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Research Impact Statement: A well-calibrated and validated field-scale flow and water quality model was
used to assess nutrient load, concentration, yield, and distribution for a large international watershed.

ABSTRACT: A large international watershed, the St. Clair-Detroit River System, containing both extensive
urban and agricultural areas, was modeled using the Soil and Water Assessment Tool (SWAT) model. The
watershed, located in southeastern Michigan, United States, and southwestern Ontario, Canada, encompasses
the St. Clair, Clinton, Detroit (DT), Sydenham (SY), Upper, and Lower Thames subwatersheds. The SWAT
input data and model resolution (i.e., hydrologic response units, HRUs), were established to mimic farm bound-
aries, the first time this has been done for a watershed of this size. The model was calibrated (2007–2015) and
validated (2001–2006) with a mix of manual and automatic methods at six locations for flow and water quality
at various time scales. The model was evaluated using Nash–Sutcliffe efficiency and percent bias and was used
to explore major water quality issues. We showed the importance of allowing key parameters to vary among sub-
watersheds to improve goodness of fit, and the resulting parameters were consistent with subwatershed charac-
teristics. Agricultural sources in the Thames and SY subwatersheds and point sources from DT subwatershed
were major contributors of phosphorus. Spatial distribution of phosphorus yields at HRU and subbasin levels
identified locations for potential management targeting for both point and nonpoint sources and revealed that in
some subwatersheds nonpoint sources are dominated by urban sources.
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INTRODUCTION

Watersheds are widely accepted units of analysis
for water resources planning and management
(McKinney et al. 1999; IJC 2009; Sheelanere et al.
2013), and have been the focus for guiding water
resource and management decisions for decades. How-
ever, their natural and anthropogenic processes and
activities are often too complex and variable, both spa-
tially and temporally, to be captured thoroughly
through monitoring alone (Mirchi et al. 2009). There-
fore, watershed modeling tools, especially flow and

water quality models, have been used increasingly to
simulate watershed processes and human use to help
in guiding those decisions at local, national, and inter-
national scales (Singh and Frevert 2006; Madani and
Mari~no 2009; Daniel 2011). These modeling tools are
particularly valuable for developing a common under-
standing and framework for setting goals among
nations with shared watersheds (IJC 2009).

One of the most widely used watershed models is
the Soil and Water Assessment Tool (SWAT) (Arnold
et al. 1998); a semi-distributed, physically based flow,
and water quality model that has been used in water-
sheds around the world with widely varying
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characteristics in size and composition (Gassman
et al. 2007, 2014). It is designed to capture informa-
tion ranging from very coarse to fine spatial scales by
dividing the watershed into subbasins based on
topography, and then dividing the subbasins into
smaller hydrologic response units (HRUs) based on
unique land use (LU), soil type, slope, and/or man-
agement combinations. While these HRUs can be at
very fine scales, this increased resolution and com-
plexity improves results only when there is an equiv-
alent level of input information (Jakeman et al. 2006;
Johnston and Smakhtin 2014). Fortunately, in recent
years, extensive datasets, such as land-use data gen-
erated from remote sensing and tile drainage systems
characteristics collected by government and non-
government organizations, enable relatively detailed
watershed models.

However, even with detailed input data, SWAT
still has a large number of parameters that cannot be
measured directly and therefore need to be estimated
through model calibration (Li, Weller, et al. 2010; Li,
Shao, et al. 2010). The most frequently used calibra-
tion practice is to evaluate simulation performance at
a single downstream location (Shi et al. 2013), which
ignores spatial heterogeneity. This is particularly
problematic for large systems where parameters esti-
mated for some parts of the watershed may be unre-
alistic for other parts. For example, Leta et al. (2017)
assessed the impact of calibrating at a single site, at
multiple sites with constant parameter values, and at
multiple sites with varying parameter values for a
1,162 km2 watershed in Belgium. Their results indi-
cated using different parameter values among differ-
ent regions improved calibration results. In their
study for a 239 km2 watershed in Idaho, Zhang et al.
(2008) also showed the importance of calibrating at
multiple monitoring sites for better representations of
regional conditions and goodness of fit. Hence, for
large and/or spatially heterogeneous watersheds, cali-
bration/validation processes at multiple locations is
crucial to ensure accurate representations of local
and regional flow, sediment, and nutrient simulations
(Zhang et al. 2008; Wang et al. 2012; Bai et al. 2017;
Leta et al. 2017).

A water quality agreement between the United
States (U.S.) and Canada (GLWQA 2016), crafted in
response to Lake Erie’s re-eutrophication (Scavia et al.
2014), has led to new phosphorous loading targets.
Attention has logically been placed on loads from the
Detroit (DT) and the Maumee rivers because they con-
tribute about 90% of total phosphorus (TP) load to the
western basin of the lake (Scavia et al. 2016). While
there have been several assessments for the Maumee
watershed (e.g., Kalcic et al. 2016; Muenich et al. 2017;
Scavia et al. 2017), there has been no similar assess-
ment for the nearly 20,000 km2 international

watershed that drains into Lake Erie from the Detroit
River. This study was designed to begin filling that gap
with a robust watershed model to allow assessing
potential nutrient load reduction strategies.

The goal of this study was to calibrate the SWAT
model for this very large, complex international
watershed at multiple locations and investigate the
spatial distribution of nutrient sources and loads. In
pursuit of this goal, we first assembled and harmo-
nized into seamless model input U.S. and Canadian
data that have their own characteristics, developed
with different methodologies and interpretations, and
with their own formatting and naming conventions
(IJC 2015).

STUDY AREA

The St. Clair-Detroit River system drains a
19,040 km2 watershed area from parts of southeast-
ern Michigan in the U.S. (40% of watershed area)
and southwestern Ontario in Canada (60% of water-
shed area) and contributes its load to Lake Erie
through the Detroit River (Figure 1). It is composed
of about 50% cropland, 20% urban area, 12% forest,
8% grassland, and 7% water bodies. The U.S. portion
of the watershed is dominated by the DT Metropoli-
tan area, whereas the Canadian portion is dominated
by tile-drained croplands growing corn, soybeans, and
winter wheat. Over the 15-year study period (2001–
2015), total annual precipitation and annual average
temperatures vary between 740 and 1,200 mm, and
7.5 and 11.0°C, respectively, averaging at 908 mm
and 9.3°C. Elevation ranges from 422 m above sea
level at the watershed boundary to 145 m at the out-
let, with mostly flat slopes.

The U.S. portion drains three HUC8 watersheds
(St. Clair [SC], Clinton [CL], and DT subwatersheds)
drained primarily by the Black River (BR), Clinton
River (CR), and Rouge River (RR), respectively. The
Canadian portion drains three tertiary watersheds
(Upper Thames [UT], Lower Thames [LT], and
Sydenham [SY] subwatersheds) through the Thames
River (TR) and Sydenham River (SR). For this study,
the TR includes both Upper Thames River (UTR) and
Lower Thames River (LTR) segments. The watershed
includes two smaller subwatersheds, Essex in Canada
and Lake SC in the U.S. While calibration and vali-
dation were performed at the outlet of the six major
rivers (BR, CR, RR, SR, UTR, and LTR), most load
assessments were made for the entirety of each sub-
watershed (SC, CL, DT, SY, UT, and LT) that the
major rivers drain. Hence, it is important to note the
difference in names between the subwatershed and

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA1289

MODELING FLOW, NUTRIENT, AND SEDIMENT DELIVERY FROM A LARGE INTERNATIONAL WATERSHED USING A FIELD-SCALE SWAT MODEL



river, especially for the DT and SC subwatersheds
that are drained through the Rouge and BRs.

Overall, 79% of the watershed’s agricultural land is
in Canada and 83% of the urban land is in the U.S.
The CL and DT subwatersheds are heavily urbanized
(about 56% and 89% of each as urban, respectively),
and the SC, SY, UT, and LT subwatersheds are domi-
nated by agriculture (63%, 89%, and 87% agricultural,
respectively). This spatial variation in LU/land cover
(LULC) provides both challenges and opportunities
for investigating model performance. Moreover, five of
the six HUC8 (tertiary) subwatersheds drain into the
1,100 km2 Lake SC (Figure 1) that retained an aver-
age 13% of its TP input over the 1998–2016, and 21%
over the 2013–2015 time period (Bocaniov and Scavia
2018; Scavia et al. 2019).

DATA

Basic Inputs

With the exception of data on elevation and
weather, all model input was obtained separately for
the U.S. and Canada and then merged. Digital

elevation model (DEM) data with 30 9 30 m resolu-
tion from the U.S. Geological Survey–The National
Map (USGS 2016) were used for the entire watershed
for elevation, slope, and subbasin delineation. Daily
precipitation and maximum and minimum tempera-
tures were obtained from the National Oceanic and
Atmospheric Administration’s Global Historical Cli-
matology Network (NOAA-GHCN 2016) for 16 U.S.
stations and 15 Canadian stations for 1999–2015
(Figure 1). LULC layers for 2011–2015 with
30 9 30 m grid cells were from the U.S. Department
of Agriculture National Agricultural Statistics Service
(USDA-NASS 2016) Cropland Data Layer and the
Agriculture and Agri-Food Canada Annual Crop
Inventory (AAFC 2016). The 2015 LULC data layer
was used to setup the SWAT model and the five-year
dataset was used to generate crop rotations. Soil data
layers were from the USDA Natural Resources Con-
servation Service Soil Survey Geographic Database
(USDA-NRCS 2017) and from the AAFC’s Soil Land-
scapes of Canada (version 3.2) (AAFC 2016). Road
network data were from U.S. Census Bureau (2016)
and Ontario Ministry of Natural Resources and For-
estry (OMAFRA 2016. OMNRF. Accessed November
2016, https://www.javacoeapp.lrc.gov.on.ca/geonet
work/srv/en/main.home?uuxml:id=290bfd40-0c8b-46d
0-9a6c-0c648d096515).

FIGURE 1. Study area with geographic location and weather stations (top-left), land use/land cover and subwatershed boundaries (bottom-
left), soil and county boundaries (bottom-right) and digital elevation model and calibration locations (top-right) information. The channel

which connects Lake Huron to Lake St. Clair (SC) is SC River, and Lake SC to Lake Erie is Detroit River. Water flows from Lake Huron to
Lake Erie through Lake SC.
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Flow and Water Quality

The USGS National Water Information System
(USGS-NWIS 2016) and the Canadian National Water
Data Archive hydrometric data (HYDAT 2016) were
used to obtain daily flow data for the most downstream
gauging stations in each subwatershed (Figure 1,
Table S2). Any data gap of 60 days or more was filled
using either the stage discharge relationship, if stage
data were available, or with the unit area method using
data from a nearby station along the same or adjacent
stream. If a gap was <60 days, it was filled using struc-
tural time series (Ryberg and Vecchia 2017).

Total suspended sediment (TSS), total nitrogen
(TN), nitrate (NO3), TP, and dissolved reactive phos-
phorus (DRP) concentration data for the U.S. were
obtained from the Water Quality Portal (WQP 2016).
Canadian data were from the Provincial Stream
Water Quality Monitoring Network (PWQMN 2016)
and Environment and Climate Change Canada
(Debbie Burniston, Alice Dove, 2017, personal com-
munication). Average sampling frequency ranged
from 3 to 17 samples per year for the U.S. and 7 to
21 for Canada.

Because flow and water quality data were often
measured at different locations (Figure 1), calibra-
tion points were generally at the most downstream
water quality stations to avoid extensive interpola-
tion of water quality concentrations and to account
for most of the subwatershed areas. Daily flow data
at the calibration locations were estimated using the
drainage-area method (Hirsch 1979) from the
upstream flow stations. Monthly and annual nutri-
ent load estimates for calibration at these locations
were made using the weighted regression on time,
discharge, and season (WRTDS) method (Hirsch
et al. 2010) based on sample concentration values
and daily flow.

Management Data Layers

Management data layers include cropping systems,
fertilizer and manure application rates and place-
ment, tillage practices, and tile drainage. County
level fertilizer sales data were from the International
Plant Nutrition Institute (IPNI 2016) for the U.S.
and provincial level fertilizer sale data were from
Statistics Canada (STATCAN 2016). Unique applica-
tion rates for individual crops were based on regional
N and P fertilizer application rate information from
USDA Economic Research Service (USDA-ERS 2016)
and Canadian Field Print Initiative (2017). Manure
amounts were based on livestock (dairy, beef, swine,
sheep, goat, chicken, and turkey) counts in each
county from USDA-NASS (USDA-NASS 2016) and

from the Ontario Ministry of Agriculture, Food and
Rural Affairs (OMAFRA 2016). Spatial distribution of
manure application in Canada was provided by OMA-
FRA (Kevin McKague, 2017, personal communica-
tion) as locations (points) of animal farms and field
areas that receive manure from each animal farm
without explicit indication of which field (s).

Tillage practices for subwatersheds in the U.S. and
county/subcounty level for Canada were obtained
from USGS and STATCAN, respectively. The latest
U.S. tillage data were from 2004, but it detailed prac-
tices for each crop type. Canadian data were from
2011, but they did not distinguish among crop types.
Data on the distribution of subsurface (tile) drainage
systems in Canada were from OMAFRA (2016). Tile
drainage information is not available for the U.S., so
we assumed all cropland with poorly drained soils
employed tiles (Kalcic et al. 2015). Tile drainage
installation depth and spacing specification for the
Canadian side of the watershed were recommended
to vary by soil type (Kevin McKague, 2017, personal
communication). As such, tile depths were set at 650,
750, and 950 mm for clayey, silty, and sandy soils,
respectively, with corresponding spacing at 8, 12, and
15 m, respectively. For the U.S. side, a uniform
1,000 mm depth and 20 m spacing were used.

Three reservoirs in the UT region (Fanshawe,
Wildwood, and Pittock) with surface-area (ha)/volume
(ha-m) controls of 262/1,235, 192/796, and 142/266,
respectively, were included in the model. Information
about the physical features of the reservoirs, daily
outflow data, and water quality samples were
obtained from the UTR Conservation Authority web-
site (UTCA 2017) and Mark Helsten (2017, personal
communication). Monthly industrial and municipal
point source (Figure 2) data were collected from EPA
Enforcement and Compliance History (U.S. Environ-
mental Protection Agency 2017) and the Great Lakes
Water Authority — Water Resources Recovery Facil-
ity (GLWA-WRRF) (Majid Khan, Catherine Willey,
personal communication, 2018) for the U.S., and from
Ontario Ministry of Environment and Climate
Change Effluent Monitoring and Effluent Limits Reg-
ulations (https://www.ontario.ca/data/industrial-waste
water-discharges) for Canada.

METHODOLOGY

Data Assimilation

Because this was a binational watershed study, it
was essential to ensure data from the two countries
were harmonized. The U.S. and Canadian LULC data
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have the same resolution but different land-use type
names and identification codes. Because SWAT is
based on U.S. data types, Canadian LULC type
names and identification codes were converted to the
U.S. format (Figure 1). Canadian soil data required
additional calculations and unit conversions to con-
form to U.S.-based SWAT parameters (Table 1).
Although there is some anecdotal evidence Canadian
manure production per animal may be different from
the U.S., we used U.S. values for both.

Model Setup

Using an area threshold based on the DEM and
identification of additional outlet locations to accom-
modate future comparison and/or spatial verification
from smaller subwatersheds models and/or evolving
monitoring efforts, the watershed was divided into
800 subbasins (Figure 2) with an average area of
24 km2. Smaller subbasins were created in predomi-
nantly urban areas to capture their higher variation
in drainage and land-use types, and to potentially
test urban management scenarios in future work at
finer spatial scales. Each subbasin was further
divided into HRUs using predefined field boundaries
as discussed below. The ArcGIS interface, ArcSWAT,
version 2012.10_3.18 was used for setup and
SWAT2012 rev635, as modified by Kalcic et al.
(2016), was used for simulations.

Field Boundaries and Data Processing

LULC, road network, and subbasins were used to
define field boundaries using a combination of the
methods described by Kalcic et al. (2015) and Tesha-
ger et al. (2016). Following Teshager et al. (2016),
LULC and road network data were used as the pri-
mary sources to identify field boundaries. As such,
the watershed was divided into 27,751 “fields” with
an average area of about 69 ha, of which 15,219
(54.8%) are cropland. These fields were assigned
unique soil type identifiers (Kalcic et al. 2015), and
an ArcGIS shapefile that contains the soil identifiers
and LULC for each field was created. The shapefile
was then used to define HRUs in the ArcSWAT model
setup with 0% thresholds for LULC, soil, and slope,
and the 27,751 fields thus became the SWAT HRUs
(Figure 2).

A key advantage of using field boundaries to gener-
ate HRUs is that management practices can be
assigned at a more detailed spatial scale than in
more traditional SWAT models. Crop rotations for
each HRU were estimated by overlaying the 2011–
2015 LULC data layers and extracting the major
cropping systems in each cropland fields. The most
dominant crop rotations involved corn, soybeans, and
winter wheat. In order to maintain a manageable
number of rotations, crop rotations were limited to a
maximum of three years. Tile drainage data and field
boundaries were overlaid to determine fields with tile

FIGURE 2. Subbasins and hydrologic response units (HRUs) along with point source locations in the watershed.
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drainage systems. If the majority of a field was cov-
ered by the tile drainage layer, the field was consid-
ered to have tiles. Canadian fields (HRUs) that
receive manure were determined based on proximity
to animal farm location and total field area receiving
manure from the animal farm.

The field boundaries were also used to distribute
the county level conventional (Cv), conservation (Cs),
and no-till (NT) tillage practices. The type of tillage
practices assigned for a crop field in a county
depended on the proportions of practices (Cv:Cs:NT)
in that county and the cropping system (crop rota-
tion) in the field. Cv tillage practices were assigned
more in fields with intensive corn, single crop, or
nonalternate rotations (e.g., continuous corn). On
the other hand, more conservative tillage practices
(Cs and NT) were assigned more in fields with alter-
nate rotations (e.g., corn–soybeans–winter wheat).
Given this information on field-scale crop rotations
and regional application rates of mineral N and P
for different crops, a similar approach was used to
allocate county/provincial level fertilizer applications
across agricultural HRUs. Corn fields generally
received N and P fertilizer at higher application
rates than winter wheat or soybeans. Corn in con-
tinuous-corn rotation received more mineral fertil-
izer than corn in any other alternate rotations
(Table S1).

The field boundaries were also designed for analy-
sis and display of input and output information
(e.g., distribution of fertilizer/manure application,
flow, phosphorus load, etc.), and to model infield
best management practices (e.g., filter strips,
grassed waterways, drainage management, etc.) at
finer scales.

Calibration and Validation

Calibration and validation were performed at the
outlets of the three U.S. subwatersheds and the three
Canadian subwatersheds (Figure 1). The model simu-
lated 1999–2015, using the first two years as the
warm-up period. Flow was calibrated for 2007–2015
and validated for 2001–2006 at daily, monthly, and
annual time scales. Upon successful flow calibration,
the model was calibrated for TSS loads, followed by
nutrients (TN, NO3, TP, and DRP) at daily time
steps. Since monthly and annual scales were more
relevant for management application and policy
advice, water quality parameters were further
adjusted to also match WRTDS’s monthly and annual
water quality loads.

The significant variation in LULC and land man-
agement across such large watershed was expected to
result in different controlling dynamics, especially
physical drivers. Therefore, during calibration, cer-
tain subbasin and HRU parameters were allowed to
vary across the six major subwatersheds (Tables S3
and S4). We used both manual calibration and
SWATCUP’s SUFI2 (Abbaspour 2015) auto-calibra-
tion procedures. Watershed level parameters were
initially adjusted manually based on experience and
information about local conditions. For example,
parameters that control snow cover were estimated
based on comparisons of observed and simulated
snowfall frequency and snow depth values for the
area. Then, SUFI2 was used to estimate HRU and
subbasin parameter values and to understand their
general direction of change in each major subwater-
shed. Finally, manual calibration was used for all
parameters to improve fit.

TABLE 1. Relationship between Canadian vs. Soil and Water Assessment Tool (SWAT) major soil parameter names and units, and the
changes made.

SWAT soil Canadian soil

Comments EquationsParameter Unit Parameter Unit

SOL_ZMX mm max
(LDEPTH)

cm Converted Unit conversions

SOL_Z mm LDEPTH cm Converted
SOL_AWC mmH2O/mm soil NA NA Calculated SOL_AWC = KP1500-KP33
SOL_K mm/h KSAT cm/h Converted Unit conversions
ROCK % total weight COFRAG % by

volume
Converted

SOL_ALB fraction NA NA Calculated SOL_ALB = 0.4/(0.688*SOL_CBN)
USLE_K 0.013 (t.m2.h)/

(m3.t.cm)
NA NA Calculated Equation from SWAT I/O documentation (Arnold et al. 2012

Page 307)

Notes: NA, parameter not available; SOL_ZMX, max(LDEPTH) = maximum rooting depth of soil; SOL_Z, LDEPTH = depth from soil sur-
face; SOL_AWC, available water capacity of soil; SOL_K, KSAT = saturated hydraulic conductivity; ROCK, COFRAG = rock fragment con-
tent; SOL_ALB, moist soil albedo; USLE_K, soil equation erodibility factor; SOL_CBN, organic carbon content of soil; KP1500, water
retention at 1500 kP; KP33, water retention at 33 kP.
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Model performance was evaluated by comparing
observed and simulated values using three commonly
used statistics for watershed modeling: coefficient of
determination (R2), Nash–Sutcliffe efficiency coeffi-
cient (NSe), and percent bias (PBs).

The NSe is used to assess how good simulated val-
ues fit observations. The NSe values range from 1 to
�∞ with 1 being a perfect 1:1 fit between simulated
and observed values. PBs provides insights on the
tendency of simulations in under- or over-estimating
values, and ranges from �∞ to +∞. A PBs value of
0.0% indicates a perfect match between average sim-
ulated and observed values, and negative and posi-
tive values show under- and over-estimation,
respectively. The R2 values examine how well simu-
lated values are correlated with observations, that is,
follow similar trends; 0.0 indicates no correlation and
1.0 a perfect correlation. According to Moriasi et al.
(2007), monthly simulations with NSe > 0.75 are con-
sidered “very good,” >0.65 and ≤0.75 are “good,” >0.50
and ≤0.65 are “satisfactory,” and values ≤0.50 are
“unsatisfactory” for watershed models. Similarly, val-
ues of |PBs| < 10%, 10%–15%, 15%–25%, and ≥25%
fall into those same categories for flow simulations.
The same categories apply for sediment if |
PBs| < 15%, 15%–30%, 30%–55%, and ≥55% and for
nutrients |PBs| < 25%, 25%–40%, 40%–70%, and
≥70%.

Finally, to evaluate the significance of allowing
parameters to vary among subwatersheds, the final
calibrated flow parameter set for each subwatershed
was assigned uniformly across the entire watershed
and NSe and PBs were compared to those for the
varying parameter case. As a result, six sets of statis-
tics for each subwatershed were compared.

RESULTS AND DISCUSSION

Input Characterization

Using the spatial allocation scheme (HRU bound-
aries), we distributed crop rotations, fertilizer/manure
applications, tile drainage, and tillage practices for
each HRU explicitly (Figure 3) to better represent
actual conditions. With respect to cropping systems,
three-year rotations involving corn (C), soybeans (S),
and winter wheat (W) covered about 43% of the crop-
land area. Distribution of crop rotation types was
similar within each country, with CSW dominating,
followed by CS and then SS (Table 2). However, corn-
only or soybeans-only cropping systems were more
abundant in Canada than the U.S. (Figure 3), and
40% of the Canadian soybean intensive fields were in

the Essex region. Crop rotations for each county and
HUC8/tertiary subwatershed are detailed in Figures
S1 and S2.

Allocation of Cv, Cs, and NT tillage practices (Fig-
ure 3) resulted in about 70% of cropland receiving
alternating practices with either two or three tillage
types (Figure 4). The most dominant tillage practice
was Cs-NT (39.4%) and was mainly in Canada. U.S.
croplands were dominated by Cv-Cs tillage. While
cropping systems that alternate corn–soybeans–win-
ter wheat in a three-year rotation received all three
tillage practices, most of the continuous Cv tillage
practices were assigned for single crop rotations (Fig-
ure 5).

Tile drainage was denser in Essex region, lower
parts of SY and LT, and upper parts of SC and UT
subwatersheds (Figure 3). About 67% of Canadian
and 55% of U.S. agricultural areas were considered
tiled (Table 3). Most of the UT and upper parts of SY
agricultural fields receive manure generated in their
respective counties, whereas few fields in LT and
Essex area received manure. In the U.S., manure
was assumed to be distributed across all agricultural
fields, and because of this and fewer livestock, solid
manure application rates in the U.S. were lower (85–
670 kg/ha for dairy, 8–50 kg/ha for beef, and 1–35 kg/
ha for swine) than in Canada (345–1,082 kg/ha for
dairy, 261–695 kg/ha for beef, and 667–1,556 kg/ha
for swine).

Calibration and Validation

Flow. The model reproduced observed flow hydro-
graphs fairly well (Figure 6). Using Moriasi et al.
(2007) performance criteria, the monthly flow calibra-
tion NSe (Table 4) were judged “very good” for the
ULT, LTR, and SR subwatersheds; “good” for BR and
RR; and “satisfactory” for CR. PBs during calibration
and both NSe and PBs during validation for all six
locations were rated as “very good.” The model also
performed well at daily (NSe > 0.5 except BR, and |
PBs| < 10%) and annual (NSe > 0.65 and |
PBs| < 10%) time scales (Table S5).

As expected, allowing parameters to vary among
subwatersheds provided a better representation of
regional conditions and improved model performance
(Tables S2 and S3). During calibration, some flow
parameter values varied substantially across the
watershed, especially between agricultural- and
urban-dominated subwatersheds (Table S4). Flow
was particularly affected by changes in parameters
for main channel average width (CH_W2) and/or
depth (CH_D) and average slope (CH_S2) in both of
the highly urbanized streams (CR and RR). This
adjustment for urban streams is consistent with the
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fact urbanization not only increases runoff but also
alters routing of flow downstream through changes in
channel dimensions (Booth 1990; Baker et al. 2014).

The calibration also resulted in substantially lower
soil water capacity parameter values (SOL_AWC) in
urbanized areas, consistent with the fact urbaniza-
tion reduces soil permeability, infiltration, and water
holding capacity through soil disturbance, displace-
ment, pore space reduction, low organic matter, and
high surface traffic (Craul 1985; Jim 1998; Yang and
Zhang 2015; Wiesner et al. 2016). For example, the
European Commission Bio Intelligence Serve (2014)

reported changing forest land to urban land could
decrease the maximum soil water content by up to
25%.

Differences in other parameter values, such as
increasing the runoff curve number from the SWAT
default value for moisture condition II (CNII) for the
UT by 10% and the LT by 4% reflected the differ-
ences in slopes between the two regions (~0.12% and
~0.03%, respectively, along the main stream course).

FIGURE 3. HRU-level agricultural management practice model inputs (C, corn; S, soybeans; W, winter wheat; Cv, conventional tillage; Cs,
conservation tillage; NT, no-till).

TABLE 2. Percentages of cropland area covered with the different
types of crop rotations divided between United States (U.S.) and

Canada.

Crop rotation

% Cropland area

Canada U.S. Overall

CC 8.4 1.6 7.1
CS1 25.4 35.5 27.3
SS 13.5 13.1 13.4
CSW2 42.8 45.4 43.3
SW 0.4 0.3 0.4
SSW 9.5 4.1 8.5
Total 100.0 100.0 100.0

1Includes both CS and SC rotations.
2Includes CSW or SWC or WCS rotations.

FIGURE 4. Estimated distribution of tillage practices in U.S. and
Canadian parts of the St. Clair-Detroit River system watershed
(Cont. Cv, continuous Cv; Cont. Cs, continuous Cs; Cont. NT,

continuous NT; Alter., alternating; CDN, Canada).
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These two regions also have different soil drainage
class distributions. While the UT has more well
drained soils, the LT is dominated by poorly drained
soils. As such, SOL_AWC was increased by 10%
above the default value and the soil evaporation com-
pensation factor (ESCO) was set at 0.90 for the LT,
compared to an ESCO value of 0.30, and the default
value for SOL_AWC for the UT. The increase in
SOL_AWC for the LT reflected the higher water hold-
ing capacity of the poorly drained soils. Moreover, the
higher ESCO value for the UT was consistent with
its higher water holding capacity of the soil that com-
pensated for evaporation.

Overall, comparison of the final flow calibration
statistics (Table 4) against statistics from uniform
parameters across the entire watershed (Table S6)
showed the strength of varying parameter values. If,
for example, parameters which were best for UTR
flow conditions were used across the watershed, the
NSe values for CR, BR, and RR would have dropped
by 62%, 11%, and 6%, respectively, and the |PBs| val-
ues for CR, BR, and SR would have increased by
34.3%, 29.2%, and 12.7%, respectively. Similarly, if
best parameter sets for CR flow conditions were used
across the watershed, |PBs| values would have
increased by 25.4%, 19.6%, 13.6%, 12.5%, and 11.9%,
for RR, BR, LTR, UTR, and SR, respectively, and the
NSe values for RR and BR would have dropped by
34% and 14%.

A closer look at the effects of parameter values
from one subwatershed applied to another indicated
that even exchanging parameter sets between urban-
ized subwatershed (CR, RR) reduced fit. For example,
using the CR optimal parameter values for the RR
reduced its NSe and increased its PBs values by
34.3% and 25.4%, respectively. The RR parameter
values had similar effects for the CR. Interestingly,
while parameter values from the agricultural subwa-
tershed (SY) reduced fit for the urbanized river (CR),

the urbanized subwatershed (CL) parameters had
less impact on the agricultural one (SR).

Water Quality. Measured nutrients and sedi-
ment dynamics were also replicated sufficiently (Fig-
ure 7, Table 5, Figures S4–S7). Monthly water
quality calibration and validation statistics were bet-
ter for TP than DRP and better for TN than NO3. All
calibrations and validations were rated as “good” or
better for PBs. Most calibration and validation NSe
values were rated as “good” or “satisfactory.” How-
ever, the phosphorus-related NSe values for UTR cal-
ibration were unsatisfactory, as was the RR
validation, and both calibration and validation for the
BR. Similar to flow, ratings for the major rivers in
agricultural subwatersheds (SR, LTR, and UTR) were
better than river in urbanized subwatersheds (CR
and RR).

Similar to flow, some water quality parameters
vary considerably across subwatersheds (Table S4).
For example, values of initial NO3 concentration in
the soil layer (SOL_NO3) were set to 100 mg N/kg-
soil for UT and SY, whereas values for CL and DT
were 25 and 0 mg N/kg-soil, respectively, perhaps
reflecting differences in soil fertility. The rate con-
stant for in-stream mineralization of organic phos-
phorus to dissolved phosphorus (BC4) was higher for
Canadian rivers (0.28, 0.25, and 0.16 day�1 for SR,
UTR, and LTR, respectively) than for U.S. rivers
(0.018 day�1 for all BR, CR, RR), suggesting poten-
tially higher concentrations of DRP in Canadian
streams. There are also distinct differences in param-
eter values between UT and LT subwatersheds.
Almost all nutrient parameter values were higher for
UT than LT, implying higher initial soil nutrient con-
tent and increased nutrient yields in the UT com-
pared to LT.

FIGURE 5. Estimated relationship between tillage practices and
crop rotations.

TABLE 3. Percentages of agricultural area with tile drainage sys-
tems divided between U.S. and Canada at subwatershed level.

HUC8/tertiary name

Tiled area

% Total area % Agricultural area

SC 37 59
Clinton (CL) 8 46
Detroit (DT) 1 16
Lake SC 5 29
U.S. total 18 55
Upper Thames (UT) 54 62
Lower Thames (LTR) 49 55
Thames total 51 59
Sydenham (SY) 69 77
Essex 58 72
Canada total 58 67
Watershed total 42 64
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Nutrient Load Assessments

Because phosphorus is the primary driver of inter-
est in Lake Erie (Scavia et al. 2014, 2016), we focus
primarily on phosphorus loading.

Annual Average Loads. The DT and the
Thames (UT and LT) subwatershed loads were

similar and together contribute >60% of the TP and
>70% of the DRP loads on an average annual basis
(Table 6). However, about 90% of TP and DRP load
from the DT subwatershed came from point sources,
mainly one waste water treatment plant, whereas
about 90% of the load from the Thames comes from
agriculture. Despite being mainly urban, the CL sub-
watershed load came primarily from nonpoint source

FIGURE 6. Monthly observed and estimated flow time series at each major subwatershed outlet locations for both calibration (2007–2015)
and validation years (2001–2006).

TABLE 4. Monthly flow estimation performance statistics for calibration (2007–2015) and validation (2001–2006) years (R2, coefficient of
determination; NSe, Nash–Sutcliffe efficiency; PBs, percent bias).

Statistics

Monthly statistics for flow calibration (validation) period

Upper Thames River Black River Sydenham River Clinton River Lower Thames River Rouge River

R2 0.84 (0.93) 0.72 (0.76) 0.85 (0.87) 0.63 (0.80) 0.87 (0.92) 0.71 (0.78)
NSe 0.84 (0.93) 0.72 (0.76) 0.85 (0.86) 0.53 (0.75) 0.87 (0.91) 0.70 (0.75)
PBs 0.1 (3.2) 9.2 (�2.9) �1.2 (8.4) �2.7 (1.9) �2.7 (5.4) �1.1 (�8.5)
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runoff, with combined urban and agricultural non-
point sources accounting for 83% and 68% of CL’s TP
and DRP loads, respectively. Moreover, urban non-
point source accounts for about 68% and 75% of CL’s
total nonpoint source TP and DRP loads, respectively.
Phosphorus loads from the SY, the most agricultur-
ally intense subwatershed, accounted for 13% of the
overall watershed’s TP and DRP loads. Among the
six subwatersheds, the SC delivered the lowest loads
(10% and 5% of TP and DRP, respectively). The smal-
ler subwatersheds (Essex and Lake SC; Figure 1)
contributed 4.4% and 0.8% of TP, and 2.5% and 0.5%
of DRP loads, respectively. Even though the Essex
region subwatershed area was about twice that of the
Lake SC subwatershed, it delivered about five times

the phosphorus load due to extensive agriculture and
densely tiled soils.

DRP represented 42% of the TP load overall;
however, it was 52% of the point sources and 37%
of the nonpoint source TP load. While this variation
in the DRP/TP ratio did not seem to be correlated
with the composition of LULC, there were clear dif-
ferences among different sources. The DRP fraction
from U.S. nonpoint sources was much lower than
from Canadian nonpoint sources, likely due to
extensive tile drainage in the Canadian portion. In
contrast, U.S. point sources had higher DRP frac-
tions.

Our annual average TP load estimates were simi-
lar to the WRTDS-based averages reported by Scavia

FIGURE 7. Monthly observed and estimated total phosphorus (TP) time series at the six major subwatershed outlet locations for both
calibration (2007–2015) and validation (2001–2006) periods. MTA, metric ton per annum.
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et al. (2019) because our model was calibrated to
WRTDS estimates (Figure 8). Our estimates were
also similar to Maccoux et al. (2016) for the CR and
BR, somewhat higher for the SR and TR, but consid-
erably lower for the RR. Maccoux et al. (2016) and we
used the same water quality monitoring station for
the RR (Figure 1), but Maccoux et al. considered the
drainage area for the station to be 565 km2, whereas
the actual drainage area for the station was
1,200 km2 (USGS, https://waterdata.usgs.gov/nwis/
nwismap/?site_no=04168550&agency_cd=USGS).
Hence Maccoux et al.’s TP estimations for RR were
overestimated because they overestimated unmoni-
tored loads. Our annual average DRP load estimates
showed similar discrepancies with Maccoux et al.
(2016). Our estimate was much lower for the RR and
much higher for the TR (Figure 11). Other

discrepancies among the three studies could be due
to the lack of more frequent water quality sample
data, inherent differences in structure and assump-
tions of different estimation techniques, and span of
years considered for the studies. For example, Mac-
coux et al. (2016) estimates for 2003–2013 used the
Stratified Beale’s Ratio Estimator (Beale 1962; Dolan
et al. 1981), Scavia et al (2019) estimates for 1998–
2016 used WRTDS, and our estimates for 2001–2015
used SWAT.

In our analysis, annual TP loads increased slightly
for all but CR between 2001 and 2009 and then
decreased through 2015, with the trends more obvi-
ous for rivers in the agriculture dominated areas: SR,
TR, and BR (Figures S3). On average between 2001
and 2009, TP increased by 24.7 metric ton per annum
(MTA), 14.8 MTA, 4.1 MTA, and 1.6 MTA for TR, SR,

TABLE 5. Monthly water quality model performance statistics for calibration (2007–2015) and validation (2001–2006) years.CL

Statistics

Monthly statistics for water quality calibration(validation)

UT Black SY CL LT Rouge

TP R2 0.54 (0.63) 0.54 (0.59) 0.75 (0.68) 0.64 (0.55) 0.62 (0.75) 0.73 (0.42)
NSe 0.48 (0.59) 0.29 (0.25) 0.73 (0.62) 0.64 ((0.54) 0.59 (0.70) 0.71 (0.10)
PBs 22.6 (9.7) �25.6 (�29.1) 5.9 (6.3) 5.6 (4.8) 18.0 (9.6) �5.0 (�4.8)

DRP R2 0.44 ((0.59) 0.48 (0.50) 0.64 (0.57) 0.57 (0.51) 0.55 (0.65) 0.71 (0.49)
NSe 0.42 (0.52) 0.26 (0.21) 0.53 (0.52) 0.51 (0.46) 0.52 (0.58) 0.70 (0.05)
PBs 27.8 (12.1) �28.7 (�35.2) �6.3 (�8.2) 9.6 (7.8) 21.5 (10.9) 25.1 (14.8)

TN R2 0.61 (0.65) 0.52 (0.55) 0.72 (0.65) 0.55 (0.54) 0.59 (0.66) 0.64 (0.53)
NSe 0.54 (0.57) 0.27 (0.32) 0.70 (0.61) 0.54 (0.52) 0.57 (0.62) 0.61 (0.40)
PBs 7.8 (13.9) 36.4 (42.9) 17.9 (23.4) �15.8 (�14.6) �8.0 (8.6) �5.2 (�11.4)

NO3 R2 0.55 (0.52) 0.49 (0.47) 0.56 (0.52) 0.48 (0.48) 0.58 (0.66) 0.63 (0.42)
NSe 0.53 (0.49) 0.25 (0.27) 0.54 (0.47) 0.44 (0.42) 0.53 (0.55) 0.44 (0.21)
PBs 15.6 (14.2) �24.7 (�31.1) 5.9 (6.3) �27.3 (�23.4) �3.0 (13.6) �15.1 (�24.8)

TSS R2 0.66 (0.77) 0.61 (0.62) 0.73 (0.67) 0.57 (0.63) 0.67 (0.70) 0.61 (0.68)
NSe 0.59 (0.62) 0.49 (0.52) 0.57 (0.55) 0.47 (0.57) 0.60 (0.65) 0.58 (0.60)
PBs �7.5 (�2.9) �15.6 (�9.9) 14.3 (11.6) �16.5 (�12.4) �12.0 (�7.9) �14.0 (�18.4)

Notes: PBs and NSe ratings: bold = “unsatisfactory.”
TN, total nitrogen; NO3, nitrate; TSS, total suspended sediment.

TABLE 6. Average TP and DRP loads in MTA from both point sources (PS) and nonpoint sources (NPS) for each subwatershed.

HUC8/tertiary watershed name

Total PS Total NPS Total Load

Drainage Area (km2)TP DRP TP DRP TP DRP

SC 28 15 150 21 177 36 3,025
CL 33 18 158 39 191 57 1,969
DT 492 257 55 30 547 287 1,594
Lake SC 5 3 9 1 14 4 575
U.S. total 558 293 372 91 929 384 7,163
SY 26 12 201 83 227 95 3,508
Thames 51 24 472 224 523 248 5,827
Essex 6 3 71 16 77 19 1,098
Canada total 83 39 744 323 827 362 10,433
Watershed total1 641 332 1,116 414 1,756 746 17,596

1This does not include Lake SC and other small unaccounted areas along SC and DT connecting channels.
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Black, and RR, respectively. The decreases in TP
between 2010 and 2015 were of 42.2 MTA, 23.7 MTA,
8.9 MTA, and 4.0 MTA, respectively. DRP followed
similar trends, especially for the three rivers in agri-
cultural subwatersheds, but to a lesser degree than

TP, with DRP increases of 8.6 MTA, 4.4 MTA, 1.1
MTA, and 0.8 MTA, and decreases of 20.0 MTA, 9.7
MTA, 2.5 MTA, and 1.1 MTA for the same time inter-
vals and river orders. Similar trends have been
reported for the Maumee River (Baker et al. 2014),
another major P contributor to Lake Erie. In most
cases, these trends were reflecting changes in flow
(Figures S3) but flow alone could not explain the
trend for the TR and SR where flow was relatively
constant between 2001 and 2005. It appears, in those
cases, agricultural practices that provide access to
more nutrient (e.g., high fertilizer applications) and
facilitate nutrient movement into streams (e.g., tile
drainage systems) are also responsible for these
trends.

Spatial Distribution of Yields — Subwater-
shed Scale. Examining subwatershed and HRU
yields provide information potentially useful for tar-
geting management actions to the highest source
areas. While the average annual TP loads from the
DT and Thames subwatersheds were similar
(Table 6), TP yields (3.43 and 0.90 kg/ha, respec-
tively), and DRP yields (1.80 and 0.43 kg/ha, respec-
tively) differ considerably due to the difference in
drainage areas. In addition, the Thames delivered
much more phosphorus from nonpoint sources
(0.81 kg TP/ha and 0.38 kg DRP/ha) than the DT
subwatershed (0.35 kg TP/ha and 0.19 kg DRP/ha)
(Figure 9). The Thames and CL subwatersheds had
similar overall TP yields; however, DRP yield was
higher for the Thames. The SY and SC subwater-
sheds had comparable TP yields but the SY produces
much higher DRP per hectare. Overall, the TP yield
from the U.S. was about 60% higher than that from
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FIGURE 8. Comparisons of average annual phosphorus load esti-
mations of TP (top), and dissolved reactive phosphorus (DRP, bot-
tom), for each major subwatershed. The DT subwatershed loads in
this figure do not include the Great Lakes Water Authority’s waste
water treatment point source loads.

FIGURE 9. Average nonpoint (left) and point source (right) TP and DRP yields at the outlet of each subwatershed (dashed horizontal line
shows watershed average values).
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Canada. However, Canadian nonpoint source TP and
DRP yields were 40% and 140% higher than the U.S.,
and the U.S. point source yields were nine times and
ten times higher than Canada for TP and DRP,
respectively.

These subwatershed-specific yields of total, point,
and nonpoint sources (Figure 9) can be useful for
developing load reduction strategies. For example,
while the overall TP yield from DT subwatershed was
about four times that of Thames; most of the yield
from the DT subwatershed was from point sources.
Comparing nonpoint source yields, on the other hand,
showed the Thames subwatershed yield was about
twice that of the DT. Thus, in exploring management
options at this scale, more attention should be placed
on point sources in the DT subwatershed and non-
point source for agricultural areas of Thames subwa-
tershed.

Spatial Distribution of Nonpoint Source
Yields — Subbasin and HRU Scales. While eval-
uating yields at the subwatershed scale was useful
for higher level strategies, assessments at subbasin
(24 km2) and HRU (field) scales enabled the potential
targeting of management practices. Average HRU-
level TP yields were 1.38, 1.10, 0.78, 0.53, 0.96, and
0.63 kg/ha for UT, LT, SY, DT, CL, and SC subwater-
sheds respectively. Average DRP yields are 0.69,
0.50, 0.33, 0.36, 0.32, and 0.12 kg/ha, respectively.
The median HRU-level yields for TP and DRP were
lower than the average values (Figure 10). This indi-
cated regional average values were skewed by very
high yielding areas across the watershed which in
turn implied the presence of a good opportunity to
focus management practices on certain areas to
reduce the majority of nutrient loading from the
watershed.

FIGURE 10. Distributions of HRU-level nonpoint source TP and DRP yields for each subwatershed. Dots indicate average yield values.
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Spatial patterns of nonpoint P yields at the HRU
(field) and subbasin levels (Figure 11) provided fur-
ther insight into potential areas of focus for non-
point source reduction. High nonpoint source DRP
yields spread relatively evenly across the Canadian
watershed; whereas some of the highest TP yields
were found in the upper parts of SY and Thames
subwatersheds. DRP yields from the U.S. subwater-
sheds were distinctly lower than the Canadian coun-
terparts; however, certain nonagricultural areas in
the U.S. (lower parts of SC, upper parts of CL, and
some places in DT subwatershed) appeared to have
high yields as well. The higher DRP yields from
Canadian subwatersheds could be attributed to
higher tile drainage density, higher proportion of
cropland, and higher fertilizer application rates. For
example, inorganic P application rates ranged from
22.8 to 44.8 kg/ha, 7.8 to 24.4 kg/ha, and 7.4 to
13.7 kg/ha for corn, winter wheat, and soybeans,
respectively, in Canada. These values were 5.9–
10.9 kg/ha, 5.7–10.1 kg/ha, and 4.8–7.8 kg/ha in the
U.S. Similarly, manure application rates were higher
in Canadian agricultural areas (see “Input Charac-
terization” section). The Canadian tile drainage

system was also about twice as dense as in the U.S.
(see “Management Data Layers” section). As a
result, Canadian portions of the watershed had
higher sources of DRP (inorganic fertilizer or man-
ure) and a system that facilitates its movement
(denser drainage tile system).

The distribution of P yields suggested U.S. agricul-
tural areas had relatively low TP and DRP yields.
For example, while the northern part of the CL sub-
watershed was agricultural, the higher P yields from
that subwatershed were actually from nonagricul-
tural areas in the central and west portions of the
subwatershed. Similarly, yields from the agricultural
areas in the northern part of the SC subwatershed
were smaller than those from the nonagricultural
areas. Most of the high phosphorus yielding areas in
CL, for example, were urban areas located in a rela-
tively higher slope region of the subwatershed. More-
over, the major point source contribution of the
watershed came from the DT subwatershed (Table 6).
These underscored the need to focus on Canadian
agricultural runoff reduction strategies and both U.S.
point source management and urban runoff reduction
strategies.

FIGURE 11. (a) HRU-level (top) and subbasin-level (bottom) distributions of nonpoint source TP (left) and DRP (right) yields.
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CONCLUSION

We integrated and harmonized U.S. and Cana-
dian datasets, including crop rotations, fertilizer/ma-
nure applications, tillage practices, and tile
drainage systems; structured a SWAT model at
finer resolution (field-scale) than ever done before
for a 19,000 km2 watershed; and calibrated and val-
idated it at daily, monthly, and yearly time scales
at six locations. While some input data (e.g., crop
rotations) were constructed from a 30 9 30 m grid
cell data, others (e.g., fertilizer application, tillage
practice, manure generated, etc.) were available at
county or provincial level. Hence, a great deal effort
was invested in allocating model inputs from the
lower spatial resolution to the field scale. Such dis-
tribution of model inputs not only improved model
estimates at stream mouths but also provided more
confidence in assessing flow and nutrient estimates
at field level.

In most cases, a very good fit to flow measure-
ments and good fit to water quality load estimates
were achieved using manual and automatic calibra-
tion techniques at monthly time scales. It was evi-
dent from the calibration and validation processes
that allowing some key parameters to vary across
subwatersheds improved model performance and the
variations were consistent with different subwater-
shed characteristics.

Annual phosphorus loads increased between 2001
and 2009 and decreased afterward, with the trend
strongest in agricultural areas. Phosphorus yields
were highest in Canadian agricultural areas and the
U.S. watershed was dominated by point sources, pri-
marily from Great Lakes Water Authority treatment
facility (Table 6 and Figure 8). Field-scale analysis
used to identify areas within the Canadian agricul-
tural and U.S. urban landscapes with relatively high
P yield from nonpoint sources point to where agricul-
tural and urban management practices should be
focused.

The main limitations of this study are the lack of
some input data at the modeled scale and the rela-
tively low number of water quality observations for
calibration and validation. These limitations
increased uncertainties in water quality calibration
and validation results, and outputs at the field scale.
More spatially explicit input data for nutrient inputs
(fertilizer and manure application rates, soil nutrient
content, etc.), agricultural practices (tillage, tile drai-
nage, cover crop, filter strip in agricultural fields),
and water quality observations would increase confi-
dence of representations of nutrient and sediment
estimates at both the field scale and stream mouths.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article:
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