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Abstract 

Complex systems are at risk of critical transitions when the system shifts abruptly from 

one state to another when a threshold is crossed. Recent studies have revealed that a variety of 

systems, ranging from systems examined by engineering, physics, and biology, to others related 

to climate sciences, medicine, social sciences, and ecology are susceptible to transitions leading to 

drastic re-organization or collapse. Such an unexpected transition is usually undesirable, because 

it is often difficult to restore a system to its pre-transition state once the transition occurs. It is 

exceedingly difficult to know if a system comes close to critical transitions because typically no 

easily noticeable changes can be observed unless the transition happens. Furthermore, accurate 

models are often not available, and predictions based on models of limited accuracy face 

difficulties. Hence, we are still ill-equipped to predict critical transitions, and there is an acute need 

for reliable methods to predict such catastrophic events.  

In this research, a data-driven, model-free approach is introduced to forecast critical points 

and post-critical dynamics of complex dynamical systems using measurements of the system 

response collected only in the pre-transition regime. Based on observations of the system response 

to perturbations only in the pre-transition regime, the method forecasts the bifurcation diagram 

and discovers the system’s stability after the transition. The forecasting approach is based on the 

phenomenon of critical slowing down, referring to the slowing down of a system's dynamics when 

approaching a tipping point. The rate of the system’s recovery from perturbations decreases when 
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the system approaches the transition. Thus, the rate of recovery from perturbations can be used as 

an indicator, and is correlated to the distance to the transition.  

The method is employed to forecast critical transitions in several classes of complex 

systems including flutter instabilities in fluid-structural systems, collapse of natural populations in 

ecological systems, and the onset of traffic congestions in vehicular traffic flow systems. The 

theoretical and experimental results of this study address important challenges in forecasting safety 

and stability of complex systems. The capabilities of the methods proposed make them unique 

tools for analysis of complex systems in both computational and experimental studies.  
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Chapter 1  

Introduction 

 
1.1 Motivation 

Bifurcations occur in the dynamics of complex systems, from natural ecosystems to 

engineered systems. Such phenomena lead to various types of stability issues and can cause 

dramatic changes in the dynamics. Therefore, forecasting such bifurcations, i.e. predicting 

bifurcations and the bifurcation diagram with measurements only from the pre-bifurcation regime 

is a significant challenge and an important need. This is especially important for complex large-

dimensional systems when an accurate model of the system is not easily available or when the 

system properties/parameters are unknown.  

Numerous studies have revealed the variety of systems that are at risk of undergoing 

bifurcations and critical transitions [1,2], ranging from systems examined by engineering [3,4], 

chemistry [5,6], physics [7,8], and biology [9–11], to others related to climate sciences [12–14], 

medicine and disease [15–17], social sciences [18–20], and ecology [21–23]. Spontaneous 

systemic failures such as epileptic seizures in medicine, market crashes in finance, abrupt climate 

changes in earth science, collapse of natural populations in ecology, and flutter instability in 

engineering are a few examples of such transitions. Such an unexpected change in the equilibrium 

state is usually undesirable, because it is exceedingly difficult to restore a system to its pre-

transition state once the transition occurs [24,25]. Hence, it is necessary to develop methods 
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capable of forecasting the upcoming transition, as part of a preventive plan against possible 

detrimental consequences.  

Forecasting bifurcations can be straightforward if a mathematical model exists for the 

system. However, accurate predictive modeling can be challenging, especially when the system is 

complex (e.g., it has many agents with nonlinear interactions). For complex nonlinear dynamical 

systems, it is usually not possible to have a model of the system accurate enough to predict 

bifurcations of the system without performing measurements in the post-bifurcation regime. 

Moreover, even when a mathematical model is introduced, it may be incomplete or inaccurate due 

to assumptions and uncertainties in modeling and parameter values. Hence, predictions based on 

models of limited accuracy face substantial difficulties [26]. As a result, researchers have focused 

on developing model-free approaches to extract early warning signals from observed time series, 

and several indicators have been introduced for this purpose [26–33].  

Recent studies demonstrate that even without knowing the system equations, tipping points 

in the dynamics can be forecasted using early warning indicators which can be extracted from 

observed time series of system behavior in the pre-bifurcation regime [32–40]. Several early 

warning signals based on the analysis of measured time series have been developed and can 

successfully provide an alarm when a system approaches a critical transition. These methods are 

applicable to systems with small fluctuations around the equilibrium state resulting from stochastic 

perturbations. The most important clues that have been suggested as indicators of whether a system 

is getting close to a critical threshold are related to a phenomenon known in dynamical systems 

theory as critical slowing down [2,12,34–36]. As the system approaches a threshold, rate of its 

recovery from perturbations decreases and the time required for the system to return to its 

equilibrium state is increased. This implies that the system becomes more correlated with its past, 
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which leads to an increase in autocorrelation. Furthermore, the perturbations accumulate which 

lead to an increase in the size of the fluctuations and as a result, an increase in variance would be 

observed. In summary, the phenomenon of critical slowing down leads to three possible early-

warning signals in the dynamics of a system approaching a bifurcation: slower recovery from 

perturbations, increased autocorrelation and increased variance. Such features are observed in 

recoveries in the vicinity of catastrophic bifurcation points, and analyses of models exposed to 

stochastic forcing show that if the system is gradually approaching to a catastrophic threshold, an 

increase in these indicators usually may be detected well before a tipping point [22–24,40]. Several 

other indicators have been also explored as early warning signals such as the noise-induced 

spectrum [37], the skewness of the probability distribution [30], and the flickering between basins 

of attraction before bifurcations [38] (see also ref. [2] for a review).  

The advantage of applying early warning indicators to successfully rise the alarm when 

approaching a tipping point has been described in many recent studies [26–33,35]. However, 

predicting key aspects of the system’s future stability and dynamics still remains a challenge. For 

example, although the indicators start to increase as the system approaches the tipping point, it is 

necessary to know how much is the quantitative distance to the upcoming transition to better 

evaluate and therefore manage the system. Second, it is pivotal to know the type of upcoming 

transition, i.e. whether the system is approaching to a catastrophic or a non-catastrophic transition. 

Based on nonlinear systems theory, critical slowing down and increase in most of the early warning 

indicators is also possible in non-catastrophic transitions, such as transcritical and supercritical 

pitchfork bifurcations. Finally, to plan for future management actions, it is important to predict the 

equilibria of the system before and after the transition, by using knowledge of the current system 

condition. A forecasting method capable of addressing these questions would be of great 
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importance as it would help to assess the existence of crucial thresholds and to evaluate the future 

consequences of surpassing them [41].  

To address these limitation, bifurcation forecasting methods were introduced by Lim and 

Epureanu [8]. This method uses the recovery rate of the system from perturbations in the pre-

bifurcation regime to forecast the bifurcation diagram of the system. The method resolves main 

disadvantages of stochastic methods. However, it was developed for one dimensional manifolds 

and simple systems, and still has limitations which cannot be applied to a lot of cases consist of 

more complex and large dimensional systems.  

The main goal of this research is to remove limitations of existing bifurcation forecasting 

methods and develop a method for large dimensional systems and for systems with more complex 

dynamics. We consider the main features of dynamical systems and different types of the 

bifurcations and develop the forecasting method to the point that it can be applied to real complex 

systems with good accuracy. Based on observations of the system response to perturbations only 

in the pre-transition regime, the method forecasts the bifurcation diagram which discovers the 

system’s stability and equilibria in upcoming conditions. The forecasting approach is based on the 

phenomenon of critical slowing down, referring to the slowing down of a system’s dynamics 

around its equilibrium when approaching a tipping point. We show that rate of recovery from 

perturbations at each amplitude can be used as an indicator, and is correlated to the distance to the 

bifurcation. This finding is used to predict the bifurcation diagram which discovers the system’s 

stability and equilibria. In this research, we focus on developing the forecasting method for several 

classes of complex nonlinear systems. Theoretical and experimental results of this study address 

some of the most important challenges in forecasting safety and stability of complex systems.  
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1.2   Dissertation contributions and outline 

In this dissertation, a set of unique techniques, called bifurcation forecasting methods, are 

proposed to predict instabilities and bifurcation diagrams of nonlinear dynamical systems without 

analyzing system equations. Constructing such a diagram using conventional numerical or 

experimental methods needs accurate models, or massive computational or experimental efforts. 

Below is the summary of dissertation contributions and outline. The chapters of this 

dissertation are compiled from a collection of manuscripts published, accepted or submitted to 

scientific journals. Therefore, some of the background materials as well as mathematical 

developments are repeated in various chapters. 

 

1.2.1  Forecasting flutter in fluid-structural systems  

An important class of nonlinear complex engineering systems prone to critical transitions 

is fluid-structural systems. Subcritical and supercritical flutter can occur in fluid-structural systems 

and can cause dramatic changes in the dynamics resulting in damage and failure. Hence, one of 

the demanding topics of research in fluid-structure interactions is determining the flow speed 

above which the system becomes unstable, i.e. determining the flutter speed, and the dynamics 

beyond the flutter speed. In this study, we develop a model-free forecasting method which is able 

to forecast both the flutter speed and post-flutter dynamics in fluid-structural systems using a 

limited number of measurements in the pre-flutter regime. This approach minimizes the effort 

required for a comprehensive nonlinear stability analysis of the system. For example, high-fidelity 

finite element models of complex fluid-structural systems often have millions of degrees of 

freedom. Stability analysis and extracting bifurcation diagrams for such models using theoretical 

and classical computational methods is very difficult. Furthermore, experimental methods to 
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analyze the stability of the system and to determine the bifurcation diagram place the system in 

the post-bifurcation regime. This can result in the collapse of the system, which is dangerous if the 

test is done in real operating conditions. The proposed forecasting method is effective in both 

experimental and theoretical analyses. Details of this study are included in Chapters 2 to 4 where 

novel techniques are introduced to forecast the flutter speed and post-flutter dynamics of complex 

fluid-structural systems.  

 

1.2.2  Forecasting the onset of traffic congestions on roads   

Study of traffic flow dynamics has a long tradition. However, predicting traffic jams before 

they occur is still a challenge. In this study, we introduce recently developed tools of tipping point 

forecasting in complex systems, namely early warning indicators and bifurcation forecasting 

methods, and investigate their application to predict traffic jams on a circular road. The main 

advantage of the proposed methods is that they are model-less. The methods are based on 

exploiting the phenomenon of critical slowing down which occurs in dynamical systems near 

certain types of bifurcations, such as traffic jams. One can forecast the onset of traffic jams and 

the dynamics of the traffic after the bifurcation by using a few traffic measurements before the 

tipping point occurs. The measurements required for forecasting are recorded headways between 

cars in traffic. Forecasting approaches are applied to several simulated traffic flow conditions and 

the onset of traffic jams and the traffic dynamics after this critical point are forecasted while no 

model of the system is required. The proposed approach represents a substantial advantage for 

complex systems such as traffic flow systems where an accurate mathematical model is not easily 

available. The introduced approaches and ideas can be used as a basis for more developments to 
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address some of the challenges related to the complexity of traffic dynamics. Details of this study 

are included in Chapter 5.  

 

1.2.3   Forecasting critical transitions in natural populations  

Regime shifts in ecological systems have received a growing attention since the cumulative 

human impact on the environment is increasing the risk of ecological regime shifts. Possible 

consequences include the collapse of natural populations which inhabit the ecosystem. Hence, it 

is necessary to develop methods capable of forecasting upcoming transitions, as part of a 

preventive plan against possible detrimental consequences. For example, there is a need for 

methods to predict catastrophic events in populations of plants and animals because such events 

can lead to irreversible consequences such as extinction of species. The potential impact of such 

methods is high also when applied to disease eradication (populations of infectious diseases).  

To address this important topic, we develop and experimentally evaluate a unique 

forecasting method to forecast critical transitions in ecological systems and natural populations. 

We evaluate the method using as a model ecological system a population of budding yeast with 

cooperative growth which exhibits a catastrophic transition as the environment deteriorates, 

resembling an ecological collapse. This system shares similar dynamics with many natural 

ecological systems which exhibit a catastrophic transition. The goal of this study is to forecast 

crucial information about the future system’s safety and stability, such as the quantitative distance 

to upcoming transition (collapse), the type of upcoming transition (i.e., catastrophic/non-

catastrophic) using some observations of system dynamics in the safe pre-transition regime. 

Developing such approach is exceedingly important in ecological management. Details of this 
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experimental study are included in Chapter 6 where we explain how we developed and evaluated 

a method to forecast the bifurcation diagram and stability of a model ecological system in the lab.  

  
1.2.4 Identification of the best indicator species in ecological systems  

Critical slowing down indicators can alarm approaching to an impending transition in 

ecological systems. However, in a network of interacting components, not all the components 

provide the same level of information to detect a system-wide transition. Identifying the best 

indicator species in complex ecological systems is a challenging task without a model of the system 

available. Here we propose a data driven approach to rank the elements of ecological system based 

on their reliability in providing the best early warning indicators of critical transitions. The system 

response to perturbations are recorded and employed as an input to experimental modal analyses 

techniques which are common tools in identifying dynamical systems features. Taking advantage 

of the proposed approach, the dominant eigenvectors of the system are approximated and the best 

indicator species/regions of abrupt transitions are recognized. The approach is applied to several 

models of ecological systems with different number of species, different dynamics and 

connectivity pattern, and the system species/regions are successfully ranked based on the reliability 

of their provided early warning signals of catastrophic regime shifts. The challenges associated 

with ranking the nodes in networks of interacting components are also studied and some conditions 

resulting in false early warning signals are analyzed. Details of this study are included in Chapter 

7.  
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Chapter 2  

Forecasting Flutter in Fluid-Structural Systems 

 
2.1 Introduction 

Bifurcations occur in the dynamics of nonlinear systems and lead to various types of 

stability issues [2,42,43]. Forecasting such bifurcations with measurements only from the pre-

bifurcation regime is of great interest. This is especially important for complex large-dimensional 

systems when accurate models are not easily available or when their parameters are unknown. A 

common type of bifurcations in engineering systems is Hopf bifurcations. Subcritical and 

supercritical Hopf bifurcations have been observed in a variety of systems such as fluid-structural 

systems [44–47], automotive dynamics [48], machine tools [49,50], nonlinear circuits [51], etc. 

Such bifurcations can cause dramatic changes in the dynamics and failure. In supercritical Hopf 

bifurcations above the bifurcation point, the system exhibits limit cycle oscillations that gradually 

increase with the parameter. For systems exhibiting subcritical bifurcations, possible jump 

phenomena (bi-stability) exist even below the (linear) bifurcation point.  

There are many studies focused on the identification of the bifurcations and the system 

dynamics in the post-bifurcation regime. These studies use mathematical models of the system and 

methods such as harmonic balance [52,53], multiple scales [54,55], normal forms and nonlinear 

normal modes [56,57] to analyze their stability and determine the bifurcation diagrams. 
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Furthermore, there exist numerous numerical methods regarding construction of bifurcation 

diagrams of systems using the system equations [58,59]. Based on these techniques, several 

software are also developed to construct bifurcation diagrams in different types of systems (e.g. 

AUTO [60], MATCONT [61], DDE-BIFTOOL [62], and PDDE-CONT [63]).  

These analytical and computational methods work very well in determining bifurcations 

and bifurcation diagrams; however, they are model-based methods and require a known and 

accurate model of the system to analyze the stability. This causes two main drawbacks that make 

the methods difficult or impossible to use in a large class of realistic applications. First, extracting 

a model for the desired system is sometimes not feasible especially when the system is complex 

(e.g., it has many components with nonlinear interactions). Second, even when a mathematical 

model is established, it may be incomplete or inaccurate due to assumptions and uncertainties in 

modeling and parameter values. Hence, predictions and real results may be different.  

Experimental methods to analyze the stability of the system and to determine the 

bifurcation diagram place the system in the post-bifurcation regime. This is a demanding task, and 

can result in the collapse of the system, which is dangerous if the test is done in real operating 

conditions.  

An important class of nonlinear complex engineering systems prone to subcritical and 

supercritical Hopf (flutter) bifurcations is the fluid-structural interaction [43,64–69]. These 

phenomena can cause dramatic changes in the system dynamics typically resulting in loss of 

performance is possible is total failure. Hence, one of the demanding topics of research in fluid-

structure interactions is determining the speed above which the system becomes linearly unstable, 

i.e. determining the flutter speed. Furthermore, identifying the flutter type (supercritical and 

subcritical) and the limit cycle amplitude beyond the flutter speed are also important especially 
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when operating close to the linear flutter boundary. Because of the existing challenges in analyzing 

the stability of nonlinear systems, new methods capable of forecasting the bifurcation point and 

post-bifurcation dynamics of fluid-structural systems is necessary. To address this challenge and 

due to the importance of the topic, we introduce a new method of forecasting bifurcations in fluid-

structural systems. The approach is based on the phenomenon of critical slowing down which 

accompanies many bifurcation phenomena including flutter, i.e. when the systems is close to the 

bifurcations, perturbations lead to long transient oscillations before the system reach to its stable 

state. This approach is capable of forecasting not only the distance to bifurcations but also the 

dynamics of system in the post-bifurcation regime. The unique feature of the method is that it is 

model-less: no mathematical model of the system is required for forecasting. Hence, it is applicable 

to complex nonlinear systems where a model of the system is not available, or where analysis 

would require massive computations. To forecast the bifurcation diagrams using this method, one 

measures several system responses to perturbations in the pre-bifurcation regime. As a result, the 

method is computationally efficient and is safe in real applications since the system is never placed 

in the potentially dangerous post-bifurcation regime.  

To demonstrate the proposed method and to highlight its advantages, the approach is 

employed to determine bifurcation diagrams of two- and three-degree-of-freedom (DOF) fluid-

structural systems with cubic nonlinearity. This system is composed of a typical airfoil section in 

pitch and plunge, equipped with a trailing-edge control surface. Instead of experimental 

measurements, we use surrogate data obtained as time series from simulation of the model as input 

to our method. To reflect realistic situations, gust loads are applied as disturbances to the system 

while system recoveries are measured. These perturbations mimic better the actual behavior of the 

system compared to simply choosing different initial conditions in position or velocity coordinates. 
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Note that in general, the forecasting method works based on measurements not on model 

equations. In this study, these measurements are surrogate measurements generated using a 

theoretical model. Surrogate data are used so that we can show the applicability of the proposed 

method while at the same time we have knowledge of the exact behavior of the system. The exact 

behavior of the system is used to validate the forecasting method. 

2.2 Forecasting method  

Consider a system that exhibits Hopf bifurcations. The system oscillates during its recovery 

from perturbations in the pre-bifurcation regime. When the system is close to the bifurcation, 

perturbations lead to long transient oscillations before the system reaches its equilibrium position. 

This phenomenon is known as critical slowing down. This means that the rate of the system’s 

recovery from perturbations decreases when the system approaches the bifurcation. Therefore, the 

recovery rate of the system from perturbations can be used as an indicator, and is correlated to the 

distance to the bifurcation. 

Consider a co-dimension one nonlinear system with the parameter  and amplitude of . 

The change rate of system amplitude can be generally written as  

�̇� = 𝑓(𝜇, 𝑟) (2.1) 

Using a Taylor series around the bifurcation point (𝜇 = 𝜇T), the recovery rate can be expressed as  

�̇� = 𝑟(𝑝(𝑟) + 𝛼W(𝑟)(𝜇 − 𝜇T) + 𝛼X(𝑟)(𝜇 − 𝜇T)X + 𝐻𝑂𝑇), (2.2) 

where 𝑝(𝑟), 𝛼W(𝑟) and 𝛼X(𝑟) are polynomial functions independent of parameter	𝜇. This relation 

means neither that the dynamics of the system have been linearized in state space nor that the 

dynamics have small amplitudes. The linearization is only in the parameter space about the critical 

value 𝜇T of the parameter. Thus, we are not restricted to small perturbations.  

µ r
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For parameter values close to the bifurcation, in this study we assume that the system has 

second order polynomial dependence on the parameter, and higher order terms can be neglected. 

However, depending on the application, one may use higher order terms in the approximation 

especially when the forecasting is used at parameters far from the tipping point (𝜇T). Now consider 

that a perturbation is applied to the system. The recovery in Eq. (2.2) can be written as  

𝜆(𝜇, 𝑟) =
�̇�
𝑟 = 𝑝(𝑟) + 𝛼W(𝑟)(𝜇 − 𝜇T) + 𝛼X(𝑟)(𝜇 − 𝜇T)X.    (2.3) 

Here, 𝜆(𝜇, 𝑟) is the rate of system recovery from perturbations expressed as  

𝜆(𝜇, 𝑟) = \(]^ _)
\`

 .   (2.4)  

The polynomial used in Eq. (2.3) determines the minimum number of measurements 

required for forecasting the bifurcation diagram. Since in this study we use a second order 

polynomial, forecasting is possible using at least three measurements in the pre-bifurcation regime 

(i.e., recoveries at three values of the bifurcation parameter). That being said, generally the more 

measurements are available in the pre-bifurcation regime, the more accurate the forecasting is.  

Using measurements of the amplitude of the dynamics, one can employ the following 

finite-difference approximation to estimate 𝜆(𝜇, 𝑟) (see also Fig. 2.1 (a)) as  

𝜆(𝜇, 𝑟) = \	(]^ _)
\`

≅ ]^ _bc]^ _d
Xe`

 ,  (2.5)  

where 𝛥𝑡 is the time between samples, 𝑟g is the value measured at time 𝑡 + 𝛥𝑡, and 𝑟c is the value 

measured at time	𝑡 − 𝛥𝑡. The recovery rate plays the most important role in the forecasting 

method. The critical slowing down phenomenon at the bifurcation point influences the dynamics 

near that point also. Specifically, the recovery rate decreases when the system approaches that 

point. At a fixed system amplitude	𝑟, the farther the system is from its corresponding post-

bifurcation regime, the weaker the critical slowing down and the faster the recovery rate of the 
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system is at that amplitude. This is used for predicting the post-bifurcation regime (namely the 

bifurcation diagram).  

Suppose that we collect time series during recoveries at several different parameter values 

𝜇W, 𝜇X, … , 𝜇i. At a given parameter value 	𝜇j  (with 𝑘 = 1, … , 𝑛), we can choose a value 	𝑟 = �̃�  and 

compute 𝜆(𝜇j, �̃�) using the measurements. Therefore, n equations are obtained from Eq. (2.3), one 

for each	𝑘, in the form  

𝜆(𝜇j, �̃�) = 𝑝(�̃�) + 𝛼W(�̃�)(𝜇j − 𝜇T) + 𝛼X(�̃�)(𝜇j − 𝜇T)X. (2.6)  

The values of 𝜆(𝜇j, �̃�) in Eq. (2.6) are obtained from measurements using Eq. (2.5). Fitting a 2nd 

order polynomial to these values in the 𝜇 − 𝜆(𝜇, �̃�) space, the unknown constants 𝛼W(�̃�), 𝛼X(�̃�) 

and 𝜇T can be found. Individual values of 𝜆(𝜇j, 𝑟) and the resulting fitted curve are conceptually 

shown in Fig. 2.1 (b). The intersection at 𝜇 = 𝜇m of the fitted curve with the 𝜇 axis corresponds to 

a zero recovery rate. That is the most important point, and represents the forecasted parameter for 

the corresponding �̃� value. This means that a fixed point exists in the post-bifurcation regime at �̃� 

when the parameter value is 𝜇m. This procedure can be repeated for different values of �̃� and hence 

the bifurcation diagram is predicted. This is conceptually shown in Fig. 2.1 (c). Note that in this 

procedure the measurements are collected only in the pre-bifurcation regime, and the bifurcation 

diagram is predicted without any measurements in the post-bifurcation domain.  
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(a) (b) (c) 

Figure 2.1: (a) Schematic of the response of the system during the recovery from a perturbation, (b) 
Recovery rate vs. bifurcation parameter and the value obtained for the forecasted 𝜇m, (c) Forecasted 
bifurcation diagram 

 

This procedure can be easily used in the cases that the system recovers from perturbation 

without oscillations. However, in fluid-structural systems with flutter bifurcations, the system 

oscillates during its recovery in response to perturbations in the pre-bifurcation regime (Fig. 2.2). 

In this case, Eq. (2.5) cannot be used for all of the data collected in measurements. That is because 

the motion is essentially two-dimensional and data points may be adjacent to each other but they 

do not necessarily have the same phase. The simple solution for this problem is to fix the phase by 

selecting the local maxima of the recovery data and using only those measured values in the same 

procedure (as for the non-oscillating case). This is a good approximation in the cases where the 

system oscillates with high frequencies. However, in the case of low frequency oscillations, there 

may not be enough samples available to have a good approximation. 

To overcome this limitation we enhance the forecasting method to obtain recovery rates by 

nonlinear optimization. At each parameter value, the recovery rate is assumed to be represented 

by a polynomial of order 𝑝 in 𝑟. One obtains  

𝜆(𝜇, 𝑟) = 𝜆n(𝜇) + 𝜆W(𝜇)𝑟(𝜇, 𝑡) + ⋯+ 𝜆p(𝜇)𝑟p(𝜇, 𝑡), (2.7)  
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Figure 2.2. Schematic of the change in the rate of recovery from perturbations in a system approaching 
flutter; oscillations last longer when the system is closer to the flutter speed.  

  

where in general the coefficients 𝜆q (𝑖 = 0, … , 𝑝) are dependent on the bifurcation parameter. At a 

fixed parameter value (𝜇), these coefficients are constant over time. Using the definition of 

𝜆(𝜇, 𝑟) = �̇�/𝑟	from Eq. (2.3), one may re-write Eq. (2.7) as  

�̇� = 𝑟r𝜆n + 𝜆W𝑟 +⋯+ 𝜆p𝑟ps.  (2.8)  

For a set of given values of the coefficients 𝜆q (𝑖 = 0, … , 𝑝), Eq. (2.8) can be integrated in time to 

obtain 𝑟(𝑡). When the coefficients 𝜆q are accurate, the values obtained for 𝑟(𝑡) from the integration 

match the values 𝑟t(𝑡) obtained from measurements. In particular, this match has to hold for the 

local peak values in the measurements. Hence, the coefficients 𝜆q can be obtained at each 𝜇 value 

using a nonlinear least squares optimization which minimizes the difference between 𝑟t(𝑡) and 

𝑟(𝑡) for all 𝑡 values which correspond to local peak responses at that 𝜇 value.  

Using this method, a more precise approximation of recovery rate 𝜆 can be obtained when 

the time history has low oscillation frequency and only a few peaks. The order 𝑝 of the polynomial 

has to be chosen via a convergence test. In the current work we used a value of 4 which was 
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sufficient to capture both supercritical and subcritical bifurcations. The forecasting procedure is 

shown in Fig. 2.3. 

There are several requirements for the forecasting method to be accurate. A first 

requirement is that the system is close enough to the bifurcation as to exhibit measurable slowing 

down in its recoveries.  Moreover, measurements containing identifiable parts are on the inertial 

manifold to ensure that changes in the recovery rates are due to the slowing down phenomenon. 

The inertial manifold is an invariant set where the dynamics is slowest in time and contains main 

features of the system. Thus, this manifold is the slowest, and if the system starts from a state in 

this set, it remains in that set at all times. A second requirement is that the system dynamics and 

its inertial manifold vary smoothly with the bifurcation parameter, which is the flow speed in the 

current study. The assumptions made in the forecasting method, although restrictive, do not reduce 

the method applicability to just a few special cases. Many biological, ecological, engineering 

systems exhibit bifurcations such as Hopf, saddle node, pitchfork and transcritical bifurcations 

which satisfy the method assumptions. Examples are bifurcations in population dynamics, fluid-

structural systems, periodically forced systems in engineering systems and disease dynamics, 

nonlinear circuits, to name a few. However, note also that critical slowing down does not exist in 

all types of bifurcations. For example, systems undergoing period doubling cannot be forecasted 

using the proposed approach.  
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2.3 Forecasting Hopf bifurcations in large dimensional systems  

In the previous section, the forecasting method was developed for a single degree of 

freedom system oscillating during its recovery from perturbations. However, in large dimensional 

systems there might be a large number of active spatial coherences (e.g., modes) in a measured 

recovery from perturbations. In the great majority of Hopf bifurcations, including flutter, only one 

pair of conjugate eigenvalues is involved in the bifurcation (as shown in Fig. 2.4). This means that 

only one of the existing modes is involved in the instability, and the effect of other modes can be 

expressed as a function of this key mode thus being removed from the measurements to achieve 

 

Figure 2.3. Schematic of proposed forecasting method procedure: 1) System recoveries are measured 
after perturbations, and the recovery rate is estimated using nonlinear optimization for the local maxima 
of the measurements. 2) The estimated recovery rates for a fixed amplitude at each measured parameter 
are analyzed. 3) The parameter 𝜇m where the recovery rate becomes 0 at amplitude �̃� is determined using 
a low order polynomial. 4) Steps 2 and 3 are repeated for several amplitude values �̃�, and the bifurcation 
diagram is constructed using the forecasted pairs of values (𝜇m,�̃�).  
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maximum accuracy in forecasting. This is exploited in the proposed forecasting method to enhance 

the accuracy of bifurcation prediction.  

 

Figure 2.4. Eigenvalues of the fixed point at the origin as a function of the bifurcation parameter 

 

In the aeroelastic systems, the inertial manifold near flutter is generally a two-dimensional 

nonlinear manifold. This manifold is tangent to the (two-dimensional) center space of the system 

(Fig. 2.5). Hence, the center space is a good approximation of the inertial manifold near the 

bifurcation and the coordinate of the mode involved in the bifurcation captures the entire dynamics 

near the bifurcation point. Thus, we project the dynamics of the system on the center space. In this 

two dimensional space, we can capture and study the critical slowing down behavior for 

forecasting when the system is close to the bifurcation. A basis in the center space is obtained as 

linear modes by using a measurement-based modal decomposition technique. This technique 

allows us to identify and separate the effects of the mode which exhibits critical slowing down 

from the other modes. Hence, the dynamics of the system is projected onto the space spanned by 

the eigenvectors of the bifurcating mode while unwanted modes are filtered out. That leads to more 
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accurate data for the mode which does have critical slowing down, and that enhances the precision 

of forecasting the post-bifurcation regime. 

 

 

Figure 2.5. Schematic of the system dynamics on the inertial manifold and its projection on the center 
space. 

There are several modal identification approaches which can be used to extract mode 

shapes of a system from measured responses of the system to perturbations [70,71]. Since we apply 

the forecasting method close to the bifurcation, the mode corresponding to the pair of eigenvalues 

with the smallest real part is the one which experiences critical slowing down and is most closely 

involved in the bifurcation. Here, we use an eigensystem realization algorithm (ERA) [72–75]. 

This ERA is designed for linear modal analysis and provides an approximation for the spatial 

correlations in the dynamics close to the bifurcation point. This approximation has acceptable 

accuracy for the aeroelastic system we consider and for the range of perturbations which occur in 

this system.  

ERA is a time domain MIMO algorithm to identify modal parameters of the system based 

on the Hankel matrix and its singular value decomposition. The fundamentals of this method can 

be found in the literature [72–75]. Here, only the major steps of the algorithm are presented as 

related to the aeroelastic system of interest. Specifically, ERA starts with the state-space 

representation of the system as  
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ẋ(𝑡) = Ax(𝑡) + Bu(𝑡)
y(𝑡) = Cx(𝑡) + Du(𝑡)	, 

 (2.9) 

  

where x is an 𝑁-dimensional vector of state variables, y is an 𝑛-dimensional vector of measured 

state variables, u is an 𝑚-dimensional excitation vector, and A, B, C, and D are state space matrices 

(constant over time).  

Consider that the system is exposed to an initial gust which provides a 

perturbation/excitation of the type usually occurring during the system operation. The solution of 

Eq. (2.9) for the system recovering from this perturbation with u(𝑡) = 0 from the initial conditions 

xn can be expressed as  

y(t) = CΦ(𝑡)xn ,  (2.10)  

where Φ(𝑡) is the state transition matrix from state xn at time 𝑡 = 0 to state x(𝑡) = Φ(𝑡)xn at time 

𝑡. Further consider that the response of the system measured in time and is sampled with a  time 

increment. Equation (2.10) at time 𝑡 = 𝑘	𝛥𝑡 (for 𝑘 = 0,1,2,…) can be written as  

yj(𝑡) = CΦj(𝛥𝑡)xn	.  (2.11)  

Repeating the measurements for a sequence of 𝑙 distinct non-zero initial conditions  

Xn = [xn,W, xn,X, … , xn,�] and letting 𝑆 = Φ(𝛥𝑡), Eq. (2.11) can be rewritten as  

Yj(𝑡) = CS�Xn	,  (2.12)  

where Yj is a matrix with dimension 𝑛 × 𝑙.  

The objective of the ERA is to find S, Xn, and C such that Eq. (2.9) is satisfied as closely 

as possible by using a sequence of experimentally measured Yj (for 𝑘 = 0,1,2, …). The 

measurements are organized in generalized Hankel matrices for each 𝑘 as follows  

 

tD
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H(𝑘) = �

Y(𝑘) Y(𝑘 + 1) … Y(𝑘 + 𝑣 − 1)
Y(𝑘 + 1) Y(𝑘 + 2) ⋯ Y(𝑘 + 𝑣)

⋮ ⋮ ⋱ ⋮
Y(𝑘 + 𝑟 − 1) Y(𝑘 + 𝑟) ⋯ Y(𝑘 + 𝑟 + 𝑣 − 2)

�

i_×��

,  

 

(2.13)  

 

where 𝑟 and 𝑣 are chosen depending on the particular application.  

The singular value decomposition of H(0) can be written as H(0) = P	Z	J�, with the 

singular values in Z ordered in decreasing order. Only the first 𝑁 of them are nonzero. These 

singular values are grouped in a truncated version of  Z denoted by Z. Matrices J and P are truncated 

accordingly to obtain J and P by keeping only their first 𝑁 columns. It can be shown that one 

solution for the matrices S, Xn, and C can be expressed as  

 

S = ZcW/X	P�	H(1)	J	ZcW/X,
𝑋n = ZW/XJ�E�	,
C = Ei�PZW/X	,

 
  

 (2.14)  

 

where Ei� = [I^ Oi Oi … Oi] and E�� = [I] O� O� … O�], while  I� and O� are 

identity and zero matrices of order 𝑖, respectively.  

Equation (2.14) is not a unique solution. For example, for any nonsingular matrix T,  

S� = TcWST, X�n = TcWXn, and C� = CT are also a solution. Letting T be the eigenvector matrix of 

S, and transforming the computed matrices to modal coordinates, it can be shown that C�  contains 

the mode shapes of the system [75]. Furthermore, natural frequencies and damping ratios of 

continuous system can be obtained as follows  

η� = 𝜎q ± 𝑖𝜔\ =
W
e`
ln	(�̃�q),   (2.15)  

where �̃�q is the ith diagonal element of matrix S� (which is a diagonal matrix).  
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2.4 Two-degree-of-freedom aeroelastic model  

The proposed forecasting method is applied to an aeroelastic system. The system is modeled 

as a 2D airfoil oscillating in pitch and plunge as shown in Fig. 2.6. The free stream velocity is the 

bifurcation parameter in this demonstration of the forecasting approach. The system is considered 

to be exposed to gusts which create perturbations. The recovery of the system from these 

perturbations is measured and used for forecasting.  

 
Figure 2.6. Two-degree-of freedom aeroelastic model showing an airfoil of chord 2𝑏, its aeroelastic axis 
(EA), its center of mass (CG) (at a distance 𝑥 𝑏 from the EA), and the pitch and plunge coordinates 𝛼 
and ℎ 

 

An actual model of this system is not needed for forecasting. However, a model can provide 

simulated or surrogate measurement data. Closely following [65], the equations of motion for this 

system can be written as  

�̈� + 𝑥£�̈� +
X¤¥¦§

¨∗
�̇� + ©¦§

¨∗
ª
X
𝐺(𝜉) = −«¬()

®¯
− 𝑃±(𝜏),  

²³
_³´
�̈� + �̈� + X¤³

¨∗
�̇� + W

¨∗´
𝑀(𝛼) = X«¶()

®¯_³´
+ 𝑄±(𝜏) , 

 

(2.16)  

where 𝛼 is the pitch angle, ℎ is the plunge displacement, 𝜉 = ¸
¹
 is the non-dimensional plunge 

displacement, 𝜏 = ¨`
¹

 is the non-dimensional time, and the overdot indicates differentiation with 

respect to	𝜏. 𝑈 is the free stream velocity, and 𝑈∗ = 𝑈/(𝑏𝜔£) is the non-dimensional free stream 
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velocity. 𝜔§ = 𝜔º/𝜔£ is the ratio of the natural frequencies of uncoupled plunge and pitch modes, 

namely 𝜔º  and 𝜔£. The damping ratios for the pitch and plunge are 𝜁£ and 𝜁º , and 𝑟£ is the radius 

of gyration about the elastic axis. 𝑀(𝛼) and 𝐺(𝜉) are the structural elastic torque and elastic force 

created by the pitch and plunge motions. They are considered decoupled and nonlinear to account 

for structural nonlinearities as follows  

𝑀(𝛼) = 𝑚W𝛼 +𝑚¼𝛼¼ +𝑚½𝛼½	, 

𝐺(𝜉) = 𝑔W𝜉 + 𝑔¼𝜉¼ + 𝑔½𝜉½	, 
(2.17) 

where 𝑚q  and 𝑔q (𝑖 = 1,3,5) are coefficients characterizing the airfoil elasticity in pitch and 

plunge, respectively.  

The effects of the aerodynamics are modeled by 𝐶À(𝜏) and 𝐶Á(𝜏) which are the coefficients of lift 

and moment. These coefficients are given for incompressible flow by Fung [76]. The effects of 

the gust are modeled by 𝑃±(𝜏) and 𝑄±(𝜏) which are the lift force and pitch moment due to a gust 

profile, and are given by the following expressions [77]  

,   

 (2.18) 

,  

where 𝑤Â(𝜏) is the vertical gust velocity distribution, and 𝜓 is the Kussner function [77].  

The aerodynamic states are contributing many degrees of freedom to the system, and that 

is reflected in the existence of the integral terms in the model for the aerodynamic forces (such as 

the terms in Eq. (2.18) involving the Kussner function). For enhanced computational efficiency, 

new variables (augmented states) and some simplifications can be introduced [65]. These 

transform Eq. (2.15) into a set of 8 first order ordinary differential equations as follows  
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ẋ = 𝒇(x, 𝑈∗, 𝜏)   (2.19)  

where x = [𝑥W, 𝑥X,… , 𝑥Å]� is the vector of state space variables, namely  𝑥W = 𝛼, 𝑥X = �̇�, 𝑥¼ = 𝜉, 

	𝑥Æ = �̇�, 𝑥½ = 𝑤W, 𝑥Ç = 𝑤X, 𝑥È = 𝑤¼, 𝑥Å = 𝑤Æ. The augmented variables 𝑤q are defined as [65] 

𝑤W = É 𝑒cËÌ(cÍ)𝛼(𝜎)𝑑𝜎


n
		 , 𝑤X = É 𝑒cË´(cÍ)𝛼(𝜎)𝑑𝜎



n
	 

𝑤¼ = É 𝑒cËÌ(cÍ)𝜉(𝜎)𝑑𝜎


n
		 , 𝑤Æ = É 𝑒cË´(cÍ)𝜉(𝜎)𝑑𝜎



n
 

(2.20) 

where 𝜖W = 0.0455 and 𝜖X = 0.3 are parameters obtained to approximate the properties of the 

integral terms in the aerodynamics (such as the ones involving the Kussner function).  

Equation (2.19) is used to simulate the dynamic of the system and obtain recovery data 

from perturbations (gusts) in the pre-bifurcation regime. These data are used as surrogate 

measurements to demonstrate the forecasting method. Note that the actual model in Eq. (2.19) is 

not needed for the forecasting, but only for generating surrogate measurement data.  

2.4.1 Results and discussion  

In this section, the forecasting method is demonstrated in a numerical example. The 

parameters used for the aeroelastic system are 𝑟£ = 0.7, 𝜔§ = 0.2, 𝑎¸ = −0.5, 𝑥£ = 0.25,  

𝜇 = 100,	𝜁º = 𝜁£ = 0. A wind gust of (1-cos) type is used as perturbation to the system [77]. The 

vertical gust velocity distribution is zero except for 0 ≤ 𝜏 ≤ 2𝜏Â  where it is given by  

𝑤Â(𝜏) =
𝑤n
2 Ñ1 − cos

𝜋𝜏
𝜏Â
Ö, (2.21) 

where 𝑤n is the gust intensity, and 𝜏Â  is the gust gradient expressed in half-chord unit length.  

After the airfoil passes the gust, i.e. after 𝜏 = 2𝜏Â , the system starts to recover from the 

perturbation caused by the gust. This response of the system can be obtained by solving Eq. (2.19) 
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in time, and the results can be used as surrogate data to demonstrate the forecasting method. Also, 

depending on the structural nonlinearities, the system may face supercritical or subcritical Hopf 

bifurcations. The forecasting method is applied for each case in the next two sections.  

2.4.1.1 Supercritical bifurcations  

For supercritical bifurcations, the coefficients of the elasticity of the airfoil in Eq. (2.17) 

are selected as 𝑚W = 1, 𝑚¼ = 1.5, 𝑚½ = 0, 𝑔W = 2, 𝑔¼ = 0 and 𝑔½ = 0. Based on Eq. (2.3), we 

discuss results obtained using the lowest number of measurements (i.e., three measurements). 

Three parameter values (𝑈∗ = 7.55, 7.50, and 7.45) are chosen in pre-bifurcation regime, and time 

histories of the dynamics of the aeroelastic system in response to gust perturbations are obtained 

by solving the equations of motion numerically (Fig. 2.7). We confirm that the forecasted 

bifurcation diagrams have good accuracy. Note that increasing the number of measurements does 

not change these results.  

The applied gust parameters are chosen as 𝑤n = 0.1 and 𝜏Â = 5 for all three flow speeds. 

Note that in the proposed method, the perturbations do not have to be all the same and they do not 

have to be dependent on the bifurcation parameter. For the aeroelastic system that means that the 

intensity of the gusts which provide the perturbation does not have to be the same and the gusts do 

not have to be related to the far field flow speed. In addition, perturbations do not have to have the 

same source (e.g., gust). They could be caused by any perturbation (e.g., maneuvering). However, 

each perturbation creates an amplitude for the resulting (perturbed) dynamics. The largest 

forecasted amplitude in the forecasted bifurcation diagram cannot be larger than the amplitude 

created by these perturbations. For the aeroelastic system, we used only gust perturbations. Also, 

since the gust intensity can be any value, we used the same value.  
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To extract the modal parameters of the system, the ERA method is used. We assume that 

the measured states in the aeroelastic system are pitch, plunge and their velocities (i.e., 𝛼, �̇�, 𝜉, 

and �̇�). Therefore, the vector y in Eq. (9) is y(𝜏) = ×𝛼(𝜏), �̇�(𝜏), 𝜉(𝜏), �̇�(𝜏)Ø
�
. The parameters 𝑟 and 

𝜈 are chosen to have a value of 500 in this study, and 𝛥𝜏 = 0.5.  

The modal parameters are only computed at the largest flow speed value and used for all 

measurements (at all flow speeds). That is consistent with the assumption made in the forecasting 

method that the inertial manifold varies slowly with the bifurcation parameter. Therefore, we only 

need to find the center space at the nearest parameter value to the bifurcation point and use that for 

the entire forecasting procedure.  

 

Figure 2.7. Measured system responses to perturbations in pitch displacement at 3 non-dimensional flow 
speeds 𝑈∗ = 7.45, 7.50, and 7.55 in supercritical case. 

 

The forecasting method is applied to obtained time series data of pitch and plunge 

displacements. Figure 2.8 shows the recovery rate 𝜆 versus pitch amplitude obtained for a fixed 

flow speed value. Figure 2.9 shows the plot of 𝑈∗ − 𝜆 for the pitch displacement. In this figure, 

the intersection between each curve and the horizontal axis is the forecasted flow speed 𝑈∗ value 

in the post-bifurcation regime for its corresponding amplitude.  
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Figure 2.10 shows the actual and the predicted bifurcation diagrams of pitch and plunge 

displacements, demonstrating that the method predicts the post-bifurcation regime accurately.  

  
Figure 2.8. 𝜆	versus LCO amplitude for different 
flow speed values. 

Figure 2.9. 𝜆 versus flow speed 𝑈∗ for prediction 
of post-bifurcation regime for several pitch 
amplitudes. 

 

 
 

(a) (b) 

Figure 2.10. Forecasted bifurcation diagrams (*) for (a) pitch and (b) plunge displacements in a 
supercritical case. 

 

To understand the importance of applying the modal decomposition and projection to the 

center space, the forecasted bifurcation diagram of the pitch displacement when these are not 

applied is shown in Fig. 2.11. The prediction is not accurate especially at large amplitudes which 
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are affected more by the modes that are not involved in the bifurcation. The smaller amplitudes 

have better accuracy since they correspond to later times in the recovery, when the components of 

the response which do not have critical slowing down are lower (they had time to decay). This 

effect can be observed in Fig. 2.12, where the system response of pitch and plunge displacements 

are compared before and after modal decomposition. The difference between the signals used for 

forecasting at small amplitudes is negligible. However, at large amplitudes the difference is larger 

and affects the forecasting accuracy. Note in Fig. 2.12(b) that the plunge amplitudes greater than 

0.1 cannot be predicted using original data because these values are highly affected by the modes 

without critical slowing down. These results show the importance of separating modes for Hopf 

bifurcation predictions.  

 

Figure 2.11. Forecasted(*) and exact (-) pitch bifurcation diagram without applying modal decomposition 
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(a) (b) 

Figure 2.12. Comparison between system gust response for (a) pitch and (b) plunge displacements before 
(solid line) and after (dashed line) modal decomposition 

2.4.1.2 Subcritical bifurcations  

Prediction of subcritical bifurcations has an even greater importance than supercritical ones 

because it can cause sudden and dramatic change in the LCO amplitude. To demonstrate the 

forecasting method in such a case, the coefficients of Eq. (2.17) are chosen as 𝑚W = 1, 𝑚¼ = −1.5, 

𝑚½ = 50, 𝑔W = 2, 𝑔¼ = 0 and 𝑔½ = 0. Then, gust perturbations are applied to the system and data 

is collected in recovery periods at flow speeds 𝑈∗ = 7.55, 7.50, and 7.45 in the pre-bifurcation 

regime. These surrogate measurement data is used to forecast the bifurcation diagram for pitch and 

plunge displacements as shown in Fig. 2.13. In this figure, the very largest amplitudes in the 

bifurcation diagram could not be predicted accurately because these very large values of 

amplitudes are not present in the recovery time series. In fact, gust perturbations of low intensity 

are not strong enough to perturb the system into such large amplitudes. Nonetheless, the important 

fact is that the forecasting method can predict the bifurcation diagram sufficiently to indicate that 

the system is approaching a subcritical bifurcation.  
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As the gust intensity is increased, larger perturbations are created and the forecasting 

method predicts larger ranges of the bifurcation diagram (Fig. 2.14). As an example, the forecasted 

post-bifurcation regime for pitch and plunge displacements are shown in Fig. 2.15.  

In summary, the results show that the proposed method is able to forecast both supercritical 

and subcritical bifurcation diagrams for both pitch and plunge displacements with a good accuracy. 

When large amplitude perturbations are not available, the method predicts accurately the linear 

bifurcation point as well as the type of bifurcation (supercritical or subcritical). This is an important 

advantage of the proposed method compared to other techniques such as the ones based on 

variance [30,37,38].  

 

  
(a) (b) 

Figure 2.13. Forecasted (*) and exact (-) bifurcation diagram for (a) pitch and (b) plunge displacements 
in subcritical case 
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Figure 2.14. Measured system responses to large perturbations in pitch displacement at 3 non-
dimensional flow speeds 𝑈∗ = 7.45, 7.50, and 7.55 in subcritical case. 

 

  
(a) (b) 

Figure 2.15. Forecasted (*) and exact (-) bifurcation diagram for (a) pitch and (b) plunge displacements 
in subcritical case for larger perturbations. 

 

2.5 Forecasting three-dimensional bifurcation diagrams 

In a large class of oscillatory systems, the inertial manifold of the system close to Hopf 

bifurcations is a two-dimensional manifold containing states at different phases. In the previous 

section, the maximum limit cycle amplitudes of pitch and plunge displacements in the post-

bifurcation regime were forecasted. Each of these forecasted bifurcation diagrams corresponds to 
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a fixed phase on the inertial manifold which is the phase at which the post-bifurcation limit cycles 

exhibit their maximum amplitudes for the corresponding state variable.  

The proposed forecasting method successfully forecasts the maximum limit cycle 

amplitudes, but not the entire limit cycles (i.e., the response at all phases in the inertial manifold). 

In this section, we include the phase difference between system states in an improved forecasting 

procedure to forecast three-dimensional bifurcation diagrams where the dimensions are: 

parameter, position state, and velocity state. Therefore, the new approach allows us to forecast 

more comprehensively the post-bifurcation dynamics, i.e. the limit cycle amplitudes of system 

states at all phases. This is a significant advantage since constructing these bifurcation diagrams 

using conventional numerical or experimental methods needs accurate models, or massive 

computational effort, especially for complex large dimensional systems.  

The forecasting idea proposed in Sec. 2.2 can be generalized to forecast three-dimensional 

bifurcation diagrams of nonlinear oscillatory systems for a large category of systems which exhibit 

a Hopf bifurcation with a two-dimensional inertial manifold. Therefore, the dynamics of the 

system can be studied using any two coordinates on the inertial manifold. Moreover, choosing any 

phase in the two dimensional manifold reduces the system to a one-dimensional nonlinear map 

and the described forecasting method can be used. Thus, we can choose any arbitrary phase in the 

center space, i.e., the 𝑥W − 𝑥X plane in Fig. 2.16, where 𝑥W and 𝑥X are any two arbitrary system 

state variables (coordinates), and separately forecast the bifurcation diagrams of 𝑥W and 𝑥X at this 

phase using the described forecasting method. Alternatively, one may forecast one of the states 

and relate that to the other state using the selected phase. This pair of forecasted diagrams is a 

curve in the 𝜇 − 𝑥W − 𝑥X space, which is the forecasted bifurcation diagram at the selected phase. 

Repeating this procedure for different phases, the complete three-dimensional bifurcation diagram 



 34 

in the 𝜇 − 𝑥W − 𝑥X space is forecasted. This procedure can be interpreted as choosing different 

phase lines on the inertial manifold, and forecasting the bifurcation diagram for the selected phase 

(Fig. 2.16). The same procedure can be followed for any combination of state variables to forecast 

three-dimensional bifurcation diagrams for other coordinates.  

Note that forecasting three-dimensional diagrams does not require an increased number of 

recoveries. However, more measurements are needed so that all desired phases are measured and 

the bifurcation diagrams are forecasted for different phases of the measured recoveries.  

 

 
Figure 2.16. Procedure of forecasting three-dimensional bifurcation diagrams: a) select a phase in 𝑥W-𝑥X 
plane at measured recoveries. b) forecast bifurcation diagrams of 𝑥W and 𝑥X at the selected phase using 
forecasting procedure (Fig. 2.3), c) combine the pair of forecasted diagrams to construct a curve in three-
dimensional space. The procedure is repeated for different phases to construct complete three-
dimensional bifurcation diagram in 𝜇 –𝑥W-𝑥X space 

 

Following the described forecasting procedure, three-dimensional bifurcation diagrams of 

the two-degree-of-freedom airfoil of Sec. 2.4 are forecasted. For the considered system in  

Sec. 2.4.1.1, bifurcation diagram for supercritical bifurcation in flow speed-pitch-pitch velocity 

space is computed and the results are shown in Fig. 2.17(a).  Figure 2.17(b) shows the forecasted 

limit cycle amplitudes at 𝑈∗ = 7.65 for the bifurcation diagrams of Fig. 2.17(a). It can be observed 
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that the forecasting method accurately predicts the limit cycle amplitudes at different phases. 

Three-dimensional bifurcation diagrams for any other combination of state variables can be 

obtained similarly. 

Similarly, three-dimensional bifurcation diagrams can be forecasted for systems exhibiting 

subcritical bifurcations. The bifurcation diagrams in flow speed-pitch-pitch velocity space for the 

two-degree-of-freedom airfoil considered in Sec. 2.4.1.2 is forecasted and the results are shown in 

Fig. 2.18. Results show that the dynamics of the system is comprehensively forecasted in the post-

bifurcation regime. Constructing these bifurcation diagrams using the forecasting method is a 

substantial advantage compared to conventional numerical or experimental methods that need 

massive experimental campaigns or computational efforts.  

 
 

(a) (b) 
Figure 2.17. (a) Forecasted three-dimensional bifurcation diagrams in flow speed-pitch-pitch velocity 
space for a system that exhibits a supercritical bifurcation. Dashed lines are forecasted bifurcation 
diagrams at different phases, solid circles are the forecasted value at a few selected flow speeds, and 
solid lines are the exact limit cycles of the system computed at the selected flow speeds. (b)Forecasted 
limit cycles at 𝑈∗ = 7.65 in pitch-pitch velocity plane for a system that exhibits a supercritical 
bifurcation. Solid line is exact limit cycle and circles are forecasted values. 
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(a) (b) 
Figure 2.18. (a) Forecasted three-dimensional bifurcation diagrams in flow speed-pitch-pitch velocity 
space for a system that exhibits a subcritical bifurcation. Dashed lines are forecasted bifurcation 
diagrams at different phases, and solid lines are the exact limit cycles of the system computed at the 
selected flow speeds. (b)Forecasted limit cycles at 𝑈∗ = 7.57 in pitch-pitch velocity plane for a system 
that exhibits a supercritical bifurcation. Solid line is exact limit cycle and circles are forecasted values. 

 

2.6 Three-degree-of-freedom aeroelastic model 

The proposed method is employed to forecast the bifurcation diagrams of a nonlinear fluid-

structural system composed of a 3-DOF typical aeroelastic section with a trailing-edge control 

surface schematically shown in Fig. 2.19. This system may experience both supercritical and 

subcritical Hopf (flutter) bifurcations depending on the system parameters. The equations of 

motion of this system can be written as follows [78]  
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(2.22) 

where α is the pitch angle, 𝜉 = ℎ/𝑏 is the non-dimensional plunge displacement, 𝛽 is the flap 

angle, 𝜏 = 𝑈𝑡/𝑏 is the non-dimensional time, and the overdot indicates differentiation with respect 
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to 𝜏. 𝑈 is the free stream velocity, and 𝑈∗ = 𝑈/(𝑏𝜔£) is the non-dimensional free stream velocity, 

which is used as bifurcation parameter in this study. 𝜔§W = 𝜔º/𝜔£ is the ratio of the natural 

frequencies of uncoupled plunge and pitch modes, and 𝜔§X = 𝜔Ú/𝜔£ is the ratio of the natural 

frequencies of uncoupled flap and pitch modes. The damping ratios for the pitch, plunge and flap 

are 𝜁£	, 𝜁º	and 𝜁Ú. 𝑟£ and 𝑟Ú are the radius of gyration about the elastic axis and flap hinge. 𝐺£(𝛼), 

𝐺Ú(𝛽) and 𝐺º(𝜉) are the structural elastic torques and elastic force created by the pitch, flap and 

plunge motions. 𝐶À is the aerodynamic lift coefficient, and CÞß  and CÞà  are pitching moment 

coefficients about elastic axis and flap hinge, respectively, and are given in reference[79] for 

incompressible flow. µ = 𝑚/𝜌𝜋𝑏X	is the mass ratio, where 𝑚 is the total mass of the airfoil and ρ 

is the air density.  

 
Figure 2.19. Schematic of a 3-DOF airfoil with a control surface  

 

The equations of motion for this system, including a reduced order model of the 

aerodynamics, can be written as a set of 12 first-order ordinary differential equations [78]  

ẋ = 𝒇(x, 𝑈∗, 𝜏),  (2.23)  

where x = [𝑥W, 𝑥X,… , 𝑥WX]� is the vector of state space variables defined as 𝑥W = 𝛼, 𝑥X = �̇�, 𝑥¼ =

𝜉, 	𝑥Æ = �̇�, 𝑥½ = 𝛽, 𝑥Ç = �̇�, 𝑥È = 𝑤W, 𝑥Å = 𝑤X, 𝑥ä = 𝑤¼, 𝑥Wn = 𝑤Æ, 𝑥WW = 𝑤½, 𝑥WX = 𝑤Ç, with 
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𝑤Wto 𝑤Ç being augmented states resulting from model for the aerodynamics. These six augmented 

variables are defined as  

𝑤W = ∫ 𝑒cËÌ(cÍ)𝛼(𝜎)𝑑𝜎
n , 𝑤X = ∫ 𝑒cË´(cÍ)𝛼(𝜎)𝑑𝜎

n ,  

𝑤¼ = ∫ 𝑒cËÌ(cÍ)𝜉(𝜎)𝑑𝜎
n , 𝑤Æ = ∫ 𝑒cË´(cÍ)𝜉(𝜎)𝑑𝜎

n ,  

𝑤½ = ∫ 𝑒cËÌ(cÍ)𝛽(𝜎)𝑑𝜎
n , 𝑤Ç = ∫ 𝑒cË´(cÍ)𝛽(𝜎)𝑑𝜎

n .  

 

(2.24)  

where 𝜖W = 0.0455 and 𝜖X = 0.3 [76]. The function 𝒇(𝐱, 𝑈∗, 𝜏) in Eq. (2.23) is a complex 

nonlinear vector function of the 12 state variables that contains the effects of the structure and the 

aerodynamics. Details about this formulation can be found in refs. [52,78].  

To demonstrate the forecasting method for this system, Eq. (2.23) is solved numerically to 

produce surrogate recovery data from perturbations in the pre-bifurcation regime. To reflect 

realistic situations, and instead of randomly perturbing the initial conditions (such as position or 

velocity) of the system, a “1-cos” type gust load is applied as disturbance to the system. The 

system response to this gust is used for forecasting. It is worth mentioning that the actual model in 

Eqs. (2.22) - (2.24) is only used for generating surrogate measurement data, and is not required for 

the proposed forecasting approach.  

Equations (2.22) and (2.23) govern the dynamics of an aeroeleastic system which can 

exhibit Hopf bifurcations (flutter). When we choose a specific phase of the oscillations, for 

example in the pitch-plunge plane, we in fact reduce the system to a one dimensional system 

similar to Eq. (2.1), which represents conceptually the one-dimensional nonlinear system 

exhibiting pitchfork bifurcations. The forecasting procedure is applied to forecast the bifurcation 

diagram at that specific phase.  
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In this example, the parameters considered for the aeroelastic system are 𝜔§W = 0.5, 𝜔§X = 3.5, 

 𝜇 = 100, 𝑐¸ = 0.6, 𝑎¸ = −0.5, 𝑥£ = 0.25, 𝑥Ú = 0.0125, 𝑟£ = 0.5, 𝑟Ú = 0.05, 

 𝜁º = 𝜁£ = 𝜁Ú = 0, and the structural elastic functions considered are 𝐺º(𝜉) = 𝜉	 and 𝐺Ú(𝛽) = 𝛽.  

The system is perturbed using gust loads at three flow speeds in the pre-bifurcation regime, 

i.e. 𝑈∗ = 4.40, 4.50, and 4.60. The equations of motion are solved numerically to generate 

surrogate measurement data in the form of system responses to perturbations at these flow speeds. 

The time series are recorded and used as inputs to the proposed forecasting method.  In following 

sections, “measurements” refers to “surrogate data” instead of experiments. 

2.6.1 Forecasting two-dimensional bifurcation diagrams  

In this section, we consider first the forecasting of two-dimensional bifurcation diagrams 

separately for supercritical and subcritical bifurcations. Thus, first we consider a system which has 

𝐺£(𝛼) = 𝛼 + 10𝛼¼, which means that the airfoil has cubic nonlinearity in the pitch displacement. 

In this case, the system faces supercritical Hopf (flutter) bifurcations. Figure 2.20 shows that the 

plunge displacement in response to perturbations at the three flow speeds considered. As it can be 

observed, the slowing down phenomenon is present in the recorded measurements, as revealed by 

the increasingly long recovery times as the flow approaches the flutter speed.  

 
Figure 2.20. System responses to perturbations in plunge displacement at 3 non-dimensional flow speeds 
𝑈∗ = 4.40, 4.50, and 4.60.  
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Here, we first forecast two-dimensional bifurcation diagrams corresponding to maximum 

amplitudes of the post-bifurcation limit cycles for each degree of freedom. For this purpose, we 

select local maxima of the measured recoveries, and forecasting approach is used as described in 

Sec. 2.2. This means we have chosen a specific value of the phase in the plane 𝑥 − �̇�, where 𝑥 is 

the considered state variable (pitch, plunge or flap angle). We consider this as reference for the 

phase, i.e. phase is zero. Following the forecasting procedure, curves of 𝜆 − 𝑟 are obtained for the 

plunge displacement as shown in Fig. 2.21. Using these curves and Eq. (2.6) for each amplitude, 

𝜆 − 𝑈∗ curves are obtained (as shown in Fig. 2.22), and the bifurcation diagram of the system for 

plunge displacement is forecasted. Similarly, the bifurcation diagrams for other DOFs, i.e. pitch 

and flap-angle, are forecasted as shown in Fig. 2.23.  

These results show that the method forecasts bifurcation point and bifurcation type 

(supercritical) accurately. Moreover, the bifurcation diagrams at lower amplitudes are forecasted 

accurately, while the accuracy decreases for larger amplitudes in the diagram, as expected. From 

  
Figure 2.21. Recovery rate vs. plunge amplitude for 
a case of supercritical bifurcations. Non-
dimensional values of the flow speeds are shown.  

Figure 2.22. Second order approximation in the 
𝜆 − 𝑈∗ plane for several plunge amplitudes. 
Each curve corresponds to a different plunge 
amplitude. Symbols (*) show recovery rates 
obtained using the data in Fig. 2.21.  
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these results, one can identify the maximum limit cycle amplitudes that each of the plunge, pitch 

and flap degrees of freedom exhibit in post-bifurcation flow speeds. For example, it is forecasted 

that plunge displacement reaches to the maximum amplitude of 0.0726 (non-dimensional) during 

its oscillations at 𝑈∗ = 4.7.  

The decreased forecasting accuracy at higher amplitudes in the bifurcation diagrams in Fig. 

2.23 is expected and can be explained by examining the forecasting approach. Generally, the parts 

of the bifurcation diagram that are farther from the pre-bifurcation regime are forecasted with less 

accuracy because the accuracy of the Taylor series in Eq. (2.2) is lower. This issue can be alleviated 

by using parameter values closer to the bifurcation. For example, Fig. 2.24 shows the forecasting 

results using measurements collected at flow speeds of 𝑈∗ = 4.52, 4.56, and 4.60, which are 

closer to bifurcation compared to the data used to obtain the results in Fig. 2.23. As it can be 

observed comparing Figs. 2.23 and 2.24, bifurcation diagrams are forecasted more accurately.  

 

 
Figure 2.23. Exact (solid line) and forecasted (solid circles) bifurcation diagrams of maximum limit cycle 
amplitudes for (a) plunge displacement, (b) pitch angle, and (c) flap angle displacements in a system 
which exhibits a supercritical bifurcation using measurements at 𝑈∗ = 4.40, 4.50, and 4.60. 
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Figure 2.24. Exact (solid line) and forecasted (solid circles) bifurcation diagrams of maximum limit cycle 
amplitudes for (a) plunge displacement, (b) pitch angle, and (c) flap angle displacements in a system 
which exhibits a supercritical bifurcation using measurements at 𝑈∗ = 4.52, 4.56, and 4.60. 

 

In this example, parameters which are used for forecasting are equal or greater than 95% 

of the critical speed (i.e. 𝑈T_∗ = 4.634), and the bifurcation diagrams are forecasted up to 5% after 

the critical parameter. However, there is no general conclusion about these boundaries. Forecasting 

accuracy and the forecasted region of the bifurcation diagrams depend on several factors and could 

vary from system to system depending on their dynamics. First, the accuracy depends on how close 

the parameters used for forecasting are to the bifurcation. Closer parameters to the bifurcation 

result in more accurate forecasting. Forecasting accuracy also depends on the characteristics of the 

dynamics around the bifurcation. Specifically, if the inertial manifold of the system remains 

(almost) unchanged in a larger parameter region prior and after the bifurcation, then parameters 

father from the bifurcation can be used for forecasting, and a larger parameter region of the 

bifurcation diagrams can be forecasted accurately. Forecasting results depend also on the 

intensity/magnitude of the perturbations. For example, if the parameters used for forecasting are 

close to the bifurcation but the perturbations are very small, then only small amplitudes of the 

bifurcation diagram can be forecasted. This is because the largest forecasted amplitude in the 

forecasted bifurcation diagram cannot be larger than the amplitude created by perturbations.  
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Next, we consider a system, with a different nonlinear structural elastic behavior in pitch 

displacement. Specifically, we consider a system where 𝐺£(𝛼) = 𝛼 − 2.5𝛼¼ + 75𝛼½. Note that 

this system has the same linear behavior as the previous system studied. The only difference is in 

the nonlinear terms. This system exhibits subcritical bifurcations. Similar to the previous case, the 

system is perturbed using a “1-cos” type gust at three flow speeds 𝑈∗ = 4.46, 4.50, and 4.54. 

Surrogate system responses are obtained by solving Eq. (2.23). The forecasting procedure is the 

same as in the previous example for forecasting the maximum post-bifurcation limit cycle 

amplitudes. However, the 𝜆 − 𝑟 curves obtained are considerably different, as expected.  

Consider, for example, the plunge displacement. The slowest recovery rate corresponds to 

a non-zero amplitude, as shown in Fig. 2.25. This amplitude corresponds to the saddle node 

bifurcation of cycles (the turning point in the bifurcation diagram). Identifying the flow speed for 

this bifurcation is usually very difficult and is essential for ensuring safety and guaranteeing 

stability. This speed is the beginning of the bi-stable region, where a large perturbation may cause 

dramatic changes in the dynamics of the system even though the flow speed is below the linear 

flutter speed. The forecasted bifurcation diagrams for the pitch, plunge and flap angle are shown 

in Fig. 2.26. These results show that the method forecasts the bifurcation point (flutter speed) and 

the post-bifurcation regime accurately. More importantly, the type of bifurcation is (correctly) 

forecasted to be subcritical. Therefore, one should expect that the system dynamics has a dramatic 

change beyond the linear flutter speed or even below the flutter speed, in the bi-stable region, 

which can result in catastrophic consequences for the structure. According to the results, the 

method forecasts all points on the bifurcation diagram regardless of their stability. Both the stable 

and unstable parts of the bifurcation diagrams are forecasted using the same procedure. However, 

the method does not identify which point is stable and which point is not, although that can be 
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easily determined when interpreting the results simply by noting that solutions between outer 

branches are unstable.  

  
Figure 2.25. Recovery rate vs. plunge amplitude for the system with a subcritical bifurcation  

 

 
Figure 2.26. Exact (solid line) and forecasted (solid circles) bifurcation diagrams for (a) plunge 
displacement, (b) pitch angle, and (c) flap angle displacement in a system which exhibit a subcritical 
bifurcation.  

 

2.6.2 Forecasting three-dimensional bifurcation diagrams  

In the previous section, the maximum limit cycle amplitudes of pitch, plunge and flap 

displacements in the post-bifurcation regime were forecasted. Each of these forecasted bifurcation 

diagrams corresponds to a fixed phase on the inertial manifold which is the phase at which the 
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post-bifurcation limit cycles exhibit their maximum amplitudes for the corresponding state 

variable. This phase is the reference zero phase in the 𝑥 − �̇� space, where 𝑥 is one of the considered 

state variables (pitch, plunge or flap) because 𝑥 is maximum when �̇� is zero.  

In this section, we extend the approach to a much comprehensive bifurcation diagram, not 

only for the maximum amplitudes. Specifically, we focus on forecasting three-dimensional 

bifurcation diagrams, defined as diagrams in the 𝑈∗ − 𝑥 − �̇� space, where 𝑥 can be the pitch, 

plunge, or flap angle.  

To construct such bifurcation diagrams, we follow the procedure described in Fig. 2.16. 

For the considered system, bifurcation diagrams for supercritical bifurcations in flow speed-pitch-

pitch velocity, flow speed-plunge-plunge velocity, and flow speed-pitch-plunge spaces are 

computed and the results are shown in Fig. 2.27.  Figure 2.28 shows the forecasted limit cycle 

amplitudes at 𝑈∗ = 4.65 for the bifurcation diagrams of Fig. 2.27. It can be observed that the 

forecasting method accurately predicts the limit cycle amplitudes at different phases. Three-

dimensional bifurcation diagrams for any other combination of state variables can be obtained 

similarly.  

Similarly, three-dimensional bifurcation diagrams can be forecasted for systems exhibiting 

subcritical bifurcations. The bifurcation diagrams in flow speed-pitch-plunge, flow speed-pitch-

pitch velocity and flow speed-plunge-plunge velocity spaces are forecasted and the results are 

shown in Figs. 2.29 and 2.30. As it can be observed from the results, the dynamics of the system 

is comprehensively forecasted in the post-bifurcation regime. Constructing these bifurcation 

diagrams using the forecasting method is a substantial advantage compared to conventional 

numerical or experimental methods that need massive experimental campaigns or computational 

efforts. 
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Figure 2.27. Forecasted three-dimensional bifurcation diagrams in (a) flow speed-pitch-plunge, (b) flow 
speed-pitch-pitch velocity, and (c) flow speed-plunge-plunge velocity space for a system that exhibits a 
supercritical bifurcation. Dashed lines are forecasted bifurcation diagrams at different phases, solid 
circles are the forecasted value at a few selected flow speeds, and solid lines are the exact limit cycles of 
the system computed at the selected flow speeds.  

 

 

 
Figure 2.28. Forecasted limit cycles at 𝑈∗ = 4.65 in (a) pitch-plunge, (b) pitch-pitch velocity, and (c) 
plunge-plunge velocity planes for a system that exhibits a supercritical bifurcation. Solid lines are exact 
limit cycles and circles are forecasted values.  
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Figure 2.29. Forecasted three-dimensional bifurcation diagrams in (a) flow speed-pitch-plunge, (b) flow 
speed-pitch-pitch velocity, and (c) flow speed-plunge-plunge velocity space for a system that exhibits a 
subcritical bifurcation. Dashed lines are forecasted bifurcation diagrams at different phases, and solid 
lines are the exact limit cycles of the system computed at the selected flow speeds.  

 

 
Figure 2.30. Forecasted limit cycles at 𝑈∗ = 4.58 in (a) pitch-plunge, (b) pitch-pitch velocity, and (c) 
plunge-plunge velocity planes for a system that exhibits a subcritical bifurcation. Solid lines are exact 
limit cycles and circles are forecasted values.  
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2.6.3 Effects of measurement noise  

Noise can contaminate measurements, thus influencing the forecasting accuracy. Accuracy 

is expected to decrease as noise increases. One possible solution to this issue is to increase the 

number of measurements. The number of measurements needed depends on the level of noise and 

on the level of the desired accuracy. These measurements should be collected at multiple parameter 

values (more than just the three used in the deterministic case). Also, several recoveries should be 

measured at each parameter value.  

To investigate the effects of noise on the forecasting results in the case of supercritical 

bifurcations, 10% noise is added to the measurements, and the forecasting procedure is applied 

without any noise filtering. At each flow speed, the system response to ten separate perturbations 

is measured. The recovery rates corresponding to each separate measurement are computed (as 

described in Sec. 2.2). The recovery rates are then averaged to obtain the average measured 

recovery rate at each amplitude. This procedure is repeated at several flow speeds. Finally, the 

average recovery rates for each flow speed are used in the forecasting procedure. As an example, 

Fig. 2.31 shows the computed recovery rates and forecasted bifurcation diagram using the 

averaged recovery rates for the maximum plunge amplitudes, i.e. zero phase in plunge-plunge 

velocity plane. By using the same set of measurements, this procedure is repeated for different 

phases to forecast three dimensional bifurcation diagrams. The bifurcation diagram in flow speed-

plunge-plunge velocity space is forecasted using noisy measurements at 𝑈∗ = 4.60, 4.56 and 4.52, 

and the results are shown in Fig. 2.32. The bifurcation diagrams for all other combinations of state 

variables can be obtained similarly.  
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(a) (b) 

Figure 2.31. (a) Approximated recovery rates of maximum plunge amplitudes at three flow speeds 𝑈∗ =
4.60, 4.56 and 4.52. Each line represents the approximated recovery rate using a separate set of noisy 
measurements. Dashed lines are average recovery rates at each flow speed, which are employed for 
forecasting. (b) Forecasted bifurcation diagram using the average recovery rates.  

 

 
Figure 2.32. (a) Forecasted three-dimensional bifurcation diagrams in flow speed-plunge-plunge velocity 
space for a system that exhibits a supercritical bifurcation and in presence of 10% measurement noise. 
Dashed lines are forecasted bifurcation diagrams at different phases, solid circles are forecasted value at 
a few selected flow speeds, and solid lines are exact limit cycles of the system computed at the selected 
flow speeds. (b) and (c) demonstrate exact and forecasted limit cycles at 𝑈∗ = 4.65 and 𝑈∗ = 4.70, 
respectively. Solid lines are exact limit cycles, and circles are forecasted values.  

 

2.7 Conclusions 

In this chapter, a unique approach of forecasting supercritical and subcritical flutter (Hopf 

bifurcations) was presented. The proposed method was developed based on the critical slowing 

down phenomenon present in oscillating systems near certain types of bifurcations. The recovery 

rate of the system was extracted using an optimization approach which improves the forecasting 
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accuracy especially when the system has transient recoveries with low frequency oscillations. 

Moreover, it was shown that applying modal decomposition to the collected transient recovery and 

keeping only the effects of the mode involved in the bifurcation can increase the forecasting 

accuracy. The forecasting method relies on local maxima in the measurements, and the accuracy 

of these measurements is enhanced by the ERA.  

To demonstrate the proposed method and to highlight its advantages, the approach was 

applied to determine bifurcation diagrams of two fluid-structural systems with cubic nonlinearity. 

The systems were composed of a typical airfoil section in pitch and plunge, equipped with a 

trailing-edge control surface. Instead of experimental measurements, we used surrogate data 

obtained as time series from simulation of the model as input to our method. To reflect realistic 

situations, gust loads were applied as disturbances to the system while system recoveries are 

measured.  

Results show that the proposed method accurately predicts the bifurcation point (i.e., the 

flutter speed) and the post-bifurcation regime (i.e., the bifurcation type and the limit cycles) of the 

considered fluid-structural systems despite the fact that it does not use a model of the system. Two 

and three dimensional bifurcation diagrams were accurately forecasted in both supercritical and 

subcritical cases. Since bifurcations can cause dramatic changes in system dynamics, this type of 

forecasting which does not require exploring the post-bifurcation regime provides great advantages 

to a variety of applications especially when safety and maximum system performance is needed. 
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Chapter 3  

Forecasting the Post-Bifurcation Dynamics of Large-Dimensional Slow-Oscillatory 

Systems Using Critical Slowing Down and Center Space Reduction 

 

3.1 Introduction  

Hopf bifurcations are common and important types of bifurcations which have been 

observed in a variety of systems such as aeroelastic systems [43], machine tools [49], automotive 

dynamics [48], predator–prey systems [80], nonlinear circuits [51], neuron systems [81], to name 

a few. Such phenomena lead to various types of stability issues and may cause catastrophic system 

dynamics. Therefore, forecasting such bifurcations, i.e. predicting bifurcations with measurements 

only from the pre-bifurcation regime, is an important challenge to overcome. The importance of 

forecasting methods is even higher when dealing with complex and large-dimensional systems 

since accurate models of such systems is not easily available. In particular, forecasting methods 

for Hopf bifurcations have not been studied much [2] although such bifurcations have been 

observed and studied in various systems. Thus, developing a forecasting method for this class of 

bifurcations is necessary for this important type of bifurcations.  

Several indicators have been explored as early warning signals such as the noise-induced 

spectrum [37], the skewness of the probability distribution [30], and the flickering between basins 

of attraction before bifurcations [38] (see also [2] for a review). Based on these indicators, several 

forecasting methods using observation of system recovery from perturbations have been proposed 
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[8,32,34,82–87] (see [2] for a review). In particular, critical slowing down (CSD) is one of the 

most important indicators used for bifurcation forecasting. These forecasting methods can be 

classified into two groups: (a) stochastic methods, and (b) bifurcation forecasting methods. 

Stochastic methods use features of the dynamics such as an increased variance, increased 

autocorrelation and flickering. Such features can be observed in recoveries in the vicinity of 

catastrophic bifurcation points. These methods can forecast tipping points; however, they cannot 

identify the distance to the bifurcations or the type of bifurcations. To address that limitation, 

bifurcation forecasting methods have been developed [8,84,88]. These methods use the recovery 

rate of the system from perturbations in the pre-bifurcation regime and the CSD phenomenon to 

forecast the post-bifurcation dynamics. Although these methods resolve some of the main 

disadvantages of stochastic methods, they still have to be developed for forecasting bifurcations 

in more complex and large-dimensional systems.  

There are several challenges in forecasting Hopf bifurcations which make forecasting more 

complicated. First, systems can recover to equilibrium with oscillations in the pre-bifurcation 

regime. Since the phases of measurements of the dynamics during one or multiple recoveries are 

not the same, one cannot directly use all of the time data measurements in the forecasting 

algorithms. The common way of solving this problem is to use local maxima of the system 

recovery from perturbations and to approximate the recovery rate using these peaks [84]. However, 

this approach does not have enough accuracy especially for low-frequency oscillations when only 

a few peaks are available before reaching the noise floor in recoveries. Furthermore, Hopf 

bifurcations often occur in large-dimensional systems, where several modes are involved in the 

dynamics. The large-dimensionality makes forecasting substantially more complicated and 

increases the forecasting error. Moreover, methods able to forecast large ranges of the bifurcation 
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diagram with a good accuracy are desirable. This is especially important for subcritical 

bifurcations since the stable region of post-bifurcation regime has large amplitudes.  

In this study, we present a unique approach to forecast Hopf bifurcations in large-

dimensional systems to resolve the above-mentioned challenges. The proposed method builds on 

the work of Lim and Epureanu [8] in that the approach is based on the phenomenon of CSD which 

accompanies such bifurcations, i.e. when the systems is close to the bifurcation point, perturbations 

lead to long transient oscillations before the system reach to its stable state. Similar to previous 

work [8], the bifurcation diagram is forecasted based on observations of the system only in the 

pre-bifurcation regime. Moreover, the method is model-less and does not require a mathematical 

model of system for forecasting the bifurcation diagram. The method is not limited to small 

perturbations and is not based on linearization. Hence, it can use recoveries from large 

perturbations for bifurcation forecasting. However, distinct from previous work [8], the proposed 

method is able to provide accurate forecasts even in the case of systems with low-frequency 

oscillations and large dimension. To deal with large-dimensional systems, the proposed technique 

uses a data-based modal decomposition approach to extract the mode involved in the bifurcation. 

Therefore, the accuracy of the forecasts increases especially at larger amplitudes in the bifurcation 

diagram. Even more importantly, a modal coordinate method is introduced to enable the use of all 

measurements in the oscillating recovery data (and not just the peaks) for forecasting. This is a 

great advantage which considerably increases the forecasting accuracy especially for noisy 

measurements and for system recoveries with low frequency oscillations (in contrast to using only 

local maxima of the system recovery [8,89]).  

To demonstrate the method and to highlight its advantages, we use surrogate 

measurements, namely time-series obtained from simulations of a complex nonlinear aeroelastic 
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system that can experience different operating conditions and bifurcations. While the system has 

only two mechanical degrees of freedom, the aerodynamic part of the model leads to a more 

complex 8-dimensional nonlinear aeroelastic system. Instead of using random perturbations, gust 

loads are applied as disturbances to the system. System recoveries from gust perturbations are 

measured and used as surrogate data. These perturbations are similar to the actual behavior of 

many aeroelastic systems. The proposed method is applied to forecasting both supercritical and 

subcritical bifurcations. It is shown that the method can predict the type of bifurcation as well as 

the bifurcation diagrams using transient data collected only in the pre-bifurcation regime.  

3.2 Forecasting method  

In this section, the key aspects of the proposed forecasting method are presented. First, the 

general method which is applicable to non-oscillating systems is introduced. Next, this method is 

extended to forecasting bifurcations in large-dimensional oscillatory systems.  

3.2.1 Forecasting bifurcations in non-oscillatory or fast-oscillatory systems  

In this section we briefly review the approach used for forecasting bifurcations in non-

oscillatory or fast-oscillatory systems [8,84]. Consider a nonlinear system with a parameter  and 

an amplitude  which represents the distance from the current state to the equilibrium state. The 

time rate of change the of the amplitude can be written as  

�̇� = 𝑓(𝜇, 𝑟). (3.1)  

Using a Taylor series with respect to the parameter around the bifurcation point ( ), the 

system can be expressed as  

µ

r

cµµ =
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�̇� = 𝑟(𝑝(𝑟) + 𝛼W(𝑟)(𝜇 − 𝜇T) + 𝛼X(𝑟)(𝜇 − 𝜇T)X + 𝐻𝑂𝑇), (3.2)  

where 𝑝(𝑟), 𝛼W(𝑟) and 𝛼X(𝑟) are polynomial functions considered to be independent of the 

parameter 𝜇, and HOT represents higher order terms in 𝜇 − 𝜇T . Note that this relation means 

neither that the dynamics of the system have been linearized in state space nor that the dynamics 

have small amplitudes. Only the parameter is assumed to have small variations. Therefore, we are 

not restricted to use small perturbations, but the analysis is applied near the critical value 𝜇T of the 

bifurcation parameter 𝜇. Also, neglecting terms of order higher than 2 when the system is close to 

the bifurcation means that a second order polynomial dependence on the parameter value is used. 

Mathematically, using more terms in the Taylor series approximation in Eq. (3.2) results in a more 

accurate approximation. However, using higher order terms does not have a considerable effect on 

the forecasting results according to our recent studies. For flutter, the optimum order of the 

approximation appears to be the second order, as used in the study. There are many possible 

reasons for this. First, it may so be that the first two terms dominate the dynamics. Second is that 

there are other effects affecting the dynamics as data is collected farther from the bifurcation point, 

which have more dominant effects on the forecasting procedure than the order of the 

approximation in Eq. (3.2).  

The rate 𝜆(𝜇, 𝑟) at which the system recovers to its equilibrium after a perturbation depends on the 

amplitude and the parameter value, and is defined as  

𝜆(𝜇, 𝑟) =
�̇�
𝑟 =

𝑑	(ln 𝑟)
𝑑𝑡 	. (3.3)  

Therefore, the dynamics of system can be re-written using Eqs. (3.2) and (3.3) as  
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 (3.4)  

Using time-series of measured system recoveries from perturbations, one can employ the following 

approximation to approximate 𝜆(𝜇, 𝑟) as  

𝜆(𝜇, 𝑟) =
𝑑	(ln 𝑟)
𝑑𝑡 ≅

ln 𝑟g − ln 𝑟c
2𝛥𝑡  

(3.5)  

where 𝛥𝑡 is the time between samples, 𝑟g is the value of the amplitude measured at time 𝑡 + 𝛥𝑡, 

and 𝑟c is the value of the amplitude measured at time 𝑡 − 𝛥𝑡. The recovery rate plays the most 

important role in the forecasting method. When the system is close to a bifurcation, the recovery 

rate is decreased. At a fixed system amplitude , the farther the system is from its corresponding 

post-bifurcation steady state behavior, the less is the recovery rate of the system. This fact is used 

for predicting the post-bifurcation dynamics.  

Note that the fundamental limitation of this method is that measurements area available in 

large numbers and for small values of 𝛥𝑡. That holds for systems which recover without 

oscillations and where the amplitude is an actual value of a measured state variable of the system. 

This also holds for systems that recover with fast oscillations, where the time interval between 

consecutive peaks in the system dynamics is in fact  and small. Such systems were discussed in 

[8,84].  

Consider that system recoveries from perturbations are measured at several different 

parameter values 𝜇W, 𝜇X, … , 𝜇i . For each fixed parameter value (𝜇j), one can choose a value of the 

amplitude  𝑟 = �̃� and estimate 𝜆(𝜇j, 𝑟) using the time-series measurements (Fig. 3.1). Using the 

expression in Eq. (3.4), one can fit a second order polynomial to the estimated values of 𝜆 in the 
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21 cc rrrpr µµaµµaµl -+-+=

r

tD



 57 

𝜇 − 𝜆(𝜇, �̃�) plane. The most important point in Fig. 3.2 is the intersection of the fitted curve with 

the 𝜇 axis. That intersection represents the forecasted parameter value 𝜇m for the corresponding 

post-bifurcation dynamics of amplitude �̃� (Fig. 3.3). This procedure can be repeated for different 

values of �̃�, and the overall bifurcation diagram can be predicted.  

  

Figure 3.1. Conceptual example of a system 
recovery without oscillations over time from an 
initial perturbation. 

Figure 3.2. recovery rate vs. parameter and 
forecasting 𝜇m. 

 

  

Figure 3.3. Forecasted bifurcation diagram Figure 3.4. Conceptual example of a system 
recovery with oscillations over time from an initial 
perturbation. 
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3.2.2 Bifurcation forecasting in slow-oscillatory systems  

Distinct from previous work, in this study, we are considering Hopf-bifurcations where the 

system oscillates (potentially with low frequency) during its recovery from perturbations in the 

pre-bifurcation regime (Fig. 3.4). Hence, we cannot use Eq. (3.5) for all of the points in the 

measured system recovery since data points adjacent to each other are in different phases. The 

common solution of this problem is to choose local maxima of the recovery data and use the same 

procedure as for the non-oscillatory case.  This is an acceptable approximation when the system 

oscillates with high frequencies. However, for low frequency oscillations, there are not enough 

samples to have a good approximation and forecasting. Hence, Eq. (3.5) does not hold. Therefore, 

existing forecasting methods [8,84] fail to predict the post-bifurcation regime.  

To address this issue, a novel method is proposed in this section. This method approximates 

the instantaneous recovery rate using all of the points in the measurements not only the local 

maxima. Hence, unlike previous approaches, forecasting is possible for system recoveries with 

low-frequency oscillations. Furthermore, the proposed method is generalized for forecasting 

bifurcations in large-dimensional systems that resolves another limitation of previous methods. 

For this purpose, the proposed approach uses a data-based modal decompositions technique.  

In general, in a large-dimensional nonlinear system there can be several active modes in 

the measured system recovery from perturbations. However, in the great majority of Hopf 

bifurcations, only one pair of conjugate eigenvalues is involved in the bifurcation. That means 

only one of the system modes causes the bifurcation (Fig. 3.5). This holds for a large category of 

systems experiencing co-dimension one bifurcations. Hence, one mode experiences CSD whereas 

the other modes do not. Thus, the effects of these other modes are detrimental for forecasting. 
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Their presence distorts the analysis of the part of the dynamics that critically slows down. Hence, 

these models should be filtered out and neglected in forecasting. Filtering is done to enhance the 

accuracy of forecasting especially for large-dimensional systems.  

For most co-dimension one Hopf bifurcations observed in practice, the center space is two-

dimensional, namely only one complex conjugate pair of eigenvalues of the Jacobian of the 

dynamics crosses the imaginary axis (Fig. 3.5). The two-dimensional center space leads to a two-

dimensional inertial manifold (a two-dimensional nonlinear manifold). This manifold is tangent to 

the (two-dimensional) center space of the system. The center space is a good approximation of the 

inertial manifold near the bifurcation. Thus, one can project the dynamics of the system on the 

center space, and capture and study the CSD behavior in this space for forecasting when the system 

is close to the bifurcation (Fig. 3.6).  

 

Figure 3.5. Real and imaginary parts of the eigenvalues of the system dynamics near a fixed point that is 
involved in a Hopf bifurcation; the change in the imaginary part is small when the eigenvalues traverse 
the zero real part axis 
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Figure 3.6. Schematic of the system dynamics on the inertial manifold and its projection on the center 
space; several regions are labeled and for forecasting using the piecewise modal decomposition approach 

 

A basis in the center space can be obtained by using the linear modes of the system close 

to the bifurcation. Note that the forecasting method is model-less. That means that a mathematical 

model of the system is not needed (or not available) for forecasting. Hence a data-based / 

measurement-based modal decomposition technique is employed to obtain a basis for the center 

space. Once the basis is found, the bifurcating mode can be analyzed separately from the other 

modes. The bifurcating mode is a complex eigenvector computed at the bifurcation parameter that 

is closest to the bifurcation point. This mode is used for the other parameter values. The implication 

is that the center space and the inertial manifold are assumed to vary only weakly with the 

parameter. Hence, the dynamics of the system is projected onto the space spanned by the real and 

the imaginary components of the complex eigenenvector so that the unwanted modes (not involved 

directly in the bifurcation) are filtered out.  

There are several measurement-based approaches that can be used to extract modal 

parameters and mode shapes. In this study, we use the eigensystem-realization algorithm (ERA). 
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ERA is a time domain multiple-input multiple-output algorithm based on the Hankel matrix of the 

dynamics and its singular value decomposition. The fundamentals of this method can be found in 

the literature [71,74,75]. Since we apply the forecasting method close to a bifurcation, the mode 

corresponding to the pair of eigenvalues with the largest real part represents the mode that causes 

the bifurcation.  

Now, consider a nonlinear dynamical system. Let Φ be the matrix of eigenvectors of the system  

extracted from a measurement-based modal decomposition as  

Φ = ×𝜙W,ê		𝜙W,ë		𝜙X,ê		𝜙X,ë 	… 	𝜙W		𝜙X … Ø, (3.6)  

where 𝜙q,ê and 𝜙q,ë are real and imaginary parts of the eigenvector corresponding to the ith 

oscillating mode, and 𝜙i is the eigenvector corresponding to the nth non-oscillating mode of the 

system. Using Eq. (6) one can define the transformation  

x = Φq	, (3.7)  

where x is a vector of measured states of system, and q is a vector of modal coordinates expressed 

as  

q = ×𝑞W,ê(𝑡)		𝑞W,ë(𝑡)		𝑞X,ê(𝑡)		𝑞X,ë(𝑡)…		𝑞W(𝑡)			𝑞X(𝑡)	… Ø
�
. (3.8)  

In Eq. (3.8), 𝑞q,ê(𝑡) and 𝑞q,ë(𝑡) are real and imaginary parts of the modal coordinate corresponding 

to the ith oscillating mode, and 𝑞i is the modal coordinate corresponding to nth non-oscillating 

mode. For example, in the next section we consider a nonlinear aeroelastic system where x contains 

the pitch and plunge displacements and their velocities as measured states.  
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Suppose that the ith oscillating mode is the mode involved in a Hopf bifurcation. To 

separate the effect of this mode from the other modes in the state variables one can define a vector 

of decomposed state variables as  

 x�(𝑡) = 𝜙q,ê𝑞q,ê(𝑡) + 𝜙q,ë𝑞q,ë(𝑡), (3.9)  

𝑞q,ê(𝑡) and 𝑞q,ë(𝑡) contain an exponential decay and oscillations at 𝜔q which is the identified 

frequency of bifurcating mode. In mechanical systems, 𝑞q,ê(𝑡) and 𝑞q,ë(𝑡) form a spiral in the 

𝑞q,ê − 𝑞q,ë plane, and they have the same decay rate. Here, one may define a function ℎ(𝑡) as  

ℎ(𝑡) = î𝑞q,êX (𝑡) + 𝑞q,ëX (𝑡)	. 
(3.10)  

The function ℎ(𝑡) can be interpreted as a modal amplitude in the 𝑞q,ê − 𝑞q,ë plane. Moreover, ℎ(𝑡) 

decays at the same rate as 𝑞q,ê  and 𝑞q,ë. The corresponding vectors 𝜙q,ê and 𝜙q,ë may be chosen in 

such a way that 𝑞i,ê(𝑡) and 𝑞i,ë(𝑡) are in quadrature by simply selecting them as the real and 

imaginary parts of the complex eigenvector. Then, ℎ(𝑡) is a non-oscillatory function which has 

the approximate form of ℎ(𝑡) = ℎn𝑒ï(¸)`, where 𝜆(ℎ) is the recovery rate. This rate is very 

important since it contains the CSD information. For a mechanical system (governed by a system 

of second order differential equations for the generalized coordinates), 𝑞q,ê  and 𝑞q,ë are in 

quadrature when the bases of the center space are chosen to be position and velocity. Thus, the 

modal coordinates involved in the bifurcation may be approximated in the following form (see 

Appendix A for more details)  
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𝑞q,ê(𝑡) ≈ 𝑎(𝑡) cosr𝜔q𝑡 − 𝛽(𝑡)s,  

𝑞q,ë(𝑡) ≈ 𝑎(𝑡) sinr𝜔q𝑡 − 𝛽(𝑡)s. 
(3.11) 

Note that ℎ(𝑡) computed from Eq. (10) may have small oscillations due to nonlinearities and the 

presence of multiple harmonics in the modal coordinates. These oscillations, although small, may 

cause difficulties and errors in the forecasting procedure. To resolve this issue and ensure that the 

function ℎ(𝑡) is free of oscillations, a frequency filter (using Fourier transforms) is used to separate 

the components of frequency of 𝜔q from 𝑞q,ê(𝑡) and 𝑞q,ë(𝑡), and to filter out the effects of the 

higher frequencies.  

Using Eqs. (3.9), (3.10) and (3.11), an amplitude 𝑟ò(𝑡) can be defined such that it passes through 

the local maxima of the jth degree of freedom (i.e., position and velocity) of the decomposed 

(filtered) state vector x�(𝑡) as  

𝑟ò(𝑡) = ℎ(𝑡)î𝜙q,ê
ò X

+ 𝜙q,ë
ò X	 , (3.12) 

where ℎ(𝑡) is expressed as in Eq. (3.10), while 𝜙q,ê
ò  and 𝜙q,ë

ò  is the jth element of the vectors 𝜙q,ê 

and 𝜙q,ë which correspond to the jth degree of freedom . All values on the right hand side of  

Eq. (3.12) are extracted from measurements (after modal decomposition). Therefore, 𝑟ò(𝑡) can be 

identified using measured data. The factor î𝜙q,ê
ò X

+ 𝜙q,ë
ò X in Eq. (3.12) is a constant, and ℎ(𝑡) 

contains the recovery rate and the CSD information of the system. In addition, 𝑟ò(𝑡) is a non-

oscillating decaying function containing the CSD information that passes through the local 

maxima of the jth degree of freedom with a good accuracy.  
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Next, the forecasting method described for non-oscillating recoveries is applied to 𝑟ò(𝑡) 

functions obtained from system recoveries at different parameter values 𝜇 to forecast the post-

bifurcation dynamics of the jth degree of freedom. The important feature of this method is that 𝑟ò(𝑡) 

is approximated using all of the measurements, not only the local maxima. This approach has the 

significant advantage of being applicable in cases of low-frequency oscillations where using local 

maxima does not provide enough data for estimating the recovery rate. The proposed approach 

separates the effects of the bifurcating mode from the measurements by using the shapes of the 

modes. That holds even if modes very close in frequency to the bifurcating mode. Nonetheless, 

one may also use other experimental techniques to approximate 𝑟ò(𝑡) depending on the application, 

such as a method presented in ref. [90], when the active modes in measurements are separated 

enough in frequency.  

For a mechanical system, the decaying amplitude 𝑟ò(𝑡) and the corresponding recovery is 

estimated for each degree of freedom. Choosing this amplitude implies use of local maxima 

(peaks) which is equivalent to choosing a fixed phase of the spiral trajectory of the system in the 

center space during a recovery. Since the inertial manifold is assumed to change very little with 

the parameter in the forecasting region, it is expected that the maximum amplitudes of the post-

bifurcation limit cycles occur at the same chosen phase. Figure 3.7 shows schematically a 

bifurcation diagram in three dimensions for a two-degree of freedom system, where 𝑥W and 𝑥X are 

the degrees of freedom, and 𝜇 is the bifurcation parameter. The red lines are the usual (two 

dimensional) bifurcation diagrams for 𝑥W and 𝑥X which correspond to the local maxima (peaks) in 

the time series for 𝑥W and 𝑥X. The proposed approach forecasts separately these two red lines by 

using time series for 𝑥W and 𝑥X, respectively.  
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Figure 3.7. Schematic of the three dimensional bifurcation diagram showing the limit cycle oscillations 
in post bifurcation regime at each bifurcation parameter 𝜇; blue lines show the entire diagram, whereas 
the red lines show the separately forecasted diagrams for 𝑥W and 𝑥X states. 

 

For very large perturbations, forecasting the bifurcation diagram based on the projected 

dynamics on the center space may have errors for large state amplitudes. This is because the motion 

at larger amplitudes corresponds to regions of the inertial manifold that are farther from the fixed 

point (contact point between the center space and the inertial manifold) as shown in Fig. 3.6. As a 

result, the difference between the inertial manifold and the center space may not be negligible at 

large amplitudes. Note that this does not mean that the center space does not capture the system 

dynamics and the CSD for large amplitudes. Using projection on the center space still results in an 

accurately forecasted bifurcation type, post bifurcation dynamics for smaller amplitudes, and all 

of the critical speeds. However, forecasted larger amplitudes in the bifurcation diagram may have 

errors compared to the actual behavior of the system in the post-bifurcation regime.  

To address this, one may use a piecewise modal decomposition approach. In this approach, 

the inertial manifold is divided into several regions (3 are shown as an example in Fig. 3.6) based 

on the maximum amplitudes of the dynamics. For each region, one may apply a separate modal 
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decomposition using ERA and obtain a basis for the tangent space of that region. Then, the 

dynamics is projected to the tangent space spanned by this basis in each region. This approach 

gives a better approximation for the larger state amplitudes since the difference between each 

region and the approximated tangent space is less than using the center space for all regions. Note 

that the tangent space for the last region (region 3 in Fig. 3.6 containing smaller amplitudes) is the 

same as previously defined center space.  

3.3 Aeroelastic model  

 The proposed method is applied to forecast supercritical and subcritical flutter in a 

nonlinear aeroelastic system. The parameters and notation used in the analysis are shown in Fig. 

3.8. The system oscillates in pitch and plunge. In Fig. 3.8,  is the pitch angle and  is the plunge 

displacement. The free-stream velocity is the bifurcation parameter. The system is exposed to gusts 

that create perturbations the equilibrium of the airfoil. The recovery of the system from these 

perturbations is measured and used for forecasting. The equations can be written as [65] 

 

Figure 3.8. Two-degree-of freedom nonlinear aeroelastic model showing an airfoil of chord . EA is 
aeroelastic axis (at a distance  from the mid-chord), CG is center or mass (at a distance  from 
the EA), and  and  are the pitch and plunge coordinates. 
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(3.13) 

where 𝛼 is the pitch angle, 𝜉 = ¸
¹
 is the non-dimensional plunge displacement, 𝜏 = ¨`

¹
 is the 

normalized time, and the overdot indicates differentiation with respect to	𝜏. 𝑈 is the free-stream 

velocity, and 𝑈∗ = 𝑈/(𝑏𝜔£) is the non-dimensional free-stream velocity, which is used as 

bifurcation parameter. 𝜔§ = 𝜔º/𝜔£ is the ratio of the natural frequencies 𝜔º  and 𝜔£ of the 

uncoupled plunge and pitch motions. 𝜁£ and 𝜁º  are the damping ratios in the structure. 𝑟£ is the 

radius of gyration about the elastic axis. 𝐺(𝜉) and 𝑀(𝛼) are the structural elastic torque and elastic 

force created by pitch and plunge ; they contain structural nonlinearities of the system as  

𝑀(𝛼) = 𝛼 +𝑚¼𝛼¼ +𝑚½𝛼½	, 

𝐺(𝜉) = 𝜉 + 𝑔¼𝜉¼ + 𝑔½𝜉½	.  

(3.14)  

Functions 𝐶À(𝜏) and 𝐶Á(𝜏) are the lift and pitching moment coefficients. These coefficients are 

given by Fung et al. [76] for incompressible flow as  

𝐶À(𝜏) = 𝜋(𝜉 − 𝑎¸𝛼 + 𝛼) + 2𝜋ó𝛼(0) + 𝜉(0) + Ñ
1
2 − 𝑎¸Ö𝛼

(0)ô𝜙(𝜏)

+ 2𝜋É 𝜙(𝜏 − 𝜎) ó𝛼(𝜎) + 𝜉(𝜎) + Ñ
1
2− 𝑎¸Ö𝛼

(𝜎)ô𝑑𝜎


n
, 

𝐶Á(𝜏) = 𝜋 Ñ
1
2 + 𝑎¸

Ö ó𝛼(0) + 𝜉(0) + Ñ
1
2 − 𝑎¸

Ö 𝛼(0)ô𝜙(𝜏)

+ 𝜋 Ñ
1
2 + 𝑎¸

ÖÉ 𝜙(𝜏 − 𝜎)ó𝛼(𝜎) + 𝜉(𝜎) + Ñ
1
2− 𝑎¸

Ö𝛼(𝜎)ô𝑑𝜎


n

+
𝜋
2 𝑎¸

(𝜉 − 𝑎¸𝛼) − Ñ
1
2 − 𝑎¸

Ö
𝜋
2 𝛼 −

𝜋
16 𝛼	,	 

(3.15) 

where 𝜙(𝜏) is the Wagner’s function. A well-known approximation for 𝜙(𝜏) is given by [76] 



 68 

𝜙(𝜏) = 1 − 𝐴W𝑒cËÌ − 𝐴X𝑒cË´, (3.16)  

with 𝐴W = 0.165, 𝐴X = 0.335, 𝜖W = 0.0455 and 𝜖X = 0.3.  

𝑃±(𝜏) and 𝑄±(𝜏) in Eq. (13) are the lift force and pitch moment due the gust profile, and are given 

by the following expressions [77] 

,   

,  

(3.17)  

where 𝑤Â  is vertical gust velocity distribution, and 𝜓	 is the Kussner function [77].  

Because of the existence of the integral terms in these governing equations, it is difficult to study 

the dynamic behavior of the system analytically. Instead, a system augmentation is used by 

introducing four new augmented variables as follows [65] 

𝑤W = É 𝑒cËÌ(cÍ)𝛼(𝜎)𝑑𝜎


n
		 , 𝑤X = É 𝑒cË´(cÍ)𝛼(𝜎)𝑑𝜎	,



n
	 

𝑤¼ = É 𝑒cËÌ(cÍ)𝜉(𝜎)𝑑𝜎


n
		 , 𝑤Æ = É 𝑒cË´(cÍ)𝜉(𝜎)𝑑𝜎



n
. 

(3.18)  

Now, one may introduce a state variable vector x = [𝑥W, 𝑥X,… , 𝑥Å]�, with namely 𝑥W = 𝛼, 𝑥X = �̇�, 

𝑥¼ = 𝜉, 	𝑥Æ = �̇�, 𝑥½ = 𝑤W, 𝑥Ç = 𝑤X, 𝑥È = 𝑤¼, 𝑥Å = 𝑤Æ. With this notation, Eq. (3.13) can be 

written as a set of 8 first order ordinary differential equations as follows  

ẋ = 𝒇(x, 𝑈∗, 𝜏),  (3.19)  

The components of this set of augmented governing equations can be written as follows  

0

2( ) ( ) ( )g GP w d
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0
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, ,  

  

  

,  ,  ,  ,  

(3.20) 

and where coefficient 𝑎qò can be found in [65], and the functions 𝑓(𝜏) and 𝑔(𝜏) are given by  

,  

.  

(3.21) 

The aerodynamic part of the model raises the dimensionality of the system from a two-degree-of-

freedom system to to a more complex 8-dimensional nonlinear one. In the following, Eq. (3.20) is 

used to obtain surrogate measurements of time-series of recoveries from the perturbations induced 

by gusts in the pre-bifurcation regime. The effects of the gust (i.e., 𝑃±(𝜏) and 𝑄±(𝜏)) are applied 

and the system response to gust is collected after the gusts subside.  

It is worth recalling that the actual model in Eq. (3.20) is not needed for forecasting the 

bifurcation diagram. The only input to the algorithm is the transient time data measured from 

sensors (or surrogate data from numerical simulations). Hence, the actual model in Eq. (3.20) is 

used only for generating surrogate measurement data to demonstrate the forecasting method.  
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3.4 Results and discussion  

In this section, the forecasting method is demonstrated for the nonlinear aeroelastic system 

presented in the previous section. Depending on the values of the structural nonlinearities, the 

system may face supercritical or subcritical flutters. Each are considered next.  

To perturb system in the pre-bifurcation regime, wind gusts of a “1-cos” type are used as 

perturbations [91]. The vertical gust velocity distribution is zero except for a time interval 0 ≤ 𝜏 ≤

2𝜏Â  where it is given by  

𝑤Â(𝜏) =
𝑤n
2 Ñ1 − cos

𝜋𝜏
𝜏Â
Ö, (3.22)  

where  is the vertical gust velocity at ¼ chord,  is the gust intensity, and 𝜏Â  is the gust 

gradient. Then, the governing equations in Eq. (3.20) are solved by time marching.  

After the airfoil passes the gust, i.e. at times after 𝜏 = 2𝜏Â , the system response to the gust 

perturbation is recorded. This transient response can be used as surrogate data to demonstrate the 

forecasting method.  

For modal decomposition, we measure the pitch and plunge and their velocities (i.e., 𝛼, �̇�, 𝜉, and 

�̇�). These values are input to the ERA method to extract the modal parameters of the system. 

Hence, the vector x in Eq.(3.7) is x = ×𝛼(𝜏), �̇�(𝜏), 𝜉(𝜏), �̇�(𝜏)Ø
�
.  

3.4.1 Supercritical bifurcations  

In this case, the parameters used for the aeroelastic system are 𝑟£ = 0.7, 𝜔§X = 0.08,  

𝑎¸ = −0.5, 𝑥£ = 0.25, 𝜇 = 100, 𝜁º = 𝜁£ = 0. The nonlinearity is described by parameters  

)(tGw 0w
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𝑚¼ = 2, 𝑚½ = 0, 𝑔¼ = 0 and 𝑔½ = 0 in Eq. (3.14). This set of parameters create supercritical 

bifurcations in the system. Three free-stream velocities are considered in pre-bifurcation regime, 

namely 𝑈∗ = 7.55,	7.50 and 7.45. The applied gust parameters are chosen to be 𝑤n = 0.2 and 

𝜏Â = 10.  

For modal decomposition, the ERA approach is used at 𝑈∗ = 7.55 as that is the available 

free-stream velocity closest to the bifurcation point. The modal properties (e.g., frequencies, mode 

shapes) obtained from the ERA approach are used for other flow speeds as well. Next, the 

forecasting steps presented in Section 2 are applied to collected measurements of pitch and plunge. 

Figure 3.9 shows the decomposed pitch displacement and the corresponding pitch amplitude 𝑟(𝑡) 

at 𝑈∗ = 7.45. The amplitude 𝑟(𝑡) follows the local maxima of the time data with good accuracy. 

This function is obtained for all of the parameter values that are used for forecasting, as described 

in Section 3.2. Figure 3.10 shows the plot of 𝑈∗ − 𝜆 obtained from Eq. (3.6) for pitch. In this 

figure, the intersection of each curve and the horizontal axis is the forecasted 𝑈∗ in the post-

bifurcation regime for its corresponding pitch amplitude.  

Figure 3.11 shows the actual and the predicted bifurcation diagrams for pitch and plunge 

displacements. As the results show, the proposed method predicts the post-bifurcation dynamics 

accurately. Figure 3.12 shows the exact three-dimensional bifurcation diagram of this system in 

the pitch-plunge-flow-speed space. The forecasted diagrams shown in Fig. 3.11 correspond to the 

maximum pitch and plunge amplitudes of limit cycle oscillations (similar to the bifurcations shown 

in Fig. 3.12 for a generic two-degree of freedom system with displacements 𝑥W and 𝑥X).  
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Figure 3.9. Approximated amplitude 𝑟(𝑡) for pitch 
at 𝑈∗ = 7.45 

Figure 3.10. Recovery rate 𝜆 versus free-stream 
flow speed U* for prediction of the post-
bifurcation dynamics at several pitch amplitudes 

 

 

Figure 3.11. Exact (-) and forecasted (•) bifurcation diagrams for pitch (left) and plunge (right) in a 
supercritical case 
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Figure 3.12. Three dimensional bifurcation diagram showing the limit cycle oscillations in the post 
bifurcation regime at each free-stream flow velocity (left); and a view of the pitch-plunge plane of the 
diagram (right); blue lines show limit cycles at each free-stream flow velocity; red lines show separately 
forecasted pitch and plunge diagrams 

 

As another example, we consider next an aeroelastic system that oscillates with low 

frequency while recovering from perturbations in the pre-bifurcation regime. The system 

parameters used for this system are 𝑟£ = 0.4, 𝜔§X = 0.01, 𝑎¸ = −0.5, 𝑥£ = 0.25, 𝜇 = 300, 

 𝜁º = 𝜁£ = 0 and the coefficients of the nonlinearities are parameters 𝑚¼ = 2, 𝑚½ = 0, 𝑔¼ = 0, 

𝑔½ = 0.  

Similar to the previous example, the system is perturbed using a gust load at three 

bifurcation parameter values 𝑈∗ = 9.32, 9.30  and 9.28. The system recovery from perturbations 

at 𝑈∗ = 9.28 is shown in Fig. 3.13. It can be seen that the system oscillates with a lower frequency 

during its recovery compared to the previous case. Hence, methods based only on the local maxima 

fail to predict the actual recovery rate of the system. However, the proposed method works and is 

applied to forecast the post-bifurcation regime. The forecasting results are shown in Fig. 3.14.  
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Figure 3.13. Approximated amplitude 𝑟(𝑡) for pitch at 𝑈∗ = 9.28 for a slow-oscillating system in a 
supercritical case 

 

 

Figure 3.14. Exact (-) and forecasted (•) bifurcation diagram for pitch (left) and plunge (right) 
displacements for a slow-oscillating system in a supercritical case 
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3.4.2 Subcritical bifurcations  

Forecasting subcritical bifurcations such as subcritical flutter has a great importance since 

this type of bifurcations causes sudden changes in the dynamics of the system. To demonstrate the 

effectiveness of the proposed forecasting approach for subcritical flutter, the values of the 

coefficients in Eq. (3.14) are chosen as 𝑚¼ = −1.5,𝑚½ = 50, 𝑔¼ = 0, 𝑔½ = 0, and the system 

parameters are chosen as 𝑟£ = 0.7, 𝜔§X = 0.08, 𝑎¸ = −0.5, 𝑥£ = 0.25, 𝜇 = 100, 𝜁º = 𝜁£ = 0. 

Perturbations are applied to the system at 𝑈∗ =7.55, 7.50 and 7.45 in the pre-bifurcation regime. 

In this case, the system is perturbed with a large intensity, which induces larger perturbations 

enabling the proposed method to forecast a larger range of the bifurcation diagram.  

To forecast a bifurcation diagram, the dynamics in the pre-bifurcation regime are projected 

on the center space, and the forecasting method is employed. Results obtained for pitch and plunge 

displacements are shown in Fig. 3.15. The exact bifurcation diagrams contain unstable limit cycles. 

These limit cycles were obtained using a shooting method [92,93]. It can be observed that the 

bifurcation diagram for pitch is forecasted accurately. However, the bifurcation diagram forecasted 

for plunge has some error at large amplitudes.  

The error at large amplitudes is not large and can be further reduced by partitioning the 

inertial manifold in several regions and using separate projections based on modes determined by 

ERA in separate amplitude ranges. When the applied perturbations are large, the response of the 

system to the perturbations is large as well. Therefore, the forecasted large amplitudes of the 

bifurcation diagrams for some of the degrees of freedom may have errors, and a local modal 

decomposition can be used to improve forecasting accuracy. Here, three regions are considered 

(as shown in Fig. 3.6) based on the measured amplitudes of pitch and plunge. Using the forecasting 

method, the forecasted bifurcation diagram for plunge displacement is shown in Fig. 3.16. As the 
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results show, the post-bifurcation dynamics for plunge is forecasted accurately in this case. It can 

be observed also that the type of bifurcation is clearly predicted to be subcritical. This is an 

important advantage of the forecasting method because in the case of subcritical bifurcations the 

system stability will change dramatically, and that may result in system damage. Forecasting the 

critical points and the type of upcoming bifurcations is a significant result.  

 

Figure 3.15. Exact (-) and forecasted (•) bifurcation diagrams for pitch (left) and plunge (right) 
displacements in a subcritical case without partitioning the inertial manifold; blue and red lines show 
stable and unstable parts of the bifurcation diagrams, respectively 

 

 

Figure 3.16. Exact (-) and forecasted (•) bifurcation diagrams for plunge displacements in a subcritical 
case with partitioning the inertial manifold; blue and red lines show stable and unstable parts of the 
bifurcation diagram, respectively 
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3.4.3 Effects of measurement noise  

Measurement noise are an inseparable part of experiments. In this section, the accuracy of 

the forecasting method is examined in presence of measurement noise. In the case of supercritical 

bifurcations (e.g., the case where 𝑚¼ = 2, 𝑚½ = 0, 𝑔¼ = 0 and 𝑔½ = 0), 5% and 10% noise is 

added to the measurements, and the forecasting procedure is followed without noise filtering. 

Figure 3.17 shows the decaying function 𝑟(𝑡) computed for the pitch amplitude in the presence of 

10% measurement noise at 𝑈∗ = 7.55. To approximate the smooth decaying function from this 

noisy data, an approximation is used [3], where it is assumed that the recovery rate depends on the 

amplitude at a fixed bifurcation parameter as:  

𝜆 = _̇
_
= 𝜆n + 𝜆W𝑟 + 𝜆X𝑟X,  (3.23)  

where coefficients 𝜆q are constants chosen using optimization algorithm such that calculated 𝑟 − 𝑡 

solution of Eq. (3.23) best fits the data points available in the measured time history. Using this 

approach, a more precise approximation of recovery rate 𝜆 can be obtained, and a smooth decaying 

function is obtained as shown in Fig. 3.18. The approximation can be compared to the actual values 

(where there is no noise in the system), as shown in Fig. 3.18. As it can be observed, the results 

are very close to each other. Moreover, the decaying function obtained by simply connecting the 

local maxima of the noisy measurement is also shown in Fig. 3.18 to reveal that using only the 

local maxima for forecasting does not lead to accurate results in noisy measurements (in addition 

to the issues introduced by the low frequency oscillations discussed before).  

The forecasted bifurcation diagrams of the pitch displacement are shown in Fig. 3.19. The same 

procedure is followed for subcritical bifurcations, and results are presented in Fig. 3.20. All results 

are presented as mean values with standard deviation error bars obtained from 20 separate 

forecasts. It is observed that the results match very well the exact bifurcation diagrams.  
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Figure 3.17. Noisy decaying function of the pitch 
displacement in the presence of 10% measurement 
noise measured at 𝑈∗ = 7.55. 

Figure 3.18. Comparison of the approximated 
decaying functions from noisy measurements and 
the approximated function from noiseless 
measurements as reference. 

 

 

 

Figure 3.19. Exact and forecasted bifurcation diagrams for the pitch displacement in supercritical case 
and in presence of 5% (left) and 10% (right) measurement noise. Forecasted results are shown as mean 
values with standard deviation error bars obtained from 20 separate forecasts. 
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Figure 3.20. Exact and forecasted bifurcation diagrams for the pitch displacement in subcritical case and 
in presence of 5% (left) and 10%( right) measurement noise. Forecasted results are shown as mean values 
with standard deviation error bars obtained from 20 separate forecasts. 

 

3.5 Conclusions  

A novel forecasting method was presented to forecast Hopf bifurcations using measured 

system recoveries from perturbations only in the pre-bifurcation regime. The method is based on 

the critical slowing down phenomenon for oscillatory systems. A modal coordinate approach was 

introduced to extract smooth non-oscillating recovery of the system and the forecasting method 

was applied to this approximated recovery. The proposed technique can be used for forecasting 

bifurcations in large-dimensional systems and has high accuracy for forecasting bifurcations from 

large perturbations. Unlike previous approaches, the proposed method uses all measurements in 

oscillating recoveries (and not just local maxima) to find the recovery rate and forecast the 

bifurcation diagram. This ability results in higher accuracy in forecasting bifurcations when the 

system recovers to its stable state with low-frequency oscillations where the number of local 

maxima is not enough to have a good approximation for the recovery rate. Furthermore, this 

approach is more robust to measurement noise that affects especially the local maxima (peaks).  
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The method was applied to a nonlinear aeroelastic model in response to gust perturbations. 

Numerical simulations show that the method accurately predicts the bifurcation point and the post-

bifurcation dynamics in both supercritical and subcritical cases despite the fact that it uses only 

pre-bifurcation regime data and it does not use a model of the system. Since dramatic changes can 

occur in the system dynamics at bifurcations, predicting the bifurcation type (i.e., its supercritical 

or subcritical characteristics) without placing the system in the post-bifurcation regime is a notable 

advantage. This forecasting opens the door to a variety of applications where knowledge of nearby 

bifurcations is important for safety and maximum system performance.  
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Chapter 4  

Forecasting Critical Speed and Post-Critical Dynamics in Large Dimensional 

Fluid-Structural Systems 

4.1 Introduction 

A pervasive need for engineered systems when creating new designs is to improve the 

efficiency of existing systems while ensuring safety and reliability. Such new designs may be 

complex both in shape and dynamics, and often exhibit nonlinear behavior.  

Studying the dynamics of nonlinear structures is an important engineering topic because 

such systems can exhibit a wide variety of possible behaviors. Hence, the dynamic response of 

such systems needs to be accurately evaluated under different operational conditions. More 

specifically, it is important to study the dynamic stability of systems when some of their parameters 

are varied, and that includes the study of their bifurcations. Bifurcations occur in the dynamics of 

complex nonlinear systems and lead to different types of instability problems.  

There are many studies focused on analysis and identification of bifurcation diagrams in 

nonlinear systems. These methods apply to systems with a known model and vary from common 

time-marching [94,95], to normal forms and nonlinear normal modes [56,96], to multiple scales 

[54,97], and to harmonic balance [52,53], to name a few. Although these methods are well capable 

of identifying bifurcations and build their diagrams, they have drawbacks that make them difficult 

or impossible to use for a variety of large dimensional systems frequently encountered in real 

applications. First, these methods are model-based and creating an accurate model for the desired 

system can be infeasible or impractical especially when the system is exceedingly complex. 
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Second, even if a mathematical model is established, due to complex dynamics and nonlinearity, 

massive theoretical and numerical computations are required to analyze its dynamics. Furthermore, 

models may be incomplete or inaccurate due to assumptions and uncertainties as well as due to 

parameter variations over time, making the accurate representation of the system a challenge in 

itself.  

Similar to theoretical and computational methods, experimental methods to determine 

bifurcations and bifurcation diagrams of complex systems have their own challenges. For example, 

some methods are only capable of predicting the bifurcation point [98]. Other methods include 

nonlinear analysis and system identification [99,100], but they need large sets of data and have 

difficulties in identifying complex nonlinear system parameters. Other approaches include set-and-

observe methods [100], i.e. place the system in different operational conditions including the post-

bifurcation regime to construct the bifurcation diagram. However, this is not an easy task and may 

also result in the collapse of the system.  

Therefore, nonlinear analysis of large dimensional complex systems is still a unique 

challenge. To address this challenge and due to the importance of the topic, a new method of 

forecasting bifurcations has been introduced [8], and further developed [3] for large dimensional 

oscillatory systems. The approach is based on the phenomenon of critical slowing down which 

accompanies many bifurcation phenomena including flutter, i.e. when the systems is close to the 

bifurcations, perturbations lead to long transient oscillations before the system reach to its stable 

state. This approach is capable of forecasting not only the distance to bifurcations but also the 

dynamics of system in the post-bifurcation regime. The unique feature of the method is that it is 

model-less: no mathematical model of the system is required for forecasting. Hence, it is applicable 

to complex nonlinear systems where a model of the system is not available, or where analysis 
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would require massive computations. To forecast the bifurcation diagrams using this method, one 

measures several system responses to perturbations in the pre-bifurcation regime. As a result, the 

method is computationally efficient and is safe in real applications since the system is never placed 

in the potentially dangerous post-bifurcation regime. In those previous studies, the bifurcation 

forecasting method was applied to forecast bifurcation diagrams in a feedback controlled beam [8] 

and ecological systems [88]. These have a different physical behavior than oscillatory, aeroelastic 

systems. The forecasting method was developed further to be applied to systems exhibiting Hopf 

bifurcations [101,102]. Challenges related to oscillatory systems were addressed. For example, the 

co-existence of several active modes the measurements was addressed in [89,101], and the need 

for a precise approximation of the recovery rate of slow oscillatory systems where the number of 

local peaks is very small and not enough for an accurate forecasting was accounted for in [102].  

An important class of nonlinear complex engineering systems prone to subcritical and 

supercritical Hopf (flutter) bifurcations is the fluid-structural interaction [43,64–67]. These 

phenomena can cause dramatic changes in the system dynamics typically resulting in loss of 

performance is possible is total failure. Hence, one of the demanding topics of research in fluid-

structure interactions is determining the speed above which the system becomes linearly unstable, 

i.e. determining the flutter speed. Furthermore, identifying the flutter type (supercritical and 

subcritical) and the limit cycle amplitude beyond the flutter speed are also important especially 

when operating close to the linear flutter boundary.  

This research focuses on the forecast study to the problem of Hopf bifurcations in fluid-

structural systems. The bifurcation forecasting method is employed to forecast bifurcation 

diagrams of a complex large dimensional fluid-structural model. The method is applied to forecast 

the flutter speed and bifurcation diagrams of a cantilever flexible high aspect ratio wing as an 
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example of nonlinear large dimensional fluid-structural systems with complex fluid-structural 

interaction. The large dimensionality of the system causes modal interactions and allows for much 

more complex physical behaviors that those explored in [3,103]. Schematic of the forecasting 

approach is demonstrated in Fig. 4.1. The goal is to forecast the flutter speed and post-flutter 

dynamics of this large dimensional system using a few responses of the system to gust 

perturbations only in the pre-flutter regime.  

 

 

Figure 4.1. Schematic of the forecasting method for aeroelastic systems. Bifurcation diagrams are 
forecasted (black dots) by measuring a limited number of system responses to gust perturbations before 
the instability boundary.  

 

4.2 Forecasting methodology  

In this section, a bifurcation forecasting approach is introduced and adjusted to enable 

forecasting flutter bifurcations based on observations of the transient response of large-

dimensional fluid-structural systems in the pre-bifurcation regime. Here, only the main changes 
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made to previous approaches, and the main concepts and steps of the new forecasting method are 

described. 

In fluid-structural systems with Hopf (flutter) bifurcations, the system oscillates during its 

recovery in response to perturbations in the pre-bifurcation regime. Its recovery rate from 

perturbations depends on the distance to the bifurcation, i.e. the difference between the current 

flow speed and the flutter speed. When system approaches the bifurcation, transient oscillations 

last longer before the system reaches equilibrium, which means that the rate of recovery decreases. 

This phenomenon is known as critical slowing down (Fig. 4.2). The proposed method uses this 

phenomenon to identify the distance to the bifurcation.  

There are several requirements for the forecasting method to be accurate. A first 

requirement is that the system is close enough to the bifurcation as to exhibit measurable slowing 

down in its recoveries. Moreover, measurements containing identifiable parts are on the inertial 

manifold to ensure that changes in the recovery rates are due to the slowing down phenomenon. 

The inertial manifold is an invariant set where the dynamics is slowest in time and contains main 

features of the system. Thus, this manifold is the slowest, and if the system starts from a state in 

this set, it remains in that set at all times. A second requirement is that the system dynamics and 

its inertial manifold vary smoothly with the bifurcation parameter, which is the flow speed in the 

current study.  
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Figure 4.2. Schematic of the change in the rate of recovery from perturbations in a system approaching 
bifurcation; oscillations last longer when the system is closer to the flutter speed.  

 

For large dimensional nonlinear systems, there might be a large number of active spatial 

coherences (e.g., modes) in a measured recovery from perturbations. When flutter occurs, one pair 

of complex conjugate eigenvalues of the Jacobian of the dynamics (computed at the equilibrium 

state) moves to the right of the imaginary axis. This means that only one of the existing modes is 

involved in the instability, and the effect of other modes can be expressed as a function of this key 

mode thus being removed from the measurements to achieve maximum accuracy in forecasting. 

This is equivalent to requiring that the center space of the equilibrium at the bifurcation state is 

two-dimensional, and the coordinate of the mode involved in the bifurcation captures the entire 

dynamics near the bifurcation point.  

To filter out the effects of the modes not involved in the critical slowing down, two methods 

can be employed. The first method is to separate the bifurcating mode using frequency-filtering. 

In a measured recovery, one can consider the frequency of oscillations at the end of the signal as 

the frequency of the bifurcating mode. This idea comes from the fact that the system is close to 



 87 

the bifurcation and, hence, all modes but one are damped out at the end of the measurement. A 

band pass filter can be used to separate the desired frequency range from the measurements.  

The second method is to project the dynamics of the system onto the center space of its 

dynamics [103]. In Hopf bifurcations, the inertial manifold near flutter is a two-dimensional 

nonlinear manifold, and the corresponding center space is tangent to it. One can experimentally 

determine the center space basis from measurements and study the slowing down behavior for 

forecasting on this space when the system is close enough to the bifurcation.  

Although the frequency-filtering method is simpler, the center space projection method is 

more accurate when there are several modes with frequencies close to the frequency of the 

bifurcating mode. Details and a discussion of benefits and drawbacks of bifurcation forecasting 

using center space projection can be found in refs. [3,102].  

When a system oscillates during its recovery from perturbations, measurements are 

collected at different phases of the oscillation. As a result, the recovery rates (computed at each 

instant when measurements are collected) have different phases. They cannot be compared to each 

other unless the phase is known, which is difficult or impossible, depending on the available 

measurements. An alternative solution is to use a specific phase on the inertial manifold and 

forecast the bifurcation diagram for that phase. Since the inertial manifold is two-dimensional, 

choosing a specific phase on the inertial manifold means to construct a Poincaré section and reduce 

the system to a one-dimensional nonlinear map at each phase. To forecast the maximum amplitude 

of the limit cycles in the post-bifurcation regime, one has to choose local maxima of the measured 

system recoveries for forecasting.  

Consider a one-dimensional nonlinear system corresponding to a chosen fixed phase on 

the inertial manifold of a fluid-structural system prone to flutter. The flow speed 𝑉 is the 
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bifurcation parameter, and 𝑟 is the amplitude of the dynamics. This amplitude can be that of any 

state variable of the system. The rate of change of the amplitude can be written as  

�̇� = 𝑓(𝑉, 𝑟).  (4.1)  

In general, 𝑓 in Eq. (1) can be a complex function of the bifurcation parameter 𝑉. For simplicity, 

it is considered that the amplitude is measured with respect to equilibrium. Hence, 𝑟 = 0 is a stable 

state before the flutter point located at 𝑉 = 𝑉ö . Using a Taylor series with respect to the parameter 

(not with respect to the state) around the bifurcation point (𝑉 = 𝑉ö), and retaining the first three 

terms, the governing equation can be expressed as  

�̇� = 𝑟	(𝑝(𝑟) + 𝛼W(𝑟)	(𝑉 − 𝑉ö) + 𝛼X(𝑟)	(𝑉 − 𝑉ö)X) + 𝐻. 𝑂. 𝑇.,  (4.2)  

where 	𝑝(𝑟), 	𝛼W(𝑟) and 𝛼X(𝑟) are polynomial functions which are independent of the flow speed 

𝑉. Equation (4.2) considers the first three terms in the Taylor series. For the flow speeds close to 

the flutter speed in this study, a second-order polynomial dependence on the parameter as shown 

in Eq. (4.2) provides good accuracy, and higher order terms can be neglected. Nonetheless, one 

can use higher order terms (especially when the forecasting is used at flow speeds far from the 

flutter point).  

To characterize the recovery, we define the recovery rate as  

𝜆(𝑉, 𝑟) = \	]^	(_)
\`

= _̇
_
 .  (4.3)  

Therefore, Eq. (2) can be re-written as  

𝜆(𝜇, 𝑟) = 𝑝(𝑟) + 𝛼W(𝑟)(𝑉 − 𝑉ö) + 𝛼X(𝑟)(𝑉 − 𝑉ö)X.  (4.4)  

The recovery rate is computed at each amplitude 𝑟 using measured system recoveries. 

Forecasting is based on this computed recovery rate. At a fixed amplitude �̃�, the recovery rate 

decreases when the system approaches bifurcations. Similarly, at a fixed flow speed 𝑉, the smallest 

recovery rate corresponds to the amplitude which is closer to the actual bifurcation diagram.  
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To forecast the bifurcation diagram, system recoveries from perturbations at several 

different flow speeds 𝑉W, 𝑉X, …, 	𝑉i are measured. Note that the order of the polynomial in  

Eq. (4.4) used for approximating the recovery rate determines the minimum number of 

measurements required for forecasting the bifurcation diagram. In this study, a minimum of three 

measurements are needed, all in the pre-flutter regime.  

For a fixed amplitude 𝑟 = �̃�, one can compute 𝜆(𝑉j, �̃�), 𝑘 = 1,2,… , 𝑛 and use a second-

order approximation for the data collected in the 𝑉 − 𝜆(𝜇, �̃�) plane according to Eq. (4.4). The 

intersection of the fitted curve with the 𝑉 axis (𝑉 = 𝑉� ) corresponds to a zero recovery rate which 

is the forecasted flow speed for the chosen amplitude �̃� in the post-flutter regime. This process is 

repeated for several values of �̃� to forecast the bifurcation diagram at the chosen phase. The 

forecasting procedure is conceptually shown in Fig. 4.3.  

To increase the forecasting accuracy especially for low frequency oscillations, one can use 

methods such as nonlinear optimization [3] and center space reduction [102] to approximate the 

recovery rate more accurately. In this study, the nonlinear optimization approach is employed. In 

this method, the recovery rate is approximated in the following form  

𝜆 = _̇
_
= 𝜆n + 𝜆W𝑟 + ⋯+ 𝜆p𝑟p,  (4.5) 

where coefficients 𝜆q are constant coefficients. These coefficients are chosen using optimization 

such that the calculated 𝑟(𝑡) solution of Eq. (4.5) best fits the local maxima available from the 

measured time history. The idea behind this method is that a 𝑝th-order polynomial in the λ − 𝑟 

plane is sufficient to approximate recovery rate of systems with either supercritical or subcritical 

bifurcations. This approach gives a more accurate and smooth approximation of recovery rates 

than simply using discrete derivatives of local maxima. In this study, good accuracy is obtained 

when 𝑝 = 4 is selected. It is worth mentioning that in the presented forecasting method, there is 
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no assumption about the type of bifurcations a priori. The forecasting method can uncover 

bifurcation diagrams of both supercritical and subcritical bifurcations following exactly the same 

procedure.  

The method is applied to forecast the flutter speed and bifurcation diagram of an elastic 

high aspect ratio wing that has a complex dynamics caused by fluid-structure interactions and large 

elastic deformations. Instead of experimental measurements, surrogate time-series are used as 

input to the forecasting method. The surrogate data is obtained from simulation of the highly 

flexible wing formulation described below.  

 

 

Figure 4.3. Schematic of proposed forecasting method procedure: 1) System recoveries are measured 
after perturbations, and the recovery rate is estimated using nonlinear optimization for the local maxima 
of the measurements. 2) The estimated recovery rates for a fixed amplitude at each measured flow speed 
are analyzed. 3) The flow speed 𝑉�  where the recovery rate becomes 0 at amplitude �̃� is determined using 
a low order polynomial. 4) Steps 2 and 3 are repeated for several amplitude values �̃�, and the bifurcation 
diagram is constructed using the forecasted pairs of values (𝑉� ,�̃�).  
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4.3 Model formulations 

Modeling the interaction between structures undergoing large deflections and the flow 

requires a geometrically nonlinear formulation rather than a traditional linear one. Cesnik and co-

workers [104,105] have developed a nonlinear aeroelastic formulation coupled with the flight 

mechanics to perform simulations of very flexible aircraft in free flight. In this framework, the 

structure is based on a strain-based geometrically nonlinear beam finite element[106], allowed for 

fully coupled three-dimensional bending, twisting, and extensional deformations. A finite-state 

unsteady potential flow airloads model [107] with stall, compressibility, and tip effect corrections 

is integrated into the system equations. This whole formulation is implemented in Matlab and 

makes the so-called University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox 

(UM/NAST)[69,104]. An overview of the formulation implemented in UM/NAST is described 

below.  

Consider the body frame defined as wing right (+x), towards wing leading edge (+y) and 

normal to beam surface (+z) as shown in Fig. 4.4. 

 

Figure 4.4. Schematic of flexible wing, frames and coordinates used in the structural model include an 
inertial frame 𝐺, a body fixed frame 𝐵, and a local frame 𝑤.  
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Each beam element has three nodes with four degrees of freedom: extensional, twist and 

two orthogonal bending strains about the beam reference line. The strain vector within each beam 

element is assumed constant and is denoted by 

𝜀ù = ×𝜀²				𝜅²				𝜅û				𝜅ü	Ø
�
. (4.6) 

As shown in Fig. 4.4, the position and orientation of each point can be described by a position 

vector, namely 𝑝ý, and three directrix vectors, namely 𝑤², 𝑤û, 𝑤ü, resulting in 12 components. 

For a point at location s from the origin along the beam, one has: 

ℎ(𝑠) = ×𝑝ý(𝑠)				𝑤²(𝑠)				𝑤û(𝑠)				𝑤ü(𝑠)Ø
�
. (4.7) 

The rigid body motion of the body frame origin is described by the three linear and three angular 

velocities, denoted by 

𝛽 = [𝜈þ				𝜔þ]�. (4.8) 

Given nodal direction vectors (𝑤²,𝑤û,𝑤ü), the direction cosine matrix  from the local beam 

frame 𝑤 to the body frame B can be expressed as: 

𝐶𝐵𝑤 = [𝑤²			𝑤û			𝑤ü	] , (4.9) 

which implies that an arbitrary column vector {𝑢}ý expressed in the beam reference frame can be 

transformed to the body frame by: 

{𝑢}þ = 𝐶𝐵𝑤{𝑢}ý	. (4.10) 

The position and orientation ℎ(𝑠) can be recovered from the strain 𝜀ù and boundary condition ℎn 

using the kinematic relationship  

ℎ(𝑠) = 𝑒#($c$0)ℎn = 𝑒Â($)ℎn	, (4.11) 

BwC
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where 

 

(4.12) 

Nodal displacement can then be computed by marching Eq. (4.11) from root to tip between 

connecting beam elements.  

To model unsteady aerodynamic loads, a 2-D finite state aerodynamic theory is used [107]. 

The theory is developed for calculating aerodynamic loads on a two-dimensional thin airfoil with 

large motions in inviscid and incompressible flow. The aerodynamic lift, moment and drag of a 

thin airfoil about its aerodynamics center can be written as  

𝐿 T = 𝜋𝜌𝑏TX(−�̈� + �̇��̇� − 𝑑�̈�) + 𝑐�£𝜌𝑏T�̇�X %−
ü̇
û̇
+ (0.5𝑏T − 𝑑)

£̇
û̇
− ï&

û̇
	'	,  

𝑀 T = 𝜋𝜌𝑏T¼ %−
W
X
�̈� − �̇��̇� − ©¹(

Å
− \

X
ª �̈�	'+ 2𝜌𝑐tn𝑏TX�̇�X,  

𝑑 T = −𝜌𝑐\n𝑏T�̇�X,  

(4.13) 

where 𝑏T is semi-chord, 𝑑 is the distance between the mid-chord and the reference axis, 𝑐tn and 

𝑐\n are moment and drag coefficient of zero angle of attack, respectively, and 𝑐�£ is the lift curve 

slope. Moreover, �̇� and �̇� are the velocity components along and perpendicular to the chord, 

respectively, and 𝛼 is the angle of attack.  

The inflow velocity parameter is given by 

𝜆n =
W
X
	∑ 𝑏i𝜆i*

i+W ,  (4.14) 

where the 𝑏i coefficients are given in ref. [107], and inflow states 𝜆i can be obtained using the 

following final form of the differential equation:  

�̇� = 𝐹W -
𝜀̈
�̇�.+ 𝐹X -

𝜀̇
𝛽.+ 𝐹¼𝜆,  (4.15) 
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Where the 𝐹qs are influence matrices [104].  

Finally, to obtain the elastic equations of motion, the principle of virtual work is used. The 

virtual work of the system consists of the effect of inertial forces, internal strains and strain rates, 

and external loads. The structure is divided into several elements with length 𝑑𝑠, and the virtual 

work is computed for each element. Summing up the internal and external work of all elements 

results in the following elastic equations of motion [104]  

/𝑀öö(𝜀) 𝑀öþ(𝜀)
𝑀þö(𝜀) 𝑀þþ(𝜀)

0 -𝜀̈�̇�.+ /
𝐶öö(𝜀, 𝜀,̇ 𝛽) 𝐶öþ(𝜀, 𝜀,̇ 𝛽)
𝐶þö(𝜀, 𝜀,̇ 𝛽) 𝐶þþ(𝜀, 𝜀,̇ 𝛽)

0 -𝜀̇𝛽.+ %
𝐾öö 0
0 0' 1

𝜀
𝑏2 

= 3𝑅ö(𝜀, 𝜀,̇ 𝜀̈, 𝛽, �̇�, 𝜆, 𝜁,𝑢)
𝑅þ(𝜀, 𝜀,̇ 𝜀̈, 𝛽, �̇�, 𝜆, 𝜁, 𝑢)

5	, 

(4.16) 

where the attitude is defined by a set of quaternions,  𝜁 = [𝜁n, 𝜁W, 𝜁X, 𝜁¼]�, which relates rotation from 

the inertial frame to the body frame. The quaternion 𝜁 is governed by [104] : 

𝜁̇ = − W
X
𝛺¤(𝛽)𝜁, (4.17) 

and the propagation of the body reference system by: 

�̇�þ = [𝐶Âþ(𝜁)			0]	𝛽. (4.18) 

The matrices 𝛺¤(𝛽) and 𝐶Âþ(𝜁) in Eqs. (4.17) and (4.18) are body rotations about the reference 

frame and reference coordinate transformation matrix, respectively, which are defined in ref. 

[104].  

The set of equations are integrated numerically to obtain the vehicle response. The 

UM/NAST framework is used as the source for surrogate measurements required for the proposed 

forecasting method. It is worth recalling that the mathematical model is not needed for the 

forecasting method. The only input to the algorithm is the transient time data measured from 

sensors (or surrogate data from numerical simulations). Hence, the actual model introduced in this 
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section is used only for generating surrogate measurement data to demonstrate the forecasting 

method.  

 

4.4 Forecasting bifurcation diagrams of a flexible high-aspect-ratio cantilever wing 

In this section, the proposed approach is used to forecast the flutter speed and the 

bifurcation diagrams of a very flexible high-aspect-ratio cantilever wing modeled using the 

formulation in Sec. 4.3. The geometric and structural properties of the wing are provided in  

Table 4.1. 

Table 4.1: Geometric and structural properties of the high-aspect-ratio wing  

Semi-Span  16 m 
Chord (c) 1 m 

Root Angle of Attack  2 deg 
Airfoil  Thin plate 

Number of Inflow States per Strip 6 
Beam Reference Axis  0.5 c 

Center of Gravity  0.5 c 
Mass / Span 0.75kg/m  

Cross-Section Mass Moment of Inertia about y-axis (Iyy) 0.05 kg m  
Cross-Section Mass Moment of Inertia about z-axis (Izz) 0.05 kg m  

Torsional Stiffness (GJ)  3 105 Nm2 
Bending Stiffness about y-axis (EI8)  6 105 Nm2 
Bending Stiffness about z-axis (EI9)  1.5 108 Nm2 

Stiffness Proportional Damping Factor 2.21 10-6 
 

The material of the structure is linear, but its elastic deformation is large because of the 

high aspect ratio. Hence, the study of this nonlinear large-dimensional system using traditional 

methods offers unique challenges. In contrast, using the bifurcation forecasting approach for this 

system can dramatically reduce the efforts required for its comprehensive nonlinear stability 

analysis  
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To forecast flutter, system responses to perturbations are measured at several flow speeds 

in the pre-flutter regime. Surrogate measurements are generated using the proposed formulations 

in the previous section as input to the forecasting method. Specifically, three flow speeds of  

123 m/s, 125 m/s and 127 m/s were chosen. This is the minimum number of required measurements 

for forecasting. At each flow speed, the static aeroelastic equilibrium for the wing at 2-deg root 

angle of attack resulting from the applied aerodynamic forces is obtained (which in this example 

was computed using a quasi-static solution process [104]). Figure 4.5 schematically shows the 

static equilibrium position of the wing obtained from quasi-static solution at 125 m/s flow speed.  

 

 

Figure 4.5. Schematic of the equilibrium position of the wing at 125m/s flow speed and 2-deg root 
angle of attack. The position of a point on the beam reference axis at the wing tip is shown before and 
after the deformation of the wing due to aerodynamic forces.  

 

Next, perturbations are applied to the system to measure recoveries required for 

forecasting. In general, perturbations can be of any type. In this study, we use “1-cos” type gusts. 

The applied gust has a maximum vertical amplitude of 40 m/s and a period of 0.06 s (as shown in 

Fig. 4.6), and acts on the entire wingspan. After the gust passes, the wing starts to recover from 

the disturbance caused by the gust. At each flow speed, the response of the system after the gust 

encounters is recorded along the three directions at several points along the span. As an example, 

the recorded gust response of the wing tip in the horizontal (𝑦) and vertical (𝑧) directions at the 
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flow speed of 125 m/s are shown in Fig. 4.7. These data and similar measurements recorded at 

several flow speeds in the pre-flutter regime are used as inputs to forecast the flutter speed and the 

bifurcation diagram. It is worth recalling that the proposed forecasting approach is model-less, and 

hence the system model is used only for generating surrogate measurements.  

 

 

Figure 4.6. Variation of gust speed with time  

 

  

     (a)          (b)  

Figure 4.7. System recoveries from perturbations at 125 m/s in (a) y direction and (b) z direction, 
recorded for a point at the wing tip.  
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Since the system has many degrees of freedom, there exist many possible active modes in the 

recoveries, while only one of them is involved in the flutter phenomenon. The filtered 

measurements containing the separated bifurcating mode are shown in Fig. 4.8.  

  

    (a)      (b)  

Figure 4.8. System recoveries filtered to separate the effects of the bifurcating mode from measurements. 
Same recoveries are used as those shown in Fig. 4.7. Envelope lines approximate the decay function of 
local maxima. 

 

To build the bifurcation diagram of limit cycle amplitudes, local maxima of the filtered 

signals are used. To ensure that the data used for forecasting are on the inertial manifold, the first 

second of measurements is not used. Bifurcation diagrams of the wing in each direction and for 

each point along the span can be forecasted separately. Following the forecasting procedure, curves 

of recovery rate of local maxima of 𝑦 displacement for the wing tip are computed and shown in 

Fig. 4.9. Using these curves together with Eq. (4.4), 𝜆 − 𝑉 curves are obtained for each amplitude 

as shown in Fig. 4.10. The intersection of each curve with the 𝑉-axis corresponds to a zero recovery 

rate, which is the forecasted flow speed in the post-flutter regime for the chosen amplitude. A 

similar procedure can be followed for negative peaks of measured recovery to forecast the lower 

branch of the bifurcation diagram when signals are asymmetric. Following this approach for 
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several amplitudes, the bifurcation diagram is constructed as shown in Fig. 4.11(a). Bifurcation 

diagrams show maximum amplitudes of limit cycle oscillations measured from mean position of 

the oscillations as function of flow speeds. Similarly, the bifurcation diagram for the wing tip 

deflection in the 𝑧 direction is forecasted and shown in Fig. 4.11(b).  

Fully-nonlinear aeroelastic simulations were conducted at given post-flutter speeds to 

obtain the reference limit cycle amplitudes. They are shown in Figs. 4.11(a) and 4.11(b) using 

solid circles and they are compared with the forecasted curves. To find the reference limit cycle 

amplitudes, time-marching is used to solve the equations of motion detailed in Sec. 4.3. To that 

aim, the system is perturbed at the corresponding post-flutter speed, and the model equations time 

marched until the oscillations converge to the stable limit cycle.  

  
Figure 4.9. Recovery rate variation with amplitude 
for the horizontal (𝑦) displacement of the wing tip 
at different air speeds.  

Figure 4.10. Second-order approximation in the 
𝜆 − 𝑉 plane for several horizontal (𝑦) 
displacement amplitudes of the wing tip. Each 
curve corresponds to a different amplitude. 
Symbols (•) show recovery rates shown in Fig. 22.  
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(a)  (b)  
Figure 4.11. Bifurcation diagrams for (a) the horizontal (𝑦) displacement and (b) the vertical (𝑧) 
displacement of the wing tip. Solid lines are forecasted results corresponding to the limit cycle amplitudes 
in the post-flutter regime, while dashed lines are unstable fixed points in the post-flutter regime. Symbols 
(•) are reference limit cycle amplitudes computed by direct nonlinear time-marching solutions.  

 

 

  

(a)  (b)  
Figure 4.12. Bifurcation diagrams for (a) the horizontal (𝑦) displacement and (b) the vertical (𝑧) 
displacement of a point at a distance of 4 m from the tip. Solid lines are forecasted bifurcation results 
corresponding to the limit cycle amplitudes in the post-flutter regime, while dashed lines are unstable 
fixed points in the post-flutter regime. Symbols (•) are reference limit cycle amplitudes computed by 
direct nonlinear time-marching solutions.   
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Using the same forecasting procedure, bifurcation values for other points along the span 

can be obtained. As another example, bifurcation diagrams of a point on the wing reference axis 

at a distance of 4 m from the tip are shown in Fig. 4.12. According to the forecasted bifurcation 

diagrams (Figs. 4.11 and 4.12), flutter is expected to occur at the speed of 128.7 m/s. Furthermore, 

flutter is forecasted to be supercritical. Results show that the method can effectively forecast the 

bifurcation diagrams of the system.  

Note that since local maxima of measurements are used for forecasting, the forecasted 

bifurcation diagrams correspond to local maxima of limit cycle oscillations (limit cycle 

amplitudes) in the post-flutter regime. These bifurcation diagrams correspond to a fixed phase of 

the spiral trajectory on the two-dimensional inertial manifold (that is the phase where the post-

flutter limit cycles exhibit their local maxima) in the 𝑦 or 𝑧 directions. This phase corresponds to 

states where velocities �̇� and �̇� are zero. Since the inertial manifold changes little with the flow 

speed near the bifurcation, it is expected that the amplitudes of the post-flutter limit cycles occur 

at approximately the same phase.  

Bifurcation diagrams can be forecasted for any other system states using the same 

approach. For example, identifying maximum velocities of points along the wingspan in the post-

flutter regime is also of importance. Following the same forecasting procedure, the velocity of the 

tip in the 𝑦 and 𝑧 directions at flow speeds of 123 m/s, 125 m/s and 127 m/s are recorded. The 

bifurcation diagrams of maximum velocities are forecasted using the forecasting method and 

shown in Fig. 4.13.  
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(a)  (b)  
Figure 4.13. Bifurcation diagrams for (a) the horizontal velocity (�̇�) and (b) the vertical velocity (�̇�) of 
the wing tip. Solid lines are forecasted results corresponding to the limit cycle amplitudes in the post-
flutter regime, while dashed lines are unstable fixed points in the post-flutter regime. Symbols (•) are 
reference limit cycle amplitudes computed by direct nonlinear time-marching solutions.   

 

To gain better insight into the usefulness of the proposed approach, forecasted bifurcation 

diagrams are shown in the form of three-dimensional plots in the 	𝑉 − 𝑦 − �̇� space and separately 

the 𝑉 − 	𝑧 − �̇� space in Fig. 4.14. Since for flutter the inertial manifold is generally two-

dimensional, choosing any two independent coordinates on this manifold would determine the 

dynamics of the system and the bifurcation diagram can be constructed. As it can be observed in 

Fig. 4.14, forecasted diagrams are the maximum displacement and velocity amplitudes of limit 

cycles corresponding to the local maxima (peaks) in the time series.  

Note  that to forecast other bifurcation diagrams for any point on the wing, and for any 

desired state such as displacement or velocity, it is not required to perturb the system separately. 

It is sufficient to perturb the system at few flow speeds, and record the displacements and velocities 

of all desired degrees of freedom in response to a disturbance. Hence, a comprehensive nonlinear 

analysis for the entire system is possible measuring only three system recoveries from 

perturbations.  
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(a)  (b)  
Figure 4.14. Three-dimensional view of bifurcation diagrams of a point on the wing tip (a) in the 𝑉 −
	𝑦 − �̇� space, and (b) in the 𝑉 − 	𝑧 − �̇� space. Thick lines are forecasted bifurcation diagrams, and thin 
lines made of small circles are reference limit cycle results obtained from the nonlinear time-marching 
solution.  

 

When measurements are contaminated by noise, the forecasting accuracy is expected to 

decrease. Noise with higher intensity makes it difficult to estimate the recovery rates and as a 

result, the forecasting accuracy is decreased. In such cases, the number of measurements may be 

increased to enhance accuracy. To investigate the effect of noise on the forecasting results, 2% and 

5% white noise is added to the measurements, and the forecasting procedure is followed without 

any noise filtering. Figures 4.15 and 4.16 show the forecasting results for the wingtip in horizontal 

(y) and vertical (z) directions. All results are presented as mean values and standard deviation error 

bars obtained from 20 separate forecasts. Results show that increasing the noise intensity leads to 

larger variations in the forecasting results. Thus, forecasting using only one set of measurements 

is not accurate especially when the noise intensity is high. Therefore, more measurements are 

required to increase the forecasting accuracy. 
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Figure 4.15. Bifurcation diagrams for the horizontal (𝑦) displacement of the wing tip in presence of 2% 
(left) and 5% (right) measurement noise. Forecasted results are shown as mean values with standard 
deviation error bars obtained from 20 separate forecasts. The mean values are connected by solid (blue) 
lines. Symbols (•) show the exact maximum limit cycle amplitudes computed by nonlinear time-
marching solutions. 

 

  

Figure 4.16. Bifurcation diagrams for the vertical (𝑧) displacement of the wing tip in presence of 2% 
(left) and 5% (right) measurement noise. Forecasted results are shown as mean values with standard 
deviation error bars obtained from 20 separate forecasts. The mean values are connected by solid (blue) 
lines. Symbols (•) show the exact maximum limit cycle amplitudes computed by nonlinear time-
marching solutions. 

 

 
4.5 Discussions and conclusions  

A novel bifurcation forecasting approach was employed to obtain the flutter speed and 

post-bifurcation limit cycle behavior of fluid-structural systems, exemplified by a flexible high-

aspect-ratio wing. The forecasting method uses the fact that in Hopf bifurcations, the rate of the 
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system’s recovery from perturbations decreases as the system approaches the bifurcations, known 

as the critical slowing down phenomenon. To forecast the bifurcation diagrams, the only required 

measurements are the system response to perturbations in the pre-bifurcation regime. More 

importantly, the method is model-less and is applicable for complex large dimensional systems 

where extracting a model for the system is difficult or impossible.  

Using the forecasting method, bifurcation diagrams for displacements and velocities of 

points along the wingspan were obtained. Surrogate data was used instead of experimental data, 

obtained from numerical simulation using an efficient geometrically nonlinear aeroelastic solver 

(UM/NAST). Gust disturbances were applied to the wing to create perturbations to the system to 

reflect practical excitation situations. Results show that the method successfully forecasts the 

flutter speed and the post-flutter dynamics of the considered large dimensional fluid-structural 

system despite the fact that it uses only pre-bifurcation regime data and it does not use a model of 

the system.  

Valuable information can be extracted from the forecasted bifurcation diagrams that can 

be of importance for design and safety purposes. First, the flutter speed, which defines the stability 

boundary, is forecasted. Furthermore, the flutter type can also be forecasted. The effect of noise 

on the forecasting results was also investigated. It was observed that when measurements are 

contaminated by noise, the forecasting accuracy is decreased. The forecasting accuracy can be 

enhanced by increasing the number of measurements depending on the level of noise and the level 

of desired accuracy.   

The forecasted bifurcation diagrams predict the amplitudes of limit cycle oscillations in the 

post-flutter regime. Maximum displacements around the mean position as well as maximum 

velocity of points along the wingspan are forecasted in different directions and at different flow 
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speeds of the post-flutter regime. It is worth noting that all bifurcation diagrams were forecasted 

using only three measurements of the system response to perturbations. This type of forecasting 

opens the door to linear and nonlinear dynamical analysis of complex systems, in both theoretical 

and experimental problems, and is important in safety analysis of complex systems. 

It is worth mentioning that despite the advantages of the proposed method, there are situations 

when the forecasting method does not have enough accuracy. The main assumption in the proposed 

forecasting method is that the system exhibits a slowing down and is close enough to the 

bifurcation for the slowing down to be observable its recoveries. However, critical slowing down 

does not exist in all types of bifurcations. For example, systems undergoing period doubling cannot 

be forecasted using the proposed approach. Moreover, for systems which do exhibit slowing down, 

the region where the system exhibits a slowing down varies from system to system and is not 

generally known a priori. There are examples of systems which do not exhibit a measurable 

slowing down until parameters are significantly close to the instability boundary. In aeroelastic 

systems, for example, there are cases where the linear eigenvalues of the system do not show any 

decreasing trend (slowing down) unless the air speed is significantly close to the flutter speed when 

a sharp decrease is observed in one of the eigenvalues. Hence, in order for the forecasting method 

to work, measurements need to be available in a narrow parameter regime where slowing down is 

observed, which is a challenging task especially in experimental systems due to presence of noise 

and uncertainties.  
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Chapter 5  

Forecasting the onset of traffic congestions on circular roads 

 

5.1  Introduction  

Ground car traffic jams are a serious issue which can cause significant economic and 

environmental problems. Hence, the study of complex nonlinear dynamics in traffic have attracted 

a wide interest for decades [108–113]. The ultimate goal of these studies is to alleviate and prevent 

traffic jams. Interactions among cars lead to the formation of a nonlinear system which experiences 

complex dynamics. Mathematical modeling of the complex traffic flow dynamics has a long 

tradition. Various approaches have been presented to model the complex dynamics of vehicular 

dynamics and traffic phenomenon [114–116]. Taking advantage of developed models, numerous 

efforts have been devoted to stability analysis of the equations governing the flow to identify the 

onset and type of traffic jams on a road [117–119]. Previous studies have shown that traffic jams 

is the result of a bifurcation where the traffic dynamics loses stability once passing a tipping point 

[117,120]. The stability of traffic models and the bifurcation diagram revealing the system 

dynamics after passing the tipping point can be investigated using linear and nonlinear stability 

analysis techniques, provided that accurate models of the system are available [120–124]. 

However, traffic jams are fundamentally affected by a variety of factors, from driver behavior to 

weather, which are hard to model [120]. As a result, accurate models are very difficult to obtain.  

Recently, novel techniques have been developed in complex systems theory to enable forecasting 

the emergent behavior in nonlinear systems. In this work we discuss how to use such techniques 
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to forecast the onset of traffic jams in vehicular traffic flow systems. A great advantage of these 

methods is their model-less feature. One only needs to monitor system behavior in pre-transition 

(stable) regime to identify how close the system is to an instability (i.e., close to a traffic jam). 

These methods can be classified into two groups: (a) stochastic methods, also referred to as early 

warning indicators/signals, and (b) bifurcation forecasting methods. All these methods rely on 

critical slowing down, i.e., the fact that, as the system approaches a bifurcation, perturbations to 

the dynamics lead to ever longer transient recoveries to the equilibrium position. The consequence 

of the critical slowing down in stochastic systems is an increased in variance and autocorrelation, 

and the appearance of flickering [2,11,28,35]. Such features observed in recoveries in the vicinity 

of several types of bifurcations are used in early warning indicators/signals. Using these methods, 

one can forecast that the system is approaching a tipping point; however, the distance to the 

instability is not identifiable. Bifurcation forecasting methods, however, are able to forecast both 

the distance to the bifurcation and a portion of the bifurcation diagram, provided that large enough 

perturbations are applied to the system [3,8,84,88,125–127]. These methods use measured 

recovery rates of system from perturbations in the pre-bifurcation regime for forecasting.  

In this research, we examine the application of early waning indicators/signals and 

bifurcation forecasting methods to predict traffic jams on a circular road. To generate surrogate 

measurements of the system, microscopic modeling of traffic flow is employed. The required 

measurements for forecasting is the relative distance (headway) between two or more cars on the 

road. Results show that traffic jams are forecasted successfully. Therefore, model-less forecasting 

approaches are highly advantageous because traffic flows are complex and mathematical models 

capable of capturing their complete dynamics are not available generally.  
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5.2 Forecasting Methods  

In the following, two main approaches of forecasting tipping points in complex systems 

are introduced; however, the main focus of this study is on bifurcation forecasting methods. These 

methods are employed to forecast traffic jams in car-following model in section 4.  

5.2.1 Early warning indictors/signals  

Early warning indicators are statistical indicators which reveal proximity to a tipping point. 

These methods are applicable to systems with small fluctuations around their equilibrium state 

resulting from stochastic perturbations. As a system approaches a bifurcation which exhibits 

critical slowing down, the rate of recovery of the system from perturbations decreases and the time 

required for the system to return to its equilibrium state increases. Thus, the system becomes more 

correlated with its past, which leads to an increase in autocorrelation. Furthermore, perturbations 

can accumulate, which leads to an increase in the size of the fluctuations and as a result, an increase 

in variance [11]. The increase in the value of early warning indicators may be detected sometimes 

well before a tipping point. In particular, an increase in variance and autocorrelation of fluctuations 

of the system has been well studied and observed in numerous theoretical and experimental 

complex systems [11],[16,36,128,129]. Figure 5.1 schematically shows the variation in an early 

warning indicator as a system approaches a saddle-node or Hopf bifurcation. Several other 

indicators have been explored as early warning signals such as the noise-induced spectrum [37], 

the skewness of the probability distribution [30], and the flickering between basins of attraction 

before bifurcations [38] (see also [2] for a review). In this work we focus only on the variance and 

autocorrelation as these are the most widely used indicators in the literature. 

 



 110 

 
Figure 5.1. Schematic of the variation of early warning signals as the system approaches a saddle-node 
or a Hopf bifurcation.  

 

5.2.2 Bifurcation forecasting methods  

Distinct from stochastic methods, bifurcation forecasting methods can forecast both the 

critical point (i.e., the distance to the tipping point in the parameter space) and the post-critical 

dynamics in nonlinear systems [8,84], i.e. the bifurcation diagram. Unlike early warning 

indicators, this group of methods use recoveries from large perturbations at several parameter 

values for forecasting (Fig. 5.2).  
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Figure 5.2. Schematic of the bifurcation forecasting method. System measurements before the critical 
point are employed to forecast the bifurcation diagram.  

 

For clarity, consider the simplest case of a co-dimension-one bifurcation of a one-dimensional 

nonlinear system given by  

�̇� = 𝑓(𝜇, 𝑟),  (5.1)  

where 𝜇 is the parameter, and 𝑟 is the amplitude. Assume that the system has an tipping point at a 

parameter value 𝜇 = 𝜇T. If the system is operating close to this tipping point, Eq. (5.1) can be 

expanded using a Taylor series approximation with respect to the parameter around 𝜇 = 𝜇T  

�̇� = 𝑟[𝑝(𝑟) + 𝛼W(𝑟)(𝜇 − 𝜇T) + 𝛼X(𝑟)(𝜇 − 𝜇T)X + 𝐻.𝑂. 𝑇. ],  (5.2)  

where 	𝑝(𝑟), 	𝛼W(𝑟) and 𝛼X(𝑟) are polynomial functions independent of the parameter 𝜇. The order 

of the polynomial in Eq. (5.2) depends on the number of parameter values at which measurements 

are available. In many cases, using a first or second order approximation leads to acceptable results.  

From Eq. (5.2), we define recovery rate at each amplitude as  

𝜆(𝜇, 𝑟) = _̇
_
= ]^	(_:b;:)c]^	(_:d;:)

Xe`
	,  (5.3)  
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which can be approximated using measurements of the system recovery from perturbations. The 

rate of recovery can be used as an indicator, and is correlated to the distance to the bifurcation. At 

a fixed amplitude �̃�, the recovery rate decreases when the system approaches the bifurcation, and 

is zero when the system is at the equilibrium state . This fact is used to forecast bifurcation diagram 

of the system (Fig. 5.3).  

In this forecasting approach, system recoveries from perturbations at several different 

parameter values 𝜇W, 𝜇X, …, 	𝜇i are measured. The recovery rate is computed at a fixed amplitude 

�̃� and using different set of measurements, i.e. 𝜆(𝜇j, �̃�), 𝑘 = 1,2,… , 𝑛. Data in the 𝜇 − 𝜆(𝜇, �̃�) 

plane are approximated using a low order polynomial to identify the parameter 𝜇 = 𝜇m at which the 

recovery rate is zero. 𝜇m is the forecasted parameter on the bifurcation diagram for the chosen 

amplitude �̃�. This process is repeated for all amplitudes measured in the recovery rate to forecast 

the complete bifurcation diagram of system (Fig. 5.3).  

In a car-following model, the traffic flow system undergoes a Hopf bifurcation from 

microscopic point of view meaning that cars experience stop-and-go traffic once the car density 

reaches a critical value 𝜇T. If one measures the headway between two consecutive cars after a 

perturbation, one obtains a recovery which decays with oscillations to an equilibrium state (Fig. 

5.3(a)). Therefore, the slow manifold of the dynamics is two-dimensional while the described 

forecasting method considers a system with a one-dimensional manifold. Thus, we choose local 

maxima/minima of the measured system recovery for forecasting. This reduces the system to one-

dimension, and the forecasting method can be employed to forecast the maximum/minimum 

amplitudes of limit cycle oscillations after the critical point [3,102,130]. Hence, the bifurcation 

diagram of the system can be forecasted.  
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The main advantage of the bifurcation forecasting methods is their ability to forecast the 

distance to the tipping point and also the bifurcation diagram. However, these methods are not 

applicable to cases where perturbations are very small and stochastic. Instead, early warning 

indicators are best suited when the system is highly stochastic with small fluctuations around its 

equilibrium.  

 

Figure 5.3. Procedure to forecast the bifurcation diagram of limit cycle amplitudes: (a) measure the 
system response to perturbations at several parameter values, (b) approximate the recovery rate of local 
maxima (minima) from time series measurements, (c) identify the parameter value 𝜇m at which the 
recovery rate for a specific amplitude �̃� is zero, (d) repeat steps (b) and (c) for several amplitude values 
�̃�, and construct the bifurcation diagram using the pairs of values (𝜇m,�̃�).  

 

5.3 Model formulations  

The focus in this section is on the general formulation of a microscopic car-following-

model. The simulation results of this model are used as surrogate measurements in the forecasting 

algorithms.  

Consider a system of 𝑁 cars moving on a circular road of length 𝐿�  as shown in Fig. 5.4. 

Cars are labeled by 𝑖 = 1,… ,𝑁. Specifying an arbitrary origin on the ring, the equation of motion 

of each car can be written as  

𝑥m̈q =
W
m<
r𝑉�qrℎ�qs − 𝑥ṁqs, 𝑖 = 1,2,… , 𝑁  (5.4)  
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where 𝑥q denotes the position of the ith car, and an overdot represents the time derivative. ℎ�q is the 

headway defined as the bumper-to-bumper distance between the ith and the i + 1st cars, i.e. 

 ℎ�q = 𝑥mqgW − 𝑥mq. Constant �̃�q represents the reaction time of the ith driver. Function V is the so-

called optimal velocity function (OVF) which depends on the headway and satisfies some special 

properties [35]. In this study, all drivers are assumed identical, and therefore �̃�q = �̃� and 𝑉�q = 𝑉�  for 

𝑖 = 1,2,… ,𝑁. Equation (4) is a set of coupled ordinary differential equations, but despite its 

simplicity, it can reproduce the dynamics involved in traffic jams [111,117].  

 
Figure 5.4. Schematic of cars flowing on a circular road.  

 

Equation (5.4) can be non-dimensionalized defining the following variables [117]  

𝑥q =
²m<
 

 , 𝜏q =
m<
m
 , 𝑡 = À

m
 , 𝐿 = À�

 
, 𝑉q(𝑥) =

m
 
𝑉�q(𝑎𝑥m)  (5.5) 

where 𝑎 is an arbitrary length value, e.g. length of a car. With these new variable, Eq. (5.4) can be 

written in state space form as  

3
�̇�q = 𝑦q
�̇�q =

W

[𝑉(ℎq) − 𝑦q]

 , 𝑖 = 1,2, … ,𝑁,  (5.6) 

where ℎ* = 𝑥W − 𝑥* + 𝐿.  
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The OVF is the source of nonlinearity and there have been various forms proposed for this function 

[117,131–134]. In this study, we choose the following function [117]:  

𝑉(ℎ) = 𝑣t ²
¸´

Wg¸´
 .  (5.7) 

Equation (5.7) possesses a solution 𝑥q∗(𝑡) where all cars have the same velocity 𝑣∗, constant over 

time. This uniform flow equilibrium, called quasi-stationary equilibrium, is expressed as  

ℎq = ℎ∗ = 𝐿 𝑁⁄ ,			𝑣q(𝑡) = 𝑣∗ = 𝑉(ℎ∗)	.		 (5.8) 

Performing a linear stability analysis of the system around this quasi-stationary equilibrium, one 

obtains the following characteristics equation [117]  

(𝜆X + 𝜆 + 𝛽)* − 𝛽* = 0,  (5.9) 

where 𝛽 = 𝑉′(ℎ∗), 𝑉C = \D
\¸

, and 𝜆 is the eigenvalue of the linearized system. Considering the 

critical eigenvalues 𝜆(ℎT_∗ ) = ±𝑖𝜔, we can obtain the stability curves  

𝑉jC(ℎT_∗ ) =
W

WgEFG	(´HIJ )
  , 𝑘 = 1, 2, … ,*cW

X
  (5.10) 

The couple of complex conjugate eigenvalues that first cross the stability boundary correspond to 

𝑘 = 1. This corresponds to the emergence of a stop-and-go traffic jam which we wish to predict.  

Figure 5.5 schematically shows 𝑉′ versus 𝑦 = 𝐿/𝑁. Based on common assumptions made for 

OVFs, 𝑉′ is generally a bell-shaped function. If 𝑉t ²C < W
WgEFG	(´HJ )

, there is no solution for Eq. 

(5.10), and the system is always stable (i.e., no traffic jam occurs). However, if 𝑉t ²C > W
WgEFG	(´HJ )

, 

there exist two critical values 𝑦W and 𝑦X. The system is stable when 𝑦 < 𝑦W	 or 𝑦 > 𝑦X, and is 

unstable otherwise. These critical values correspond to critical car densities on the road 𝜌W = 1/𝑦W 

and 𝜌X = 1/𝑦X. Traffic jam emerge when the density of cars on the road hits one of the boundaries 

𝜌W or 𝜌X. One can assume a road on which the number of cars (and therefore the density) is 
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gradually increasing, and at some point, a traffic jam emerges on the road.  

The stability of the system can be explored in the 𝑁 − 𝐿 plane as shown in Fig. 5.6 for the OVF 

given by Eq. (5.7) with 𝑣t ² = 0.9. This diagram shows where the system loses its linear stability 

and traffic jams occur. In addition, a nonlinear analysis can show that the system undergoes 

supercritical/subcritical Hopf bifurcations depending on the system parameters.  

The bifurcation parameter can be chosen to be 𝑑 = 𝐿/𝑁 or 𝜌 = 𝑁/𝐿. Alternately and 

without loss of generality, 𝑁 can be fixed (for convenience in simulations), and 𝐿 can be selected 

as the bifurcation parameter. Thus the goal in this study is to forecast the critical value 𝐿T at which 

a traffic jam occurs. This is analogous to forecasting the critical car density on the road. Note that 

in the following sections, the mathematical model is used only to generate surrogate 

measurements. The forecasting approaches are data-driven methods, and do not require a model.  

 

  

Figure 5.5. Graph of 𝑉′ versus 𝐿/𝑁 and stability 
boundaries for 𝑉C = 𝛽. 

Figure 5.6. Stable and unstable regions of system 
with an OVF given by Eq. (7) and 𝑣t ² = 0.9	.  
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5.4 Results and discussion  

5.4.1 Forecasting the onset of traffic jam using early warning indicators 

In this section, we implement the early warning signals to forecast the onset of traffic jams 

using measurements of the system dynamics in the stable traffic flow regime. We use the model 

described in Section 3 to generate surrogate measurements for the data-driven forecasting. 𝐿 is the 

bifurcation parameter.  

Consider first a system where 𝑁 = 12, and 𝑣t ² = 0.9. According to theoretical results 

(Fig. 5.6), the critical parameters for this system are 𝐿T = 4.82 and 𝐿T = 9.58. Here, we focus on 

forecasting 𝐿T = 9.58 using parameters 𝐿 > 𝐿T, which corresponds to forecasting the critical 

density of cars on a road with data from smaller densities.  

When the system is at equilibrium, the headway between any two consecutive cars is 𝐿/𝑁. 

We assume that small stochastic accelerations occur for each car, which creates small fluctuations 

in the headway around the equilibrium value. The bifurcation parameter 𝐿 is gradually varied from 

𝐿 = 18 to 𝐿 = 9.7. The resulting variance and lag 1-time unit autocorrelation of recorded headway 

data between two arbitrary selected consecutive cars on road is collected over time. A sample 

recording of the headway is shown in Fig. 5.7. The computed variance and autocorrelation of this 

signal are shown in Fig. 5.8. It is observed that both the variance and the autocorrelation increase 

as the density of cars on the road (𝜌 = 𝑁/𝐿) increases and the system approaches an instability, 

i.e. a traffic jam. The indicator predicts that a traffic jam is approaching, as shown by the change 

in the value of the indicator in the vicinity of the linear stability boundary. As discussed earlier, 

this method does not provide information about the critical parameter value 𝐿T where a traffic jam 

occurs and does not predict the dynamics of the system after the onset of the instability. However, 
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this method provides valuable information about an impending instability, and it is useful 

especially when all that can be measured is the stochastic oscillation in one of the system states 

around its equilibrium.  

 
Figure 5.7. Recorded stochastic headway values between two consecutive cars used for computing 
early warning signals. The car density on the road is gradually decreased over time, and it approaches 
its critical value.  

 

  

Figure 5.8. Variation of early warning signals with the bifurcation parameter. As the bifurcation 
parameter decreases, the system approaches a bifurcation. The coefficient of variance (left) and the 
autocorrelation (right) of the recorded signal increase as the system approaches the bifurcation, i.e. the 
traffic jam.  
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5.4.2 Forecasting the onset of traffic jams and post-traffic dynamics using bifurcation 
forecasting method  

Next, we focus on bifurcation forecasting methods for predicting both the tipping point and 

the bifurcation diagram of the system. To use bifurcation forecasting methods efficiently, 

perturbations are required to be larger than the noise (stochasticity) in the system and the 

measurements. Large perturbations are not unexpected in traffic flow systems, and can be observed 

during normal operational conditions. For example, when one of the drivers suddenly reduces the 

car speed by a moderate or large value, a perturbation is created in the system dynamics and can 

be used for forecasting.  

To demonstrate the method, we first consider the same system parameters as in the previous 

example, i.e.: 𝑁 = 12, 𝑣t ² = 0.9. This system has a critical parameter value of 𝐿T = 9.58, and 

exhibits a supercritical Hopf bifurcation (Fig. 5.10). To collect surrogate measurement data, 

simulated cars start moving from a random initial condition. We focus on the headway between 

two arbitrary selected consecutive cars on the road. The headway is recorded at three parameter 

values prior to the transition, i.e. 𝐿 = 11, 𝐿 = 10.5 and 𝐿 = 10, as shown in Fig. 5.9. The local 

maxima (minima) of the collected measurements are used to forecast the maximum (minimum) 

amplitudes in the bifurcation diagram using the bifurcation forecasting approach. Following the 

forecasting method described in Section 5.2.2, recovery rates of local maxima (minima) of the 

collected measurements are estimated. Figure 5.10(a) shows the variation of recovery rate versus 

amplitude for the local maxima. A similar plot can be obtained for the local minima of the 

oscillations. The recovery rates at each amplitude are then extrapolated to find the parameter at 

which the recovery rate is zero, as shown in Fig. 5.10(b). Figure 5.10(c) shows the forecasted 

bifurcation diagram. The results show that the forecasted value of 𝐿 where the system loses its 

stability is 𝐿T = 9.58, where a traffic jam occurs. This result is in great agreement with the 
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theoretical computed critical parameter value. Furthermore, the bifurcation diagram of the system 

is forecasted, which is of importance also. The approach forecasts that the system faces a 

supercritical bifurcation, and the amplitudes of the limit cycle oscillations in the headway are 

forecasted. The method successfully forecasts both the critical parameter at which the traffic jam 

occurs and the post-bifurcation dynamics of the system despite the fact that only three 

measurements of the headway between two cars in the pre-bifurcation regime were used in the 

forecasting procedure.  

 
Figure 5.9. Recorded headways between two consecutive cars arbitrary selected after a perturbation from 
the equilibrium state at three parameter values in the pre-bifurcation regime. Dynamics of the system 
slows down as the system approaches the bifurcation.  

 

 
Figure 5.10. Forecasting using measurements depicted in Fig. 9. (a) recovery rate versus amplitude for 
local maxima of the data at each parameter (𝐿) is computed to forecast the upper branch of bifurcation 
diagram. (b) Extrapolated recovery rates at selected amplitudes to forecast the corresponding parameter 
at which the recovery rate is zero. (c) Exact and forecasted bifurcation diagrams of the system. 
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 Considering only one of the headways for forecasting is an advantage. For example, a driver 

can forecast that a traffic jam is approaching by monitoring its distance to the car in the front. This 

type of forecasting, however, is not as accurate if there is uncertainty in the system. For example, 

the driver in the front might not perfectly follow the OVF or may have a stochastic behavior. In 

such cases, a single headway may contain a large amount of noise, and cannot be used for accurate 

forecasting. To address this issue, a macroscopic variable capturing the system dynamics using 

information obtained from multiple cars can be used. The macroscopic variable which is used here 

is the standard deviation of all headways with respect to the quasi-stationary equilibrium, which 

can be written as follows [135]  

𝜎(𝑡) = î W
*cW

∑ rℎq(𝑡) − ℎ �±s
X*

q+W ,  (5.11) 

where ℎ �± is the quasi-stationary equilibrium given by ℎ �± = 𝐿/𝑁, 𝑁 is the number of cars on 

the road, and ℎq(𝑡) is the 𝑖`¸ headway (Fig. 5.4).  

This macroscopic variable takes all headways into account. It can be shown that 𝜎(𝑡) exhibits a 

pitchfork bifurcation corresponding to the Hopf bifurcation in the microscopic variables [135]. 

The pitchfork bifurcation occurs at a value 𝐿T of the bifurcation parameter that corresponds to the 

onset of the traffic jam. Before the parameter reaches its critical value 𝐿T, the equilibrium point of 

the system is at 𝜎∗=0 meaning that variation of headways from quasi-stationary equilibrium is 

zero. However, this value is not zero when the system passes the stability boundary.  

The variation of 𝜎(𝑡) versus time for 𝐿 = 11, 𝐿 = 10.5	and 𝐿 = 10 is computed and results are 

shown in Fig. 5.11(a). The slowing down behavior is observed in 𝜎(𝑡) as the system approaches 

the critical parameter value. Note that it takes longer for the system to reach to its equilibrium state 

after a perturbation is applied. Using measurements of system recovery from initial perturbations 

(Fig. 5.11(a)) and following the bifurcation forecasting method in Section 5.2.2., the onset of a 
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traffic jam and the bifurcation diagram are forecasted as shown in Fig. 5.11(b) which provides 

information about the macroscopic dynamics of the system near and after the onset of the 

instability.  

 

 

Figure 5.11. (a) Measured variation of standard deviation 𝜎 of the headways versus time around the 
quasi-stationary equilibrium after a perturbation. Measurements are collected at parameter values before 
the onset of the traffic jam. (b) Exact and forecasted bifurcation diagrams for the macroscopic variable 
𝜎 using measurements shown at Fig. 5.11(a) and the bifurcation forecasting method.  

 

Note that the largest forecasted amplitude in the forecasted bifurcation diagram cannot be 

larger than the amplitude created by the perturbations. If the only purpose of the analysis is to 

forecast the critical parameter value 𝐿T and not the bifurcation diagram, then large perturbations 

are not required. Furthermore, the forecasting accuracy of the bifurcation forecasting method is 

increased as the parameter values used for forecasting are closer to the critical value, especially 

when the purpose is to forecast the complete bifurcation diagram and not only the critical point.  

The variation of forecasting accuracy versus distance from the critical point can be examined in 

Fig. 5.12. Measurements at three different sets of parameter values	𝐿 are used for forecasting. 

These sets are {12.5, 12, 11.5}, {12, 11.5, 11}, and {11, 10.5, 10}. The results show that the 
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forecasting accuracy decreases when the parameter values used for forecasting are farther from the 

bifurcation point. This is expected because the forecasting is based on extrapolating the recovery 

rates and the accuracy of the extrapolation decreases with the distance to the bifurcation. The 

challenge is that the distance at which the forecasting method provides accurate results is not 

known in priori, and depends on the system dynamics. More importantly, there is no prior 

knowledge about the value of critical point when the forecasting method is applied. Hence, the 

current state of the system might be far from the bifurcation point which may result errors in the 

forecasting results. However, the forecasting result is still valuable because it provides a 

preliminary approximation of the critical parameter value, and the results can be updated with 

increased accuracy as the system approaches to bifurcation. Recall that the closer the system is to 

the bifurcation, the more accurate the forecasting is.  

 
Figure 5.12. Forecasted bifurcation diagram using bifurcation forecasting method and data recorded at 
three different set of parameters. The forecasting accuracy increases using measurements at parameter 
values which are closer to the bifurcation.  

 

In the next example, the maximum velocity of cars in the OVF is increased to 𝑣t ² =

1.05. In this case, the system exhibits a subcritical bifurcation meaning that the system might jump 
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to another stable attractor while the parameter has not yet passed the linear stability boundary. In 

the car following model, this means that a large perturbation, e.g. when one of the drivers suddenly 

reduces the speed for a short period of time, might result in a persistent traffic phenomenon even 

before the road reaches to its critical car density limit computed from a linear analysis.  

The goal is to forecast the bifurcation diagram and predict that the system is approaching 

a sharp transition (i.e., heavy stop-and-go traffic). Figure 5.13(a) shows the recovery rates 

computed using measured recoveries from perturbations at parameters 𝐿 = 12.6, 𝐿 = 12.3 and 

𝐿 = 12.0. The forecasted bifurcation diagram is shown in Fig. 5.13(b), where the results match 

the exact ones computed directly using system equations. These results show that the forecast 

successfully predicts that the system experiences a subcritical bifurcation with a bi-stable region, 

where jumps in the dynamics are possible even before the linear critical density.  

 

Figure 5.13. Exact and forecasted bifurcation diagram of the system that exhibits a subcritical bifurcation. 
(a) Recovery rate versus amplitude for the measured macroscopic variable measured after perturbations 
applied to the system at three parameter values in the pre-bifurcation regime. (b) Exact and forecasted 
bifurcation diagrams of the system.  
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5.5 Conclusions  

The onset of traffic jams on a circular road was forecasted using early warning 

indicators/signals and bifurcation forecasting methods. Forecasting approaches were applied to a 

microscopic model of cars on a circular road. Results show that forecasting approaches can 

successfully predict the critical parameter value at which traffic jams occur. Furthermore, the 

bifurcation forecasting method can be used for forecasting both the critical point (i.e., the onset of 

traffic jams) and the post-critical dynamics of the system (i.e. the bifurcation diagram). These 

results are particularly valuable when the state of the system after the bifurcation is of interest.  

The forecasting approaches are model-free. That represents a substantial advantages for 

complex systems such as traffic flow systems where an accurate mathematical model is not easily 

available. All that is needed for forecasting is to collect measurements of the system dynamics in 

the pre-bifurcation regime (before traffic jams occur). Moreover, forecasting can be highly 

advantageous also for theoretical or computational analyses of traffic flow models where 

employing traditional methods for computation of bifurcation diagrams are computationally 

intense. Recall that only a few time series are needed to forecast a large portion of the bifurcation 

diagram, which contrasts the amount of calculations needed to simulate the system dynamics at 

each parameter value in the post-bifurcation regime (i.e., the many time series) needed to construct 

the bifurcation diagram by traditional methods.  

The methodologies presented can be extended to analyze the stability of more complex 

traffic models. Although the model used to generate surrogate data in this study is a simple traffic 

model compared to real systems, and although some of the data used for forecasting cannot be 

easily recorded in real situations, the approaches and ideas presented can be used as a basis for 

more developments to address some of the challenges related to the complexity of traffic dynamics. 
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Chapter 6  

Forecasting Critical Transitions and Future Stability of Natural Populations 

6.1 Introduction 

Numerous studies have revealed a variety of systems that are at risk of undergoing critical 

transitions [1,2], ranging from systems commonly examined in engineering [4,101], chemistry 

[5,6], physics [7,8], and biology [9–11], to others related to climate sciences [12–14], medicine 

and disease [15–17], social sciences [18–20], and ecology [21–23]. Specifically, regime shifts in 

ecological systems have received growing attention as the cumulative human impact on the 

environment has increased the risk of ecological regime shifts [21–23,36,136–139] (Fig. 6.1). 

Consequences include the collapse of natural populations which inhabit the ecosystem at risk [11], 

and these consequences are important because typically it is exceedingly difficult to reverse the 

system to its pre-transition condition [24,25] after a critical transition occurs. Hence, it is necessary 

to develop methods capable of forecasting the upcoming transition, as part of a preventive plan 

against possible detrimental consequences.  

The need to forecast critical transitions has triggered much  research in the recent years and 

has resulted in developing early warning signals to mark such undesirable transitions [35]. 

Anticipating critical transitions can be straightforward if a mathematical model exists for the 

system. However, accurate predictive modelling can be challenging, especially when the system 

is complex (e.g., it has many agents with nonlinear interactions). Moreover, even when a 

mathematical model is introduced, it may be incomplete or inaccurate due to assumptions and 

uncertainties in modeling and parameter values. Hence, predictions based on models of limited 
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accuracy face substantial difficulties [26]. As a result, researchers have focused on developing 

model-less approaches to extract early warning signals from observed time series, and several 

indicators have been introduced for this purpose [26–33]. The most widely used early warning 

signals such as increasing variance [29,32] and autocorrelation [12,29], are built on the basis of 

critical slowing down. This phenomenon  refers to the slowing down of a system's dynamics 

around its  equilibrium when approaching a tipping point [34]. Recent observations have indicated 

the existence of critical slowing down before a tipping point in natural ecosystems [129,140], a 

finding which highlights the importance of methods developed based on this feature.  

The advantage of applying early warning indicators to successfully raise the alarm when 

approaching a tipping point has been described in several recent studies [26–33,35]. However, 

many open questions remain. For example, although the indicators start to increase as the system 

approaches the tipping point, it is necessary to know quantitatively the distance (in the parameter 

space) to the upcoming transition to allow a better management of the system. Second, it is pivotal 

to know the type of the upcoming transition, i.e. whether the system is approaching a catastrophic 

or a non-catastrophic transition. However, based on nonlinear systems theory, critical slowing 

down [2,12,34–36] and an increase in most available early warning indicators do not predict the 

type of transition because they occur in both catastrophic and non-catastrophic transitions, such as 

transcritical and supercritical pitchfork bifurcations. In addition, management actions often require 

estimates for the future equilibrium points of the system before and after the transition. Such 

estimates have to be obtained using knowledge of the pre-transition system behavior. A forecasting 

method capable of addressing these questions would be of great importance for the management 

of ecosystems, as it would help to assess the existence of crucial thresholds and to evaluate the 

future consequences of surpassing them [41].  
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Figure 6.1. Schematic of a natural population subject to a critical transition. The state of the system 
changes abruptly from one equilibrium to another due to a slow change in the parameter.   

 

In this work, we introduce a model-free approach, referred to as the bifurcation forecasting 

method [4,8], to address the aforementioned questions. Based on observations of the system 

response to perturbations only in the pre-transition regime, the method forecasts the bifurcation 

diagram which characterizes the stability and equilibria of the system in upcoming conditions  

(Fig. 6.2). The idea of the bifurcation forecasting method has been successfully evaluated using 

simulations and experiments in some engineered systems [4,8,101]. The aim of this work is to 

introduce and investigate the application of the bifurcation forecasting method in living systems. 

The forecasting approach described herein uses the phenomenon of critical slowing down, namely 

the slowing down of the dynamics around an equilibrium when the system approaches a tipping 

point [34].  

Determining the conditions under which the forecasting method is reliable in ecological 

and biological systems requires experimental validation. To this end, we use a budding yeast 
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population with cooperative growth, with sucrose as the carbon source which is known to exhibit 

a critical transition as the environment deteriorates [11]. The existence of the Allee effect [141] 

leads to bi-stability and a fold bifurcation at which the yeast population exhibits a catastrophic 

transition, accompanied by a critical slowing down phenomenon as the environment deteriorates, 

resembling an ecological collapse. The bifurcation parameter of the system is selected to be the 

mortality rate, which represents real environmental conditions, e.g. mortality because of predation. 

As the mortality rate increases, the system is pushed toward a critical transition resulting in 

population extinction.  

The present study is the first experimental validation of bifurcation forecasting method for 

ecological systems which are inherently complex. The main focus of this study is to demonstrate 

and experimentally validate the suggested forecasting method, using a real living system. The 

forecasting method is also investigated theoretically, using the yeast population as a model system, 

as described below in more detail. 

6.2 Forecasting method overview 

The bifurcation forecasting method is a model-free approach and is based on time-series 

measurements of the system's response to perturbations (only) in the pre-transition regime. The 

method is based on the critical slowing down phenomenon, and is able to forecast the bifurcation 

diagrams of systems exhibiting this phenomenon, such as systems approaching to a fold, pitchfork, 

Hopf or transcritical bifurcation. Forecasting the bifurcation diagram enables us to identify the 

distance to upcoming transitions, the type of the transitions (catastrophic/non-catastrophic) and 

future equilibrium points of the system in study. 
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Figure 6.2. Schematic overview of the bifurcation forecasting method. Measurements from perturbations 
in pre-bifurcation conditions (a) are employed to forecast the upcoming transition (black dots). As the 
system approaches a bifurcation, the rate of system’s recovery is decreased. At a fixed amplitude, the 
recovery rate decreases when the system approaches the bifurcation. At a fixed parameter, the smallest 
recovery rate corresponds to the amplitude which is closest to the actual bifurcation diagram. The future 
stability of the system is forecasted considering this change in the recovery rates. The system has two 
critical points (c1 and c2) which determine the boundaries of the bi-stability region. Cases (a) and (b) 
demonstrate the schematic of forecasting procedure for the system operating at either side of the critical 
points, and are addressed in the experimental study.  

 

Close to the bifurcation point, external perturbations lead to a long transient before the 

system reaches its stable state, which means that the system’s recovery rate decreases. Therefore, 

the system's recovery rate from perturbations can be used as an indicator, and is correlated to the 

distance to bifurcations. The total recovery time from perturbation is a good indicator of the 

distance to the tipping points [142]. However, it should be mentioned that the recovery rate is 

different at different amplitudes, and the rate of recovery at each amplitude cannot be compared 

with that in the other amplitudes. Taking this difference into account results in more accurate 

estimation of the future stability of the system. At a fixed amplitude, the recovery rate decreases 

when a system approaches bifurcation. Similarly, at a fixed parameter, the smallest recovery rate 

corresponds to the amplitude which is closer to the actual bifurcation diagram. This idea is 
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employed in the bifurcation forecasting method and results in forecasting the bifurcation diagram 

of the system, which reveals the type of the transition and the future fixed points of the system. 

We define the recovery rate as 𝜆 = �̇�/𝑟, where 𝑟 is the system amplitude and the over-dot 

represents the time derivative. The recovery rate is a function of both the system's parameter and 

of the amplitude. For example, in an ecological system, the amplitude can be the population density 

and the parameter is an environmental feature, such as temperature, mortality rate or any other 

index representing a specific environmental condition. We measure the system's recovery from 

perturbations at least at two system parameters, and recovery rates are approximated for the 

available amplitudes at each parameter. At each amplitude computed recovery rates are 

extrapolated to identify the parameter at which the system is expected to have a zero recovery rate. 

A zero recovery rate corresponds to a fixed point on the bifurcation diagram, regardless of its 

stability. Repeating this procedure for different measured amplitudes enables us to approximate 

the bifurcation diagram of the system. Hence, the system's future stability can be approximated 

using the forecasting method (Fig. 6.3). 

  

Figure 6.3.  Steps followed to forecast the bifurcation diagram: (a) measure the system response to 
perturbations at several parameter values, (b) approximate the recovery rates from time series 
measurements, (c) identify the parameter 𝜇m at which the recovery rate for a specific amplitude �̃� is zero, 
(d) repeat steps (b) and (c) for several amplitudes �̃�, and finally construct the bifurcation diagram using 
pairs of (𝜇m,�̃�).  

 

We forecast the bifurcation diagram of the yeast population using measurements from one 

side of the bifurcation diagram. We demonstrate the forecasting method separately for each side 
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(see cases (a) and (b) in Fig. 6.2). Each case corresponds to a type of transition which is commonly 

reported for many systems. One is the extinction case, where the population is approaching a 

critical transition which results in the collapse of the population, as is observed in ecological 

systems [1,24,34] (case (a) in Fig. 6.2). The second is the emergence case, where a sudden increase 

in the population occurs, as is observed in outbreaks of infectious diseases [143–145] (case (b) in 

Fig. 6.2).  

To forecast the bifurcation diagram, one needs measured recoveries at two or more 

parameter values in the pre-transition regime. In general, increasing the number of measured 

parameter values and the number of measured recoveries at each parameter value alleviates the 

effect of noise and enhances the forecasting accuracy. Both small and large perturbations can be 

used for the forecasting purpose. However, one should note that all forecasted amplitudes in the 

bifurcation diagram must be included in the measured system’s response to perturbations. Since 

the approach is not restricted to small perturbations, one can forecast the critical points which have 

amplitude far away from the current equilibrium point of system. For instance, in a saddle node 

bifurcation, there is a tipping point which has large amplitude, also known as turning point. Both 

the amplitude and the parameter at which this critical point occurs can be forecasted, an 

achievement of great importance since this point marks the beginning of the bistability region  

(Fig. 6.2).  

There are a number of requirements for the forecasting method to be accurate. First, it is 

required that the system is close enough to the bifurcation to exhibit a measurable slowing down 

in the recorded recovery. The interpretation of “close enough” may vary for different systems, and 

depends on the system dynamics. Second, the obtained measurements have to contain identifiable 

parts on the inertial manifold to ensure that changes in the recovery rates are due to the slowing 
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down phenomenon. The inertial manifold is an invariant set where the dynamics is the slowest in 

time and contains key dynamic features of the system [146,147]. This manifold is the slowest, and 

if the system starts from a state in this set, it remains in that set at all times. This fact needs more 

attention for large dimensional systems, where the fast dynamics of the system needs to be filtered 

out [101]. A third requirement is that the dynamics and the inertial manifold should vary smoothly 

with the bifurcation parameter. If the change in dynamics between two measured parameters is 

significant, the forecasting is not accurate [8].  

 

6.3 Experimental procedure  

The core design of our experiments is based on the system introduced by Dai and 

colleagues [11], and used successfully in other experimental studies of catastrophic transitions and 

early warning signals [148–151]. The system is an ecological system designed by exploiting the 

cooperative growth of budding yeast in sucrose. The yeast system is used because it is easy to 

manipulate and displays key similarities with many natural populations.  

We culture a selected yeast (Saccharomyces cerevisiae) strain under well-controlled 

conditions. The strain BY44741 is selected based on its auxotrophic properties and cooperative 

growth [152]. Saccharomyces cerevisiae displays cooperative growth, where individual cells use 

metabolites produced extracellularly by neighbor cells [149]. Hence, the system possesses a strong 

Allee effect [141], which can cause bi-stability and lead to catastrophic transition. The cell density 

is an important factor affecting population growth in this system. On one hand, at low densities it 

is difficult for cells to cooperate and produce enough resources to survive. On the other hand, the 

resources are not enough at high densities, and the growth rate is decreased due to competition 
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among cells. Therefore, at intermediate densities, the per capita growth rate is maximal, while it is 

negative at low and high densities [11].  

All experiments were performed on 96-well flat bottom sterile polystyrene microplates, 

Corning Falcon, USA, at 200uL volume, in IncuShaker orbital shaker, Denville Scientific, USA, 

at 30°𝐶, 300𝑟𝑝𝑚, in synthetic growth medium of BD Difco Dehydrated Culture Media Yeast 

Nitrogen Base (YNB) without amino acids, with the addition of Complete Supplement Mixture 

(CSM), Sunrise Science, USA, and 2% sucrose made from 20% sucrose stock solution in 1𝑚𝑀 

Tris buffer, pH 8.0, UV and filter sterilized, added fresh daily to the YNB/CSM mixture. All 

experiments in the same series were performed with the same solutions, to avoid variations in the 

experimental system. The bifurcation parameter of the system was selected to be the mortality rate 

introduced to the system by dilution. Namely, only a fraction of the population was transferred 

into fresh media every day. This corresponds to a population that is affected by an incident 

occurring periodically, such as predator invasion or the breakout of a disease, at which only a 

fraction of the initial population survives. Dilutions were performed every 23 hours, in predefined 

dilution factors, after the population density was monitored in a Cytation 1 Cell Imaging Multi-

Mode Reader, BioTek, USA, by measuring the optical density at 620𝑛𝑚. For each dilution factor, 

we performed 6 to 10 parallel experiments. Furthermore, each experiment had technical 7 

replications using the same source of materials at the same experimental conditions. To this end, 

we prepared every day the initial sample and distributed it into 7 wells of a 96-well microplate, 

200𝜇𝐿 each. Perturbations were applied to the system using randomly selected initial population 

densities, and the recovery from perturbations was measured until the population returned to its 

equilibrium state.  
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Results show that at low mortality rates and after a perturbation, the population recovers to 

its non-zero equilibrium with a high recovery rate. Furthermore, the population can survive from 

large perturbations since the cooperative growth of cells dominates over the effect of mortality on 

the system. As the mortality rate increases, the system is pushed toward a critical transition 

resulting in population extinction. The reverse occurs as the mortality decreases, leading to 

emergence. The schematic of the experimental procedure is demonstrated in Fig. 6.4. 

 

 

Figure 6.4. Overview of the experimental procedure. Starting from an initial population density, 
buddying yeast is cultured on 96-well microplates, in an orbital shaker at 30°C, 300rpm. After 23 hrs of 
growth, population density is measured using a photometer. Using a selected dilution factor, a fraction 
of population is then transferred to fresh media and is left to grow for another 23 hours. The procedure 
is repeated every day until the population is extinct, or it reaches its equilibrium state.  

 

6.3.1 Calibration curve 

Cell density was tracked by measuring the optical density of the yeast population at 

620𝑛𝑚. A calibration curve was constructed, showing the corresponding cell density for every 

measured optical density. To this aim, a series of yeast samples with different densities were 

prepared, at 200𝜇𝐿 final volume. The optical density of each sample was measured using the 
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Cytation 1 Cell Imaging Multi-Mode Reader, BioTek, USA. Next, the actual cell density of each 

sample was measured using the Scepter 2.0 Handheld Automated Cell Counter, EMD Millipore, 

USA. Measured values are shown in Fig. 6.5 by square markers. A low order polynomial is fitted 

to the data and used as the calibration curve in the performed data analysis. 

 

 

Figure 6.5. Calibration curve mapping the measured 620𝑛𝑚 optical density to the actual cell density. 

6.3.2 Verification of existence of saddle-node bifurcation in the system 

In this part, we performed some experiments to verify that our experimental procedure 

results in a system exhibiting a bifurcation. Below are the experimental results at two selected 

dilution factors as the bifurcation parameters. It is observed that at the dilution factor of 1400, the 

population survives starting from large enough initial conditions, while in other cases the 

population undergoes extinction. Therefore, the system has bi-stability at this parameter which 

verifies the existence of Allee effect in the system. On the other hand, we observe that at the 

dilution factor of 1600, the only equilibrium point of the system is the extinction state, where no 

population exists (Fig. 6.6). Based on these observations, we conclude that the system exhibits a 
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saddle-node (catastrophic) bifurcation, and the critical dilution factor which is the starting point of 

the bi-stability region (cW in Fig. 6.2) is between 1400 and 1600.  

  

Figure 6.6. Results of the experiments performed to verify the existence of bifurcation and bi-
stability in the system. Each line corresponds to a separate experiment. We observe bi-stability 
at the dilution factor of 1400 and extinction at the dilution factor of 1600, which verifies the 
existence of saddle-node bifurcation in the system. 

 

6.3.3 Experimental points on the bifurcation diagram  

A series of experiments were performed to identify several stable and unstable fixed points 

on the bifurcation diagram. We selected the dilution factors of 800, 1,000, 1,200, 1,300 and 1,400 

to identify the non-zero stable values of population density at these parameter values. For this 

purpose, we started the experiments from selected initial population densities, and the system was 

monitored until the populations reached and stayed at their equilibrium state for several days. The 

stable values on the diagram were obtained by averaging the populations over the period during 

which they remained at their equilibrium state (Fig. 6.7).  

Approximating unstable fixed points is more challenging since the system diverges from 

them. To approximate the values on the unstable branch, we considered dilution factors of 1,000, 

1,200, 1,300 and 1,400. At each dilution factor, we monitored the population growth starting 

1 2 3 4 5 6
Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
el

l d
en

si
ty

 (
10

5 /
L)

Dilution factor: 1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
el

l d
en

si
ty

 (
10

5 /
L)

Dilution factor: 1600



 138 

from several initial conditions. The region between two initial conditions resulting one in survival 

and one in extinction of the population was selected as the region containing the unstable fixed 

point (Fig. 6.8). Although the value of the unstable fixed points is not determined with high 

accuracy, this procedure provides an acceptable approximation of the unstable branch. This is 

required in order to evaluate the forecasting results, as well as to conduct the model calibration 

described in the next section.  

 

Figure 6.7. Results of the experiments performed to identify the stable fixed points of the bifurcation 
diagram. Three sets of experiments are run at each dilution factor. The stable values at each dilution 
factor are approximated by averaging the populations over the period during which they remain at the 
equilibrium state. Each line in the plots corresponds to a separate experiment.   
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Figure 6.8. Results of the experiments performed to identify the unstable fixed points of the bifurcation 
diagram. At each dilution factor, the region between two initial conditions resulting in survival and 
extinction of the population is selected as the region containing the unstable fixed point.  

 

6.3.4 Model calibration not used for forecasting  

The forecasting method is a model-free approach, suitable for systems for which no 

mathematical model is available. However, based on the model suggested for the yeast growth by 

Dai et al. [11], we use the experimental data to find the best model parameters which match our 

experiments. This is done for two reasons. First, we build a model as close as possible to the 

experimental data to show that the proposed forecasting method can be successfully applied when 

no measurement or process noise is available in the system. Second, measuring stable and unstable 

fixed points close to the tipping point is practically not feasible in experiments due to noise and 

stochasticity in the dynamics. Since the focus of the proposed method is on the forecasting of 



 140 

tipping points and the parameter values close to these points, approximating the bifurcation 

diagram theoretically helps better interpret the results.  

The two-phase mathematical model is in the following form [11]:  

W
*
\*
\`
= 3

𝛾�Ný																												0 < 𝑁 < 𝑁T			
𝛾¸q±¸ ©1 −

*
#
ª								𝑁T < 𝑁 < 𝐾 	,  (6.1)  

where N is the population density, 𝐾 is the carrying capacity, 𝛾�Ný  and 𝛾¸q±¸  are the per capita 

growth rates for population densities smaller and greater than a threshold 𝑁T. Moreover, there is a 

lag before the cells start to grow after they are transferred to a new media. In the simulations, this 

time lag is included in the 23hrs time period which is considered for the cells’ growth.  

To approximate the five unknown parameters of this model, we fed the experimental 

measurements of the bifurcation diagram into a genetic algorithm, and the model parameters best 

matching the experiments were extracted as shown in Table 6.1.  

 

Table 6.1: Calibrated model parameters using experimental data and a genetic algorithm  

 𝑲 
𝐶𝑒𝑙𝑙𝑠/𝜇𝐿 

𝜸𝒍𝒐𝒘 
(ℎ𝑟cW) 

𝜸𝒉𝒊𝒈𝒉 
(ℎ𝑟cW) 

𝑵𝒄 
(𝐶𝑒𝑙𝑙𝑠/𝜇𝐿) 

𝑻𝒊𝒎𝒆	𝑳𝒂𝒈	 
(ℎ𝑟) 

Model fitting 0.923 × 10½ 0.255 0.419 174 1.38 

Experiment 0.854 × 10½ No 
measurements 0.503 No 

measurements 1.33 
 

We have also computed the three parameters 𝑲, 𝛾¸q±¸  and the time lag experimentally to evaluate 

the validity of the genetic algorithm results. To approximate the time lag before population growth, 

several experiments were initiated starting from different initial conditions. We started recording 

the population growth right after the initiation of the experiment using the plate reader. The plate 

was placed in the plate reader, with the temperature set to 30°𝐶 and the orbital shaking speed at 

300𝑟𝑝𝑚. The optical density was measured every 10min for a total of 4.5hrs. The results depicted 
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in Fig. 6.9 show that the population starts an exponential growth after approximately 80min, which 

represents the experimentally defined time lag.  

 

 

Figure 6.9. Estimating the time lag before population growth. Experiments are initiated from 2 sets of 
different initial conditions, and the population growth is monitored for 4.5hrs. Each solid line 
represents a separate experiment, and the estimated time lag is marked by a dashed line on each figure.  

 

To approximate 𝛾¸q±¸ and 𝐾, we monitored the population growth starting from an initial 

density of 0.188 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿	, which is expected to be greater than 𝑁T. The experiment was 

initiated several hours in advance to make sure that the population was in the exponential growth 

phase (log phase). The population was then monitored for 17hrs until it reached and stayed at its 

saturated state (stationary phase) for about 5hrs (Fig. 6.10). We prepared the initial sample in a 

large volume and aliquoted the homogenous solution into 48 wells of a 96-well microplate, 200𝜇𝐿 

each. Results are shown in Fig. 6.10. Considering a logistic growth for the population, the 

parameters are found to be 𝛾¸q±¸ ≈ 0.503	ℎ𝑟cW and 𝐾 ≈ 0.854 × 10½	𝑐𝑒𝑙𝑙𝑠/𝜇𝐿.  

 



 142 

 

Figure 6.10.  Experimental results of estimating 𝛾¸q±¸ and 𝐾. A population started from intermediate 
initial density was observed over 17hrs. Experimental results are demonstrated by mean and standard 
deviation error bars of 48 simultaneously performed replications.  

 

Comparing the directly measured parameters to those obtained by using the genetic 

algorithm (in Table 6.1), it is observed that they are in the same range. The calibrated model is 

used to generate the bifurcation diagram of the system as a reference to be compared with the 

forecasting results.  

 

6.4 Experimental forecasting results 

We monitor the effects of different dilution factors (mortality rates) on the density of the 

yeast population and on its ability to recover from perturbations. Figure 6.11 shows the 

approximated bifurcation diagram of the system based on experimental measurements. 

Experimental results show that the population becomes extinct at a dilution factor of 1,600, and is 

stable at a high density at a dilution factor of 1,400. Hence, the tipping point is expected to be 

between dilution factors 1,400 and 1,600. In general, the effects of noise, stochasticity, and the 

slowing down make it particularly challenging to measure stable and unstable fixed points close 
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to the tipping point. The closer the system is to the tipping point, the worse the signal to noise ratio 

becomes, and the longer the system has to be observed to determine its stability. To address this 

challenge, we feed the experimental data into a genetic optimization algorithm to calibrate a simple 

two-phase growth model suggested by Dai and Gore [11]. The bifurcation diagram of the 

calibrated model which matches best the experimental observations is constructed, as depicted in 

Fig. 6.11. Based on the calibrated model, the dilution factor at the tipping point is estimated to be 

approximately 1,505. Although this approximation provides an estimation of the system stability, 

it contains uncertainty and may not necessarily represent the true dynamics of the system. The 

approximated bifurcation diagram using the model does not quite agree with the location of the 

experimental fixed points. Therefore, any mismatch between the forecasting results in the 

following sections and the model-based estimation of the bifurcation diagram is not solely due to 

the forecasting accuracy. Note also that this model-based estimation of the bifurcation diagram is 

used only as a reference to validate the forecasting results presented in the following sections; 

forecasting does not require any model of the system and any bifurcation diagram a priori.  

We forecast the bifurcation diagram of the yeast population using measurements from one 

side of the bifurcation diagram. We demonstrate the forecasting method separately for each side 

(see cases (a) and (b) in Fig. 6.2).  
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Figure 6.11.   (a) Estimated bifurcation diagram of the buddying yeast system. Circles represent 
experimentally measured stable population densities at selected dilution factors obtained by averaging 
the populations which are at equilibrium over at least five days. Vertical bars represent experimentally 
approximated regions containing unstable fixed points at selected dilution factors obtained by monitoring 
the population growth starting from several initial densities and identifying the region between two initial 
conditions resulting in survival and extinction of the population. (b) and (c) depict the experiments 
performed at the dilution factor of 1,200 to identify the corresponding stable and unstable fixed points 
on the bifurcation diagram. The dashed line is the approximated bifurcation diagram using the calibrated 
model. The dilution factor at the tipping point is approximately 1,505. This bifurcation diagram is used 
as a reference to validate the forecasting results presented in the following sections.  

 

As a first step we study extinction, which occurs as the dilution factor increases and has 

values closer and closer to the critical one (i.e. 1,505), as shown in case (a) in Fig. 6.2. The dilution 

factor is the bifurcation parameter, and the goal is to forecast both the type of upcoming transition 

and the dilution factor at which the extinction transition occurs. For forecasting we measure 

recoveries of the system from perturbations at two dilution factors (all prior to the transition). 

Specifically, we perturb the system using randomly selected initial population densities smaller 

than the stable values, at dilution factors of 1,200 and 1,300. Recoveries at other dilution factors 

can be used also. Figure 6.12 shows measured recoveries from perturbations.  
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Figure 6.12.   Measured recoveries of the yeast population from perturbations at: (a) a dilution factor 
1,200; (b) a dilution factor 1,300, while the system approaches to the tipping point from parameter values 
smaller than the critical parameter. Each line represents a separate experiment, and each experiment has 
7 replications which are performed simultaneously using the same source of materials at exactly the same 
experimental conditions. The system slows down while approaching the critical transition, namely as the 
dilution factor increases from 1,200 to 1,300 (changing from (a) to (b)). These measurements are used to 
forecast the bifurcation diagram which corresponds to the schematic shown in case (a) of Fig. 2.  

 

Figure 6.13(a) shows the recovery rates estimated from measurements. Note that the 

computed recovery rates in practical applications are noisy due to uncertainty in experiments (e.g., 

observe Figs. 6.13(a) and 6.14(b)). To alleviate the effect of noise and stochasticity, we exploit the 

idea that for amplitudes close to a bifurcation point, the change in the recovery rates with amplitude 

can be approximated by a second order polynomial. We smoothen the measured recovery rates 

using a second order polynomial in the amplitude (𝑟)-recovery rate (𝜆) plane. This idea comes 

from the observation that recovery rates correlate with the distance to fixed points on the 

bifurcation diagram, with a peak value at the critical amplitude (see the schematic in Fig. 6.2, and 

the recovery rates computed in Figs 6.13(a) and 6.14(b) for further clarification). This 
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approximation holds for both supercritical and subcritical bifurcations, although the accuracy may 

vary for different systems.  

As expected, results show that the recovery rates decrease at all densities as the system 

approaches the tipping point. More importantly, the recovery rate at each population density is 

correlated to its distance from the bifurcation diagram. The system has its maximum recovery rate 

at a population density around 0.400 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, meaning that this density is the farthest 

point on the bifurcation diagram from the current dilution factor. Using the approximated recovery 

rates, one can extrapolate data in the dilution factor - recovery rate plane to approximate the 

dilution factor (𝜇m) at which the recovery rate for a specific density (�̃�) is zero (Fig. 6.13(b)). The 

point (𝜇m, �̃�) is therefore a forecasted fixed point on the bifurcation diagram. This procedure is 

repeated for all available values of population densities, and the overall bifurcation diagram is 

forecasted (Fig. 6.13(c)). Based on the forecasting results, it is evident that the system is 

approaching a catastrophic fold bifurcation. Furthermore, the transition is forecasted to occur at a 

dilution factor of 1,582 where the population density is 0.420 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿. The upcoming 

stable and unstable fixed points after the critical transition are forecasted also.  

Using such results, one can approximate the maximum perturbations that the system can 

tolerate in the upcoming environmental conditions. For instance, it is forecasted that at the dilution 

factor of 1,400, the population density would be stable at 0.575 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, and if a 

perturbation pushes the population below the density of 0.248 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, the population will 

not survive.  
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Figure 6.13.  Forecasting using experimental measurements at dilution factors of 1,200 and 1,300 
corresponding to case (a) shown in Fig. 6.2. (a) Recovery rates and quadratic polynomial fits at each 
amplitude estimated from the measurements shown in Fig. 6.12. (b) Example of extrapolated recovery 
rates at selected amplitudes to forecast the dilution factor at which the recovery rate is zero for each 
population density. (c) Forecasted bifurcation diagram (blue line). Circles and vertical bars represent 
experimentally approximated stable and unstable points on the bifurcation diagram, respectively. The 
dashed line is the approximated bifurcation diagram using the calibrated model.  

 

As a next step we study emergence, which occurs as the dilution factor decreases and has 

values closer and closer to the critical one (i.e., 1,505), as shown in case (b) in Fig. 6.2. In this 

case, the system has only one equilibrium (at zero density), and perturbations in the density cannot 

lead to a transition. In this case, the system does not exhibit a bifurcation; however, if the parameter 

decreases below the critical value, the system enters a region of bi-stability where a perturbation 

may push the system to a large non-zero equilibrium. Using measurements of the system behavior 

before entering the bi-stability region, the goals are (a) to forecast the parameter value at which 
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the bi-stability region begins and (b) in general, to forecast the bifurcation diagram which identifies 

the type of the upcoming transition and the system dynamics in at upcoming parameter values. 

This type of forecasting might be of interest in many cases, as in ecological systems [153,154], 

cancer dynamics [155,156] and outbreaks of  a disease [143–145], where a system with a low 

density equilibrium may jump to a highly populated state.  

In the experiments performed in this study, the critical dilution (and the beginning of the 

bi-stability region) is approximately 1,505 (Fig. 6.11). To forecast the upcoming bi-stability and 

possible transition, we monitor the population dynamics of buddying yeast in response to external 

perturbations at three larger dilution factors, namely 1,800, 1,700 and 1,600.  

The measured recoveries (Fig. 6.14(a)) show that the system undergoes slowing down as 

the dilution factor decreases from 1,800 to 1,600, namely it takes more days for the system to 

return to its equilibrium when the dilution factor decreases. Mathematically, this means that the 

recovery rate of the system (𝜆) decreases. The recovery rates are computed based on system 

responses and are shown in Fig. 6.14(b). The plots of recovery rates at all dilution factors exhibit 

a local maximum at the population density around 0.390 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, which means that the 

system has the slowest recovery rate around this value.  
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Figure 6.14. Forecasting using measurements at dilution factors of 1,600, 1,700 and 1,800 corresponding 
to case (b) shown in Fig. 6.2. (a) Measured recovery of the yeast population from perturbations at three 
selected dilution factors for the system approaching the tipping point from parameter values greater than 
the critical parameter. Each line represents a separate experiment, and each experiment has 7 replications 
which are performed simultaneously using the same source of materials at exactly the same experimental 
conditions. (b) Recovery rates at each amplitude computed from measurements shown in (a) and 
quadratic polynomial fits. (c) Forecasted bifurcation diagram (solid blue line). Circles and vertical solid 
bars represent experimentally approximated stable and unstable points on the bifurcation diagram. The 
dashed line is the approximated bifurcation diagram using the calibrated model.  

 

The forecasting method therefore predicts that the closest non-zero equilibrium has a 

density of 0.390 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿. Hence, we expect a jump in the population density to this value 

(or greater values) when the dilution factor is further decreased. Using the approximated recovery 

rates, the bifurcation diagram is forecasted, as is depicted in Fig. 6.14(c). Results predict that the 

system is approaching a fold (catastrophic) bifurcation, at the critical dilution factor of 1,547 

where the critical population density is 0.390 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, which lies within the expected 



 150 

range based on direct observations of the system. Furthermore, the population densities on the 

stable and unstable branches of the diagram are also approximated for a small region around the 

tipping point. The forecasting results predict that if the dilution factor is decreased to values smaller 

than 1,547, a large perturbation can change the system equilibrium from zero to a high population 

density.  

 

6.5 Forecasting the bifurcation using the buddying yeast population model  

To demonstrate the application of the proposed forecasting method when no measurement 

and no process noise is present, the method is evaluated theoretically using the simple population 

growth model (Eq. (6.1)). The model parameters are approximated using genetic algorithm to fit 

best the experimental system (Table 6.1). The simulations are performed similarly to the 

experimental procedure. We measure the simulated population every 23hrs, including the time lag. 

After each measurement, the selected dilution, which accounts for the mortality rate, is applied to 

the current population, and the new population density is simulated to grow for the next 23hrs. The 

model predicts that the population experiences a catastrophic transition at the dilution factor of 

1,505. We forecast the bifurcation diagram assuming that the system approaches the transition 

from dilution factors first all larger, and then separately all smaller than the critical value. Thus, 

we examine separately the forecasting approach in the extinction and the emergence cases.  

Consider a population which is approaching an extinction tipping point as the 

environmental conditions change. At a fixed dilution factor, the population recovers to its 

equilibrium after a perturbation is applied. The rate of recovery from perturbation depends on the 

distance to the tipping point. Figure 6.15(a) shows the system response to perturbations at two 

parameter values. Following the forecasting procedure, the recovery rates are computed, as 
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demonstrated in Fig. 6.15(b). It is observed that the recovery rates at all amplitudes decrease as 

the system approaches the tipping point. Furthermore, the slowest speed of recovery is observed 

for the population amplitudes which are closest to the bifurcation diagram. In this example, the 

maximum recovery rate corresponds to the tipping point, which is the point on the bifurcation 

diagram that lies the furthest from the current parameter value (dilution factor 1,300 in this case).  

 

 

Figure 6.15.  Simulation results and forecasting of the bifurcation diagram using the budding yeast 
population model (Eq. 6.1) for the system approaching to the tipping point from dilution factors smaller 
than the critical value.  

 

The forecasting results are presented in Fig. 6.15(c) which shows that the fixed points of 

the system are successfully forecasted. The tipping point is forecasted to occur at the dilution factor 
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of 1,470. Importantly, it is evident from the results that the upcoming transition is catastrophic. 

Furthermore, one can identify the basins of attraction of the stable equilibria in the upcoming 

parameter values. For example, at the dilution factor of 1,415, it is forecasted that the minimum 

population density at which the system maintains its ability to recover to the non-extinct state is 

0.250 × 10½𝑐𝑒𝑙𝑙𝑠/𝜇𝐿. A perturbation which would push the population below this boundary 

would lead to extinction.  

The same procedure is applied for the emergence case, when the system is approaching the 

bifurcation from dilution factors greater than 1,505. The system responses to large perturbations 

are demonstrated in Fig. 6.16(a), at three different dilution factors. One can observe from  

Fig. 6.16(b) that at each dilution factor the recovery rate is fast at first, then it slows down, and 

after passing a specific population density it speeds up again. It is also shown that the slowest 

recovery rate corresponds to population values around 0.400 × 10½𝑐𝑒𝑙𝑙𝑠/𝜇𝐿 (as shown in Fig. 

6.16(b)). Hence, the closest fixed point to the current state of the system has a non-zero amplitude 

which is a feature of subcritical (catastrophic) bifurcations. The forecasting results are shown in 

Fig. 6.16(c). The closest tipping point is forecasted correctly at the dilution factor of 1,470, where 

the system enters to a bistable region and a large perturbation can push the system from one 

equilibrium to another. The forecasted bifurcation diagram shows that the system is approaching 

a catastrophic transition where a jump may occur between equilibrium points. The forecasted 

bifurcation diagram is in agreement with the diagram computed directly from Eq. 6.1 (as shown 

in Fig. 6.16(c)).  

It should be noted that the maximum forecasted amplitude in the bifurcation diagram 

cannot be greater than the maximum amplitude caused by perturbations. If, for example, the 

perturbations cause a change in cell density smaller than 0.400 × 10½ 𝑐𝑒𝑙𝑙𝑠/𝜇𝐿, the tipping point 
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cannot be forecasted. However, it can still be identified from the forecasted portion of the diagram 

that the upcoming transition is catastrophic.  

 

 

Figure 6.16.  Simulation results and forecasting of the bifurcation diagram using the budding yeast 
population model (Eq. 6.1), for the system approaching to the tipping point from dilution factors greater 
than the critical value.  

 

These results show the applicability of the forecasting approach theoretically when no 

source of noise and uncertainty exists. In experimental applications, one needs more measurements 

to increase the accuracy and alleviate the effect of noise. However, the method is still expected to 

successfully forecast future stability of system, as was shown in the previous section.  
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6.6 Discussion  

Previous research has shown that several indicators based on changes in ecological time 

series can successfully ring the alarm when a system of interest approaches a critical transition. 

Our work highlights that by monitoring the system's response to perturbations it is possible to gain 

even more information about the future stability of the system. The proposed method requires 

larger perturbations compared to the small fluctuations around the equilibrium state which are 

required in early warning methods. However, we demonstrate that when such data can be obtained, 

the bifurcation diagram can be successfully extracted using the proposed forecasting method, 

leading to a deeper understanding of the system's future stability.  

Close to the bifurcation point, external perturbations lead to long transients before the 

system reaches its stable state, which means that the system’s recovery rate decreases. Therefore, 

the system's recovery rate from perturbations can be used as an indicator, and is correlated to the 

distance to bifurcations. The idea of relating the system recovery from perturbations to the 

upcoming ecological transitions has been also applied in some recent studies [142,157]. Those 

studies demonstrate that the increase in total recovery time from a perturbation is a good indicator 

of approaching a tipping point. In contrast, here we show that examining individual recovery rates 

at each amplitude instead of the total recovery time reveals more information about the system 

stability, such as the distance (in the parameter space) to the tipping point, the type of the transition 

and future stable and unstable equilibria.  

The experimental data presented in this study are in agreement with the forecasting results, 

despite the fact that no mathematical model was used for forecasting, and all measurements were 

performed prior to the transition. Also, an important finding of the forecasting method is that the 
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points of the bifurcation diagram which are closer to the current state of the system are forecasted 

with more accuracy compared to the rest of the diagram. For instance, in Fig. 6.14(c) the most 

accurately forecasted point is the tipping point, and the accuracy decreases for the points of the 

diagram that are farther. Similarly, it is expected that the forecasted points on the bifurcation 

diagram in the Fig. 6.13(c) have the best accuracy around the dilution factor of 1,300, and the 

accuracy decreases toward the tipping point. Hence, one should account for this effect while 

interpreting forecasting results. Note that this variation in accuracy was expected from the theory 

of the proposed forecasting method (see Methods), since the points on the bifurcation diagram are 

forecasted by extrapolating the recovery rates. Therefore, the highest accuracy corresponds to 

amplitudes with the recovery rates closest to zero, i.e. the amplitudes closest to the bifurcation.  

The use of parameters close to the tipping point generates more accurate forecasting results, 

since a more pronounced slowing down is observed close to transitions. For systems with low 

noise, a few measurements at each parameter value are sufficient for an accurate forecasting. 

However, in systems strongly affected by measurement and/or process noise, the more 

measurements are obtained, the higher the forecasting accuracy becomes. Also, the larger the 

perturbation is, the larger the noise intensity can be for a similar accuracy. For example, the method 

loses accuracy when the noise intensity is very high and the perturbations are very small. In such 

cases, one may choose to evaluate the system’s stability using previously developed early warning 

signals [26–33,35].  

The perturbations required for forecasting do not need to have the same intensity or the 

same source. They could be caused by various sources, either natural or anthropogenic. However, 

depending on the source of the perturbations, each perturbation might create different amplitudes 

for the resulting (perturbed) dynamics. The amplitudes in the forecasted bifurcation diagram 
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cannot exceed the amplitudes experienced by the system in these perturbations. Moreover, if 

perturbations are applied by an external intervention, one should be cautious of applying 

excessively large perturbations. Such perturbations might result in jumping to another equilibrium 

state if the system is operating in the region of bi-stability. This is of higher importance for complex 

ecosystems, which contain several connected states. In that case, perturbing a single state might 

affect the dynamics of other states as well as the ecosystem as a whole. Smaller perturbations can 

still be used to forecast the bifurcation diagram; however, the larger the perturbation is, the larger 

the region of the diagram that can be forecasted is.  

The forecasting approach is advantageous for complex systems which are at risk of 

catastrophic transitions, where there is a pressing need for information about upcoming thresholds. 

This work provides a tool to evaluate the stability of complex systems in more detail than early 

warning signals, and aids in the management of fragile ecosystems. 
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Chapter 7  

Data driven Identification of the Most Reliable Sensor Species to Predict Ecological 

Regime Shifts 

 

7.1 Introduction 

Complex systems might undergo abrupt transitions from one stable state to another [24]. 

Rapid degradation of grazelands [158], sudden collapse of global financial markets [159], failures 

in large-scale electric power transmission systems [160], abrupt climate changes [12,13], and 

collapse of populations in ecosystems [11,126] are examples of such dramatic changes. 

Anticipating such abrupt transitions is challenging, especially when they are caused by slow, 

gradual changes in underlying conditions. Moreover, the complexity of such systems makes it 

difficult to develop detailed and accurate models to predict when critical transitions might occur.  

To overcome this challenge, numerous studies have focused on developing model-free 

approaches to detect early-warning signals of impending critical transitions [2,33,88,161]. Most 

existing approaches are based on the phenomenon of “critical slowing down,” which is defined as 

the slowing down of the dynamics around an equilibrium when a system approaches a tipping 

point [162,163]. Some manifestations of critical slowing down, i.e. increasing variance and 

autocorrelation, in the temporal dynamics of a system have been proposed as model-free early-

warning signals to anticipate critical transitions [2,27,33,164]. The advantages of applying early-

warning signals to successfully predict when a system is approaching a tipping point have been 
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investigated in recent studies [26–33,35]. However, the application of such early-warning signals 

to large-dimensional systems (such as spatially-distributed systems with many components), 

remains a major challenge. The main challenging attributes of such systems are their complex 

dynamics involving large numbers of interacting components. Recent studies have shown that not 

all system components provide the same signal strength for predicting upcoming transitions [165–

167]. However, owing to practical constraints, it is not feasible to measure the dynamics of all 

components of a system to detect these early-warning signals. The utility of the information 

gleaned from system components in regard to critical slowing down depends on both the topology 

and dynamics of the system in question. Measuring only a subset of system components may lead 

to critical transitions remaining undetected, because the measured components may not provide a 

strong enough signal to detect the upcoming transition. Thus, determining which system 

components to monitor and how to interpret the measurements to obtain accurate early-warning 

signals is an important consideration.  

Critical slowing down is associated with the dominant eigenvalue of the locally linearized 

system, which suggests that the states most closely aligned with the corresponding dominant 

eigenvector are among the best candidates for measurements to extract early-warning signals (14). 

Mathematically, this is because the dynamics along the direction of the dominant eigenvector are 

at their slowest as the system approaches the critical transition. It is not feasible, however, to 

estimate the dominant eigenvector of a complex system in the absence of an accurate model. The 

dominant eigenvalue of a covariance matrix generated from system measurements has been 

proposed as an approximation [168] for cases where the system is close to the critical transition, 

and the system is subject to homogeneous noise (14). However, these requirements reduce the 

wide-spread efficacy of this approach.  
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Herein, we propose a data-driven approach to rank the species in an ecosystem (or the 

regions of a spatially distributed ecosystem) based on their reliability in providing a strong early-

warning signals of critical transitions. For this purpose, a data-driven algorithm, known as the 

eigensystem realization algorithm, was employed to approximate the eigenvectors of systems, and 

as a result, to identify the best states to monitor to extract the most reliable early-warning signals 

of critical transitions. The system response to perturbations was used as input to the algorithm to 

approximate its dynamical properties. System recoveries from large perturbations contain richer 

information of the system dynamics than its response to continuous small perturbations 

[88,130,169]. Moreover, system dynamics at relatively large amplitudes are used to mitigate the 

effects of small continuous heterogeneous perturbation noise. Several numerical examples were 

studied and the species in the considered ecosystems were ranked based on their capability to 

provide adequate early-warning signals. The challenges associated with ranking the nodes in 

complex systems and several conditions resulting in false early-warning signals were analyzed as 

well.  

 

7.2 Methods  

Many large-dimensional natural and physical systems are constantly affected by random 

environmental perturbations. Thus, it is common to model this type of system using first-order 

differential equations with noise terms. Consider a 𝑝-dimensional nonlinear dynamical system 

with a vector x(𝑡) of state variables described by first-order stochastic differential equations:  

 

𝑑𝑥q = 𝑓q(x)𝑑𝑡 + 𝜎q𝑑𝑊q,  (7.1) 
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where 𝑖 = 1,2, . . . , 𝑝. The force vector f(x) is a vector composed of all functions of 𝑓q, which 

models the deterministic evolution of the system, and 𝜎q is the noise level at state variable 𝑥q. Time 

series data can be obtained from model simulations. Next, the best indicator species to monitor 

(i.e., the species with the best early-warning signals) were identified using a data-driven algorithm 

to identify the slowest eigenvector of the system dynamics. To check that the species obtained do 

provide the best early-warning signals, the dynamics of all species was measured (i.e., by 

measuring all state variables 𝑥q obtained from simulations). Then, all early-warning signals of 

critical transitions were calculated to determine the best one, which was then compared with the 

one obtained from the proposed approach based on the data-driven algorithm.  

7.2.1 Early-warning signals  

Early-warning signals are statistical indicators that reveal proximity to a tipping point. 

These signals are applicable to systems with small fluctuations around their equilibrium state 

resulting from stochastic perturbations. As a system approaches a bifurcation that exhibits critical 

slowing down, the rate at which the system recovers from perturbations decreases, and the time 

required for the system to return to its equilibrium state increases. Thus, the system becomes more 

correlated with its past, which leads to an increase in autocorrelation. Furthermore, perturbations 

can accumulate, which leads to an increase in the size of the fluctuations and as a result, an increase 

in variance [11]. Sometimes, the increase in the value of early-warning signals may be detected 

well before a tipping point ([11][16,36,128,129]).  

Early-warning signals are estimated from time measurements of each state variable 𝑥q 

obtained from simulations. The most important factor in using early-warning signals is the way 

the trend in these signals is interpreted and the way this trend is monitored as system parameters 
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gradually change. In this study, trends in the early-warning signals prior to the critical transition 

were estimated based on the non-parametric trend statistic Kendall's 𝜏, which is a measure of the 

correlation between the rank order of the observed values and their order in time [170,171]. 

Kendall's 𝜏 takes value from −1 to 1, where −1 represents a monotonic negative trend, and 1 

represents a monotonic positive trend. A large positive Kendall's 𝜏 typically indicates that the 

system is approaching a transition. By comparing the Kendall’s 𝜏 of an early-warning signal 

calculated from different state variables, we can verify the reliability ranking obtained from the 

data-driven algorithm analysis.  

7.2.2 Data-driven algorithm to identify eigenvectors  

In this study, we used data-driven techniques that are traditionally used for experimental 

modal analysis in engineering combined with the early-warning signals to identify the best 

indicator species in a connected system and to select early-warning signals with good reliability 

for predicting critical transitions. In particular, we used a data-driven algorithm known as the 

eigensystem realization algorithm, which is an effective method for identifying system dynamic 

characteristics using time domain measurements of the system dynamics [74]. This time domain 

multi-input multi-output algorithm provides estimates of modal parameters of the system (i.e., 

eigenvalues and eigenvectors of a system in the vicinity of its equilibrium) using measurements of 

system responses to external inputs and perturbations.  

Consider a situation in which a stable system is exposed to an initial perturbation that 

results in a free response (i.e., decay) to its equilibrium state. Let y denote an 𝑛-dimensional vector 

of measured state variables as the system recovers from perturbation. The system may have more 

than 𝑛 states. Then consider that the measured response is sampled with a 𝛥𝑡 time increment, and 
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y(𝑘) denotes the measured state variables at 𝑡 = 𝑘	𝛥𝑡, 𝑘 = 0,1,2,…,. If the measurements are 

available from 𝑚 independent perturbations, one can define Y(𝑘) as a sequence of experimentally 

measured state variables as 𝑡 = 𝑘	𝛥𝑡, i.e. Y(𝑘) = [yW(𝑘)	yX(𝑘)…	yt(𝑘)]. The first step in the 

algorithm was to form generalized Hankel matrices from the discrete measurements as follows 

[74,75]:  

 

H(𝑘) = �

Y(𝑘) Y(𝑘 + 1) … Y(𝑘 + 𝑣 − 1)
Y(𝑘 + 1) Y(𝑘 + 2) ⋯ Y(𝑘 + 𝑣)

⋮ ⋮ ⋱ ⋮
Y(𝑘 + 𝑟 − 1) Y(𝑘 + 𝑟) ⋯ Y(𝑘 + 𝑟 + 𝑣 − 2)

�

i_×t�

,  (7.2) 

 

where parameters  and  are chosen depending on the particular application and can be tuned for 

optimal accuracy by convergence studies. The singular value decomposition of H(0) can be 

written as H(0) = P	Z	J�, with the singular values in the diagonal matrix Z ordered in decreasing 

order (largest on the first row). The rank of the Hankel matrix is determined by the number of 

nonzero singular values in Z. However, the presence of measurement noise and/or (weak) 

nonlinearities leads to additional nonzero singular values of small magnitude [75]. Selecting the 

first N largest singular values (i.e., the dominant ones), matrices Z, J, and P are truncated and 

denoted by Z, J, and	P, respectively. Next, the state transition matrix S can be defined as follows 

[75]:  

S = ZcW/X	P�	H(1)	J	ZcW/X.  (7.3) 

 

r v
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Note that matrices Z, J, and	P are obtained from H(0), while S is obtained also using H(1). Next, 

denote by T, the matrix of eigenvectors of S. Matrix T can be used to transform S into the diagonal 

matrix S� as follows:  

S� = TcWST,  (7.4) 

where the ith diagonal element of matrix S� is �̃�q. It can be shown that the system eigenvalues are:  

ηq =
W
e`
ln(�̃�q) = 𝜎q ± 𝑖𝜔\ ,  (7.5) 

Furthermore, the matrix C contains the corresponding eigenvectors of systems as follows:  

C = rEi�PZW/XsT,  (7.6) 

where Ei� = [Ii Oi Oi … Oi]; Ii and Oi represent the identity and zero matrices of order 

𝑛, respectively.  

Based on this approach, our goal was to approximate the dominant eigenvector of 

dynamical ecosystems without a priori knowledge of the underlying system equations (i.e., 

without a mathematical model of the system, but using only time-series measurements of some of 

its states). The system is exposed to perturbations from various sources, either natural or 

anthropogenic. The response of each species in the ecosystem to such small/large perturbations 

were measured and used to generate the matrix Y(𝑘). Next, the slowest eigenvalue η$ and its 

corresponding eigenvector c$ were obtained using Eqns. (7.5) and (7.6). Once c$ was determined, 

it was not necessary to monitor/measure all species. Thus, only a subset of the species was 

monitored. The subset of species that corresponded to the largest absolute values in c$ were the 

most reliable in providing early-warning signals of critical transitions because those species have 

the most participation in the eigenvector where the slowing down of the dynamics occurs. For 

example, consider that only one species was monitored. The species that corresponds to the entry 

with the largest absolute value in c$ would be the optimal species to monitor.  



 164 

An important consequence of using data along c$ is that the analysis is more robust to the 

presence of heterogeneous noise in the system compared with other methods. One should note 

that, although the eigensystem realization algorithm and other similar data-driven methods provide 

estimated eigenvalues, these estimated eigenvalues are not certain and are sensitive to system and 

algorithm parameters such as noise and dataset length. In contrast, the estimated eigenvectors are 

more robust and reliable. Thus, we focused on the estimated eigenvectors in our analysis.  

In the present study, we evaluated this approach by ranking the reliability of the components 

of several well-known ecological models and comparing the ranking results with the early-warning 

signals computed from the time-series measurements.  

 

7.3 Results and discussion  

Three ecological models with increasing complexity due to increasing dimensionality were studied 

to gain insights and to evaluate the proposed approach.  

7.3.1 Two species competition model  

The first model we considered was a two-species Lotka–Volterra competition model, which 

considered two interacting populations at time 𝑡. The dynamics of the system with random 

excitations from the environment can be studied using the following stochastic differential 

equations [172,173]:  

 

𝑑𝑥W = %𝑥W ©1 −
²Ìg£Ì´²´

#Ì
ª + 𝑢W' 𝑑𝑡 + 𝜎W𝑑𝑊W,  

𝑑𝑥X = %𝑥X ©1 −
²´g£´Ì²Ì

#´
ª + 𝑢X'𝑑𝑡 + 𝜎X𝑑𝑊X,  

(7.7) 
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where 𝑥q is the population density of each species, 𝐾q is the carrying capacity of the 𝑖ab species, 

and 𝛼qò is the competition coefficient representing the effect of species 𝑗 on species 𝑖. We assumed 

a small immigration term 𝑢q to prevent species from reaching extinction, following a previous 

study [174].  

 

 

Figure 7.1. Bifurcation diagram for the two-species Lotka–Volterra competition model. Blue and red 
lines represent stable and unstable fixed points, respectively. Arrows show the critical transition 
considered.  

 

We employed the data-driven algorithm discussed in Sec. 7.2 to identify the slowest eigenvector 

and determined the best indicator species. System recoveries from perturbations were the only 

input to the algorithm. The carrying capacity 𝐾W of the first species was chosen as a bifurcation 

parameter. As 𝐾W decreased, the system approached a catastrophic transition at 𝐾W = 0.85, as 

shown in Figure 7.1. We used small perturbations of the system in the pre-bifurcation regime as 

shown in Figure 7.2, for instance at 𝐾W = 1.1.  
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Figure 7.2. Noisy system recoveries from perturbations at 𝐾W = 1.1 used as an input to the data-driven 
algorithm to identify the eigenvectors of the two-species Lotka–Volterra model.  

 

Figure 7.3(a) shows the exact eigenvectors of the system at the tipping point (i.e., the reference 

eigenvectors computed using the model in Eq. (7.7)) as well as the approximated eigenvectors of 

the system. The approximated eigenvectors match the reference eigenvectors, indicating that the 

data-driven algorithm works well in this case. Thus, a system model is not required to estimate the 

slowest eigenvector of the system, which simplifies the procedure for identifying which indicator 

species to monitor to extract reliable early-warning signals.  

Figure 7.3(b) shows the variance of each species (taken separately) and the corresponding 

Kendall’s 𝜏 obtained from noisy measurements collected for increasing values of the bifurcation 

parameter 𝐾W. These results show that it is possible to extract reliable early-warning signals by 

measuring the population density of either species. Nevertheless, measuring the population density 

of the first species has a slight advantage. However, one should note that the dominant direction 

approximated at this system parameter is different from the one estimated at the critical parameter, 

i.e. at 𝐾W = 0.85. In general, the eigenvectors may vary with the parameter as the system 

approaches the transition. In which case, the approximation can be updated if the system is 
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operating at parameters significantly far from the parameter corresponding to the initial 

approximation. This topic is discussed in more detail in Sec. 7.4.  

 

  

(a) (b) 

Figure 7.3. (a) Exact (reference) eigenvectors and approximated eigenvectors obtained using the data-
driven algorithm. (b) Early-warning signals recorded using each one of the two species. Both species 
provide a good early-warning signal of critical transition.  

 

 

Figure 7.4. Bifurcation diagrams for each node in a network of four interacting species in a chain 
configuration. A critical transition occurs at 𝜇 = 6.8.  

 



 168 

7.3.2 Network of four interacting species  

We considered a network of four connected species in a chain configuration (Fig. 7.4). The goal 

of the analysis was to rank the species of this system (i.e., a ranking of the nodes) based on their 

reliability in providing early-warning signals of the upcoming critical transition. The dynamics of 

each species are governed by the following stochastic differential equation:  

 

𝑑𝑥q = %𝑥q ©1 −
∑ £<c²cc

#<
ª + 𝑢q' 𝑑𝑡 + 𝜎q𝑑𝑊q ,							𝑖, 𝑗 = 1,2,3,4,  (7.8) 

 

where 𝑟q is the maximum intrinsic growth rate, 𝐾q the carrying capacity of species 𝑥q, and 

competition between species is defined by coefficient 𝛼qò. The values for 𝑟q, 𝐾q, and 𝛼qò were 

randomly chosen from the intervals [0.6,1], [5,15], and [0,1.5], respectively. Moreover, a small 

immigration term 𝑢q is assumed in the population of each species to mimic dispersal that prevents 

species from reaching extinction and negative values [174,175]. 

The parameter 𝜇 was introduced following a previous study [175] to reflect the effect of 

environmental change on the system by modifying the carrying capacity of each species as 𝐾′q =

	𝐾q	(1	 +	𝜂q 	𝜇). The parameter 𝜂q was selected randomly from the interval [0,1] for each species, 

reflecting the fact that the change in the environment does not affect all species in the same way. 

By increasing the parameter 𝜇, the system underwent a critical transition (Fig. 7.4).  

Theoretical analysis of the equations showed that the exact dominant eigenvector of the system at 

the critical transition was 𝑣T = [−0.002,0.734,−0.661,0.158]�, reflecting that species 2 and 3 

were the best ones to be monitored for identifying the upcoming transition. In contrast, species 1 

and 4 participated the least in the dominant eigenvector. Thus, if the system stability was evaluated 

by monitoring species 1 and/or 4, then only a weak signal would be detected until the system is 
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extremely close to the transition. To observe this phenomenon, the model in Eq. 7.8 was simulated 

using numerical methods to obtain surrogate measurements taken from each node and their 

performance assessed through comparison. Heterogeneous random excitations were modeled by a 

random walk process. The parameter 𝜇 was started at 𝜇 = 3.5 and was gradually increased toward 

the critical value, i.e. 𝜇 = 6.8.  

 

 

Figure 7.5. Early-warning signals recorded using each node in a network of four interacting species in a 
chain configuration. Species 2 and 3 provided the most significant early-warning signal of the critical 
transition. The vertical dashed line represents the critical transition.  

 

Figure 7.5 shows the variance measured from the dynamics of each node. Species 2 and 3 

showed the most significant signal of approaching a transition, while species 1 and 4 did not 

provide much useful information. This procedure was repeated 100 times using random 

heterogeneous measurements and process noise. The distribution of the measured Kendall’s 𝜏 for 

the signal recorded at each node was computed. The results clearly show that species 2 and 3 

provide the strongest Kendall’s 𝜏 in most cases (Fig. 7.6), indicating that they are the best indicator 

species in this system, while species 1 and 4 did not provide reliable early-warning signals. This 

example demonstrates the importance of identifying the best indicator species in a system.  

To identify the best indicator species for this system without a model of the system, we applied 
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the data-driven algorithm to identify the slowest eigenvector of the system using only measured 

system recoveries to small perturbations. We considered the recoveries obtained at 𝜇 = 4.5. A 

sample of the recovery data used in the algorithm is shown in Figure 7.7.  

Figure 7.8 shows a comparison of the exact dominant eigenvector computed using 

theoretical formulations and the approximated eigenvector by the data-driven algorithm. The 

results suggest that the best indicator species can be identified using this model-free approach. The 

algorithm successfully ranked the species based on their importance regarding the extraction of 

reliable early-warning signals using some measurements of the system response to perturbations. 

The algorithm correctly ranked species 2 as the best indicator species and species 3 as the second-

most reliable option, while it indicated that measuring species 1 would not provide a strong signal 

of approaching an upcoming critical transition.  

 

 

Figure 7.6. Distribution of computed Kendall’s 𝜏 of early-warning signals recorded at each node for 
100 independent simulations with random measurement and process noise. Species 2 and 3 were the 
best to monitor because they provided the most significant increasing trend in their early-warning 
signals.  
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Figure 7.7. Examples of system recoveries from perturbations at 𝜇 = 4.5 used as input to the data-
driven algorithm to identify the slowest eigenvector of a network of four interacting species.  

 

 

Figure 7.8. Slowest eigenvector of the system estimated using the proposed approach and the exact 
eigenvector (reference). The data-driven approach correctly identified nodes 2 and 3 as the ones with 
the most contribution and node 1 as the one with the least contribution to the dominant eigenvector. 

7.3.2.1 Robustness of early warning signals to data analysis parameters 

The decision regarding the stability of a system is taken looking at the trend of extracted 

early warning signals as the system parameter is gradually changing. Kendall’s 𝜏 coefficient is the 

one which is often used to study the trend of statistics related to the critical slowing down 

phenomenon [170,171]. Because the sequence of the statistics are estimated from the time series, 

the value of Kendall’s τ are affected by parameters such as window size, sample rate and etc. 

Therefore, the choice of data analysis parameters will affect the correlation in data, and thus affects 
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the distribution of Kendall’s τ. In this section, we study how sensitive are the extracted Kendall’s 

𝜏 from measuring the dynamics of each species to the choice of different set of data analysis 

parameters, and how robust are the identified Kendall’s 𝜏 against measurement errors.  

For the four interacting species studied in Sec. 7.3.2, we recorded system time series as it 

gradually approaches to the transition. We calculated the Kendall’s τ of measured variance for a 

range of sampling resolutions and window sizes for each of the four species, and the results are 

shown in Fig. 7.9. It is observed that the Kendall’s τ recorded from measuring species 2 and 3 are 

a smooth function of time resolution and the window size. However, looking at the plot of species 

1, the recorded Kendall’s τ shows a completely random behavior for different choice of 

parameters. For species 4, however, the plot is not significantly smooth or random, and lies 

between that of species 1 and species 2 and 3. Comparing the plots with the ranking results of Sec. 

7.3.2., it is inferred that the uncertainty associated with the plots for each species is directly related 

to its contribution to the dominant eigenvector.  

To analyze how robust are the reported Kendall’s 𝜏 in Fig. 7.9 for each species, we added 

a small measurement uncertainty to the recorded time series and calculated the Kendall’s τ for 

extracted early warning signals from measurements taken from each species. Comparing the 

results of this analysis (Fig. 7.10) with the previous results shown in Fig. 7.9, it is observed that 

the reported values of Kendall’s 𝜏 for species 2 and 3 are robust to measurement uncertainties and 

the trend of the early warning signals recorded from these species remains almost the same as the 

case of clean measurements. The values of Kendall’s 𝜏 recorded from species 4 has been 

significantly affected by the added measurement uncertainty, even in the regions where there are 

high resolution data available and a wide window is selected. Species 1, as of before, shows a 

completely random behavior and its reported early warning signals are not reliable.  
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Based on above analysis, it is observed that early warning signals recorded from the 

identified most reliable species, i.e. species 2 and 3, are more robust to data analysis parameters 

and measurement errors. Results of Figs. 9 and 10 show that for the same system observation, the 

reported Kendall’s 𝜏 by species 1 can take values from large positive to large negative numbers 

depending on the choice of data analysis parameters, meaning that this species is completely 

uncertain about an upcoming regime shift. The uncertainty significantly decreases if we monitor 

the best indicator species, i.e. species 2 and 3, and they confirm existence of an increasing trend in 

the measured early warning signals in all set of studied parameters. This shows the significance of 

identifying the best sensor species to predict regime shifts since the predictions are more robust to 

the choice of data analysis parameters as well as uncertainties in measurements.  

Note that this study does not provide the time resolution and window size which would be the best 

to extract early warning signals. To draw such a conclusion, a more detailed analysis of system 

statistics is required, as what is done in [40].  

7.3.3 Spatial harvesting model  

Identifying the best species to monitor in a system of higher dimensions, or the area to 

monitor in a spatially-distributed system, is of particular importance. When the system is spatially 

distributed and has a large dimension owing to a large number of interacting regions, it is costly 

and often infeasible to monitor the dynamics of the whole system. Therefore, it is desirable to 

identify a subset of indicator regions that can provide reliable early-warning signals of upcoming 

critical transitions. Such indicator regions are viewed similar to indicator species in the previous 

examples.  
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Figure 7.9. Measured Kendall’s 𝜏 using the recorded signal of each of the four species of example 7.3.2. 
For a single observation of system dynamics as it approaches to the critical transition, Kendall’s 𝜏 is 
approximated using measurements taken at each of the four species for different set of sampling 
resolutions and window sizes.  

 

 

Figure 7.10. Measured Kendall’s 𝜏 for the time series used to construct Fig. 7.9 with an added 
measurement uncertainty to each data point. 
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In this section, we considered a 2D spatially distributed ecosystem (a harvesting model), 

which was discretized in a grid of interconnected regions. The spatial harvesting model was as 

follows:  

 

\²<,c
\`

= 𝑟q,ò𝑥q,ò 	Ñ1	– 	
²<,c
#<,c
Ö −	𝑐q,ò

²<,c
´

²<,c
´ gW

+𝐷r𝑥qgW,ò + 𝑥qcW,ò + 𝑥q,ògW + 𝑥q,òcW − 4𝑥q,òs + 𝜎q,ò𝑑𝑊q,ò,  (7.9) 

 

where 𝐾q,ò  is the carrying capacity in region (𝑖, 𝑗), 𝑐q,ò is the harvesting rate in region (𝑖, 𝑗), 𝐷 is 

the dispersion rate, 𝑥q,ò is the biomass in region (𝑖, 𝑗) (i.e., a scalar state variable for each region), 

𝑟q,ò is the maximum growth rate in region (𝑖, 𝑗), and 𝜎q,ò  is the standard deviation of the noise 

excitation in region (𝑖, 𝑗), for 𝑖 = 1,… , 𝑃, and 𝑗 = 1,… ,𝑄, with 𝑃 and 𝑄 being the number of 

nodes in the two dimensions of the spatially-distributed system. The dynamics in each region (𝑖, 𝑗) 

are affected by a reaction process described by the nonlinear deterministic term 

 𝑟q,ò𝑥q,ò 	©1	–	
²<,c
#
ª −	𝑐q,ò

²<,c
´

²<,c
´ gW

. Each region also interacts with its neighboring regions (with periodic 

boundary conditions) through a diffusion process with the dispersion rate 𝐷. We assumed that 

independent random excitations existed in each region, represented by the random walk process 

𝑑𝑊q,ò. We defined the harvesting rate in region (𝑖, 𝑗) as 𝑐q,ò = 𝜇q,ò𝑐t ², where 𝜇q,ò ∈ [0.7,1], 

meaning that the harvesting is non-uniform among different patches. By increasing the harvesting 

rate 𝑐t ², the system exhibited a critical transition from an underexploited condition (a high-

population equilibrium) to overexploitation (a low-population equilibrium).  
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(a) 

   

(b) (c) (d) 

Figure 7.11. (a) Bifurcation diagram of the spatial harvesting model. Only the stable branches are shown 
in this figure. (b) The value of the growth rate 𝑟q,ò in each region. (b) The value of the carrying capacity 
𝐾q,ò  in each region. (d) The value of the harvesting rate 𝜇q,ò in each region. 

 

The proposed data-driven approach was applied to identify the best indicator regions in 

this large-dimensional ecosystem. Consider 𝑃 = 𝑄 = 5, which results in a 25-dimensional system. 

The bifurcation diagram of the system is depicted in Figure 7.11(a). The dispersion rate was 

selected to be 𝐷 = 0.2 for all patches. To introduce spatial heterogeneity to the system, the growth 

rates (𝑟q,ò), carrying capacities (𝐾q,ò) and harvesting rates (𝜇q,ò) of each region were selected 

randomly from the intervals [0.8,1], [7.5,10] and [0.7,1], respectively (Fig. 7.11). 

Identifying the best indicator regions in this system is important because monitoring all 

regions would require an excessive cost and effort. Thus, the proposed data-driven approach was 

employed with the measured system responses to small perturbations at a harvesting rate of  
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𝑐t ² = 2. In this example, instead of a single perturbation, system responses to 5 separate small 

perturbations were used to accurately identify the slowest eigenvector of the system. A larger 

number of perturbations was required because a single perturbation might not excite the whole 

dynamics of the system, i.e. it may not create dynamics along enough eigenvectors owing to the 

large-dimensionality of this system. A lack of sufficient dynamics can lead to less accurate 

estimations of the slowest eigenvector.  

Theoretical analysis of the system showed that the slowest eigenvector of the system was 

that shown in Figure 7.12(a). Thus, the best indicator regions for this system were those around 

the bottom left corner of the field. The results of this model-free, data-driven approach are shown 

in Figure 7.12(b), and were consistent with the theoretical predictions. The results indicate that the 

most important regions in this spatially-distributed system can be accurately estimated without any 

knowledge of the underlying system equations. Region 21 was identified as the most-favorable 

region to be monitored, while the regions in the top right corner were correctly identified as the 

least-favorable regions to be monitored.  

In spatially-distributed systems, it might be challenging to measure the entire system to 

approximate the dominant eigenvector. Furthermore, even if the best indicator region is known, it 

might not be accessible or feasible before long-term measurements to extract early-warning signals 

for critical transitions. Hence, it is important to identify the best indicator regions among those that 

are accessible for measurement. In the next example, we assumed that only some of the regions 

were accessible for measurements in the spatial harvesting model. For instance, we assume that 

the regions in the bottom and left edges of the system were the only measurable ones, and their 

response to small random perturbations was employed in the system identification algorithm. 

Figure 7.12(c) shows the ranking result for the measured patches. Results of this data-driven 
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approach correctly identified that region 21 was the best indicator region compared with the other 

measured regions.  

  
 

(a) (b) (c) 

Figure 7.12.  The slowest eigenvector obtained using (a) theoretical formulation, (b) data-driven 
algorithm by measuring all regions, and (c) data-driven algorithm measuring only the regions along the 
bottom and left edges of the 2D domain. Regions that were not measured are shown in white; no 
information is available for these regions. Results from all analyses suggest that region 1 was the best 
indicator region.  

 

The model of Eq. (7.9) was simulated using numerical methods to compute early-warning 

signals using measurements taken from each region and their performance was compared. Random 

heterogeneous excitations with standard deviation 𝜎q,ò were considered. In addition, random 

measurement noise was added to the measured signals. The harvesting rate 𝑐t ² started at  

𝑐t ² = 1.5 and gradually increased toward the critical value of 𝑐t ² = 2.35. Figure 7.13 shows 

a comparison of the measured Kendall’s 𝜏 for the early-warning signals extracted from selected 

regions. The results indicate that measuring region 21 provided the best indicator of the critical 

transition in this system, while regions 13 and 5, for instance, did not provide as much useful 

information for predicting the critical transition. 
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Figure 7.13.  Distribution of computed Kendall’s 𝜏 of early-warning signals for the spatial harvesting 
model discussed in Sec. 7.3.3. Signals were recorded at regions 5, 13, and 21 for 100 independent 
simulations in the presence of random heterogeneous measurements and process noise.  

 

7.4 Complications arising from the best-indicator node ranking procedure 

In the procedures discussed in previous sections, we focused on identifying the best indicator 

nodes in ecosystems using measured system dynamics at several nodes. The ranking procedure 

was mainly based on the direction of the dominant eigenvector, which is a valid assumption when 

the system is reasonably close to the transition. However, ranking the system components can be 

more complicated and requires a more detailed analysis of its underlying dynamics. Unfortunately, 

performing such a detailed analysis might not be feasible in practice. However, it is important to 

be aware of the factors affecting the reported early-warning signals to accurately interpret the 

results. 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

Fr
eq

ue
nc

y

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Kendall's 

0

20

40
Cell 21

Cell 13

Cell 5



 180 

7.4.1 Challenges with large-dimensional systems 

In large-dimensional systems, the system has a large set of eigenvalues. In such systems, 

several eigenvalues other than the dominant one might slow down and approach zero as the system 

approaches the transition. Hence, there may be several eigenvalues slowing down and affecting 

the early-warning signals, particularly those with a close value to the dominant eigenvalue. In such 

cases, the system state that contributes the most to the dominant eigenvector would still be among 

the best to be measured. However, small entries in the dominant eigenvector do not necessarily 

mean their corresponding states do not provide measurable early-warning signals.  

As an example, the same harvesting model was considered, but with a different parameter 

distributions. Figure 7.14 shows the trend in eigenvalues of this system as it approaches the 

transition, which occurs at the harvesting rate of 𝑐t ² = 2.17. The eigenvalues were closely 

spaced, and they were all slowing down as the harvesting rate increased and, as a result, more than 

a single eigenvalue was affecting the early-warning signals. In this case, the dominant eigenvector 

did not necessarily reflect the ranking of the nodes based on the reliability of their early-warning 

signals, unless the system was extremely close to the transition. To correctly rank the regions in 

this system, at least the first two dominant eigenvectors should be considered because their 

corresponding eigenvalues are close for a wide range of parameters before the transition occurs. 

Figure 7.15 shows the first two dominant eigenvectors of the system close to the transition. The 

dominant eigenvector shows that region 5 was the best to be measured. Moreover, based on the 

dominant eigenvector, region 21 would not provide measurable slowing down and should not be 

measured. However, Figure 7.15(b) shows that region 21 contributed the most to the second 

eigenvector of the system, which indicates that it may be a good candidate for monitoring. 
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We performed numerical methods to compute early-warning signals using measurements 

taken from each region and compared their performance. Figure 7.16 shows the results of a 

comparison of the measured Kendall’s 𝜏 for the extracted early-warning signals among 

measurements from regions 5, 13, and 21. Results show that measuring region 5 provided a strong 

signal for the risk of critical transitions. Interestingly, one region 21 also provided comparably 

reliable early-warning signals and effectively captures the upcoming transition. However, 

considering only the dominant eigenvector does not confirm that. Moreover, although region 13 

had almost the same value as region 21 in the dominant eigenvector, it was not a good candidate 

to be monitored because its contribution to the second dominant eigenvector was insignificant as 

well (Fig. 7.16). The results showed that, in large-dimensional systems, the effect of more than a 

single eigenvector should be considered to successfully rank the importance of species in the 

system for providing accurate early-warning signals. 

 

 

Figure 7.14. Eigenvalues corresponding to the 5 × 5 spatial harvesting model discussed in Sec. 4.1 and 
their variation with increasing harvesting rate.  
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(a) (b) 

Figure 7.15. Eigenvector corresponding to the 5 × 5 spatial harvesting model discussed in Sec. 4.1. (a) 
the first dominant eigenvector, (b) the second dominant eigenvector. 
 

 

 

Figure 7.16.  Distribution of computed Kendall’s 𝜏 of early-warning signals for the spatial harvesting 
model discussed in Sec. 7.4.1. Signals were recorded at regions 5, 13, and 21 for 100 independent 
simulations in the presence of random heterogeneous measurements and process noise. 

7.4.2 Variation of eigenvectors and a false alarm 

Early-warning signals, including increases in variance and autocorrelation, can signal that 

a system is approaching a transition. However, for this statement to be completely valid, the system 



 183 

must be close enough to the critical point so that the effect of changing system dynamics on the 

results can be ruled out. The issue, however, is that it is not clear how far a system is from 

transition. Early-warning signals are a function of both eigenvalues and eigenvectors of a system. 

Consider a simple two-dimensional linear system with parameter 𝜇, eigenvalues 𝜆W(𝜇) and 𝜆X(𝜇), 

and the right eigenvectors vW and vX, respectively. The dynamics of the system would be as 

follows: 

𝑑x(t)
𝑑𝑡 = 𝐴(𝜇)x(t) + f(𝑡) (7.10) 

where x is the state vector, 𝐴 is the system coefficients matrix, and f is the forcing term that is 

considered to be a stochastic excitation in this case, i.e. f = [γWdWW, γXdWX]�. The transformation 

Φ = [vW	vX], where vW and vX are the right eigenvectors of matrix 𝐴, can be defined as: 

 x(t) = 𝛷q(t), where q is the vector of modal coordinates. If variance is considered to be the early-

warning indicator, then in the steady state dynamics, the variance of the states xW and xX, denoted 

by 𝜎mÌ
X  and 𝜎m´

X , can be defined as follows: 

𝜎mÌ
X = 𝑣W,WX 𝜎nÌ

X + 𝑣W,XX 𝜎n´
X + 2𝑣W,W𝑣W,X𝜎nÌn´

X , 

𝜎m´
X = 𝑣X,WX 𝜎nÌ

X + 𝑣X,XX 𝜎n´
X + 2𝑣X,W𝑣X,X𝜎nÌn´

X , 
(7.11) 

where 𝜎nÌ
X  is the modal variance containing the information regarding the variance of the dominant 

eigenvalue 𝜆W(𝜇), 𝜎n´
X  contains information of the variance of the second eigenvalue 𝜆X(𝜇), and 

𝜎nÌn´
X  is the covariance of the modal coordinates. Moreover, 𝑣q,ò  represents the 𝑖`¸ element of the 

𝑗`¸  eigenvector. Modal variances were calculated as follows: 
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𝜎nÌ
X = ¸Ì(9Ì,oÌ,o´)

ïÌ
, 

𝜎n´
X = ¸´(9´,oÌ,o´)

ïÌ
, 

𝜎nÌn´
X = ¸p(9Ì,9´,oÌ,o´)

ïÌgï´
, 

(7.12) 

 

where zW and zX are the left eigenvectors of the system matrix 𝐴, and ℎqs are scalar functions.  

Considering the system has a dominant eigenvalue, the modal variance 𝜎nÌ
X  contains 

important information regarding the upcoming transition because it is inversely proportional to the 

dominant eigenvalue of the system.  Taking the variance of xW as an early-warning signal and 

assuming 𝜆W(𝜇) ≫ 𝜆X(𝜇) for simplicity, a rise in the early-warning signal can be observed from 

Eq. (7.11) due to two main reasons: 1) the dominant eigenvalue approaching zero, which increases 

the modal variance 𝜎nÌ
X , and 2) change in the eigenvectors of the system. Note that 𝜎nÌ

X  is the 

quantity that contains information of the upcoming transition (since it includes the dominant 

eigenvalue), and measuring/identifying the modal variance 𝜎nÌ
X  would provide a value that is 

independent of the system states and should be used as the early-warning signal of the upcoming 

transition. Identifying this quantity, however, requires a detailed knowledge of the system, 

including measurements of all state variables. Equation (7.11) shows that a significant change in 

the dominant eigenvector by parameter (𝜇) can reduce the efficacy of measured early-warning 

signals by over- or underestimating its actual value. In some situations, change in the eigenvectors 

can result in raising a false critical-transition alarm. In dynamical systems, change in the 

eigenvectors with parameter is unavoidable, and the consequences for approximated early-warning 

signals must be examined to properly process and interpret the results. 
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As an example, we considered a simple two-dimensional system consisting of two 

interacting nodes with 𝜇 as the parameter. The linear instability occurs at 𝜇 = 0. The system was 

designed to have a dominant eigenvalue approaching zero. For simplicity, the other eigenvalue 

selected was large enough (|𝜆X(𝜇)|≥ 10|𝜆W(𝜇)|) so the effect of the second eigenvalue and its 

corresponding eigenvector on the recorded early-warning signal was negligible. Figure 7.17(a) 

shows the change in the dominant eigenvector as the system approaches the instability. We 

observed that, although the component corresponding to node 1 (𝑥W) in the dominant eigenvector 

was always greater than that of node 2, it decreased toward its final value at the critical parameter. 

Conversely, the contribution of node 2 to the dominant eigenvector of the system was always less 

than that of node 1; however, its contribution was increasingly significant as the system 

approached the transition. If only the amplitudes of the dominant eigenvector at a fixed parameter 

were considered, then node 1 might be identified as the best indicator of the upcoming critical 

transition. Figure 7.17(b) shows the computed variance of each node as the system gradually 

approaches the transition. We observed that node 2 provided a more accurate prediction of the 

upcoming transition. For the parameter values up to 𝜇 = −0.5, node 1 did not identify the 

upcoming transition, while the early-warning signal corresponding to node 2 exhibited a 

significant increasing trend. Notably, however, neither of the nodes provided correct early-warning 

signals because the signals provided by nodes 1 and 2 under- and overestimated the system 

distance to the transition, respectively. This was due to a significant change in the contribution of 

each node to the dominant eigenvector (Fig. 7.17(a)). 
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(a) (b) 

Figure 7.17. (a) Change in the dominant eigenvector of the example system as the system approached 
the transition at 𝜇 = 0, (b) early-warning signals measured from system components. 

 

In the next example, we demonstrated a situation in which, change in the dominant 

eigenvector with parameter resulted in a completely false alarm. We considered a simple system 

of two interacting nodes, approaching a transition at 𝜇 = 0, in which the dominant eigenvector 

changed with parameter as shown in Figure 7.18(a). Figure 7.18(b) shows the recorded variance 

of the nodes as the system approached the transition. We observed that a change in the eigenvector 

can lead to a false alarm as reported by node 2 at 𝜇 = −2.5.  

We have provided two simplified examples with a low-dimensional system and only a single 

dominant eigenvalue. The examples reveal the challenges that might be associated with 

interpreting early-warning signals. Further complications were found with large-dimensional 

systems with several close eigenvalues, and the well-known assumptions of early-warning signals 

are only maintained when the system is reasonably close to the transition. Theoretically, the 

solution to this issue would be to perform an eigenvalue decomposition and filter out the effect of 

all changes in the system except the change in the dominant eigenvalue. However, this would 

require continuous identification of left and right eigenvectors of the system. Although there are 
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experimental procedures for identifying such properties [70,71], applying them to real systems, 

especially ecosystems, is costly and difficult. A data-driven algorithm such as the eigensystem 

realization algorithm could be used to approximate the dominant eigenvector of the system at 

several parameter values when possible and monitor its changes over time to get an idea of how 

the dominant modes vary with the parameter and how reliable the computed early-warning signals 

are.  

 

  

(a) (b) 

Figure 7.18. (a) Change in the dominant eigenvector of the example system as the system approached 
the transition at 𝜇 = 0, (b) early-warning signals measured from system components. 

 

7.5 Conclusions  

Detecting early-warning signals of critical transitions for large-dimensional complex 

ecosystems is a challenging task owing to the complex system dynamics involving many species. 

In such complex systems, to determine where to measure the system and how to interpret the 

measurements to achieve the most accurate early-warning signals of an upcoming transition is an 

important requirement. Herein, we propose a data-driven approach to rank the elements of a system 

based on their reliability in providing the best early-warning signals of critical transitions. We used 
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experimental modal analysis techniques, which are widely used in engineering, combined with the 

early-warning signals to identify the best-indicator nodes in a connected system and extract the 

most reliable early-warning signals of critical transitions. The system response to perturbations 

was recorded and used as an input for the proposed technique, which is a common tool for 

identifying dynamical system features.  

Numerical examples demonstrated that not all the species in an ecosystem provide reliable 

early-warning signals of a system approaching a transition, and the proposed technique was able 

to successfully rank the species/regions in the studied ecosystems based on the accuracy of their 

early-warning signals. In addition, results indicated that, to correctly rank species and interpret the 

recorded early-warning signals in an ecosystem, other dynamical features of the system should 

also be considered. For instance, we observed that gradual change in the system eigenvectors 

resulted in over- or underestimating trends in the recorded early-warning signals. Moreover, the 

results verified that, in large-dimensional systems, the effects of several eigenvectors other than 

the dominant one must be considered to successfully rank the importance of the species in the 

system.  
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Chapter 8  

Conclusions and future work 

 

8.1 Summary 

It is becoming increasingly evident that many complex systems, ranging from ecological 

to engineered systems, are at risk of critical transitions at which the system shifts abruptly from 

one state to another. Such an unexpected change in the equilibrium state is usually undesirable, 

because it is often difficult to restore a system to its pre-transition state once the transition occurs. 

Hence, there is an acute need for reliable methods to predict such catastrophic events. It is notably 

difficult to predict critical transitions because the state of the system may show little change before 

the tipping point is reached. Moreover, models of complex systems are usually not accurate enough 

to predict reliably where critical thresholds may occur.  

The focus of this research was on forecasting critical transitions in complex dynamical 

systems with application in several fields, from engineering to population dynamics. The main 

goal of this research was to create a novel method to quantitatively forecast critical transitions as 

well as the pre- and post-transition dynamics using some measurements of system before the 

transition occurs. Novel techniques were introduced to assess the existence of crucial thresholds 

in complex dynamical systems and to evaluate the future consequences of surpassing them. Based 

on observations of the system response to perturbations only in the pre-transition regime, the 

method forecasts the bifurcation diagram which discovers system’s stability and equilibria in 

upcoming conditions. The forecasting approach was based on the phenomenon of critical slowing 
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down, referring to the slowing down of a system’s dynamics around its equilibrium when 

approaching a tipping point. This means that the rate of the system’s recovery from perturbations 

decreases when the system approaches the bifurcation. Therefore, rate of recovery from 

perturbations at each amplitude can be used as an indicator, and is correlated to the distance to the 

bifurcation. This finding was used to predict the bifurcation diagram which discovers system’s 

stability and equilibria in upcoming conditions.  

The proposed bifurcation forecasting method is model-free, i.e. it is only required to 

measure a few system responses in the safe stable regime to forecast the bifurcation diagrams 

(without analyzing system equations). The method addresses some challenges which exist in 

complex systems where using classical methods is not possible (e.g., when a model of the system 

is not available, or is inaccurate) or is challenging (e.g., when the full model is very expensive 

computationally). Specifically, the forecasting method is developed and advantageous for two 

main cases. First, when a nonlinear system is studied experimentally, and there is no model of this 

system available to be analyzed using traditional methods. This is particularly important when 

there are a lot of unknowns and interactions in the system which makes developing and calibrating 

an accurate model of system difficult or impossible. The forecasting method makes it possible to 

forecast the bifurcation diagrams using measurements of the system response to perturbations in 

the pre-bifurcation regime without developing a model for the system. Second, the method is also 

advantageous when there exists a model for system, but the system is large dimensional and 

constructing the bifurcation diagram using theoretical methods is very expensive computationally. 

A common example of such a case is when a complex system is modeled using high-fidelity finite 

elements and the bifurcation point, bifurcation type and bifurcation diagram needs to be 

investigated. Such models often have millions of degrees of freedom. Identifying the post-
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bifurcation dynamics for such models using theoretical methods (e.g., center space reduction) is 

very difficult. More direct numerical methods such as time marching is very time consuming 

because the system has to be simulated many times, at many parameter values in order to construct 

the bifurcation diagram. In contrast, using the presented forecasting method the bifurcation 

diagrams can be constructed using only 2 or 3 simulations.  

Supercritical and subcritical Flutters are observed in a variety of fluid-structural systems. 

Such phenomena lead to various types of stability issues and can cause dramatic changes in the 

dynamics. Therefore, forecasting such bifurcations, i.e. predicting bifurcations and the bifurcation 

diagram with measurements only from the pre-bifurcation regime is a significant challenge and an 

important need. This is especially important for complex large-dimensional systems when an 

accurate model of the system is not easily available or when the system properties/parameters are 

unknown. In this research, a unique forecasting approach was introduced to forecast bifurcation 

diagrams and post-bifurcation limit cycles in fluid-structural systems. The forecasting method was 

employed to forecast the flutter speed and bifurcation diagrams of nonlinear fluid-structural 

systems including two- and three-degree-of-freedom airfoils and large dimensional high aspect 

ratio wings using as few as three measured system recoveries from perturbations collected only in 

the pre-bifurcation regime. Numerical results shows that the method can accurately forecast the 

bifurcation diagram of the system although no mathematical model of the system is required for 

forecasting. Furthermore, the method identifies the type of bifurcation, i.e. supercritical or 

subcritical, and forecasts the complete dynamical behavior of the system in the post-bifurcation 

regime. This type of forecasting opens the door to a variety of applications where knowledge of 

nearby bifurcations is important for safety and maximum system performance.  
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Stop-and-go traffic jams can often be observed in real-life traffic situations. Although 

Study of traffic flow dynamics has a long tradition, predicting traffic jams before they occur is still 

a challenge due to the complex nature of the traffic phenomenon. Prediction of traffic congestions 

may allow implementation of effective dynamic control strategies. In this research, the onset of 

traffic jams on a circular road was forecasted using early warning indicators/signals and bifurcation 

forecasting methods. Forecasting approaches were applied to a microscopic model of cars on a 

circular road. Results show that forecasting approaches can successfully predict the critical 

parameter value at which traffic jams occur. Furthermore, the bifurcation forecasting method can 

be used for forecasting both the critical point (i.e., the onset of traffic jams) and the post-critical 

dynamics of the system (i.e. the bifurcation diagram). These results are particularly valuable when 

the state of the system after the bifurcation is of interest. Moreover, forecasting can be highly 

advantageous also for theoretical or computational analyses of traffic flow models where 

employing traditional methods for computation of bifurcation diagrams are computationally 

intense. The approaches and ideas presented can be used as a basis for more developments to 

address some of the challenges related to the complexity of traffic dynamics.  

Regime shifts in complex ecological and living systems have received a growing attention 

since the cumulative human impact on the environment is increasing the risk of ecological regime 

shifts. Anticipating such critical transitions is an important need because it is often difficult to 

restore the system to its pre-transition state once the transition occurs. Hence, it is necessary to 

develop reliable methods capable of forecasting upcoming transitions, as part of a preventive plan 

against possible detrimental consequences. To address this important topic, we introduced and 

experimentally evaluated a unique forecasting method to forecast critical transitions in ecological 

systems and natural populations. The method forecasts critical points and post-critical dynamics 
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of the system using measurements of the system response collected only in the pre-transition 

regime. The method was evaluated using as a model ecological system a population of budding 

yeast with cooperative growth in the lab which exhibits a catastrophic transition as the environment 

deteriorates, resembling an ecological collapse. The experimental results of this study are 

promising and address important challenges which exist in forecasting safety and stability of 

natural populations. Results highlight that by monitoring rate of recovery of the system's response 

to perturbations, it is possible to gain crucial information about the future system’s safety and 

stability, such as the quantitative distance to upcoming transition (collapse), the type of upcoming 

transition (i.e., catastrophic/non-catastrophic) and future equilibria of the system. We envision this 

approach to be used in stability and safety analysis of natural populations, which is exceedingly 

important in ecological management.  

Detecting these early-warning signals of critical transitions for large dimensional complex 

ecosystems is a challenging task due to the complex dynamics of systems and the large number of 

species involved in the system. In such complex systems, to determine where to measure the 

system and how to interpret the measurements to achieve the most accurate early warning signals 

of an upcoming transition is an important need. We proposed a data driven approach to rank the 

elements of the system based on their reliability in providing the best early warning indicators of 

critical transitions. We employed experimental modal analysis techniques which are widely used 

in engineering in combination with the early warning indicators to identify the best-indicator nodes 

in a connected system and extract the most reliable indicators for critical transitions. The system 

response to perturbations are recorded and employed as an input to proposed technique which are 

common tools in identifying dynamical systems features. Numerical examples show that not all 

the species in an ecological system provide reliable early warning sign of approaching to a 
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transition, and the proposed approached has successfully ranked the species/regions in the studied 

ecological systems based on the accuracy of their provided early warning signals. In addition, 

results show that to correctly rank the species and interpret the recorded early warning signals in 

an ecological system, one might consider other dynamical features of the system as well. For 

instance, it was observed that gradual change in the system eigenvectors would result in an 

overestimated/underestimated trend in the recorded early warning signals. Moreover, results verify 

that in large dimensional systems, one need to consider the effect of several eigenvectors other 

than the dominant one to successfully rank the importance of the species in the system.  

8.2 Contributions 

The major contributions of this dissertation are summarized as follows.  
 

• A set of unique techniques, called bifurcation forecasting methods, are proposed to predict 

instabilities and bifurcation diagrams of nonlinear dynamical systems without analyzing 

system equations. Constructing such a diagram using conventional numerical or 

experimental methods needs accurate models, or massive computational effort.  

• A novel forecasting method is introduced to predict the flutter speed and post-flutter 

dynamics of fluid-structural systems using a few system responses to gust perturbations in 

the pre-flutter regime.  

• Techniques are introduced to increase forecasting accuracy in case of large dimensional 

systems by identifying and separating the effect of bifurcating mode in the measured 

recoveries from perturbations.  

• Techniques are introduced to increase forecasting accuracy in case of noisy measurements 

and insufficient data.  
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• The phase difference between system states is included in an improved forecasting 

procedure to forecast three-dimensional bifurcation diagrams of fluid-structural systems, 

representing stable and unstable limit cycle amplitudes of system states at all phases.  

• Rate of recovery from perturbations is shown to contain crucial information about future 

stability of natural populations which are at risk of catastrophic transitions.  

• The bifurcation forecasting method is employed and experimentally validated to predict 

bifurcation diagrams and catastrophic transitions of an experimental ecological system 

monitoring system response to perturbations.  

• Bifurcation forecasting methods and early warning indicators are proposed as effective 

tools to analyze the stability of vehicular traffic on roads, suggesting a strong potential for 

practical applicability of this approach in traffic engineering.  

• The reliability early warning signals of critical transitions recorded from ecological 

networks is analyzed. It is shown that the reliability of early warning signals and robustness 

of early warning signals to data analysis parameters varies among different species in a 

network.  

• Ranking of species/regions of ecological systems based on their reliability in providing the 

best early warning indicators of critical transitions is analyzed.  

 
8.3 Challenges and limitations 

 
The results of this research opens a door to a variety of numerical and experimental 

applications by introducing unique model-free tools for stability analysis of complex systems. 

However, there are several requirements for the proposed methods to be accurate. A first 

requirement is that the system exhibits slowing down as it approaches to transition. Many 
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biological, ecological, engineering systems exhibit bifurcations such as Hopf, saddle node, 

pitchfork and transcritical bifurcations which satisfy the method assumptions. Examples are 

bifurcations in population dynamics, fluid-structural systems, periodically forced systems in 

engineering systems and disease dynamics, nonlinear circuits, to name a few. However, note also 

that critical slowing down does not exist in all types of bifurcations. For example, systems 

undergoing period doubling cannot be forecasted using the proposed approach. A second 

requirement is that the system dynamics and its inertial manifold vary smoothly with the 

bifurcation parameter. The critical point and the bifurcation diagram can be forecasted if the 

system is close enough to the transition to exhibit measurable slowing down in its recoveries. The 

challenge is that some systems do not exhibit any slowing down unless at parameters which are 

significantly close to the instability boundary. Hence, in order for the forecasting method to work, 

measurements need to be taken in a narrow parameter regime where slowing down is observed, 

which is a challenging task specially in experimental systems due to presence of noise and 

uncertainties in experiments.  

In addition, noise can contaminate measurements, thus influencing the forecasting 

accuracy. Techniques were proposed to increase the forecasting accuracy when measurement noise 

exists in system. However, forecasting remains challenging if the noise level is high, if there are 

no enough measurements available and if stochasticity exists in both system parameters and 

measurements.  

 
8.4 Future Research 

The work presented in this dissertation can be extended in several directions. 
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1. Current research focused on forecasting bifurcation diagrams for deterministic systems and 

systems affected only by measurements noise and small stochasticity in their dynamics. 

However, the techniques might face a challenge if applied to systems which are highly 

stochastic. Therefore, it would be beneficial to study bifurcation diagrams and forecasting 

approaches in stochastic systems. 

2. To study the stability and identify the post-flutter dynamics of large dimensional fluid 

structural systems using traditional methods is a great challenge, specifically if one needs 

to perform a parametric study to study the effect of change in the design parameters on the 

stability of systems. Up to date, there have been few studies on the impact of design 

parameters on post-flutter response, and only for highly simplified models. This is because 

post-flutter calculations are currently too demanding for design due to both nonlinear 

modeling challenges and the lack of analysis methods for computing bifurcation diagrams 

directly. The proposed forecasting method, however, provides an efficient tool to identify 

the bifurcation diagram of system with minimum number of simulations, which identifies 

necessary information required to analyze system stability. In the next step, the proposed 

forecasting method can be used to identify the bifurcation diagrams of large dimensional 

fluid-structural systems, e.g. flexible wings, for different set of design parameters. This 

approach provides a detailed understanding of the system dynamics around its stability 

boundary which is costly to be explored without the proposed forecasting approach. 

3. Early warning signals and bifurcation forecasting methods were introduced to forecast the 

onset of traffic congestion and bifurcation diagram of traffic flow systems using 

microscopic traffic flow models. The forecasting method can be developed to forecast 

traffic congestions and bifurcation diagrams of macroscopic traffic flow models. 
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4. Current forecasting methods are developed in the context of autonomous systems. 

However, critical transitions and recorded system responses might be accompanied by 

periodic fluctuation of the environment/system parameters [176–178]. Critical transitions 

in disease dynamical systems are examples of these systems. Development of forecasting 

methods and early warning signals for such systems is beneficial for practical applications.  
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Appendix  
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Appendix A.  Supplementary Information for Chapter 3 

Consider the following damped single degree of freedom nonlinear system. For clarity, the 

nonlinearity is assumed to be cubic as  

�̈� + 𝑐�̇� + 𝜔X𝑥 = 𝛾𝑥¼. (A.1)  

Writing this equation in state space form gives  

1�̇��̈�2 = % 0 1
−𝑐 −𝜔X' 1

𝑥
�̇�2+ -

0
𝛾𝑥¼. , 

(A.2)  

where the states are chosen to be position and velocity.  

Next, define the following transformation  

x = Φy, (A.3)  

where x is the state variables vector(x = [𝑥		�̇�]�), y is vector containing the complex modal 

coordinates y = [𝑦W		𝑦X]�, and Φ is the matrix of complex mode shapes of the system. Matrix Φ 

can be written as  

Φ = / 1 1
𝜆W �̅�W

0, (A.4)  

where 𝜆W = (−𝑐 − 𝑖𝑟)/2, and 𝑟 = √4𝜔X − 𝑐X .  

Substituting (A.3) into (A.2), solving for 𝑦W and 𝑦X, and defining 𝑎 = 𝜆W + 𝑖𝜔, one obtains the 

following expressions which can be used in the normal form theory  
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�̇�W = −𝑖𝜔𝑦W + 𝑎𝑦W +
𝛾

𝜆W − 𝜆X
(𝑦W + 𝑦X)¼, 

�̇�X = −𝑖𝜔𝑦X + 𝑎w𝑦X −
𝛾

𝜆W − 𝜆X
(𝑦W + 𝑦X)¼, 

�̇� = 0. 

(A.5) 

Next, one may introduce the following nonlinear change of coordinates  

𝑦W = 𝑢W + Ñ−
𝛾
4𝜔X 𝑢W

¼ +
3𝛾
4𝜔X 𝑢W𝑢X

X +
𝛾
8𝜔X 𝑢X

¼Ö, 
(A.6)  

𝑦X = 𝑢X + Ñ−
𝛾
4𝜔X 𝑢X

¼ +
3𝛾
4𝜔X 𝑢X𝑢W

X +
𝛾
8𝜔X 𝑢W

¼Ö. 

Using normal form theory, one can show that the system can be transformed using Eq. (A.6) into 

the following normal form up to 3rd order  

�̇�W = −𝑖𝜔𝑢W + 𝑎𝑢W +
3𝑖𝛾
2𝜔 𝑢W

X𝑢X, 
(A.7)  

�̇�X = −𝑖𝜔𝑢X + 𝑎w𝑢X +
3𝑖𝛾
2𝜔 𝑢X

X𝑢W. 

The solution of above system of equations is in the following periodic form  

𝑢W = 𝑢wX = 𝑢n𝑒cT`/X𝑒q¦x `, (A.8)  

where 𝑢n is a complex number, and 𝜔x is real number in the following form  

𝜔x = −_
X
+ ¼o

X¦
𝑢n𝑢wn . (A.9)  

Now, using Eq. (A.8) and Eq. (A.6), one may observe that 𝑦W and 𝑦X are complex conjugates. 

Substituting Eq. (A.8) into Eq. (A.6) and assuming small nonlinearities, one can obtain an 

approximation for the modal coordinates in the following form  
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𝑦W = 𝑦wX ≈ (𝑤W(𝑡) cos(𝜔𝑡) − 𝑤X(𝑡) sin(𝜔𝑡)) + 𝑖(𝑤W(𝑡) sin(𝜔𝑡) + 𝑤X(𝑡) cos(𝜔𝑡)),  (A.10)  

where 𝑤W(𝑡) and 𝑤X(𝑡) are functions of time containing exponentially decaying functions and the 

recovery rate of the system. Following the same procedure as in Eq. (A.10), one finds that both 

𝑤W(𝑡) and 𝑤X(𝑡) have the same decay rate. The real and imaginary parts of the expression on the 

right hand side of Eq. (A.10) correspond to 𝑞W and 𝑞X used in the text as real valued modal 

coordinates, i.e.  

𝑞W = 𝑤W(𝑡) cos(𝜔x𝑡) − 𝑤X(𝑡) sin(𝜔x𝑡), 
(A.11)  

𝑞X = 𝑤W(𝑡) sin(𝜔x𝑡) + 𝑤X(𝑡) cos(𝜔x𝑡). 

Note that 𝑞Wand 𝑞X	are in quadrature and form a regular spiral in the 𝑞W − 𝑞X plane; the same form 

as expressed in Eq. (11). Note also that this conclusion came from the fact that the modal bases 

were chosen to be position and velocity.  

The above procedure can be extended to higher order systems and nonlinearities. More details can 

be found in refs. [56,179,180].  
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