
A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Mathematical Logic Quarterly, 7 August 2019

Parametric Presburger arithmetic: complexity of counting and
quantifier elimination

Tristram Bogart1, John Goodrick1∗, Danny Nguyen2, and Kevin Woods3

1 Departamento de Matemáticas, Universidad de Los Andes, Carrera 1 No. 18a 10, 111711 Bogotá, Colombia
2 Department of Mathematics, University of Michigan, Ann Arbor, 530 Church Street, Ann Arbor, MI 48109-

1043, United States of America
3 Department of Mathematics, Oberlin College, 10 N. Professor St., Oberlin, OH 44074, United States of

America

Received 16 October 2018, accepted 16 May 2019
Published online XXXX

We consider an expansion of Presburger arithmetic which allows multiplication by k parameters t1, . . . , tk. A
formula in this language defines a parametric set St ⊆ Zd as t varies in Zk, and we examine the counting
function |St| as a function of t. For a single parameter, it is known that |St| can be expressed as an eventual
quasi-polynomial (there is a period m such that, for sufficiently large t, the function is polynomial on each
of the residue classes mod m). We show that such a nice expression is impossible with 2 or more parameters.
Indeed (assuming P 6= NP) we construct a parametric set St1,t2 such that |St1,t2 | is not even polynomial-time
computable on input (t1, t2). In contrast, for parametric sets St ⊆ Zd with arbitrarily many parameters, defined
in a similar language without the ordering relation, we show that |St| is always polynomial-time computable in
the size of t, and in fact can be represented using the gcd and similar functions.

Copyright line will be provided by the publisher

1 Introduction

We study the difficulty of counting points in parametric sets of the form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Θt(x,y)}. (1)

Here t = (t1, . . . , tk) are the parameters, x = (x1, . . . , xd) are the free variables, and y = (y1, . . . , ym) are the
quantified variables, all ranging over Z; Qi ∈ {∀,∃} are the quantifiers; and Θt(x,y) is a Boolean combination,
in disjunctive normal form, of linear inequalities in x,y with coefficients in Z[t]. That is,

Θt(x,y) =
[
A1(t) · (x,y)T ≤ b1(t)

]
∨ . . . ∨

[
A`(t) · (x,y)T ≤ b`(t)

]
, (2)

where each Ai(t) is a ri × (d + m) matrix, each bi(t) is a length ri column vector, all with entries in Z[t], and
the concatenation (x,y) of the x and y variables is treated as a row vector.1 If there are k parameters t1, . . . , tk,
we say that the family of sets {St : t ∈ Zk} is a k-parametric Presburger family. A general expression of the
type

Φt(x) = Q1y1 Q2y2 . . . Qmym Θt(x,y)

with Θt(x,y) as in (1) is called a formula in k-parametric Presburger Arithmetic (often abbreviated as k-
parametric PA). Classic Presburger arithmetic corresponds to k = 0.

Question 1.1 Given a k-parametric Presburger family defined by St = {x ∈ Zd : Φt(x)}, under what
conditions on the formula Φt is the counting function |St| a “nice” function of t?

∗ Corresponding author; e-mail: jr.goodrick427@uniandes.edu.co
1 By a simple trick, we do not need to worry about negations ¬(λ1x1 + . . . + λd+mym ≤ c) of basic inequalities, since these are

equivalent to strict inequalities “. . . > c,” which in turn are equivalent to non-strict inequalities “. . . ≥ c+1” since we are working over the
integers.

Copyright line will be provided by the publisher

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting,
typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please
cite this article as doi: 10.1002/malq.201800068

https://doi.org/10.1002/malq.201800068
https://doi.org/10.1002/malq.201800068

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

2 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

Of course, “nice” is a vague qualifier, so let us start with some nice examples. We shall assume that the
parameters ti are nonnegative in the following examples, which simplifies the number of cases:

Example 1.2 If we define St1,t2 = {x ∈ Z : x ≥ 0 ∧ t1x ≤ t2}, then |St1,t2 | = bt2/t1c+ 1.

Example 1.3 The set St1,t2 =
{

(x1, x2) ∈ Z2 : x1, x2 ≥ 0 ∧ t1x1 + t2x2 = t1t2
}

consists of the integer
points on a line segment with endpoints (t2, 0) and (0, t1), and so |St1,t2 | = gcd(t1, t2) + 1.

Example 1.4 If St1,t2 = {(x1, x2) ∈ Z2 : x1, x2 ≥ 0 ∧ x1 + x2 = t1 ∧ 2x1 + x2 ≤ t2}, then the equality
forces x2 = t1 − x1 (which is only valid if x1 ≤ t1) and substituting into the inequality shows that

|St1,t2 | = |{x1 ∈ Z : 0 ≤ x1 ≤ min(t1, t2 − t1)}|

=

t1 + 1 if 2t1 ≤ t2,
t2 − t1 + 1 if t1 ≤ t2 < 2t1,

0 if t2 < t1.

Example 1.5 If St = {x ∈ Z : ∃y ∈ Z, x, y ≥ 0 ∧ 2x+ 2y + 2 = t}, then

|St| =
{
t/2 if t even, t ≥ 2,

0 if t odd.

We are seeing many types of “nice” functions in these examples, and the question is now how to generalize.
In fact, Example 1.5 generalizes to any family in 1-parametic Presburger arithmetic [3], as described in the next
section.

1.1 1-parametric Presburger arithmetic

In the case of a single parameter t, our perspective means studying families {St : t ∈ Z} of subsets of Zd of the
form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Θt(x,y)},

where Θt(x,y) is exactly as in (2) except that the entries of the Ais and the bis come from the univariate
polynomial ring Z[t]. The study of such 1-parametric PA families was proposed by Woods in [14]. These
families were further analyzed in [3], in which the main result is that they exhibit quasi-polynomial behavior:

A function g : Z → Z is a quasi-polynomial if there exists a period m and polynomials f0, . . . , fm−1 ∈ Q[t]
such that g(t) = fi(t), for t ≡ i mod m. A function g : Z → Z is an eventual quasi-polynomial, abbreviated
EQP, if it agrees with a quasi-polynomial for sufficiently large |t|. Example 1.5 is a family where |St| is an EQP.

Theorem 1.6 (Bogart, Goodrick, & Woods; [3]) Let {St : t ∈ Z} be a 1-parametric PA family. There exists
an EQP g : Z → N such that, if St has finite cardinality, then g(t) = |St|. The set of t such that St has finite
cardinality is eventually periodic.

In [3], the parameter t takes values in N instead of Z. However, one can see that the same proofs and conclu-
sions also hold when t ranges over Z.

There are several other forms of quasi-polynomial behavior that 1-parametric PA families exhibit (such as
possessing EQP Skolem functions; cf. [3]). Here we focus on the cardinality, |St|. We hope the reader agrees
that EQPs are relatively “nice” functions.

1.2 k-parametric Presburger arithmetic

Let us restate our main definition:
Definition 1.7 A k-parametric PA family is a collection {St : t = (t1, . . . , tk) ∈ Zk} of subsets of Zd of the

form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Θt(x,y)}, (3)

where now Θt(x,y) is a Boolean combination of linear inequalities with coefficients in Z[t].

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 3

A k-parametric PA formula Φt is an expression “Q1y1 Q2y2 . . . Qmym Θt(x,y)” as above, or any logically
equivalent first-order formula in the language L = {+, 0, 1,≤, λp(t) : p ∈ Z[t]} with a function symbols for +,
unary function symbols λp(t) for multiplication by each polynomial p(t) ∈ Z[t], constant symbols for 0 and 1,
and a relation symbol for ≤.

Abusing the notation, we also denote the parametric family {St : t ∈ Zk} just by St when the dimension k is
clear.

Examples 1.2, 1.3, & 1.4 show that k-parametric PA families, with k ≥ 2, can have nice counting functions,
|St|. Will they always? We despair of defining “nice” precisely, but we can at least provide a necessary condition:
for a fixed family St, if |St| is to qualify as a nice function, there must at least be a polynomial-time algorithm
that takes as input t ∈ Zk and outputs |St|.

Question 1.8 Given a k-parametric Presburger family defined by St = {x ∈ Zd : Φt(x)}, under what
conditions on the (fixed) formula Φt is the counting function |St| polynomial-time computable, taking as input
the values of the parameters t?

Note that we define polynomial-time computation in the usual computer-science sense: the number of steps
of the algorithm must be polynomial in the input size of t (that is, the number of bits to encode t into binary),
which is k+

∑
i log2|ti|. E.g., the Euclidean algorithm is polynomial-time: it computes gcd(t1, t2) in number of

arithmetic operations bounded by a degree 1 polynomial in 2 + log2 t1 + log2 t2.
The functions |St| from Examples 1.2 through 1.5 are all polynomial-time computable. From Theorem 1.6

and the observation that EQPs are polynomial-time computable, we immediately obtain an answer to Question
1.8 in the case of a single parameter t:

Corollary 1.9 Let St be any fixed 1-parametric PA family. Then there are polynomial time algorithms to:

(i) check if |St| =∞,

(ii) compute |St| if |St| <∞.

The main goal of this paper is to construct a fixed 2-parametric PA family {St1,t2 : (t1, t2) ∈ Z2} for which
there is no polynomial-time algorithm computing |St| (assuming P 6= NP). Therefore, while we cannot say
with precision what a nice function should be like, we can say that this particular counting function |St| is not
nice. Furthermore, this implies that certain classes of functions (polynomials, gcds, floor functions, modular
reductions,. . .) are not expressive enough to capture |St|, even for a very simple-looking St. This contrasts with
the 1-parameter case, where |St| is always an EQP and hence polynomial-time computable.

Definition 1.7 is a generalization of classical Presburger arithmetic (PA), in which a formula Φ is given only
with explicit integer coefficients and constants (Ai and bi) without any parameters t. PA is decidable, meaning
there is an algorithm to decide the truth of any given well-formed sentence in it. Moreover, PA has full quantifier
elimination in an expanded language with predicates for divisibility by each fixed integer. This important logical
fact permits an algorithm to actually count the cardinality of any set definable by a PA formula Φ with an arbitrary
number of quantifiers and inequalities, although with an unpractical triply exponential complexity in the length
of Φ (cf. [11]). The complexity of PA is itself a fundamental topic in the study of decidable logical theories and
their complexities (cf. [6, 8]).

Returning to k-parametric PA, for a fixed formula Φt, given any value a ∈ Zk for t, we can substitute it into Φt

to get a formula Φa in PA. By the above paragraph, the parametric counting problem for (1) is always computable.
Moreover, the form of the resulting formula Φa, especially its number of quantifiers and inequalities, stays the
same for different values a of t. So we can hope that the complexity of computing |St| (for a fixed family St) is
much lower than that of counting solutions to a general PA formula (when the formula is not fixed, but instead
given as input to the algorithm). To reiterate, it is critical in our analysis that the formula Φt be fixed throughout,
and we look for an efficient algorithm with t as the only input.

1.3 Summary of results

Our main result is that if P 6= NP (technically, we only need the weaker assumption that #P 6= FP), then there
exists a 2-parametric PA family St such that |St| is not polynomial-time computable; in fact, such a family exists
with limited alternation of quantifiers. First we recall the Σn and Πn hierarchies of first-order formulas based on
the number of quantifier alternations.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

4 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

A k-parametric PA formula Φt(x) is in Σ1 (Π1) if it is logically equivalent to one of the form

Q1y1 Q2y2 . . . Qmym Θt(x,y)

in which every quantifier Qi is ∃ (every Qi is ∀), and Θt(x,y) is a Boolean combination of linear inequalities
with coefficients in Z[t]. Inductively, a k-parametric PA formula Φt(x) is in Σn+1 (Πn+1) if it is equivalent to
one of the form

Q1y1 Q2y2 . . . Qmym Φ′t(x,y)

in which every Qi is ∃ (∀) and Φ′t(x,y) is a formula in Πn (Σn).
Theorem 1.10 Assume P 6= NP. There exists a 2-parametric Σ2 PA family St1,t2 for which |St1,t2 | is always

finite but cannot be expressed as a polynomial time evaluable function in t1 and t2.
Two corollaries are:
Corollary 1.11 There is a 2-parametric family St1,t2 such that the set of (t1, t2) ∈ Z2 for which |St1,t2 | is

positive cannot be described using polynomial-time relations in t1, t2.
Corollary 1.12 Any extension of 2-parametric PA with only polynomial-time computable predicates cannot

have full quantifier elimination.

1.4 Structure of the rest of the paper

We shall present what amount to two different proofs of Theorem 1.10 in the following two sections. In each
case, we leverage the main result of Nguyen and Pak [10] which yields a 3-parametric Σ2 PA formula, and then
show how this can be reduced to a 2-parametric Σ2 PA formula whose points are equally “hard” to count (modulo
polynomial-time reductions). The first reduction we present, in § 2, uses a trick due to Glivický and Pudlák [7] to
encode multiplication by three different integers using multiplication by only two integers, and this reduction has
the advantage of not increasing the number of free variables in the formula. Next, in § 3 we present a more general
counting-reduction technique which is less ad hoc and reduces any k-parametric PA formula to a 2-parametric
PA formula with the same number of quantifier alternations; the idea here is a little more transparent than in § 2,
but it has the disadvantage of introducing many more new free and quantified variables to the formula, so we
consider that it is interesting to present both reductions.

In § 4 we consider a variant of Question 1.8 in which there is no order relation in our language; that is, we can
only express linear equations but not linear inequalities. Quantifier-free formulas in this language define finite
unions of lattice translates. This setting was studied in detail from a model-theoretic perspective by van den Dries
and Holly [13], and we apply their results to show that, in contrast to Theorem 1.10, the counting functions in the
unordered setting can be computed in polynomial time, regardless of the number of parameters and of quantifier
alternations. Indeed, these functions can be expressed using gcd and related functions.

Finally, in § 5 we discuss the optimality of Theorem 1.10 by explaining what happens when we weaken or
modify some of the hypotheses.

2 Proof of Theorem 1.10 and its corollaries

In what follows, it will be convenient to allow k-parametric PA formulas in which the quantifiers are not neces-
sarily outside the scope of all Boolean operations, but these are always logically equivalent to expressions as in
(3); e.g.,

∃y1 [Θt(x, y1)] ∧ ∃y1 [Θ′t(x, y1)]

is equivalent to

∃y1 ∃y2 [Θt(x, y1) ∧Θ′t(x, y2)] .

In [10], certain subclasses of classical PA formulas, called short PA formulas, were investigated. The PA for-
mulas in each such subclass are allowed to have only a bounded number of variables, quantifiers and inequalities

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 5

C

(q, p)

y2
y1

= p
q

y2 = g1 = ⌊p/q⌋

y2

y1
O (1, 0)

Figure 1. The (bold) sail C below the line y2/y1 = p/q.Fig. 1 The (bold) sail C below the line y2/y1 = p/q.

(atomic formulas). The main problem was to classify the complexity (of counting and decision) for those short
PA subclasses. It was proved that a simple subclass with only 5 variables, 2 quantifier alternations and 10 inequal-
ities is NP-complete to decide, and also #P-complete to count. Combined with the positive results in [1,2], this
settled the last open subcase of classical PA complexity problems. The main reduction in [10] started with the
following NP-complete problem:

Given an interval2 [µ, ν] ⊂ Z and n arithmetic progressions APi =
AP(gi, hi, ei) := {gi, gi + ei, . . . , gi + hiei}, with 1 ≤ µ ≤ ν, gi, hi, ei ∈ Z,
hi ≥ 1, decide if there exists some z ∈ [µ, ν]\⋃n

i=1 APi.
(AP-COVER)

In other words, the problem asks whether there is some element in the interval [µ, ν] not covered by the given
arithmetic progressions. The problem is clearly invariant under a translation of both [µ, ν] and the APi’s, so we
can assume µ = 1. Also without affecting the complexity, we can assume that g1 = ν, h1 = 1, e1 = 0, i.e.,
AP1 = {ν}. The main argument in [10] uses continued fractions to construct an integer M and a rational number
p/q such that the best approximations of p/q, in the terminology of continued fractions, encode

⋃n
i=1 APi modulo

M . The main point is that p/q should satisfy bp/qc = g1 = ν, so that [µ, ν] = [1, p/q], and the formula

Φp,q,M (z) = 1 ≤ z ≤ p/q ∧ ∃y y2 ≡ z (mod M) ∧ bp/qc ≤ y2 < p ∧ qy2 < py1 ∧

∀x ¬
{
py1 − qy2 ≥ px1 − qx2 ≥ 0

y2 > x2 > 0

}
(4)

satisfies the property

{z ∈ Z : Φp,q,M (z)} = [µ, ν] ∩ (
n⋃

i=1

APi). (5)

Thus, the original AP-COVER/instance is not satisfied if and only if |Sp,q,M | = |[µ, ν]| = bp/qc. We emphasize
that p, q,M can be computed in polynomial time from µ, ν, gi, hi, ei. The meaning behind this formula can be
explained as follows.

In Figure 1, the line y2/y1 = p/q divides the positive orthant into two parts. The integer hull of the points
strictly below this line and above the horizontal axis form a polyhedron, whose boundary is the (bold) convex
polygonal curve C, starting at (1, 0) and ending at (q, p). Denote by Ci the i-th edge of C above the (dotted)
horizontal line y2 = g1 = bp/qc. Then for every 1 ≤ i ≤ n we have APi = {y2 mod M : (y1, y2) ∈ Ci}, and
thus

⋃n
i=1 APi = {y2 mod M : (y1, y2) ∈ C, y2 ≥ g1}.

In (4), we express z ∈ [µ, ν] ∩
(⋃n

i=1 APi

)
as z ≡ y2 (mod M) for some (y1, y2) with bp/qc ≤ y2 < p and

(y1, y2) ∈ C.3 By a basic property of continued fractions (cf., e.g, [9]), the condition (y1, y2) ∈ C is equivalent

3 The curve C includes (p, q) in [10], but not here. This small difference is not very significant as one can easily check.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

6 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

to saying that qy2 < py1, and there is no other integer point (x1, x2) with y2 > x2 > 0 such that x2/x1
approximates p/q better than y2/y1. This last condition is expressed by the ∀x . . . clause in Φp,q,M .

A hardness result for 3-parameter PA immediately follows.
Proposition 2.1 Assume P 6= NP. There exists a 3-parametric Σ2 PA family Sp,q,M such that |Sp,q,M | is

always finite but cannot be expressed as a polynomial-time evaluable function in p, q, and M .

P r o o f. We can clear the integer denominators in (4) by cross multiplications. The condition y2 ≡ z (mod M)
can be expressed with existential quantifiers. Thus we obtain a 3-parametric Σ2 PA formula Φp,q,M , which defines
a family Sp,q,M . The set of satisfying values z is finite by 1 ≤ z ≤ p/q. Now assume |Sp,q,M | is a polynomial-
time evaluable function f(p, q,M). Then given any AP-COVER instance, we can compute p, q,M in polynomial
time from the APi’s, and then evaluate f(p, q,M) in polynomial time to check whether f(p, q,M) = bp/qc.
This contradicts P 6= NP.

It remains to reduce the three parameters p, q,M to two. To do this, we shall adapt a trick of Glivický
and Pudlák [7]. Their context is slightly different from ours in that they use nonstandard integers rather than
parameters that range over Z, and that their results involve computability rather than complexity. However their
key idea and its proof apply in our context. The two parameters that will be involved are

t1 = pM, t2 = pqM2 +M. (6)

For convenience, we shall assume for the rest of this section that all the parameters in our formulas (t1, t2, p, q,
and M) only take nonnegative integer values. Although in other parts of this paper the parameters are assumed
to range over Z, this restriction does not affect the hardness results we are proving here.

Proposition 2.2 (Glivický & Pudlák; [7, §3.2]) For 0 ≤ j < p, the three multiplications j 7→ pMj, j 7→
qMj, j 7→Mj can be defined by using just two multiplications j 7→ t1j and j 7→ t2j.

P r o o f. By definition, we have t1j = pMj for all j, so it remains to define the multiplications by qMj and
Mj for 0 ≤ j < p. By the division algorithm, for every j ≥ 0 we can uniquely write (pqM2+M)j = (pM)r+s,
where 0 ≤ r and 0 ≤ s < pM . If 0 ≤ j < p, then s = Mj (mod pM) = Mj and we can then solve to obtain
r = qMj. Thus for 0 ≤ j < p, the formula

t2j = t1r + s ∧ 0 ≤ r ∧ 0 ≤ s < t1 (Divt1,t2(j, r, s))

is satisfied by the triple (j, qMj,Mj). Furthermore, for such j this formula cannot be satisfied by any other
values of the second and third arguments.

We now prove some additional capabilities of the parameters t1 = pM , t2 = pqM2 +M that will be required
in order to transform the entire formula (4) into a formula in t1 and t2 alone.

Lemma 2.3 The congruence relation modulo M is definable using just the multiplications by t1 and t2.

P r o o f. Let Cong-Mt1,t2
(b, c, w1, w2) be the formula

b− c− t1w1 − t2w2 = 0.

Since gcd(t1, t2) = M , the condition b ≡ c (mod M) is expressed as ∃w1∃w2 Cong-Mt1,t2
(b, c, w1, w2).

Lemma 2.4 The constant p is definable using just the multiplications by t1 and t2.

P r o o f. Since t2/t1 = qM + 1/p, p is the smallest positive integer v such that t1|t2v. Since t2p/t1 =
t2/M = pqM + 1, we can express that a pair of variables u, v satisfy (u, v) = (pqM + 1, p) by the formula

u > 0 ∧ t2v = t1u ∧ ∀v′, u′ 0 < v′ < v → t2v
′ 6= t1u

′

which we denote by Equal-pt1,t2(v, u).

Lemma 2.5 Suppose p, q, and M are positive integers such that p/q /∈ Z. If t1 = pM and t2 = pqM2 +M
then bt21/t2c = bp/qc.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 7

P r o o f. First, we have t21/t2 = p2M2/(pqM2 + M) = p/(q + 1/pM) < p/q, so bt21/t2c ≤ bp/qc. On the
other hand, since p/q /∈ Z we have p ≥ bp/qcq + 1 > bp/qcq + bp/qc/pM = bp/qc(q + 1/pM). This means
t21/t2 = p/(q + 1/pM) > bp/qc, and thus bt21/t2c = bp/qc.

P r o o f o f T h e o r e m 1.10. In order to apply Proposition 2.2, we must first multiply byM every inequality
in (4) that involves multiplication by p or q. This works because multiplications by p, q, and M appear separately
in (4). After doing so and clearing some denominators, we obtain the equivalent formula

Φ′p,q,M (z) = ∃y1, y2 :

0 < z ≤ p/q (7)

∧ y2 ≡ z (mod pM) (8)

∧ p/q < y2 + 1 ≤ p (9)
∧ qMy2 < pMy1 (10)

∧ ∀x1, x2 ¬
{
pMy1 − qMy2 ≥ pMx1 − qMx2 ≥ 0

y2 > x2 > 0

}
(11)

Here (9) is equivalent to bp/qc ≤ y2 < p in (4) because y2 ∈ Z. Now consider the formula

Ψt1,t2(z) = ∃y1, y2, w1, w2, u, v, r, s :

0 < t2z ≤ t21 (7′)

∧ Cong-Mt1,t2
(y2, z, w1, w2) (8′)

∧ Equal-pt1,t2
(u, v) ∧ t21 < t2(y2 + 1) ≤ t2v (9′)

∧ Divt1,t2(y2, r, s) ∧ r < t1y1 (10′)

∧ ∀x1, x2
(
0 < x2 < y2 ∧ Divt1,t2(x2, r

′, s′)
)

→ ¬
(
0 ≤ t1x1 − r′ ≤ t1y1 − r

)
.

(11′)

It only remains to show that Φ′p,q,M (z) and Ψt1,t2(z) are equivalent. We have the following:
“(7)⇔ (7′)” follows by rounding down both equations to the nearest integer and applying Lemma 2.5. “(8)⇔

(8′)” is Lemma 2.3. In order to prove “(9)⇔ (9′)”, we can again apply Lemma 2.5 to replace p/q in (9) by t21/t2,
since every other quantity in (9) is an integer. By Lemma 2.4, the formula Equal-pt1,t2

(v, u) fixes the value of v
to be p, so we can now replace p by v to obtain 9′.

We now show that (9) implies “(10) ⇔ (10′)”: By (9), we have 0 ≤ y2 < p, so by Proposition 2.2, the
condition Divt1,t2(y2, r, s) fixes the value of r to be qMy2. Here we modify (10) by replacing qMy2 by r and
pMy1 by t1y1 to obtain (10′).

Finally, we use (10) to show “(11) ⇔ (11′)”: Using (10′) which we have already shown to be equivalent to
(10), we can replace qMy2 by r. Using the definition of t1, we can also replace pMy1 by ty1 and pMx1 by t1x1.
So (11) is equivalent to

∀x1, x2 ¬
{
ty1 − r ≥ t1x1 − qMx2 ≥ 0

y2 > x2 > 0

}
,

or in another form

∀x1, x2 0 < x2 < y2 → ¬[ty1 − r ≥ t1x1 − qMx2 ≥ 0].

Since the hypothesis x2 < y2 along with y2 < p from (9) implies x2 < p, we can (by Proposition 2.2) insert
the condition Divt1,t2(x2, r

′, s′) into the hypothesis to fix r′ equal to qMx2. Accordingly substituting in r′ for
qMx2, we obtain (11′).

So Φp,q,M ,Φ
′
p,q,M and Ψt1,t2 are all equivalent. This finishes the proof of Theorem 1.10.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

8 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

P r o o f o f C o r o l l a r i e s 1.12 & 1.11. The formula Ψ′t1,t2(z) := (0 < z ≤ t21/t2) ∧ ¬Ψt1,t2(z) is sat-
isfied only by those z ∈ [µ, ν]\⋃n

i=1 APi (cf. (5)). This formula defines a 2-parametric family St1,t2 . So the
condition |St1,t2 | > 0, which is equivalent to AP-COVER, cannot be expressed using polynomial-time relations
in t1 and t2. Similarly, any expansion of parametric PA with polynomial-time predicates cannot have full quan-
tifier elimination. For otherwise we can apply it to the sentence ∃z Ψ′t1,t2(z) and get an equivalent Boolean
combination of polynomial-time relations in t1, t2.

3 Counting-universality of 2-parametric Presburger formulas

Consider a k-parametric PA formula:

Φu(x) = Q1y1 Q2y2 . . . Qmym Θu(x,y). (12)

Here u ∈ Zk are the k scalar parameters, x ∈ Zd are the free variables, y = (y1, . . . , ym) ∈ Zm are the
quantified variables, Q1, . . . Qm ∈ {∀,∃} are the quantifiers, and Θu(x,y) is a Boolean combination of linear
inequalities in x,y with coefficients and constants from Z[u]. This formula defines a parametric family Su.

We say that a k1-parametric family Su counting-reduces to an k2-parametric family S′t if there exists f =
(f1, . . . , fk2) : Zk1 → Zk2 with fi ∈ Z[u] such that for every u ∈ Zk1 we have that |Su| = ∞ implies
|S′f(u)| =∞ and |Su| <∞ implies |Su| = |S′f(u)|.

Theorem 3.1 Every k-parametric PA family Su counting-reduces to another 2-parametric PA family Fs,t with
the same number of alternations. In other words, 2-parametric PA families are counting-universal.

First we prove the following lemma.
Lemma 3.2 For every formula Φu of the form (12), there exist µ, µ′, ν1, . . . , νm ∈ Z[u] such that for every

value u ∈ Zk we have:

(i) |Su| =∞ if and only if

∃x
[
µ(u) ≤ ‖x‖∞ ≤ µ′(u) ∧ Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y)

]

(ii) If |Su| <∞ then for every x ∈ Zd, we have

Su(x) = true ⇐⇒ ‖x‖∞ ≤ µ(u) ∧ Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y).

Here ‖·‖∞ is the `∞– norm. So µ(u) ≤ ‖x‖∞ stands for
∨d

i=1

(
xi ≤ −µ(u) ∨ µ(u) ≤ xi

)
and ‖x‖∞ ≤ µ′(u)

stands for
∧d

i=1

(
− µ′(u) ≤ xi ≤ µ′(u)

)
. Each restricted quantifier Qi

(
|yi| ≤ νi(u)

)
means exits/for all yi in

the interval [−νi(u), νi(u)].4

P r o o f. Consider a usual, non-parametric PA formula:

Φ(x) = Q1y1 Q2y2 . . . Qmym Θ(x,y), x ∈ Zn,

which defines some set S ⊆ Zn. Recall Cooper’s quantifier elimination procedure for Presburger arithmetic
(cf. [11]). Applying it to Φ(x), we obtain an equivalent quantifier free formula Φ′(x), which may contain some
extra divisibility predicates. By [11, Theorem 2], after eliminating all m quantifiers from Φ, we obtain the
following bounds:

c′ ≤ c4
m

, s′ ≤ s(4c)
4m

, a′ ≤ a4
m

s(4c)
4m

,

where c is the number of distinct integers that appeared as coefficients or divisors in Φ, s is the largest absolute
value of all integers that appeared in Φ (coefficients + divisors + constants), a is the total number of atomic

4 Here we understand that µ, µ′, νi have positive values for all u ∈ Zk .

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 9

formulas in Φ (inequalities + divisibilities), and c′, s′, a′ are the corresponding quantities for Φ′. Now assume
c,m and n are fixed. Then we have

c′ ≤ const, s′ ≤ sconst, and a′ ≤ aconstsconst,

where const = const(c,m) is fixed. So in this case Φ′ has at most a fixed number of coefficients and divisors.
Denote by D the common multiple of all divisors in Φ′. We have D ≤ sconst. Let L = 〈De1, . . . , Den〉 be the

lattice of Zn consisting of x ∈ Zn whose coordinates are all divisible by D. Fix some particular coset C of L and
restrict x to C. Then in Φ′(x), all divisor predicates have fixed values (either true or false) as x varies over C. So
over C, the formula Φ′(x) is just a Boolean combination of linear inequalities in x, which represents a disjoint
union of some rational polyhedra in Rn. Each such polyhedron P can be described by a system of fixed length,
because there are only at most c′ different coefficients for the x variables. The integers in the system are also
bounded by sconst. We consider P ∩ C. By the fundamental theorem of Integer Programming5 (cf. [12, Theorems
16.4 and 7.1]), we have:

P ∩ C = conv(v1, . . . , vp) + Z+〈w1, . . . , wq〉
for some vi, wj ∈ Zn with ‖vi‖∞, ‖wj‖∞ < sconst′ . Here const′ = const′(c,m, n) is fixed. From this, it is easy
to see that there is const′′ = const′′(c,m, n) such that for every polyhedron P in the disjoint union, we have:

|P ∩ C| =∞ ⇐⇒ there is x ∈ P ∩ C with sconst′′ < ‖x‖∞ < s2const′′ ,

|P ∩ C| <∞ =⇒ P ∩ C ⊆ [−sconst′′ , sconst′′]n.

Since this holds for every coset C of L, we conclude that there is const0 = const0(c,m, n) such that:

|S| =∞ ⇐⇒ ∃x with sconst0 < ‖x‖∞ < s2const0 and Φ′(x) = true (13)

|S| <∞ =⇒ ∀x
(
Φ′(x) = true → ‖x‖∞ ≤ sconst0

)
. (14)

This gives us a bound for x. Now for every x with ‖x‖∞ ≤ sconst0 , by the same argument, it is enough to
decide the (substituted) sentence Φ(x) over those y1 with |y1| ≤ sconst1 . In other words, for every such value for
x, we may replace Q1y1 by Q1

(
|y1| ≤ sconst1

)
in Φ(x) to obtain a new formula Φ1(x), which is equivalent to the

original formula Φ(x). Working inwards, we can likewise bound |y2| by sconst2 , |y3| by sconst3 , etc. Therefore,
in case |S| < ∞, the whole formula Φ is equivalent to one with bounded quantifiers on all yi. Also by (13), we
have |S| =∞ if and only if some sconst0 < ‖x‖∞ < s2const0 satisfies it. For x in this range, we can again bound
y1, y2, etc., accordingly by some other powers of s. Note that we can bound each yi by a common larger power
of s for both cases (13) and (14).

In a k-parametric PA formula Φu(x), we considerm,n and c to be fixed. Since all coefficients and constants of
Φu are in Z[u], we can bound s by some polynomial in u. Thus, every sconst is also bounded by some polynomial
in u. This proves Lemma 3.2.

In the above application of Cooper’s elimination, if only m,n are fixed but not c, then we no longer have
the bound s′ ≤ sconst. Instead, we would have c′, log s′ ≤ poly(c, log s). A bound of this type is important
for showing that the decision problem for classical PA with a bounded number of variables falls within the
Polynomial Hierarchy (cf., e.g., [8]). However, it would not be strong enough for our argument, which crucially
needs log s′ = O(log s).

From Lemma 3.2, it is easy to see that Su counting-reduces to the family S̃u defined by the following formula
Φ̃u(x, x̃):

Φ̃u(x, x̃) =

[
x̃ ≥ 0 ∧ Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)

µ(u) ≤ ‖x‖∞ ≤ µ′(u) ∧ Θu(x,y)
]
∨

[
x̃ = 0 ∧ Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)

‖x‖∞ ≤ µ(u) ∧ Θu(x,y)
]
.

5 We are rescaling L to Z before applying this bound.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

10 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

Here the bounds on ‖x‖∞ are moved to after the quantifiers on yi without changing the meaning. The dummy
variable x̃ is used to make sure that |S̃u| =∞ in the first case.

P r o o f o f T h e o r e m 3.1. We show that S̃u counting-reduces to a 2-parameter family Fs,t, defined by a
new formula Ψs,t. First, we list all the different scalar terms that appear in Φ̃u, either as coefficients or constants
(including all µ, µ′, νi), as δ0(u), . . . , δr(u). Now suppose we need to multiply some z ∈ N by δ0(u), . . . , δr(u)
and also know that

−t/2 < δ0(u)z, . . . , δr(u)z < t/2 (15)

for some t ∈ Z. The following base-t concatenation, which is similar to (6), can be used. Essentially, we encode
the “multi”-product (δ0(u)z, . . . , δr(u)z) as a single product:

δ0(u)z + t δ1(u)z + . . . + tr δr(u)z = (δ0(u) + t δ1(u) + · · ·+ trδr(u)) z.

In other words, if s = δ0(u) + t δ1(u) + · · ·+ trδr(u) and:

s z = z0 + t z1 + · · ·+ trzr ∧ t/2 < z0, . . . , zr < −t/2, (Divs,t(z, z0, . . . , zr))

then we must have z0 = δ0(u)z, . . . , zr = δr(u)z. Indeed, by subtracting we get z0 − δ0(u)z ≡ 0 (mod t),
which implies z0 = δ0(u)z because −t/2 < z0, δ0(u)z < t/2. The same argument applies to other zi.

Observe that in Φ̃u, all variables x and y are bounded by polynomials in u. Hence, we can pick η(u) ∈ Z[u]
so that for every value u ∈ Zk, the condition (15) is always satisfied when t = η(u) and z is either the constant
1 or any of the possible values of the x,y variables. Our reduction map f : Zk → Z2 can now be defined by
letting t = η(u) and s = δ0(u) + t δ1(u) + · · · + trδr(u). Now we can define Ψs,t(x, x̃) from Φ̃u(x, x̃). We
need (m+ d+ 1)(r+ 1) extra variables w = (wij)1≤i≤d, 0≤j≤r, w′ = (w′ij)1≤i≤m, 0≤j≤r, and v = (vj)0≤j≤r.
Assuming the last quantifier Qm in Φ̃u is ∃, we insert

Divs,t(xi, wi0, . . . , wir) ∧
m∧

i=1

Divs,t(yi, w′i0, . . . , w
′
ir) ∧ Divs,t(1, v0, . . . , vr)] (?)

right before Θu(x,y), i.e., replace Θu(x,y) by (?) ∧ Θu(x,y). Then in Φ̃u we replace every term δj(u)xi by
wij , every term δj(u)yi by w′ij and every term δj(u) by vj . Now Φ̃u becomes the desired Ψs,t. In case Qm = ∀,
we insert:

∀w,w′,v
d∨

i=1

¬Divs,t(xi, wi0, . . . , wir) ∨

m∨

i=1

¬Divs,t(yi, w
′
i0, . . . , w

′
ir) ∨ ¬Divs,t(1, v0, . . . , vr)

(??)

right before Θu(x,y), i.e., replace Θu(x,y) by (??) ∨ Θu(x,y). Again, replace every term δj(u)xi by wij ,
every term δj(u)yi by w′ij and every term δj(u) by vj . This gives Ψs,t.

Note that Ψs,t still has the form
[
. . .
]
∨
[
. . .
]

with each disjunct containing m alternations Q1 . . . Qm. This
formula is equivalent to a formula in prenex normal form with m quantifier alternations, so we are done.

In case Su is defined by a quantifier-free formula, i.e., m = 0, we only need to insert (?), without the ∃
quantifiers, before Θu(x,y). This is because Divs,t(z, z0, . . . , zr) uniquely determines z0, . . . , zr in z. So in
this case Su also counting-reduces to a quantifier-free Fs,t, although the latter has many more free variables.
Thus, the study of integer point counting functions on k-parametric polyhedra reduces to the case of 2-parametric
polyhedra in higher dimensions.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 11

4 Counting points in parametric unordered Presburger families in polyno-
mial time

In this section, we consider the reduct of multi-parametric Presburger arithmetic to the language without ordering,
so that basic quantifier-free formulas are equivalent to Boolean combinations of equations of the form f1(t)x1 +
. . .+ fn(t) = g(t), where t = (t1, . . . , tk) is a tuple of parameters and f1, . . . , fm, g ∈ Z[t]. As always, we are
allowed to quantify over the variables xi but not over the parameters t. Note that if there is no parameter t, this
would correspond to studying the first-order logic of the additive group (Z; +). More precisely:

A k-parametric unordered PA family is a collection {St : t = (t1, . . . , tk) ∈ Zk} of subsets of Zd which can
be defined by an equation of the form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Θt(x,y)},

where the Qi ∈ {∀,∃} are quantifiers for variables yi ranging over Z and Θt(x,y) is a Boolean combination
of linear equations with coefficients in Z[t]. E.g., (x1 = 0) ∧ ∃x2∃x3 (x2t1 + x3t2 = 1) defines a 2-parametric
unordered PA family {St ⊆ Z : t ∈ Z2} such that St = {0} if gcd(t1, t2) = 1 and St = ∅ otherwise.

Theorem 4.1 Suppose that St ⊆ Zd is a k-parametric unordered PA family. Then

1. there is a polynomial-time algorithm to decide whether St is nonempty;

2. there is a polynomial-time algorithm on input t which decides whether or not St is finite or infinite; and

3. there is a polynomial-time evaluable function g : Zk → N such that whenever St is finite, g(t) = |St|.

In fact, the proof of Theorem 4.1 will show that the decision algorithms for (1) and (2) rely upon only a few
basic, concrete number-theoretic operations on t, such as gcd and a couple of related functions.

To prove Theorem 4.1, we need to recall some notation from [13]. To eliminate quantifiers, they work in a
two-sorted language L2 in which variables xi and parameters in t are assigned to objects of distinct domains,
called the group sort and the ring sort, respectively. For our purposes, the group sort and the ring sort are two
disjoint copies of Z. The variables xi and yi will always range over values in the group sort, and the parameters
ti will always range over values in the scalar sort. In other words, we can think of the parameters t1, . . . , tk
as “typed variables” ranging over a domain of possible parameter values in the scalar sort (a copy of Z), and
x1, x2, . . . as variables of a distinct type ranging over values in the group sort (which is a different copy of Z),
and the parameters ti act upon the group sort by scalar multiplication.

The language L2 consists of the following nonlogical symbols (in addition to equality): within the scalar sort,
constant symbols for 0 and 1, a unary operation− for negation, ring operations + and ·, and four additional binary
operations g, α, β, and γ (whose interpretation is explained below); within the group sort, a constant symbol for
0, a unary operation − for negation, and a symbol + for addition; a binary operation · such that s · x is a value in
the group sort whenever s is a value in the scalar sort and x is a value in the group sort, denoting multiplication
by s in the usual sense; and a binary relation symbol | to be interpreted such that whenever s is in the scalar sort
and x is in the group sort,

s|x⇔ ∃y (s · y = x) .

The binary operations g, α, β, and γ between values in the scalar sort are interpreted so that g(r, s) = gcd(r, s)
and the following axioms hold for all values r, s in the scalar sort:

r = γ(r, s) · g(r, s),

1 = α(r, s) · γ(r, s) + β(r, s) · γ(s, r).

We shall use the following fact, proved in [13]:
Theorem 4.2 Any formula ϕt(x) in k-parametric unordered Presburger arithmetic is logically equivalent to

a quantifier-free L2-formula ψ(x, t): that is, with the natural interpretations of the symbols from L2 given above,

|= ∀x ∈ Zd ∀t ∈ Zk (ϕt(x)↔ ψ(x, t)) ,

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

12 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

where ψ(x, t) is a Boolean combination of equations s1(x, t) = s2(x, t) and divisibility relations s3(t)|s1(x, t),
where s1(x, t), s2(x, t), and s3(t) are L2-terms, i.e., expressions built up using only the operations in L2 and
the displayed parameters and variables.

P r o o f o f T h e o r e m 4.1. Say ϕt(x) defines a k-parametric unordered PA family in Zd.
Note that (1) follows almost immediately from quantifier elimination: by Theorem 4.2, the formula ∃xϕt(x)

is equivalent to a quantifier-free L2-formula ψ(t) in only the scalar sort of t, which is a Boolean combination of
equations and divisibility relations | in the k parameters using ring operations and the functions g, α, β, and γ,
but all of these operations are polynomial-time computable.

For (2), let us assume (by Theorem 4.2) that ϕt(x) is a quantifier-free L2-formula, and that ϕt(x) is in
disjunctive normal form:

ϕt(x) =
m∨

i=1

ϑi(x, t),

where each ϑi(x, t) is a conjunction of literals.6

Claim 4.3 For any fixed value of t ∈ Zk and of i ∈ {1, . . . ,m}, if Si := {x ∈ Zd : |= ϑi(x, t)}, then |Si| is
either 0, 1, or∞.

P r o o f. By rearranging terms, we may assume that all atomic L2-formulas in ϑi(x, t) have the form

r | s(x, t) (A)

or

s(x, t) = 0, (B)

where s(x, t) = r0 +
∑d

i=1 ri · xi and r0, r1, . . . , rn, and r are terms in the scalar sort. The terms r and ri
may involve the parameters t and the operations g, α, β, γ, but the details of this are irrelevant since t has a fixed
value.

Write ϑi(x, t) = ϑA(x, t)∧ϑB(x, t) where ϑA(x, t) is the conjunctions of all literals of type (A) and ϑB(x, t)
is the conjunction of all literals of type (B).

First we consider the atomic formulas of type (A). Each one defines some coset of a finite-index subgroup of
Zd, and so the negation of such a formula defines a finite union of cosets of finite-index subgroups. Since the
intersection of finitely many finite-index subgroups is of finite index, there is a single subgroup H ≤ Zd such
that [Zd : H] <∞ and ϑA(x, t) defines a Boolean combination of cosets of H .

Now consider the atomic formulas of type (B). We decompose ϑB(x, t) further as ϑB(x, t) = ϑ+B(x, t) ∧
ϑ−B(x, t) where ϑ+B(x, t) is the conjunction of all positive (non-negated) atomic formulas of type (B) and ϑ−B(x, t)

is the conjunction of all negative literals of type (B). Note that the set of solutions to ϑ+B(x, t) is of the form
(~v + S) ∩ Zd where S is a vector subspace of Rd and ~v ∈ Zd.

Finally, suppose that there are at least two distinct elements x1, x2 ∈ Zd in Si, and to finish the proof of the
Claim we shall show that Si has infinitely many elements. In particular, both x1 and x2 are solutions to ϑA(x, t),
so there are cosets C1, C2 ofH such that x1 ∈ C1, x2 ∈ C2, and any element x ∈ C1∪C2 satisfies ϑA(x, t). Let
L ⊆ Rd be the line passing through x1 and x2, and observe that since x1 and x2 satisfy ϑ+B(x, t) (which defines
the intersection of an affine subspace with Zd), any other element of L ∩ Zd will also satisfy ϑ+B(x, t).

For any j ∈ Z, let x(j) := x1 + j · (x2 − x1) and X := {j ∈ Z : x(j) satisfies ϑi(x, t)}. Since H is a
finite-index subgroup of Zd, adding successive copies of the element (x2 − x1) to x1 causes the x(j) to cycle
through cosets of H , and the set of j for which ϑA(x(j), t) is true is infinite (and periodic). As observed in the
previous paragraph, every x(j) lies on the line L, and hence ϑ+B(x(j), t) is always true, and we need only worry
about the truth of ϑ−B(x(j), t). Now ϑ−B(x(j), t) is true whenever x(j) avoids every one of a finite number of
affine subspaces A1, . . . , A` of Rd, but given that L is a line which contains some points satisfying the formula
ϑ−B(x, t), each Ai can only intersect L in at most one point. Therefore X is infinite, as we wanted.

6 A literal is an atomic L2-formula, i.e., one containing no logical operations ∧,∨ or ¬, or the negation of an atomic formula.

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

mlq header will be provided by the publisher 13

The Claim shows that we can define the set of values of the parameter t for which any given ϑi(x, t) has
infinitely many solutions (for x) by the formula

∃x1∃x2 (x1 6= x2 ∧ ϑi(x1, t) ∧ ϑi(x2, t)) ,

and as before this is equivalent to a quantifier-free L2-formula ψi(t) whose truth can be decided by a polynomial-
time algorithm in t. Finally, our original formula

∨m
i=1 ϑi(x, t) has infinitely many solutions just in case any one

of the formulas ϑi(x, t) does, establishing (2).
By the argument above, for any k-parametric unordered PA family St, there is a finite partition Zk = X1 ∪

. . .∪X` which is definable by quantifier-free L2-formulas in t and such that |St| is constant as t varies over any
of the sets Xi. Since deciding whether t ∈ Xi is polynomial-time decidable, this establishes (3).

5 Summary of complexity results

To conclude, we summarize the complexity results which suggest that Theorem 1.10 may be the best we could
hope for: weakening or changing various assumptions results in problems which can be resolved in polynomial
time, or else (with unrestricted multiplication) have no algorithmic solutions at all.

Recall that Theorem 1.10 states that, if P 6= NP, then there is a Σ2 PA family St with two parameters
t = (t1, t2) such that |St| cannot be computed in polynomial time given t as input.

However:
(i) If we allow only a single parameter t ∈ N (or t ∈ Z), then for any PA family St, we can compute |St| in

polynomial time, even if St has complexity Σ2 or higher, by Corollary 1.9.
(ii) If St is a k-parametric PA family defined by a formula of complexity Π1 or Σ1, then [2] implies that

there is a polynomial time algorithm to evaluate |St|, for any finite number k of parameters. If St is defined by a
quantifier-free formula, then a polynomial-time algorithm was earlier given in [1].

(iii) If St is any k-parametric PA family defined by a formula with no inequalities (only equations), as in § 4,
then |St| can be evaluated in polynomial time, regardless of the number of quantifier alternations in the defining
formula or the number of parameters.

(iv) In k-parametric PA formulas, we allow a restricted version of multiplication: the non-quantified param-
eters in t can be multiplied by terms containing the variables x and y, but no multiplication between the x and
y variables is allowed. Permitting unrestricted multiplication amongst the x and y variables in a parametric
PA formula would obviously be bad, since the full first-order theory of (N,+, ·) is undecidable (by theorems
of Church and Turing—cf., e.g., [4]). In fact, the Matiyasevich-Robinson-Davis-Putnam theorem [5] states that
there is a single multivariate polynomial p(t, x1, . . . , xd) such that if Φt(x1, . . . , xd) is the formula expressing
p(t, x1, . . . , xd) = 0, then the set of t ∈ N for which Φt(x1, . . . , xd) defines a nonempty subset of Zd is not
computable (much less in polynomial time). Note that here we have only a single parameter t, no quantifiers in
the formula Φt, and mere equations rather than inequalities.

(v) On the other hand, if we allow no multiplication, even by parameters (cf. Example 1.4), then |St| will be
computable in polynomial time; in fact, it has a nice form as a piecewise-defined quasi-polynomial [15].

Acknowledgements We thank Igor Pak for interesting conversations and helpful remarks. This work was started when the
first and third authors were participating in the MSRI program Geometric and Topological Combinatorics; we thank MSRI
for their hospitality. The third author was partially supported by the UCLA Dissertation Year Fellowship. The first author
would also like to thank San Francisco State University and the second author would like to thank the City University of New
York for hosting them as visiting researchers.

References
[1] A. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed,

Math. Oper. Res. 19(4), 769–779 (1994).
[2] A. Barvinok and K. Woods, Short rational generating functions for lattice point problems, J. Amer. Math. Soc. 16(4),

957–979 (2003).
[3] T. Bogart, J. Goodrick, and K. Woods, Parametric Presburger arithmetic: logic, combinatorics, and quasi-polynomial

behavior, Discrete Anal. 2017(4) (2017).

Copyright line will be provided by the publisher

A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

14 T. Bogart, J. Goodrick, D. Nguyen, and K. Woods: Parametric Presburger arithmetic

[4] A. Church, An unsolvable problem of elementary number theory, Amer. J. Math. 58, 345–63 (1936).
[5] M. Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Mon. 80(3), 233–269 (1973).
[6] M. J. Fischer and M. O. Rabin, Super-exponential complexity of Presburger arithmetic, in: Complexity of Computa-

tion, Proceedings of a Symposium Held in New York City, April 18–19, 1973, edited by R. M. Karp, SIAM-AMS
Proceedings Vol. 7 (American Mathematical Society, 1974), pp. 27–41.

[7] P. Glivický and P. Pudlák, A wild model of linear arithmetic and discretely ordered modules, Math. Log. Q. 63(6),
501–508 (2017).

[8] E. Grädel, Subclasses of Presburger arithmetic and the polynomial-time hierarchy, Theoret. Comput. Sci. 56(3), 289–
301 (1988).

[9] O. Karpenkov, Geometry of Continued Fractions, Algorithms and Computation in Mathematics Vol. 26 (Springer,
2013).

[10] D. Nguyen and I. Pak, Short Presburger arithmetic is hard, in: Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science, held in Berkeley, California, October 15–17, 2017, edited by C. Ulmans (IEEE
Computer Society, 2017), pp. 37–48.

[11] D. C. Oppen, A 22
2pn

upper bound on the complexity of Presburger arithmetic, J. Comput. System Sci. 16(3), 323–332
(1978).

[12] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Math. (Wiley, 1986).
[13] L. van den Dries and J. Holly, Quantifier elimination for modules with scalar variables, Ann. Pure Appl. Log. 57,

161–179 (1992).
[14] K. Woods, The unreasonable ubiquitousness of quasi-polynomials, Electron. J. Comb. 21(1), P1.44 (2014).
[15] K. Woods, Presburger arithmetic, rational generating functions, and quasi-polynomials, J. Symb. Log. 80(2), 433–449

(2015).

Copyright line will be provided by the publisher

