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Abstract

Performing secondary tasks (or non‐driving‐related tasks) while driving on curved

roads may be risky and unsafe. The purpose of this study was to explore whether

driving safety in situations involving curved roads and secondary tasks can be

evaluated using multiple measures of eye movement. We adopted Markov‐based
transition algorithms (i.e., transition/stationary probabilities, entropy) to quantify

drivers’ dynamic eye movement patterns, in addition to typical static visual measures,

such as frequency and duration of glances. The algorithms were evaluated with data

from an experiment (Jeong & Liu, 2019) involving multiple road curvatures and

stimulus‐response secondary task types. Drivers were more likely to scan only a few

areas of interest with a long duration in sharper curves. Total head‐down glance time

was longer in less sharp curves in the experiment, but the probability of head‐down

glances was higher in sharper curves over the long run. The number of reliable

transitions between areas of interest varied with the secondary task type. The visual

scanning patterns for visually undemanding tasks were as random as those for

visually demanding tasks. Markov‐based measures of dynamic eye movements

provided insights to better understand drivers’ underlying mental processes and

scanning strategies, compared with typical static measures. The presented methods

and results can be useful for in‐vehicle systems design and for further analysis of

visual scanning patterns in the transportation domain.
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1 | INTRODUCTION

Driving is a visually demanding task that requires continuous attention on

multiple objects, including traffic, pedestrians, road signs, and in‐vehicle
elements (Robinson, Erickson, Thurston, & Clark, 1972; Sivak, 1996).

Many studies have investigated driver glance behavior and found that

glance behavior is a key indicator of drivers’ underlying cognitive

processes and can assist in evaluating driving performance and safety

(e.g., Green, 2015; Liang, Lee, & Yekhshatyan, 2012; Victor et al., 2015).

Previous studies have identified and quantified drivers’ glance

behavior using multiple glance measures. Most of these glance

measures have focused on the glance's static targets or areas of

interest (AOIs), such as lead vehicles, rear‐view mirrors, and

roads, and on the frequency and duration of the glances on the

AOIs (e.g., Mourant & Rockwell, 1970; Werneke & Vollrath, 2012).

As researchers became interested in the risk of distracted

driving, attention has been paid to how often or how long

drivers look away from the road (i.e., eyes‐off‐road frequency
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and time). In general, previous distracted driving studies revealed

that the risk of vehicle crashes increases when the drivers take

their eyes off from the road more often and longer (Liang, Horrey,

& Hoffman, 2015; Sodhi, Reimer, & Llamazares, 2002). However,

these static glance measures have a limitation on evaluating

sequences (or transitions) of eye fixation between each AOI and

glance's dynamic characteristics.

Analyzing visual scanning patterns and dynamic characteristics

can help in understanding individuals’ underlying mental processes

and scanning strategies; thus, these analyses can help in minimiz-

ing potential accidents and in designing appropriate human‐
machine interfaces. To date, although there have been many

visual scanning studies using dynamic glance measures (e.g.,

transitions of eye fixation) in aviation (Harris, Glover, & Spady,

1986, Haslbeck & Zhang, 2017, Kang & Landry, 2014, 2015,

Marchitto, Di Stasi, & Cañas, 2012), relatively few studies have

explored drivers’ visual scanning patterns and dynamic character-

istics. Underwood, Chapman, Brocklehurst, Underwood, and

Crundall (2003) identified driver's three scanning patterns (i.e.,

single/two/three‐fixation scanpaths) while driving on different

road types (i.e., rural, suburban and dual‐carriageway). They used

first‐order Markov matrices and the transition probabilities within

each matrix to quantify and compare sequences of eye fixation

between novice and experienced drivers. Bao and Boyle (2009)

investigated age difference in driver's visual scanning at intersec-

tions, by measuring the time proportion of scanning to three areas

(i.e., left, right sides, and rear‐view mirror), and visual entropy rate

as a measure of randomness in visual scanning. In recent research

by Wang, Bao, Du, Ye, & Sayer (2017), drivers’ eye glance patterns

were quantified when drivers were engaged in cell phone‐related
visual‐manual tasks. However, the existing literature is not

sufficient to determine whether driving safety can be evaluated

using both static and dynamic glance measures; moreover, diverse

modalities of the secondary task have not been investigated. To

address these current research gaps, in this study, we adopt both

static and dynamic glance measures to analyze drivers’ glance

behaviors and scanning patterns in a complex driving scenario,

involving curved‐road driving with multimodal secondary tasks, as

an example. In addition, we aim to explore whether driving safety

in the scenarios can be evaluated using the multiple measures of

eye movement.

2 | MULTIPLE MEASURES OF EYE
MOVEMENT

In this study, five eye‐tracking measures (i.e., two static and three

dynamic) were used to identify drivers’ glance behaviors and

scanning patterns.

First, we used two typical static glance measures that suggested by

SAE J2396 (2000) and ISO 15007–1 (2002) to quantify drivers’ glance

behavior: the number of glances and total glance time at each AOI. The

number of glances indicates the count of glances to an AOI during a

certain period. The total glance time was defined as the sum of all

glance durations to an AOI during a certain condition.

Additionally, three dynamic glance measures were used as visual

scanning measures: visual transition probability, visual stationary prob-

ability, and visual entropy. These measures are derived from a simple

Markov‐based transition algorithm, a stochastic process assuming that

each state (in this case, an AOI or a fixation) is dependent only on the

previous state. Markov's process has been used as an eye‐tracking
analytic tool in diverse fields, such as aviation (Allsop & Gray, 2014;

Ellis & Stark, 1986; Itoh, Hayashi, Tsukui, & Saito, 1990),

business marketing (Liechty, Pieters, & Wedel, 2003), art appreciation

(Krejtz et al., 2015), and health care (e.g., Di Stasi et al., 2016), but few in

driving (e.g., Schieber & Gilland, 2008; Underwood et al., 2003).

2.1 | Visual transition probability

The visual transition probability is the probability of eye fixation

movement from one state to another in a single step. Figure 1 shows

two examples of eye glance transitions between three AOIs. Case 1 is

normal, and Case 2 shows the maximum randomness of visual scanning

(or maximum entropy). The arrows indicate the direction of transition

from one AOI to another AOI, and the numbers represent the frequency

of glance transitions between AOIs.

Visual transition probability matrices can be created based on

visual transitions between AOIs, as shown in Table 1.

F IGURE 1 Examples of visual

transitions between three AOIs. AOIs,
areas of interests
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2.2 | Visual stationary probability

This is a method for analyzing the long‐run properties of Markov

chains (Hillier, 2012; Ross, 2014). A typical example of using the

stationary probability would be forecasting weather based on

the patterns of previous days’ weather status, such as predicting

the probability of sunny days over the long run. If the number of

visual transitions is large enough (or close to infinite), all the rows of

the transition matrix will have identical values, so the probability of

eye fixation on each AOI no longer depends on the initial AOI. In

other words, the visual stationary probability can be used to answer

the question, in the long run, what proportion of time will be spent

looking at the specific AOIs?

Suppose we consider the eye glance transition among n AOIs as a

Markov chain having state (meaning the AOI in this study) space

S = {i = 1, 2, …, n} and transition matrix P is:
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The visual stationary probability iπ can be considered as the

probability of total time spent at ithAOI once the chain reaches

the stationary distribution. For example, in this study, IDπ indicates

the probability of time spent at the input device (ID), whereas FRVπ

indicates the probability of time spent at far road view (FRV)

in the long run.

Using the examples in Table 1, 0.4 2π + .1 3π = 1π , 0.3 1π + .9 3π = 2π ,

0.7 1π + .6 2π = 3π ; ∑ =
=

1i i1
3

π thus, 1π = 0.20264, 2π = 0.40969,

3π = 0.38767 (for Case A). 0.5 2π + 0.5 3π = 1π , 0.5 1π + 0.5 3π = 2π ,

0.5 1π + 0.5 2π = 3π ; ∑ =
=

1i i1
3

π thus, 1π = 2π = 3π = 0.333 (for Case B).

That is, the probabilities that eye glance is fixated at the each AOI is

20.2%, 41.0%, 38.8% for Case 1, equally 33.3% at the all AOIs for

Case 2, if the visual scanning patterns continuously repeated.

2.3 | Visual entropy

Visual entropy is a measure to quantify complexity or randomness of

visual scanning between AOIs. It is calculated using the following

equation (Allsop & Gray, 2014; Ellis & Stark, 1986; Krejtz et al., 2015;

Schieber & Gilland, 2008), based upon Shannon's entropy (Shannon &

Weaver, 1998):
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where n is the number of AOIs, ( )p xi is the probability of

glance duration on the ithAOI among all AOIs, and ( | )p y xij i is the

conditional probability of fixating jthAOI based upon a current

fixation on ithAOI.

The visual entropy can be calculated from the values

in the transition probability matrix. Assumed that the

probabilities of time fixating on the each AOI are equal (for simple

calculation, here), or ( )p x1 = ( )p x1 = ( )p x1 = 1/3. Visual entropy = (−1/

3) × (0.3 × ( )log 0.32 + 0.7 × ( )log 0.72 ) + (−1/3) × (0.4 × ( )log 0.42 + 0.6 ×

( )log 0.62 ) + (−1/3) × (0.1 × ( )log 0.12 + 0.9 × ( )log 0.92 ) = 0.77 for Case

1, (−1/3) × (0.5 × ( )log 0.52 + 0.5 × ( )log 0.52 ) × 3 = 1 for Case 2. The

minimum visual entropy is zero when minimum randomness

exists as defined by the eye glances fixated in only single AOI,

whether maximum visual entropy is when the transitions from each

AOI are equally distributed to all other AOIs (Ellis & Stark, 1986).

However, the maximum is depending on the number of AOIs. For

the examples in Table 1, the number of AOIs was three, so the

maximum entropy is 1. However, in the current study, the visual

entropy used in this study is ranging from 0 to 2.58, because 7 AOIs

were used.

3 | EXPERIMENT METHOD

3.1 | Participants

Twenty‐four subjects (16 males and 8 females; age range, 19–31;

M= 22.6, SD = 3.53) participated in this experiment. All participants

held a valid driver's license and experienced an annual average

driving mileage of 24,000 miles. They reported normal or corrected

to normal vision. This research was approved by the Institutional

Review Board at the University of Michigan. Informed consent was

obtained from each participant.

3.2 | Apparatus

The experiment was conducted in a fixed‐base driving simulator,

equipped with a Logitech G27 RT racing wheelset (i.e., a force‐feedback

TABLE 1 Examples of the visual transition probability matrix

Case A Case B

From/To AOI 1 AOI 2 AOI 3 From/To AOI 1 AOI 2 AOI 3

AOI 1 – .3 .7 AOI 1 – .5 .5

AOI 2 .4 – .6 AOI 2 .5 – .5

AOI 3 .1 .9 – AOI 3 .5 .5 –

Abbreviations: AOI, areas of interest.
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steering wheel and accelerator/brake pedals) and a 24‐inch LCD

monitor (HP ZR24w, 1920 × 1200 pixels). Eye movements were

recorded by an eye‐tracker (Gazepoint GP3), positioned between the

monitor and the steering wheel. The accuracy of the eye tracker was

ranging from 0.5° to 1° of visual angle. Both driving and eye tracking

data were collected at a rate of 60Hz. For the secondary tasks while

driving, MIT AgeLab NBack App (Reimer et al., 2014) was installed in a

5.7‐inch touchscreen device (Samsung Galaxy Note 4; 2560 × 1440

pixels) and the device was mounted 12‐inch away from the center of the

steering wheel in the right direction.

Using the Open Racing Car Simulator, eight driving scenarios

were developed, comprising multiple curved rural roads (curvature

radii = 100, 200, 400, and 800m) and transition straight roads (road

length = 300m) between each curved road. The direction of curved

roads was equally designed in both left and right. All driving

scenarios had a different sequence of curvatures and directions

and they were randomly given to the participants. The average

driving time for each scenario was approximately 4.5 min with an

average driving speed of 50–60 km/h.

3.3 | Driving and stimulus‐response tasks

Participants were instructed to control a simulated vehicle as close as

possible to the center of the driving lane. There were no other vehicles

in the driving scenario. While driving, they were asked to perform a

stimulus‐response (S‐R) task using an n‐back application software. The

n‐back task was originally developed as a method to evaluate human's

working memory by receiving a sequence of stimuli and responding to

the one from n‐steps (n = 0, 1, 2, etc.) earlier in the sequence. Of the n‐
back tasks, only the 0‐back task (the easiest level; responding to the

stimulus “just” received, also called “digit repetition task”) was used in

this study as a secondary task, to primarily focus on comparing the

effects of four different S‐R types on glance behavior, rather than

comparing cognitive workload from different type of n‐back levels.

The task contained two different stimulus types (i.e., visual and

auditory) and two different response types (i.e., manual and speech).

The visual stimuli consisted of ten Arabic numerals (i.e., 0–9) and the

auditory stimuli were the corresponding voice sounds of the ten

numerals. Each stimulus was presented every 2.25 s with a 0.75 s gap

between each stimulus. A hundred of visual or auditory stimuli were

presented for 5 min in each session. While driving, participants were

asked to click the button (as the manual response) or repeat aloud (as

the speech response) corresponding to the number that was “just”

heard from the speaker (as the auditory stimulus) or presented on

the display (as the visual stimulus). Before each session, participants

were instructed to respond to each stimulus as accurately and

quickly as possible, but to prioritize the safe driving over than

secondary task performance.

3.4 | Experimental procedure

Upon arrival at the laboratory, all participants were informed

about the purpose and contents of the experiment. After they

conducted a 5 to 10‐min practice drive to become familiar

with both driving and secondary tasks, the calibration for the

eye‐tracking system was conducted. All 24 participants

performed four sessions that each session has each stimulus‐
response task type while driving on all levels of curves.

The sequence of the four sessions was balanced across partici-

pants to mitigate the learning effects of their driving

behaviors with the four different secondary tasks. Note that

different sequence of driving curvatures and directions

were randomly given to the participants in each drive, as

mentioned in the Apparatus section. Each session took ranging

from 5 to 7 min, depending on participants’ driving speed.

Between the sessions, they had a 5‐min break to minimize the

effect of fatigue from the previous to the next session.

For additional details of the experimental tasks and procedure,

see Jeong and Liu (2019).

3.5 | Areas of interest

The definitions of seven AOIs (predetermined areas within the

visual scene) are shown in Figure 2, from left‐up to right‐down,

side scenery view (SSV), rear‐view mirror (RVM), far scenery view

(FSV), far road view (FRV), near road view (NRV), instrument panel

(IP), and input device (ID).

3.6 | Data analysis

In the current study, a 2 × 4 analysis was used, with driving

road curvature (Sharp [curvature radius = 100 m] vs. Moderate

[800 m]; note that only the biggest and smallest curvature

radii were selected to investigate the effect of the road

curvatures on driver eye movement) and the stimulus‐response
task type (auditory‐manual [A‐M], auditory‐speech [A‐S],
visual‐manual [V‐M], and visual‐speech [V‐S]). All eye fixation

data obtained while driving on the moderate curve were

divided by a value of 8 to make the identical condition with the

data while driving on the sharp curve, based on the assumption

that it takes eight times longer while driving on the

moderate curve than the sharp curve. The normality tests for

all dependent variables were done using the Shapiro–Wilk

test. For nonparametric data including the two static glance

measures, visual entropy, and driving speed, the Mann–Whitney

U test (for comparison between the two curvatures) and

Kruskal–Wallis H test (for comparison between the 4 secondary

task types) were conducted. Stationary probability data

were analyzed using the repeated‐measures two‐way analysis of

variance (ANOVA) with 2 curvatures × 4 secondary task types.

The Levene's test for homogeneity of variance was used to

investigate the assumption of homogeneity of variance across

groups. In addition, post hoc tests were performed using Tukey's

honest significant difference to investigate significant differences

among each level of the independent variable. A significant level

was set at α = 0.05.
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4 | RESULTS

4.1 | Number of glances on each AOI

Figure 3 shows the mean number of glances by each AOI and the

secondary task type. The FRV, 39.5% and ID, 31.4% had the highest

percentage of the number of glances.

A Kruskal–Wallis H test showed that there was a statistically

significant difference in the number of glances at FRV between

the different task types, H (3) = 21.73, p < 0.001. Pairwise

comparisons showed A‐S type led to the smaller number of

glances at FRV than other three types of secondary task (in the

sequence of V‐S >V‐M >A‐M >A‐S). For the number of glances at

ID, it also showed a significant difference between the different

task types in the same sequence (H (3) = 71.80, p < 0.001). Post‐
hoc pairwise comparisons revealed that the number of glances at

ID for each type of secondary task differed significantly each

other (all p < 0.05), except between V‐M and A‐M, and between

V‐M and V‐S types.

No difference was found for the number of glances at both FRV

and ID between different curves.

4.2 | Total glance time on each AOI

Figure 4 shows the mean total glance time by each AOI and the

secondary task type. Similar to the number of glances measure, FRV

(61.0%) and ID (24.5%) are the AOIs that accounted for the two

highest portions of total glance time.

A statistically significant difference was revealed between the total

glance time at FRV by different task types (H(3) = 47.02, p < 0.001. Post‐
hoc comparison tests showed that the total glance time at FRV were all

significantly different each other, except V‐M and V‐S types. There was

also a significant difference in the total glance time at ID between the

F IGURE 2 Definitions of AOIs. AOIs,

areas of interests

F IGURE 3 Mean number of glances by
each AOI and the secondary task type.

Error bars represent standard errors of the
mean. AOI, areas of interest
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different task types, H(3) = 80.17, p< 0.001. Pairwise comparisons

showed that the total glance times at ID were also all significantly

different each other, except V‐M and V‐S types.

Mann–Whitney's U test (U = 1770.0, p < 0.001) revealed that

the total glance time at FRV was significantly longer at the

sharp curve ( ̅x = 8.50) than the moderate curve (6.25), as shown

in Figure 5. On the other hand, the total glance time at ID was

longer at the moderate curve (3.10) than the sharp curve (2.53):

U = 2454.5, p < 0.012.

4.3 | Visual scanning patterns based on the
transition probability

Glance transitions and the probabilities by secondary task type and

road curvature are illustrated in Figure 6, for only transitions whose

transition probabilities are equal to and greater than 17% (called

reliable transitions). Note that this threshold of the reliable

transitions is only for the illustration in Figure 6 to avoid its

complexity, but all transitions were analyzed in this study. Moreover,

some AOIs illustrated in Figure 2 (e.g., SSV, IP) were simplified in

Figure 6. In general, drivers showed a fewer number of reliable

transitions on the sharp curve than the moderate curve. Among the

secondary task types, the number of reliable transitions was the

greatest when the V‐S type was used, and the least when the A‐M
type was used.

One of the striking features of the transitions is that while driving

on the sharp curve with the A‐M task, all glances that were fixated in

the rear‐view mirror and the side scenery view transited into the far

road view. The similar feature was also shown while driving on the

sharp curve with the A‐S task, but all fixations from the side scenery

view went to near road view, not far road view.

Drivers showed the dominance of transitions to the far road view

right before and after the eyes‐off‐road fixations (i.e., input device or

instrument panel). This might be because drivers tend to secure a

clear view for safe driving before and after looking at the input

device or instrument panel. The highest probabilities of transitions

between the far road view and the eyes‐off‐road fixations showed

while driving on the sharp curve with the V‐M secondary tasks.

4.4 | Visual entropy

Visual entropy was significantly higher while driving on the

moderate curve than the sharp curve (U = 829.0, p < 0.001), as shown

in Figure 7. However, it was revealed that a nonsignificant effect of

the secondary task type on the entropy (U = 3.05, p < 0.38).

4.5 | Visual stationary probabilities at FVR and ID

The effects of curvedness (sharp vs. moderate) and the type of

secondary tasks (A‐M, A‐S, V‐M, and V‐S) were tested as within‐
subject factors, with respect to the visual stationary probabilities at

two major AOIs, FRV and ID. ANOVA revealed a statistically

significant main effect of curvedness on the mean stationary

probability at the FRV (F(1, 152) = 8.146, p = 0.005, ηp² = .051) and

ID (F(1, 143) = 6.194, p = 0.014, ηp² = 0.042). As shown in Figure 8, the

mean stationary probability at the FRV was significantly higher for

the sharp curve (M = 42.2%, SD = 9.1%) than moderate curve

(M= 38.5%, SD = 6.9%). Similarly, the visual stationary probability at

the ID was significantly higher for the sharp curve (M= 35.1%,

SD= 10.1%) than the moderate curve (M= 31.6%, SD= 10.2%).

Results also showed a significant main effects of task type

on the stationary probability at the FRV (F(3, 152) = 3.467, p = 0.018,

F IGURE 4 Mean total glance time by
each AOI and the secondary task type.
Error bars represent standard errors of the

mean. AOI, areas of interest

F IGURE 5 Mean total glance time at FRV and ID for the sharp

and moderate curves. Error bars represent standard errors of the
mean. FRV, far road view; ID, input device
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ηp² = 0.064) and ID (F(3, 143) = 26.689, p < 0.001, ηp² = .359; see

Figure 9). The mean stationary probabilities at FRV were highest for

the A‐S type (M= 43.8%, SD= 6.3%) and the similarly lowest for the

V‐M (M= 39.1, SD= 8.5%) and V‐S types (M= 38.3%, SD= 9.0%).

Pairwise comparisons with Tukey correction revealed that only the

two differences between A‐S and V‐M, and between A‐S and V‐S
were significant. With respect to the mean stationary probabilities at

the ID, they were highest for the V‐S type (M= 38.4%, SD= 6.8%),

followed by the V‐M type (M = 37.0%, SD= 5.1%), the A‐M
(M = 32.7%, SD= 8.0%), and the A‐S type (M = 20.8%, SD= 13.1%).

Post hoc Tukey's tests revealed that the mean stationary probabil-

ities at the ID for each secondary task type differed significantly from

each other type (all p < 0.05), except between V‐M and A‐M, and

between V‐M and V‐S types.

The analysis showed no significant interaction effect of curved-

ness and secondary task type on the visual stationary probabilities at

both FVR and ID (p > 0.05).

4.6 | Driving speed

Figure 10 represents the distribution of driving speed by road

curvature and secondary task type. The road curvature (p < .001) and

the secondary task type (p < .001) had significant effects on driving

speed. The driving speed was significantly higher in the moderate

curvature (M = 71.1, SD= 8.58) than the sharp curvature (M = 66.6,

SD= 8.64). Post hoc test showed clear significant differences among

the 4 secondary task types: A‐S (M= 72.8, SD= 7.52) > A‐M (M= 71.4,

SD= 7.71) > V‐S (M = 70.1, SD = 8.52) > V‐M (M = 68.0, SD = 10.0).

5 | DISCUSSION

5.1 | Effects of road curvature

On sharper curves, drivers showed longer total glance times at FRV

and a lower number of reliable transitions between AOIs. They also

had lower visual entropy, indicating that drivers on the sharper

curves were likely to spend time monitoring particular areas. In other

words, drivers are more likely to scan only a few areas of interest

with a long duration in sharper curves, which is an unsafe driving

behavior because they could not detect potential visual hazards.

Previous studies revealed that drivers’ visual demand (i.e., the

F IGURE 6 Glance transitions by road curvatures and secondary task types

F IGURE 7 Mean visual entropy for the sharp and moderate

curves in the different secondary task types. Error bars represent
standard errors of the mean

F IGURE 8 Visual stationary probabilities at FRV and ID for the

sharp and moderate curves. Error bars represent standard errors of
the mean. FRV, far road view; ID, input device
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percentage of time spent viewing the road) increases when they

drive on sharper curves (Tsimhoni & Green, 2001; Wooldridge,

Fitzpatrick, Koppa, & Bauer, 2000). The current study supports their

results, as it was found that drivers tend to concentrate their visual

attention more on the road at the sharper curves, probably to

maintain the driving safety, given that the driving speed was

significantly lower at the sharper curves.

Total glance time at ID, indicating total head‐down glance time,

was longer while driving on the moderate curve than the sharp curve.

On the other hand, the visual stationary probability at ID was higher

for the sharper curves, meaning that the probability of head‐down

glances is higher for the sharp curve after enough time has passed for

sequences of driver eye fixation between each AOI reach the

stationary distribution. Since the actual time when driving on the

sharp curve was quite a short period of time (shorter than 30 s at

most), there might not be enough information to determine on which

areas of interest the drivers were most fixated.

5.2 | Effects of secondary task type

It was found that the number of reliable transitions between AOIs

was the greatest when the V‐S type was used, and the least when

the A‐M type was used. The visual stimuli used in the experiment

were Arabic numerals that appeared randomly every 3 s. Drivers’ eye

fixations probably had to move between the input device and the

curved road, potentially causing them to miss appearances

of the stimuli. Thus, it might be difficult for drivers to identify visual

stimuli on the input device while driving on curved roads. On the

other hand, since the buttons on the input device used for the manual

method were in a fixed location, it might be relatively easy for drivers

to locate the buttons, leading to fewer numbers of transitions

between AOIs.

The total glance time at FRV was longest when the A‐S type of

secondary task (the less‐visually demanding task) was performed,

followed by A‐M, V‐S, and V‐M. It was found that this sequence is

consistent with the sequence of driving speed participants drove

during the four sessions. This finding can imply that the driving speed

can be a predictor for drivers’ eye movements, especially for how

long drivers look at the far road view.

A statistical test revealed that the secondary task type has a

significant effect on the number of glances at FRV: the number of

glances at FRV was the smallest when the A‐S type of secondary task

was performed. In other words, while performing relatively less‐visually
demanding tasks (compared with visual or manual tasks), drivers looked

F IGURE 9 Visual stationary probabilities at FRV and ID in the different secondary task types. Error bars represent standard errors of the

mean. FRV, far road view; ID, input device

F IGURE 10 Distribution of driving speed (a) by road curvature and (b) by secondary task type. Horizontal lines represent the mean of speed
for each condition
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at the FRV less frequently. On the other hand, the visual stationary

probabilities at FRV were higher when drivers used A‐S type of tasks

(than V‐M and V‐S types of tasks), meaning that total expected time

spent at FRV is higher for the A‐S type, once sequences of driver eye

fixation between the each AOI reach the stationary distribution. These

inconsistent results might be because drivers in this experiment

were able to secure more spare time spent focusing other places than

the FRV while doing the A‐S task, thus were less focused on looking at

the road in front of them. However, in a long‐term examination of visual

scanning, the probabilities of a glance staying at FRV is higher for the

A‐S type of task, which seems reasonable.

A higher visual entropy indicates higher randomness or higher

visual scanning complexity, being likely to scan more areas with a

shorter period of time in each area (Wang et al., 2017). The analysis

of visual entropy revealed no significant difference among the

4 secondary task types. In other words, no significant difference

among the secondary task's modality type was shown in regard to

how random drivers’ scanning pattern is; specifically, how more or

fewer areas drivers scan, how shorter or longer period of time

drivers’ glance are fixated on each area.

5.3 | Value of markov analysis in visual scanning

Markov analysis can contribute many unique insights into drivers’ glance

behaviors and scanning patterns. Measures of dynamic eye movements,

using the distributions and probabilities of eye fixation and duration, can

provide insights to better understand underlying cognitive processes and

scanning strategies while driving and performing secondary tasks,

compared with conventional eye movement measures, such as the

frequency and duration of fixations on AOIs. First, visual transition

probability can be used as a measure when the transition between two

fixations is more prevalent than other transitions, which typical static

measures cannot inspect. If there is a more dominant transition between

specific AOIs over others, it may indicate that the drivers’ visual attention

shifts due to mental processes relating to their internal expectations and/

or external environment. A greater number of transitions between

particular AOIs likely indicates completion of secondary tasks (i.e.,

internal) and/or driving hazards on curves (i.e., external). Second, visual

entropy can illustrate an individual's visual scanning complexity; how

balanced drivers scan the possible viewing areas of interest during

particular tasks. Entropy can also be used to diagnose an individual's

emotional status, evidenced by pilots’ increased visual entropy when they

have higher cognitive anxiety (Allsop & Gray, 2014). Third, the analysis of

visual stationary probability enables estimation of the proportion of time

spent fixating on specific AOIs in the long run, which is a useful indicator

of driving safety, especially in the long‐run repeated situations.

5.4 | Limitations and suggestions for future
research

We are aware that our research may have two limitations. First, the

effect of curve direction was not considered in this study. Drivers’

glance behavior may vary depending on the direction of curved roads

because the location of the input device was fixed on the right side of

the driver while the roads curved both left and right. This study

focused on eye scanning patterns related to driving safety, thus road

curvature (rather than curve direction) was chosen as an indepen-

dent variable, based upon the literature. For example, Milton and

Mannering (1998) revealed that a decrease in curve radii increased

the frequency in the number of car crashes. Further work needs to be

carried out to investigate whether the curve direction affects the

driver glance behavior. We believe that our research will serve as a

base for future study.

Second, the current study focused little on individual differences,

although visual scanning patterns vary by individuals (Kang & Landry,

2015; Noton & Stark, 1971). While we focused primarily on external

factors (i.e., road curvatures and secondary tasks) that may affect

drivers’ glance behavior, we observed some instances of abnormal

cognitive processes: several participants showed quite a high number

of glances (S22, S23) and long total glance time (S21, S24) at the far

road view when driving on moderate curves while performing speech

tasks (i.e., A‐S and V‐S). Their long total glance time (longer than

100 s) at the far road view may indicate the mind wandering, based

upon the conclusion of Reichle, Reineberg, and Schooler (2010) that

fixation duration is longer while reading mindlessly than while

reading normally. The high number of glances (more than 70 times) at

the far road view may represent frequent eye movements from the

far road view to other areas of interest, and unnecessary visual

attention on the road due to the less‐visually demanding speech

tasks. Future work will explore the individual differences, such as

comparing novice and experienced drivers (e.g., Crundall & Under-

wood, 1998; Pradhan et al., 2005; Underwood et al., 2003) or age

difference (e.g., Bao & Boyle, 2009; Rodrick, Bhise, & Jothi, 2013;

Schieber & Gilland, 2008) while driving on a curved road with

different types of secondary tasks.
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