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Abstract 

The E3SM Atmosphere Model version 1 (EAMv1), the atmospheric component of the 
Department of Energy’s E3SM (Energy Exascale Earth System Model) is described. The 
model began as a fork of the well-known Community Atmosphere Model (CAM) but it has 
evolved in new ways, and coding, performance, resolution, physical processes (primarily 
cloud and aerosols formulations), testing and development procedures now differ 
significantly. Vertical resolution was increased (from 30 to 72 layers) and the model top 
extended to 60 km (~0.1 hPa). A simple ozone photochemistry predicts stratospheric 
ozone and the model now supports increased and more realistic variability in the upper 
troposphere and stratosphere. An optional improved treatment of light-absorbing particle 
deposition to snowpack and ice is available, and stronger connections with Earth system 
biogeochemistry can be used for some science problems. Satellite and ground-based cloud 
and aerosol simulators were implemented to facilitate evaluation of clouds, aerosols and 
aerosol-cloud interactions. Higher horizontal and vertical resolution, increased complexity, 
and more predicted and transported variables have increased the model computational 
cost and changed the simulations considerably. These changes required development of 
alternate strategies for tuning and evaluation as it was not feasible to "brute force" tune the 
high-resolution configurations; so short-term hindcasts, perturbed parameter ensemble 
simulations, and regionally refined simulations provided guidance on tuning and 
parameterization sensitivity to higher resolution. A brief overview of the model and model 
climate is provided. Model fidelity has generally improved compared to its predecessors 
and the CMIP5 generation of climate models.  

Plain Language Summary 

This study provides an overview of a new computer model of the Earth’s 
atmosphere that is used as one component of the Department of Energy’s latest Earth 
System Model. The model can be used to help understand past, present, and future changes 
in Earth’s behavior as the system responds to changes in atmospheric composition (like 
pollution and greenhouse gases), land and water use, and to explore how the atmosphere 
interacts with other components of the Earth system (ocean, land, biology, etc). Physical, 
chemical, and biogeochemical processes treated within the atmospheric model are 
described, and pointers to previous and recent work are listed to provide additional 
information. The model is compared to present day observations, and evaluated for some 
important tests that provide information about what could happen to clouds and the 
environment as changes occur. Strengths and weaknesses of the model are listed, as well as 
opportunities for future work.   

1 Introduction 

This paper describes EAMv1 (the E3SM [Energy Exascale Earth System Model] 
Atmosphere Model version 1). EAMv1 is a descendant of the Community Atmosphere 
Model (CAM, Neale et al, 2012), the atmosphere component of the Community Earth 
System Model (CESM, Hurrell et al, 2013). As part of the development of the E3SM project 
(E3SM Project, 2018), EAM was forked from the CAM development path at version 5.3, a 
version that contained many of the parameterizations intended for CAM6, and independent 
development of EAM began around June 2014 with the goal of producing a tool optimized 
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for DOE scientific and computational needs. It continues to share many attributes with 
CAM6 but as the model has evolved it is becoming increasingly distinct, and a number of 
different design and parameterization choices have been made to satisfy project goals. 

The E3SM atmosphere major developmental thrusts were chosen to explore several 
key emerging questions in climate and climate change that were not easily addressed with 
previous versions. The E3SM project is focused on modeling and assessment of 
environmental change occurring over the last 40 years and next 40 years in three research 
areas: 1) the water cycle; 2) sea level rise; and 3) exploratory studies of the nitrogen and 
phosphorus on land biogeochemistry (BGC). These research areas motivated attention to 
specific model features to improve EAM for those science problems. E3SM has targeted the 
capability of scaling to large processor counts sufficient to run multi-decadal or even 
century and longer simulations at higher (horizontal and vertical) resolution to better 
capture critical atmospheric features of the water cycle in the presence of strong 
anthropogenic forcing, and the surface exchanges that affect other Earth system 
components (cryosphere, ocean, land) and introduce transient responses over century and 
longer timescales. E3SM has also focused on the improved treatment of some diabatic 
processes (primarily on boundary layer turbulence, clouds and aerosols, with less, but 
some attention to stratospheric ozone) that are important to tropospheric climate 
variability and predictability, New strategies for model tuning and evaluation (through 
short simulations, hindcasts and regionally refined configurations) were used during the 
development process to allow more complex and costly model configurations to be tuned.   

Climate models are generally released at relatively low horizontal and vertical 
resolution to allow a broad variety of scientific problems to be studied at a relatively low 
computational cost, but the community recognizes that this strategy is not without 
problems.  Orlanski (2008) showed that organized mesoscale motions are needed to 
produce reasonable fidelity of some atmospheric features. Jung et al (2012) showed model 
improvements with resolution to tropical precipitation, the tropical atmospheric 
circulation, and the frequency of occurrence of Euro-Atlantic blocking, and both better 
representation of sub- synoptic features and better resolution of topography were found to 
be important. Bauer and Del Genio (2006) showed that a climate model’s underprediction 
of cloudiness and humidity in the subpolar region results from the lack of moisture 
transport by extratropical cyclones. Ma et al (2015) showed that cloud susceptibility to 
aerosol changes decreases as horizontal resolution is increased.  

The EAM configurations discussed here include a lower- (100 km, LR) and high- (25 
km, HR) horizontal resolution configuration. These configurations provide a moderate 
resolution useful for model development and capable of resolving many synoptic scale 
features, and a higher resolution configuration better able to address issues of 1) water 
cycle extremes important to our project (e.g., hurricanes, midlatitude cyclones, 
atmospheric rivers), water variability and availability (storms, storm tracks, blocking, 
snowmelt) and  Sea Level Rise (SLR) issues, where resolution of the topography associated 
with the Greenland and Antarctic Ice sheets (GIS and AIS respectively) may become 
important. A variable resolution horizontal grid (termed a regionally refined model, or 
RRM), is also sometimes used to reduce the computational cost of high-resolution 
simulations.  
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Many climate modeling centers have focused on high horizontal resolution, but it is also 
clear that vertical resolution matters. Water vapor mean gradients between the surface and 
tropopause can vary over 3 orders of magnitude, and very large changes are often observed 
over a few hundred meters near the top of the atmospheric boundary layer. Clouds often 
occur in layers less than a hundred meters thick near the surface. Lindzen and Fox-
Rabinowitz (1989) found that virtually all large-scale models had inadequate vertical 
resolutions and the situation has not improved much with time for many climate models. 
An informal look at climate models being used today indicate many put 22-28 layers 
between the surface and 18 km (e.g., Roeckner et al (2006); Donner et al (2011); Martin et 
al (2011)). Butchart et al (2018) evaluated 14 modern GCMs, and all but one appeared to 
have grid spacing in this range. CAM lineage models have historically found it particularly 
difficult to change vertical resolution near the surface. The CAM lineage used 18 layers in 
CCM2 (Hack et al ,1993), 27 in CAM3 (Collins et al, 2006), 30 in CAM4 (Neale et al, 2013) 
and CAM5 (Neale et al, 2012), and CAM6 has added two extra model layers at the 
tropopause, but the surface layer has remained constant at approximately 100 m over all 
these generations. Recent changes in the model physics described below (with an extensive 
discussion of consequences in Xie et al (2018)) have reduced the model sensitivity to 
vertical resolution, although there is still some dependence. EAMv1 uses a traditional 
hybridized sigma pressure vertical coordinate. The transition between terrain following 
and constant pressure coordinate is made at ~200 hPa (~11km). A no flux upper boundary 
condition is applied at the top (finite constant pressure) layer interface in the adiabatic 
equations of motion. The EAMv1 vertical resolution was increased from 30 layers with a 
top at ~2hPa (~40 km) in CAM5 to 72 layers with a top at ~0.1 hPa (64 km). The 
distribution of vertical layers and thickness are displayed in figure 1 of Xie et al (2018)). 
The surface layer is now 20 m thick, with 15 layers between the surface and 850 hPa to 
better capture thin clouds, sharp gradients at top of BL, rapid changes in process rates 
(autoconversion, accretion, evaporation, radiative heating rates) and cloud properties 
(drop size, rain rates). Between 850 hPa and 500 hPa vertical grid spacing is slowly 
increased from 100 m to 500 m because water vapor gradients are still very strong 
compared to important clouds features and variations in water vapor features and aerosol 
plumes that are frequently observed to occur at vertical scales of 500 m and less. 
Resolution from the free troposphere (above 500 hPa) up to the lower stratosphere (70 
hPa) was increased from 1200 m to 600 m to allow for adequate representation of upward 
propagating large scale tropical waves such as Kelvin and mixed-Rossby gravity. This 
permits simulation of stratospheric features like the Quasi-Biennial-Oscillation (QBO, 
Richter et al. 2014; Geller et al. 2016), which can also influence tropospheric variability, 
including the modulation of the amplitude of the Madden-Julian Oscillation (Anstey and 
Shepherd, 2014, Yoo and Son 2016, Son et al. 2017), and high latitude features in the lower 
stratosphere like sudden stratospheric warmings.  

Higher horizontal and vertical resolution have increased the computational cost and 
changed the simulations substantially. Parameterization complexity, and more predicted 
and transported variables (aerosol species, prognostic snow and rain, ozone) also 
contribute to computational cost increases. The increases in operation count required to 
perform a simulation motivated the development of some alternate strategies for tuning 
and evaluation of the HR model configuration. It was not feasible to "brute force" tune the 
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high-resolution configurations, so short-term hindcasts and perturbed parameter 
ensemble simulations provided guidance on tuning, and regionally refined simulations 
were also used to explore and evaluate parameterization sensitivity to high resolution. 
Details of the impact of specific parameter changes are discussed in more detail in Section 
2.2 of Xie et al (2018), and background information and citations discussing the procedures 
used for the high resolution tuning are described in section 3.   

The Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator 
Package [COSP; Bodas-Salcedo et al. 2011] version 1.4 was also implemented in EAM to 
facilitate the comparison of modeled clouds with satellite observations by accounting for 
observational limitations and observing features of the instruments (Zhang et al. 2019). 
COSP was further enhanced with an aerosol lidar simulator (P. Ma et al, 2018) that 
facilitates the evaluation of aerosol cloud interactions and comparison with satellite 
retrievals of aerosol properties; that study showed that simulator output in combination 
with COSP cloud diagnostics could be used to better understand and explain discrepancies 
between estimates of cloud susceptibility to aerosols from satellite products, and estimates 
typically produced within Earth System Models. A ground-based cloud radar simulator 
developed from the DOE Atmospheric Radiation Measurement (ARM) program (Y. Zhang et 
al. 2018) was also integrated into COSP to utilize detailed cloud observations at ARM 
research sites. 

2 Model Description 

2.1 Dynamical Formulation and its connection to transport and physical processes 

EAMv1 uses a continuous Galerkin spectral finite-element method to solve the primitive 
equations on a cubed-sphere grid (Taylor et al. 1997; Thomas and Loft 2005; Taylor and 
Fournier 2010; Dennis et al. 2012). Tracer transport is handled using a variant of the semi-
Lagrangian vertical coordinate system from Lin (2004) adapted for the cubed sphere, 
designed to locally conserve air and trace constituent mass as well as moist total energy 
(Taylor 2011). This treatment has attractive computational scaling properties and has been 
shown to scale nearly linearly to thousands of cores (Dennis et al. 2012; Evans et al. 2013).  
The dynamics, tracer transport, and physical parameterizations are operator split, and sub-
cycled in time (see Figure 2. in K. Zhang et al. (2018)). Tendencies for each process 
(dynamics, physics, and constituent transport) are calculated separately and used to 
update the model state. The sub-cycling frequency, and strategy for communication of 
information between updates to the model state by physical parameterizations, trace 
constituent transport and fluid dynamics by the dynamical core is resolution dependent. 
These choices make the discretization formally fourth order accurate in the horizontal 
dimension, and first order accurate in time.  A hybrid physics-dynamics coupling that uses 
different methods for fluid dynamics and tracer transport is used in EAMv1 to ensure 
water conservation (K. Zhang et al., 2018).  
 

Because the horizontal discretization is localized on individual elements, variable 
resolution can be introduced through refined meshes. This setup allows variable resolution 
grids to maintain the key conservation and scalability aspects that makes the dynamical 
core a desirable model choice for climate simulations.  A detailed evaluation of the impacts 
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of variable resolution on the climate for E3SMv0 is described in Roesler et al. (2018), and 
for EAMv1 in Tang et al. (2019). Two examples of a horizontal discretization in EAM can be 
seen in Figure 1, which shows the basic “cubed sphere” grid with an embedded regional 
refinement over the Continental United States Region (CONUS), and over the Tropical 
Western Pacific (TWP).  Two additional RRM configurations positioned over the ARM 
Eastern North Atlantic (ENA) site have also been introduced into E3SMv1.   

 

2.2 Physical Processes 

This section provides a brief description of the parameterizations used in EAMv1, 
with citations to papers with more detail, and a discussion of the tunable parameters used 
in calibrating the model from climate fidelity. Table A.1 of Appendix A lists the values for 
the tunable parameters used in the calibration process. 

2.2.1 Turbulence/Shallow Convection/and Stratiform Clouds 

Turbulence, shallow cumulus and stratocumulus clouds are parameterized with a single 
equation set describing the evolution of a set of probability density functions (PDFs) of 
fields, using the Cloud Layers Unified By Binormals (CLUBB) parameterization (Golaz et al. 
2002; Larson and Golaz 2005; Larson 2017).  CLUBB is based on a higher-order closure to 
the prognostic equations for higher order moments, and it prognoses nine subgrid higher-
order moments: the vertical turbulent fluxes of total water (vapor plus cloud liquid) and 
liquid water potential temperature (𝜃�); the variances of total water, 𝜃�, vertical velocity, 
zonal velocity, and meridional velocity; the covariance of total water and 𝜃�; and the third-

 

Figure 1: The regionally refined grid configuration for the atmosphere and 
land over the Continental United States (CONUS) and Tropical West Pacific in 
EAMv1.  The high resolution area has an effective spatial resolution between 
grid points of 25 km, while the lower resolution area has an effective spatial 
resolution between grid points of 110 km.   A transition region bridges these 
resolutions. The red dot indicates the location of DOE ARM site in the tropics.    
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order moment of vertical velocity. CLUBB does not yet incorporate a treatment for ice. 
Within these higher-order equations, turbulent advection and buoyancy terms are closed 
by analytic integration over the subgrid PDF.  The PDF is assumed to have a normal 
mixture (i.e., double Gaussian) shape using the Analytic Double Gaussian 1 shape of Larson 
et al. (2002). The PDF in each grid box is chosen to be consistent with the subgrid moments 
predicted in that grid box. The scalar dissipation and perturbation pressure terms are 
closed using standard closures from the turbulence literature.  Momentum fluxes are 
parameterized by downgradient eddy diffusion.   EAMv1 uses CLUBB revision 7416 of the 
CLUBB svn repository  

 

2.2.2 Deep Convection 

Deep Convection is based upon the formulation originally described in Zhang and 
McFarlane (1995, hereafter ZM), with modifications by Neale et al (2008), and Richter and 
Rasch (2008). The parameterization employs a bulk updraft and downdraft intended to 
represent an ensemble of updrafts (undergoing entrainment, detrainment, condensation 
and precipitation) and downdrafts (undergoing entrainment and evaporation). Cloud-base 
mass flux is determined by a closure designed to reduce Convective Available Potential 
Energy (CAPE) at a prescribed (tunable) timescale. Updraft condensate mass is generated 
via a saturation adjustment (to the liquid saturation vapor pressure along a moist adiabat) 
followed by conversion to precipitation with a (tunable) adjustment timescale 
proportionate to the convective updraft mass flux (differing timescales can be used over 
land and ocean). Similarly, a tunable downdraft coefficient is used to control the mass flux 
at the downdraft top and the evaporation rate of the rainfall driving the downdraft. As with 
CLUBB, ice thermodynamics are generally neglected, but when liquid condensate is 
detrained from the updraft it is partitioned into liquid and ice over a (tunable) temperature 
range, and the energy associated with a phase change is applied locally to the temperature 
tendency to conserve energy. This simple treatment of the thermodynamics of water is not 
optimal and alternate (more realistic) formulations are planned for future versions of EAM. 

Convection parameterizations can be quite sensitive to vertical and horizontal 
resolution, and significant modifications were made to accommodate EAM’s resolution 
changes. A comprehensive evaluation of the ZM parameterization sensitivity to resolution 
in EAM is provided in Xie et al (2018), and only a few of the implications are mentioned 
here. CAM5 used a 100-m (200-m) thick surface layer (and layer above, respectively). 
EAMv1 has a much thinner (20-m) surface layer and much higher vertical resolution, 
particularly in the boundary layer supporting much stronger gradients in temperature and 
water vapor, with implications to many aspects of the convective parameterization. Heat 
and moisture fluxes are more easily confined to the surface and boundary layer, affecting 
the buoyancy and lifting condensation level (LCL) of parcels driving the convective 
updrafts. Additional model layers also allow more variation in layer stability, relative 
humidity, and buoyancy (i.e. updraft plumes may penetrate more layers before reaching 
their level of neutral buoyancy). Because water vapor is generally more confined to the 
boundary layer, the free troposphere can also be drier, in the absence of processes that mix 
it to higher altitudes. To avoid a significant sensitivity in ZM to surface layer properties the 
lowest possible launch level was changed from the surface layer to a (tunable) layer at 
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about 100m. CAM5 ZM formulations also allowed an air parcel to traverse up to five local 
regions of stability (negative buoyancy) in the calculation of CAPE and convection top 
before the parcel buoyancy calculation determining the level of neutral buoyancy (LNB) 
was terminated. Because the parameterization used no quantitative information about the 
vertical extent or strength of stable regions (e.g. “convective inhibition”), this made the LNB 
calculation extremely resolution dependent. EAMv1 reduced this dependence by 
terminating the CAPE calculation when the parcel encounters a single negatively buoyant 
layer in the plume buoyancy calculation. Impacts of these changes are discussed in Xie et al. 
(2018). CAPE, and cloud top (LNB) calculations also depend strongly on the environment 
air properties entrained in the updraft (following Neale et al, 2008), and so the convection 
top is quite sensitive to free troposphere humidity. Since the higher resolution can support 
stronger gradients (and a drier free troposphere), convection in a high vertical resolution 
model is typically shallower than found in a coarser resolution simulation, influencing 
many meteorological features (radiative heating, altitude of detraining heat and water 
substances) and the moisture modes that play a significant role in equatorial wave 
variability. The (tunable) entrainment parameter “dmpdz” was reduced to control the 
depth of convection. An optional parameterization of convective gustiness was also 
implemented (off by default for EAMv1) that is designed to represent the increase in 
surface winds produced in the presence of evaporating precipitation. Implications of this 
variation of the convection parameterization are discussed in Harrop et al. (2018).   

Convective cloud fraction is assumed proportional to the log of the updraft mass flux 
following Hack et al (1993). Detrained convective condensate is partitioned into liquid and 
ice. Detraining convective condensate in the liquid phase inherits the particle size estimate 
from any existing stratiform cloud at the same location, and the ice particle size is specified 
as a tunable parameter (discussed again below). 

2.2.3 Aerosol and Cloud Microphysics 

Aerosol microphysics and interactions with stratiform clouds are treated with an 
updated and improved version of the four-mode version of the Modal Aerosol Module 
(MAM4, Liu et al., 2016) that predicts the number and mass concentrations of major 
aerosol species [sulfate, black carbon (BC), primary organic matter (POM), marine organic 
aerosol (MOA), secondary organic aerosol (SOA), mineral dust, and sea spray] in one coarse 
and three fine-particle aerosol modes. A new representation of MOA was introduced 
(Burrows et al., 2014; Burrows et al., 2018) as an important step towards linking ocean 
biogeochemistry processes with the ocean surface chemistry that determines sea spray 
aerosol formation.  The simplified treatment of SOA-precursor sources in MAM’s previous 
single-lumped-species treatment of SOA was revised by adapting SOA production results 
from Shrivastava et. al (2015), in which an explicit treatment of multigenerational gas-
phase chemistry of SOA precursor gases and particle-phase transformation of SOA gave 
better agreement with global organic aerosol measurements. 

Aging of the primary carbon uses the 8-monolayer (slow ageing) criterion of Liu et 
al. (2016).  A parallel time-split treatment of H2SO4 production by gas-phase chemistry 
and loss by condensation was implemented that provides more accurate H2SO4 
concentrations to the new particle formation process and increases small particle (defined 
as having a diameter < 100 nm) number concentrations, in better agreement with 

This article is protected by copyright. All rights reserved.



Revised July 1, 2019  Page 9 

observations.  Most of the changes to aerosol wet removal described in Wang et al. (2013) 
were also added to EAMv1, notably including a unified treatment for convective transport 
and scavenging of aerosols (with secondary activation in convective updrafts above cloud 
base) that more realistically represents wet removal and vertical transport of aerosols by 
convective clouds.  These changes make important improvements to the aerosol 
concentrations in regions remote from major sources (i.e., the upper tropospheric and 
polar regions). The resuspension of aerosol matter from evaporating raindrops was revised 
to return particles to the coarse mode (as a few large particles), rather than to the 
originating modes (mostly the accumulation mode), and this causes modest reductions to 
aerosol mass and Cloud Condensation Nuclei (CCN) concentrations.  

EAMv1 uses the “Morrison and Gettelman version 2” (MG2) two-moment bulk 
microphysics parameterization for stratiform clouds described in Gettelman et al. (2015). 
Eight prognostic variables (representing the mass and number of small and large liquid and 
ice particles) are used to describe the evolution of condensate. Table A.1 of Appendix A lists 
the values for MG2 and other tunable parameters. It is noteworthy that the default rate at 
which liquid is transferred from liquid to ice via the Wegener-Bergeron-Findeison (WBF) 
process, inherited from a developmental version of the MG2, was set unrealistically low. When 
coupled with CLUBB and MAM4, MG2 provides a more consistent and coherent set of 
aerosol-cloud interactions in all stratiform and shallow convective clouds than CAM5, 
which neglected aerosol interactions in both shallow and deep convective clouds. Aerosol–
cloud interactions are still neglected in deep convective clouds in EAMv1, because of the 
very simple microphysics assumed by the ZM parameterization. Stratiform cloud liquid and 
ice nucleation processes use a characteristic in-cloud updraft velocity that is diagnosed as a 
function of the Turbulent Kinetic Energy (TKE) predicted by CLUBB. CLUBB’s TKE (and 
corresponding cloud updraft velocities) does not currently depend directly on radiative 
cooling rates near cloud top, and often produce weak estimated subgrid vertical velocities 
so a (tunable) lower limit of 0.2 m/s was chosen for the subgrid velocity used to activate 
liquid and ice clouds.  The lower bound for IN calculation is triggered very frequently, but 
the impact on ice cloud formation is small with ~0.3 W/m2 change in global annual mean 
long and shortwave cloud radiative effects that counter each other to produce a near zero 
impact on the global annual mean TOA net radiative flux.  

Liquid cloud drop activation follows Abdul-Razzak and Ghan (2000). EAMv1 uses a 
Classical-Nucleation-Theory (CNT)-based ice nucleation parameterization for the 
heterogeneous ice formation in mixed phase clouds, which depends on both interstitial and 
cloud-borne BC and dust aerosols (Wang et al., 2014). The threshold size for auto-
conversion of ice crystals to snow particles was changed from the constant value used in 
CAM5 to a function of temperature to improve agreement with observed ice distributions. 

EAMv1 uses a variant of the popular autoconversion parameterization developed by 
Khairoutdinov and Kogan (2000, hereafter KK2000) to represent the self-collection of 
small liquid drops to form precipitation size particles, but as noted by Wood (2005), and 
Kogan (2013), the three parameters developed for that parameterization (and usually 
treated as fixed inviolate constants) are actually subject to significant uncertainty, 
depending upon cloud regime. Those three studies compared very accurate calculations of 
the precipitation formation process in differing cloud regimes to demonstrate that there is 
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actually a big range of free parameters in the KK2000 formulation that provide acceptable 
fits to more accurate calculations, so the parameter values usually adopted in models are 
actually subject to considerable uncertainty, and the parameter choices have a very strong 
impact on aerosol indirect radiative effects (e.g., Wang et al., 2012).  As shown in Wood 
(2005) and Kogan (2013) the fitting process used as central values for autoconversion (and 
accretion) were designed to produce the good agreement in fully developed clouds with 
substantial condensate mass. Other choices within the range of uncertainty identified in 
those studies also produce reasonable cloud properties that are much less sensitive to 
cloud formation and precipitation onset in low aerosol conditions. Our choices for those 
parameter values reduce radiative biases in regions with low cloud water and drop number 
in regimes other than stratocumulus regions (e.g. trade cumuli), produce less precipitation 
through autoconversion than the standard KK2000 treatment, and are very consistent with 
K2013 and Beheng 1994 rates in low aerosol (cloud droplet) regimes. Autoconversion 
rates determined by the EAMv1 parameter choices (documented in Appendix A.1) 
compared to the standard KK2000 values (and Kogan 2013 and Beheng 1994) are shown 
in figure 2 over a range of cloud droplet numbers and condensate loadings. Results remain 
very similar to KK2000 for higher droplet number and condensate values.  Although 
autoconversion is somewhat higher at very high (300+ cm-3) Nc (fig 2d-f), this is a situation 
where precipitation is low anyway and autoconversion is most important at low aerosol 
concentrations.  If default values are used instead of EAMv1 settings the amplitude of the 
net Cloud Radiative response from changing aerosol emissions between pre-industrial and 
present-day values changes by about 0.3W/m2 in amplitude. More details of the model 
sensitivity to autoconversion formulation will be described elsewhere in a manuscript in 
preparation. 

 
Figure 2:  Autoconversion rate (a-c) as a function of cloud water mixing ratio (Qc) at cloud 
droplet number concentration (Nc) = 20, 100, and 200 cm-3 and (d-f) as a function of Nc at 
Qc = 0.3, 0.5, and 0.7 g kg-1. 

Aerosols and light-absorbing particles (e.g., BC and dust) can be deposited on snow 
and ice surfaces over land and sea-ice, and these treatments were harmonized to treat both 
external mixing and internal mixing (within-hydrometeor) of BC and snow grains following 
Flanner et al. (2013). This harmonization shows similar stronger in-snow BC radiative 
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forcing to the Flanner study compared to the previous external mixing treatment (e.g. Qian 
et al., 2014). 

Hygroscopicity characteristics are specified for soluble species to make particle size 
depend upon relative humidity. Aerosol mass and number concentrations predicted by 
MAM4 are ultimately merged with a historical inventory of volcanic aerosols with an 
assumed mean radius in the stratosphere. Aerosol optical properties for each aerosol mode 
are then calculated following the treatment described by Ghan and Zaveri (2007), where 
optical properties of aerosols are combined using a “homogeneous mixing assumption” by 
volume to produce estimates of single scattering albedo, extinction, and backscatter by 
wavelength and then provided to the radiative transfer parameterization described below.   

2.2.4 Chemistry 

A simple chemical mechanism calculates stratospheric ozone concentrations 
following Hsu & Prather (2009, LINOZ2). Linearized production and loss coefficients 
characterizing sensitivity to local ozone concentration, local temperature, and the ozone 
column above, are used to calculate stratospheric production and loss terms for ozone for 
each decade of the 1850-2000 time period between 12 and 58 km, monthly-mean zonal-
mean estimates. A simple parameterization based on Cariolle et al. (1990) is included to 
represent ozone depletion in the presence of polar stratospheric clouds (PSCs) at cold 
temperatures in the stratosphere. The rate of exponential decay is a function of the 
prescribed chlorine loading, so ozone holes will only form when chlorine loadings are high, 
and the temperature is cold enough to form PSCs. Chlorine loading can be changed to 
produce or suppress ozone hole formation over Antarctic. These source sink terms are then 
used to update an ozone-like trace constituent in the stratosphere, which is advected by the 
EAMv1 dynamics.  Advected stratospheric ozone mixing ratios are then merged at the 
tropopause with prescribed monthly mean tropospheric ozone archived from more 
comprehensive chemical simulations performed with the MOZART chemical transport 
model as discussed in Neale et al (2012). This merged ozone distribution is then used in the 
radiative transfer calculation, and for oxidation of aerosol precursors, as described above. 

2.2.5 Radiative Transfer 

EAMv1 uses the Rapid Radiative Transfer Model for general circulation models 
(RRTMG) (Iacono et al., 2008; Mlawer et al., 1997). RRTMG uses a modified correlated-k 
method to calculate radiative fluxes and heating rates in the clear sky and for condensed 
phase species. Extinction optical depth, single scattering albedo and asymmetry properties 
are specified for 14 short-wave bands (extending from 0.2 μm to 12.2 μm), and a mass 
specific absorption is specified for 16 long-wave bands (extending from 3.1 μm to 1000 
μm) representing Rayleigh scattering and sources of extinction for H2O, O3, CO2, O2, CH4, 
N2O. The longwave calculation uses molecular sources of absorption for the same species, 
plus CFC-11 (representing multiple CFC species) and CFC-12. Solar irradiance is now 
specified for the short-wave bands from the Lean dataset (Wang et al., 2005).  

A single set of in-cloud properties, and a single cloud fraction for each model cell are 
calculated and provided to RRTMG. These composite cloud properties are derived as a 
complicated function of individual estimates of convective and stratiform (liquid and ice) 
cloud fraction and condensate properties (mass and number mixing ratios), and 
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assumptions of ice crystal shape using the following recipe. The MG2 stratiform cloud 
microphysics and CLUBB higher order turbulence parameterization provide explicit values 
for condensate (liquid and ice [both small and large (snow)] mass and number, and an 
estimate of stratiform (liquid and ice) cloud fractions.  As previously described, convective 
cloud fraction, condensate partitioned into liquid and ice phase, and convectively detrained 
ice crystal size are treated as tunable parameters and are chosen to produce reasonable 
estimates of cloud radiative forcing and condensate mixing ratios. These estimates of 
condensate mass, size, and fraction are merged into a single set of characteristics prior to 
the calculation of extinction optical depth, single scattering albedo and asymmetry 
parameter. The cloud fraction compositing is described in Park et al (2014). Vertical cloud 
overlap follows the algorithm for CAM5 as described in Neale et al, 2012. Maximum vertical 
overlap is assumed within each of the 3 regimes representing low (p > 700 hPa ), middle ( 
400 hPa < p < 700 hPa ), and high (p < 400 hPa ) clouds, and a random vertical overlap is 
assumed between these 3 regimes.  Liquid-cloud drop optics are calculated following 
Wiscombe [1996] and ice-cloud optics are calculated following Mitchell [2002]. Ice-cloud 
size optics are extended to allow for radiatively active falling snow. A subcolumn 
decomposition of cloud overlap and fraction generates a set of sub-columns in which cloud 
fraction is either 1 or 0 in each layer.  These composited cloud and aerosol properties for 
each subcolumn are in turn passed to RRTMG along with concentrations of radiatively 
active gases.  The Monte-Carlo Independent Column Approximation (McICA, Pincus and 
Morcrette [2003]) that represents sub-grid scale cloud variability is used to calculate the 
heating rates and fluxes in each subcolumn for specific spectral bands; averaging each sub-
column’s radiative heating rate over time and subcolumn provides an estimate of grid-
mean radiative heating rate. 

2.2.6 Gravity Waves 

The gravity wave (GW) parameterization in EAMv1 is the same as that described in 
Richter et al (2010).  Three sources of gravity waves are considered – orographic 
(mountain waves as in McFarlane (1987), convective (Beres et al. 2004), and frontal 
(Charon and Manzini 2002).  The geographical distribution of the frontal GW source is 
based on a frontogenesis function (Hoskins 1982). When the frontogenesis function is 
found to exceed a specified threshold at 600 hPa, a spectrum of frontal GWs are launched at 
500 hPa with a pre-specified momentum flux amplitude.  The spectrum is aligned parallel 
to the wind at the source level, which is typically the steering level of fronts.  40 individual 
waves with phase speeds from U-100 to U+100 m/s are launched.  The spectrum is 
Gaussian in shape and centered on the source level wind.  Studies in models with tops that 
extend through the mesosphere indicate that parameterized frontal GWs are critical in 
reversing high-latitude upper-stratospheric and mesospheric jets and are ultimately 
responsible for producing the mesopause temperature reversal in models. The top 
boundary condition for GWs is set so the momentum flux goes out at the model top. While 
it is theoretically more correct to deposit GW momentum flux within the model domain, 
experience in the Whole Atmosphere Community Climate Model (a CAM variant with a higher 
model top), produced several undesirable issues (too much momentum deposition and 
heating). Hence after deliberation, we chose to accept a (very) small momentum flux 
source/sink from the column, rather than support spurious tendencies in the stratosphere. 
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Convective GWs in EAM are specified according to the source spectrum described in 
Beres et al. 2004. GWs are assumed to be produced by oscillating convective motion with 
the deep convective cells and are launched when deep convection produced by the ZM 
parameterization is detected. The width and shape of the GW spectrum as a function of 
phase speed is determined by the depth of deep-convective heating, which is estimated 
from the heating profile from the ZM parameterization. The mean wind within the heating 
region is also taken into account, creating an asymmetry between the eastward and 
westward propagating waves.  The amplitude of GW momentum fluxes is proportional to 
the square of the maximum heating in ZM scaled by a factor that converts the convective 
grid-box averaged heating rate to a heating rate representative of heating within a 
convective cell. The “obstacle effect” of convection is not considered.  Orographic GWs are 
launched from the layer nearest the surface in E3SM.  Obstacle heights are determined 
from RMS deviations of unresolved topography.  The procedure to generate the resolved 
and unresolved topography is described in Lauritzen et al (2015). An ultra high resolution 
(30') source file is first downscaled to the appropriate (ne30 or ne120) cubed-sphere grid.  
16 iterations of the discrete HOMME 2nd order Laplacian operator are then applied by 
running the dynamical core in a special mode. The unresolved topography is computed to 
be consistent with the resolved topography.   The spectral element core uses a smoother 
topography than CAM-FV because CAM-SE doesn't have a good pressure gradient 
fixer.  This is quantified in the energy spectra in the Lauritzen et al (2015) paper.  Average 
flow properties are estimated in a “source layer” extending from the model surface to an 
obstacle peak height based on the RMS deviations of unresolved topography.  An isotropic 
orographic source is assumed, i.e., wave amplitudes are independent of source-layer wind 
direction, but orographic GW wave orientations are assumed to be normal to the source-
layer wind.  Near-surface flow nonlinearities arising from flow splitting (blocking) of 
downslope winds is not represented (e.g. Lott and Miller (1997); Scinocca and McFarlane 
(2004)). Frontal GW drag plays a significant role in the momentum budget of EAMv1 above 
40 km in the NH, and above 50 km in the SH. Convective GWs in EAM are responsible for 
producing QBO-like fluctuations of the equatorial zonal wind, but the amplitude and period 
were not optimized in the current EAM and the oscillation is currently too strong. Better 
tuning with much improved QBOs have been demonstrated in experimental versions of 
EAMv1 and are planned for implementation in the next model version.     

3. Model configurations, tuning, and computational performance 

EAMv1 is computationally more expensive than its predecessors. In additional to a 
significant increase in parameterization complexity, it employs 40 trace constituents 
(water vapor plus mass and number for 4 categories of condensed water, five gaseous 
aerosol precursors and oxidants (including ozone), number for the four aerosol modes, and 
(mass fractions of aerosol components in each mode), compared to the 25 used in CAM5, 
increasing the cost of the trace constituent advection by a factor of ~1.6. Since the 
atmospheric model operation count increases roughly in (linear) proportion to the number 
of model layers, the model cost is thus roughly doubled over previous costs because the 
vertical resolution has more than doubled. The increase in vertical resolution also has 
consequences to model numerical stability. In principal, the upper limit on timestep for 
advection and many physical processes involving transport should decrease in proportion 
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to the model layer thickness, and since the thinnest layers in EAMv1 are approximately five 
times thinner than those of CAM5 it might be expected that the model timestep might need 
to be decreased by a factor of 5.  In practice CLUBB and MG2 are both much more complex 
than the CAM5 parameterizations they replace, and both components are already sub-
stepped together to avoid numerical instabilities and increase the numerical accuracy. Sub-
stepping adds to the computational cost, but the frequency of communication between 
physics and dynamics modules required to maintain stability is relatively insensitive to the 
changes in vertical resolution (although timestep length does have an impact on the model 
climate). HR model configurations support stronger velocities generating higher Courant 
numbers and more rapid temporal changes, and therefore use a coupling frequency of 15 
minutes, while the LR configurations exchange information at 30 minute intervals.   

Approximate costs for a few useful configurations of EAMv1 and its predecessor 
(CAM5/EAMv0) are shown as a function of throughput and cost on two DOE computers 
(Cori-KNL and Edison) in Table 1a and b. The configurations reported on are by no means 
optimal, but they are representative, and provide some insight into model performance and 
cost.  Configurations were generally selected to produce throughput around 1-10 Simulated 
Years per Day (SYPD) without requiring a large core count (higher throughput is easily 
attained with more nodes, and the model still scales well to much larger node/processor 
counts). The cost is reported after assuming all cores on each node are charged for (the 
typical strategy used at most supercomputer centers. Cori-KNL configurations actually 
utilize only half the available cores per node, so costs would be lower if the charge were by 
core-hour actually used).  On Cori, the 1degree (ne30) configuration of EAMv1 is 
approximately 3 times more expensive than the spectral element ne30 configuration of 
CAM5 while the difference is larger on Edison. The factor of 4 increase in cost on Edison is 
closer to the anticipated difference explained by vertical resolution, tracer number and 
parameterization complexity.  The global quarter degree (ne120) model configuration is 
approximately 25 times more expensive than the 1degree (ne30) version on Cori, and 40 
times more expensive on Edison (associated with a factor of 16 increase in horizontal 
elements, a reduction in dynamics timestep, and a factor of two increase in calling 
frequency of the physics parameterizations). Using a regionally refined CONUS 
configuration reduces the cost by a factor of 5-10 compared to the globally uniform HR 
model, and is ~4 times more expensive than the uniform LR configuration on both 
machines. 
 
Table 1a: Information related to model resolution and cost on Cori (KNL nodes). Note that 
CAM5 by default uses a finite volume dynamical core and the numbers reported here are 
for the spectral element dynamical core, and the discussion regarding the cost calculation 
on Cori. 

Resolution 
identifier 

Horizontal 
Resolution 

Vertical 
Resolution 

Number of 
elements 

Throughput: Sim Years 
Per Day (# Cori-KNL 
nodes) 

Cost in core-hours per 
sim year (68 
cores/node)  

CAM5 Ne30  1 o 30 5400 9 SYPD (40N) 7,000 
EAM Ne30 1o 72 5400 6 SYPD (81N) 22,000 
EAM Ne120 1/4o 72 86400 2 SYPD (675N) 551,000 
EAM CONUS 1/4o to 1o 72 9905 1.7 SYPD (88N) 84,000          
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Table 1b: Information related to model resolution and cost on Edison.  

Resolution 
identifier 

Horizontal 
Resolution 

Vertical 
Resolution 

Number of 
elements 

Throughput: Sim Years 
Per Day (#  Edison nodes) 

Cost in core-hours per 
sim year (24 core/node)  

CAM5 Ne30  1 o 30 5400 41 SYPD (113N) 1,600 
EAM Ne30 1o 72 5400 10 SYPD (113N) 6,300 
EAM Ne120 1/4o 72 86400 0.5 SYPD (200N) 265,000 
EAM CONUS 1/4o to 1o 72 9905 1.3 SYPD (113N) 25,000          

 

As previously mentioned, the change in vertical resolution introduced profound 
changes in the model climate because some atmospheric features are better resolved, and 
some EAMv1 parameterizations remain sensitive to both horizontal and vertical resolution, 
so re-tuning was needed to produce good model fidelity at high and low horizontal 
resolution (for details, see Xie et al, 2018). LR tuning was done employing traditional 
approaches (2-10 year simulations and subjective evaluations of dozens of climate 
diagnostics). Since brute force strategies using many multi-year simulations were not 
feasible at high resolution, other strategies were employed. Xie et al. (2012) and H. Ma et al. 
(2012) showed that model biases related to fast physical processes in short-term hindcasts 
resemble those from long-term climate simulations, so two frameworks using short 
simulations were used as an integral part of model development. A hindcasting 
methodology identified with Transpose-AMIP and Cloud-Associated Parameterizations 
Testbed (CAPT) (Philips et al. 2004, Williams et al. 2013) was used to assess candidate 
physical parameterizations and tune the computationally expensive high-resolution EAM 
configurations, following protocols described in previous studies (Xie et al. 2004; Boyle and 
Klein 2010; Liu et al. 2011; Lin et al. 2012; van Weverberg et al. 2015, Qian et al., 2015;  H. 
Ma et al. 2018). Short, few-day simulations are also capable of revealing parametric 
sensitivities, and Wan et al. (2014) and Qian et al. (2015) developed a protocol for using 
Perturbed Parameters Ensembles (PPEs) of 3-day simulations to reveal model sensitivities 
to parameter changes that provide insight similar to that found in longer, multi-year 
simulations with a substantial saving in computing resources and dramatic reduction of 
simulation turnaround time. Qian et al. (2018) described the use of this strategy during 
EAM model development to identify simulation sensitivity to 18 uncertain parameters 
related to convection, turbulence, cloud microphysics, and orographic gravity wave drag. 
The resolution dependent tuning parameters are listed in Appendix A.  Although it would 
be desirable to have modified the model to support parameters that could adapt to 
resolution as the grid varies, the current code does not support that capability. Our initial 
choice was to select HR tunings over the whole globe in the regionally refined CONUS model 
configurations.   

Although the hindcasting methodology and PPEs were used to understand model 
sensitivity to changes in vertical resolution, physics parameterizations, and model 
parameters at various model development stages, our final EAMv1 tuning strategy was 
simply to produce simulations with reasonable model fidelity similar to or better than that 
of CMIP5 models based on comparison with recent (about the last 3 decades) observations. 
We did not strive for the best simulation possible, but rather to produce a good simulation 
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for a range of resolutions and forcings --- indeed with subsequent efforts after the release 
of E3SMv1, we are now aware that better simulations with the same model are possible 
with other tuning choices, which will be documented and considered for adoption in 
version 2. For version 1, a lot of emphasis was placed on producing reasonable radiative 
signatures in monthly mean radiative fluxes (driven by state variables), hydrological fields 
(precipitation, water vapor, clouds), and dominant modes of variability (including the 
seasonal cycle, ENSO relevant signatures, the Madden Julian Oscillation), etc. Lack of space 
precludes a comprehensive description of our metrics and evaluation strategies, but some 
important features are described in the next section. 

4. Model Evaluation 

Coupled simulations are evaluated in Golaz et al (2019) with EAMv1 connected to 
interactive ocean and sea ice components, and model configurations using prescribed SST 
and sea ice extent are evaluated in this section. Since Xie et al. (2018) and Zhang et al 
(2019) performed an in-depth analysis of clouds and precipitation features, less emphasis 
is placed on evaluating those fields here. Prescribed mid-monthly values of the fields used 
as input (boundary conditions and external forcing specifications) for the model were 
“diddled” as outlined in Taylor et al (2000) to assure that monthly averages of fields 
interpolated between mid-month values match original prescribed monthly averages. The 
input fields specify values of: 
● Land-Use (LU) and Land-Cover (LC) 
● Greenhouse gas concentrations: (CO2, CH4, N2O, CFC-12, CFC-11, other halogenated 

compounds added as radiatively equivalent amounts of CFC-11) follow CMIP5 
specification. 

● Aerosols: Most aerosols and pre-cursors used CMIP5 or CMIP6 emissions 
(http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/,  Hoesly et al. (2018)) 
with the following exceptions. DiMethylSulfide (DMS) was based on Elliott (2009) and 
Wang, et al (2015). Ocean macromolecule emissions follow Burrows et al., (2014;2018); 
Ogunro et al. (2015) and Wang, et al (2015). Secondary organic precursors included a 
vertical distribution of emissions following Shrivastava et al (2015). Open fire 
emissions were added for SO2,  POM, and BC (van Marle et al., 2017). Aerosol oxidants 
(O3, OH, NO3, HO2) were specified as discussed in Neale et al (2012). Some simulations 
also used estimates of historical stratospheric distributions of volcanic aerosol. Finally, 
dust and sea salt aerosol emission factors were tuned to constrain the global dust and 
total AOD (see Table A.1). 

● Insolation  
● Prescribed SST and sea-ice datasets were constructed as a blended product, using the 

global HadISST OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981 
as described in Hurrell et al (2008) 

Sea Ice surface temperature, ice thickness and snow depth on ice are prognostic and 
respond to the forcing. 

 
Three main model configurations were analyzed: Most of the evaluation uses a 
configuration (identified as FAMIP) with SSTs, sea-ice concentrations, emissions and 
oxidant distributions that vary month by month and year by year. The second important 
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configuration uses a climatology of monthly estimates of the surface temperatures and ice 
concentrations characteristic of a temporal (20 year) window surrounding year 2000 with 
appropriate solar insolation, GHG and oxidant concentrations, and aerosol emissions 
characteristic of Present Day (PD) conditions (labelled F2000). The last configuration 
composited a similar window of years surrounding 1850 to provide climatological 
conditions relevant to Pre-Industrial (PI) times (SST and sea-ice concentrations used 
HADISST data as described in Hurrell et al (2008)). 30 year averages of solar insolation 
were used for the F1850 and F2000 simulations to avoid choosing a specific phase of the 
solar cycle (1834-1867 and 1976-2007, respectively) and volcanic aerosols were neglected. 
The F1850 and F2000 model configurations were used to evaluate the model response to 
anthropogenic forcing agents in the presence of SST change. The FAMIP simulations 
provide information about the model sensitivity to interannual patterned changes in 
surface temperature like those seen with ENSO. Three additional model configurations 
were analyzed to expose the model response to all forcing agents (often termed “adjusted 
forcing” or AF, F2000LR/AF), and to anthropogenic aerosols (e.g. the Aerosol Effective 
Radiative Forcing from Aerosols (labelled F2000LR/Aero)), and the modeled response to 
uniform surface temperature changes, including cloud feedbacks, (suffixed with +4K label). 
All LR model configurations used default parameter settings specified in Appendix Table 
A.1. Similarly, HR and CONUS settings used the common high-resolution parameter settings 
of Table A.1. These model configurations are summarized in Table 2. 
 
Table 2: Description of model simulations performed for evaluation: 

Simulation Name Resolution, Analysis period Description 
F1850LR 100km, Years 2-11 Year 1850 SST, GHG, LU, LC, Aerosol sources, no volcanoes 
F2000LR 100km, Years 2-11 Year 2000 SST. GHG, LU, LC, Aerosol sources, no volcanoes 
F1850LR+4K 100km, Years 2-11 As in F1850LR, SST + 4K to assess cloud feedback 
F2000LR/AF 100km, Years 2-11 As in F2000LR but SST, Sea-ice, Solar Cycle replaced by 1850 values  
F2000LR/Aero 100km, Years 2-11 As in F2000LR but Aerosol emissions replaced by 1850 values 
FAMIPLR 100km, 1980-2005 Time varying SST, aerosol sources, volcanoes, LU/LCC, GHG 
FAMIPLR/AllF 100km, 1980-2005 As in FAMIPLR except aerosol sources, volcanoes, LU/LCC, and GHG fixed at 1850 
FAMIPLR/AeroF 100km, 1980-2005 As in FAMIPLR except aerosol sources fixed at 1850 
CAM5AMIP 100km, 1980-2005 CAM5 Control for comparison 
F2000HR 25km, Years 2-11. As in F2000LR except high resolution 
F1850CONUS 100km + 25km, Years 2-5 CONUS simulation, Free-running  
F2000CONUS 100km + 25km, Years 2-5 CONUS simulation, Free-running (nudged and CAPT special features) 

 
Our evaluation uses the Modern-Era Retrospective Analysis for Research and Applications, 
Version 2 (MERRA-2, Gelaro et al, 2017),  the Japanese Meteorological Agency’s 25 year 
Reanalysis (JRA-25, Onogi et al, 2007), and the ECMWF Reanalysis Interim (ERA-I, Dee et al 
(2011)) baselines for comparison with many state variables (temperatures, winds, etc). 
Differences between model and observational estimates are generally large enough that the 
choice of analysis product is not critical, but we occasionally note some features where the 
choice makes a difference. MERRA-2 has made a strong effort in producing accurate 
products in the lower stratosphere, an area where EAMv1 and CAM5 simulations differ 
substantially, so we use that product when analysis extends into the stratosphere. Other 
observational estimates for top of atmosphere and surface fluxes based on satellite 
retrievals are noted as they are used. 
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4.1 Global Average Characteristics 

A quick assessment of some of the model characteristics relative to many models that 
participated in the CMIP5 is provided in Figure 3 in the form of a heat map following 
Gleckler et al (2008, 2016) for global uncentered root-mean-square errors relative to 
observations. Rows indicate performance for a variety of meteorological fields described in 
the figure caption, and columns show various models participating in CMIP5, with EAM LR 
and HR and CAM5 models highlighted near the left side of the figure. Each square region is 
divided into quartiles denoting the performance in a particular season. Orange/Red colors 
indicate worse performance  and Blue Colors indicate better performance compared to the 
median model. Both EAM model configurations generally rank quite highly compared to 
the ensemble of CMIP5 models. The EAM model tends to rank particularly well in radiative 
signatures at the top of atmosphere, clouds and radiation, and are somewhat less accurate 
in terms of winds and the 500 hPa height field. 
 

 
 

Figure 1 

Figure 3:  Heatmap diagram evaluating EAMv1 against CMIP5 AMIP simulations following 
Gleckler et al (2008). The fields listed by row are (from top to bottom), 500 hPa 
geopotential height, 200 and 850 hPa meridional and zonal wind, and air temperature, 
surface air temperature, meridional and zonal surface stress, top of atmosphere long and 
shortwave cloud radiative effect, net, long and shortwave TOA fluxes, and precipitation.   
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Table 3: Global averages for some important climate quantities for EAMv1 AMIP 
simulations compared to CAM5 and (central estimates for) observations. Meteorological 
fields were compared to the Japan Meteorological Agency 25 year reanalysis. Top of 
Atmosphere Radiative flux estimates are drawn from the CERES-EBAF 2.8 dataset (Loeb et 
al, 2009). Precipitation from the Global Precipitation Climate Project (GPCP, Adler et al., 
2003). Surface Radiative budgets from CERES-EBAF (Kato et al, 2012), AOD from Ma et al 
(2018). Observational estimates are not entered for liquid and ice water paths because 
model and observational estimates are sampled so differently that comparison is not very 
reliable. 

Variable Obs Estimate CAM5 EAMv1LR 
T10 (Ref Height Temp, K) 288.3 (JRA25) 287.7 288.2 
LWCRE (Longwave Cloud Radiative Effect, W/m2) 26.1 (CERES-EBAF) 23.6 24.5 
SWCRE (Shortwave Cloud Radiative Effect, W/m2) -47.1 (CERES-EBAF) -48.6 -49.3 
All-sky Longwave (Top of Model vs Top of Atmosphere for obs, 
W/m2) 

239.8 (CERES-EBAF) 234.1 239.4 

All-sky Shortwave (Top of Model vs Top of Atmosphere for obs, 
W/m2) 

240.5 (CERES-EBAF) 233.4 239.0 

NET Flux at Top of Model (W/m2) +0.85 (CERES-EBAF) -0.7 -0.5 
Surface Longwave Down (W/m2) 345.2 (EBAFS) 342.9 344.8 
Surface Shortwave Down (W/m2) 186.6 (EBAFS) 182.7 184.6 
Water Vapor Path 24.4 (JRA25) 25.3 24.4 
Precipitation (mm/day) 2.7 (GPCP) 3.0 3.1 
Liquid Water Path (g m-2)  43.8 53.4 
Ice Water Path (g m-2)  17.2 11.3 
Sensible Heat Flux (W/m2) 19.3 (JRA25) 17.9 19.2 
Latent Heat Flux (W/m2) 87.9 (JRA25) 88.2 89.8 
U@200hPa (m/s) 15.6 (JRA25) 16.3 15.7 
Aerosol Optical Depth@512nm (unitless) 0.12 (GOCAP) 0.11 0.13 

More quantitative characteristics of the EAMv1 AMIP simulation compared to 
present-day observations and a similar CAM5 simulation are provided in Table 3. A few 
notable biases are apparent in the table. Although top of model (or top of atmosphere) 
estimates correspond reasonably with observational estimates, EAMv1 estimates of the 
Longwave Cloud Radiative Effect are, like CAM5, somewhat low, and shortwave Cloud 
Radiative Effects are too strong compared to the CERES-EBAF estimates --- that is, high 
clouds do not trap sufficient outgoing longwave energy, and clouds are slightly more 
reflective than the corresponding observational estimate. EAM and CAM5 estimates of all 
sky fluxes are reported at the top of model (60 and 40km) respectively while observational 
estimates from CERES-EBAF are reported at the top of the atmosphere. The atmosphere 
above the model top is not accounted for in the model fields reported in the table. Since the 
CAM5 model top is much lower and the layer above holds much more mass, the standard 
algorithm to account for it requires a large adjustment (1.4 W/m2 in the longwave, and 3.4 
W/m2 in the shortwave). The adjustment is much smaller in EAMv1 (0.2 W/m2 in both 
spectral regions). We chose to report only the top of model results for both models to 
simplify the discussion. Both models have too much absorption in the clear-sky outgoing 
longwave energy, necessitating a choice (through model tuning) of a somewhat too weak 
longwave cloud radiative effect to achieve a reasonable net radiative balance. The water 
vapor path appears similar to the JRA estimate, which is higher than some other 
observational estimates, although a little lower than CAM5. The EAMv1 downward flux of 
both long and shortwave radiation is also closer to observational central estimates than 

This article is protected by copyright. All rights reserved.



Revised July 1, 2019  Page 20 

CAM5. Both models also have a more active hydrologic cycle than indicated by the GPCP 
observational estimate, although that estimate may be low by as much as 10% (see e.g., 
Stephens et al, 2012). EAMv1 has higher water paths than CAM5, and lower ice water 
paths, but these fields are not compared to observational estimates which are judged 
currently too unreliable to provide a strong constraint.  The detailed analysis of Zhang et al 
(2019) and Xie et al (2018) using observational estimates of cloud amount as a function of 
latitude, altitude, phase and temperature suggest that the changes in the water amounts 
and phase partitioning are largely a result of the new treatments of ice nucleation and 
parameterization of the Wegener-Bergeron-Findeisen process in the model. 

 
 

4.2 Zonal Average Characteristics 
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Annual zonal mean biases of AMIP runs compared to present-day observational estimates 
of temperature, water vapor and winds as a function of height and latitude are shown in 
Figures 4-7. While temperature biases are quite small in both models, the EAMv1 

 Figure 4: Zonally Averaged model temperature biases (for AMIP simulations) 
compared to MERRA2 Reanalysis. Left column shows December-January-February 
Average. The EAM and CAM difference fields share the same color bar within a 
column. Right column shows June-July-August. Mass and Area Weighted RMS and 
correlation coefficients are shown. 
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temperature bias (Figure 4, and see also Figure 15) has generally been substantially 
reduced compared to CAM5 in the upper troposphere and lower stratosphere, similar to 
results reported in Richter et al (2014b) when resolution is increased in the upper 
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troposphere and stratosphere. The EAMv1 climate is generally warmer, and the strong cold 
bias at the polar tropopause in CAM5 that has persisted over many generations of CAM 
(particularly in wintertime) has been replaced by a warm bias in the polar lower 
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stratosphere of about half the amplitude. EAM is a little cooler in the tropical upper 
troposphere than CAM5, and a little warmer over the Antarctic continent in summer. These 
differences are associated with the higher vertical resolution and changes in physical 
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parameterizations (orographic GW drag efficiency has been increased in EAMv1 to 0.25 (from 
0.125 in CAM). Zhang et al (2019) have shown that EAMv1probably overestimates the 
supercooled liquid cloud fraction at high latitudes (unlike most models participating in 

Figure 5: Zonally Averaged difference between model mean relative humidity (over 
liquid water) and the MERRA re-analysis. Layout details as in figure 4.  
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recent model intercomparisons), and underestimates pure ice clouds at most 
temperatures, except near -40C. 

Figure 6: Zonally Averaged difference between zonal mean wind and the MERRA re-
analysis. Layout details as in figure 4.  
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While use of relative humidity (over liquid) as a measure of simulation quality can 
complicate interpretation of model fidelity of water vapor because of its temperature 
dependence, the variation of specific humidity over many orders of magnitude can also 
make differences in that field difficult to interpret, but where temperature biases are 
relatively small (most of the troposphere) relative humidity is a useful measure. EAM, like 
CAM5 shows a persistent moist bias through much of the troposphere as indicated in 
Figure 5 (annual zonal mean relative humidity, see also Figure 15), but EAM is moister than 
CAM5 through much of the troposphere.  

The large differences in the two simulations in the lower stratosphere and at the 
tropopause arise from a number of contributing factors: 1) The big cold biases in CAM5 at 
the polar tropopause amplify perceived moist relative humidity biases (a 10 degree change 
in temperature produces a factor of ~2 reduction in the saturation vapor pressure 
appearing in the denominator of the relative humidity calculation), but those positive 
biases are also driven by the larger computational mixing associated with the lower 
vertical resolution of CAM5. Higher vertical resolution in EAMv1 decreases the 
computational cross-tropopause water vapor transport, supporting lower relative 
humidity there. 2) Increased static stability in the lower stratosphere associated with 
decreased mid-latitude stratosphere-troposphere exchange particularly during northern 
hemisphere winter (DJF) also decreases mixing between the moist troposphere and the 
drier stratosphere in EAM. 3) The better resolved stratosphere and higher  model top 
provides an opportunity for a more realistic Brewer Dobson circulation, with upwelling in 
the tropics, and subsidence at midlatitudes that is driven by “Downward Control”, which 
can result in more realistic equator to pole transport of tracers. The larger moist bias in the 
CAM5 lower tropical stratosphere during DJF when orographic wave driving is strongest, 
produces a persistent winter pole moist bias in the lower stratosphere characteristic of 
“low top models” (see, e.g., Haynes et al (1991); Mote et al (1993)). 4) The generally low 
relative humidity evident in the EAM stratosphere is also consistent with, and probably 
explained by an important missing water vapor source there (methane oxidation, see e.g., 
Mote et al (1993)). 

Zonal mean wind biases above 200 hPa are very different in the two models (Figure 
6). The general easterly bias in the tropics and subtropics present in CAM5 has been 
replaced with a stronger westerly bias, but midlatitude biases are somewhat reduced. The  
westerly bias in the tropical lower stratosphere in EAMv1 is due to the previously 
mentioned oscillation in the tropical zonal wind field that is similar to a quasi-biennial 
oscillation, but the amplitude is too strong, and the period too short (not shown). 
Improvements to these features are being addressed in developmental versions of the 
model. 

 

 

4.3 Latitude/Longitude Climate characteristics 
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There are climatological changes in the near surface (reference height) temperature 
due to the new parameterizations and much higher vertical resolution near the surface 
(Figure 7). Since these model simulations were performed with prescribed sea surface 
temperatures, the reference height temperature over oceans is strongly constrained, and 
small differences there reflect changes in the near surface temperature gradients due to the 
change in turbulence parameterization, and the much higher vertical resolution of EAM, 

which can easily support much stronger gradients near the surface. Temperature 
responses over land and sea ice are also driven by these same processes but can also evolve 
due to interactions with the other model components, and so respond to energy and water 
fluxes driven by clouds, and radiatively active constituents in the atmosphere (aerosols, 
water vapor, clouds, ozone). EAM temperatures are much warmer over the NH continents 
in winter poleward of 40N due at least in part to the tuning choices used in the Bergeron 
process, although the amplitude of the temperature bias is about the same magnitude. 
Temperature biases in the same regions in NH summer are much reduced compared to 
CAM5, and many other climate models (Ma et al. 2018). EAM is also generally warmer over 
sea ice and ice sheets, particularly in winter, and this is due to the substantial changes in 
the surface energy budget due to differences in clouds and the surface energy budget 
discussed below.  

Annual mean biases in precipitation (left column, Figure 8) show similar patterns in 
EAMv1 and CAM5, but the amplitude of many biases have been reduced (e.g., RMS average 

Figure 7: Difference between model reference height temperature and the MERRA2 
Reanalysis. Layout details as in figure 4.  
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error in precipitation is 0.94 and 1.12 mm/day in EAMv1 and CAM5 respectively).  
Excessive precipitation seen in CAM5 over the Arabian Sea, Bay of Bengal, Pacific Warm 
pool and central Pacific are reduced, and the underpredicted precipitation in that model 
over S. America is also more realistic. The middle column of Figure 8 shows the difference 
between summer and winter precipitation as an index of monsoon activity (Wang and 
Ding, 2008). Biases present in CAM5 in the Asian (S.E. Asia, India, Bay of Bengal), S. 
American and African Monsoons have all been reduced. More detail about CAM5 and 
EAMv1 biases in monsoon features and sensitivity to the optional gustiness 
parameterization mentioned in section 2.1.3 are discussed in Harrop et al (2018).   

 

Patterns of model biases in aerosol concentrations (Figure 9) are also similar in 
both models compared to an observational estimate of aerosol optical depth (the GCM-
oriented CALIPSO aerosol product, (GOCAP), P. Ma et al (2018)), but EAMv1 biases are 
substantially lower. Biases over remote regions (oceans and high latitudes) are much 
lower. Aerosol mass and composition over oceanic regions have changed due to differences 
in physical parameterizations, and the new and improved aerosol sources. Many 
distribution changes are also associated with the improved treatments of aerosol wet 
removal (Wang et al., 2013), ageing of carbonaceous aerosols (Liu et al., 2016), and 
resuspension of aerosol particles from evaporated raindrops to the coarse mode. There is 
also a notable reduction in the low AOD bias over East and Southeast Asia, which is likely 

Figure 8: GPCP estimates compared to AMIP model simulations (EAM center row,  CAM5.3 
bottom row).  Left column shows Annual Mean precipitation (mm/day). Center column 
shows Summer-Winter precipitation as a measure of monsoon strength. Right column 
shows the precipitation differences across equinox months (April/May – Oct/Nov). The 
lower right four values (AC1 and AC2) are multiplied by -1 in the S. Hem. to account for the 
change in seasonality. A white color in the difference fields indicates small biases compared 
to observational estimates.  
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due to improved CMIP6 aerosol and precursor emissions and the better treatment of SOA.  
Burrows et al (2018) noted that the new formulation for marine organic aerosols 
contributed an additional source of cloud condensation nuclei, strengthening shortwave 
radiative cooling by clouds, and changing summer cloud radiative effects in the Southern 
Ocean. AOD in regions dominated by dust emissions remain much higher than 
observations.  

 EAMv1 biases in shortwave (SW) Cloud Radiative Effect (CRE, Figure 10) are 
generally smaller than CAM5 over Southern Hemisphere continents and in the Southern 
Ocean. The weak amplitude of Southern Ocean SWCRE in CAM5 noted by Kay et al (2014) 
and common to many models (Tan et al, 2016) is frequently associated with mixed-phase 
or supercooled liquid clouds. Zhang et al (2019) showed that supercooled liquid water 
clouds are much more prevalent in EAMv1 than many other GCMs due to our choice of the 
rate at which water is transferred from liquid to the ice phase via the WBF process 
(discussed in section 2.2.3), More realistic partitioning occurs when the parameter is 
increased, and this is a change planned for the next generation of EAM). In addition, the 
application of Classical nucleation theory (CNT) into EAMv1 (Wang et al. 2014) to replace the 
Meyers ice nucleation scheme used in CAM5 also leads to an increase of supercooled liquid 
cloud. This is because the CNT scheme links the number concentration of ice nucleating 
particles (INPs) to the number concentration of aerosols, which usually leads to a smaller 
number concentration of INPs compared to what is estimated from the Meyers ice nucleation 
scheme in which the INP number concentration is often overestimated over the high latitudes 
(Liu et al. 2011; Xie et al. 2008 and 2013). The reduced INPs result in a slow-down of the WBF 
process and therefore an increase of supercooled liquid in the mixed-phase clouds. In the 
Northern Hemisphere biases in both models are generally small, except over the Arctic 
during JJA where EAM clouds reflects sunlight too strongly, and CAM5 too weakly. 
Remaining biases in these high latitude cloud systems are still associated with treatments 
of heterogeneous ice nucleation and the WBF process discussed by Tan et al (2016), and 
Zhang et al (2019). CAM5 tropical CRE biases appear centered on regions of deep 
convection, while EAM low latitude biases are located primarily in regions of trade cumuli 
and summertime stratocumulus (Xie et al, 2018). Experimental versions of EAM now exist 
with substantial improvements for these features in EAM. 

Biases in Longwave CRE (Figure 11) are smaller than CAM5 over most regions and 
seasons, except:  

 

Figure 9: Difference between model (AMIP) and observational estimates (GOCAP) 
of total Aerosol Optical Depth. Left panel EAMv1, right panel CAM5. 

AOD: EAMv1-GOCAP AOD: CAM5-GOCAP 
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• in the tropical warm pool where EAM high clouds are too optically thick and not extensive 
enough. The analysis of Zhang et al. (2019) indicate there is a significant underestimate of 
high clouds of intermediate optical depth compared to observational estimates in the low 
resolution model, with significant improvements in LWCRE in the high resolution 
configuration, but the smaller error appears to be a result of error compensation between its 
underestimated optically intermediate high clouds and overestimated optically thick high 
clouds. 

• The error is also large in the Arctic during JJA where clouds also appear optically too thick, 
and this is likely due to the revisions to aerosols and clouds. Wang et al (2013) showed 
similar changes to liquid and ice clouds and associated CRE when similar modifications were 
introduced in CAM5. 

 
 

Figure 10. Shortwave Cloud Radiative Effect: Top row from EBAF 4..0 observational 
estimates. Left column shows December-January-February Average. The EAM and 
CAM difference fields (for AMIP simulations) share the same color bar within a 
column. Right column shows June-July-August.  
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Although figure 12 might formally belong to the zonal plots of section 4.2, it is 
convenient to concisely summarize here all of the all-sky radiative fluxes (sensitive to 
clouds, aerosols, and surface albedo) differences between model and CERES-EBAF 
observational estimates at the top of atmosphere (Loeb et al., 2009) and surface (Kato et 
al., 2013) using zonally averaged line plots. EAM annually averaged net fluxes (right bottom 
panel) are generally closer to observations at both the top of atmosphere and surface than 
CAM5. The differences between the models are more evident when examined by season 
and partitioned into long and shortwave radiative components (two left columns, two 
upper rows). It is no surprise that TOA fluxes generally agree more closely with the 
observational estimates than surface fluxes for both models because 1) the models were 

tuned to optimize fidelity at the TOA (and not at the surface), and 2) the CERES-EBAF 
surface products require use of a radiative transfer model and atmospheric state to 
produce surface flux estimates, so the estimates are less strongly constrained by 
measurements. SW TOA and surface biases for each model are very well correlated because 
atmosphere is dominated by scattering. EAM SW Flux biases are generally smaller for all 
seasons at TOA and the surface south of about 40N, particularly in the high southern 
latitudes (because of the improved characterization of cloud forcing in the Southern Oceans 

Figure 11. Longwave Cloud Radiative Effect: Top row from EBAF 4.0 observational 
estimates. Left column shows December-January-February Average. The EAM and 
CAM (AMIP) difference fields share the same color bar within a column. Right 
column shows June-July-August. 
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(40-70S) and in the tropics. EAM SW errors are significantly larger than CAM5 poleward of 
60N. 

 
 

4.4 Sensitivity to Horizontal Resolution 

As pointed out by Bacmeister et al (2013), it is not inevitable that the climate of a 
high-resolution simulation be dramatically improved over a low-resolution counterpart. 
Explorations with previous generations in the lineage of this model using CAM4, and the 
simplified versions and variants of CAM5 reported in Bacmeister et al (2013), Wehner et al 
(2014), and O’Brien et al (2016), have reported a variety of common features, including an 
increase in the ratio of stratiform to convective precipitation, a decrease in cloud forcing, 
and after retuning modest improvements to monsoon systems, tropical wind fields, 
frequency of occurrence of tropical cyclones, and reduction in precipitation biases during 
winter in the southeast United States, along with a degradation (or no improvement) to the 
pattern of the intertropical convergence zone, with significant changes (both good and bad) 
to the precipitation intensity statistics.  These differences are due both to the resolution 

Figure 12: Differences between model AMIP simulations (EAMv1 in blue, CAM5 in orange) and 
CERES-EBAF observationally based estimates of all sky fluxes using the sign conventions adopted 
by the CESM community (longwave flux is positive out of surface, shortwave flux positive into 
surface, net flux is longwave minus shortwave). Heavy Solid lines/numbers  show top of atmosphere 
differences and area weighted RMS  Lighter lines/numbers  show differences in surface fluxes. 
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changes themselves, and to some parameterization’s sensitivity to the time step, which 
must be decreased as resolution increases to avoid computational instability. Some of these 
same characteristics and experiences occurred during development of EAM. Xie et al 
(2018) have described the model response to resolution changes without parameter 
changes and outlined the required changes in parameter settings needed to produce a 
reasonably tuned model. Although a thorough evaluation of the high-resolution model 

behavior is beyond the scope of this study (other works are in preparation) we present 
here a few hints about model behavior that can be gleaned from monthly mean fields. 

 Figure 13 shows EAM differences in Temperature, Relative Humidity and Zonal 
Wind as a function of resolution for the F2000 configuration, displaying biases with respect 
to the ERA reanalysis product at low (left column) and high (right column) horizontal 
resolution.  Since the model tuning has also changed, these differences reflect change in 
both resolution, and parameterization changes. The high-resolution model configuration 
seasonal and annual biases are notably smaller for both temperature and relative humidity 
throughout the troposphere, and there are hints that the stratospheric jet structure in the 
subtropics is also more realistic. Near surface biases in most variables, including those 
shown in figure 13 and many other variables appear insensitive to horizontal resolution, 

 

Figure 13: A comparison of model biases in F2000LR Low (left column) and F2000HR High 
Resolution (Right Column)  simulations compared to the ERA-Interim (1980-2004) reanalysis. Top 
row: Temperature(K); Middle row: Relative Humidity(%); Bottom row: Zonal Wind (m/s). 

Temperature Temperatur
 

Relative Humidity Relative Humidity 

Zonal Wind Zonal Wind 
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suggesting that those deficiencies are often more strongly driven by inadequacies in 
physical parameterizations.  

Figure 14 shows EAM differences between modeled and GPCP (Huffman et al, 2009) 
total precipitation estimates for F2000 HR and LR configurations. Error patterns are very 
similar at both resolutions, but the amplitude of the largest errors (indicated by the 
magenta color interval) is smaller at high resolution in the tropics (ITCZ and Warm Pool), 
and over steep topography (Andes and Himalayas). There are also notable improvements 
during the summer/wet season over southern Africa, Northwest Canada, Alaskan North 
America (with a degradation in the SE US), and the ITCZ bias that extends east of the 
dateline at low resolution (bottom right panel) is much reduced at high resolution (bottom 
left panel).    

 
Figure 15 shows mean JJA differences between modeled total precipitation and 

GPCP1DD estimates (Huffman et al, 2001) over the Continental United States (CONUS) at 
LR and HR standard resolutions and using EAM with regional refinement.  Differences 
between the CONUS RRM and the high-res model are generally statistically insignificant. 
Simulated precipitation is improved (i.e., smaller model-observation differences)  

Figure 14: Differences between DJF and JJA mean modeled (F2000) and GPCP 
precipitation (top row, Huffman et al, 2009) estimates for 4 year averages (years 2-5) 
of the high (middle row)  and standard low resolution (bottom row) model 
simulations.  
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with increased resolution, especially over mountain regions, such as over the Western 
United States. These differences are present in Figure 14 but are not apparent because of 
the larger contour interval in the global plots. Largest departures between low and high-
resolution simulations are seen along the eastern seaboard. These results highlight the 
utility of RRM as a useful tool for the high-resolution model development by mimicking the 
behavior of the globally uniform high-resolution simulations with substantially reduced 
computational cost. More discussion of the RRM configurations can be found in Roesler et 
al. (2018) and Tang et al. (2019).   
 

 
 
4.4 Tropical Variability 

Although there isn’t room for much discussion of EAMv1’s major modes of 
variability, two important tropical features are displayed to provide a little insight into 
aspects of the simulation where signatures are similar to CAM5, and where they are 
different.  

Figure 16 shows that significant biases remain in the diurnal signal of precipitation 
in the timing phase, amplitude and coastal coherence (continuity of phase and amplitude as 
precipitation propagates away from island coasts). Despite the significant changes in 
turbulence and cloud physics, EAMv1 maintains many of the persistent biases present in 

Figure 15: Simulations of JJA mean total precipitation against GPCP1DD precipitation 
(Huffman et al, 2001) estimates for 4 year averages (years 2-5) of the standard low 
resolution (left, ne30) and regionally refined model configuration over CONUS (right, ne30-
->ne120) Dotted areas indicate where the differences are statistically significant at the 
95% confidence level with a two-tailed Student’s t test.  

       F2000LR – GPCP                             F2000HR – GPCP                      

       F2000CONUS – GPCP                      
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CAM5, including on average a timing that is at least 6 hours too early over land and 4 hours 
too early over ocean. An increase in diurnal amplitude is in better agreement with 
observations. Given the similar biases to CAM5 it is unsurprising but reasonable to 
conclude that the common ZM deep convection in both models exerts the dominant 
influence on the diurnal variability. Changes in the vertical grid and modifications in the 
remaining physics schemes would therefore seem to have a secondary role. 

 

Figure 17 highlights the fidelity of some of the major sub-seasonal organized modes 
of variability in the deep tropics by displaying observational and model estimates of the 
power spectrum for OLR. The observed field shows phase space peaks corresponding to 
the ubiquitous, equatorially trapped propagating wave modes responsible for much of the 
regional variability of clouds and precipitation within a season. EAMv1 significantly under-
represents the strength of many of these modes, particularly for the key eastward 
propagating low-frequency Kelvin modes, and this represents a degradation compared to 
CAM5. However, there is marked improvement in the MJO strength in EAMv1 which 
appears as a much more coherent propagating signal through the Maritime Continent and 
into the West Pacific (not shown). Sensitivity experiments performed with prescribed SSTs 
in EAMv1 indicate that a combination of factors are responsible for the improvement, 
including the inclusion of CLUBB and the additional vertical levels.  Unlike CAM5, 
optimization (tuning) choices in EAMv1 also appear to strongly affect sub-seasonal 
variability characteristics. Another more fundamental transformation compared to CAM5 is 

Figure 16: Timing phase (color) and amplitude (color density) of the first diurnal 
harmonic of total precipitation (mm/day) from 10 years of 3-hourly averaged data for (a) 
Observed (TRMM), (b) EAMv1 (AMIP) and (c) CAM5 (AMIP). 
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that atmosphere ocean coupling plays a very strong role in modulating MJO activity. 
Coupling was a small influence on the presence and strength of the MJO in CAM5 and 
CESM1 (not shown, but Fig 17(d) differs minimally from CESM1).  EAMv1 produces an 
altogether different response to coupling, as the strength of the MJO and the wavenumbers 
over which it is active increases in coupled (E3SM) versus prescribed SST model 
configurations (panel b vs c). The underlying causes are somewhat unclear, but preliminary 
study indicates that coupling appears to dramatically reduce the barrier effect of the 
Maritime Continent. Furthermore, zonal precipitation and surface stress biases in the 
Indian Ocean, although somewhat degraded from CAM5/CESM1, appear to generate initial 
MJO-type disturbances that propagate more robustly and consistently toward the Maritime 
continent. The resolved equatorial wave spectrum is important (among other reasons) in 
forcing of QBO, and the low amplitude in EAMv1 and E3SMV1 has implications for the the 
gravity wave drag parameterization tuning. Improving the capability of the model to excite 
a more realistic tropical spectrum will be an important goal for the next model version. 

 

4.5 Response to Forcing agents and Cloud Feedbacks 

Realistic implications of the response to forcing changes must be done in a coupled 
modeling framework, but simpler simulations can provide insight into the forcing and feedbacks 
in the model (Ringer et al, 2014; Forster et al, 2016). Effective Radiative Forcing (ERF, Boucher 
et al, 2013) provides an estimate of the change in fluxes due to a change in forcing agent after 
“rapid responses” in the atmosphere (clouds and stratosphere) and land take place, but before 
longer timescale adjustments occur. Forster et al (2016) noted that ERF estimates can be quite 
sensitive to the calculation method and indicated that robust estimates can be made with fixed 
SST simulations. Table 4 provides estimates of changes in top of atmosphere flux produced by 
differences in paired runs designed to expose differences between simulations as climate forcing 
agents are varied. Some of the runs used to estimate the model response to a forcing agent 
change in table 4 are drawn from Golaz (2018). Simulations from that study allow estimates of 

Figure 17: Wavenumber frequency spectra (following Wheeler and Kiladis, 1999) showing the 
ratio of unfiltered background spectra of daily interpolated (symmetric about the equator) 
outgoing longwave radiation (1986-2005) for (a) Observed (NOAA), (b) EAMv1 (AMIP), (c) E3SM 
(coupled), and CAM5 (AMIP). 
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the model response to be made by comparing paired simulations with different forcing agents 
when surface temperature and volcanic stratospheric aerosols are varied by year (AMIP SSTs 
and a historical record of volcanoes were used).  

Total ERF characterizes the model response to changes in GHGs, aerosols, land use, and 
land cover in the absence of SST changes. Column 2 (C2) shows flux changes obtained by 
differencing a run using CMIP5 emissions, LU/LC, GHGs and (climatological, repeating) SSTs 
representative of a time window centered on 1850 (F1850), with a run having the same SSTs but 
forcing agents representative of a 20 year window centered on the year 2000 (F2000AllF). The 
total ERF or Adjust Forcing, inferred from the FTOA field for these configurations is estimated 
to be ~1.26 W/m2, somewhat higher than the EAMv1 estimate of ~1.1 W/m2 reported by Golaz 
(2019) which used an average of three simulations contrasting CMIP6 forcing agents between 
(1995-2014) and 1850 forcing agents over varying AMIP SSTs for (1995-2014). A much lower 
estimate of 0.36 W/m2 (C3, FTOA) is present for that same model configuration using only the 
third realization (identified as A3 in Golaz et al (2018)) when the estimate is evaluated from a 
25-year segment started 15 years earlier (1980-2004). The lower forcing estimate, consistent 
with figure 24 of Golaz et al (2019), is sensitive to the presence of aerosols from stratospheric 
volcanoes (absent during the period Golaz et al focused on), which explains most of the 
difference in the estimates, but emission sources of anthropogenic aerosols were also 
significantly higher during the earlier (1980-2004) period. The differences compared to the 
F2000 emissions used in C2 may also be partially explained by the SSTs differences used in 
columns C2 and C3 --- clouds and cloud responses to aerosols and GHG can be sensitive to 
surface temperature and the 1980-2014 period is characterized by very large El Nino events not 
present in the SST climatologies used in C2, or the later time period analyzed in Golaz et al 
(2019).  The differences in emissions, and small differences in methodology compared to that 
used in Golaz (2019) and the Forster et al (2016) result showed that forcing estimates can depend 
significantly on the length of analysis interval indicated the sensitivity of the calculation. At any 
rate, the EAMv1 Total ERF is smaller for all EAMv1 estimates than the Forster et al (2013) 
mean value 1.7 (±0.9) W/m2 but within the range identified for 1850 and 2001-2005 from 
CMIP5 coupled runs. Since Total Adjusted Forcing is made more positive by GHGs and more 
negative by aerosol forcings, the low values indicate the aerosol forcing is strong compared to 
other models. 

Aerosol Forcing (decomposed into an ERF due to Aerosol Radiation Interactions (ERFARI) 
and Aerosol Cloud Interactions (ERFACI) can be estimated by differencing runs with 
anthropogenic sources for aerosols changed between PI and PD values with other forcing 
agents held constant.  Unfortunately, diagnostic fields needed to decompose the model 
response into unbiased estimates of ERFARI and ERFACI using the technique in Ghan et al 
(2013) were not archived for the runs of table 2, but biased estimates that provide rough 
estimates of the cloud and clear sky impacts of aerosol can be produced by differencing 
long and shortwave clear sky fluxes (FLNTC and FSNTC), and Cloud Radiative Effects 
(-LWCRE and SWCRE). The biased estimate based on  the runs described in Golaz et al 
(2018) when CMIP6 aerosol sources vary by year and month over contemporaneously 
varying SSTs for 1980-2004 is shown in C4, with clear sky aerosol effects in clear (-0.49/-
0.15/-0.64 W/m2) and strong cloudy  (-1.37/0.57/-1.94 W/m2) flux changes producing an 
estimated total aerosol ERF about -1.86 W/m2. Golaz et al (2019) noted a lower amplitude 
estimate of -1.65 W/m2 for the 1995-2015 time period. In this case, both simulations 
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included the same volcanic aerosols in the stratosphere so the differences must be 
associated with the higher anthropogenic aerosol sources or higher SSTs compared to the 
period analyzed by Golaz et al (2019). Column C5 shows CAM5 values reported in 
Gettelman et al (2015) with a total Aerosol ERF of -1.6 W/m2.  
Table 4 Changes in globally averaged top of atmosphere fluxes (longwave allsky (FLNT), clear 
sky (FLNTC) and CRE (LWCRE), Shortwave allsky (FSNT), clearsky (FSNTC) and 
CRE(SWCRE), surface temperature (TS, total/land), Aerosol Optical Depth (AOD). C2, C3: 
Response to Total forcing (GHG, aerosols, and land use/land cover) C4, C5: Response to aerosol 
and aerosol precursor emissions. C6: response to SST changes. Estimates for CAM5 (C5) from 
Gettelman et al (2015) used the Ghan (2013) “clear clean” methodology that can produce 
differences O(0.1 W/m2) compared to the “clear” CRE estimates (A. Gettelman, private 
communication).  Fluxes use typical sign convention for CESM models; both long and 
shortwave net fluxes are defined to be positive, the net flux is defined to be shortwave-longwave, 
and cloud forcing is defined positive for longwave and negative for shortwave.  

C1 C2 C3 C4 C5 C6 

Description of 
forcing estimnate 

EAMv1 Responses 
to a change in all 
forcing agents in 
presence of 1850 
SSTs and no 
volcanic aerosols 

EAMv1 Response to a 
change in all forcing 
agents  in presence of 
time varying SSTs, 
aerosols, and volcanic 
aerosols (1980-2004) 

EAMv1 Response to 
aerosol emission 
changes  in presence 
of time varying SSTs, 
aerosols, and volcanic 
aerosols (1980-2004) 

CAM5.3 
Response to 
changing aerosol 
emission 

EAMv1 response 
to a +4K increase 
in SSTs 

Cases or reference 
for calculation  

 

Change in field ↓ 

See Table 2 (cases 
(F2000LR/AF-
F1850) 

See table 2 of Golaz et 
al (2018) for 
description  (cases 
amip_A3 - 
amip_1850allF_A3)  

 

See table 2 of Golaz et 
al (2018) for 
description (cases 
amip_A3 - 
amip_1850aerof_A3) 

 

CAM5.3 
(AE w MG1) 

See Table 2 (cases 
F1850LR+4k – 
F1850LE) 

∆FLNT -3.03 -2.86 -0.72 ~0.44 10.1 

∆FLNTC -3.17 -2.87 -0.15  9.4 

∆LWCRE -0.14 -0.01 0.57 0.44 -0.7 

∆FSNT -1.77 -2.5 -2.58 -2. 3.7 

∆FSNTC -0.63 -1. -0.64  1.9 

∆SWCRE -1.13 -1.51 -1.94 -2.02 1.8 

∆FTOA 1.26 0.36 -1.86 -1.59 -6.4 

∆TS/TSLAND 0.12/0.25 0.1/0.18 0.01/-0.11  4.49 

∆AOD 0.03 0.03 0.02  0.01 
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A few more results using a reproducible decomposition of Aerosol Forcing following 
the protocols suggested for the AeroCom Indirect Effect Experiments (Ghan et al., 2016, 
and see https://wiki.met.no/aerocom/phase3-experiments) are noted for future 
comparison to other models. Two two-year (2006-2007) EAMv1 simulations were made 
with pre-industrial and present-day emissions. Runs used a 6-hour relaxation time nudging 
to the MERRA (Rienecker et al., 2011) reanalysis winds, with CMIP6 representative 
monthly climatological values of aerosol sources composited over years 2000-2014 (Yang 
et al., 2018). The anthropogenic aerosol ERF using this configuration is -1.75 W m-2, similar 
to the -1.85 W m-2 CAM5 forcing estimate described in Zhang et al (2016) using the CLUBB 
and MG2 schemes. The aerosol ERF for both models is dominated by the contribution from 
aerosol-cloud interactions. Contributions from aerosol-radiation interactions and aerosol-
surface interactions (Ghan, 2013) are smaller than 0.1 W m-2 for both models. However, the 
contribution of aerosol-cloud interactions from warm clouds (i.e., cloud top temperature 
warmer than 263 K) is much smaller for EAMv1 than for CAM5. Factorization (Ghan et al., 
2016) of the cloud and aerosol changes driving the difference in the response of cloud 
radiative forcing to anthropogenic emissions (not shown) suggests that the ERF is not 
driven by different sensitivities between cloud condensation nuclei, droplet number, or 
even the cloud radiative forcing, but primarily by differences in the control warm cloud 
radiative forcing, which is far stronger for CAM5 than for EAMv1.  Because the global mean 
cloud radiative forcing and effective radiative forcing are both similar for the two models, 
some compensation between differences in warm and cold clouds must occur. It is 
noteworthy that differences in cloud radiative forcing are related to differences in the 
sensitivity of cloud radiative forcing to aerosol source changes. It is clear that net Aerosol 
Forcing depends strongly on the details of the evaluation (precise period used to define 
fluxes, inclusion of volcanoes, and perhaps SST pattern). Under some scenarios EAMv1 has 
a lower sensitivity to aerosol sources than CAM5, and in others a higher susceptibility. 
These subtleties are being evaluated and will be reported on in a separate study.  

Ringer et al (2014) showed that reasonable estimates of model feedbacks may be 
estimated by calculating the top of atmosphere flux response to uniform surface 
temperature changes compared to fully coupled simulations. In that study, long and 
shortwave clear sky feedbacks calculated using perturbed surface temperatures were 
found to generally produce a somewhat weaker positive and stronger negative feedback 
compared to the fully coupled simulations. They also show that CRE feedbacks agree quite 
well --- longwave cloud feedbacks using prescribed SST changes are very strongly 
correlated with coupled estimates; shortwave cloud feeds differ more, and in most models 
this was because of a missing contribution from sea ice reductions in the prescribed SST 
runs. Differences between the F1850LR and F1850+4K simulations produce EAMv1 (Table 
2, column C6) estimates of a total feedback of -1.42.  Ringer et al (2014) list the total 
feedback from 10 +4K CMIP5 runs using AMIP SSTs as having a mean of λ = -1.6 and a 
range of -1.05 to -1.95, so EAMv1 has a negative total feedback near the central value. 
Ringer et al indicate that most CMIP5 models show a longwave λlw,CRE feedback around 0 
(±0.5) W/m2/K, with a slight tendency for fixed SST calculations to produce a more 
negative feedback than coupled calculations. EAMv1’s value of  +0.16W/m2/K is in the 
inner quartile range of those models. The EAMv1 clearsky longwave feedback λLW,Clear is -
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2.09 W/m2/K, again near the center of the CMIP5 range.  λSW,CRE is 0.4 W/m2/K, in the 
upper quartile of the CMIP5 models (with a range about -0.2 – 0.9 W/m2/K).  λSW,Clear is 
0.42 within the central (inner quartile) range of CMIP5 models. Golaz et al (2019) perform 
a more accurate calculation of feedbacks using coupled control and abrupt 4xCO2 
simulations with a radiative kernel calculation capable of breaking down the feedbacks into 
the Planck, lapse rate, water vapor feedback etc and conclude that E3SMv1 has a larger 
cloud feedback than all CMIP5 models evaluated. The stronger response may be due in part 
to the cloud changes in the vicinity of sea ice, to cloud masking issues, and to the patterned 
SST change compared to the uniform change evaluated here. 

5. Summary 

A new version of the E3SM Atmospheric Model (EAMv1), has been developed and 
released to the community. EAMv1 is a fork of the CAM5 lineage of atmospheric models. In 
addition to improved treatment of model physical processes, and model numerics, it includes a 
substantial increase to the vertical resolution, optional increased horizontal resolution, and 
optional regionally refined configurations that support increased resolution in a region of interest 
in order to optimize the balance between computational cost and resolution. Vertical resolution 
and extent was increased (from 30 to 72 layers, with the surface layer resolution increased by up 
to 5 times and the model top extended to 60 km [~0.1 hPa]). A tuned low (~100km), and high 
(~25 km) resolution configuration have been provided, along with a regionally refined 
configuration with high resolution over the continental US and low resolution elsewhere.  

The new atmospheric model includes significant changes to turbulence, aerosols, cloud 
microphysical, convective, and precipitation processes, and chemistry. The model uses the MG2 
cloud microphysics parameterization with modifications to the autoconversion process, and ice 
nucleation. A 4 mode version of the Modal Aerosol Module (MAM4) was included with 
additions designed to improve the representation of particle aging, secondary organic aerosol, 
and cloud interactions, and an additional aerosol type was included to represent important 
missing species (Marine Organic Aerosol).  A simple ozone photochemistry was added to 
represent stratospheric ozone sensitivity to atmosphere dynamics, temperature, and depletion by 
prescribed halogen; the model now supports increased and more realistic variability in the upper 
troposphere and stratosphere. An optional improved treatment of light-absorbing particle 
deposition to snowpack and ice is available, and stronger connections with Earth system 
biogeochemistry can be used for some science problems. The changes made to turbulence and 
vertical resolution required modifications to the convection parameterization near the surface to 
make the parameterization less sensitive to boundary layer structure. 

Model workflow also changed: EAMv1 used the E3SM software engineering code 
development process as part of its development strategy, with strict use of regression testing to 
prevent answer-changing bugs from entering the code, and modifications to the verification 
methodology capable of detecting some implementation errors in the development versions of 
EAM. EAMv1 is computationally 3-4 times more expensive than its predecessors due to a 
significant increase in parameterization complexity, more tracer constituents (40 compared to the 
25 used previously), a doubling of vertical layers, and modifications to maintain numerical 
stability with increased resolution. Since brute force strategies using many multi-year 
simulations were not feasible at high resolution, other strategies were also employed during the 
tuning phase. Short simulations (hindcasts and ensembles of short simulations) were used during 
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the initial phase of tuning to converge on appropriate model configurations and better understand 
sensitive to parameter variations.  

A brief assessment of some simulation characteristics was performed to assess 
changes compared to CAM5, and fidelity compared to observations. A lightweight 
comparison of EAMv1 to models participating in the previous (CMIP5) evaluation indicates 
that the model climate ranks in the better scoring half in terms of a series of common 
climatological metrics, and its climate fidelity is generally higher than CAM5 (its 
predecessor). For version 1, a lot of emphasis was placed on producing reasonable 
radiative signatures in monthly mean radiative fluxes (driven by state variables), 
hydrological fields (precipitation, water vapor, clouds), and dominant modes of variability 
(including the seasonal cycle, ENSO relevant signatures, the Madden Julian Oscillation), etc. 
Longstanding biases in the lower stratosphere and polar tropopause were much reduced, 
and the model has more realistic variability there. Top of atmosphere radiative flux biases 
have been reduced significantly. High clouds still do not trap sufficient outgoing longwave 
energy, and clouds remain slightly more reflective than the corresponding observational 
estimate. Temperature biases in Northern Hemisphere summer are much reduced. 
Monsoon features are improved, and the largest biases in tropic precipitation are reduced 
compared to CAM5, but they are still quite large. The model cloud susceptibility to aerosols 
is quite high. 

There are many remaining areas in which EAM can be improved; wind biases in the 
Upper Troposphere and Stratosphere still affect major modes of stratospheric variability 
(e.g., the QBO, and stratospheric warmings) that are potentially important to tropospheric 
variability; coastal stratocumulus clouds are underestimated and are responsible for strong 
and persistent biases in shortwave cloud forcing; significant errors in convective 
precipitation in the tropical warm pool and associated radiative effects still contribute to 
errors in major circulation features; the phase of diurnal precipitation indicates that critical 
remaining problems exist in triggering of convection, which is probably related to 
insufficient energy in major modes of tropical variability (for example, Kelvin wave with 
periods from 3-30 days, and inertial gravity wave with periods less than 3 days). We are 
now aware that more realistic simulations for some of these features with the same model 
are possible with other tuning choices, and some modifications are being documented in 
upcoming studies, and being considered for adoption in the next generation of EAM. Other 
much more extensive modifications are also planned (for example to cloud microphysics, 
and the cloud extent, phase, and overlap decompositions provided to the radiation). There 
are many fascinating and important opportunities for improving this tool, and using it for 
better understanding of the Earth System. We invite use of this new tool and participation 
by on our science project by members of the research community. More information on this 
opportunity is provided in the next paragraph. 
Code and data availability  

The E3SM project, code, simulation configurations, model output, and tools to work with 
the output are described at https://e3sm.org. Instructions on how to get started running E3SM and 
its components are available at https://e3sm.org/model/running-e3sm/e3sm-quick-start. All 
model codes may be accessed on the GitHub repository at 
https://github.com/E3SM-Project/E3SM. CLUBB is available following free registration at 
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https://carson.math.uwm.edu/larson-group/clubb_site/signup/, The specific CLUBB 
variant use here code can be cloned from https://github.com/larson-
group/clubb_release/tree/20141204_Rasch_et_al_2019_paper. Model output for original model 
simulation data are accessible through the DOE Earth System Grid Federation at 
https://esgf-node.llnl.gov/projects/e3sm. Specific climatologies used in this study can be 
obtained at http://portal.nersc.gov/archive/home/ACME/www/pjr/EAMv1_overview_data.  
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Appendix A 
 
A.1 Tunable Parameters used by EAMv1  
 
Table of tunable parameters that that have been changed compared to the value described in the original papers 
describing the basic parameterization. When the parameter value is resolution dependent the both Low (LR) and High 
(HR) resolutions values are listed.  
Tunable parameter Description LR value HR value Comments/nominal value 
dtime physics timestep 1800 900  
seasalt_emis_scale sea salt emission 

scale factor 
0.85   reduced from 1.35, tuned for global 

AOD 
raytau0 Rayleigh friction 5.0  increased from 0. 
cldfrc2m_rhmaxi Maximum RH for ice 

cloud fraction 
1.05  Reduced from 1.2. 

cldfrc_dp1 Parameter for deep 
convective cloud 
fraction 

0.045 0.039 Reduced from 0.1. 

dust_emis_fact Dust emission scale 
factor (denominator)  

2.05 2.50 Increased from 0.35 to reduce dust 
emission 
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clubb_c1 Damping coefficient 
for w’2 

1.335 1.5 Reduce from 2.5 to increase w’2, 
favoring low cloud formation 

clubb_c14 Damping coefficient 
for u’2 and v’2 

1.06 1.75 Increase from 1.0 to reduce TKE and 
low clouds 

clubb_c2rt Damping coefficient 
for total water 
variance 

1.75  Increase from 1.0 

clubb_c8 Damping coefficient 
for w’3 

4.3 4.73 Increased from 3.0 to reduce w’3, 
favoring symmetric convection and 
low cloud formation. 

clubb_c_k10 ratio of eddy 
diffusivity of wind to 
heat 

0.3  0.6 

clubb_ice_deep assumed ice 
condensate radius 
detrained from ZM 

16 12 25 

clubb_liq_deep assumed liquid 
condensate radius 
detrained from ZM 

8  10 

effgw_beres frontal gravity wave 
drag coefficient 

0.4  0.1 

effgw_oro orographic gravity 
wave drag coefficient 

0.25  0.1 

taubgnd background source 
strength parameter 
(for gravity wave 
drag) 

2.5e-3  1.5e-3 

do_tms turbulent mountain 
stress 
parameterization 

false  true 

ice_sed_ai ice particle fall speed 
parameter 

500  700 

micro_mg_berg_eff_fa
ctor 

Scale factor for WBF 
process 

0.1  Nominal setting of 1, in MG 

so4_sz_thresh_icenuc Aitken mode SO4 size 
threshold used for 
homogeneous ice 
nucleation 

0.1e-6  0.05e-6 

micro_mg_accre_enh
an_fac 

enhancement factor 
for accretion 

1.5  1 

zmconv_alfa Maximum downdraft 
fraction 

0.1 0.2 0.1 

zmconv_c0_lnd Conversion from 
cloud water to rain 
water over land 

0.007 0.0035 0.0059 

zmconv_c0_ocn Conversion from 
cloud water to rain 
water over ocean 

0.007 0.0043 0.045 

zmconv_cape_cin # of layers allowed 
for negative CAPE 

1  5 

zmconv_dmpdz Parcel fractional 
mass entrainment 
rate 

-0.7e-3 -0.2e-3 -1.e-3 

zmconv_ke coefficient for 
evaporation of 
convective 
precipitation 

5.e-6 6e-6 1.e-6 

zmconv_mx_bot_lyr_a
dj 

Lowest launching 
level 

2  0 

zmconv_tiedke_add initial parcel 0.8  0.5 
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buoyancy 
k coefficient for 

autoconversion 
30500  1350 

a exponent for Qc 3.19  2.47 
b exponent for Nc -1.2  -1.79 
Note 2:  
clubb_rainevap_turb 
and 
clubb_cloudtop_cooli
ng are set to false. 

    

Note 3: dcs 
parameter has been 
replaced by a 
temperature- 
dependent 
parameterization 

    

 
 

Tables: 
 
Table 1a: Information related to model resolution and cost on Cori (KNL nodes). Note that 
CAM5 by default uses a finite volume dynamical core and the numbers reported here are 
for the spectral element dynamical core, and the discussion regarding the cost calculation 
on Cori. 

Resolution 
identifier 

Horizontal 
Resolution 

Vertical 
Resolution 

Number of 
elements 

Throughput: Sim Years 
Per Day (# Cori-KNL 
nodes) 

Cost in core-hours per 
sim year (68 
cores/node)  

CAM5 Ne30  1 o 30 5400 9 SYPD (40N) 7,000 
EAM Ne30 1o 72 5400 6 SYPD (81N) 22,000 
EAM Ne120 1/4o 72 86400 2 SYPD (675N) 551,000 
EAM CONUS 1/4o to 1o 72 9905 1.7 SYPD (88N) 84,000          
 

Table 1b: Information related to model resolution and cost on Edison.  

Resolution 
identifier 

Horizontal 
Resolution 

Vertical 
Resolution 

Number of 
elements 

Throughput: Sim Years 
Per Day (#  Edison nodes) 

Cost in core-hours per 
sim year (24 core/node)  

CAM5 Ne30  1 o 30 5400 41 SYPD (113N) 1,600 
EAM Ne30 1o 72 5400 10 SYPD (113N) 6,300 
EAM Ne120 1/4o 72 86400 0.5 SYPD (200N) 265,000 
EAM CONUS 1/4o to 1o 72 9905 1.3 SYPD (113N) 25,000          

 
Table 2: Description of model simulations performed for evaluation: 

Simulation Name Resolution, Analysis period Description 
F1850LR 100km, Years 2-11 Year 1850 SST, GHG, LU, LC, Aerosol sources, no volcanoes 
F2000LR 100km, Years 2-11 Year 2000 SST. GHG, LU, LC, Aerosol sources, no volcanoes 
F1850LR+4K 100km, Years 2-11 As in F1850LR, SST + 4K to assess cloud feedback 
F2000LR/AF 100km, Years 2-11 As in F2000LR but SST, Sea-ice, Solar Cycle replaced by 1850 values  
F2000LR/Aero 100km, Years 2-11 As in F2000LR but Aerosol emissions replaced by 1850 values 
FAMIPLR 100km, 1980-2005 Time varying SST, aerosol sources, volcanoes, LU/LCC, GHG 
FAMIPLR/AllF 100km, 1980-2005 As in FAMIPLR except aerosol sources, volcanoes, LU/LCC, and GHG fixed at 1850 
FAMIPLR/AeroF 100km, 1980-2005 As in FAMIPLR except aerosol sources fixed at 1850 
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CAM5AMIP 100km, 1980-2005 CAM5 Control for comparison 
F2000HR 25km, Years 2-11. As in F2000LR except high resolution 
F1850CONUS 100km + 25km, Years 2-5 CONUS simulation, Free-running  
F2000CONUS 100km + 25km, Years 2-5 CONUS simulation, Free-running (nudged and CAPT special features) 

 
 

Table 3: Global averages for some important climate quantities for EAMv1 AMIP 
simulations compared to CAM5 and (central estimates for) observations. Meteorological 
fields were compared to the Japan Meteorological Agency 25 year reanalysis. Top of 
Atmosphere Radiative flux estimates are drawn from the CERES-EBAF 2.8 dataset (Loeb et 
al, 2009). Precipitation from the Global Precipitation Climate Project (GPCP, Adler et al., 
2003). Surface Radiative budgets from CERES-EBAF (Kato et al, 2012), AOD from Ma et al 
(2018). Observational estimates are not entered for liquid and ice water paths because 
model and observational estimates are sampled so differently that comparison is not very 
reliable. 

Variable Obs Estimate CAM5 EAMv1LR 
T10 (Ref Height Temp, K) 288.3 (JRA25) 287.7 288.2 
LWCRE (Longwave Cloud Radiative Effect, W/m2) 26.1 (CERES-EBAF) 23.6 24.5 
SWCRE (Shortwave Cloud Radiative Effect, W/m2) -47.1 (CERES-EBAF) -48.6 -49.3 
All-sky Longwave (Top of Model vs Top of Atmosphere for obs, 
W/m2) 

239.8 (CERES-EBAF) 234.1 239.4 

All-sky Shortwave (Top of Model vs Top of Atmosphere for obs, 
W/m2) 

240.5 (CERES-EBAF) 233.4 239.0 

NET Flux at Top of Model (W/m2) +0.85 (CERES-EBAF) -0.7 -0.5 
Surface Longwave Down (W/m2) 345.2 (EBAFS) 342.9 344.8 
Surface Shortwave Down (W/m2) 186.6 (EBAFS) 182.7 184.6 
Water Vapor Path 24.4 (JRA25) 25.3 24.4 
Precipitation (mm/day) 2.7 (GPCP) 3.0 3.1 
Liquid Water Path (g m-2)  43.8 53.4 
Ice Water Path (g m-2)  17.2 11.3 
Sensible Heat Flux (W/m2) 19.3 (JRA25) 17.9 19.2 
Latent Heat Flux (W/m2) 87.9 (JRA25) 88.2 89.8 
U@200hPa (m/s) 15.6 (JRA25) 16.3 15.7 
Aerosol Optical Depth@512nm (unitless) 0.12 (GOCAP) 0.11 0.13 
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Table 4 Changes in globally averaged top of atmosphere fluxes (longwave allsky (FLNT), clear 
sky (FLNTC) and CRE (LWCRE), Shortwave allsky (FSNT), clearsky (FSNTC) and 
CRE(SWCRE), surface temperature (TS, total/land), Aerosol Optical Depth (AOD). C2, C3: 
Response to Total forcing (GHG, aerosols, and land use/land cover) C4, C5: Response to aerosol 
and aerosol precursor emissions. C6: response to SST changes. Estimates for CAM5 (C5) from 
Gettelman et al (2015) used the Ghan (2013) “clear clean” methodology that can produce 
differences O(0.1 W/m2) compared to the “clear” CRE estimates (A. Gettelman, private 
communication).  Fluxes use typical sign convention for CESM models; both long and 
shortwave net fluxes are defined to be positive, the net flux is defined to be shortwave-longwave, 
and cloud forcing is defined positive for longwave and negative for shortwave.  

C1 C2 C3 C4 C5 C6 

Description of 
forcing estimnate 

EAMv1 Responses 
to a change in all 
forcing agents in 
presence of 1850 
SSTs and no 
volcanic aerosols 

EAMv1 Response to a 
change in all forcing 
agents  in presence of 
time varying SSTs, 
aerosols, and volcanic 
aerosols (1980-2004) 

EAMv1 Response to 
aerosol emission 
changes  in presence 
of time varying SSTs, 
aerosols, and volcanic 
aerosols (1980-2004) 

CAM5.3 
Response to 
changing aerosol 
emission 

EAMv1 response 
to a +4K increase 
in SSTs 

Cases or reference 
for calculation  

 

Change in field ↓ 

See Table 2 (cases 
(F2000LR/AF-
F1850) 

See table 2 of Golaz et 
al (2018) for 
description  (cases 
amip_A3 - 
amip_1850allF_A3)  

 

See table 2 of Golaz et 
al (2018) for 
description (cases 
amip_A3 - 
amip_1850aerof_A3) 

 

CAM5.3 
(AE w MG1) 

See Table 2 (cases 
F1850LR+4k – 
F1850LE) 

∆FLNT -3.03 -2.86 -0.72 ~0.44 10.1 

∆FLNTC -3.17 -2.87 -0.15  9.4 

∆LWCRE -0.14 -0.01 0.57 0.44 -0.7 

∆FSNT -1.77 -2.5 -2.58 -2. 3.7 

∆FSNTC -0.63 -1. -0.64  1.9 

∆SWCRE -1.13 -1.51 -1.94 -2.02 1.8 

∆FTOA 1.26 0.36 -1.86 -1.59 -6.4 

∆TS/TSLAND 0.12/0.25 0.1/0.18 0.01/-0.11  4.49 

∆AOD 0.03 0.03 0.02  0.01 
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Figure captions 
 
Figure 1: The regionally refined grid configuration for the atmosphere and land over the 
Continental United States (CONUS) and Tropical West Pacific in EAMv1.  The high 
resolution area has an effective spatial resolution between grid points of 25 km, while the 
lower resolution area has an effective spatial resolution between grid points of 110 km.   A 
transition region bridges these resolutions. The red dot indicates the location of DOE ARM 
site in the tropics.    

Figure 2:  Autoconversion rate (a-c) as a function of cloud water mixing ratio (Qc) at cloud 
droplet number concentration (Nc) = 20, 100, and 200 cm-3 and (d-f) as a function of Nc at 
Qc = 0.3, 0.5, and 0.7 g kg-1. 

Figure 3:  Heatmap diagram evaluating EAMv1 against CMIP5 AMIP simulations following 
Gleckler et al (2008). The fields listed by row are (from top to bottom), 500 hPa 
geopotential height, 200 and 850 hPa meridional and zonal wind, and air temperature, 
surface air temperature, meridional and zonal surface stress, top of atmosphere long and 
shortwave cloud radiative effect, net, long and shortwave TOA fluxes, and precipitation.   

Figure 4: Zonally Averaged model temperature biases (for AMIP simulations) compared to 
MERRA2 Reanalysis. Left column shows December-January-February Average. The EAM 
and CAM difference fields share the same color bar within a column. Right column shows 
June-July-August. Mass and Area Weighted RMS and correlation coefficients are shown. 

Figure 5: Zonally Averaged difference between model mean relative humidity (over liquid 
water) and the MERRA re-analysis. Layout details as in figure 4.  

Figure 6: Zonally Averaged difference between zonal mean wind and the MERRA re-
analysis. Layout details as in figure 4.  

Figure 7: Difference between model reference height temperature and the MERRA2 
Reanalysis. Layout details as in figure 4.  

Figure 8: GPCP estimates compared to AMIP model simulations (EAM center row,  CAM5.3 
bottom row).  Left column shows Annual Mean precipitation (mm/day). Center column 
shows Summer-Winter precipitation as a measure of monsoon strength. Right column 
shows the precipitation differences across equinox months (April/May – Oct/Nov). The 
lower right four values (AC1 and AC2) are multiplied by -1 in the S. Hem. to account for the 
change in seasonality. A white color in the difference fields indicates small biases compared 
to observational estimates.  

Figure 9: Difference between model (AMIP) and observational estimates (GOCAP) of total 
Aerosol Optical Depth. Left panel EAMv1, right panel CAM5. 

Figure 10. Shortwave Cloud Radiative Effect: Top row from EBAF 4..0 observational 
estimates. Left column shows December-January-February Average. The EAM and CAM 
difference fields (for AMIP simulations) share the same color bar within a column. Right 
column shows June-July-August.  
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Figure 11. Longwave Cloud Radiative Effect: Top row from EBAF 4.0 observational 
estimates. Left column shows December-January-February Average. The EAM and CAM 
(AMIP) difference fields share the same color bar within a column. Right column shows 
June-July-August. 

Figure 12: Differences between model AMIP simulations (EAMv1 in blue, CAM5 in orange) 
and CERES-EBAF observationally based estimates of all sky fluxes using the sign conventions 
adopted by the CESM community (longwave flux is positive out of surface, shortwave flux 
positive into surface, net flux is longwave minus shortwave). Heavy Solid lines/numbers  show 
top of atmosphere differences and area weighted RMS  Lighter lines/numbers  show differences 
in surface fluxes. 

Figure 13: A comparison of model biases in F2000LR Low (left column) and F2000HR High 
Resolution (Right Column)  simulations compared to the ERA-Interim (1980-2004) reanalysis. 
Top row: Temperature(K); Middle row: Relative Humidity(%); Bottom row: Zonal Wind (m/s). 

Figure 14: Differences between DJF and JJA mean modeled (F2000) and GPCP 
precipitation (top row, Huffman et al, 2009) estimates for 4 year averages (years 2-5) of 
the high (middle row)  and standard low resolution (bottom row) model simulations.  

Figure 15: Simulations of JJA mean total precipitation against GPCP1DD precipitation 
(Huffman et al, 2001) estimates for 4 year averages (years 2-5) of the standard low 
resolution (left, ne30) and regionally refined model configuration over CONUS (right, ne30-
->ne120) Dotted areas indicate where the differences are statistically significant at the 
95% confidence level with a two-tailed Student’s t test.  

Figure 16: Timing phase (color) and amplitude (color density) of the first diurnal 
harmonic of total precipitation (mm/day) from 10 years of 3-hourly averaged data for (a) 
Observed (TRMM), (b) EAMv1 (AMIP) and (c) CAM5 (AMIP). 
 
Figure 17: Wavenumber frequency spectra (following Wheeler and Kiladis, 1999) showing 
the ratio of unfiltered background spectra of daily interpolated (symmetric about the 
equator) outgoing longwave radiation (1986-2005) for (a) Observed (NOAA), (b) EAMv1 
(AMIP), (c) E3SM (coupled), and CAM5 (AMIP). 
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 Figure	6:	Difference	between	model	zonal	wind	field	and	the	MERRA	re-analysis.	
Layout	details	as	in	figure	4.	
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 Figure	6:	Difference	between	model	zonal	wind	field	and	the	MERRA	re-analysis.	
Layout	details	as	in	figure	4.	
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AOD:	EAMv1-GOCAP	 AOD:	CAM5-GOCAP	
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