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Abstract

Concentrations of near-road air pollutants (NRAPs) have increased to very high
levels in many urban centers around the world, particularly in developing coun-
tries. The adverse health effects of exposure to NRAPs are greater when the
exposure occurs in the near-road environment as compared to background levels
of pollutant concentration. Therefore, there is increasing interest in monitoring
pollutant concentrations in the near-road environment. However, due to var-
ious practical limitations, monitoring pollutant concentrations near roadways
and traffic sources is generally rather difficult and expensive. As an alternative,
various deterministic computer models that provide predictions of pollutant
concentrations in the near-road environment, such as the research line-source
dispersion model (RLINE), have been developed. A common feature of these
models is that their outputs typically display systematic biases and need to be
calibrated in space and time using observed pollutant data. In this paper, we
present a nonstationary Bayesian data fusion model that uses a novel data set
on monitored pollutant concentrations (nitrogen oxides or NOx and fine partic-
ulate matter or PM2.5) in the near-road environment and, combining it with the
RLINE model output, provides predictions at unsampled locations. The model
can also be used to evaluate whether including the RLINE model output leads
to improved pollutant concentration predictions and whether the RLINE model
output captures the spatial dependence structure of NRAP concentrations in the
near-road environment. A defining characteristic of the proposed model is that
we model the nonstationarity in the pollutant concentrations by using a recently
developed approach that includes covariates, postulated to be the driving force
behind the nonstationary behavior, in the covariance function.
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1 INTRODUCTION

Concentrations of near-road air pollutants (NRAPs) have increased to very high levels in many urban centers around
the world, particularly in developing countries. Due to the well-established adverse effects of exposure to air pollutants
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on various health outcomes, a number of environmental regulations have been established to monitor concentrations
of pollutants. Episodes of exceedance over compliance thresholds have occurred in some urban environments, which
have led to drastic measures to reduce pollutant concentration levels within cities (Garfield, 2018). Evidence suggests
that the adverse health impacts of exposure to NRAPs are greater when the exposure occurs closer to major roads and
highways as compared to background levels of pollutants (Hoek, Brunekreef, Goldbohm, Fischer, & van den Brandt, 2002;
Lewis et al., 2005). An important societal implication of this result is that the greatest burden of this exposure is carried
by populations belonging to lower socioeconomic status, since they constitute a higher proportion of residents living in
close proximity to major roads (Gunier, Hertz, Von Behren, & Reynolds, 2003).

Accurate maps of various pollutant concentrations on a fine spatial and temporal resolution, particularly within the
near-road environment, are important both for regulatory purposes and for assigning exposure to subjects in environ-
mental epidemiologic studies. However, due to practical and monetary limitations, good-quality data on concentrations
of pollutants on a dense spatial and temporal scale are generally not available. Instead, to monitor pollutant concentra-
tions in real time, environmental agencies often rely on a network of fixed site monitors, most commonly those operated
by states and local offices of the United States Environmental Protection Agency (US Environmental Protection Agency,
2017). There are a number of limitations to using such monitors for both regulatory purposes and for estimating con-
centrations at unsampled locations. First, the network of monitors is generally spatially very sparse. Studies conducted
within the near-road environments have observed that fixed/central site monitors do not capture the spatial variabil-
ity exhibited by NRAPs (Vardoulakis, Gonzalez-Flesca, Fisher, & Pericleous, 2005), and the hourly maxima recorded at
these sites are often well below the concentrations measured near major highways (Wallace, Corr, Deluca, Kanaroglou, &
McCarry, 2009). Second, due to practical limitations, these monitors are placed at considerable heights (between 3 and 15
m above ground; Office of Air Quality Planning and Standards, 1998), which is generally not the height of air inhaled at
ground level. Third, monitors are often preferentially located, so that the concentrations measured by these monitors may
not be representative of the entire population's exposure. Finally, due to maintenance downtime and mechanical failures,
data are sometimes not recorded. Therefore, while these monitors contain valuable information about urban and back-
ground levels of pollutant concentrations, they do not provide very accurate information about concentrations closer to
highways or the specific contribution of traffic sources to air pollution.

In light of these limitations, there is growing interest in utilizing outputs from deterministic computer models that
apply numerical simulation techniques in various ways to estimate air pollution concentrations. Two examples of such
models are the Community Multiscale Air Quality model (Byun & Schere, 2006), which numerically simulates the under-
lying pollutant chemistry, and the research line-source dispersion model (RLINE; Snyder et al., 2013), which simulates
the dispersion of air pollutants from traffic and other sources. While such models may provide estimates of pollutant
concentrations on a dense temporal resolution over the geographic region of interest, they often have systematic biases
associated with them due to multiple reasons. Therefore, these model outputs need to be calibrated in space and time. To
address the joint goals of calibrating numerical model outputs (i.e., estimating their bias) and providing more accurate
predictions of atmospheric pollutants at unsampled locations, various statistical modeling techniques have been devel-
oped and successfully applied to a number of pollutants, including sulfur dioxide (Fuentes & Raftery, 2005), ground-level
ozone (Berrocal, Gelfand, & Holland, 2010b, 2012; Reich, Chang, & Foley, 2014; Zidek, Le, & Liu, 2012), nitrogen dioxide
(Gilani et al., 2016b), and fine particulate matter (Berrocal, Gelfand, & Holland, 2010a; Choi, Fuentes, & Reich, 2009;
McMillan, Holland, Morara, & Feng, 2010; Crooks & Özkaynak, 2014; Rundel, Schliep, Gelfand, & Holland, 2015).
Although these spatial and spatiotemporal models perform well when calibrating regional-scale deterministic model out-
puts over an extended spatial domain, they have some limitations for modeling pollutant concentrations within a localized
urban setting in a near-road environment. In addition, most of these models assume a stationary covariance function
for the residual spatial dependence in pollutant concentrations after accounting for the spatial correlation that comes
from the numerical model output, that is, these models commonly express the residual correlation between pollutant
concentrations at two locations as a function only of their distance, which might not be appropriate in an urban setting.

Modeling spatial and spatiotemporal processes using nonstationary covariance functions has received much atten-
tion over the last few years (Fuentes, 2001; Higdon, 1998; Holland, Saltzman, Cox, & Nychka, 1999; Lindgren, Rue, &
Lindström, 2011; Paciorek & Schervish, 2006; Sampson & Guttorp, 1992). Recent work has further extended some of the
nonstationary covariance methods to include spatial covariates in the covariance function, thus aiding in identifying fac-
tors that drive nonstationarity (Calder, 2008; Gilani, Berrocal, & Batterman, 2016a; Neto, Schmidt, & Guttorp, 2014; Reich,
Eidsvik, Guindani, Nail, & Schmidt, 2011; Risser & Calder, 2015; Schmidt, Guttorp, & O'Hagan, 2011).

In this paper, we present a nonstationary spatiotemporal data fusion model for two NRAPs: nitrogen oxides (NOx)
and fine particulate matter (PM2.5). The goals of this model are (a) to model the contribution of traffic sources to NRAP
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concentrations, particularly in the near-road environment, and provide concentration predictions at unsampled locations;
(b) to evaluate whether incorporating additional information on NRAPs in the near-road environment provided by the
RLINE dispersion model output improves the estimation of pollutant concentrations; and (c) if incorporating additional
information does improves the estimation of pollutant concentrations, to assess whether the RLINE model output cap-
tures the spatial dependence structure of NRAP concentrations in near-road environments. The proposed model follows
the joint modeling approach, with a couple of innovations. First, since exposure to NRAPs in the near-road environment
has a potentially significantly worse adverse impact on human health as compared to exposure to background concentra-
tion levels, instead of modeling the background concentration of pollutants, we model the near-road increment (NRI) in
pollutant concentrations due to vehicular sources. This is achieved using data obtained from a novel pollutant concentra-
tion monitoring approach that used a mobile air pollution lab (MAPL) to monitor concentrations across highways within
an urban setting. Second, we capture the potential nonstationarity in the residual spatial correlation between sites that
are upwind versus downwind of the highway using a recently developed model (Gilani et al., 2016a) that includes covari-
ates in the covariance function. To our knowledge, this is the first time a nonstationary data fusion model is presented in
which the covariance function includes spatial covariates.

A few recent studies have evaluated the RLINE model output for various pollutant concentrations. However, these stud-
ies have either just visually compared observed concentrations versus the RLINE model output (Saha, Khlystov, Snyder,
& Grieshop, 2018) or compared the correlation between the RLINE model output against various forms of observed con-
centrations: across regional air quality monitors (Milando & Batterman, 2018; Yu et al., 2018) or smoothed averages based
on MAPL measurements (Patton, Milando, Durant, & Kumar, 2017). They do not attempt to quantify the potential biases
in the RLINE model output. While Zhai et al. (2016) do quantify the calibration bias in the RLINE output for NOx, PM2.5,
and carbon monoxide (CO), they use a linear regression approach with independent error terms, without accounting for
the spatial/spatiotemporal structure of the residual process.

This paper is organized as follows. Section 2 provides details on the monitored data and the RLINE computer model
output. Section 3 gives details of the proposed nonstationary joint Bayesian data fusion model. Section 4 presents results
from fitting the model to our data as well as a comparison with various special cases of our model including stationary
models. Finally, Section 5 provides concluding remarks and future directions.

2 DATA

2.1 Monitor data
A MAPL, a recreational vehicle equipped with air monitoring instruments, measured ambient concentrations of nitrogen
oxides (NOx) and fine particulate matter (PM2.5) along nine transects that crossed major roadways in Detroit, Michigan,
on seven consecutive days in December 2012 during the morning and afternoon rush hour periods (Figure 1a). Details of
the sampling are described in another report analyzing factors that affect pollutant concentrations in the near-road envi-
ronment (Baldwin et al., 2015). In short, at each of the nine “areas,” pollutant concentrations were sampled in residential
neighborhoods adjacent to the major roadways. In areas 1 through 8, the sampling sites were located at nominal distances
of 50 m (two sites), 150 m (two sites), and 500 m (one site) from both edges of the roads. In these areas, the 10 sampling
sites formed roughly two parallel transects across the roads. On the other hand, in area 9, six sampling sites were used at
distances of 50, 150, and 500 m, respectively, from both edges of the road.

Areas 1 through 8 were monitored during both the morning (07:15–09:45) and afternoon (15:45–18:15) rush hour peri-
ods, whereas area 9 was monitored once or twice each day, just after the morning rush hour or before the afternoon rush
hour. Sites were monitored from the morning of Friday, December 14, 2012, to the morning of Thursday, December 20,
2012. On any given day, up to three different areas were monitored. The MAPL visited the monitoring sites and collected
air samples for 5 min at each site. NOx concentrations were measured using conventional federal reference monitors
(Model 42i, Thermo, MA, USA), whereas particle number concentrations in multiple size bins were measured with a
GRIMM Model 1.109 Spectrometer (GRIMM Aerosol Technik, Germany). The particle number concentrations were con-
verted into mass concentrations using the protocol described by Grimm and Eatough (2009), assuming a particle density
of 1.67 g/cm3. PM2.5 concentrations were calculated as the sum of mass concentrations for particles with diameters less
than or equal to 2.5 𝜇m. For each pollutant, the “background” concentration for a transect area was determined as the
lowest pollutant concentration observed in that area during the monitoring period. While different methods could be used
to estimate background concentration, including using observations from regulatory monitors, we selected our approach
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FIGURE 1 (a) Nine transect areas and monitoring sites in Detroit, Michigan. (b) Near-road increment in NOx concentrations (in parts per
billion [ppb]) at mobile air pollution lab (MAPL) and research line-source dispersion model (RLINE) sites in area 5 on the morning of
December 18, 2012. (c) Near-road increment in PM2.5 concentrations (in 𝜇g/m3) at MAPL and RLINE sites in area 5 on the same day

so as to account for urban local sources near the transect. Regulatory monitors are typically designed to capture regional
sources of pollution and, thus, might not be representative of the urban environment.

The NRI in pollutant concentration at a monitoring site was defined as the difference between the observed and
background pollutant concentrations. By this definition, for NOx, across the nine areas, a total of 254 5-min average
NRI in concentrations were collected, whereas 235 average NRI in concentrations were sampled for PM2.5. Figures 1b
and 1c show NOx and PM2.5 NRI in pollutant concentrations, respectively, at sites within area 5 on the morning of
December 12, 2012.
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Initial exploratory data analysis revealed that there was considerable variability in the NRI in concentrations of the two
pollutants between the different areas. The mean NRI in concentrations of both pollutants was lowest at area 9 (9.6 ppb
[parts per billion] for NOx (SD= 8.5 ppb) and 0.5 𝜇g/m3 (SD= 0.4 𝜇g/m3) for PM2.5). This was expected since area 9 sites
were sampled either just after the morning rush hour or before the afternoon rush hour period, whereas the other sites
were monitored during the morning and afternoon rush hour periods. The highest mean NRI in concentrations of NOx
was recorded at area 5 (21.5 ppb (SD= 18.7 ppb)) and at area 1 for PM2.5 (2.2 𝜇g/m3 (SD= 2.2 𝜇g/m3)). Histograms of
the NRI in pollutant concentrations for both pollutants displayed right-skewed distributions, as shown in Figure 1 in the
Supplementary Material, which suggests that modeling the NRI in pollutant concentrations on the log scale would be
more appropriate. A time-series plot of the mean of the log of NRI in pollutant concentrations for sites monitored within
the same time period (before or after 12 noon on the same day) is given in Figure 2a for NOx and in Figure 2b for PM2.5.

2.2 RLINE data
Concentrations of NOx and PM2.5 in the near-road environment attributable to on-road vehicular traffic were modeled
using a modified version of RLINE (Snyder et al., 2013). The dispersion mechanisms were unchanged, but the model was
modified to incorporate Motor Vehicle Emission Simulator emission factors (grams per vehicle mile) that vary by vehicle
class, ambient temperature and month, and used reported traffic volumes for each modeled roadway adjusted by hourly
temporal allocation factors (Batterman, Cook, & Justin, 2015) for commercial and noncommercial traffic.

At each transect area, RLINE model estimates for average hourly pollutant concentrations were obtained at 96 regularly
spaced point locations within 2 km2 centered around the major road, during the same time period that the MAPL data
were recorded. This selection of RLINE prediction sites allowed for some buffer around the MAPL monitoring sites, in
addition to providing data at sites relatively far from the highway to better estimate the spatial range for the spatially
varying additive calibration bias (detailed in Section 3.1). Since in data fusion models, the number of observations from
each data source can control the relative influence of the data source on the estimation of the underlying true process,
96 RLINE sites for 10 MAPL sites provided a reasonable balance between the relative influence of each data source, the
maximum distance from the highway, and the distance between neighboring points for the RLINE prediction. Across
the nine areas, a total of 3,038 1-hr average NRI in concentrations were estimated for both NOx and PM2.5. Figures 1b
and 1c show NOx and PM2.5 NRI in pollutant concentrations, respectively, at both the MAPL sites and RLINE estimation
locations within area 5 on the morning of December 12, 2012.

Similar to the MAPL data, there was considerable variability observed in the concentrations of the two pollutants
from the RLINE model output between the different areas. However, unlike the MAPL observations, the lowest mean
NRI in concentrations for both pollutants were observed at area 7 (8.0 ppb (SD= 10.1 ppb) for NOx and 0.23 𝜇g/m3

(SD= 0.30 𝜇g/m3) for PM2.5), whereas the highest concentrations were observed at area 6 (42.4 ppb (SD= 52.1 ppb) for
NOx and 1.2 𝜇g/m3 (SD= 1.5 𝜇g/m3) for PM2.5). Figure 3a shows a comparison of the log of NRI in monitored NOx con-
centrations against RLINE model predictions at the nearest monitor site (the dotted line has slope 1 and intercept 0),
while Figure 3b gives a similar plot for PM2.5 concentrations. These plots suggest that the RLINE model tends to provide
higher predictions for NRI in NOx concentrations as compared to the MAPL data, whereas the predictions for PM2.5 tend
to be slightly lower than monitored concentrations.

2.3 Covariate data
In addition to the monitored and estimated pollution concentrations, we also obtained data on traffic and meteorolog-
ical factors that may help explain some of the variability in the pollutant concentrations at these areas. Wind speed
and wind direction data were obtained from the National Oceanic and Atmospheric Administration (Quality Controlled
Local Climatological Data: http://cdo.ncdc.noaa.gov/qclcd/QCLCD) for four airport sites in the study area: Detroit City
Airport, Detroit Metro Airport, Grosse Pointe Farms, and St. Clair Shores. To obtain representative data, hourly wind
direction and wind speed were averaged across the four airport sites. Additionally, we obtained annual average daily
traffic (AADT) and commercial AADT (CAADT) volumes for major roads in Detroit from the Michigan Department of
Transportation Traffic Monitoring Information System (2014). AADT and CAADT were adjusted to hourly values using
Detroit-specific temporal allocation factors (Batterman et al., 2015), with noncommercial AADT (NCAADT) defined
as AADT−CAADT. Commercial traffic, mostly using heavy-duty diesel, tends to contribute a much greater propor-
tion to atmospheric pollutant levels compared to noncommercial traffic, which operates mostly on light-duty gasoline
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FIGURE 2 Mean log(NRI) in (a) NOx concentration (in log ppb) and (b) PM2.5 concentration (in log 𝜇g/m3) at MAPL sites at each time
period. The mean log(NRI) concentrations are stratified by downwind versus upwind in (c) for NOx concentration (in log ppb) and in (d) for
PM2.5 concentration (in log 𝜇g/m3) and by morning versus evening in (e) for NOx concentration (in log ppb) and in (f) for PM2.5 concentration
(in log 𝜇g/m3). The vertical bars represent ± 1 standard deviation from the mean. NRI = near-road increment; MAPL = mobile air pollution lab

(Batterman et al., 2015; Watkins & Baldauf, 2012). To more accurately account for the relative contribution of these
vehicles to air pollution, a composite “traffic volume” was calculated as NCAADT + c·CAADT. In our study, following
Baldwin et al. (2015), we set parameter c to 10 for NOx and to 50 for PM2.5.
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FIGURE 3 Scatterplot of natural log of near-road increment (NRI) in monitored (a) NOx concentrations (in log ppb) and (b) PM2.5

concentrations (in log 𝜇g/m3) against research line-source dispersion (RLINE) model prediction at the nearest site. MAPL = mobile air
pollution lab

3 MODEL

In this section, we present the proposed nonstationary Bayesian data fusion model for NRIs in pollutant concentrations of
NOx and PM2.5, which allows us to both evaluate the RLINE model output and provide predictions at unsampled locations
along with a measure of uncertainty associated with the predictions. Our proposed model utilizes the joint modeling
approach, whereas we capture the nonstationary behavior observed in the concentration of pollutants in the near-road
environment using a recently developed approach by Gilani et al. (2016a), which expresses pollutant concentrations as
a mixture of two independent spatial processes, each equipped with a nonstationary covariance function with covariates
driving the nonstationarity and the mixture weights.

3.1 Nonstationary spatiotemporal Bayesian data fusion model
For each pollutant k, k ∈ {NOx,PM2.5}, let t represent “time periods,” where a time period is defined by day and time
of day (before or after 12:00) of pollution monitoring. By this definition, there were  = 11 distinct time periods during
the study data collection. As is customary in the joint modeling approach, we do not consider the monitored MAPL
measurements or the RLINE model output as the truth since these observations/estimates have measurement errors
and/or biases associated with them. Instead, for each pollutant k, we assume that there exists an underlying (unobserved)
spatiotemporal field Y (k)

t (s) that represents the true NRI in concentration at location s ∈  and time period t = 1, … ,  .
Working on the log scale, let Z(k)

t (s) = log(Y (k)
t (s)) denote the natural log of the true NRI in the concentration of pollutant

k, at location s and time period t. For each pollutant k, we decompose Z(k)
t (s) in the sum of two terms, that is,

Z(k)
t (s) = 𝜇

(k)
t (s) + 𝜂(k)t (s), (1)

where 𝜇(k)
t (s) accounts for the large-scale spatial trend in the kth pollutant log NRI concentration at location s and time

period t, and 𝜂(k)t (s) is a spatially correlated, mean-zero error term.
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At a MAPL monitoring site s and time period t, we denote the measured log NRI concentration of pollutant k by Ẑ(k)
t (s)

and assume that it is measured with some error, that is,

Ẑ(k)
t (s) = Z(k)

t (s) + e(k)t (s), e(k)t (s) iid∼ N
(

0, 𝜏2(k)
e

)
, (2)

where e(k)t (s) represents the measurement error at site s and time period t, independent of the true underlying
process Z(k)

t (s).
For the RLINE model output, we assume that the log NRI concentration estimate for pollutant k at location s and time t,

denoted by Z̃(k)
t (s), has both additive and multiplicative biases associated with it. These biases may be spatially varying or

constant; while previous studies have shown evidence of spatially varying additive bias, the multiplicative bias is generally
modeled as constant in space and time (Berrocal et al., 2010b). Exploratory data analysis (such as Figure 3) also suggests
that while there does appear to be some multiplicative bias for the RLINE model output, it does not vary across space and
time. We therefore model the log NRI concentration from the RLINE model output as

Z̃(k)
t (s) = a(k)

0 + a(k)
t (s) + b(k) · Z(k)

t (s) + 𝛿(k)t (s), (3)

where a(k)
0 is a constant (over space and time) additive bias, a(k)

t (s) is a time series of serially independent Gaussian spatial
processes, b(k) is a multiplicative bias that is constant over space and time, and 𝛿(k)t (s) is a mean-zero, independent across
time and space, error process, that is, 𝛿(k)t (s) iid∼ N(0, 𝜏2(k)

𝛿
). At each time period t, the spatial covariance for the spatially

correlated additive bias a(k)
t (s) is modeled using an exponential covariance function so that the covariance between two

sites si and sj at time period t is given by Cov(a(k)
t (si), a(k)

t (s𝑗)) = 𝜎2(k)
a exp{−𝜙(k)

a |si − s𝑗|}. With this modeling choice,
we assume that the additive bias of the RLINE output is similar at nearby locations, but less so at distant ones, with a
correlation that decays exponentially with distance.

Earlier work on modeling pollutant concentrations in the near-road environment in Detroit (Baldwin et al., 2015;
Gilani et al., 2016a) has revealed that observed pollutant concentrations are dependent on day of the week, time of the
day, being upwind versus downwind of major highways, meteorology, traffic activity and composition, and distance to the
highway. Figure 2 shows a comparison of log NRI in MAPL concentrations between upwind versus downwind sites and
between morning versus evening for both pollutants. Boxplots comparing the distribution of log NRI in MAPL concentra-
tions between upwind and downwind sites, between morning and evening, and between weekday and weekend for both
pollutants are given in Figure 2 in the Supplementary Material. Although these plots do not reveal much difference in
the log NRI pollutant concentrations between downwind and upwind sites, between morning and evening, and between
weekdays and weekends, for consistency with earlier work (Gilani et al., 2016a), we model the mean spatial trend 𝜇(k)

t (s)
at location s and time period t for each pollutant k as

𝜇
(k)
t (s) = 𝛽

(k)
0 + 𝛽(k)1 Downt(s) + 𝛽(k)2 Weekdayt + 𝛽

(k)
3 Morningt + 𝛽

(k)
4 Weekdayt ∗ Morningt

+ 𝛽(k)5

(
Traffict(s)

Wind Speedt(s)

)
+ 𝛽(k)6

(
Traffict(s)

Wind Speedt(s)

)
∗ Downt(s) + 𝛽(k)7 Distance(s)

+ 𝛽(k)8 Distance(s) ∗ Downt(s), (4)

where Downt(s) is an indicator for site s at time t being downwind (versus upwind) of the highway, Weekdayt is an
indicator for time period t falling on a weekday (versus weekend), Morningt is an indicator for morning (before 12:00)
versus evening at time period t, Traffict(s)

Wind Speedt(s)
is a scalar that quantifies the amount of traffic on the nearest highway around

s during time period t normalized by the wind speed at site s during time period t, and Distance(s) records the distance
of s from the nearest highway. This formulation allows different intercepts at downwind and upwind sites and different
gradients at downwind versus upwind sites for the covariates related to traffic normalized by wind speed ( Traffict(s)

Wind Speedt(s)
) and

distance from the nearest highway (Distance(s)). We also assume that the temporal variability of log NRI concentration
Z(k)

t (s) is adequately captured by the time-varying covariates in𝜇(k)
t (s), so that the residual error term 𝜂

(k)
t (s) is purely spatial

in nature and can be modeled as independent realizations over time periods of a mean-zero spatial Gaussian process.
Previous studies modeling concentrations of atmospheric pollutants have observed differing patterns of spatial depen-

dence depending on the pair of locations considered (see Calder, 2007; Fuentes, 2001; Higdon, 1998; Paciorek & Schervish,
2006, among others), which indicates that we should model the residual process 𝜂(k)t (s) as a nonstationary spatial process.
Recent work in modeling concentrations of various pollutants in the near-road environment (Gilani et al., 2016a) has fur-
ther indicated that certain spatiotemporally varying covariates, such as wind speed, might be important covariates that
help account for the different spatial dependency patterns observed in a localized spatial domain that includes sites that
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are both upwind and downwind of major highways. Figure 3 in the Supplementary Material shows the empirical semi-
variogram of the residuals obtained from a linear regression model fitted to log NRI concentrations for the two pollutants
separately using the mean function given in Equation (4), stratified by upwind and downwind sites. The Figure provides
evidence of a nonstationary residual process. Therefore, in this study, for each pollutant k, we model the term 𝜂

(k)
t (s) as a

nonstationary spatial process using a recently developed approach by Gilani et al. (2016a), which builds upon the kernel
mixing approach of Fuentes (2001) and a method proposed by Schmidt et al. (2011) that allows inclusion of covariates
in a covariance function. The new approach expresses pollutant concentrations as a mixture of two independent spatial
processes, each equipped with a nonstationary covariance function with covariates driving the nonstationarity and the
mixture weights.

Following the specification of Gilani et al. (2016a), for each pollutant k, we model 𝜂(k)t (s), t = 1, … ,  , as independent
realizations in time of a weighted mixture of two mutually independent mean-zero Gaussian spatial processes 𝜂(k)1,t (s) and
𝜂
(k)
2,t (s), independent over time, with nonstationary covariance functions C

𝜽
(k)
1
(·, ·) and C

𝜽
(k)
2
(·, ·), respectively. That is, for

each time period t and site s ∈  ,
𝜂
(k)
t (s) = w1,t(s) · 𝜂(k)1,t (s) + w2,t(s) · 𝜂(k)2,t (s), (5)

where the spatially and temporally varying weights w1,t(s) and w2,t(s) add up to 1, which is achieved by setting

wi,t(s) =
w̃i,t(s)

w̃1,t(s) + w̃2,t(s)
, i = 1, 2.

The un-normalized weights w̃1,t(s) and w̃2,t(s) are specified in such a way that when site s is downwind of the highway
at time t, the spatial process 𝜂1,t(s) receives a larger weight as compared to 𝜂2,t(s), and vice versa. One weighting scheme
that achieves this is given by

w̃i,t(s) =

{
exp (−𝜓 · (1 − Downt(s)) · |s − s∗|) , i = 1
exp(−𝜓 · (Downt(s)) · |s − s∗|), i = 2,

(6)

where s∗ is defined as the projection of site s onto the further edge of the highway.
To model the two mutually independent spatial processes 𝜂(k)1,t (s) and 𝜂(k)2,t (s) for each pollutant k as nonstationary pro-

cesses, where their nonstationarity is driven by a spatial covariate (e.g., wind speed), we define a nonlinear 1–1 smooth
transformation f̃t(·) from the geographical space  ⊂ R2 to the deformation space  ⊂ R3 that, for each time period t,
maps a site s = (sx, s𝑦) ∈  onto f̃t(s) = (sx, s𝑦, ht(s)), where ht(s) is a spatial covariate. In this formulation, for any pair of
sites s, s′ ∈  ,

Cov
(
𝜂
(k)
i,t (s), 𝜂

(k)
i,t (s

′)
)
= C(k)

,i

(
f̃t(s), f̃t(s′)

)
= C(k)

,i

(|̃ft(s) − f̃t(s′)|) , i = 1, 2,

where C(k)
,i(·, ·) is a stationary, isotropic covariance function (e.g., a Matérn covariance function) on , and |̃ft(s) − f̃t(s′)|

is the Mahalanobis distance between f̃t(s) and f̃t(s′). Schmidt et al. (2011) show that while the spatial processes 𝜂(k)1,t (̃f(s))
and 𝜂(k)2,t (̃f(s)) in the deformation space  ⊂ R3 are stationary and isotropic (since the correlation between any two vectors
f̃(s) and f̃(s′) is dependent only on the distance |̃f(s) − f̃(s′)|), the spatial processes 𝜂(k)1,t (s) and 𝜂(k)2,t (s) in the geographic
space  ⊂ R2 are nonstationary.

Since we believe that the different spatial dependence behavior in the log NRI concentrations exhibited between sites
that are upwind and downwind of major highways is driven by local meteorological factors, we define ht(s) as signed
wind speed at s at time period t, that is, wind speed with a positive sign if s is downwind at time t and with a negative sign
otherwise. Finally, for each pollutant k and time period t, we model the covariance function of the underlying process
𝜂
(k)
i,t (s) using an exponential covariance function with distance given by the Mahalanobis distance, so that for any pair of

sites s, s′ ∈  ,

Cov
(
𝜂
(k)
i,t (s), 𝜂

(k)
i,t (s

′)
)
= 𝜎2(k)

i · exp

{
−
√(

f̃t(s) − f̃t(s′)
)T

·𝚽(k)
i ·

(
f̃t(s) − f̃t(s′)

)}
, i = 1, 2. (7)

For each i = 1, 2 and each pollutant k, the matrix 𝚽(k)
i is a 3 × 3 diagonal matrix with diagonal elements (𝜙(k)

i , 𝜙
(k)
i , 𝜑

(k)
i )

and off-diagonal elements equal to 0, where 𝜙(k)
i controls the range or smoothness of the covariance function along the

x–y direction and 𝜑(k)
i controls it along the signed wind speed direction.

Under the above specification, the covariance function of the residual spatial process 𝜂(k)t (s) is a mixture of two nonsta-
tionary covariance functions with nonstationarity driven by a covariate (i.e., signed wind speed) and with spatiotemporally
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varying weights that also depend on a covariate (i.e., being upwind or downwind). Thus, for each pollutant k, at time
period t and sites s, s′ ∈  ,

Cov
(
𝜂
(k)
t (s), 𝜂(k)t (s′)

)
=

2∑
i=1

wi,t(s)wi,t(s′) · 𝜎2(k)
i · exp

{
−
√(

f̃t(s) − f̃t(s′)
)T

·𝚽(k)
i ·

(
f̃t(s) − f̃t(s′)

)}
. (8)

The hierarchical Bayesian data fusion model for each pollutant is completed by assigning prior distributions to the
various parameters in the process model (Equation (1)) and the data models (Equations (2) and (3)), as detailed below.
Denoting the vector of process model parameters for pollutant k by 𝜽(k)

p = {𝜷 (k),𝜽
(k)
1 ,𝜽

(k)
2 }, the vector of data model param-

eters by 𝜽
(k)
Ẑ

and 𝜽
(k)
Z̃

, and the vector of realizations of the true process, observed data, and model output collected over all
time periods by Z(k), Ẑ(k), and Z̃(k), respectively, and noting that given Z(k), Ẑ(k), and Z̃(k) are independent, the joint distri-
bution of all of the unknowns and available data (MAPL measurements and RLINE model output) can be decomposed
as

p
(

Ẑ(k), Z̃(k),Z(k),𝜽
(k)
p ,𝜽

(k)
Ẑ
,𝜽

(k)
Z̃

)
= p

(
Ẑ(k) |Z(k),𝜽

(k)
Ẑ

)
.p
(

Z̃(k) |Z(k),𝜽
(k)
Z̃

)
.p
(

Z(k) |𝜽(k)
p

)
.p
(
𝜽
(k)
Ẑ

)
.p
(
𝜽
(k)
Z̃

)
.p
(
𝜽
(k)
p

)
. (9)

Posterior estimates of the model parameters 𝜽
(k)
p ,𝜽

(k)
Ẑ
, and 𝜽

(k)
Z̃

as well as prediction of the true underlying process
Z(k)

t (s0) at an unsampled location s0 at time period t can be obtained using Markov chain Monte Carlo (MCMC)
approaches.

3.2 Prior specification
For each pollutant k, the full model contains 21 parameters: nine regression coefficients 𝛽(k)0 , … , 𝛽

(k)
8 as given in

Equation (4); constant additive and multiplicative biases a(k)
0 and b(k), respectively, as given in Equation (3); a nugget effect

𝜏2(k)
e for the MAPL data model given in Equation (2); a nugget effect 𝜏2(k)

𝛿
for the RLINE data model given in Equation (3);

two spatial covariance parameters 𝜎2(k)
a and 𝜙(k)

a for the spatially correlated additive bias a(k)
t (s) given in Equation (3); and

six spatial covariance parameters 𝜎2(k)
1 , 𝜙

(k)
1 , 𝜑

(k)
1 , 𝜎2(k)

2 , 𝜙
(k)
2 , 𝜑

(k)
2 . On all of these parameters except for 𝜏2(k)

e , we specify non-
informative prior distributions. Following Gilani et al. (2016a), the parameter 𝜓 in the definition of the mixture weights
w1,t(s) and w2,t(s) given in (6) was kept constant and determined through empirical considerations. Specifically, we chose
a value of 𝜓 such that if a site s is the furthest downwind site during time period t, the mixture weight w2,t(s) is equal to
about 0.05.

The nugget effect 𝜏2(k)
e provides the variability observed in the MAPL data due to measurement error. The precision of the

monitoring equipment used to record concentrations of NOx and PM2.5 was therefore used to provide informative priors
on these parameters. We place inverse gamma priors such that the prior mean of 𝜏2(k)

e is equal to 10% of the observed mean
in NRI concentration and the prior variance is very small. To specify the priors on the remaining 20 pollutant-specific
model parameters, we use an empirical Bayes approach. Specifically, on each of the 𝛽(k)l , l = 0, … , 8, we place independent
normal priors with large variances and means set equal to the estimates of the regression coefficients obtained by fitting a
linear regression model on the MAPL data for each pollutant with the nine variables in Equation (4) as the covariates. On
the variance component parameters 𝜎2(k)

1 and 𝜎2(k)
2 , we place vague inverse gamma priors with shape and scale parameters

chosen so that the prior variance is infinite and the prior mean is equal to 40% of the estimated residual variance from the
linear regression model fit to get the prior means for the regression coefficients. On the variance component parameters
𝜎2(k)

a and 𝜏2(k)
𝛿

for the RLINE data model given in Equation (3), we place vague inverse gamma priors with shape and scale
parameters chosen such that the prior variance is infinite and the prior mean is equal to, respectively, 40% and 60% of
the estimated residual variance from a linear regression model on the RLINE data for each pollutant with the same nine
covariates. On the parameters 𝜙(k)

1 , 𝜙
(k)
2 , 𝜑

(k)
1 , 𝜑

(k)
2 controlling the roughness/smoothness of the covariance function of the

underlying spatial processes 𝜂(k)1,t and 𝜂(k)2,t , t = 1, … ,  , in the x–y and signed wind speed direction, we place gamma priors
with shape and scale parameters chosen so that the variance of the gamma distribution is large whereas the prior mean
is such that the correlation is equal to 0.05 at a distance equal to 3 divided by the prior mean. Specifically, we set the prior
means to be approximately 3 divided by the maximum inter–monitoring site distance and 3 divided by the maximum
signed wind speed “distance.” Finally, for the overall additive and multiplicative bias terms of the log RLINE output, a(k)

0
and b(k), we used two vague independent normal priors with means 0 and 1, respectively, assuming a priori no bias in the
log RLINE output.
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For each pollutant k, we fit the full model by running an MCMC algorithm with Gibbs sampling for all the regres-
sion coefficients and variance component parameters and with Metropolis–Hastings steps to update the spatial decay
parameters.

3.3 Model comparison
For each pollutant separately, we compared the predictive performance of six joint Bayesian data fusion models that dif-
fered in (a) the approach used to model the additive bias of the log RLINE output and (b) the type of spatial dependence
structure hypothesized for the two latent processes, 𝜂(k)1,t (s) and 𝜂(k)2,t (s). Table 1 provides a summary of the models con-
sidered. For the additive bias of the log RLINE output, three different approaches were used. The simplest model, called
“Model 1,” assumes that the additive error of the RLINE output in representing the true, unobserved field is constant
in space; thus, a(k)

t (s) ≡ 0 in Equation (3). “Model 2” postulates that although the RLINE output has a spatially vary-
ing additive bias on the local scale (where local means a small region on the order of a couple of kilometers around the
urban highway), overall, the RLINE output does not have a global additive bias (where global means over the entire study
region), that is, a(k)

0 ≡ 0. “Model 3” is the full model as described in Section 3.1. For each of these three models, we contrast
two cases: The first case assumes that 𝜂(k)t (s) is a stationary Gaussian process independent in time with mean 0 and with
an exponential covariance function (with marginal variance 𝜎2(k)

Z and spatial decay parameter 𝜙(k)
Z ), whereas the second

case assumes that 𝜂(k)t (s) is equipped with the nonstationary covariance function described in Equation (5). These cases
are distinguished by appending “S” or “NS” to the model labels, respectively.

We evaluated the predictive performance of each of the six models for both pollutants through comparisons between
observations and predictions at out-of-sample sites. Out of the 254 observed NRI in NOx concentrations from the MAPL
data, we randomly selected 221 observations for model fitting and held out 33 observations for model validation. Simi-
larly, for PM2.5, we randomly selected 202 observations in NRI concentrations from the MAPL data for model fitting and
held out 33 observations for model validation. In each case, the held out observations were sampled so that we had three
observations held out per time period. Since the modeling was conducted on the log scale, we assessed the predictive per-
formance by back-transforming predictions to the original scale. Using the median of the posterior predictive distribution
as the predicted value at each site, we evaluated the predictive performance of each model in terms of the mean absolute
prediction error (MAPE), the average length of the 90% prediction interval (PI), the empirical coverage of the 90% PI, and the
average bias. The empirical coverage of the 90% PI is used to assess whether the uncertainty in the prediction is correctly
quantified: If empirical coverage is below the nominal level, assuming no bias in the predictions, the model is underesti-
mating the variability/uncertainty in the predictions. Conversely, empirical coverage of the PIs above the nominal level
indicates that the model overestimates the variability/uncertainty, assuming no bias in the predictions.

For each fitted model for both pollutants, we examined trace plots of the posterior samples for the model parameters
to verify that the MCMC algorithm had converged. For all six models for both pollutants, trace plots indicated that the
posterior samples for all model parameters had converged within the first 10,000 iterations. We therefore treated the
first 10,000 iterations as burn-in. We also examined the autocorrelation within posterior samples for each parameter.
Posterior samples for the stationary models (with fewer model parameters) exhibited weaker autocorrelation than the
nonstationary models. For each model, a thinning factor was used to ensure that the posterior samples used to determine
the posterior distribution had very low autocorrelation. For the stationary models for both pollutants, a thinning factor of

TABLE 1 Summary of the joint Bayesian data fusion models for log NRI of NOx

and PM2.5

Form of additive
Model name bias for RLINE Covariance structure of 𝜼(k)t (s)

Model 1-S a(k)
t (s) ≡ 0 Stationary: exponential

Model 2-S a(k)
0 ≡ 0 Stationary: exponential

Model 3-S Full Stationary: exponential
Model 1-NS a(k)

t (s) ≡ 0 Nonstationary, as in Equation (5)
Model 2-NS a(k)

0 ≡ 0 Nonstationary, as in Equation (5)
Model 3-NS Full Nonstationary, as in Equation (5)

Note. NRI = near-road increment; RLINE = research line-source dispersion model.
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12 was sufficient to ensure near independence of the thinned posterior samples. For the nonstationary models for NOx,
thinning factors of 64, 29, and 31 were used for Models 1, 2, and 3, respectively, whereas for PM2.5, thinning factors of
60, 62, and 53 were used for Models 1, 2, and 3. Each MCMC algorithm was run for a number of iterations large enough
so that the posterior inference was based on posterior samples of size 1,000 after thinning for each model. While some
models needed considerably long chains, we did not observe any identifiability issue with any model.

The second goal of the study, that is, evaluating whether incorporating the RLINE output in our model improves the
estimation of pollutant concentration, can be assessed by examining the posterior distribution of b(k) in Equation (3).
When b(k)

≡ 0, the conditional distribution of Z(k), given the MAPL and RLINE data and model parameters, is equiv-
alent to the conditional distribution of Z(k), given the MAPL data and model parameters only. That is, when b(k)

≡ 0,
p(Z(k) | Ẑ(k), Z̃(k),𝜽

(k)
p ,𝜽

(k)
Ẑ
,𝜽

(k)
Z̃
) ≡ p(Z(k) | Ẑ(k),𝜽

(k)
p ,𝜽

(k)
Ẑ
). Therefore, if the posterior distribution of b(k) is centered at 0 and

has a small standard deviation, there is not sufficient evidence that including the RLINE output in the model helps in
improving the estimates of the true concentration of pollutant k. In fact, when b(k) = 0, Equation (3) is simply an ordi-
nary kriging model fitted to the RLINE predictions, whereas Equations (1) and (2) together specify a universal kriging
model for the MAPL pollution concentration process. Similarly, the third goal of the study, that is, evaluating whether the
RLINE output captures the spatial dependence structure of NRAP concentrations in the near-road environment, can be
assessed by comparing Model 1 to Models 2 and 3. If Model 1 outperforms Models 2 and 3, then the additive bias does not
have any spatial pattern, so that the RLINE model output would appear to capture the spatial variability exhibited by the
true underlying pollutant concentration process. However, if Model 2 or 3 outperforms Model 1, then there is evidence of
some residual spatial structure that is not captured by the RLINE model output.

4 RESULTS

Summaries of the predictive performance statistics of the joint Bayesian data fusion models for NOx and PM2.5 are shown
in Table 2. No single model was clearly dominant with respect to all criteria for either pollutant, that is, no single model
had the lowest MAPE and the shortest PI with empirical coverage close to the nominal level.

4.1 Nitrogen oxides
For NOx, the stationary models provided better predictive performance than the nonstationary counterparts, and Model
2-S yielded the lowest MAPE and 90% PIs that have an empirical coverage that was the second closest to the nominal
coverage, although, on average, they were wider than the 90% PIs from Model 1-S (the estimated parameters for Model 2-S
are shown in Table 3). While earlier studies have suggested nonstationarity in the concentrations of pollutants such as NOx
across major highways (Gilani et al., 2016a), these results suggest that the residual process for NRI in NOx concentrations
for sites across major highways is stationary.

The estimated coefficient for the multiplicative bias b̂ is 1.25 (95% CI [credible interval]: 1.11, 1.35), which is statistically
significantly greater than 1. This estimate suggests that including the RLINE output in our model does help improve our
estimate of the true NRI concentrations and confirms our initial belief that the RLINE model tends to provide higher
predictions for NRI in NOx concentrations than the true NRI concentrations.

TABLE 2 Predictive performance of the joint Bayesian data fusion models averaged across validation sites and
time periods. The Table shows the mean absolute prediction error (MAPE), the average length of the 90%
prediction interval (PI), the empirical coverage of the 90% PI, and the average bias. Models are defined in Table 1

Criteria Mod 1-S Mod 2-S Mod 3-S Mod 1-NS Mod 2-NS Mod 3-NS

N
O

x

MAPE 6.59 6.35 7.00 6.95 6.69 8.13
Avg. length of 90% PI 23.81 28.31 32.49 108.25 33.98 300.41
Emp. coverage of 90% PI 0.84 0.77 0.77 0.84 0.74 0.74
Avg. bias 4.98 4.34 4.17 3.08 4.68 2.94

PM
2.

5

MAPE 1.11 0.72 0.78 0.48 0.42 0.44
Avg. length of 90% PI 4.72 7.10 7.66 3.30 4.87 4.22
Emp. coverage of 90% PI 0.55 0.90 0.86 0.69 0.66 0.69
Avg. bias −0.77 −0.48 −0.53 −0.10 −0.07 −0.09
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TABLE 3 Posterior medians and 95% credible interval (CI) of regression coefficients
𝛽0, … , 𝛽8 and covariance parameters estimated by the best fitting models (Model 2-S for NOx

and Model 2-NS for PM2.5). Traffic is in adjusted number of vehicles per hour, wind speed is in
meters per second, and distance is in kilometers

NOx PM2.5
Parameter Median 95% CI Median 95% CI
𝛽0 Intercept 1.65 (1.26, 2.10) −0.89 (−2.06, 0.51)
𝛽1 Down 0.96 (0.83, 1.11) 1.37 (−0.65, 3.36)
𝛽2 Weekday 0.57 (0.03, 1.15) −0.25 (−1.57, 1.10)
𝛽3 Morning 0.32 (−0.43, 1.07) 1.06 (−0.88, 3.05)
𝛽4 Weekday*Morning −0.77 (−1.67, 0.06) −0.63 (−2.79, 1.59)
𝛽5 Traffic/WS (10−5) 5.78 (2.71, 8.63) 14.1 (4.79, 24.3)
𝛽6 Traffic/WS*Down (10−5) −4.54 (−6.04, −3.13) −15.7 (−27.0, −5.22)
𝛽7 Distance (10−4) −15.1 (−17.8, −12.6) −12.9 (−19.2, −6.88)
𝛽8 Distance*Down (10−4) −3.01 (−6.28, 0.15) −1.49 (−8.44, 5.40)
a0 Additive bias (RLINE) – – – –
b Multiplicative bias (RLINE) 1.25 (1.11, 1.35) 0.66 (0.59, 0.75)
𝜏2

e Nugget (MAPL) 0.42 (0.42, 0.42) 0.06 (0.06, 0.06)
𝜏2
𝛿

Nugget (RLINE) 0.07 (0.05, 0.09) 0.07 (0.06, 0.09)
𝜎2

1 Sill - Downwind – – 6.34 (2.70, 13.0)
𝜙1 Downwind – – 0.005a (0.001, 0.030)
𝜑1 Downwind, Wind speed – – 65.8b (6.18, 353)
𝜎2

2 Sill - Upwind – – 8.90 (5.06, 14.3)
𝜙2 Upwind – – 0.07c (0.02, 0.19)
𝜑2 Upwind, Wind speed – – 256d (64.5, 765)
𝜎2

Z Sill 0.49 (0.35, 0.69) – –
𝜙Z Decay 1.01e (0.65, 1.52) – –
𝜎2

a Sill (Additive bias - RLINE) 0.60 (0.43, 0.92) 1.01 (0.68, 1.69)
𝜙a Decay (Additive bias - RLINE) 0.78f (0.44, 1.26) 0.15g (0.07, 0.26)

Note. Effective range for spatial correlation: a 42.4 km; b 0.37 m/s; c 11.3 km; d 0.19 m/s; e 2.97 km; f 3.85 km;
g 7.75 km. RLINE = research line-source dispersion model; MAPL = mobile air pollution lab.

The superior performance of Model 2 (with a mean-zero spatially varying additive bias term for the RLINE model)
suggests that while the additive bias, on average, is negligible, there is some spatial structure to the bias term, so that the
RLINE output does not fully capture the spatial dependence structure of NRI in NOx concentrations. The estimate of the
marginal variance of the spatially varying error at(s) of the log RLINE output �̂�2

a is 0.60 (0.43, 0.92), whereas the spatial
correlation of this bias term decays fairly slowly, with an effective range of 3.85 km.

The estimated nugget effect 𝜏2
e is 0.42 (0.42, 0.42), which provides a measure of the variability in the measurement

error of the MAPL measurements. This is greater than the estimated nugget effect for the RLINE model output (𝜏2
𝛿

is 0.07
(0.05, 0.09)), suggesting smaller residual variability in the RLINE model output after accounting for multiplicative bias
as compared to MAPL measurements.

The effective range of the stationary model error 𝜂t(s) is 2.97 km, so that the errors for sites within the same area
(2 km× 2 km) are fairly correlated. This provides evidence that while the model covariates, MAPL measurements, and
RLINE output, when combined together, account for the large-scale spatial variation in log NRI concentrations for NOx,
there is still some small-scale residual spatial variability that they do not account for.

As Table 3 shows, the estimated coefficient for downwind indicator (𝛽1) is positive; controlling for other variables in the
model, downwind NRI NOx concentrations are, on average, exp(0.96)= 2.61 ppb greater than at upwind sites. Similarly,
the estimated coefficient for weekday indicator (𝛽2) is positive, whereas the morning indicator (𝛽3) and the interaction
term between morning and weekday (𝛽4) are not significantly different from 0. This means that controlling for other
variables, there is no difference in the NRI concentrations of NOx between mornings and evenings, whereas NRI concen-
trations on weekdays tend to be 1.77 ppb higher, on average, than on weekends. As expected, the estimated coefficient for
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FIGURE 4 Near-road increment (NRI) in NOx concentration (in ppb) (a) monitored at mobile air pollution lab sites and (b) output from
the research line-source dispersion model at area 8 near I-94 in Detroit, Michigan, at 8:00 a.m. on Thursday, December 20, 2012.
(c) Predictions of hourly NRI in NOx concentration (in ppb) at area 8 at 8:00 a.m. on Thursday, December 20, 2012, as yielded by Model 2-S.
(d) Lower and (e) upper bounds of the 90% prediction interval

distance to highway (𝛽7) is negative, and the effect of distance is not different between upwind and downwind sites (𝛽8 is
not significantly different from 0).

Figure 4a shows NRI in NOx concentrations as monitored at MAPL sites at area 8 near I-94 on the morning of
December 20, 2012, whereas Figure 4b shows the output from the RLINE model for the same area. The relative size of the
bubbles in Figure 4a is proportional to the magnitude of the observed concentration. As noted earlier, the RLINE model
output provides much higher estimates of the NRI in NOx concentrations, particularly at downwind sites close to the
highway as compared to the monitored MAPL observations. Figure 4c shows predictions of hourly NRI in NOx concen-
trations obtained using Model 2-S for the same region and time period, whereas Figures 4d and 4e show the lower and
upper bounds, respectively, of the 90% PIs. Predictions from the best fitting Bayesian data fusion model are much closer
to the monitored MAPL concentrations, while they also capture the influence of secondary roads provided by the RLINE
model output that was not captured by MAPL observations.

4.2 Fine particulate matter
For PM2.5, the situation was different: The joint Bayesian data fusion models with nonstationary covariance functions
provided a strikingly better predictive performance than the stationary models. However, just as for NOx, no model was
better in terms of all three criteria (MAPE, average length of the 90% PI, and empirical coverage of the 90% PI). Weighting
the MAPE criterion the most, Model 2-NS yielded the best predictions. The estimated coefficient for the multiplicative
bias of the RLINE output b̂ is 0.66 (95% CI: 0.59, 0.75), which suggests that for PM2.5, just as for NOx, including the
RLINE output in the model helps in estimating the log NRI in true pollutant concentrations, while again confirming
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our initial belief that the RLINE model tends to provide lower predictions for NRI in PM2.5 concentrations than the true
NRI concentrations.

Similar to NOx, Model 2-NS hypothesized a null overall additive bias, but localized additive error at each location. The
spatially varying additive bias of RLINE had a small marginal variance (�̂�2

a is 1.01 (0.68, 1.69)) and, similar to NOx, a
fairly large effective range of 7.75 km (Table 3). The RLINE output for PM2.5 does not appear to fully capture the spatial
dependence structure of NRI concentrations, and the residual spatial correlation seems to persist for fairly large distances.

The estimated nugget effects for the MAPL measurements and the RLINE output are very similar (𝜏2
e is 0.06 (0.06,

0.06), and 𝜏2
𝛿

is 0.07 (0.06, 0.09)), suggesting similar residual variability after the multiplicative error has been controlled
for. The decay parameters 𝜙1 and 𝜙2 of the underlying spatial processes 𝜂(k)1,t (s) and 𝜂(k)2,t (s) relative to the x–y direction
were fairly different, with effective ranges of 42.4 km for sites that are downwind and 11.3 km for upwind sites. Spatial
correlation decays extremely slowly with an increasing distance for sites that are upwind, and even slower for downwind
sites. Similarly, the decay parameters in the signed wind speed direction, 𝜑1 and 𝜑2, are also fairly different for the two
underlying spatial processes, with effective ranges of 0.37 m/s (𝜂(k)1,t (s)) and 0.19 m/s (𝜂(k)2,t (s)). Correlation between upwind
sites decays rather rapidly with increasing signed wind speed, but more slowly for downwind sites.

Examining the estimated regression coefficients in Table 3, we observe that indicators for downwind, weekday, morning,
and interaction for morning and weekday are all not significantly different from 0. As expected, NRI in PM2.5 concentra-
tions decreases with an increasing distance from the highway, and the effect is similar between upwind and downwind
sites. It is interesting to note that while NRI concentrations do not appear to differ between upwind and downwind sites
(as also seen in Figure 2d), the spatial dependence structure is nonstationary, driven by wind speed and direction.

Figure 5a shows NRI in PM2.5 concentrations as monitored at MAPL sites at area 8 near I-94 on the morning of
December 20, 2012, whereas Figure 5b shows the output from the RLINE model for the same area. The relative size of the

FIGURE 5 Near-road increment (NRI) in PM2.5 concentration (in 𝜇g/m3) (a) monitored at mobile air pollution lab sites and (b) output
from the research line-source dispersion model at area 8 near I-94 in Detroit, Michigan, at 8:00 a.m. on Thursday, December 20, 2012.
(c) Predictions of hourly NRI in PM2.5 concentration (in 𝜇g/m3) at area 8 at 8:00 a.m. on Thursday, December 20, 2012, as yielded by Model
2-NS. (d) Lower and (e) upper bounds of the 90% prediction interval
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bubbles in Figure 5a is proportional to the magnitude of the observed concentration. As noted earlier, the RLINE model
output provides lower estimates of the NRI in PM2.5 concentrations, particularly at upwind sites further away from the
highway as compared to the monitored MAPL observations. Figure 5c shows predictions of hourly NRI in PM2.5 con-
centrations obtained using Model 2-NS for the same region and time period, whereas Figures 5d and 5e show the lower
and upper bounds, respectively, of the 90% PIs. Predictions from the best fitting Bayesian data fusion model are much
closer to the monitored MAPL concentrations, while, just as for the predictions for NOx, they also capture the influence
of secondary roads provided by the RLINE model output that was not captured by MAPL observations.

5 DISCUSSION

In this paper, we have presented a nonstationary spatiotemporal Bayesian data fusion model for NRIs in concentrations
of two NRAPs (NOx and PM2.5) with the goals of (i) estimating the true underlying NRI pollutant concentration process
and predicting concentrations at unsampled sites, (ii) evaluating whether the RLINE dispersion model output provides
additional useful information in estimating the true process, and (iii) if the RLINE dispersion model output does provide
additional useful information, evaluating whether the RLINE model adequately captures the spatial dependence struc-
ture of NRI in these pollutant concentrations. The data fusion model is specified using the joint modeling framework,
with nonstationarity modeled using an approach that allows the incorporation and identification of covariates that might
drive nonstationarity. Results from fitting the Bayesian data fusion models suggest that while the RLINE output provides
additional information that is helpful in estimating the true unobserved NRI field for both NOx and PM2.5, it needs to
be calibrated to be considered a good representation of the true unobserved NRI field for these pollutants. However, the
bias adjustment mostly consists of multiplicative correction (or rescaling) of the RLINE output for both pollutants since
the best performing model for both pollutants (in terms of MAPE) were models that did not include a spatially constant
additive bias. For both pollutants, RLINE displayed a spatial error that has a small-to-moderate marginal variance and a
fairly slow-decaying spatial correlation.

Predictions from the final model can provide improved estimates of NRAP concentrations for use in health studies. As
noted earlier, adverse health effects due to exposure to NRAPs close to traffic sources, such as major roads and highways,
differ significantly from exposure at background levels. Therefore, there is increasing interest in monitoring NRIs in
pollutant concentrations. However, monitored data on the NRI in pollutant concentrations are difficult to obtain. In
our study, we model NRIs in pollutant concentrations using a novel dataset on observed concentrations of pollutants in
the near-road environment collected via a mobile air pollution lab (MAPL). Other studies have also attempted to obtain
data on pollutants in the near-road environment. Similar spatiotemporal models might be applied to data collected in
such mobile monitoring campaigns, especially if repeated measurements for the same season and time of day (e.g., rush
hour) are obtained. Recently, an initiative has been launched to use a Google Street View car equipped with air pollution
monitors to collect such data in the Oakland, California area (Apte et al., 2017). While such programs can provide useful
data, our study was specifically designed to investigate the NRI during the critical rush hour period. Additionally, a key
advantage of our modeling approach over using the RLINE model directly (which readily provides estimates of NRI in
pollutant concentration) is that, in addition to accounting for the multiplicative bias in the RLINE output, predictions
from our model are accompanied by appropriate quantification of uncertainty in the prediction, which is highly relevant
when improving estimates of NRAP exposures in epidemiological studies given the nature of exposure measurement
errors.

Our results are based on short-term measurements on transects across a variety of major roads in Detroit, collected dur-
ing the wintertime morning and afternoon rush hour periods. Transect locations were selected to represent predominantly
residential areas across the city, and the selected roads differ significantly with respect to traffic volume and fleet mix. In
these ways, the collected data are representative and relevant to health studies using cohorts based on residence location.
Areas with large industrial emission sources, which are common in the Detroit area, were avoided. Still, NOx and PM2.5
are emitted from numerous sources in addition to the local roads studied, including point sources, and non–road mobile
area and regional sources. Results of our analysis should, therefore, be interpreted and generalized cautiously given the
limited spatiotemporal nature of the observed data.

Fitting our model using additional datasets on observed pollutant concentrations would be useful for extending our
findings. In particular, applications using long-term (e.g., seasonal to annual average) observations might be particu-
larly revealing, especially since it is difficult for dispersion models to attain good performance at short averaging periods
(Milando & Batterman, 2018). However, spatiotemporal models require a sufficient number of sampling locations to
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estimate parameters. Unfortunately, few datasets provide the sufficient spatial coverage needed to develop and assess
long-term urban-scale spatiotemporal models, and current monitoring networks do not capture the small-scale gradients
of NRAP concentrations. There may be applications using satellite data, other mobile monitoring platforms, or possi-
bly low-cost monitoring sensors if sufficient spatial resolution, accuracy, sensitivity, and selectivity for NRAPs can be
achieved. In particular, new tools have been developed to cheaply monitor atmospheric pollutants, but with relatively
low accuracy (Kumar et al., 2015). If the range of measurement errors for these new gauges is known, our approach can
be readily used to monitor NRI in pollutant concentrations across transects more frequently, so that the RLINE model
output can be calibrated over longer time durations and wider spatial domains.
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