1, ∀j ∈ [P ], n ∈ N EG

d̃j =
P∑
p=1

P∑
i=1

dnpβ
n
p,i,j, ∀j ∈ [P ], ∀n /∈ N EG

anj =
P∑
i=1

(
αni,j +

P∑
p=1

unpβ
n
p,i,j

)
, ∀j ∈ [P ], ∀n /∈ N EG

(3.2j)− (3.2k) ∀n /∈ N EG

wnj ≥ snj − anj −Mn
j

(
znj +

P∑
p=1

P∑
i=1

enpβ
n
p,i,j

)
, ∀j ∈ [P ], ∀n /∈ N EG

wnj ≥ sj −
P∑
i=1

αni,j −Mn
j

(
2− (1− znj )−

P∑
p=1

P∑
i=1

enpβ
n
p,i,j

)
, ∀j ∈ [P ], ∀n /∈ N EG

(3.2n)− (3.2p) ∀n /∈ N EG

(3.2q)− (3.2r) ∀n

3.7.3 Proof of Proposition 3.4.3

Proposition 3.4.3 Mn
j = L + max

p=1,...,P
{|unp |} + (j − 1) max

p=1,...,P
{dnp} for j = 1, . . . , P and n ∈ [N ]

is a valid value for the Big-M constant in constraints (3.2l)–(3.2m) and (3.3g)–(3.3h).

Proof. We prove the validity of Mj in constraints (3.2l)–(3.2m) of the TSM-PI and the proof of
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the validity of Mj in constraints (3.3g)–(3.3h) of the TSM-AO is similar. For notational conve-

nience, we suppress the scenario index n from the scenario-dependent parameters, variables, and

constraints.

From constraints (3.2l)–(3.2m) and (3.2r) we have

wj = max{sj −max{aj, tj}, 0}

= max {sj −max{tj + uj, tj}, 0} , for j = 2, . . . P

∴ wmax
j =

{
smax
j − tmin

j , 0
}

(3.11)

where uj ≡
p∑
i=1

∑P
p=1 upxp,iyi,j , tj ≡

P∑
i=1

tiyi,j ,wmax
j is the maximum waiting time of appointment

j, and smax
j is the maximum actual start time. It follows from (3.11) that to preserve optimality, Mj

should be greater than or equal to wmax
j , i.e., Mj ≥ wmax

j . Next, we derive an upper bound on smax
j in

(3.11). By constraints (3.2j)–(3.2k), we can compute the value of sj recursively as follow:

s1 = max{t1, t1 + u1}

s2 = max{s1 + d̃1, a2} = max{t1 + d̃1, t1 + u1 + d̃1, t2 + u2}

s3 = max{s2 + d̃2, t3 + u3} = max{t1 + d̃1 + d̃2, t1 + u1 + d̃1 + d̃2, t2 + u2 + d̃2, t3 + u3}

· · ·

sj = max

{
t1 +

j−1∑
k=1

d̃k, max
i=1,...,j

{
ui + ti +

j−1∑
k=i

d̃k
}}

smax
j ≤ L+ max

p=1,...,P
{|unp |}+ (j − 1) max

p=1,...,P
{dnp} (3.12)

where |C| denote the absolute value of C.The last inequality (3.12) holds because (1) ti ≤ L for

all i by constraints (3.1d), (2) ui ≤ max
p=1,...,P

|up| for all i, and (3) d̃j ≤ max
p=1,...,P

dp. It follows from

(3.12) that
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wmax
j ≤ L+ max

p=1,...,P
{|unp |}+ (j − 1) max

p=1,...,P
{dnp} = Mj

3.7.4 Convergence Results at the Selected Sample Size
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Table 3.6: The Approximate Optimality Index (AOIN ) between the statistical lower bound vN
and upper bound vN ′ on the objective values of TSM-PI and TSM-AO and their 95% Confidence
Interval (95%CI) at the selected sample size N for each SOASP instance under Cost1 (cw = cg =
co).

Inst Dist G Size, N 95%CIvN95%CIvN95%CIvN 95%CIvN′95%CIvN′95%CIvN′ AOINAOINAOIN Size, N 95%CIvN95%CIvN95%CIvN 95%CIvN′95%CIvN′95%CIvN′ AOINAOINAOIN
(TSM-PI) (TSM-AO)

Hetero1 N(0, 102)N(0, 102)N(0, 102) 10 100 [200, 203] [217, 220] 0.07 100 [228, 232] [236, 237] 0.02
15 100 [257, 261] [282, 284] 0.07 100 [250, 255] [268, 271] 0.05
20 200 [285, 289] [301, 303] 0.05 200 [279, 281] [286, 288] 0.02

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [223, 225] [231, 233] 0.03 200 [224, 226] [230, 234] 0.03
15 200 [223, 227] [230, 231] 0.02 200 [224, 227] [231, 232] 0.03
20 200 [225, 228] [230, 232] 0.02 200 [224, 226] [230, 232] 0.03

N(−15, 202)N(−15, 202)N(−15, 202) 10 100 [185, 189] [197, 198] 0.05 200 [203, 205] [214, 216] 0.05
15 200 [225, 229] [238, 242] 0.05 200 [230, 233] [229, 232] 0.01
20 200 [247, 250] [269, 272] 0.08 200 [243, 245] [248, 249] 0.02

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [182, 182] [185, 187] 0.03 200 [211, 213] [198, 202] 0.06
15 200 [227, 229] [236, 237] 0.03 200 [239, 243] [244, 246] 0.01
20 200 [280, 283] [285, 287] 0.01 200 [277, 280] [282, 284] 0.02

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [127, 130] [129, 131] 0.01 200 [181, 182] [182, 183] 0.01
15 100 [139, 154] [159, 161] 0.06 200 [199, 201] [201, 202] 0.01
20 100 [177, 184] [190, 193] 0.05 200 [221, 223] [226, 226] 0.02

s
Hetero2 N(0, 102)N(0, 102)N(0, 102) 10 200 [227, 230] [250, 253] 0.08 200 [252, 257] [265, 266] 0.03

15 200 [276, 279] [292, 294] 0.05 200 [293, 296] [291, 293] 0.01
20 200 [311, 315] [314, 316] 0.01 200 [309, 312] [312, 314] 0.01

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [251, 254] [259, 261] 0.03 200 [254, 258] [259, 261] 0.01
15 200 [254, 257] [259, 261] 0.02 200 [254, 257] [258, 260] 0.01
20 200 [255, 258] [260, 261] 0.01 200 [255, 258] [258, 260] 0.01

N(−15, 202)N(−15, 202)N(−15, 202) 10 100 [210, 213] [227, 228] 0.07 200 [232, 236] [240, 241] 0.02
15 200 [243, 247] [249, 251] 0.02 200 [255, 259] [256, 259] 0.01
20 200 [266, 270] [272, 274] 0.02 200 [269, 270] [274, 276] 0.02

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [202, 202] [208, 211] 0.04 200 [234, 236] [233, 235] 0.01
15 200 [252, 255] [260, 261] 0.03 200 [264, 267] [269, 271] 0.02
20 200 [309, 313] [313, 314] 0.01 200 [306, 309] [310, 311] 0.01

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [159, 163] [181, 183] 0.09 100 [190, 200] [204, 206] 0.03
15 200 [171, 175] [180, 184] 0.05 200 [221, 222] [221, 223] 0.01
20 200 [196, 199] [217, 220] 0.09 200 [238, 240] [250, 250] 0.04

s
Homo1 N(0, 102)N(0, 102)N(0, 102) 10 200 [203, 207] [214, 216] 0.04 200 [214, 224] [224, 227] 0.02

15 200 [247, 251] [253, 254] 0.02 200 [256, 258] [252, 254] 0.02
20 200 [277, 282] [280, 282] 0.01 100 [277, 279] [280, 282] 0.01

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [219, 221] [222, 224] 0.02 200 [219, 221] [219, 221] 0.01
15 200 [219, 222] [223, 225] 0.02 200 [216, 221] [220, 222] 0.01
20 200 [222, 225] [226, 227] 0.01 200 [221, 226] [225, 226] 0.01

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [173, 176] [192, 193] 0.09 200 [194, 196] [206, 207] 0.02
15 200 [211, 215] [217, 219] 0.02 200 [223, 225] [219, 221] 0.02
20 200 [238, 242] [243, 244] 0.01 200 [242, 244] [242, 244] 0.01

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [174, 175] [176, 179] 0.02 200 [203, 204] [201, 203] 0.01
15 200 [220, 223] [228, 229] 0.03 200 [232, 235] [236, 238] 0.01
20 200 [281, 284] [286, 287] 0.01 200 [279, 282] [283, 285] 0.01

U [−40, 40]U [−40, 40]U [−40, 40] 10 200 [197, 202] [199, 206] 0.02 200 [244, 249] [258, 260] 0.04
15 200 [180, 182] [178, 181] 0.01 200 [187, 193] [192, 194] 0.01
20 200 [188, 192] [192, 196] 0.02 200 [215, 217] [219, 220] 0.01

s
Homo2 N(0, 102)N(0, 102)N(0, 102) 10 200 [294, 300] [311, 314] 0.04 200 [322, 329] [333, 335] 0.02

15 200 [354, 360] [364, 367] 0.02 200 [370, 373] [365, 368] 0.01
20 200 [389, 395] [395, 397] 0.01 200 [386, 390] [392, 395] 0.01

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [337, 340] [343, 346] 0.02 200 [332, 335] [338, 340] 0.02
15 200 [337, 341] [343, 346] 0.01 200 [334, 337] [340, 343] 0.02
20 200 [337, 341] [343, 346] 0.01 200 [292, 329] [340, 342] 0.06

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [277, 284] [301, 303] 0.06 200 [294, 297] [310, 313] 0.05
15 200 [311, 317] [323, 326] 0.03 200 [329, 333] [324, 327] 0.02
20 200 [338, 343] [348, 351] 0.02 200 [345, 347] [348, 351] 0.01

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [266, 270] [262, 264] 0.02 200 [290, 294] [303, 304] 0.04
15 200 [318, 321] [329, 332] 0.03 200 [334, 339] [341, 343] 0.04
20 200 [386, 391] [394, 397] 0.02 200 [381, 385] [389, 391] 0.04

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [208, 218] [215, 219] 0.01 200 [254, 258] [255, 256] 0.01
15 100 [210, 217] [211, 220] 0.01 100 [269, 276] [274, 278] 0.01
20 100 [237, 246] [249, 253] 0.03 200 [298, 300] [304, 305] 0.02
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Table 3.7: The Approximate Optimality Index (AOIN ) between the statistical lower bound vN
and upper bound vN ′ on the objective values of TSM-PI and TSM-AO and their 95% Confidence
Interval (95%CI) at the selected sample sizeN for each SOASP instance under Cost2 (cw = 1, cg =
5, co = 7.5).

Inst Dist G Size, N 95%CIvN95%CIvN95%CIvN 95%CIvN′95%CIvN′95%CIvN′ AOINAOINAOIN Size, N 95%CIvN95%CIvN95%CIvN 95%CIvN′95%CIvN′95%CIvN′ AOINAOINAOIN
(TSM-PI) (TSM-AO)

Hetero1 N(0, 102)N(0, 102)N(0, 102) 10 200 [470, 481] [481, 488] 0.02 200 [512, 523] [527, 528] 0.01
15 200 [596, 609] [598, 603] 0.06 200 [622, 631] [615, 620] 0.02
20 200 [723, 736] [738, 741] 0.01 200 [722, 728] [729, 733] 0.01

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [554, 564] [569, 575] 0.02 200 [547, 554] [561, 565] 0.02
15 200 [565, 575] [572, 578] 0.01 200 [562, 572] [570, 574] 0.01
20 200 [580, 590] [589, 593] 0.01 200 [580, 590] [583, 587] 0.01

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [447, 459] [459, 464] 0.01 200 [486, 492] [509, 513] 0.04
15 200 [524, 537] [534, 538] 0.01 200 [560, 569] [553, 559] 0.02
20 200 [620, 631] [621, 625] 0.02 200 [637, 642] [636, 642] 0.02

U [−40, 20]U [−40, 20]U [−40, 20] 10 100 [407, 410] [379, 387] 0.05 200 [464, 471] [494, 497] 0.05
15 100 [524, 533] [553, 555] 0.04 100 [567, 579] [594, 598] 0.03
20 100 [720, 726] [741, 744] 0.02 100 [696, 702] [739, 742] 0.05

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [241, 251] [244, 250] 0.00 200 [409, 411] [407, 409] 0.00
15 100 [314, 324] [329, 336] 0.04 200 [476, 480] [473, 475] 0.01
20 200 [483, 498] [498, 504] 0.02 200 [631, 638] [639, 640] 0.01

Hetero2 N(0, 102)N(0, 102)N(0, 102) 10 200 [490, 502] [494, 500] 0.00 200 [563, 574] [575, 577] 0.01
15 100 [627, 635] [656, 660] 0.04 100 [656, 671] [678, 680] 0.02
20 200 [619, 629] [629, 633] 0.01 200 [605, 613] [622, 626] 0.02

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [619, 629] [629, 633] 0.01 200 [605, 613] [622, 626] 0.02
15 200 [629, 640] [631, 635] 0.01 200 [621, 633] [627, 632] 0.00
20 200 [644, 655] [646, 650] 0.01 200 [638, 651] [643, 648] 0.00

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [494, 508] [504, 510] 0.01 200 [486, 492] [509, 513] 0.04
15 200 [578, 592] [584, 588] 0.00 200 [607, 612] [612, 621] 0.01
20 200 [674, 686] [670, 673] 0.02 200 [686, 691] [684, 690] 0.00

U [−40, 20]U [−40, 20]U [−40, 20] 10 100 [412, 421] [451, 454] 0.07 100 [510, 516] [542, 545] 0.05
15 100 [568, 577] [603, 605] 0.05 100 [617, 632] [642, 649] 0.03
20 100 [765, 772] [798, 801] 0.04 100 [740, 749] [800, 803] 0.06

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [263, 275] [267, 272] 0.00 200 [446, 450] [446, 448] 0.00
15 200 [334, 344] [354, 361] 0.05 200 [515, 518] [516, 518] 0.00
20 200 [475, 492] [504, 510] 0.04 200 [586, 604] [645, 649] 0.06

Homo1 N(0, 102)N(0, 102)N(0, 102) 10 100 [400, 414] [433, 442] 0.07 200 [484, 494] [493, 495] 0.01
15 100 [545, 553] [569, 573] 0.04 100 [567, 580] [586, 588] 0.02
20 200 [700, 710] [710, 714] 0.05 200 [695, 701] [698, 702] 0.00

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [524, 532] [530, 535] 0.01 200 [511, 517] [524, 527] 0.02
15 200 [528, 537] [533, 536] 0.00 200 [524, 535] [532, 535] 0.00
20 200 [546, 554] [549, 552] 0.00 200 [543, 553] [547, 551] 0.00

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [389, 408] [427, 437] 0.02 200 [454, 460] [479, 482] 0.01
15 200 [493, 504] [500, 504] 0.00 200 [[520, 525] 527, 534] 0.02
20 200 [594, 597] [593, 602] 0.00 200 [608, 612] [607, 612] 0.00

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [377, 384] [383, 385] 0.01 200 [442, 447] [462, 465] 0.03
15 200 [514, 521] [521, 524] 0.01 200 [544, 555] [551, 553] 0.00
20 200 [705, 713] [708, 711] 0.04 200 [705, 713] [708, 711] 0.00

U [−40, 40]U [−40, 40]U [−40, 40] 10 100 [229, 236] [230, 235] 0.00 200 [373, 381] [393, 395] 0.04
15 100 [377, 384] [383, 385] 0.01 200 [442, 447] [462, 465] 0.03
20 100 [483, 495] [498, 502] 0.02 200 [634, 638] [645, 647] 0.02

Homo2 N(0, 102)N(0, 102)N(0, 102) 10 200 [599, 613] [611, 617] 0.01 200 [702, 717] [716, 719] 0.01
15 200 [780, 797] [788, 795] 0.00 200 [824, 833] [812, 820] 0.02
20 200 [884, 901] [890, 897] 0.00 200 [884, 892] [898, 904] 0.01

N(−15, 102)N(−15, 102)N(−15, 102) 10 200 [793, 805] [795, 802] 0.00 200 [771, 780] [787, 792] 0.02
15 200 [793, 806] [798, 804] 0.00 200 [791, 807] [800, 805] 0.00
20 200 [793, 806] [799, 805] 0.00 200 [791, 807] [800, 805] 0.01

N(−15, 202)N(−15, 202)N(−15, 202) 10 200 [590, 603] [636, 644] 0.07 200 [668, 676] [703, 708] 0.05
15 200 [708, 724] [721, 728] 0.01 200 [756, 765] [745, 753] 0.01
20 200 [779, 794] [783, 789] 0.00 200 [798, 805] [804, 812] 0.01

U [−40, 20]U [−40, 20]U [−40, 20] 10 200 [447, 459] [459, 464] 0.01 200 [486, 492] [509, 513] 0.04
15 200 [717, 728] [730, 735] 0.01 200 [721, 744] [731, 742] 0.00
20 200 [907, 920] [913, 918] 0.00 200 [872, 884] [920, 926] 0.04

U [−40, 40]U [−40, 40]U [−40, 40] 10 200 [321, 327] [326, 332] 0.02 200 [558, 561] [558, 562] 0.00
15 100 [392, 406] [411, 420] 0.04 200 [615, 620] [614, 618] 0.01
20 100 [486, 507] [516, 524] 0.04 200 [670, 675] [683, 686] 0.01
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3.7.5 Computation Time of the TSM-AO and TSM-PI

Table 3.8 present range of the average solution time for the TSM-AO and TSM-PI (reported as

average solution time with N=5 scenarios–200 scenarios) across 20 random instances for each

combination of patient mix, stochastic arrival distribution, and grace period. First, we note that the

TSM-AO enjoys an outstanding computational behavior independent of patient mix (equivalently,

distributions of service durations), distribution of arrival time deviations, length of the grace pe-

riod, and the cost structure. Solution time of the TSM-AO ranges from 0.01 seconds (with N =

5 scenarios) to 66 seconds (with N = 200 scenarios), demonstrating its implementability (i.e.,

can be easily translated into standard optimization software packages, not requiring customized

algorithmic development or tuning).

Second, the computational behavior of the TSM-PI depends on patient mix, distribution of ar-

rival time deviations, and length of the grace period. For example, the TSM-PI takes longer times

to solve the heterogeneous (Hetero) instances than homogeneous (Homo) instances. The TSM-PI

solution time (in seconds) ranges from 0.01 (with N = 5 scenarios) to 7200 (with N = 200 sce-

narios) and from 0.01 (withN = 5 scenarios) to 3700 (withN = 200 scenarios) for the Hetero and

Homo instances, respectively. Moreover, the TSM-PI solution time increases as the variability of

arrival time deviation increases and as the grace period shortens. For example, for Hetero1 and a

grace period of 10 minutes, increasing the variability from u ∼ N(−15, 102) to u ∼ N(−15, 202)

widens the range of the TSM-PI solution time from 0.2–13 to 15–5312 seconds, respectively. In

contrast, increasing the grace period from 10 to 20 minutes under u ∼ N(−15, 202) narrowed the

range of the TSM-PI solution time from 15–5312 to 0.2–17 seconds.

We attribute the longer solution time of the TSM-PI for the instances with heterogeneous patient

types, higher variability in arrival time deviations, and shorter grace periods to the following. First,

heterogeneous instances require larger number of binary decision variables representing the initial

appointment sequencing, which leads to larger MIP models. Second, under higher variability in
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arrival time deviation, a larger portion need to be rescheduled (i.e., arrive within interval R or DE).

This results in larger search space of the rescheduling decisions in the second-stage formulation of

the TSM-PI.

Finally, we note that, without strengthening the TSM-PI (see Section 3.4.2), we were unable to

solve any of the 60 TSM-PI instances or even smaller instances with 3 patients and 10 scenarios.

As we solve the TSM-PI only to obtain a statistical lower bound for SOASP and evaluate the

(sub-)optimality of the appointment order policy, we did not attempt to further improve the solution

efficacy of TSM-PI.
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Table 3.8: The range of the average solution time for the TSM-AO and TSM-PI (reported as average solution time with N=5
scenarios–200 scenarios) across 20 random instances for each combination of patient mix, stochastic arrival distribution, and
grace period. Large solution time are marked in bold.

Inst G N(0,102) N(-15,102) N(-15,202) U[-40,20] U[-40,40]
TSM-AO TSM-PI TSM-AO TSM-PI TSM-AO TSM-PI TSM-AO TSM-PI TSM-AO TSM-PI

Hetero1 10 0.39–23 66–7214 0.02–8 0.2–13 0.2–13 15–5312 0.02–2 1–3615 0.02–0.7 12–*
15 0.23–39 2–1885 0.31–7 0.02–9 10–53 3–1852 0.02–3 1–219 0.02–1 9–*
20 0.2–22 0.5–175 0.2–7 0.2–8 0.2–16 0.2–17 0.02–2 0.02–0.7 0.01–1 5–*

Hetero2 10 1–41 1–2647 0.2–0.3 0.2–22 0.3–66 0.3–628 0.02–2 2–3623 0.03– 2 7–*
15 0.3–35 1–58 0.3–0.4 0.26–13 0.3–38 0.2–55 0.02–2 2–341 0.04–1 4–*
20 0.4–1 0.3–15 0.2–0.4 0.3–10 0.3–4 0.2–3 0.01–1 0.02–1 0.02–1 1–*

Homo1 10 0.03–0.7 0.2–1612 0.01–0.5 0.4–4 0.02–1 0.2–2188 0.01–1.2 11-3249 0.02–3 5–3601
15 0.01–1 0.1–46 0.02–0.5 0.02–0.4 0.01–0.5 0.08–30 0.02–1 1–73 0.01–7 15–3666
20 0.01–0.3 7–10 0.02–0.4 0.01–0.4 0.01–0.6 0.06–0.6 0.01–0.3 0.05–0.4 0.03–2 12–795

Homo2 10 0.01–0.7 6–1950 0.02–0.3 0.02–0.5 0.01–4 0.2–214 0.02–0.3 10–3269 1–3 14–3700
15 0.01–0.7 0.07–55 0.01–0.6 0.02–0.7 0.01–0.5 0.14–55 0.02–1 2–175 1–5 10–3500
20 0.02–0.3 0.06–0.7 0.01–0.3 0.01–0.7 0.01–0.3 0.1–0.6 0.01–1 0.5–2 1–4 10–3409

∗ terminated with 1% relative MIP Gap (relMIPGap := UB−LB
UB × 100%, where UB is the best upper bound and LB is the linear

programming (LP) relaxation-based lower bound obtained at termination after 2 hours) at the time limit of 2 hours. We note that we allowed
such instances to run for several days, however, the relative MIP gap remained at 1% for some instances and 5% for all others. For these
instances, we use the optimal value of the LP relaxation of TSM-PI at termination instead of vPI in computing the ARG% in Section 3.5.3.
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3.7.6 Best Selection of Rescheduling Period R∗ in NS policy

Table 3.9: Values of the rescheduling period R∗ associated with the tight ARG values under the
NS policy in Figures 3.2–3.3.

Hetero1/Hetero2
G N(0,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost1 Cost1 Cost2
10 10 5 5 5 10 5 10 5
15 N/A N/A N/A N/A N/A 3 5 5
20 N/A N/A N/A N/A N/A N/A 5 3

Homo1
G N(0,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost1 Cost1 Cost2
10 10 5 10 5 5 3 15 5
15 N/A N/A N/A N/A N/A N/A 10 5
20 N/A N/A N/A N/A N/A N/A 5 3

Homo2
G N(0,102) N(-15,202) U[-40,20] U[-40,40]

Cost1 Cost2 Cost1 Cost2 Cost1 Cost1 Cost1 Cost2
10 10 5 10 5 5 5 10 5
15 N/A N/A N/A N/A N/A N/A 5 5
20 N/A N/A N/A N/A N/A N/A 5 3
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3.7.7 Average Number of Declined Appointments Under the NS and AO

Policies

Table 3.10: Average number (per day) of declined appointments under the NS and AO policies

N(0, 1020, 1020, 102)
Inst G Cost1 Cost2

NS AO NS AO
Hetero1/2 10 0 2 0 2

Homo1/2 10 0 2 1 2

N(−15, 202−15, 202−15, 202)
Inst G Cost1 Cost2

NS AO NS AO
Hetero1/2 10 0 2 0 2

Homo1/2 10 0 1 0 2

U[−40, 20−40, 20−40, 20]
Inst G Cost1 Cost2
Hetero1/2 10 0 2 0 2

Homo1/2 10 1 2 1 2

U[−40, 40−40, 40−40, 40]
Inst G Cost1 Cost2

NS AO NS AO
Hetero1/2 10 3 5 3 5

15 2 4 2 4
20 1 2 1 2

Homo1 10 2 5 3 5
15 2 4 2 4
20 1 3 2 3

Homo2 10 3 5 3 5
15 2 4 2 4
20 1 3 1 3
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3.7.8 Improvement in Scheduling Metric

Table 3.11: The average and maximum improvement of Su over S0 (reported as average–
maximum) in scheduling metrics under various patient mixes, stochastic arrival distributions, and
Cost 1 (i.e.,cw = cg = co). Results are based on 20 random instances for each parameter setting.

Inst Distribution Obj(%) WaitT(%) OverT(%) IdleT(%)
Hetero1 N(0,102) 18–31% 20–30% 41–65% 8–16%

N(-15,102) 10–24% 17–38% 2–24% 22–33%
N(-15,202) 17–26% 13–21% 35–54% 18–24%
U[-40,20] 7–20% 8–23% 16–46% 8–16%
U[-40,40] 26–28% 6–9% 198–217% 38–39%

Hetero2 N(0,102) 11–20% 12–25% 29–43% 4–8%
N(-15,102) 7–15% 9–20% 5–24% 11–18%
N(-15,202) 9–19% 11–23% 13–32% 9–15%
U[-40,20] 9–18% 10–21% 27–47% 3–9%
U[-40,40] 38–46% 37–51% 2–18% 53–60%

Homo1 N(0,102) 15–17% 7–11% 39–42% 21–23%
N(-15,102) 7–30% 17–49% -4–23% 8–11%
N(-15,202) 7–15% 7–13% 29–35% 18–22%
U[-40,20] 7–18% 10–25% 6–19% 11–17%
U[-40,40] 26–35% 9–21% 40–67% 51–59%

Homo2 N(0,102) 13–16% 12–21% 30–41% 11–17%
N(-15,102) 9–27% 24–54% 6–20% -2–9%
N(-15,202) 10–23% 20–37% 1–20% 5–12%
U[-40,20] 8–18% 13–26% 8–24% 3–8%
U[-40,40] 28–32% 1–10% 88–96% 44–51%
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Table 3.12: The average and maximum improvement of Su over S0 (reported as average–
maximum) in scheduling metrics under various patient mixes and stochastic arrival distributions,
and Cost 2 (i.e.,cw = 1, cg = 5, co = 7.5). Results are based on 20 random instances for each
parameter setting.

Inst Distribution Obj(%) WaitT(%) OverT(%) IdleT(%)
Hetero1 N(0,102) 7–18% 13–21% 18–20% 7–7%

N(-15,102) 1–14% 2–21% 4–26% 0–15%
N(-15,202) 6–20% 1–11% 14–43% 19–31%
U[-40,20] 7–18% -8–0% 21–49% 33–48%
U[-40,40] 40–46% -21– -15% 113–162 124–132

Hetero2 N(0,102) 8–21% -8–4% 15-45% 43-54%
N(-15,102) 6–22% 3–33% -16–29 -9–7%
N(-15,202) 7–22 -1–11% 13–50% 20–30%
U[-40,20] 10–20% -7–7% 22–25% 40–43%
U[-40,40] 45–52% -14%–8% 127–187% 104–112%

Homo1 N(0,102) 3–17% 3–14% 7–21% 5-13%
N(-15,102) 3–15% 6–21% 0–28% 4–11%
N(-15,202) 6–19 0–13% 13–42% 17–27%
U[-40,20] 7–17% -2–8% 15–36% 31–39%
U[-40,40] 29–42% -24–17% 99–641% 119–142%

Homo2 N(0,102) 10–21% -6–2% 20–31% 45–48%
N(-15,102) 7–22% 6–30% -16–30% -17–12%
N(-15,202) 8–20% 2–11% 21–45% 17–29%
U[-40,20] 10–32% 13–32% 12–62% 6–16%
U[-40,40] 27–40% -39– -33% 79–197 123–145%
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CHAPTER 4

A Distributionally Robust Optimization Approach

for Outpatient Colonoscopy Scheduling

4.1 Introduction

In this chapter, we consider an OPC manager who must schedule the start time for a set of

colonoscopy procedures (appointments) for a single provider. Colonoscopy duration and patient

actual arrival time relative to their scheduled appointment time are random in nature and observed

on the day of service, after the appointment decisions are made. The quality of a schedule’s per-

formance is a function of patient waiting time, provider idle time, and provider overtime.

This chapter is based on our work with the University of Michigan Medical Procedure Unit

(UM-MPU), an OPC that performs a variety of procedures including a large number of colono-

scopies. Colonoscopy, in particular, is the mainstay of diagnosis and prevention for colorectal

cancer (CRC), a leading cause of cancer death worldwide (Anderson and Butterly (2015), Ameri-

can Cancer Society 2019, Singh et al. (2016); Zauber et al. (2012))

Colonoscopy appointment planning decisions are challenging for several reasons. First, there

is significant variability in colonoscopy duration, primarily due to the quality of pre-procedure

bowel preparation (prep) that the patient must undergo (Bechtold et al. (2016); Chokshi et al.

(2012); Froehlich et al. (2005); Johnson et al. (2014); Lebwohl et al. (2010); Rex et al. (2002,
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2006)). Our analysis of the UM-MPU data suggests that colonoscopy durations are “bimodal”,

i.e., depending on the prep quality they can follow two different probability distributions, one

for those with adequate prep and the other for those with inadequate prep (see this analysis in

Section 4.2). Unfortunately, when scheduling a patient, it is not known at that time, whether

the patient will perform an adequate prep or not. Furthermore, there is a wide range of possible

probability distributions for modeling the variability in colonoscopy duration with adequate and

inadequate prep (see Figure 4.1 in Section 4.2).

Second, colonoscopy is often scheduled with upper endoscopy. The variability in the duration of

the combined colonoscopy and upper endoscopy is primarily due to the variability in colonoscopy

duration (as a function of uncertain prep quality). Moreover, the duration of a combined procedure

is longer than that of a colonoscopy procedure. This requires the OPC managers to make complex

sequencing decisions pertaining to the order of colonoscopy and the combined upper endoscopy

and colonoscopy.

Third, several clinical studies suggest that time of the day may affect colonoscopy outcomes,

possibly as a consequence of provider fatigue as the day progresses (see, e.g., Almadi et al. (2015);

Singh et al. (2016)). As such, the provider often has a preference for earlier start times for those

who are at high risk of CRC. Accommodating provider preference and maintaining good opera-

tional performance are difficult to trade off. For example, scheduling the combined procedure of

a high-risk patient at the start of the day may increase the waiting time of the subsequent appoint-

ment.

Finally, there is significant variability in patient actual arrival time relative to their scheduled

arrival time (see Figure 4.6 in Appendix 4.7.1).

Ignoring the variability of colonoscopy duration can lead to patient delay, provider idling and/or

overtime. By incorporating uncertainty, classical stochastic appointment scheduling models, as

well as those that we propose in chapters 2–3, seek to find scheduling decisions that minimize the

expected cost of patient waiting, provider idle time, and provider overtime
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In this chapter, we exploit the ideas and tools of distributionally robust (DR) optimization to

address uncertainty in both procedure duration (as a function of uncertain prep quality) and arrival

time deviations. We consider DR outpatient colonoscopy scheduling (DROCS) problem that seeks

optimal appointment sequence and schedule to minimize the worst-case expected weighted sum

of patient waiting, provider idling, and provider overtime. Here, we take the worst-case over

an ambiguity set (a family of distributions) characterized by the known means and supports of

prep quality, durations, and arrival time deviations. We derive an equivalent mixed-integer linear

programming (MILP) formulation to solve DROCS.

Using the UM-MPU data, we then conduct extensive numerical experiments to draw insights

into colonoscopy scheduling. Specifically, we demonstrate that this DR approach can produce

schedules that (1) have a good operational performance (in terms of waiting time, idle time, and

overtime) under various probability distributions (and extreme scenarios) of the random parame-

ters, and (2) can accommodate provider (and patient) preference on appointment time while main-

taining a good operational performance as compared to the stochastic programming approach.

To the best of our knowledge, and according to the recent review of outpatient appointment sys-

tems by Ahmadi-Javid et al. (2017) and the literature review in Section 4.3, the work in this chapter

is the first to address the bimodal ambiguity of colonoscopy durations. We further contribute with

a new DR model that incorporates sequencing decisions and considers the ambiguity of two co-

existing uncertainties of colonoscopy duration (as a function of uncertain prep quality) and arrival

time deviation.

The remainder of this chapter is structured as follows. In the Section 4.2, we present a motivating

example for our DR approach. In Section 4.3, we review the relevant literature. In Section 4.4, we

formally define DROCS and its MILP reformulation. In Section 4.5, we use historical colonoscopy

data to conduct case studies of DROCS and draw managerial insights based on real data. Finally,

we conclude and summarise this chapter in Section 4.6.
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Table 4.1: The following parameter estimates (in minutes) are based on historical data from the
Gastroenterology and Hepatology Endoscopy Practice at University of Michigan Medical Proce-
dures Unit between 2013 and 2017.

Parameter Mean Standard Deviation
Arrival time deviation, u 10 25
Colonoscopy duration with adequate prep,dA 21 11
Colonoscopy duration with inadequateprep, dI 25 15
Prep Adequacy rate ' 0.86

4.2 Motivation

A main challenge in scheduling appointment times for colonoscopy procedures at the UM-MPU is

the variability in colonoscopy duration due to adequate versus inadequate bowel prep. To measure

this variability and analyze these distributional differences, we analyzed UM-MPU data collected

electronically from January 2013 through December 2017, which represents ∼45K colonoscopy

appointments. Table 4.1 provides statistics on the mean and standard deviation of colonoscopy

durations and the deviations of arrival time from scheduled appointment time.

We analyze the probability distribution of colonoscopy durations with adequate and with inade-

quate prep using the following statistical tests at a significance level α = 0.05.

1. Hartigan’s dip test of unimodality (Hartigan et al., 1985): for a random vector X having

distribution F , this test examines the null hypothesis that F is a unimodal distribution. Cor-

respondingly, the alternative hypothesis is that F is non-unimodal, i.e., at least bimodal. We

implemented this test using the R function dip.test (Maechler, 2016) with X represent-

ing the vector of all colonoscopy durations. We obtain a p-value of 2.2×10−16 < α, rejecting

the null hypothesis in favor of the alternative hypothesis, i.e., the distribution of colonoscopy

durations is non-unimodal and so is at least bimodal.

2. Two-sample Kolmogorov-Smirnov (KS) test: This test determines if two random vectors Y

and Z differ probabilistically without making any assumptions about their distributions.
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(a) Actual colonoscopy duration with adequate prep (b) Actual colonoscopy duration with inadequate prep

Figure 4.1: The empirical and fitted probability distributions for colonoscopy duration with (a)
adequate bowel prep and (b) inadequate bowel prep.

The null hypothesis is that Y and Z have the same distribution; and the alternative hy-

pothesis is that Y and Z have different distributions. We implemented the KS test using

the open source Matlab function kstest2 with Y and Z representing the data vectors of

colonoscopy durations with adequate and inadequate prep, respectively. We obtain a p-value

of 2.80× 10−33 < α and so we reject the null hypothesis in favor of the alternative hypoth-

esis that the distribution of colonoscopy durations with adequate prep is different than with

inadequate prep

3. Candidate distributions: we used the Matlab function allfitdist (Sheppard, 2012) to fit

all parametric distributions to the data vectors of colonoscopy durations with adequate and

inadequate prep. For a given data vector, allfitdist returns the fitted distributions and

goodness-of-fit metrics (e.g., Negative of the Log Likelihood (NLogL), Akaike Information

Criterion (AIC), and Bayesian Information Criterion (BIC)). Figure 4.1 and the values of

NLogL, AIC, BIC in Appendix 4.7.2 demonstrates that a wide range of distributions can

well represent colonoscopy duration with adequate (inadequate) prep.

These statistical results motivate us to model the colonoscopy durations with adequate and inade-

quate prep with different distributions. In addition, the fact that colonoscopy durations can be well

represented by a wide range of distributions motivates us to adopt a DR approach.
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4.3 Literature Review

In this section, we focus primarily on the literature on stochastic appointment scheduling. For

comprehensive surveys of outpatient appointment scheduling, we refer the reader to Ahmadi-Javid

et al. (2017), Cayirli and Veral (2003), and Gupta and Denton (2008). More broadly, Pinedo

(2016) provides a detailed survey of a wide range of scheduling problems, including their theory,

algorithms, and applications. For the clinical literature on the relationship between bowel prep

quality and colonoscopy duration, we refer to Anderson and Butterly (2015); Bechtold et al. (2016);

Chokshi et al. (2012); Froehlich et al. (2005); Johnson et al. (2014); Lebwohl et al. (2010); Rex

et al. (2002, 2006).

Within the stochastic appointment scheduling literature, most studies focus on uncertainty per-

taining to service duration (in part because it is the primary source of disruption in clinic oper-

ations) and few papers study and incorporate the variability in arrival time (Ahmadi-Javid et al.,

2017). Furthermore, most studies that consider scheduling multiple patients types often assume

that the service duration of each type follows one probability distribution (see, e.g., Berg et al.

(2014) and the references therein). Therefore, this chapter is one of the few studying outpatient

scheduling with bimodal service duration.

For appointment scheduling with stochastic service duration, we refer to Begen et al. (2012);

Bosch and Dietz (2000); Berg et al. (2014); Cayirli and Yang (2014); Denton and Gupta (2003);

Ge et al. (2013); Shehadeh et al. (2019); Robinson and Chen (2003); Mittal et al. (2014) and the

references therein. For appointment scheduling with random arrival time we refer to Alexopoulos

et al. (2008); Cayirli and Veral (2003); Deceuninck et al. (2018); Glowacka et al. (2017); Klassen

and Yoogalingam (2014); Samorani and Ganguly (2016) and the references therein.

Simulation and stochastic programming (SP) are by far the most common approaches to deal

with uncertainty in appointment scheduling problems. Both approaches assume that random pa-

rameters follow fully known distributions. Simulation models aim at developing and evaluating
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different scheduling heuristics (see, e.g., Ahmadi-Javid et al. (2017); Cayirli et al. (2006, 2008);

Gul et al. (2011); Klassen and Yoogalingam (2014) and the references therein). On the other hand,

SP models often aim at finding scheduling decisions that minimize the expected cost of waiting,

provider idling, and provider overtime, where the expectation is taken with respect to a probability

distribution of random parameters that is assumed to be known (see, e.g., Shehadeh et al. (2019);

Robinson and Chen (2003)).

When the probability distributions of random parameters are not known, an SP approach can

lead to poor scheduling decisions. As pointed out by Esfahani and Kuhn (2018), if we calibrate an

SP model to a given data sample and evaluate its optimal decisions on a different data sample, then

the resulting out-of-sample performance is often disappointing. This phenomenon is known as the

optimizers’ curse, i.e., an attempt to optimize based on imperfect estimates of probability distribu-

tions leads to biased decisions (see Esfahani and Kuhn (2018) and Smith and Winkler (2006) for

detailed discussions). Furthemore, as pointed out by Esfahani and Kuhn (2018) and Hanasusanto

et al. (2016), evaluating the objective function of an SP often involves taking multi-dimensional

integrals, which is #P-hard. Hence, SP scheduling models can be challenging to solve.

Distributionally robust (DR) optimization is an alternative approach for decision making under

uncertainty when the probability distribution governing the uncertain problem data is hard to char-

acterize and so itself subject to uncertainty (Wiesemann et al., 2014). DR scheduling models aim

at finding scheduling decisions that minimize the worst-case expected cost of scheduling metrics,

where the worst-case is taken over an ambiguity set. The ambiguity set is a family of distribu-

tions characterized by some known properties of the unknown probability distributions of random

parameters (Esfahani and Kuhn, 2018).

In this paper, we adopt a DR model to study colonoscopy scheduling under uncertainty. We

consider an ambiguity set based on the probability of having adequate/inadequate bowel prep,

as well as the first-moment and support information of colonoscopy durations and arrival time

deviations. We refer to Bertsimas and Popescu (2005), Bertsimas et al. (2010), Delage and Ye
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(2010), Scarf (1958) and references therein for a thorough discussion of DR optimization using

moment-based ambiguity sets, and to Gabrel et al. (2014) for a thorough review of recent advances

in robust and DR optimization.

For the DR appointment scheduling literature, we refer the reader to the pioneering work by

Jiang et al. (2017), Kong et al. (2013), Kong et al. (2015), Mak et al. (2014), and Zhang et al.

(2017). Kong et al. (2013) and Mak et al. (2014) point out that DR models can yield appoint-

ment schedules that maintain good performance under various probability distributions and ex-

treme scenarios of random parameters. Kong et al. (2013) consider a cross-moment ambiguity set

and derive a convex conic programming reformulation of the DR. Mak et al. (2014) consider a

marginal-moment ambiguity set and derive tractable reformulations based on linear program and

second-order conic program.

Jiang et al. (2017) generalize the DR appointment scheduling model of Mak et al. (2014) by

incorporating heterogeneous no-shows and their distributional ambiguity along with that of service

duration. Although this results in a challenging mixed-integer nonlinear reformulation, and Jiang

et al. (2017) develop integer programming approaches, including valid inequalities, to effectively

accelerate the computation of the DR model.

In this chapter, we study a DR model to incorporate the bimodal service duration due to random

bowel prep. To the best of our knowledge, this is the first work to address the bimodal ambiguity

in colonoscopy appointment scheduling. We further extend this DR model to incorporate sequenc-

ing decisions. By reformulating this DR model as a MILP, we provide an implementable tool

to obtain insights into outpatient colonoscopy scheduling. Note that, different from Jiang et al.

(2017), we do not consider random no-shows here because they are not frequently observed at our

collaborating OPC1.

1The no-show rate there is very low during 2013–2017. This is reasonable because colonoscopy patients need
to fast and go through bowel prep before their appointments. It is hence physically costly to not show up for their
appointments.
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4.4 DROCS Formulation and Analysis

4.4.1 Random Parameters and Assumptions

We consider sequencing a set of P procedures (patients) for a single provider and determining

the associated scheduled time for each procedure. The procedure duration of a patient is random

and depends on the prep quality, which is also random when scheduling appointments. In addi-

tion, a patient may not arrive exactly at the scheduled time and the arrival time deviation (i.e., the

difference between the scheduled and the actual arrival times) is random. The joint probability dis-

tribution of all random parameters (prep quality, procedure durations, and arrival time deviations)

is assumed ambiguous. We make the following assumptions on DROCS:

A1. The provider is always available at the scheduled start time of the first procedure, and imme-

diately after finishing each procedure.

A2. The provider serves patients in the order of their scheduled appointments, regardless of their

actual arrival times (a standard assumption in the offline appointment scheduling, see, e.g.,

Deceuninck et al. (2018) and the references therein).

A3. All the scheduled patients show up to their appointments (no-show is not frequently observed

at the collaborating OPC; see the footnote on page 90).

A4. Rescheduling during the day and accommodating walk-ins or emergencies are not permitted.

This a standard assumption in the offline stochastic appointment scheduling (see, e.g., Berg

et al. (2014); Denton et al. (2007)) that mimics the practice of the collaborating OPC.

bdfhbdgshjbfvhjsdfvhjds fgvhjdsgfkdshbfjkdsgfjhdgshjfgdhjsfg
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4.4.2 Modeling Procedure Duration as a Function of Bowel Prep

We model the prep quality by a 0-1 Bernoulli random variable qp such that qp = 1 if the bowel prep

of patient p is adequate, and qp = 0 otherwise for all p = 1, . . . , P . Accordingly, the procedure

duration of each patient p equals qpdA
p+(1−qp)dI

p, where dA
p and dI

p represent the random procedure

duration with adequate and inadequate prep, respectively, for all p = 1, . . . , P .

4.4.3 Modeling Scheduling Metrics under Uncertainty

Let binary decision variable xp,i represent the assignment of patient p to appointment i (equiva-

lently, position i in the sequence), for all i, p = 1, . . . , P . Let ti represent the scheduled time of

appointment i for all i = 1, . . . , P . The feasible region X of variables x is defined in (4.1) such

that each patient is assigned to one appointment and each appointment is assigned one patient. The

feasible region T of variables t is defined in (4.2) such that all appointments are scheduled within

the provider service hours [0, L], and the first appointment is scheduled at the start of the day, i.e.,

t1 = 0.

X =

x :

∑P
p=1 xp,i = 1,∀i = 1, . . . , P,∑P
i=1 xp,i = 1, ∀p = 1, . . . , P,

xp,i ∈ {0, 1},∀i, p = 1, . . . , P

 (4.1)

T =
{
t : t1 = 0, 0 ≤ ti ≤ L, ∀i = 1, . . . , P, ti ≥ ti−1, ∀i = 2, . . . , P

}
(4.2)

Due to random procedure durations and arrival times, one or multiple of the following scenarios

may happen: (i) delay on the start time of an appointment due to late completion of the previous

appointments, (ii) idleness of the provider due to early finish of an appointment or tardiness of the

next appointment, and (iii) provider overtime beyond his/her L to finish serving all appointments.
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Table 4.2: Notation.

Indices
p index of patient, or procedure, p = 1, ..., P
i index of positions in the sequence, or appointments, i = 1, ..., P
Parameters
cw
i unit waiting time cost of appointment i
cg
i unit provider idle time cost between appointments i− 1 and i
co unit provider overtime cost
L scheduled service hours of the provider
up arrival time deviation of patient p
qp probability of adequate bowel prep of patient p
dA
p procedure duration with adequate prep of patient p
dI
p procedure duration with inadequate prep of patient p

First-stage decision variables
ti scheduled start time of appointment i
xp,i binary assignment variable indicating whether procedure p is assigned to appointment i
Second-stage decision variables
wi waiting time of appointment i, for all i = 1, . . . , P
g1 provider idle time before the first appointment
gi provider idle time between appointmentss i− 1 and i, for all i = 2, . . . , P
wP+1 provider overtime

For all i = 1, . . . , P , let the continuous decision variables ai and wi represent the actual arrival

time and the waiting time of appointment i, respectively. Let the continuous decision variable

wP+1 represents provider overtime. For all i = 2, . . . , P , let the continuous decision variable gi

represents provider idle time between the completion of appointment i − 1 and the arrival of ap-

pointment i, and let decision variable g1 represents provider idle time before the first appointment.

For all p = 1, . . . , P , let the continuous parameter up represents the arrival time deviation (i.e., the

difference between the scheduled and the actual arrival times) of patient p. Table 4.2 summarizes

these notation. Given a feasible schedule (x ∈ X , t ∈ T ) and a joint realization of uncertain

parameters (q, dA, dI, u), we can compute patients arrival times a = [a1, . . . , aP ]>, patient waiting

times w = [w1, . . . , wP ]>, provider idle time g = [g1, . . . , gP ]>, and provider overtime wP+1 using
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the following recursions.

ai = ti +
P∑
p=1

upxp,i, ∀i = 1, . . . , P (4.3a)

w1 = max
{
− a1, 0}, (4.3b)

wi = max{0, [ai−1 + wi−1 +
P∑
p=1

(qpd
A
p + (1− qp)dI

p)xp,i−1]− ai}, ∀i = 2, . . . , P (4.3c)

g1 = max{a1, 0}, (4.3d)

gi = max{0, ai − [ai−1 + wi−1 +
P∑
p=1

(qpd
A
p + (1− qp)dI

p)xp,i−1]}, ∀i = 2, . . . , P (4.3e)

wP+1 = max{0, [aP + wP +
P∑
p=1

(qpd
A
p + (1− qp)dI

p)xp,P ]− L}. (4.3f)

where ai+wi is the actual start time of appointment i,
∑P

p=1(qpd
A
p+(1− qp)dI

p)xp,i is procedure

duration of appointment i, and ai + wi +
∑P

p=1(qpd
A
p + (1 − qp)dI

p)xp,i is the completion time of

appointment i. Let the non-negative parameters cw
i , c

g
i, and co represent the unit penality costs of

waiting, idling, and overtime, for all i = 1, . . . , P . We formulate the following linear program

(LP) to compute the total cost of waiting, idling, and overtime for a given feasible schedule (x, t)

and realization of the random parameters ξ := [q, dA, dI , u]>

Q(x, t, ξ) := min
w,a,g

P∑
i=1

(cw
iwi + cg

igi) + cowP+1 (4.4a)

s.t. ai = ti + ui, ∀i = 1, . . . , P (4.4b)

w1 − g1 + a1 = 0 (4.4c)

wi − gi = ai−1 + wi−1 + qi−1d
A
i−1 + (1− qi−1)dI

i−1 − ai, ∀i = 2, . . . , P (4.4d)

wP+1 − gP+1 = aP + wP + qPd
A
P + (1− qP )dI

P − L, (4.4e)

(wi, gi) ≥ 0, ∀i = 1, . . . , P + 1 (4.4f)
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The objective function (4.4a) minimizes a linear cost function of waiting, idling, and overtime.

Constraints (4.4b) compute the actual arrival time as the scheduled time plus the arrival time de-

viation. If the patient scheduled in appointment i is punctual (early), then ui = (<) 0 and so

ai = (<) ti. If the patient scheduled in appointment i is late, then ui > 0 and so ai > ti. Constraint

(4.4c) yields either provider idle time before the arrival of the first appointment or the waiting time

of the first appointment. Constraints (4.4d) yield either the waiting time of appointment i or the

provider idle time between appointment i− 1 and i based on the arrival time of appointment i and

the completion time of appointment i− 1, i.e., ai−1 +wi−1 + qi−1d
A
i−1 + (1− qi−1)dI

i−1. Constraint

(4.4e) yields either the overtime or the schedule earliness. Finally, constraint (4.4f) specify feasible

ranges of the decision variables.

4.4.4 Ambiguity Set and DR Model

Classical two-stage scheduling models (and those that we propose in chapters 2–3) seek to find a

schedule (x, t) that minimizes the expectation of the random cost Q(x, t, ξ) subject to uncertainty

(q, dA, dI, u) with a known joint probability distribution denoted as P. In our problem, we assume

that P is not perfectly known. We, however, know the support (i.e., upper and lower bound) and

the mean values of the random parameters.

Note that clinical guidelines limit the range of colonoscopy durations. Several empirical studies,

including our analysis of the UM-MPU data, suggest that the arrival time deviations are bounded

(see, e.g., Deceuninck et al. (2018) and Figure 4.6 in Appendix 4.7.1). Therefore, we assume that

the clinic manager can estimate from historical data the lower and upper bounds of these random

parameters. Mathematically, we consider support S = Sq × SA × S I × Su, where Sq, SA, S I, and

Su are respectively the supports of random parameters q, dA, dI, and u defined as follows:

Sq := {0, 1}P ,
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Su := {u : uL
p ≤ u ≤ uU

p, ∀p = 1, . . . , P, uP+1 = 0},

S I := {dI ≥ 0 : dIL
p ≤ dI

p ≤ dIU
p , ∀p = 1, . . . , P, dI

P+1 = 0},

SA := {dA ≥ 0 : dAL
p ≤ dA

p ≤ dAU
p , ∀p = 1, . . . , P, dA

P+1 = 0}.

In addition, we let µq, µA, µI, and µu represent the mean values of q, dA, dI, and u, respectively.

We denote µ := EP[ξ] = [µq, µA, µ I, µu]> for notational brevity. Then, we consider the following

mean-support ambiguity set F(S, µ):

F(S, µ) :=

P ∈ P(S) :

∫
S
dP = 1

EP[ξ] = µ

 (4.5)

where P(S) in F(S, µ) represents the set of probability distributions supported on S and each

distribution matches the mean values of q, dA, dI, and u. Note that in F(S, µ) we do not consider

higher moments (e.g., covariance, correlation, etc.) of (q, dA, dI, u) for several reasons. First,

several studies have shown that service durations and arrival times are independent (Deceuninck

et al. (2018)). Second, even if the service duration and arrival times are dependent, it is difficult

for the clinical manager to accurately estimate the correlation between these uncertain parameters,

especially when data is limited. Third, incorporating higher moments can undermine the compu-

tational tractability of the DR model, and so its implantability in practice (Mak et al., 2014; Jiang

et al., 2017). Using the ambiguity setF(S, µ), we formulate the DROCS as the following min-max

problem:

(DROCS) min
x,t

sup
P∈F(S,µ)

EP[Q(x, t, ξ)] (4.6)

which searches for a scheduling decision (x, t) that minimizes the worst-case expected cost of
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waiting, idling, and overtime over a family of distributions characterized by the ambiguity set

F(S, µ).

4.4.5 Reformulations

In this section, we reformulate the DROCS model in (4.6) into one that is solvable via a com-

mercial solver. In Section 4.4.5.1, we derive an exact LP reformulation with a fixed sequence.

Then, in Section 4.4.5.2, we incorporate the sequencing decisions and derive an equivalent MILP

formulation for the DROCS model.

4.4.5.1 LP Reformulation with a Fixed Sequence

In this section, we analyze the DR model in (4.6) and derive an exact LP reformulation with a

fixed sequence. We first consider the inner maximization problem sup
P∈F(S,µ)

EP[Q(x, t, ξ)] for a fixed

schedule (x ∈ X , t ∈ T ), where P is the decision variable, i.e., we are choosing the distribution that

maximizes the expected value of the random cost Q(x, t, ξ). For a fixed (x, t), we can formulate

this inner maximization problem as the following linear functional optimization problem.

max EP[Q(x, t, ξ)] (4.7a)

s.t. EP[ξ] = µ, (4.7b)

EP[1S(ξ)] = 1 (4.7c)

where 1S(ξ) represents the indicator function of set S such that 1S(ξ) = 1 if ξ ∈ S and 1S(ξ) = 0

if ξ /∈ S. Our LP reformulation of (4.7) is inspired by the work of Mak et al. (2014) and relies

directly on the special structure of the random cost function Q(x, t, ξ), defined in (4.4), as we

discuss next. Taking the dual of Q(x, t, ξ) leads to the following proposition (see Appendix 4.7.3

for the proof).
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Proposition 4.4.1. For fixed (x ∈ X , t ∈ T ), it holds that

Q(x, t, ξ) = max
y∈Y

P∑
i=1

(ti + ui + qid
A
i + (1− qi)dI

i)yi+1 −
P∑
i=1

(ti + ui)yi − LyP+1. (4.8)

where y:=[y1, . . . , yP+2]
> and

Y = {yP+2 = 0, cw
i + yi+1 ≥ yi ≥ −cg

i , for i = 1, ..., P + 1}, cw
P+1 = co, and cg

P+1 = 0. (4.9)

In view of equation (4.8), problem (4.7) is equivalent to

max EP

[
max
y∈Y

P∑
i=1

(ti + ui + qid
A
i + (1− qi)dI

i)yi+1 −
P∑
i=1

(ti + ui)yi − LyP+1

]
(4.10a)

s.t. (4.7b)− (4.7c). (4.10b)

As shown in the proof of Proposition 4.4.2 in Appendix 4.7.4, the stochastic optimization problem

(4.10) is equivalent to the deterministic problem (4.11).

Proposition 4.4.2. For any (x ∈ X , t ∈ T ), problem (4.10) is equivalent to

min
ρ,α,λ,γ

{
P∑
i=1

µA
iρi + µI

iαi + µu
iλi + µq

iγi + max
y∈Y

h(x, t, y, ρ, α, λ, γ)

}
(4.11)

where

h(x, t, y, ρ, α, λ, γ) := max
(q,dA,dI,u)∈S

{ P∑
i=1

(ti + ui + qid
A
i + (1− qi)dI

i)yi+1 −
P∑
i=1

(
(ti + ui)yi

− LyP+1

)
−

P∑
i=1

(dA
iρi + dI

iαi + uiλi + qiγi)
}

(4.12)

It is straightforward to see that function h(x, t, y, ρ, α, λ, γ) is convex in variables y. Hence,
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max
y∈Y

h(x, t, y, ρ, α, λ, γ) is a convex maximization problem. It follows from the fundamental con-

vex analysis (see, e.g., Boyd and Vandenberghe (2004)) that there exists an optimal solution y∗ to

the inner maximization problem max
y∈Y

h(x, t, y, ρ, α, λ, γ) in (4.11) at one of the extreme point of

the polyhedron Y defined in (4.9). This motivates us to follow a similar approach to Mak et al.

(2014) in deriving an equivalent LP reformulation of (4.11) (or equivalently, formulation (4.7)) as

follows. First, using the properties of the extreme point of Y , we derive an equivalent LP refor-

mulation of max
y∈Y

h(x, t, y, ρ, α, λ, γ). Then, we can reformulate the min-max problem (4.11) as a

convex minimization problem. We formally prove this in the following proposition.

Proposition 4.4.3. The optimal objective value of max
y∈Y

h(x, t, y, ρ, α, λ, γ) in (4.11) is equal to

min
β

P+2∑
i=1

βi (4.13a)

s.t.
j∑
i=1

βi ≥ (−t1 − uL
1)π1,j +

min{j,P}∑
i=2

(
− ti − uL

i + ti−1 + uL
i−1 + min{dAL

i−1, d
IL
i−1}

)
πi,j

+

min{j,P+1}∑
i=2

(
max{dAU

i−1, d
IU
i−1} −min{dAL

i−1, d
IL
i−1}

)
(πi,j)

+ +

min{j,P}∑
i=1

K ′i

+

min{j,P+1}∑
i=P+1

(
tP + uL

P − L+ min{dAL
P , d

IL
P}
)
πP+1,j, ∀j = 1, . . . , P + 2 (4.13b)

j∑
i=k

βi ≥ (uU
k−1 − uL

k−1)(πk,j + cgk−1)
+ +

min{j,P+1}∑
i=P+1

(
tP + uL

P − L+ min{dAL
P , d

IL
P}
)
πP+1,j

+

min{j,P}∑
i=min{k,P+1}

(
− ti − uL

i + ti−1 + uL
i−1 + min{dAL

i−1, d
IL
i−1}

)
πi,j +

min{j,P}∑
i=min{k,P+1}

K ′i

+

min{j,P+1}∑
i=min{k,P+1}

(
max{dAU

i−1, d
IU
i−1} −min{dAL

i−1, d
IL
i−1}

)
(πi,j)

+,∀k = 2, . . . , P + 1,

∀j = k, . . . , P + 2 (4.13c)

βP+2 ≥ 0, zi ≥ 0, zi ≥ ρi, vi ≥ 0, vi ≥ αi, ri ≥ 0, ri ≥ λi, ei ≥ 0, ei ≥ −γi, ∀i ≤ P

(4.13d)
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where for all i = 1, . . . , P , K ′i = −
(
dAU
i ρi + (dAL

i − dAU
i )zi

)
−
(
dIU
i αi + (dIL

i − dIU
i )vi

)
−
(
uU
iλi +

(uL
i − uU

i )ri

)
+ ei.

As we show in the proof of Proposition 4.4.3 in Appendix 4.7.5, the definition of πi,j is motivated

by the characterization of extreme points of Y . Specifically, for any extreme point yi ∈ Y and for

any 1 ≤ i ≤ j ≤ P + 2, yi = πi,j = −cgj +
∑j−1

`=i c
w
` and yP+2 = πP+2,P+2 = 0. Substituting

max
y∈Y

h(x, t, y, ρ, α, λ, γ) = min{
∑P+2

i=1 βi : (4.13b) − (4.13d)} in formulation (4.11), we obtain

the following LP reformulation for the DROCS with fixed sequence x ∈ X .

min
t∈T ,ρ,α,λ,γ,β

P∑
i=1

µA
i ρi + µI

iαi + µu
iλi + µq

iγi +
P+2∑
i=1

βi (4.14a)

s.t. (4.13b)− (4.13d). (4.14b)

4.4.5.2 MILP Reformulation with Sequencing

Recall that our DR model in (4.6) incorporates both the sequencing and scheduling decision. The

DR-LP formulation in (4.14), however, assumes a fixed sequence. To determine the sequencing

and scheduling decisions jointly, we multiply the mean, lower bound, and upper bound of each

random parameter in (4.14) with the associated sequencing decisions. This lead to an equiva-

lent MINLP reformulation of the DROCS problem. Due to its large size, we present this for-

mulation in Appendix 4.7.6 and highlight that this formulation has a nonlinear objective func-

tion
P∑
i=1

P∑
p=1

µA
pxp,iρi + µI

pxp,iαi + µu
pxp,iλi + µq

pxp,iγi +
P+2∑
i=1

βi and also nonlinear terms K ′′i =

−
( P∑
p=1

(
dAU
p xp,iρi + (dAL

p − dAU
p )xp,izi)

)
−
( P∑
p=1

(
dIU
p xp,iαi + (dIL

p − dIU
p )xp,ivi

))
−
( P∑
p=1

(
uU
pxp,iλi +

(uL
p − uU

p)xp,iri
))

+ ei in constraints (4.25b)–(4.25c).

To linearize this MINLP formulation, we define ηp,i = xp,iρi, τp,i = xp,iαp,i, Λp,i = xp,iλi,

Γp,i = xp,iγi, ζp,i = xp,izi, νp,i = xp,ivi, and ϕp,i = xp,iri. We also introduce McCormick

inequalities (4.26a)–(4.26g) for variables ζp,i, νp,i, ϕp,i, ηp,i, τp,i, Λp,i, and Γp,i respectively. We
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formally introduce the resulting MILP reformulation of DROCS in Proposition 4.4.4. Note that the

McCormick inequalities often rely on big-M coefficients that take large values and can undermine

the computational efficiency. In Appendix 4.7.7, we derive tight bounds of these big-M coefficients

to strengthen the MILP formulation.

Proposition 4.4.4. The following MILP is equivalent to the DROCS problem in (4.6)

(DR-bimodal) min
P∑
i=1

P∑
p=1

µA
pηp,i + µI

pτp,i + µu
pνp,i + µq

pΓp,i +
P+2∑
i=1

βi (4.15a)

s.t. (x ∈ X , t ∈ T ) (4.15b)

(4.25b)− (4.25d), (4.26d)− (4.26g) (4.15c)

4.5 Computational Results

In this section, we compare our DR colonoscopy scheduling approach with the stochastic pro-

gramming approaches and draw several insights into colonoscopy scheduling. Specifically, we

construct several DROCS instances based on the current UM-MPU practice and compare the opti-

mal schedules of DR-bimodal in (4.15) with those yielded by: (1) SMILP-bimodal, a SP approach

that considers random prep quality (see Appendix 4.7.8 for the formulation), (2) DR-plain, a DR

model that ignores the random prep quality (see Appendix 4.7.9 for the formulation), and (3)

SMILP-plain, a SP approach that ignores the random prep quality (see Appendix 4.7.8 for the for-

mulation). In the plain models, we ignore prep adequacy and assume that colonoscopy durations

follow a single probability distribution.

We summarize our computational study as follow. We first follow a distributional belief to gen-

erateN independent and identically distributed (i.i.d.) samples of each random parameter. Second,

we compute the support and mean information from the generated samples and use them to ob-

tain the (in-sample) optimal solutions and optimal objective values to the DR models. Third, we

104



solve the SMILPs using the generated sample and compare (1) optimal sequencing and scheduling

patterns yielded by the DR and the SMILP models, and (2) the in-sample and out-of-sample per-

formance of the optimal schedules of the DR and SMILP. Finally, we use the DR model to study

the value of incorporating bowel prep prediction in colonoscopy scheduling.

In Section 4.5.1, we describe the DROCS instances that we use in our experiments and dis-

cuss the experiment setups. In Section 4.5.2, we compare the optimal DR and SMILP schedul-

ing patterns (i.e., the structure of the optimal time assigned for colonoscopy appointments). In

Section 4.5.3, we analyze the optimal DR and SMILP sequencing decisions for the colonoscopy

procedure and combined upper endoscopy and colonoscopy procedure. In Section 4.5.4, we eval-

uate the cost of revising the optimal sequence of the DR and SMILP to accommodate provider

preference. In Section 4.5.5, we compare the out-of-sample performance of the optimal schedules

of the DR and SMILP models. Finally, in Section 4.5.6, we study the value of incorporating prep

adequacy prediction in colonoscopy scheduling.

4.5.1 Description of Experiments

Our computational study is based on the Gastroenterology and Hepatology Endoscopy Practice

at the UM-MPU. Specifically, we consider two DROCS instances each with P = 10 patients,

reflecting the typical daily schedule of the majority of UM-MPU providers. The first instance

is homogenous consisting of 10 colonoscopy procedures. The second instance is heterogeneous

consisting of 6 colonoscopy procedures (C) and 4 combined upper endoscopy and colonoscopy

(UC) procedures. Table 4.3 provides statistics on the mean and standard deviation of procedure

durations and arrival time deviations of the UM-MPU appointments during the period from January

2, 2013, to December 15, 2017.

We use our data and follow the same procedure as in prior appointment scheduling studies (see,

e.g., Jiang et al. (2017); Denton and Gupta (2003); Mak et al. (2014)) to generate random param-
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Table 4.3: The following parameter estimates (in minutes) are based on historical data from the
Gastroenterology and Hepatology Endoscopy Practice at University of Michigan Medical Proce-
dures Unit between 2013 and 2017.

Parameter Mean Standard Deviation
Arrival time deviation, u 10 10
Colonoscopy duration with adequate prep, dA 21 11
Colonoscopy duration with inadequate prep, dI 25 15
Upper endoscopy and colonoscopy duration

26 13
with Adequate prep, dUCA

Upper endoscopy and colonoscopy duration
29 15

with Inadequate prep, dUCI

Prep adequacy rate ' 0.86

eters for each DROCS instance as follows. We set the mean µA (µI) and the standard deviation σA

(σI) of colonoscopy duration with adequate (inadquate) prep to their empirical values, i.e., µA
p = 21,

µI
p = 25, σA = 12, and σI = 15, for all p = 1, . . . , P . Similarly, we set the mean and standard devi-

ation of UC duration with adequate and inadequate prep to their empirical values, i.e., µUCA
p = 26,

µUCI
p = 29, σUCA = 13, and σUCI = 15, for all p = 1, . . . , P . We also set the mean µu and standard

deviation σu of arrival time deviations to their empirical values, i.e., µu
p = 10 and σp = 10, for all

p = 1, . . . , P . Finally, we set µq
p = 0.86 for all p = 1, . . . , P , which reflect the prep adequacy rate

at UM-MPU in the period of 2013–2017.

To approximate the lower (dAL, dIL, uL) and upper (dAU, dIU, uU) bounds of (dA, dI, u), we re-

spectively use the 20%-quantile and 80%-quantile values of the N in-sample data. We gen-

erate the in-sample colonoscopy durations with adequate prep, dA, and inadequate prep, dI, by

following lognormal (LogN) distributions. Specifically, we sample N =1000 realizations (dAn
1 ,

. . . , dAn
P ), . . . , (dAN

1 , . . . , d
AN
P ) from LogN(µAp , σ

A
p ) and N =1000 realizations (dI1

1 , . . . , d
I1
P ), . . . , (dIN

1 ,

. . . , dIN
P ) from LogN(µIp, σ

I
p) using the generated means (µAp , µ

I
p) and standard deviations (σAp , σ

I
p)

of (dA
p, d

I
p) for each p = 1, . . . , P . The lognormal distribution is one of the candidate distributions

for colonoscopy durations with adequate/inadequate prep (see Appendix 4.7.2) and a typical dis-

tribution to model service duration in appointment scheduling literature (see, e.g., Cayirli et al.
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(2006); Gul et al. (2011) and references therein). We generate (qn1 , . . . , q
n
P ), n = 1, . . . , N , from

Bernoulli distribution with mean µq = 0.86 (prep adequacy rate at UM-MPU in the period of

2013–2017).

We similarly generate the in-sample UC procedure durations data by following LogN distri-

butions with (µUCA
p , µUCI

p ) and (σUCA
p , σUCI

p ). For DR-plain, we first combine all historical C (UC)

durations data and obtain the mean of the resulting data vector. We then follow the same proce-

dure described above to generate the in-sample data and estimate the support information for each

random parameter. To generate the in-sample arrival time deviations, we sample N = 1000 reliza-

tions un1 , . . . , u
n
P , n = 1, . . . , N , by following a normal distribution with the generated mean and

standard deviations of up. The normal distribution is a common distribution to model arrival time

deviation in the appointment scheduling literature (see, e.g., Deceuninck et al. (2018); Klassen and

Yoogalingam (2014)).

We consider two different cost structures for the objective function: (1) Cost1: cw = cg = co;

and (2) Cost2: cw = 1, cg = 5, co = 7.5. For the first cost, each of the three objectives is equally

important (a classical assumption in the domain of appointment scheduling, see, e.g., Berg et al.

(2014); Deceuninck et al. (2018); Shehadeh et al. (2019)). The second cost structure fixes the co/cg

ratio to 1.5 as in Deceuninck et al. (2018), based on OPC practice (see, e.g., Cayirli et al. (2006);

Deceuninck et al. (2018) for detailed discussions).

Finally, we set the provider service hours based on the current practice of UM-MPU. Providers

there typically allocate 30 minutes for each colonoscopy procedure and 45 minutes for the com-

bined UC procedure. Accordingly, we set L = 30 × 10 = 300 minutes for the homogenous

instance and L = 30× 6 + 45× 4 = 360 minutes for the heterogeneous instance.

For each cost structure, we optimize the SMILP model with the generated N scenarios of each

random parameter and the DR model with the generated mean and support of each random param-

eter. We implemented the DR and SMILP models using the AMPL2016 Programming language
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calling CPLEX V12.6.2 as a solver with default settings (we didn’t observe any consistent benefits

in any parameter tuning). We ran all experiments on an HP workstation running Windows Server

2012 with two Intel E5-2620-v4 processor, each with 8-Cores (16 total), 2.10GHz CPUs, and 128

GB shared RAM.

4.5.2 Analysis of the Optimal Scheduling Patterns

In this section, we compare the optimal scheduling patterns (i.e., the structure of the optimal time

allowances between appointments) of the DR and SMILP models. We focus on the homogonous

instance (i.e., 10 colonoscopy appointments) for which the sequence of appointments is fixed as

all procedures are of the same type. In this case, the SMILP models reduce to stochastic linear

programs (SLP) and the DR models reduce to linear programs.

Figure 4.2 and Figure 4.3 present the optimal schedules of 10 colonoscopy appointments, pro-

duced by the DR and SLP models for the punctual and random arrival cases, respectively. The

point (x, y)=(i, allotted timei) of every schedule in each subfigure corresponds to the optimal time

assigned for each appointment i = 1, . . . , 10 (equivalently, the optimal time interval, ti+1 − ti,

assigned between the scheduled arrival of appointments i and i+ 1).

We first observe the following about the optimal DR and SLP scheduling patterns for the punc-

tual arrival case: both SLPs assign less time for the first appointment than the subsequent appoint-

ments, equally distribute the time between appointments 2–9, and schedule a longer time for the

last appointment than all other appointments. The SLP-bimodal assigns a slightly longer time

for each appointment than the SLP-plain. Under Cost2, in which provider time is more impor-

tant than patient time, both SLPs assign shorter time per appointment and longer time for the last

appointment than under Cost1.

As compared to the SLPs, the DR models always assign more time for the first appointment.

Under Cost1, the optimal time allowances of the DR-bimodal form a “dome shape,” i.e., time
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(a) Cost1: cw = cg = co (b) Cost2: cw = 1, cg = 5, co = 7.5

Figure 4.2: Optimal appointment schedules of the DR and the SLP models with punctual arrivals.

(a) Cost1: cw = cg = co (b) Cost2: cw = 1, cg = 5, co = 7.5

Figure 4.3: Optimal appointment schedules of the DR and the SLP models with random arrivals.

allowances between appointments first increase then decrease (see Figure 4.2a). Except for the last

appointment, the DR-bimodal assigns longer time for each appointment than the DR-plain and the

two SLP models under both cost structures. Intuitively, by incorporating the bimodal ambiguity in

colonoscopy duration as a function of bowel prep, the DR-bimodal intends to mitigate the waiting

time that may accumulate due to long procedure durations with adequate/inadequate prep.

The observations made from the punctual arrival case remain valid in the random arrival case.

This indicates that the random arrivals have limited impacts on the optimal schedule patterns for

the UM-MPU.
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Table 4.4: Optimal Sequencing Patterns with Punctual Arrivals.

Cost1: cw = cg = co

Appointment
Model 1 2 3 4 5 6 7 8 9 10
DR-bimodal Type C C C C C UC C UC UC UC

Time 29 30 30 31 30 34 30 36 35 77

SMILP-bimodal Type C C C C C C UC UC UC UC
Time 23 27 27 29 27 28 32 33 31 102

DR-plain Type C C C C C C UC UC UC UC
Time 27 27 28 28 27 27 30 30 29 109

SMILP-plain Type C C C C C C UC UC UC UC
Time 21 26 24 25 25 23 29 29 29 129

Cost2: cw = 1, cg = 5, co = 7.5
Appointment

Model 1 2 3 4 5 6 7 8 9 10
DR-bimodal Type C C C UC UC C UC C C UC

Time 29 27 25 28 28 23 26 19 16 140

SMILP-bimodal Type C C C C C C UC UC UC UC
Time 15 21 22 23 23 23 27 26 23 158

DR-plain Type C C C C C C UC UC UC UC
Time 23 24 22 23 22 21 23 22 22 160

SMILP-plain Type C C C C C C UC UC UC UC
Time 15 21 21 21 22 21 24 25 23 167

4.5.3 Analysis of the Optimal Sequencing Patterns

In this section, we compare the optimal sequencing patterns produced by the DR and SMILP

models for the heterogeneous instances. Table 4.4 and Table 4.5 present the optimal sequencing

pattern yielded by the DRO and the SMILP models with punctual and random arrivals, respectively.

The DR-plain and the two SMILPs schedule the C procedures before the UC procedures, i.e.,

sequence procedures by increasing order of mean and variability of procedure duration. In contrast,

the optimal sequence of the DR-bimodal always starts with a block of 3-5 consecutive C procedures

followed by a block of 1-2 UC procedures, a block of 1-2 C procedures, ending with a block of
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Table 4.5: Optimal Sequencing Patterns with Random Arrivals.

Cost1: cw = cg = co

Appointment
Model 1 2 3 4 5 6 7 8 9 10
DR-bimodal Type C C C C UC UC C C UC UC

Time 34 33 36 34 38 37 33 33 36 46

SMILP-bimodal Type C C C C C C UC UC UC UC
Time 23 29 28 30 29 29 33 33 30 96

DR-plain Type C C C C C C UC UC UC UC
Time 28 30 30 30 29 28 34 35 38 79

SMILP-plain Type C C C C C C UC UC UC UC
Time 23 29 28 30 29 26 33 34 33 95

Cost2: cw = 1, cg = 5, co = 7.5
Appointment

Model 1 2 3 4 5 6 7 8 9 10
DR-bimodal Type C C C C UC UC C C UC UC

Time 29 29 30 29 30 30 23 21 22 118

SMILP-bimodal Type C C C C C C UC UC UC UC
Time 14 22 22 22 24 23 27 26 23 157

DR-plain Type C C C C C C UC UC UC UC
Time 24 24 24 23 22 19 26 25 21 150

SMILP-plain Type C C C C C C UC UC UC UC
Time 14 23 22 22 24 22 27 26 26 154

1-3 UC procedures. Moreover, all models assign longer time for the UC procedure than the C

procedure (especially, under Cost1), and the DR-bimodal assigns longer time for each procedure

type.

Intuitively, by scheduling a slightly longer time per procedure, starting with a block of C pro-

cedures and assigning a block of one or two C procedures between the UC procedures (which

have larger mean and variability) the DR-bimodal attempts to mitigate the waiting time that may

accumulate due to long UC procedure durations.
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4.5.4 Cost of Revising the Optimal Sequence

Note that the appointment sequences in Tables 4.4–4.5 are only optimal with respect to the objec-

tive of minimizing the scheduling metrics. This objective function does not include the clinical

perspective of colonoscopy outcome. Several clinical studies suggest that time of the day may af-

fect colonoscopy outcomes, possibly as a consequence of provider fatigue (see, e.g., Almadi et al.

(2015); Singh et al. (2016) and the references therein). Almadi et al. (2015), for example, show

that workload before performing a colonoscopy is inversely associated with the detection rates of

the precancerous CRC polyps. As such, the provider often has a preference for earlier start times

for those who are at high risk of CRC, which may deviate from the optimal sequence of both DR

and SMILP model. In this section, we evaluate the potential cost of revising the DR and SMILP

optimal sequence when clinical or other perspectives are taken into account.

We evaluate the performance of the optimal DR and SMILP schedules for the heterogeneous

instances under various sequences as follows. First, we generate 1000 random (and feasible) se-

quences X1, . . . ,X1000 of (6C, 4UC), where for all s = 1, . . . , 1000, Xs ∈ X defined in (4.1),

i.e., each Xs represents one of the possible feasible assignment of procedures to appointments

(see Figures 4.7–4.8 in Appendix 4.7.10). Second, we generate the in-sample data and parame-

ters of the DR model as described in Section 4.5.1. Third, we solve the DR and SMILP models

with the generated sequences and the in-sample data. In each solve s = 1, . . . , 1000, we fix

the sequence in the DR and SMILP models to Xs. Then, we optimize the remaining continuous

variables and record the optimal DR and SMILP schedules tDR
s and tSMILP

s , respectively, and the as-

sociated in-sample costs (i.e., optimal objective value of the DR and SMILP models). Finally,

for all s = 1, . . . , 1000, we simulate each tDR
s (tSMILP

s ) using a new sample of N ′s =10,000 i.i.d.

scenarios of procedure durations and arrival time deviations sampled from the UM-MPU data of

each procedure type. That is, we compute wn′i , gn′i , wn′P+1 in each scenario n′ = 1, . . . , N ′s, and the

out-of-sample cost vDR
s (vSMILP

s ) = (1/N ′)
∑N ′

n′=1

∑P
i=1w

n′
i + gn

′
i + wn

′
P+1.
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(a) Optimal (in-sample) costs (b) Out-of-sample simulation costs

Figure 4.4: Relative frequency histograms of the optimal (in-sample) and out-of-sample simulation
costs.

(a) total waiting time (b) waiting time per appointment

(c) total provider idle time (d) provider idle time per appointment

Figure 4.5: Relative frequency histograms of the out-of-sample waiting time and idle time with
punctual arrivals.

For presentation brevity, we present and discuss results for the punctual arrival case; our findings

for the random arrival case are similar and presented in Appendix 4.7.11. Also, we only present

the results for the DR-bimodal and SMILP-bimodal models as they are more relevant to our study.

Figure 4.4 present the optimal in-sample costs and out-of-sample simulation costs.
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Clearly, the DR-bimodal has smaller fluctuation in the in-sample costs across different sequences

than the SMILP-bimodal. In addition, the DR-bimodal has significantly smaller variations in the

out-of-sample costs (and smaller values) than the SMILP-bimodal. Moreover, as shown in Fig-

ures 4.5, the DR-bimodal has significantly smaller variations in the out-of-sample waiting time and

idle time costs (the overtime costs were similar for both models). The DR-bimodal also results in

significantly less out-of-sample waiting time and slightly more idle time than the SMILP-bimodal.

We also evaluate the cost of revising (deviating from) the optimal sequence as follows. First,

we obtain the minimum out-of-sample cost of the DR and SMILP vminDR and vminSP, respectively,

across the 1000 simulation runs. Then, for s = 1, . . . , 1000, we evaluate the relative cost gap

CostGapDR
s (CostGapSMILP

s ) as vDR
s (vSMILP

s )−vminDR(vminSMILP)
vminDR(vminSMILP)

×100%. The averages and standard deviations

(avg±stdv) of CostGapDR
s for the punctual and random arrival cases are 2%± 2 and 1%± 3 with a

maximum of 3% and 3%, respectively. In contrast, the avg±stdv of CostGapSMILP
s for the punctual

and random arrival cases are 10±4% and 10±5% with a maximum of 17% and 18%, respectively.

These results suggest that OPC can perform, operationally, very well with a random appointment

sequence (e.g., in order to accommodate the provider or patient preferences) using the DR sched-

ules. This is a desirable property considering that (1) computation times of finding the “optimal

sequence” via SMILP increase quite rapidly as the number of procedures and scenarios of random

parameters increases (see Appendix 4.7.12), and (2) in reality, we often need to accommodate the

provider preferences and so the implemented appointment sequence may be very different from

those obtained from DR-bimodal and SMILP-bimodal models.

4.5.5 Analysis for the Out-of-Sample Performance

In this section, we compare the out-of-sample simulation performance of the optimal schedules

of the DR and SMILP models under “perfect information” (known distributions) and “misspec-

ified distribution information”. We generate two sets of N ′ =10,000 i.i.d. out-of-sample data
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(qn1 , d
An
1 , dIn1 , u

n
1 ), . . . , (qnP , d

An
P , dInP , u

n
P ), for n = 1, ..., N ′ of the random vector (q, dA, dI, u) as

follows.

1. Perfect Information: we use the same distributions and parameter settings as the ones for

generating the N in-sample to sample the N ′ scenarios (i.e., lognormal and normal distribu-

tions for procedure durations and arrival time deviations, respectively).

2. Misspecified Distribution: we keep the same mean values (µq
p, µ

A
p, µ

I
p, µ

u
p) of random param-

eters (qp, d
A
p, d

I
p, up) for each patient p = 1, . . . , P . With the mean values kept the same, we

vary the distribution of dA
p, d

I
p, and ui to generate the N ′ scenarios. This is to simulate the

out-of-sample performance of appointment schedules when the in-sample data is biased.

For the case of misspecified distribution, we follow positively correlated truncated normal and

weibull distributions with supports [0, dAU] and [0, dIU] to generate realizations (dAn
1 , d

In
1 ), . . ., (dAn

P , d
In
P

). We also sample with replacement (d11, . . . , d
1
P ), . . ., (dN

′
1 , . . . , dN

′
P ) from the UM-MPU data and

use dnp as procedure duration for p = 1, . . . , P and n = 1, . . . , N ′ during the simulation. Further-

more, we follow a positively correlated Bernoulli distribution to generate realizations qn1 , . . . , q
n
P

and a uniform distribution with support [uL, uU] to generate realizations un1 , . . . , u
n
P , for n =

1, . . . , N ′ . We designed the parameters of the normal, weibull, Bernoulli, and uniform distri-

butions to obtain positive data correlations and meanwhile keep the first two moments of the N ′

out-of-sample realizations the same as the ones of the N in-sample realizations (see, e.g., Jiang

et al. (2017) and the references therein).

We measure the out-of-sample performance of each optimal schedule (x, t) yielded by DR and

SMILP models as follow. First, we fix (x, t) in the SMILP model (see Appendix 4.7.8 for the

formulation). Then, we use the out-of-sample parameters (qn1 , d
An
1 , dIn1 , u

n
1 ),...,(qnP , d

An
P , dInP , u

n
P

) to compute wni , gni , and wnP+1 as the waiting time (WT), idle time (IT), and overtime (OT),

respectively, in each scenario n = 1, . . . , N ′. Tables 4.10–4.11 in Appendix 4.7.13 present means

and quantiles of WT (per appointment), IT (per appointment), and OT, yielded by the optimal
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schedule of the DR and SMLP under perfect distributional information for the homogenous and

heterogeneous instances, respectively.

Clearly, the performances of the optimal schedules of the DR-plain and SMILP models are

very close on average and at all quantiles. The optimal schedule of the DR-bimodal has shorter

waiting time on average and at all quantiles than that of the DR-plain and the SMILP models

(which posess perfect distributional information). On the other hand, for the homogenous case,

the optimal schedule of the DR-bimodal yields longer overtime under Cost1, and slightly longer

overtime under Cost2. Finally, the idle time of the DR and SMILP schedules are comparable.

These results imply that when the distributional information is accurate, the DR-bimodal model

yields near-optimal appointment schedule.

Tables 4.12-4.15 present the means and quantiles of WT, IT, and OT, yielded by the optimal

schedule of the DR and SMILP models under misspecified distributional information. From these

results, we observe that the DR-bimodal yields much shorter waiting time per appointment than

the DR-plain and the SMILPs schedules when the probability distributions of random parameters

are misspecified. The waiting time reductions are significant under both cost structures and are

reflected in all quantiles of the random WT. On the other hand, the DR and SMILP schedules yield

similar idle time and overtime on average and at the 50%–95% quantiles of random IT and OT.

These observations show how the optimal schedules of the SMILP can become sub-optimal

when the probability distributions of random parameters are misspecified, while the DR-bimodal

model can produce schedules that more robust (i.e., maintaining good performance under different

probability distributions of random parameters). Note that the much shorter waiting time (per

appointment) provided by the DR-bimodal is a desirable property for colonoscopy appointments.

From the UM-MPU’s perspective, minimizing the waiting time of colonoscopy patients is highly

desirable given the discomfort that patients experience due to bowel prep (e.g., vomiting, nausea,

diarrhea, etc.) and fasting (especially for diabetic patients).

Finally, to quantify the benefits of employing the DR-bimodal schedule in practice, we com-
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pare its out-of-sample total cost with that of the current MPU schedule under the MPU data sam-

ple. The relative cost gaps=[(Total Cost (DR-bimodal)- Total Cost (Current))/Total cost (DR-

bimodal)]×100% for the homogenous instance are -20% and -18% with punctual and random

arrivals, respectively. The relative cost gaps for the heterogeneous instance are -106% and -56%

with punctual and random arrivals, respectively. These results imply that implementing our DR-

bimodal schedules can significantly enhance the clinic operational performance.

4.5.6 Value of Bowel Prep Prediction

In this section, we evaluate the value of perfect prediction of bowel prep adequacy. That is, the

value of scheduling appointments based on perfect information about the prep adequacy of all

patients.

For illustration purposes, we construct and solve the following three additional homogenous

DROCS instances, each with 10 colonoscopies and different probability of adequate bowel prep.

Then, we evaluate the cost of scheduling patients according to optimal DR-bimodal schedule for

the homogenous base instance instead of scheduling them according to the optimal schedule for

each instance.

• Base instance (instb): 10 patients with µq
p = 0.86 for all p = 1, . . . , 10 (i.e., assuming

homogeneity of patients and ignoring any prediction about prep adequacy).

• Instance 1 (inst1): 5 patients with adequate prep and 5 with inadequate prep, i.e., qp ≡ 1 for

p = 1, . . . , 5 and qp ≡ 0 for p = 6, . . . , 10.

• Instance 2 (inst2): 8 patients with adequate prep and 2 with inadequate prep, i.e., qp ≡ 1 for

p = 1, . . . , 8 and qp ≡ 0 for p = 9, 10.

• Instance 3 (inst3): 2 patients with adequate prep and 8 with inadequate prep, i.e., qp ≡ 1 for

p = 1, 2 and qp ≡ 0 for p = 3, . . . , 10.
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Table 4.6: The relative cost gaps G(instb-inst1), G(instb-inst2), and G(instb-inst3) for the punctual and random
arrival cases

Punctual Random
Cost1 Cost2 Cost1 Cost2

G(instb-inst1) 11% 23% 14% 14%

G(instb-inst2) 13% 29% 16% 21%

G(instb-inst3) 10% 23% 11% 12%

We solve instb, inst 1, inst2, and inst3 using the DR-bimodal model, which respectively yeild the

schedules S instb, S inst1, S inst2, and S inst3. Then, we compute the cost of ignoring bowel prep prediction

in S instb as follows. First, we sample N ′ =10,000 scenarios of procedure durations d from the

UM-MPU data according to inst1 patient mix. That is, we sample dn1 , . . . , d
n
5 , n = 1, . . . , N ′ from

the data vector of durations with adequate prep and dn6 , . . . , d
n
10, n = 1, . . . , N ′ from the data vector

of durations with inadequate prep. Then, we simulate S instb and S inst1 with the generated sample and

compute corresponding cost C (instb-1) and C (inst1). Finally, we compute the relative increase in cost

G(instb-inst1) (cost gap between C (instb-1) and C (inst1)) as G(instb-inst1) = C(instb-1)−C(inst1)

C(inst1) 100%. We perform the

same simulation steps and and relative cost gap calculations for inst2 and inst3.

Table 4.6 presents G(instb-inst1) and G(instb-inst2), and G(instb-inst3). The positive values of these cost gaps

indicate that optimizing (customizing) colonoscopy appointment scheduling with a perfect pre-

diction of patient bowel prep adequacy has the potential of reducing the clinic operational costs.

Future work will be directed in developing data-driven prediction models of bowel prep adequacy

and incorporating these in optimizing colonoscopy appointment scheduling systems.

4.6 Conclusion and Chapter Summary

In this paper, we consider the outpatient colonoscopy scheduling problem, recognizing the impact

of prep adequacy on the variability in colonoscopy duration. Data from the UM-MPU indicates

that colonoscopy durations are bimodal, i.e., depending on the prep quality they can follow two

different probability distributions, one for those with adequate prep and the other for those with
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inadequate prep. We define a DROCS problem that seeks optimal appointment sequence and

schedule to minimize the worst-case weighted expected sum of patient waiting, provider idling, and

provider overtime, where the worst-case is taken over an ambiguity set (a family of distributions)

characterized through the known mean and support of the prep quality and durations. By deriving

an equivalent MILP of the DROCS, we provide an implementable tool to obtain insights into

outpatient colonoscopy scheduling.

Using the UM-MPU data, we conduct extensive numerical experiments to draw insights into

colonoscopy scheduling. Specifically, we demonstrate that this DR approach can produce sched-

ules that (1) have a good operational performance (in terms of waiting time, idle time, and over-

time) under various probability distributions (and extreme scenarios) of the random parameters,

and (2) can accommodate provider (and patient) preference on appointment time while maintain-

ing a good operational performance as compared to the stochastic programming approach. We also

show that optimizing (customizing) colonoscopy appointment scheduling with a perfect prediction

of patient bowel prep adequacy has the potential of reducing the clinic operational costs.

4.7 Appendix

4.7.1 Variability of Patient Arrival Time
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Figure 4.6: Variability of patient arrival time deviation (2013-2017)

4.7.2 Candidate Probability Distributions for Colonoscopy Durations

Table 4.7: Candidate probability distributions for colonoscopy durations with adequate prep and
their goodness of fit metrics; Negative of the Log Likelihood (NLogL), Akaike Information Crite-
rion (AIC), and Bayesian Information Criterion (BIC).

Distribution Name NLogL BIC AIC

generalized extreme value 145161.09 290353.86 290328.17
tlocationscale 146712.79 293457.27 293431.59
loglogistic 146961.88 293944.88 293927.75
gamma 147762.11 295545.35 295528.22
weibull 147885.82 295792.77 295775.65
logistic 147971.33 295963.77 295946.65
rayleigh 147997.13 296004.83 295996.27
nakagami 147991.88 296004.89 295987.77
rician 147997.18 296015.49 295998.36
normal 151111.18 302243.48 302226.35
lognormal 154366.54 308754.21 308737.08
generalized pareto 156309.14 312649.96 312624.27
exponential 158335.06 316680.68 316672.12
extreme value 167355.01 334731.13 334714.01
birnbaumsaunders 180098.90 360218.93 360201.81
inverse gaussian 189926.62 379874.37 379857.25
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Table 4.8: Candidate probability distributions for colonoscopy durations with inadequate prep
and their goodness of fit metrics; Negative of the Log Likelihood (NLogL), Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC).

Distribution Name NLogL BIC AIC

generalized extreme value 22809.89 45645.73 45625.78
weibull 22837.97 45693.24 45679.94
nakagami 22852.68 45722.66 45709.36
gamma 22940.18 45897.65 45884.35
rayleigh 23140.40 46289.45 46282.80
rician 23140.40 46298.10 46284.80
tlocationscale 23157.91 46341.77 46321.82
logistic 23206.54 46430.38 46417.08
loglogistic 23233.96 46485.23 46471.93
generalized pareto 23374.94 46775.82 46755.87
normal 23468.33 46953.96 46940.66
exponential 23639.66 47287.97 47281.32
lognormal 23837.17 47691.64 47678.34
extreme value 25364.14 50745.58 50732.28
birnbaumsaunders 25544.99 51107.28 51093.98
inverse gaussian 26439.78 52896.85 52883.55

4.7.3 Proof of Proposition 4.4.1

Proof. Letting z = [z1, . . . , zP ]> be the dual variables associated with constraints (4.4b), y1 and

y = [y2, . . . , yP ]> be the dual variables associated with constraints (4.4c) and (4.4d), respectively,

and yP+1 be the dual variable associated with constraint (4.4e), we formulate Q(x, t, ξ) in (4.4) in

its dual form as:

max
z,y

P∑
i=1

(ti + ui)zi +
P∑
i=1

(qid
A
i + (1− qi)dI

i)yi+1 − LyP+1 (4.16a)

s.t. zi + yi − yi+1 = 0 for all i = 1, . . . , P (4.16b)

yi − yi+1 ≤ cw
i for all i = 1, . . . , P (4.16c)

− yi ≤ cg
i for all i = 1, . . . , P (4.16d)

0 ≤ yP+1 ≤ co (4.16e)
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Constraint set (4.16b) is related to primal variables ai for all i = 1, . . . , P , constraint set (4.16c) is

related to primal variables wi for all i = 1, . . . , P , constraint (4.16e) is related to primal variables

gP+1 and wP+1. Note from constraint (4.16b) that the dual variable y entirely determine variable

z, i.e., zi = yi+1 − yi for all i ∈ [P ]. Therefore, formulation (4.16) is equivalent to:

max
y∈Y

P∑
i=1

(ti + ui + qid
A
i + (1− qi)dI

i)yi+1 −
P∑
i=1

(ti + ui)yi − LyP+1 (4.17a)

s.t. Y := {(4.16c)− (4.16e)} (4.17b)

For notational convenience, we define a dummy variable yP+2 which always takes the lower-bound

value yP+2 = −cgP+2 = 0, cw
P+1 = co, and cg

P+1 = 0. Accordingly, we rewrite Y as follows:

Y = {yP+2 = 0, cw
i + yi+1 ≥ yi ≥ −cg

i for i = 1, ..., P + 1} (4.18)

4.7.4 Proof of Proposition 4.4.2

Proof. For a fixed (x, t), we can formulate problem (4.7) as the following linear functional opti-

mization problem.

max
P≥0

∫
S

Q(x, t, q, dA, dI, u) dP (4.19a)

s.t.
∫
S

dA
i dP = µA

i ∀i = 1, . . . , P (4.19b)∫
S

dI
i dP = µI

i ∀i = 1, . . . , P (4.19c)∫
S

ui dP = µu
i ∀i = 1, . . . , P (4.19d)∫

S

qi dP = µq
i ∀i = 1, . . . , P (4.19e)
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∫
S

dP = 1 (4.19f)

Letting ρ = [ρ1, . . . , ρP ]>, α = [α1, . . . , αP ]>, λ = [λ1, . . . , λP ]>, γ = [γ1, . . . , γP ]>, and θ be

the dual variable associated with constraints (4.19b), (4.19c), (4.19d), and (4.19f), respectively, we

present problem (4.19) in its dual form:

min
(ρ,α,λ,γ)∈RP ,θ∈R

P∑
i=1

µA
i ρi + µI

iαi + µu
iλi + µq

iγi + θ (4.20a)

s.t.
P∑
i=1

(dA
i ρi + dI

iαi + uiλi + qiγi) + θ ≥ Q(x, t, q, dA, dI, u) ∀(q, dA, dI, u) ∈ S

(4.20b)

where ρ, α, λ, γ, and θ are unrestricted in sign, and constraint (4.20b) is associated with the primal

variable P. Assuming that (1) µA
i (µ

I
i) lies in the interior of the set {

∫
S
dA
i (d

I
i) dQ : Q is a probability

distribution over S}, (2) µq
i lies in the interior of the set {

∫
S
qi dQ : Q is a probability distribution

over S}, and (3) µu
i lies in the interior of the set {

∫
S
ui dQ : Q is a probability distribution over S}

for each appointment i, strong duality hold between (4.19) and (4.20) (see Bertsimas and Popescu

(2005) for a detailed discussion on this assumption and Jiang et al. (2017); Mak et al. (2014)

for applications). Observe that for fixed (ρ, α, λ, γ, θ), constraint (4.20b) is equivalent to θ ≥

max
(q,dA,dI,u)∈S

{Q(x, t, q, dA, dI, u)−
∑p

i=1(d
A
i ρi + dI

iαi + uiλi + qiγi)}. Since we are minimizing θ in

(4.20) and Q(x, t, ξ) ≡ maxy∈Y
∑P

i=1(ti+ui+ qid
A
i + (1− qi)dI

i)yi+1−
∑P

i=1(ti+ui)yi−LyP+1

(see Proposition 4.4.1), the dual formulation of (4.19) is equivalent to:

min
ρ,α,λ,γ

{
P∑
i=1

µA
i ρi + µI

iαi + µu
iλi + µq

iγi + max
y∈Y

h(x, t, y, ρ, α, λ, γ)

}
(4.21)

where h(x, t, y, ρ, α, λ, γ) := max
(q,dA,dI,u)∈S

{∑P
i=1(ti+ui+qid

A
i +(1−qi)dI

i)yi+1−
∑P

i=1(ti +ui)yi−

LyP+1 −
∑P

i=1(d
A
i ρi + dI

iαi + uiλi + qiγi)
}

.
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4.7.5 Proof of Proposition 4.4.3

Proof. Note that the optimization problem defining function h(x, t, y, ρ, α, λ, γ) is separable by

each appointment–i.e.,

h(x, t, y, ρ, α, λ, γ) =
P∑
i=1

max
ui∈[uL

i ,u
U
i ]
ui(yi+1 − yi) +

P∑
i=1

max
qi∈{0,1},dA

i ∈[dAL
i ,dAU

i ]

dI
i∈[dIL

i ,d
IU
i ]

{
qid

A
i + (1− qi)dI

i

}
yi+1

+
P∑
i=1

(tiyi+1 − tiyi)− LyP+1 +
P∑
i=1

(
max

dA
i ∈[dAL

i ,dAU
i ]
−dA

i ρi + max
dI
i∈[dIL

i ,d
IU
i ]
−dI

iαi

+ max
ui∈[uLi ,uUi ]

−uiλi + max
qi∈{0,1}

−qiγi
)

= (−t1 − uL
1)y1 +

P∑
i=1

(uL
i − uU

i )(yi+1 − yi)+ +
P∑
i=2

(−ti − uL
i + ti−1 + uL

i−1)yi

+
P∑
i=2

min{dAL
i−1, d

IL
i−1}yi +

[
max{dAU

i−1, d
IU
i−1} −min{dAL

i−1, d
IL
i−1}

]
(yi)

+ +
(
tP

+ uLP − L+ min{dAL
P , d

IL
P}
)
yP+1 +

(
max{dAU

P , d
IU
P} −min{dAL

P , d
IL
P}
)

(yP+1)
+

+
P∑
i=1

Ki (4.22)

where (a)+ = max(a, 0) and Ki = −
(
dAU
i ρi + (dAL

i − dAU
i )(ρi)

+
)
−
(
dIU
i αi + (dIL

i − dIU
i )(αi)

+
)
−(

uU
iλi + (uL

i − uU
i )(λi)

+
)

+ (−γi)+ for all i = 1, . . . , P . It is straightforward to see that func-

tion h(x, t, y, ρ, α, λ, γ) is convex in variables y. Hence, maxy∈Y h(x, t, y, ρ, α, λ, γ) is a convex

maximization problem. It follows from the fundamental convex analysis (see, e.g., Boyd and Van-

denberghe (2004)) that there exists an optimal solution y∗ to max
y∈Y

h(x, t, y, ρ, α, λ, γ) at one of the

extreme point of the polyhedron Y defined in (4.9).

It is easy to see from the definition of Y in (4.9) that any any extreme point ŷ of Y satisfy (i)

ŷP+2 = −cg
P+1 = 0, and (ii) for all i = 1, . . . , P + 1, the dual constraint ŷi+1 + cw

i ≥ ŷi ≥ −cg
i is

binding at either the lower bound or upper bound. This defines a unique one-to-one correspondence

between an extreme point ŷ of Y and a partition of integers 1,..., P +2 into intervals. Each interval
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{k, ..., j} ⊆ {1, ..., P + 2} in the partition has the following property; yj = −cg
j (lower bound

value) and other yi = yi+1 + cw
i ,∀i = k, ..., j − 1 (upper bound value). As a result of this property,

for each interval {k, ..., j} in the partition and i ∈ {k, . . . , j}, we recursively obtain the value of yi

as follow:

yi = πi,j = −cgj +

j−1∑
`=i

cw
` ∀1 ≤ i ≤ j ≤ P + 2 and yP+2 = πP+2,P+2 = 0 (4.23)

Thus, the problem of finding an optimal extreme point y ∈ Y (i.e., max
y∈Y

h(x, t, y, ρ, α, λ, γ))

can be transformed into finding an optimal partition of the integers into intervals as follows. We

define a binary variable bkj = 1 if and only if the interval {k, ..., j} belong to the partition and

bkj = 0 otherwise for all 1 ≤ k ≤ j ≤ P + 2. bkj represent a valid partition if and only if each

index i belong to to exactly one interval, i.e.,
∑i

k=1

∑P+2
j=i bkj = 1, for all i = 1, ..., P + 2. Using

binary variables bkj and h(x, t, y, ρ, α, λ, γ) defintion in (4.22), we reformulate the maximization

problem max
y∈Y

h(x, t, y, ρ, α, λ, γ) in (4.11) as:

max
b

P+2∑
j=1

(−t1 − uL
1)π1,jb1,j +

P∑
i=1

P+2∑
j=i+1

(uU
i − uL

i)(πi+1,j + cgi )
+bi+1,j

+
P∑
i=2

i∑
k=1

P+2∑
j=i

(
− ti − uL

i + ti−1 + uL
i−1 + min{dAL

i−1, d
IL
i−1}

)
πi,jbk,j

+
P∑
i=2

i∑
k=1

P+2∑
j=i

(
max{dAU

i−1, d
IU
i−1} −min{dAL

i−1, d
IL
i−1}

)
(πi,j)

+bk,j

+
P+1∑
k=1

P+2∑
j=P+1

(
tP + uLP − L+ min{dAL

P , d
IL
P}
)
πP+1,jbk,j

+
P+1∑
k=1

P+2∑
j=P+1

(max{dAU
P , d

IU
P} −min{dAL

P , d
IL
P}
)
(πP+1,j)

+bk,j

+
P∑
i=1

i∑
k=1

P+2∑
j=i

Kibk,j (4.24a)
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s.t.
i∑

k=1

P+2∑
j=i

bkj = 1, for i = 1, ..., P + 2 (4.24b)

bkj ∈ {0, 1}, for 1 ≤ k ≤ j ≤ P + 2 (4.24c)

With tP+1 = uU, L
P+1 = dAU,AL

P+1 = dIU,IL
P+1 = tP+2 = uU,L

P+2 = dAU,AL
P+2 = dU,L

P+2 = πP+2,P+2 = 0. The

term (uU
i − uL

i)(πi+1,j + cgi )
+ in (4.24a) is equivalent to (uU

i − uL
i)(yi+1 − yi)+ in (4.22) because

(yi+1− yi)+ is positive if and only if i and i+ 1 belong to different partitions. That is if i and i+ 1

belong to the same partition then yi+1− yi = −cwi ≤ 0, and so (yi+1− yi)+ = (−cwi )+ = 0. If not,

then i ∈ {k, . . . , i} for 1 ≤ k ≤ i ≤ P + 1 and i + 1 ∈ {i + 1, . . . , j} for i + 1 ≤ j ≤ P + 2. In

this case, (yi+1 − yi)+ = (yi+1 + cgi )
+ = (πi+1,j + cgi )

+ by the partition in (4.23).

Note that the constraint matrix associated with constraints (4.24b)–(4.24c) is totally unimodular.

Therefore, its LP relaxation, which is obtained by replacing the binary constraints bkj ∈ {0, 1} in

(4.24c) by 0 ≤ bk,j ≤ 1, has a binary optimal solution. And so, the integer program in (4.24)

has the same optimal objective value as its LP relaxation as well as the dual problem of the LP

relaxation. The dual problem of the LP is given by min{
∑P+2

i=1 βi : (4.13b)− (4.13d)}

4.7.6 Proof of Proposition 4.4.4

Proof. Incorporating the sequencing decisions in (4.14) leads to the following MINLP formulation.

min
x,∈X ,t∈T
ρ,α,λ,γ,β

P∑
i=1

P∑
p=1

µA
pxp,iρi + µI

pxp,iαi + µu
pxp,iλi + µq

pxp,iγi +
P+2∑
i=1

βi (4.25a)

s.t.
j∑
i=1

βi ≥ (−t1 −
P∑
p=1

uL
pxp,1)π1,j +

min{j,P+1}∑
i=P+1

(
tP − L+

P∑
p=1

(
uL
p + min{dAL

p , d
IL
p }
)
xp,P

)
πP+1,j

+

min{j,P}∑
i=2

(
ti−1 − ti −

P∑
p=1

uL
pxp,i +

P∑
p=1

(
uL
p + min{dAL

p , d
IL
p }
)
xp,i−1

)
πi,j +

min{j,P}∑
i=1

K ′′i
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+

min{j,P+1}∑
i=2

( P∑
p=1

(
max{dAU

p , d
IU
p } −min{dAL

p , d
IL
p }
)
xp,i−1

)
(πi,j)

+, ∀j = 1, . . . , P + 2

(4.25b)

j∑
i=k

βi ≥
P∑
p=1

(uU
p − uL

p)xp,k−1(πk,j + cgk−1)
+ +

min{j,P}∑
i=min{k,P+1}

K ′′i

+

min{j,P+1}∑
i=P+1

(
tP − L+

P∑
p=1

(
uL
p + min{dAL

p , d
IL
p }
)
xp,P

)
πP+1,j

+

min{j,P}∑
i=min{k,P+1}

(
ti−1 − ti −

P∑
p=1

uL
pxp,i +

P∑
p=1

(
uL
p + min{dAL

p , d
IL
p }
)
xp,i−1

)
πi,j

+

min{j,P+1}∑
i=min{k,P+1}

( P∑
p=1

(
max{dAU

p , d
IU
p } −min{dAL

p , d
IL
p }
)
xp,i−1

)
(πi,j)

+,

∀k = 2, . . . , P + 1, j = k, . . . , P + 2 (4.25c)

βP+2 ≥ 0, zi ≥ 0, zi ≥ ρi, vi ≥ 0, vi ≥ αi, ri ≥ 0, ri ≥ λi, ei ≥ 0, ei ≥ −γi, ∀i ≤ P

(4.25d)

where for all i = 1, . . . , P , K ′′i = −
( P∑
p=1

(
dAU
p xp,iρi+(dAL

p −dAU
p )xp,izi)

)
−
( P∑
p=1

(
dIU
p xp,iαi+(dIL

p −

dIU
p )xp,ivi

))
−
( P∑
p=1

(
uU
pxp,iλi + (uL

p − uU
p)xp,iri

))
+ ei. Note that the objective function (4.25a)

and the term K ′′i in constraints (4.25b)–(4.25c) contain the bilinear terms xp,iρi, xp,iαi, xp,iλi

and xp,iγi with binary variables xp,i and continuous variables ρi, αi, λi and γi. Additionally, K ′′i

contains the bilinear terms xp,izi, xp,ivi, and xp,iri. To linearize this MINLP formulation, we define

ηp,i = xp,iρi, τp,i = xp,iαp,i, Λp,i = xp,iλi, Γi = xp,iγi, ζp,i = xp,izi, νp,i = xp,ivi, and ϕp,i = xp,iri.

We also introduce the following McCormick inequalities (4.26a)–(4.26g) for variables ζp,i, νp,i,

ϕp,i, ηp,i, τp,i, Λp,i, and Γi respectively:

ζp,i ≥ 0, ζp,i ≥ zi − (1− xp,i)zi, ζp,i ≤ zi, ζp,i ≤ xp,izi (4.26a)

νp,i ≥ 0, νp,i ≥ vi − (1− xp,i)vi, νp,i ≤ vi, νp,i ≤ xp,ivi (4.26b)
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ϕp,i ≥ 0, ϕp,i ≥ ri − (1− xp,i)ri, ϕp,i ≤ ri, ϕp,i ≤ xp,iri (4.26c)

ηp,i ≥ xp,iρi, ηp,i ≥ ρi − (1− xp,i)ρi, ηp,i ≤ xp,iρi, ηp,i ≤ ρi − (1− xp,i)ρi (4.26d)

τp,i ≥ xp,iαi, τp,i ≥ αi − (1− xp,i)αi, τp,i ≤ xp,iαi, τp,i ≤ αi − (1− xp,i)αi (4.26e)

Λp,i ≥ xp,iλi, Λp,i ≥ λi − (1− xp,i)λi, Λp,i ≤ xp,iλi, Λp,i ≤ λi − (1− xp,i)λi (4.26f)

Γp,i ≥ xp,iγi, Γp,i ≥ γi − (1− xp,i)γi, Γp,i ≤ xp,iγi, Γp,i ≤ γi − (1− xp,i)γi (4.26g)

where coefficients (z, v, r, ρ, α, λ, γ) and (z, v, r, ρ, α, λ, γ) are respectively valid lower and upper

bounds on the values of variables (z, v, r, ρ, α, λ, γ). LettingK ′′ = −
(∑P

p=1 d
AU
p ηp,i+

∑P
p=1(d

AL
p −

dAU
p )ζp,i

)
−
(∑P

p=1 d
IU
p τp,i−

∑P
p=1(d

IL
p − dIU

p )νp,i

)
−
(∑P

p=1 u
U
pΛp,i +

∑P
p=1(u

L
p− uU

p)ϕp,i

)
+ ei for

all i ∈ [P ], formulation (4.25) (equivalently, the DR scheduling model in (4.6)) is equivalent to the

following MILP.

(DR-bimodal) min
P∑
i=1

P∑
p=1

µA
pηp,i + µI

pτp,i + µu
pνp,i + µq

pΓp,i +
P+2∑
i=1

βi (4.27a)

s.t. (x ∈ X , t ∈ T ) (4.27b)

(4.25b)− (4.25d), (4.26d)− (4.26g) (4.27c)

4.7.7 Strengthening the MILP Formulation of DROCS

In this section, we derive tight lower and upper bounds on the values of variables (ρ, α, λ, γ, z, v, r)

in McCormick inequalities (4.26) of the MILP formulation in (4.15). First, in Lemma 4.7.1 we de-

rive tight upper and lower bounds on variables y ∈ Y defined in (4.9). Then, in Propositions 4.7.2–

4.7.5, we use the results of Lemma 4.7.1, to derive tight bounds on variables (ρ, α, λ, γ, z, v, r).

Lemma 4.7.1. y
i

= −cg
i and yi =

P+1∑
j=i

cw
j are respectively valid lower and upper bounds on
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variable yi in (4.11), for i = 1, . . . , P + 1.

Proof. It’s straightforward to derive y
i

= −cg
i and yi =

P+1∑
j=i

cw
j from the the definition of polyhedron

Y := {yP+2 = 0, cw
i + yi+1 ≥ yi ≥ −cg

i for i = 1, ..., P + 1}.

Proposition 4.7.2. y
i+1

and yi+1 are respectively valid lower and upper bounds on variables

(ρi, αi), for i = 1, . . . , P .

Proof. First, we prove that ρi ∈ [y
i+1
, yi+1]. Observe from the objective of the DROCS problem

in (4.11) that variables ρi are multiplied by parameters µAi and variables dAi for all i = 1, . . . , P .

And so, for fixed yi+1 ∈ Y , the joint contribution of ρi and dAi , ∀i = 1, . . . , P , to the objective of

problem (4.11) equals:

µAi ρi + max
dAi ∈[dAL

i ,dAU
i ]

(qiyi+1 − ρi)dAi = µAi ρi + (qiyi+1 − ρi)dALi + (dAUi − dALi )(qiyi+1 − ρi)+.

(4.28)

Suppose that ρi > yi+1. In this case, (qiyi+1 − ρi)+ = 0 and so ρi contribute to the objective value

of problem (4.11) by (µAi − dALi )ρi. Let ρ′i = ρi − ε with ε > 0. Since (µAi − dALi ) ≥ 0, then

(µAi − dALi )ρ′i < (µAi − dALi )ρi, i.e., ρ′i improves the objective value of problem (4.11). It follows

that, without any loss of optimality, ρi = yi+1 is a valid upper bound on ρi for i = 1, . . . , P.

Conversely, suppose that ρi < y
i+1

. In this case, ρi contribute to the objective value of problem

(4.11) by (µAi − dAUi )ρi. Let ρ′i = ρi + ε with ε > 0. Since (µAi − dAUi ) ≤ 0, then (µAi − dAUi )ρ′i <

(µAi − dAUi )ρi, i.e., ρ′i improves the objective value of problem (4.11). It follows that, without any

loss of optimality, ρ
i

= y
i+1

is a valid lower bound on ρi for i = 1, . . . , P .

Second, we observe from (4.11) that variables αi are multiplied by parameters µIi and variables

dIi for i = 1, . . . , P . And so, for fixed yi+1, the joint contribution of αi and dIi , ∀i = 1, . . . , P , to
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the objective of problem (4.11) equals:

µIiαi + max
dIi∈[dILi ,dIUi ]

((1− qi)yi+1 − αi)dIi = µIi + ((1− qi)yi+1 − αi)dILi αi (4.29)

+ (dIUi − dILi )((1− qi)yi+1 − αi)+. (4.30)

It follows that αi ∈ [y
i+1
, yi+1], for i = 1, . . . , P .

Proposition 4.7.3. λi = y
i+1
− yi and λi = yi+1 − y

i
are respectively valid lower and upper

bounds on variables λi for i = 1, . . . , P . (4.11)

Proof. Observe from the objective of the DROCS problem in (4.11) that variables λi are multiplied

by parameters µui and variables ui for i = 1, . . . , P . And so, for fixed yi+1 and yi, the joint

contribution of variables λi and ui, for all i = 1, . . . , P , to the objective of problem (4.11) equals:

max
ui∈[uLi ,uUi ]

(yi+1 − yi − λi)ui = (yi+1 − yi − λi)uLi + (yi+1 − yi − λi)+(uUi − uLi ) (4.31)

Using the same proof techniques of proposition 4.7.2, one can show that λi ∈ [y
i+1
−yi, yi+1−yi],

for i = 1, . . . , P .

Proposition 4.7.4. γ
i

= −Myi+1 and γi = Myi+1 are respectively valid lower and upper bounds

on variables γi for i = 1, . . . , P . Where,

M=max
{
|dAUi − dIUi |, |dAUi − dILi |, |dALi − dIUi |, |dALi − dILi |

}
.

Proof. Observe from the objective of the DROCS problem in (4.11) that variables γi are only

multiplied by parameters µqi and variables qi for i = 1, . . . , P . And so, for fixed yi+1, the joint

contribution of variables γi and qi to the objective of problem (4.11) equals:

µqiγi + max
qi∈{0,1}

dAi ∈[dAL
i ,dAU

i ]

dIi∈[dILi ,dIUi ]

((dAi − dIi )yi+1 − γi)qi = µqiγi + (M |yi+1| − γi)+. (4.32)
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Using the same proof techniques of proposition 4.7.2, one can show that γi ∈ [−Myi+1,Myi+1],

for i = 1, . . . , P .

Proposition 4.7.5. (zi = ρi, vi = αi, ri = λi) are valid upper bounds on variables (zi, vi, ri), for

all i = 1, . . . , P .

Proof. By constraints (4.25d) and the objective of minimizing (ρi, αi, λi, βi), zi = max(ρi, 0),

vi = max(αi, 0), and ri = max(λi, 0). It follows, that zi ∈ [0, ρi], vi ∈ [0, αi], and ri ∈ [0, λi], for

i = 1, . . . , P .
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4.7.8 Stochastic Mixed-Integer Linear Program (SMILP)

The following SMILP-bimodal minimize the expected weighted sum of the scheduling metrics via

the sample average approximation (SAA) approach with N scenarios (see, e.g., Kim et al. (2015);

Kleywegt et al. (2002) and references therein for detailed information on SAA).

min
x∈X ,t∈T ,w,a,g

1

N

N∑
n=1

P∑
i=1

(cw
i w

n
i + cg

ig
n
i ) + cownP+1 (4.33a)

s.t. ani = ti +
P∑
p=1

unpxp,i, ∀i ∈ [P ],∀n ∈ [N ] (4.33b)

wn1 − gn1 + an1 = 0, ∀n ∈ [N ] (4.33c)

wni − gni = ani−1 + wni−1

P∑
p=1

(
qnpd

An
p + (1− qnp )dInp

)
xp,i−1 − ani , ∀i ∈ [2, P ]Z,∀n ∈ [N ]

(4.33d)

wnP+1 − gnP+1 = anP + wnP

P∑
p=1

(
qnpd

An
p + (1− qnp )dInp

)
xp,P − L, ∀n ∈ [N ] (4.33e)

(wni , g
n
i ) ≥ 0, ∀i ∈ [P + 1], ∀n ∈ [N ] (4.33f)

where qnp , d
An
p , d

Ip
p , and unp are respectively realizations of parameters qp, dA

p, d
I
p, and up of appoint-

ment p in scenario n from their known distributions for all p ∈ [P ] and n ∈ [N ]. Variables wni ,

gni , and wnP+1 are the recourse waiting time of appointment i, provider idle time after appointment

i, and the clinic overtime in scenario n, respectively, for all n ∈ [N ]. Constraints (4.33c)–(4.33f)

computes the (waiting time, idle time, and overtime) values based on the schedule (x, t) and a

scenario n of parameters (qnp , d
An
p , d

In
p , u

n
p ) for all n ∈ [N ].

In the SMILP-plain, we assume that colonoscopy durations follow one probability distribution,

and so we replace the term qnpd
An
p + (1− qnp )dInp with dnp in constraints (4.33d) and (4.33e), where

dnp represent colonoscopy duration in scenario n.

132



4.7.9 DR-plain Formulation

In this section, we present the DR-plain model in which we ignore prep adequacy and assume that

colonoscopy durations, d, follow a single (unknown) probability distribution with a known mean

µd and support Sd := {d ≥ 0 : dL ≤ d ≤ dU}. And so, we assume that P of ξ := [d, u]>

belongs to an ambiguity set F plain(S, µ) of possible distributions, which incorporate the known

support S = Sd × Su and mean µ := EP[ξ] = [µd, µu]>. Using ambiguity set F plain(S, µ) :=
{
P ∈

P(S) :
∫
S
dP = 1,EP[ξ] = µ

}
, we formulate the DR-plain as the following min-max problem:

(Dr-plain) min
x,t

sup
P∈Fplain(S,µ)

EP[Q(x, t, ξ)] (4.34)

where ξ := [d, u]>. We follow the same logic in Section 4.4.5 to derive the following MILP

formulation of DR-plain in (4.34).

min
P∑
i=1

P∑
p=1

µd
pηp,i + µu

pΛp,i +
P+2∑
i=1

βi (4.35a)

s.t.
j∑
i=1

βi ≥ (−t1 −
P∑
p=1

uL
pxp,1)π1,j +

min{j,P}∑
i=2

(
ti−1 − ti −

P∑
p=1

uL
pxp,i +

P∑
p=1

(
uL
p + dL

p

)
xp,i−1

)
πi,j

+

min{j,P+1}∑
i=2

( P∑
p=1

(
dU
p − dL

p

)
xp,i−1

)
(πi,j)

+ +

min{j,P}∑
i=1

Vi

+

min{j,P+1}∑
i=P+1

(
tP − L+

P∑
p=1

(
uL
p + dL

p

)
xp,P

)
πP+1,j, ∀j ∈ [1, P + 2]Z (4.35b)

j∑
i=k

βi ≥
P∑
p=1

(uU
p − uL

p)xp,k−1(πk,j + cgk−1)
+ +

min{j,P+1}∑
i=min{k,P+1}

( P∑
p=1

(
dU
p − dL

p

)
xp,i−1

)
(πi,j)

+

+

min{j,P}∑
i=min{k,P}

(
ti−1 − ti −

P∑
p=1

uL
pxp,i +

P∑
p=1

(
uL
p + dL

p

)
xp,i−1

)
πi,j +

min{j,P}∑
i=min{k,P}

Vi
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+

min{j,P+1}∑
i=P+1

(
tP − L+

P∑
p=1

(
uL
p + dL

p

)
xp,P

)
πP+1,j, k ∈ [2, P + 1]Z, j ∈ [k, P + 2]

(4.35c)
j∑

i=P+1

βi ≥
P∑
p=1

(uU
p − uL

p)xp,P (πP+1,j + cgP )+ +
(
tP − L+

P∑
p=1

(
uL
p + dL

p

)
xp,P

)
πP+1,j

+
( P∑
p=1

(
dU
p − dL

p

)
xp,P

)
(πP+1,j)

+, ∀j = P + 1, P + 2 (4.35d)

ηp,i ≥ xp,iρi, ηp,i ≥ ρi − (1− xp,i)ρi, ∀(p, i) ∈ [P ] (4.35e)

ηp,i ≤ xp,iρi, ηp,i ≤ ρi − (1− xp,i)ρi, ∀(p, i) ∈ [P ] (4.35f)

Λp,i ≥ xp,iλi, Λp,i ≥ λi − (1− xp,i)λi, ∀(p, i) ∈ [P ] (4.35g)

Λp,i ≤ xp,iλi, Λp,i ≤ λi − (1− xp,i)λi, ∀(p, i) ∈ [P ] (4.35h)

ζp,i ≥ 0, ζp,i ≥ zi − (1− xp,i)zi, ζp,i ≤ zi, ζp,i ≤ xp,izi, ∀(p, i) ∈ [P ] (4.35i)

ϕp,i ≥ 0, ϕp,i ≥ ri − (1− xp,i)ri, ϕp,i ≤ ri, ϕp,i ≤ xp,iri,∀(p, i) ∈ [P ] (4.35j)

βP+2 ≥ 0, zi ≥ 0, zi ≥ ρi, vi ≥ 0, vi ≥ αi, ri ≥ 0, ri ≥ λi, ei ≥ 0, ei ≥ −γi,∀i ∈ [P ] (4.35k)

where Vi = −
(∑P

p=1 d
U
pηp,i +

∑P
p=1(d

L
p − dU

p)ζp,i

)
−
(∑P

p=1 u
U
pΛp,i +

∑P
p=1(u

L
p − uU

p)ϕp,i

)
+ ei

for all i = 1, . . . , P.
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4.7.10 Random Sequences

Figure 4.7 presents the random sequencing matrices X1, . . . ,X1000, i.e., the assignment of proce-

dures to positions in each of 1000 randomly generated sequences. Figure 4.8 presents a histogram

of procedures assignments in each position i = 1, . . . , P . Note that procedures p=1,. . . , 6 are

colonoscopy and p = 7, . . . , 10 are combined upper endoscopy and colonoscopy procedures.

Figure 4.7: 1000 random sequences are presented

Figure 4.8: Histogram of procedures assignments in each position
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4.7.11 Cost of Revising The Optimal Sequence with Random Arrivals

(a) Optimal (in-sample) costs (b) Out-of-sample simulation costs

Figure 4.9: Relative frequency histograms of the optimal (in-sample) and out-of-sample simulation
costs with random arrivals

(a) total waiting time (b) waiting time per appointment

Figure 4.10: Relative frequency histograms of the out-of-sample waiting time with random arrivals.

(a) total provider idle time (b) provider idle time per appointment

Figure 4.11: Relative frequency histograms of the out-of-sample idle time with random arrivals.

136



4.7.12 DR and SMILP Solution Time

In this section, we increase the size of the heterogeneous instances of the problem from P =10

to P=16, 20, and 30 procedures and compare the CPU time required for solving them using the

DR-bimodal and SMILP-bimodal. In each instance, we fix the number of colonoscopy procedures

(C) to 70%P , and the number of the combined upper endoscopy and colonoscopy (UC) to 25%P .

For each of the resulting procedures mix, we generate five independent sets of the required random

parameters for the DR and SMILP models as described in Section 4.5.1. We solve the DR-bimodal

and SMILP-bimodal with each parameter sets of each procedure mix (instance). Table 4.9 presents

the average CPU time (in second) (or the relative MIP= UB−LB
UB ×100%, where UB is the best upper

bound and LB is the linear programming relaxation-based lower bound obtained at termination

after 2 hours time limit) across the five solves of each instance using the DR-bimodal and SMILP-

bimodal.

Table 4.9: Average CPU time (in second) of solving the DR-bimodal and SMILP-bimodal with
various heterogeneous instances.

Instance # of Procedures Procedures Mix DR-bimodal SMILP-bimodal

1 10 (6C, 4UC) 1 123
2 16 (12C, 5UC) 7 600
3 20 (15C, 5UC) 80 9%
4 30 (23C, 7UC) 3987 40%
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4.7.13 Out-of-Sampel Performance

Table 4.10: Out-of-sample performance of the optimal schedules given by DR and SLP models for
the homogeneous instance (10 C) under perfect distributional information.

Punctual Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 7 6 5 17 2 1

DR-bimodal 5 17 8 8 7 5
SLP-plain 6 3 5 6 3 5
DR-plain 9 4 4 18 2 2

Median SLP-bimodal 0 0 0 8 0 0
DR-bimodal 0 10 6 0 0 0
SLP-plain 0 0 1 0 0 1
DR-plain 0 0 0 8 0 0

75%-quantile SLP-bimodal 8 0 9 26 0 0
DR-bimodal 2 27 14 9 6 10
SLP-plain 7 0 9 6 0 10
DR-plain 11 0 8 28 0 0

95%-quantile SLP-bimodal 37 38 17 62 13 9
DR-bimodal 28 60 21 40 43 18
SLP-plain 34 23 17 32 22 18
DR-plain 42 29 16 67 16 10

Random Arrivals
cw = cg = co cw = 1, cg = 5, cocw = 1, cg = 5, cocw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 7 9 6 18 3 2

DR-bimodal 4 45 10 6 15 7
SLP-plain 8 7 6 19 3 2
DR-plain 6 11 7 15 4 3

Median SLP-bimodal 0 0 3 10 0 0
DR-bimodal 0 40 10 0 6 5
SLP-plain 0 0 2 11 0 0
DR-plain 0 2 5 6 0 0

75%-quantile SLP-bimodal 10 11 11 28 0 2
DR-bimodal 0 54 17 6 22 13
SLP-plain 11 4 11 29 0 2
DR-plain 7 16 13 23 0 6

95%-quantile SLP-bimodal 37 48 19 63 24 13
DR-bimodal 23 82 26 34 60 21
SLP-plain 39 41 19 65 22 14
DR-plain 34 50 21 60 31 16
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Table 4.11: Out-of-sample performance of optimal schedules given by DR and SMLP models for
the heterogeneous instance (6C, 4UC) under perfect distributional information.

Punctual Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 9 0 3 15 0 2

DR-bimodal 4 1 8 10 0 4
SMILP-plain 10 0 3 19 0 1
DR-plain 7 0 5 15 0 2

Median SMILP-bimodal 0 0 0 6 0 0
DR-bimodal 0 0 6 0 0 0
SMILP-plain 0 0 0 11 0 0
DR-plain 0 0 0 6 0 0

75%-quantile SMILP-bimodal 13 0 6 23 0 0
DR-bimodal 1 0 15 14 0 7
SMILP-plain 14 0 5 29 0 0
DR-plain 8 0 9 24 0 1

95%-quantile SMILP-bimodal 43 0 14 57 0 10
DR-bimodal 26 2 22 49 0 10
SMILP-plain 43 0 14 64 0 7
DR-plain 35 0 17 58 0 10

Random Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 6 1 7 17 0 3

DR-bimodal 2 5 12 9 1 6
SMILP-plain 6 1 7 15 0 3
DR-plain 5 1 8 14 0 3

Median SMILP-bimodal 0 0 5 9 0 0
DR-bimodal 0 0 11 0 0 2
SMILP-plain 0 0 4 7 0 0
DR-plain 0 0 7 5 0 0

75%-quantile SMILP-bimodal 6 0 12 26 0 3
DR-bimodal 0 5 18 12 0 11
SMILP-plain 7 0 12 24 0 3
DR-plain 4 0 14 21 0 6

95%-quantile SMILP-bimodal 32 0 21 62 0 14
DR-bimodal 21 30 28 42 0 21
SMILP-plain 32 0 21 57 0 14
DR-plain 28 0 23 54 0 16
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Table 4.12: Out-of-sample performance of optimal schedules given by DR and SLP model for the
homogeneous instance (10C) under misspecified distributional information. Procedure durations
and arrival time deviations were sampled from the UM-MPU data.

Punctual Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 6 2 5 15 1 1

DR-bimodal 4 9 8 6 3 5
SLP-plain 6 2 5 15 1 2
DR-plain 7 2 5 6 2 6

Median SLP-bimodal 0 0 1 7 0 0
DR-bimodal 0 1 7 0 0 1
SLP-plain 0 0 2 0 0 2
DR-plain 0 0 0 0 0 6

75%-quantile SLP-bimodal 7 0 9 24 0 0
DR-bimodal 0 14 14 7 0 10
SLP-plain 6 0 10 6 0 10
DR-plain 8 0 9 23 0 1

95%-quantile SLP-bimodal 33 18 17 58 0 9
DR-bimodal 24 41 22 34 23 18
SLP-plain 32 19 18 31 19 19
DR-plain 36 17 17 59 2 11

Random Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 8 4 6 18 1 2

DR-bimodal 4 35 11 6 7 7
SLP-plain 8 4 6 18 1 3
DR-plain 6 7 7 14 2 4

Median SLP-bimodal 0 0 0 12 0 0
DR-bimodal 0 32 9 0 0 3
SLP-plain 0 0 0 11 0 0
DR-plain 0 0 3 6 0 0

75%-quantile SLP-bimodal 10 0 12 28 0 0
DR-bimodal 0 42 18 7 9 14
SLP-plain 11 0 12 27 0 1
DR-plain 8 9 14 22 0 5

95%-quantile SLP-bimodal 36 27 24 63 6 15
DR-bimodal 23 67 32 32 39 26
SLP-plain 37 28 24 61 8 16
DR-plain 33 37 27 55 17 18
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Table 4.13: Out-of-sample performance of optimal schedules given by DR and SMLP model for
the heterogeneous instance (6C, 4UC) under misspecified distributional information. Procedure
durations and arrival time deviations were sampled from the UM-MPU data.

Punctual Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 10 0 3 18 0 1

DR-bimodal 4 0 8 11 0 3
SMILP-plain 7 0 5 18 0 1
DR-plain 10 0 3 15 0 2

Median SMILP-bimodal 0 0 0 9 0 0
DR-bimodal 0 0 6 1 0 0
SMILP-plain 0 0 0 0 0 0
DR-plain 0 0 1 6 0 0

75%-quantile SMILP-bimodal 14 0 5 27 0 0
DR-bimodal 1 0 14 16 0 6
SMILP-plain 14 0 5 28 0 0
DR-plain 7 0 9 23 0 1

95%-quantile SMILP-bimodal 45 0 14 65 0 8
DR-bimodal 26 0 21 50 0 15
SMILP-plain 45 0 14 65 0 8
DR-plain 36 0 17 60 0 10

Random Arrivals
cw = cg = co cw = 1, cg = 5, co = 7.5

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 7 0 6 18 0 3

DR-bimodal 3 4 11 10 1 5
SMILP-plain 7 0 7 18 0 3
DR-plain 7 0 7 15 0 4

Median SMILP-bimodal 0 5 1 11 0 0
DR-bimodal 0 0 9 0 0 0
SMILP-plain 0 0 1 10 0 0
DR-plain 0 0 4 7 0 0

75%-quantile SMILP-bimodal 9 0 13 27 0 1
DR-bimodal 0 2 8 14 0 11
SMILP-plain 9 0 13 27 0 1
DR-plain 7 0 15 23 0 4

95%-quantile SMILP-bimodal 35 0 53 62 0 15
DR-bimodal 23 0 32 45 0 24
SMILP-plain 36 0 25 62 0 15
DR-plain 31 0 27 58 0 17
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Table 4.14: Out-of-sample performance of optimal schedules given by DR and SLP model for the
homogeneous instance (10C) under misspecified distributional information. Procedure durations
were sampled from normal and weibull distributions, and arrival time deviations from a uniform
distribution. WT, OT, IT are the averages over Cost1 and Cost2.

Punctual Arrivals
Normal Weibull

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 16 0 2 15 1 2

DR-bimodal 6 2 5 6 2 6
SLP-plain 18 2 2 17 1 2
DR-plain 19 1 2 18 1 2

Median SLP-bimodal 10 0 0 8 0 0
DR-bimodal 0 0 0 0 0 0
SLP-plain 11 0 0 9 0 0
DR-plain 11 0 0 10 0 0

75%-quantile SLP-bimodal 25 0 0 24 0 0
DR-bimodal 8 0 10 8 0 11
SLP-plain 30 0 8 28 0 0
DR-plain 29 0 0 29 0 0

95%-quantile SLP-bimodal 55 0 12 24 0 0
DR-bimodal 28 12 22 8 0 11
SLP-plain 30 17 20 60 7 14
DR-plain 64 10 12 62 8 13

Random Arrivals
Normal Weibull

Metric Model WT OT IT WT OT IT
Mean SLP-bimodal 18 1 2 16 1 3

DR-bimodal 5 6 7 5 6 8
SLP-plain 17 1 3 19 2 2
DR-plain 13 1 4 15 3 3

Median SLP-bimodal 13 0 0 9 0 0
DR-bimodal 0 0 4 0 0 5
SLP-plain 11 0 0 12 0 0
DR-plain 6 0 0 7 0 0

75%-quantile SLP-bimodal 28 0 2 26 0 3
DR-bimodal 6 8 13 6 8 14
SLP-plain 26 0 2 30 0 2
DR-plain 21 0 6 24 0 5

95%-quantile SLP-bimodal 58 1 14 57 0 14
DR-bimodal 24 26 25 27 30 25
SLP-plain 55 2 14 62 12 14
DR-plain 49 7 17 55 21 16
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Table 4.15: Out-of-sample performance of optimal schedules given by DR and SMLP model for
the heterogeneous instance (6C, 4UC) under misspecified distributional information. Procedure
durations were sampled from normal and weibull distributions, and arrival time deviations from a
uniform distribution. WT, OT, IT are the averages over Cost1 and Cost2.

Punctual Arrivals
Normal Weibull

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 14 0 3 14 0 4

DR-bimodal 7 0 5 8 0 6
SMILP-plain 15 0 2 14 0 2
DR-plain 11 0 3 11 0 3

Median SMILP-bimodal 8 0 0 6 0 0
DR-bimodal 2 0 2 2 0 3
SMILP-plain 9 0 0 7 0 0
DR-plain 5 0 0 4 0 0

75%-quantile SMILP-bimodal 22 0 4 23 0 6
DR-bimodal 11 0 9 12 0 10
SMILP-plain 23 0 2 22 0 3
DR-plain 17 0 4 16 0 5

95%-quantile SMILP-bimodal 50 0 15 53 0 17
DR-bimodal 34 0 23 37 0 22
SMILP-plain 50 0 12 49 0 13
DR-plain 42 0 16 42 0 16

Random Arrivals
Normal Weibull

Metric Model WT OT IT WT OT IT
Mean SMILP-bimodal 12 0 4 11 0 5

DR-bimodal 6 2 8 6 1 8
SMILP-plain 12 0 4 11 0 5
DR-plain 9 0 5 10 0 5

Median SMILP-bimodal 6 0 1 5 0 2
DR-bimodal 0 0 5 0 0 5
SMILP-plain 4 0 2 6 0 2
DR-plain 7 0 1 5 0 3

75%-quantile SMILP-bimodal 19 0 7 17 0 8
DR-bimodal 7 1 14 7 0 15
SMILP-plain 19 0 6 17 0 8
DR-plain 15 0 9 15 0 9

95%-quantile SMILP-bimodal 43 0 19 44 0 19
DR-bimodal 28 9 27 29 8 26
SMILP-plain 41 0 19 41 0 19
DR-plain 36 0 21 38 0 20
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CHAPTER 5

Conclusions

5.1 Summary and Contributions

In this dissertation, we study three stochastic outpatient scheduling problems and address chal-

lenges associated with solving each of them.

In Chapter 2, we propose a new stochastic mixed-integer linear programe (SMILP) for solving

the problem of finding a sequence of appointment times for a set of procedures for a single provider

(where each procedure has a known type and a random duration that follows a known probability

distribution), minimizing a weighted sum of waiting, idle time, and overtime. We provide theo-

retical and empirical comparisons to other SMILP models in the literature, demonstrating where

a significant improvement in computational performance can be gained with our model. More

broadly, Chapter 2 presents the first rigorous and computational analysis of models for single-

server stochastic appointment sequencing and scheduling with stochastic service duration, which

has applications both within and outside of healthcare operations.

One of the shortcomings of the scheduling models that we analyze in Chapter 2 is that they

ignore the uncertainty of patient’s arrival times and the possibility of rescheduling (i.e., resequenc-

ing or declining). Therefore, in Chapter 3, we study an adaptive stochastic outpatient appointment

scheduling problem (SOASP) which incorporates the random patients arrival times and random

service durations, and adaptive rescheduling. Finding an optimal solution to this problem requires

144



solving a multi-stage stochastic mixed-integer program (MSMIP) with an initial schedule made in

the first stage and rescheduling policy optimized in the subsequent stages.

By deriving two-stage approximations of SOASP–MSMIP and testing them in extensive numer-

ical experiments, we show that the easily-implementable appointment order policy (AO), which

requires that patients are served in the order of their scheduled appointments, is near-optimal in a

wide range of SOASP parameter settings. We also identify parameter settings that result in sub-

optimality of the AO policy. Accordingly, we propose an alternative policy based on neighbor-

swapping that improve the solutions of such instances.

To the best of our knowledge, and according to the recent review of outpatient appointment sys-

tems by Ahmadi-Javid et al. (2017), Chapter 3 presents the first stochastic programming approach

to SOASP that considers (1) patient heterogeneity, (2) optimizing both the initial appointment

sequencing and scheduling decisions, and (3) the possibility of rescheduling.

Chapters 2–3 both assume that we know the probability distributions of uncertain parameters;

this isn’t always the case. In Chapter 4, therefore, we consider the challenges of outpatient schedul-

ing under under ambiguous probability distributions in the context of colonoscopy scheduling.

The main challenge in colonoscopy scheduling is that procedure duration depends on the qual-

ity of pre-procedure bowel prep that the patient must undergo. Data from a large outpatient clinic

(OPC) indicates that colonoscopy durations are bimodal, i.e., depending on the prep quality they

can follow two different probability distributions, one for those with adequate prep and the other for

those with inadequate prep. Furthermore, there is a wide range of possible distributions for mod-

eling the variability in colonoscopy duration with adequate and inadequate prep. This bimodality

and ambiguity in the distribution of colonoscopy duration prevent us from using the stochastic

programming approaches in Chapters 2–3. We therefore define a distributionally robust outpa-

tient colonoscopy scheduling (DROCS) problem that seeks an optimal appointment sequence and

schedule to minimize the worst-case weighted expected sum of patient waiting, provider idling,

and provider overtime, where the worst-case is taken over an ambiguity set characterized through
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the known mean and support of the prep quality and durations.

We derive an equivalent mixed-integer linear programming formulation to solve DROCS. Fi-

nally, we present a case study based on extensive numerical experiments in which we draw several

managerial insights into colonoscopy scheduling. According to the recent review of outpatient ap-

pointment systems by Ahmadi-Javid et al. (2017), the work in Chapter 4 is the first to address the

bimodal ambiguity of colonoscopy (service) durations. We further contribute with a new DR model

that incorporates sequencing decisions and considers the ambiguity of two coexisting uncertainties

of colonoscopy duration (as a function of uncertain prep quality) and arrival time deviation.

Collectively, this dissertation addresses four salient challenges to efficient outpatient appoint-

ment scheduling under uncertainty: random service duration (Chapter 2), random arrival time

(Chapter 3), the possibility of rescheduling (Chapter 3), and bimodality and ambiguity of the dis-

tribution of service duration (Chapter 4). More broadly, this dissertation contributes to the liter-

ature on scheduling under uncertainty and stochastic optimization with guidelines and methods

to develop tractable and implementable scheduling (and mixed-integer programming) models and

approaches.

jsbfhjdsbfhjvdshfgvhsadfvadsgvfhjadesgfh dsf

5.2 Future Research

We suggest four areas for future research. First, we would like to extend our approach to include

additional sources of uncertainty such as patient no-show, provider arrival time, and setup times

between appointments. Second, we are interested in studying trade-offs between scheduling met-

rics such as provider workload (i.e., number of scheduled appointments) and patient access delays

(i.e., the length of time a patient has to wait from the appointment request until a scheduled ap-

pointment becomes available to them). Third, our models and approaches assume a fixed number

of patients with known types. We seek to use the results of this research to develop templates
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and policies for scheduling patients dynamically as they randomly request future appointments,

considering patient and provider preferences, patient priority in terms of their respective medical

urgency, and appointment utilization.

Finally, each patient in the scheduling problems we considered requires a single resource (e.g., a

physician), and so we focused on optimizing appointment start time decisions. Some OPCs provide

more complex services for elective outpatients, requiring several constrained resources such as a

physician, a particular procedure room, specialized equipment, and one or more nurses. Some of

these resources often require random setup time and have limited and unpredictable availability

on each day. As such, OPC managers must choose a suitable set of resources and an appointment

day, in addition to the appointment start time for each patient. Thus, we would like to extend our

models and approach to multi-resource, integrated stochastic appointment planning and scheduling

problems in which we need to assign a mode (resources), a day in the planning horizon, and an

exact start time for each customer type.
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