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Abstract

Here we present a computational model, SURF (Score of Unified Regulatory Features), that predicts 

functional variants in enhancer and promoter elements. SURF is trained on data from massively parallel 

reporter assays and predicts the effect of variants on reporter expression levels. It achieved the top 

performance in the Fifth Critical Assessment of Genome Interpretation “Regulation Saturation” challenge. 

We also show that features queried through RegulomeDB, which are direct annotations from functional 

genomics data, help improve prediction accuracy beyond transfer learning features from DNA sequence-

based deep learning models. Some of the most important features include DNase footprints, especially 

when coupled with complementary ChIP-seq data. Furthermore, we found our model achieved good 

performance on predicting allele specific transcription factor binding events. As an extension to the current 

scoring system in RegulomeDB, we expect our computational model to prioritize variants in regulatory 

regions, thus help the understanding of functional variants in noncoding regions that lead to disease.

Keywords

variation, functional genomics, gene regulation, MPRA, machine learning

Introduction

Evidence from Genome Wide Association Studies (GWAS) has provided us with insights into human 

phenotypes by identifying variation statistically associated with diseases (Welter et al., 2014). However, 
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GWAS is confounded by linkage disequilibrium when identifying the causal variants. Thus, it is desirable to 

extend these studies beyond association to an understanding of biological impact. Unfortunately, 

determining the function of these variants remains a major challenge, especially for single-nucleotide 

polymorphisms (SNPs) in non-coding regions of the genome, where most of these GWAS variants fall 

(Hindorff et al., 2009; Hnisz et al., 2013).

The advent of functional genomics assays has assisted us in mapping disease causative SNPs from 

GWAS. By intersecting the position of variants with regulatory elements identified from these assays, 

computational tools have been developed to prioritize SNPs in non-coding regions (Nishizaki & Boyle, 

2017). Tools such as RegulomeDB (Boyle et al., 2012), GWAS3D (Li, Wang, Xia, Sham, & Wang, 2013), 

and HaploReg (Ward & Kellis, 2012) have reduced time-consuming experiments for validation. Machine 

learning methods have been widely applied to integrate the annotations from functional genomics assays in 

a more sophisticated way, and thus produce more robust and accurate predictions (Kircher et al., 2014; 

Lee et al., 2015). More recently, the rapid development of deep learning techniques has enabled mining in 

high-dimensional sequences data. Some examples include DeepSEA (Zhou & Troyanskaya, 2015), 

DeepBind (Alipanahi, Delong, Weirauch, & Frey, 2015), DanQ (Quang & Xie, 2016), Define (Wang, Tai, E, 

& Wei, 2018), and Basenji (Kelley et al., 2018). However, since data sets used for training in those 

algorithms vary, comparisons across different models can become a problem considering there is currently 

no gold-standard for evaluation (Nishizaki & Boyle, 2017).

One independent method for evaluating the performance of these tools is through the use of massively 

parallel reporter assays (MPRA) wherein libraries that are derived from PCR-based saturation mutagenesis 

have been applied to test the effect of variants in a putative regulatory region. These assays can measure 

the functional effect of variants on the expression level of a reporter construct in a high-throughput manner 

allowing for rapid testing of large numbers of variants. Kircher and collaborators performed MPRA for 

17,500 single nucleotide variants (SNVs) in 9 promoters and 5 enhancers with clinical relevance (Inoue & 

Ahituv, 2015; Patwardhan et al., 2009; Tewhey et al., 2016). This dataset allows for an unbiased 

comparison of computational tools used for variant prioritization and was used in this manner for the Fifth 
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Critical Assessment of Genome Interpretation (CAGI5) “Regulation Saturation” challenge. Participants 

were asked to predict the functional effects of variants in these regulatory regions as measured by the 

reporter expression.

We present a machine learning-based computational framework, SURF (Score of Unified Regulatory 

Features), which combines features from RegulomeDB and DeepSEA, to predict the effect of variants on 

expression in promoters and enhancers. Our model achieved the top performance in the CAGI5 

“Regulation Saturation” challenge. We also demonstrate that direct features from functional genomics data 

improve the prediction accuracy in addition to features from DNA sequence-based deep learning models.

Background

Datasets in CAGI5 Regulation Saturation Challenge

The regulation saturation challenge assessed 17,500 SNVs in 5 human disease associated enhancers 

(IRF4, IRF6, MYC, SORT1, ZFAND3) and 9 promoters (F9, GP1BB, HBB, HBG, HNF4A, LDLR, MSMB, 

PKLR, TERT) in a massively parallel reporter assay (Fig. 1A). The MPRA libraries were derived from 

saturation mutagenesis of regulatory regions up to 600bp length, with a random change rate of 1 per 100 

bases. 

Approximately 25% of all measured SNVs were used for training (4,650 SNVs in total), and the remaining 

75% of the data were held from competitors and used for testing by an independent assessor. The count of 

transcribed RNA and DNA of the transfected plasmid library was modeled by applying multiple linear 

regression (Fig. 1B). The coefficients (“effect size”) and re-scaled p-values (“confidence score”) from 

regression were provided in the training set. The SNV with a confidence scores greater or equal to 0.1 (i.e. 

p-value of 10-5) was defined as “has an expression effect”.

Tasks in CAGI5 Regulation Saturation Challenge

For each variant in testing set, the participants were asked to submit prediction of effect of the variant in 

one of the three cases: repressive, activating, or no effect (“Direction”), and the probability of a correct 
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assignment of the prediction (“P_Direction”). The participants also needed to submit a prediction of the 

confidence score for each variant, as well as the standard error of the prediction (“SD”).

Methods

For each variant in training and test data, we created features from functional genomics data obtained from 

RegulomeDB (Boyle et al., 2012). We also used sequence-based features from DeepSEA (Zhou & 

Troyanskaya, 2015). We further trained a random forest model to predict direction of variant effects and 

confidence score (Fig. 1).

Features

The first six features were created by querying each variant through RegulomeDB (Boyle et al., 2012). All 

ENCODE data represented in RegulomeDB is from the 2012 freeze and subsequent publication. We 

assigned binary values to represent if the position of the queried variant overlaps the following functional 

genomics regions:

1. Transcription factor (TF) binding site

TF ChIP-seq peaks were from ENCODE data.

2. Open chromatin site

DNase-peaks were from ENCODE data.

3. TF motifs

TF motif matches were called using positional weight matrices (PWM) from RegulomeDB (Boyle et al., 

2012). Positional weight matrices were from TRANSFAC (Matys et al., 2006), JASPAR CORE (Bryne et 

al., 2008), UniPROBE (Newburger & Bulyk, 2009) and Jolma et al (Jolma et al., 2013).

4. Matched TF motif

TF motif matches were obtained as described in feature 3, but further requiring the PWM motif matching 

with a TF binding peak of the same TF from ChIP-seq in the same position. 

5. DNase footprint

DNase footprints were called by combining PWMs and DNase-seq data sets. We used footprint calls 
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from Boyle et al (Boyle et al., 2011), Pique-Regi et al (Pique-Regi et al., 2011) and Piper et al (Piper et 

al., 2013).

6. Matched DNase footprint

DNase footprints were obtained as described in feature 5, but further requiring the PWM motif matching 

with a TF binding peak from ChIP-seq in the same position.

We also included additional numeric features:

7. ChIP-seq signal

We calculated the maximum TF ChIP-seq signal from feature 1 for each position in the regulatory 

regions.

8. Maximum information content change of TF motif

For each variant, we calculated the information content change of PWMs called in feature 3 and took 

the one with maximum absolute value.

9. Maximum information content change of matched TF motif

For each variant, we calculated the information content change of matched PWMs called in feature 4 

and took the one with maximum absolute value.

10. DeepSEA scores

We passed a vcf file of all variants through DeepSEA model (from http://deepsea.princeton.edu/) to 

predict chromatin effects of each mutation on 919 functional genomics features, including chromatin 

accessibility, TF binding and histone modification. We used the difference between reference and 

alternative alleles of those 919 functional genomics features in our model. We also included the 

functional significance score for each variant, which considers chromatin effects as well as evolutionary 

conservation.

Random forest training

A random forest model was trained to make predictions for both direction of effects and confidence scores. 

Specifically, we used the R package randomForest version 4.6-12 with ntree=500 (Liaw & Wiener, 2002). 
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For direction prediction, we first classified training data from all studied regulatory regions into three groups 

using the following criteria: 

1. Repressive (-1): confidence greater than or equal to 0.1 and effect size smaller than 0 (736 in total). 

2. Activating (+1): confidence greater than or equal to 0.1 and effect size greater than 0 (374 in total).

3. No effect (0): confidence smaller than 0.1 (3,540 in total).

We then trained three binary classifiers for each label with a random forest model and predicted the label 

with the highest probability. We assigned “P_Direction” column with the prediction probability from the 

model. In order to generate a confidence prediction, we trained a random forest regression model on 

confidence scores and calculated the standard deviation of predictions from 500 trees in “SD” column.

Performance evaluation

Group performance was evaluated on correlation coefficients and the area under the receiver operating 

characteristic (AUROC). Pearson and Spearman correlation coefficients were calculated for predicted 

direction and effect size from MPRA on variants in test set in the same way as the assessors. Three 

categories of AUROC were assessed: variants with positive effects versus negative effects, variants with 

positive effects versus all variants, and variants with negative effects versus all variants. Predicted 

directions were treated as labels and effect sizes were used as probability scores. To increase the 

sensitivity of model comparisons, we also provided continuous value predictions as requested by the 

assessors, which are a transformation from “P_Direction”: 

Directio n 

P _Direction if Direction  1
P _ Direction if Direction  -1
1 P _Direction if Direction  0 and D

1  D
1

P _Direction1 if Direction  0 and D
1  D

1













,

where  is the probability of class  ( ) from random forest model.𝐷𝑖 𝑖 𝑖 = ―1, 0, + 1

Pearson correlation with continuous predictions were reevaluated among top three methods by the 

assessors (Supp. Table S1).

Allele specific transcription factor (TF) binding analysis
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Allele specific TF binding sites were defined as variants that result in stronger binding of a TF to one allele 

at heterozygous sites in an individual. We applied AlleleDB pipeline to call allele specific TF binding sites 

using ChIP-seq data downloaded from ENCODE project (Chen et al., 2016). 1,814 allele specific binding 

sites were called in GM12878 cell line from 76 TFs at an FDR of 5%. To test the performance of our binary 

classifier trained on CAGI5 data, we also built a control set including 10,783 variants having equal ChIP-seq 

read counts on two alleles at heterozygous sites. For all 48,630 heterozygous sites, we calculated the allelic 

ratio defined by the ratio between number of ChIP-seq reads from the allele with stronger binding affinity and 

total number of reads from two alleles. For cases where multiple TFs shared a heterozygous variant, we took 

the maximum ratio.

Results

SURF outperforms other groups in CAGI5 regulation saturation challenge

SURF combines features from RegulomeDB, which directly intersects variants with functional genomics 

annotations, and DeepSEA, which generates transfer learning features from genomics assays. For 

assessment, both Pearson and Spearman correlation coefficients were calculated for predicted direction 

and effect size from MPRA on test data. To examine how false positive rate changes with true positive rate, 

the area under the receiver operating characteristic (AUROC) was also calculated (Table 1). Overall, we 

were close to group 7 on correlation coefficients, and we outperformed all groups in terms of all three 

categories of AUROC, especially in the case when distinguishing between variants with positive and those 

with negative effects on expression level. In addition, we note that it is generally easier to predict negative 

effects compared with positive effects, which might because there were more examples with negative 

effects in training set.

Model performance in different enhancers and promoters

We assessed our performance in each of the 5 enhancers and 9 promoters (Fig. 2). Continuous value 

predictions were used for calculating Pearson correlation with effect sizes. We observe no evident 

difference in performance between enhancers and promoters, but predictions on enhancers are more 

consistent in terms of AUROC performance. Also, our model performance has no strong association with 
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cell types. The four regions in HEK293T (HNF4A, MSMB, TERT and MYC) have a wide range of 

performance. Overall, we predicted most accurately in regions of: MYC (HEK293T), PKLR (K562) and HBB 

(HEL_92.1.7). Interestingly, the cell line HEL_92.1.7 has no corresponding functional genomics data from 

the ENCODE project. In addition, ZFAND3 data is from mouse pancreatic beta cell lines (MIN6). These 

imply our model is able to predict these effects from the available data in other cell types.  

Features from RegulomeDB provide complementary information to DeepSEA scores

We next analyzed the predictive importance of RegulomeDB features. We calculated Pearson correlation 

of features and absolute value of effect sizes in test data (Fig. 3A). All features have positive correlation, 

which is consistent with the fact that the variants in functional regulatory elements have a higher chance of 

affecting the expression level downstream. Among all binary features from RegulomeDB, features such as 

matched TF motif and matched DNase footprint have the highest correlation coefficients, which indicates 

that integrating sequence information with evidence from functional genomics data directly into one feature 

assists prediction accuracy. We further examined two of the most predictive features in the region of MYC 

enhancer, where we achieved the best AUROC compared with other enhancers and promoters. As shown 

in Fig. 3B, these two features from RegulomeDB, DNase footprint and matched DNase footprint, are 

largely in agreement with the position of variants leading to significant change of gene expression beyond 

DeepSEA scores.

Predicting allele specific TF binding events

To test the generality of our model, we next evaluated how SURF performs on predicting allele specific TF 

binding events identified from ChIP-seq data. We collected 1,848 variants associated with allele specific 

binding in GM12878 cell line, and then generated prediction scores using the binary classifier we trained 

from variants with no effects versus the rest of the variants in CAGI5 training set. Overall, our model is able 

to predict allele specific binding events with a fairly good performance (AUROC=0.6218; AUPRC=0.2298). 

We further relaxed our thresholds to examine the performance on a wider spectrum of allelic ratio, which is 

defined by the ratio between number of ChIP-seq reads from the allele with stronger binding affinity and 

total number of reads from two alleles. We found a significant difference in prediction scores for 
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heterozygous sites showing balanced (allelic ratio smaller than 0.6) and imbalanced (allelic ratio equal or 

larger than 0.9) TF binding affinity (Fig. 4, p-value = 9.735e-311 from a t-test).

Discussion

Understanding the function of variants in noncoding regions remains a major challenge to interpret results 

from GWAS studies. The CAGI5 Regulation Saturation challenge has provided a valuable dataset for 

developing prediction models on regulatory variants leading to significant effects on expression level. Here 

we described our model, SURF, based on our existing resource RegulomeDB, that achieves the top 

performance in this challenge (Table 1). However, one limitation of the evaluation with AUROC is that the 

imbalance rate was different across groups, which makes it hard to compare. A more accurate comparison 

is the correlation between continuous prediction scores and effect sizes from MPRA, which is shown in 

Supp. Table S1 but only available from three groups.

We found that the direct annotations from functional genomics data queried through RegulomeDB enables 

the improvement of prediction beyond the transfer learning features from the DeepSEA model. One 

possible reason to explain the improvement is that the chromatin features from underrepresented cell types 

in deep learning model are compensated by direct annotations from RegulomeDB. Thus, continued 

working on RegulomeDB resource, including updates and expansion of available data from ENCODE 

project, will enable us to develop prediction models with better accuracy. For example, 3D chromatin 

interaction data illustrating loops between enhancers and promoters can be used to assign target genes of 

variants in regulatory elements. In addition, ATAC-seq as an alternative method for studying chromatin 

accessibility will potentially give us complementary information to DNase-seq. 

Furthermore, instead of obtaining general features through all available cell types in RegulomeDB as we 

did in this challenge, it is possible to query features in a cell type-specific way to improve performance. 

Although a previous study suggests that limiting features to be cell type specific does not increase 

prediction accuracy for MPRA data (Kreimer, A., et al. 2017), it is worth exploring further whether this is 

due to the limitation of MPRA to capture cell type-specific activity. Another strategy is to integrate cell type-
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specific features with a generic model trained with all available cell types, thus taking advantage of a 

sufficient set of training data as well as a retention of cell type-specific information.

The initial premise behind the development and scoring in the RegulomeDB tool was that functional 

genomics data is key to understanding and prioritizing variants that may be disrupting transcription factor 

binding and thus having a direct effect on gene expression. We have shown that these data have aided our 

model to perform well on MPRA training data and improve the ability to predict allele specific TF binding 

events. Multiple studies have successfully applied RegulomeDB to infer regulatory variants in cancer 

genomes (Melton, Reuter, Spacek, & Snyder, 2015; Sharma, Jiang, & De, 2018), and continued work is 

needed with the increasing availability of cancer whole genome data. Encouraged by these results, we are 

currently developing a newer version of RegulomeDB, which will provide all the features we used in this 

challenge, including the allelic scores such as information content change of TF motifs. We will also make 

our prediction scores available to general users, thus to help research on prioritizing non-coding variants in 

various contexts.
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Figure legends

FIGURE 1 The workflow of our method. A) The effect of variants in promoters and enhancers was tested 

through massively parallel reporter assays (MPRA). B) Effect size modeled from regression for each 

variant was provided with 25% of data (white area) used for training and 75% of data (grey area) hidden 

from participants. C) A multiclass random forest model is trained by combining features from RegulomeDB 

and DeepSEA on training data. D) Prediction of variants with significant effects (circled points) is made 

from random forest models.

Page 13 of 20

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14

FIGURE 2 Performance across regions. Cell type names are appended at the end of promoter and 

enhancer regions. The average performance across all regions is also shown.

FIGURE 3 Features from RegulomeDB facilitate prediction. A) Pearson correlation of features from 

RegulomeDB and absolute value of effect sizes from MPRA in test data. B) A region of the MYC enhancer 

in HEK293T cell line showing measured MPRA data with SNVs having significant effect circled. Two binary 

features from RegulomeDB (DNase footprint and DNase footprint with matched TF ChIP-seq peak) show 

agreement with the position of these variants. DeepSEA scores also identify some of the functional variants 

in this enhancer.

FIGURE 4 Boxplot of prediction scores for heterozygous sites showing balanced and imbalanced TF 

binding affinity from two alleles. Allelic ratio is calculated by the number of ChIP-seq reads from the allele 

with stronger binding affinity divided by total number of reads from two alleles.
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FIGURE 1 The workflow of our method. A) The effect of variants in promoters and enhancers was tested 
through massively parallel reporter assays (MPRA). B) Effect size modeled from regression for each variant 

was provided with 25% of data (white area) used for training and 75% of data (grey area) hidden from 
participants. C) A multiclass random forest model is trained by combining features from RegulomeDB and 
DeepSEA on training data. D) Prediction of variants with significant effects (circled points) is made from 

random forest models. 
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FIGURE 2 Performance across regions. Cell type names are appended at the end of promoter and enhancer 
regions. The average performance across all regions is also shown. 
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FIGURE 3 Features from RegulomeDB facilitate prediction. A) Pearson correlation of features from 
RegulomeDB and absolute value of effect sizes from MPRA in test data. B) A region of the MYC enhancer in 

HEK293T cell line showing measured MPRA data with SNVs having significant effect circled. Two binary 
features from RegulomeDB (DNase footprint and DNase footprint with matched TF ChIP-seq peak) show 

agreement with the position of these variants. DeepSEA scores also identify some of the functional variants 
in this enhancer. 
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FIGURE 4 Boxplot of prediction scores for heterozygous sites showing balanced and imbalanced TF binding 
affinity from two alleles. Allelic ratio is calculated by the number of ChIP-seq reads from the allele with 

stronger binding affinity divided by total number of reads from two alleles. 
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Table 1. Correlation and AUROC for predicting direction of variant effects across all participated 
groups. The best submission of each group was selected and the best performance of each 
category is bolded. AUPRC and correlation with continuous prediction scores were calculated in 
Supp. Table S1.

Participant 
(lab-submission)

Pearson 
correlation

Spearman 
correlation

Pos V Neg 
AUROC

Pos V Rest 
AUROC

Neg V Rest
AUROC

3-4 (our group) 0.301 0.239 0.842 0.716 0.835

7-3 0.318 0.249 0.762 0.706 0.776

5-6 0.255 0.235 0.714 0.608 0.691

1-2 0.069 0.046 0.544 0.553 0.636

6-1 0.103 0.094 0.537 0.544 0.584

4-2 0.041 0.033 0.556 0.528 0.571
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Supp. Table S1. AUPRC for predicting direction of variant effects across all participated groups 
and Pearson correlation with continuous scores (only available with first three groups). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Participant  
(lab-submission) 

Pos V Neg 
AUPRC 

Pos V Rest 
AUPRC 

Neg V Rest 
AUPRC 

Pearson correlation 
with continuous scores 

3-4 (our group) 0.637 0.097 0.308 0.452 

7-3 0.611 0.165 0.312 0.451  

5-6 0.639 0.261 0.434 0.277 

1-2 0.446 0.051 0.147 NA 

6-1 0.007 0.004 0.680 NA 

4-2 0.576 0.063 0.079 NA 
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