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Abstract

Context: Model transformations play a fundamental role in Model-Driven En-

gineering (MDE) as they are used to manipulate models and to transform them

between source and target metamodels. However, model transformation pro-

grams lack significant support to maintain good quality which is in contrast to

established programming paradigms such as object-oriented programming. In

order to improve the quality of model transformations, the majority of existing

studies suggest manual support for the developers to execute a number of refac-

toring types on model transformation programs. Other recent studies aimed to

automate the refactoring of model transformation programs, mostly focusing on

the ATLAS Transformation Language (ATL), by improving mainly few quality

metrics using a number of refactoring types. Objective: In this paper, we pro-

pose a novel set of quality attributes to evaluate refactored ATL programs based

on the hierarchical quality model QMOOD. Method: We used the proposed

quality attributes to guide the selection of the best refactorings to improve ATL

programs using multi-objective search. Results: We validate our approach on

a comprehensive dataset of model transformations. The statistical analysis of
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our experiments on 30 runs shows that our automated approach recommended

useful refactorings based on a benchmark of ATL transformations and compared

to random search, mono-objective search formulation, a previous work based on

a different formulation of multi-objective search with few quality metrics, and

a semi-automated refactoring approach not based on heuristic search. Conclu-

sion: All these existing studies did not use our QMOOD adaptation for ATL

which confirms the relevance of our quality attributes to guide the search for

good refactoring suggestions.

Keywords: Search based software engineering, model transformations, quality

attributes, refactoring.

1. Introduction

Model-driven engineering (MDE) is a methodology using models as the pri-

mary development artifacts [1]. MDE is becoming recently more popular in

industry within diverse domains [2, 3]. This approach helps to create high-level

abstractions in which they later can be executed or transformed using model5

transformations [4, 1]. Due to the evolution of languages and metamodels,

model transformations–like any regular software–continuously adapt to changes.

Therefore, evolving model transformation programs become more complex, less

readable, less comprehensible, and less maintainable, leading to a possible in-

crease in the maintenance activities both in time and cost [5]. In fact, most10

existing model transformation programs are still written in one module con-

taining all the complex transformation rules despite their large number [6, 7].

One of the most popular model transformation languages is the ATLAS

Transformation Language (ATL) which is broadly used in both academia and

industry [8]. ATL is a hybrid language, extensively used to write model transfor-15

mation programs. Yet, few studies have proposed refactoring techniques for ATL

programs to improve the quality of model transformation. Most of these studies
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are mainly proposing a manual selection process to apply refactoring types such

as extract rule and merge rule to improve only a few metrics such as Fan-in and

Fan-out [9, 10, 11, 12, 13, 14, 15]. However, manual refactoring is error-prone,20

time-consuming and not scalable [16] which may explain the current low quality

of existing model transformations programs [6]. Moreover, the existing object-

oriented (OO) refactoring catalogs such as proposed in [17] cannot be reused as

they are for model transformation programs [12, 14, 18, 19]. Model transfor-

mation programs, such as ATL, are a combination of rules between source and25

target metamodels. While some of the OO code refactoring types can be reused

to refactor models or metamodels [20, 21] such as UML diagrams (e.g., extract

class, move method, etc.), the refactoring of model transformations programs

require different types of refactorings to deal with the structure of transforma-

tion rules such as extract rules, extract helper, merge rules, etc. Moreover, the30

semantics of rule inheritance and other concepts require a specific treatment in

the refactoring process as they may only partially overlap with what is known

from OO programming languages [22].

Recently, there are some attempts to automate the refactoring of ATL pro-

grams [14, 23] including our MODELS 2016 paper “Automated refactoring of35

ATL model transformations: a search-based approach” [24]. We proposed an

automated approach for refactoring ATL programs that finds a trade-off be-

tween four different objectives related to fan-in, fan-out, reducing the number

of rules and suggested refactorings. Thus, the search is guided based on those

metrics. While the results are promising on refactoring ATL programs, our pre-40

vious work was still limited to few basic metrics and refactoring types to mainly

improve the modularity of ATL programs similar to [23].

In this paper, we are extending our previous work [24] by (i) defining a new

quality model for model transformation programs taking inspiration from the
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hierarchical quality model QMOOD [25] to consider important quality attributes45

beyond just the use of coupling and cohesion. We first select the most affected

quality attributes by the design of an ATL program before adapting the formula

associated with each attribute, following the same model as detailed in [25]; (ii)

we adapted our multi-objective formulation to consider the new ATL-based

quality metrics and refactoring types as detailed in Section 3. To find the50

optimal trade-off between the various–and possibly conflicting–objectives and

to deal with this large search space of possible refactoring solutions, we propose

to use a multi-objective formulation based on NSGA-II [26]; (iii) we extended

our validation with seven case studies from the ATL Zoo [27] to evaluate the

performance of our approach. We compared our approach with our previous55

multi-objective formulation not based on QMOOD [24], and also an existing

semi-automated refactoring approach not based on heuristic search [14].

Statistical analysis of our experiments showed that our proposal performed

significantly better than random search, our previous multi-objective work not

based on QMOOD [24], a mono-objective formulation and [14] with an average60

precision and recall of 89% and 95% respectively when compared to manual solu-

tions provided by a set of developers. The software developers, who participated

in our experiments, confirmed also the relevance of the suggested refactorings

as an outcome of a survey study.

The remainder of this paper is structured as follows. Section 2 provides65

the background and challenges addressed in this paper. Section 3 describes our

approach to automated ATL refactoring while the results obtained from our

experiments are presented and discussed in Section 4. Threats to validity are

discussed in Section 5. Section 6 provides the related work. In Section 7, we

summarize and present some ideas for future work.70
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2. Background, Motivating Example, and Challenges

In this section, we introduce the background for our work, present a moti-

vating example, and discuss the challenges of refactoring ATL transformations.

2.1. Background

ATL transformations are rule-based programs which are executed on fixed75

input models to produce output models from scratch. For this process, matches

in the input model are computed based on the input patterns of the transfor-

mation rules which trigger the creation of output elements based on the output

patterns of the transformation rules. In addition, Object Constraint Language

(OCL) expressions may be employed for filter conditions to restrict the matches80

in the input model as well as for computing values with so-called bindings for

setting features of the produced output elements. In essence, two kinds of rules

are provided by ATL. First, matched rules are rules which are automatically

executed by the transformation engine. Second, lazy rules and called rules have

to be explicitly triggered from matched rules similar to calling operations or85

methods in programming languages. Besides rules, ATL transformations may

contain helpers which allow reusing OCL expressions to compute values by sim-

ply calling the helper definitions. Furthermore, ATL transformations are typed

by the input and output metamodels, i.e., the input and output pattern elements

have to refer to existing elements in the involved metamodels. An additional90

feature of ATL is the module concept which acts as a container for transfor-

mation rules. Thus, each ATL transformation corresponds to a main module

which may also compose other modules based on superimposition [28].

2.2. Motivating Example

To further introduce ATL as well as to motivate the need of automatically95

refactoring ATL transformations, an excerpt of an ATL model transformation
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example is shown in Listing 1. The transformation has been extracted from

the ATL transformation zoo [27] which is a public repository for collecting ATL

transformations frequently used for research purposes [6, 29, 7]. The transfor-

mation is, in essence, a simple copy transformation that converts MOF-based100

metamodels into KM3-based metamodels. The input metamodel excerpt for this

transformation excerpt is shown in Figure 1 and the output metamodel excerpt

is illustrated in Figure 2. As can be seen in the figures, the input metamodel and

the output metamodel have the same class structure and inheritance hierarchy

with slight name differences as can be also observed in the ATL transformation105

shown in Listing 1. The reader can find the details about the ATL language

syntax and descriptions in the following references [30, 8]. As can be further

seen in the transformation presented in Listing 1, several duplicated bindings

for the rules transforming attributes and references are used. The reason for

this is simple. The two concepts share many common features which are defined110

by common superclasses.

Similar to using inheritance between classes in metamodels, ATL also allows

to use rule inheritance to introduce abstract rules for defining, for instance, the

bindings for setting the features of the TypedElement class, namely for setting

the type, lower bound, upper bound, and ordered features. Furthermore, it can115

be also observed that the name binding is occurring for all three rules in the

transformation excerpt which could be also defined for the ModelElement class

by introducing a top rule for the transformation definition from which all other

rules directly or indirectly inherit. Rule inheritance is then used to build a hi-

erarchy of transformation rules whereas the subrules inherit the input pattern120

elements including the filter conditions as well as the output pattern elements

including the bindings of the superrules. Listing 2 gives an idea on how rule

inheritance may be introduced for the Attribute and Reference transformation
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rules. In particular, the refactoring operations as shown in Table 1 are applied to

produce the new transformation design. The refactoring operations are reused125

from previous work and the full refactoring catalog for ATL can be found in [14]

and additional refactorings concerning the module concept of ATL are presented

in [23]. The refactorings presented in [14] are classified into renaming, restruc-

turing, inheritance-related, and OCL-related. In the motivating example, we

focus on two inheritance-related refactoring operations-–see Table 1.130

Table 1: List of considered refactorings for our motivating example based on [14]

Refactoring Description

Extract Superrule Rules may have several commonalities which should be
extracted in one unique definition. The precondition for
extracting a superrule is to have common supertypes for
the input and output pattern elements of the selected
rules. The postcondition is to have a new rule which
is becoming the superule for the selected set of rules
sharing the commonalities.

Pull Up Binding A binding which is duplicated in all subrules of a super-
rule can be pulled up to the superrule in order to elimi-
nate duplicates. The precondition is to have the feature
which is computed as well as the features used in the
value computation defined as features of the types used
in the superrule. The postcondition is to have the bind-
ing presented in the superrule and the binding deleted
in all subrules.

By using rule inheritance, the binding duplicates can be removed. On the

one hand, this has a positive impact on certain design metrics which have been

discussed for ATL in [14]. The average number of bindings per rule is reduced135

as several feature bindings are pushed to the superrules. On the other hand, it

has also a negative impact on other design metrics. For instance, the number

of rules is increased which may lead to a higher complexity with respect to
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Listing 1: Excerpt of the initial Ecore 2 KM3 transformation

1 module Ecore2KM3;
2 create OUT : KM3 from IN : MOF;
3
4 rule Class {
5 from i : MOF!EClass
6 to o : KM3!Class (
7 name <- i.name ,
8 structuralFeatures <-i.eStructuralFeatures ,
9 supertypes <- i.eSuperTypes ,

10 isAbstract <- i." abstract"
11 )
12 }
13
14 rule Attribute {
15 from i : MOF!EAttribute
16 to o : KM3!Attribute (
17 name <- i.name ,
18 type <- i.eType ,
19 lower <- i.lowerBound ,
20 upper <- i.upperBound ,
21 isOrdered <- i.ordered
22 )
23 }
24
25 rule Reference {
26 from i : MOF!EReference
27 to o : KM3!Reference (
28 name <- i.name ,
29 type <- i.eType ,
30 lower <- i.lowerBound ,
31 upper <- i.upperBound ,
32 isOrdered <- i.ordered ,
33 opposite <- i.eOpposite ,
34 isContainer <- i.containment
35 )
36 }
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ENamedElement

name : String

EClassifier ETypedElement

EStructuralFeature

EReference EAttribute

lowerBound : Integer
upperBound : Integer
ordered : BooleanEClass

abstract : Boolean

containment : Boolean

[1..1] eType

[0..*] 
eStructuralFeatureseSuperTypes [0..*] 

[0..1] eOpposite

ModelElement

name : String

Classifier TypedElement

StructuralFeature

Reference Attribute

lower : Integer
upper : Integer
isOrdered : BooleanClass

isAbstract : Boolean

isContainer : Boolean

[1..1] type

[0..*] 
structuralFeatures[0..*] supertypes

[0..1] opposite

(b) KM3(a) EcoreFigure 1: Input metamodel of the transformation example: The Ecore metamodel.

ENamedElement

name : String

EClassifier ETypedElement

EStructuralFeature

EReference EAttribute

lowerBound : Integer
upperBound : Integer
ordered : BooleanEClass

abstract : Boolean

containment : Boolean

[1..1] eType

[0..*] 
eStructuralFeatureseSuperTypes [0..*] 

[0..1] eOpposite

ModelElement

name : String

Classifier TypedElement

StructuralFeature

Reference Attribute

lower : Integer
upper : Integer
isOrdered : BooleanClass

isAbstract : Boolean

isContainer : Boolean

[1..1] type

[0..*] 
structuralFeatures[0..*] supertypes

[0..1] opposite

(b) KM3(a) Ecore Figure 2: Output metamodel of the transformation example: The KM3 metamodel.
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Listing 2: Excerpt of the refactored Ecore 2 KM3 transformation

1 module Ecore2KM3;
2 create OUT : KM3 from IN : MOF;
3
4 abstract rule ModelElement {
5 from i : MOF!ENamedElement
6 to o : KM3!ModelElement (
7 name <- i.name
8 )
9 }

10
11 rule Class extends ModelElement {
12 from i : MOF!EClass
13 to o : KM3!Class (
14 structuralFeatures <-i.eStructuralFeatures ,
15 supertypes <- i.eSuperTypes ,
16 isAbstract <- i." abstract"
17 )
18 }
19
20 abstract rule TypedElement extends ModelElement {
21 from i : MOF!ETypedElement
22 to o : KM3!TypedElement (
23 type <- i.eType ,
24 lower <- i.lowerBound ,
25 upper <- i.upperBound ,
26 isOrdered <- i.ordered
27 )
28 }
29
30 rule Attribute extends TypedElement {
31 from i : MOF!EAttribute
32 to o : KM3!Attribute ()
33 }
34
35 rule Reference extends TypedElement {
36 from i : MOF!EReference
37 to o : KM3!Reference (
38 opposite <- i.eOpposite ,
39 isContainer <- i.containment
40 )
41 }
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understanding how a particular rule may be executed by considering the exact

rule inheritance semantics of ATL.140

The need for improving the quality of ATL-based model transformations

has been also highlighted in previous studies which focused on analyzing exist-

ing model transformations stored in the largest collection of ATL-based model

transformations, the model transformation zoo [6, 7]. In particular, these stud-

ies show that model transformations can grow to complex and large artefacts145

consisting of thousands of lines of code, having hundreds of different transforma-

tion rules, and having a low application rate of modularization and abstraction

features such as rule inheritance and transformation superimposition although

the metamodel structures would allow for such applications [6]. Just to give

one example, out of 168 transformations, only 4% use rule inheritance and not150

a single transformation is using superimposition. One explanation for these re-

sults is that these concepts for transformation reuse and modularization have

been proposed in later language versions of ATL.

2.3. Challenges

This simple example and previous studies [6, 29, 7] already point out the155

main challenges of refactoring ATL transformations. Optimizing the different

design metrics which have been proposed for ATL [14, 9, 10, 23] may lead to

different, potentially conflicting, decisions on how to refactor a particular ATL

transformation [25, 31, 32]. Even more challenging, there may not only exist

one refactoring solution, but a huge set of possible refactoring solutions that are160

associated with different design metrics configurations. As ATL transformations

may become large containing over 100 rules and several helper definitions [6]

as well as a large set of ATL refactoring operations has been proposed [14, 23],

the refactoring space of ATL transformations is enormous and enumerative ap-

proaches may fail to successfully explore this space efficiently. Therefore, we165
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propose in the next section a search-based approach to refactor ATL trans-

formations. Before introducing the search-based approach, a comprehensive

quality model is required for ATL in order to extend existing work on design

metrics for ATL in our search-based framework.

3. Search-Based Refactoring of the Model Transformations170

In this section, we start introducing an adaptation of the QMOOD model

for model transformations, then we give an overview of our approach, followed

by a detailed description of how we formulated the refactoring recommendation

process as a multi-objective optimization problem in addition to the multi-

objective algorithm’s (NSGA-II) adaptation.175

3.1. QMOOD for Model Transformations

The quality of a software heavily relies on its design. In software, assess-

ing quality means measuring several conflicting attributes. The quality value,

however, depends on multiple factors and circumstances. For instance, what is

considered very critical to one developer or designer might be less important for180

others since people have different preferences when they are designing or imple-

menting a system. For instance, when the requirements of the transformations

are not very clear (e.g., some rules need to be added or deleted), the flexibility

attribute could be very important. When we are close to the release date, other

attributes might be more critical to maintain. Thus, it is useful to somehow be185

able to quantify the quality of model transformations in order to make it easier

for developers to compare and select between multiple refactoring paths. If we

know where we stand–in terms of design quality—-then we would be able to

make better decisions as to where to move forward and what corrective steps

need to be performed to improve the model transformation programs.190
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In this regard, the authors in [25] linked object-oriented design properties to

quality attribute to measure the quality of the software’s design formally and

validated the QMOOD model empirically on many projects [32]. In this paper,

we are adapting their QMOOD approach to assist in computing the quality of

model transformations (i.e., ATL). It is important to note that model trans-195

formation languages are different from object-oriented programming languages,

thus, some design properties and metrics need to be mapped to their closest

equivalent counterparts in the context of ATL. In other words, we are using the

hierarchical model, QMOOD, as a foundation for the quality attributes compu-

tation formulas (Table 2), ATL design metrics (Table 3) and the relationships200

between them (Table 4).

We did a mapping of the low-level OO metrics into ATL metrics by taking

inspiration from existing work [9, 10, 33, 34] while keeping the high-level defi-

nitions of the quality attributes. For instance, ATL programs are composed by

a set of rules instead of methods and its syntax and semantic reflects that pos-205

sible analogy between methods and rules. As described later in the validation

section, the experiments confirmed our hypothesis and choices during that map-

ping phase by generating correct and useful refactorings as manually validated

by the participants.
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Table 2: Computation Formulas for Quality Attributes. [25]

Quality Attribute Index Computation Equation

Reusability 0.415 * Cohesion – 0.085 * Coupling + 0.67 * Design
Size

Flexibility 0.583 * Composition – 0.166 * Coupling + 0.583 *
Polymorphism

Understandability 0.385 * Cohesion – 0.275 * Abstraction – 0.275 * Cou-
pling – 0.275 * Polymorphism – 0.275 * Complexity –
0.275 * Design Size

Functionality 0.175 * Cohesion + 0.275 * Polymorphism + 0.275 *
Design Size + 0.275 * Hierarchies

Extendibility 0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance
+ 0.5 * Polymorphism

Effectiveness 0.25 * Abstraction + 0.25 * Composition + 0.25 *
Inheritance + 0.25 * Polymorphism
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Table 3: Design Metrics Description.

ATL Metric Name Description

DSM Design Size in
Modules

The count of the total number of
modules in the program

NOH Number of Hierar-
chies

The count of the number of rule hi-
erarchies

ANA Average Number
of Ancestors

The average number of rules from
which a rule inherits information.

DMC Direct Module
Coupling

The count of the number of different
modules that a module is directly re-
lated to.

CAR Cohesion Among
Rules

The metric computes the relatedness
(semantics similarity) among rules of
a module.

MOA Measure of Aggre-
gation

The metric counts the number
helpers in ATL programs

MFA Measure of Func-
tional Abstraction

The metric is the ratio of the number
of rules inherited by another rule to
the total number of rules accessible
by member rules of the module.

NOP Number of Poly-
morphic Rules

This metric is a count of the rules
that can exhibit polymorphic behav-
ior.

NOR Number of Rules Total number of rules defined in a
module

Table 4: Relationship Between Design Properties and Design Metrics.

Design Property Derived Design Metric

Design Size Design Size in Modules (DSM)

Hierarchies Number of Hierarchies (NOH)

Abstraction Average Number of Ancestors (ANA)

Coupling Direct Module Coupling (DMC)

Cohesion Cohesion Among Rules (CAR)

Composition Measure of Aggregation (MOA)

Inheritance Measure of Functional Abstraction (MFA)

Polymorphism Number of Polymorphic Rules (NOP)

Complexity Number of Rules (NOR)
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The equations of Table 2 provide explanations on how the different quality210

attributes are calculated. The details regarding how we are going to use this

QMOOD model in practice to improve the quality of model transformation

programs, in our automated ATL refactoring endeavors, will be described in

the following sub-sections.

3.2. Approach Overview215

The approach can be illustrated in the high-level overview shown in Figure 3.

An ATL Analyser is applied to the ATL code in order to compute the various

design metrics listed in Table 3. These values are used later to measure the

quality attributes shown in Table 2, which will eventually be used in the fitness

function. The other input of the algorithm is the possible refactoring operations220

along with their pre- and post-conditions. The main target of the approach is

to find the best sequence of refactorings that meets the following optimization

objectives: (1) Maximize the quality attributes values (Table 2), (2) minimize

the number of rules, and (3) minimize the number of changes.

The objectives mentioned above are not necessarily proportional. In fact,225

most of them are contrasting with each other. What makes the matters more

complicated is the fact that there are multiple refactoring routes. In other words,

the order in which we apply the refactoring operations makes a significant dif-

ference. Thus, with the substantial number of possible refactorings routes, and

the conflicting objectives, we use a multi-objective genetic algorithm (NSGA-II)230

which will be detailed along with its adaptation to our refactoring problem in

the subsequent sections.

3.3. NSGA-II

Most real-world optimization problems encountered in practice involve mul-

tiple criteria to be considered simultaneously. These criteria, also called objec-235

tives, are often conflicting. Usually, there is no single solution that is optimal
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Figure 3: Overview of the multi-objective ATL refactoring approach.

with respect to all these objectives at the same time, but rather many differ-

ent designs exist which are incomparable per se. Consequently, contrary to

Single-objective Optimization Problems (SOPs) where we look for the solution

presenting the best performance, the resolution of a Multi-Objective Optimiza-240

tion Problem (MOP) yields a set of compromise solutions presenting the optimal

trade-offs between the different objectives. When plotted in the objective space,

the set of compromise solutions is called the Pareto front.

The resolution of a MOP yields a set of trade-off solutions, called Pareto

optimal solutions or non-dominated solutions, and the image of this set in the245

objective space is called the Pareto front. Hence, the resolution of a MOP

consists in approximating the whole Pareto front.

In this paper, we adapted one of the widely used multi-objective algorithms

called NSGA-II [26]. It is a powerful search method stimulated by natural selec-

tion that is inspired by the theory of Darwin. Hence, the basic idea of NSGA-II250

is to make a population of candidate solutions evolve toward the near-optimal

solution in order to solve a multi-objective optimization problem. NSGA-II is

designed to find a set of optimal solutions, called non-dominated solutions, also

Pareto set. A non-dominated solution is the one which provides a suitable com-

promise between all objectives without degrading any of them. As described255

in Algorithm 1, the first step in NSGA-II is to create randomly a population

P0 of individuals encoded using a specific representation (line 1). Then, a child
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population Q0 is generated from the population of parents P0 using genetic op-

erators such as crossover and mutation (line 2). Both populations are merged

into an initial population R0 of size N (line 5). Consequently, NSGA-II starts260

by generating an initial population based on a specific representation that will

be discussed later, using an exhaustive list of ATL refactoring types given as

input. Thus, this population stands for a set of possible solutions represented

as sequences of refactorings that are selected and combined.

To summarize, the main NSGA-II loop goal is to make a population of candi-265

date solutions evolve toward the best sequence of refactoring, i.e., the sequence

that minimizes the number of rules, number of recommended refactorings (so-

lutions size) and maximize the quality attributes values. During each iteration

t, an offspring population Qt is generated from a parent population Pt us-

ing genetic operators (selection, crossover, and mutation). Then, Qt and Pt270

are assembled to create a global population Rt. Then, each solution Si in the

population Rt is evaluated using three fitness functions described in the next

subsection.

Algorithm 1 NSGA-II overview [26]

1: Create an initial population P0

2: Generate an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qi

6: F = fast-non-dominated-sort (Rt)
7: Pt+1 = φ and i=1;
8: while |Pt+1|+|Fi|≤ N do
9: Apply crowding-distance-assignment(Fi);

10: Pt+1 = Pt+1 ∪ Fi;
11: i = i + 1
12: end
13: Sort(Fi, < n)
14: Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)];
15: Qt+1 = create-new-pop(Pt+1);
16: t = t + 1;
17: end

18



Listing 3: Specification of the Pull Up Binding refactoring

1 refactoring PullUpBinding (b:Binding , sub:Set(Rule), super:Rule)
2 pre: sub -> forAll(r|r.containsBinding(b) and r.superrule = super) and
3 not super.containsBindingForFeature(b.featureToSet) and
4 super.outputElements -> exists (oe|oe.type.containsFeature(b.featureToSet

↪→)) and
5 super.inputElements -> exists (ie|b.featuresOfValueComp -> forAll(f|ie.

↪→type.containsFeature(f))
6 post: sub -> forAll(r|not r.containsBinding(b)) and super.containsBinding(b)

3.4. Search-Based Formulation

3.4.1. Solution representations275

A solution consists of a sequence of n refactoring operations involving one

or multiple rules/modules of the ATL program to refactor. The vector-based

representation is used to define the refactoring sequence. Each vector’s dimen-

sion has a refactoring operation and its index in the vector indicates the order

in which it will be applied. For every refactoring, pre- and post-conditions are280

specified to ensure the feasibility of the operation as detailed in [14]. In List-

ing 3, we illustrate the pre- and post-conditions for the refactoring operation

Pull Up Binding specified in the Object Constraint Language (OCL) . We uti-

lize OCL for the specification of the refactoring operations as OCL provides a

general means to specify pre- and post-conditions for operations. More details285

about the adapted pre- and post-conditions for refactorings can be found in [14].

The initial population is generated by randomly assigning a sequence of

refactorings to a randomly chosen set of rules or modules. The different types

of refactorings considered in our experiments are Extract Helper/Rule, Inline290

Helper/Rule, Merge Rule, Split Rule, Extract Superrule, Eliminate Superrule,

Pull Up Binding, Pull Up Filter, Push Down Binding, Push Down Filter [14],

Extract Module, Merge Modules, and Move Rule/Helper [23]. We also use a

placeholder concept as an additional possibility to the given refactorings in order

to simulate random length of the solution vectors. The placeholder concept is295
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ExtractSuperrule(„TypedElement“, 
[Attribute, Reference])

PullUpBinding(type, [Attribute, 
Reference], TypedElement)

PullUpBinding(type, [Attribute, 
Reference], TypedElement)

Figure 4: Example of a simplified solution representation.

ExtractSuperrule(„TypedElement“, 
[Attribute, Reference])

PullUpBinding(type, [Attribute, 
Reference], TypedElement)

PullUpBinding(type, [Attribute, 
Reference], TypedElement)

Refactoring operations used: 

refactoring ExtractSuperrule ( name, InputType, OutputType, subrules )

refactoring PullUpBinding ( binding : Binding, subrules : Set(Rule), superrule : Rule) 
pre: subrules ‐> forall(r|r.containsBinding(binding) AND 

subrules ‐> forall(s|s.extends = superrule) AND        f
not superrule.containsBindingForFeature(binding.featureToSet) AND 
superrule.outputElements ‐> exists (o|o.type.containsFeature(binding.featureToSet)) AND
superrule.inputElements ‐> exists (i |binding.featuresOfValueComp ‐> forall(f|i.type.containsFeature(f))

post: subrules ‐> forall(r|not r.containsBinding(binding)) AND superrule.containsBinding(binding)

T0 T1 T2 T3 …

…

Tn

r1 r2 r3 r… rn

Figure 5: Computing a refactored transformation version (Tn) from its initial version (T0) by
applying a sequence of refactoring operations (r1 − rn) step-by-step.

equivalent to the no-operation instruction.

The size of a solution, i.e., the vector’s length is randomly chosen between

upper and lower bound values. The determination of these two bounds is sim-

ilar to the problem of bloat control in genetic programming where the goal is

to identify the tree size limits. Since the number of required refactorings de-300

pends mainly on the size and quality of the ATL program, we performed, for

each target project, several trial and error experiments using the HyperVolume

(HP) performance indicator [26] to determine the upper bound after which, the

indicator remains invariant. For the lower bound, it is arbitrarily chosen. The

experiments section will specify the upper and lower bounds used in this study.305

Figure 4 shows a simplified example of a solution including three refactor-

ings applied to the ATL program described in Listings 1 and 2. The solution

includes two refactoring types with the following controlling parameters: Ex-

tractSuperrule(name, subrules), PullUpBinding(binding, subrules, superrule).

The solution representation is computed by applying the refactoring opera-310

tions step-by-step on the initial transformation version as it is shown in Figure 5.

By following this process, for each refactoring step, the pre- and post-conditions

of the refactoring can be check on the predecessor version and successor version

of the transformation, respectively.
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Parent A

Parent B

R1 R4 R5 R3 R6 R2
1 32 4 5 6

R5 R6 R3 R1 R2 R4
1 32 4 5 6

K=4
Crossover

Splitting 
Point

Child A

Child B

R1 R4 R5 R3 R2 R4
1 32 4 5 6

R5 R6 R3 R1 R6 R2
1 32 4 5 6

Figure 6: Example of the crossover operation.

Please note that we are only computing an initial population of refactoring315

solutions which are not representing all possible refactoring solutions (this would

be computationally too expensive) but a subset of these which are subsequently

further modified by the evolutionary search to compute new, potentially better,

solutions.

3.4.2. Solution variation320

In each search algorithm, the variation operators play the key role of moving

within the search space with the aim of driving the search towards optimal

solutions.

For the crossover, we use the one-point crossover operator. It starts by

selecting and splitting at random two parent solutions. Then, this operator325

creates two child solutions by putting, for the first child, the first part of the

first parent with the second part of the second parent, and vice versa for the

second child. This operator must ensure the respect of the length limits by

eliminating randomly some refactoring operations. It is important to note that

in multi-objective optimization, it is better to create children that are close to330

their parents in order to have a more efficient search process. An example of

this operation is illustrated in Figure 6.

For mutation, we use the bit-string mutation operator that picks probabilis-
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Parent A

Parent B

R1 R4 R5 R3 R6 R2
1 32 4 5 6

R5 R6 R3 R1 R2 R4
1 32 4 5 6

K=4
Crossover

Splitting 
Point

Child A

Child B

R1 R4 R5 R3 R2 R4
1 32 4 5 6

R5 R6 R3 R1 R6 R2
1 32 4 5 6

Parent  R1 R4 R5 R3 R6 R2
1 32 4 5 6

m=2
Mutation R1 R3 R5 R3 R6 R2

1 32 4 5 6

Figure 7: Example of the mutation operation.

tically one or more refactoring operations from its or their associated sequence

and replaces them by other ones which are applicable on the current state of the335

transformation from the list of possible refactorings types as shown in Figure 7.

When applying the changed refactoring sequences, the different pre- and

post-conditions of the refactoring operations (such as exemplarily shown in List-

ing 3) are checked to ensure the applicability of the newly generated refactoring

solutions. We also apply a repair operator that randomly computes new refac-340

toring applications to replace existing refactorings which are no longer applicable

n the computed refactoring sequence because of invalid pre- and post-conditions.

3.4.3. Solution evaluation

The generated solutions are evaluated using three fitness functions as de-

tailed in the following.345

Maximize the quality attributes values: the formulas listed in Table 2 gives us

the advantage of calculating the values of the various quality attributes easily.

Worth mentioning that we are treating the quality attributes equally in this

paper. Whereas in some practical situations, the developer might want to give

more weight to one or more attributes depending on the circumstances and the350

objective of the refactoring operations.

FF1: Max(x) where x is the sum of Reusability, Flexibility, Understand-

ability, Functionality, Extendibility, and Effectiveness.

Minimize the number of recommended refactorings: The application of a specific

suggested refactoring sequence may require an effort that is comparable to that355

22



of re-implementing part of the system from scratch. Taking this observation into

account, it is essential to minimize the number of suggested refactorings in the

solution since the designer may have some preferences regarding the percentage

of deviation with the initial ATL program design. In addition, most developers

prefer solutions that minimize the number of changes applied to their design360

and rules modification. Thus, we formally defined the fitness function as the

number of recommended refactorings.

FF2: Min (n) where n is the number of recommended refactorings.

Minimize the number of rules: the metric can be easily calculated on ATL

programs. The reason to use this metric is to avoid that some refactorings365

such as split rule or extract rule will generate a high number of new rules when

optimizing the remaining objectives.

FF3: Min(r) where r is the number of rules.

In fact, the use of multiple quality attributes to guide the search for relevant

refactorings may increase dramatically the number of rules such as intensive use370

of extract rules to improve the extendibility quality attributes.

4. Validation

In order to evaluate the ability of our automated refactoring approach to

generate good refactoring recommendations for ATL programs, we conducted

a set of experiments based on several transformation programs available in the375

ATL Zoo [27]. Since metaheuristic algorithms are stochastic optimizers, they

can provide different results for the same problem instance from one run to

another. Thus, we executed our the search algorithms 30 times on each of the

7 ATL transformation programs, and the obtained precision and recall results

are subsequently statistically analyzed.380
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In the following, we first present our research questions and the pilot study,

and then describe and discuss the obtained results.

4.1. Research Questions

We defined five research questions that address the applicability, perfor-

mance, and usefulness of our refactoring approach. The five research questions385

(RQs) are as follows:

RQ1: Search validation (sanity check). To validate the problem for-

mulation of our approach, we compared our multi-objective formulation with a

random search algorithm (RS). If RS outperforms an intelligent search method,

we can conclude that there is no need to use a metaheuristic search.390

RQ2: To what extent can the proposed approach improve the

quality of ATL programs using the combination of multi-objective

search and QMOOD? In particular, is it possible with our approach to find

refactoring solutions which improve the quality of the transformations and are

relevant for transformation developers.395

RQ3: How does our multi-objective QMOOD-based refactoring

approach for ATL programs perform compared to our previous multi-

objective refactoring work published in MODELS 2016 [24] and a

mono-objective approach aggregating all the three objectives used in

this paper? A multi-objective algorithm provides a trade-off between the four400

objectives where developers can select their desired refactoring solution from the

Pareto-optimal front. A mono-objective approach uses a single fitness function

that is formed as an aggregation of the four normalized objectives and generates

as output only one refactoring solution. This comparison is required to ensure

that the solutions provided by NSGA-II provide a better trade-off between the405

three objectives than a mono-objective approach. Otherwise, there is no benefit

to our multi-objective adaptation. Furthermore, it is important to compare the
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performance of our new multi-objective QMOOD formulation to our previous

multi-objective work of MODELS2016 [24] to evaluate the relevance of consid-

ering new quality attributes on the relevance of refactoring recommendations.410

RQ4: How does the proposed multi-objective QMOOD-based refac-

toring approach for ATL programs perform compared to an existing

semi-automated ATL refactoring approach [14] not based on heuristic

search? While it is interesting to show that maybe our proposal outperforms

random search or a mono-objective refactoring approaches, developers will con-415

sider our approach useful, if it can outperform other existing tools that are

not based on optimization techniques. Thus, we compared our approach to the

semi-automated refactoring approach proposed in [14]. In this approach, the

developers first have to manually select the required refactoring operations and

their application points. Subsequently, the refactoring execution, i.e., rewriting420

the transformation, is automatically performed.

The last research question is related to the benefits of our approach for

software engineers.

RQ5 (Insight): Can our ATL refactoring approach be useful for

software developers in practice? We conducted a post-study questionnaire425

with the subjects of our experiments that collects their opinions of our tool.

4.2. Case Studies

Our research questions are evaluated using the following seven case studies.

Each case study consists of one model transformation and all the necessary

artifacts to execute the transformation, i.e., the input and output metamodels430

and a sample input model. Most of the case studies have been taken from

the ATL Zoo [27], a repository where developers can upload and describe their

ATL transformations. We briefly describe in the following the different ATL

transformation programs used in our study.

25



Ecore2Maude: This transformation takes an Ecore metamodel as input435

and generates a Maude specification. Maude is a high-performance reflective

language and system supporting both equational and rewriting logic specifica-

tion and programming for a wide range of applications.

OCL2R2ML: This transformation takes OCL models as input and produces

R2ML (REWERSE I1 Markup Language) models as output.440

R2ML2RDM: This transformation is part of the sequence of transforma-

tions to convert OCL models into SWRL (Semantic Web Rule Language) rules.

In this process, the selected transformation takes a R2ML model and obtains

an RDM model that represents the abstract syntax for the SWRL language.

XHTML2XML: This transformation receives XHTML models conforming445

to the XHTML language specification version 1.1 as input and converts them

into XML models consisting of elements and attributes.

XML2Ant: This transformation is the first step to convert Ant to Maven.

It acts as an injector to obtain an XMI file corresponding to the Ant metamodel

from an XML file.450

XML2KML: This transformation is the main part of the KML (Keyhole

Markup Language) injector, i.e., the transformation from a KML file to a KML

model. Before running the transformation, the KML file is renamed to XML

and the KML tag is deleted. KML is an XML notation for expressing geographic

annotation and visualization within Internet-based, two-dimensional maps and455

three-dimensional Earth browsers.

XML2MySQL: This transformation is the first step of the MySQL to KM3

transformation scenario, which translates XML representations used to encode

the structure of domain models into actual MySQL representations.

We have selected these case studies due to their difference in size, structure460

and number of dependencies among their transformation artifacts, i.e., rules
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and helpers. Table 5 summarizes the number of rules, the number of helpers

and the number of dependencies between rules.

To answer RQ1, RQ2, RQ3, and RQ4, it is important to validate the pro-

posed refactoring solutions. We evaluated the improvements in the different465

quality metrics used by our approach before and after refactorings. Since the

metrics improvement evaluation is not sufficient, we asked a group of develop-

ers, as detailed later, to manually identify several refactoring opportunities and

apply several refactorings to fix the detected possible quality improvements on

the selected transformation programs. Table 5 summarizes the number of ex-470

pected refactorings for every ATL program. Then, we calculated precision and

recall scores to compare between refactorings recommended by our approach

and those suggested manually by the subjects:

RCRecall =
suggested operations ∩ expected operations

expected operations
∈ [0, 1] (1)

PRPrecision =
suggested operations ∩ expected operations

suggested operations
∈ [0, 1] (2)

We also asked the group of potential users of our tool to evaluate, manually,

whether the suggested refactorings are feasible and efficient at improving the475

ATL program quality and achieving their maintainability objectives. We define

the metric Manual Correctness (MC) to mean the number of meaningful/rele-

vant refactorings divided by the total number of suggested refactorings. MC is

given by the following equation:

MC =
#coherent applied refactorings

#proposed refactorings
(3)

To avoid the computation of the MC metric being biased by the developer’s480
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feedback, we asked the developers to manually evaluate the correctness of the

recommended refactorings on the ATL programs that they did not refactor using

our tool.

To answer the first research question RQ1, a random multi-objective al-

gorithm was implemented where at each iteration the population is randomly485

created without the use of change operators. The random search used the same

fitness functions of our QMOOD formulation but without the use of the change

operators. The obtained best refactoring solution was compared for statistically

significant differences with NSGA-II using PR, RC, MC and the execution time

(CT). To answer RQ2, we evaluate the results of our NSGA-II algorithm using490

all the above evaluation metrics. To answer RQ3, we compared our approach to

a mono-objective Genetic Algorithm where all the objectives were normalized in

the range [0..1] and aggregated into one objective to minimize. To answer RQ4,

we compare NSGA-II to an existing semi-automated ATL refactoring approach

[14] where the refactoring operations have to be explicitly triggered by the user495

and only the execution of the manually identified refactorings is automated. We

used all the above evaluation metrics to perform the comparisons in RQ3 and

RQ4 as well.

Table 5: Statistics of the Case Studies.

Case Study #Rules #Helpers #Dependencies #Expected
Refactorings

Ecore2Maude 40 40 27 19
OCL2R2ML 37 11 54 16
R2ML2RDM 58 31 137 22

XHTML2XML 31 0 59 18
XML2Ant 29 7 28 16

XML2KML 84 5 0 37
XML2MySQL 6 10 5 9

Our study involved 27 participants from the University of Michigan. Partici-

pants include 21 master students and 8 Ph.D. students in Software Engineering.500
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All the participants are volunteers and familiar with ATL and model transfor-

mations. All the graduate students have a strong background in refactoring

and software quality since they all took a graduate course on Software Quality

Assurance extensively covering these topics. The experience of these partici-

pants on programming and refactoring ranged from 2 to 16 years in industry.505

Eleven out the twenty-seven participants are active programmers in software

companies.

To answer RQ5, we used a post-study questionnaire that collects the opinions

of developers on our tool. Participants were first asked to fill out a pre-study

questionnaire containing five questions. The questionnaire helped to collect510

background information such as their programming experience, their familiar-

ity with software refactoring and ATL. In addition, all the participants attended

one lecture about ATL and software refactoring, and passed six tests to eval-

uate their performance to evaluate and suggest refactoring solutions for ATL

programs.515

Each participant in the study received a questionnaire, a manuscript guide

to help them to fill the questionnaire, the tools and results to evaluate, and

the ATL source code of the studied transformations. Since the application of

refactoring solutions is a subjective process, it is normal that not all the devel-

opers have the same opinion. In our case, we considered the majority of votes to520

determine if suggested solutions are correct or not. Each participant evaluates

different refactoring solutions for the different techniques and systems. We con-

ducted this manual validation since a correct refactoring in terms of behavior

preservation may not mean that programmers will apply it. The refactoring

process is subjective and it is impossible to validate the recommendations with-525

out human studies to see if programmers find these refactorings relevant or not.

For each program, the participants evaluated the ATL programs before and
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after refactorings to estimate the benefits of the refactoring and not only the

correctness that is checked with the pre/post conditions. We consider that a

sequence of refacorings has benefits if it is accepted by the programmers during530

the manual validation process.

We asked every participant to manually suggest and apply refactorings to

improve the quality of the ATL programs. As an outcome of this first scenario,

we calculated the differences between the recommended refactorings and the

expected ones (manually suggested by the developers). In the second scenario,535

we asked the developers to manually evaluate the best recommended solution by

our algorithm and the remaining techniques. We performed a cross-validation

between the participants to avoid the computation of the MC metric being bi-

ased by their manual recommendations. In the third scenario, we asked the

participants to use our tool during a period of two hours on the different pro-540

grams and then we collected their opinions based on a post-study questionnaire

that will be detailed later. The participants were asked to justify their evalu-

ation of the solutions and these justifications are reviewed by the organizers of

the study.

For each case study and algorithm, we select one solution using a knee point545

strategy [35]. The knee point corresponds to the solution with the maximal

trade-off between all fitness functions, i.e., a vector of the best objective values

for all solutions. In order to find the maximal trade-off, we use the trade-off

worthiness metric proposed by [35] to evaluate the worthiness of each solution in

terms of objective value compromise. The solution nearest to the knee point is550

then selected and manually inspected by the subjects to find the differences with

an expected solution. While the knee point selection may not be the perfect

way, it is the only strategy to ensure a fair comparison with the mono-objective

and deterministic approaches since they generate only one solution (sequence of
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refactorings) as output. Subjects were aware that they are going to evaluate the555

quality of our solutions, but were not told from which algorithms the produced

solutions originate.

4.3. Experimental Setting

Parameter setting influences significantly the performance of a search algo-

rithm on a particular problem. For this reason, for each algorithm and each ATL560

program, we perform a set of experiments using several population sizes: 50,

100, 200, 300 and 500. The stopping criterion was set to 100,000 evaluations for

all algorithms in order to ensure fairness of comparison. The other parameters’

values were fixed by trial and error and are as follows: crossover probability =

0.7; mutation probability = 0.4 where the probability of gene modification is565

0.2. Each algorithm is executed 30 times with each configuration and then the

comparison between the configurations is done using the Wilcoxon test. The

upper and lower bounds on the chromosome length used in this study are set

to 10 and 50 respectively.

We note that it is not required to make 30 runs to find the knee-point.570

The 30 runs are executed for the automated evaluation metrics (e.g., precision

and recall) to make sure that the results are statistically significant due to

the randomness involved in computational search algorithms. For the manual

correctness, we just selected the median execution for the comparison with the

remaining algorithms. Thus, it is not required that the user should run the575

multi-objective algorithm 30 times to obtain the best solutions since we just did

these runs only for the statistical tests purpose of these experiments.

4.4. Statistical Test Methods

Since metaheuristic algorithms are stochastic optimizers, they can provide

different results for the same problem instance from one run to another. For580

31



this reason, our experimental study is based on 30 independent simulation runs

for each problem instance and the obtained results are statistically analyzed by

using the Wilcoxon rank sum test with a 95% confidence level (α = 5%). The

latter tests the null hypothesis, H0, that the obtained results of two algorithms

are samples from continuous distributions with equal medians, against the al-585

ternative that they are not, H1. The p-value of the Wilcoxon test corresponds

to the probability of rejecting the null hypothesis H0 while it is true (type I

error). A p-value that is less than or equal to α (≤ 0.05) means that we accept

H1 and we reject H0. However, a p-value that is strictly greater than α (>

0.05) means the opposite. In fact, for each problem instance, we compute the590

p-value obtained by comparing the results of the different algorithms with our

approach. In this way, we determine whether the performance difference be-

tween our technique and one of the other approaches is statistically significant

or just a random result. The results presented were found to be statistically

significant on 30 independent runs using the Wilcoxon rank sum test with a595

95% confidence level (α < 5%). The Wilcoxon rank sum test verifies whether

the results are statistically different or not; however, it does not give any idea

about the difference in magnitude. Thus, we used the Vargha-Delaney A mea-

sure which is a non-parametric effect size measure. In our context, given the

different performance metrics (e.g., PR and RC), the A statistic measures the600

probability that running an algorithm B1 (NSGA-II based on QMODD) yields

better performance than running another algorithm B2 (such as RS, Mono-

objective GA, etc.). If the two algorithms are equivalent, then A = 0.5. More

details can be found in the statistical tests guildline discussed in [36].

As described in Table 6, we have found the following results: a) on small scale605

ATL programs (XML2MySQL, XHTML2XML, and XML2Ant) our approach is

better than all the other algorithms based on all the performance metrics with an
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A effect size higher than 0.92; and b) on medium and large scale ATL programs

(XML2KML, Ecore2Maude, OCL2R2ML, and R2ML2RDM), our approach is

better than all the other algorithms with an A effect size higher than 0.89.610

Table 6: Statistical test results.

Comparison Systems p-value VDA 

QMOOD/NSGA-II 
vs  

NSGA-II 

Precision Recall Precision Recall 
Ecore2Maude < 0.01 < 0.01 0.89 0.9 
OCL2R2ML 0.021 < 0.01 0.89 0.91 
R2ML2RDM < 0.01 < 0.01 0.89 0.9 

XHTML2XML < 0.01 0.032 0.93 0.91 
XML2Ant < 0.01 < 0.01 0.94 0.93 

XML2KML 0.017 < 0.01 0.9 0.89 
XML2MySQL 0.026 < 0.01 0.95 0.96 

QMOOD/NSGA-II 
vs  
RS 

Ecore2Maude < 0.01 < 0.01 0.89 0.92 
OCL2R2ML < 0.01 < 0.01 0.91 0.9 
R2ML2RDM < 0.01 < 0.01 0.92 0.91 

XHTML2XML 0.028 < 0.01 0.93 0.94 
XML2Ant < 0.01 < 0.01 0.95 0.93 

XML2KML < 0.01 < 0.01 0.9 0.91 
XML2MySQL < 0.01 0.034 0.93 0.96 

QMOOD/NSGA-II 
vs 

 GA 

Ecore2Maude < 0.01 < 0.01 0.89 0.9 
OCL2R2ML < 0.01 < 0.01 0.89 0.91 
R2ML2RDM < 0.01 < 0.01 0.89 0.92 

XHTML2XML < 0.01 < 0.01 0.96 0.94 
XML2Ant < 0.01 < 0.01 0.98 0.94 

XML2KML < 0.01 < 0.01 0.89 0.91 
XML2MySQL 0.024 < 0.01 0.97 0.94 

QMOOD/NSGA-II 
vs  

Wimmer et al. 

Ecore2Maude < 0.01 < 0.01 0.9 0.89 
OCL2R2ML < 0.01 0.023 0.89 0.91 
R2ML2RDM < 0.01 < 0.01 0.92 0.9 

XHTML2XML 0.033 < 0.01 0.96 0.98 
XML2Ant < 0.01 < 0.01 0.94 0.97 

XML2KML < 0.01 0.027 0.9 0.89 
XML2MySQL < 0.01 < 0.01 0.93 0.96 

 

4.5. Results and Discussions

Results for RQ1: The results for the first research questions are summa-

rized in Figures 8, 9 and 10. It is clear that QMOOD-NSGA-II is better than

random search based on the different metrics of PR, RC and MC on all the 7

ATL case studies. The average precision, recall and manual correctness values of615

random search on the different ATL programs are lower than 28%. This can be
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Figure 8: Median Manual Correctness (MC) over 30 runs on all the 7 ATL programs using
the different ATL refactoring techniques.

explained by the huge search space to explore to generate relevant refactorings.

Figure 11 shows that the execution time (CT) of random search is lower than

QMOOD-NSGA-II however the difference is just limited to an average of 15

minutes. Furthermore, ATL refactoring is not requiring strict time constraints620

unlike real-time application which is not the case here. We do not dwell long

in answering the first research question, RQ1, which involves comparing our

approach based on QMOOD-NSGA-II with random search. The remaining re-

search questions will reveal more about the performance, insight, and usefulness

of our approach. We conclude that there is empirical evidence that our multi-625

objective formulation based on QMOOD surpasses the performance of random

search thus our formulation is adequate (this answers RQ1).

Results for RQ2: As reported in Figure 8, the majority of the refactoring

solutions recommended by our multi-objective approach were correct and ap-

proved by developers. On average, for all of our seven studied projects, 94% of630

the proposed ATL refactoring operations are considered as feasible, improve the

quality and are found to be useful by the software developers of our experiments.
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Figure 9: Median Precision (PR) over 30 runs on all the 7 ATL programs using the different
ATL refactoring techniques with a 95% confidence level (α < 5%).
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Figure 10: Median Recall (RC) over 30 runs on all the 7 ATL programs using the different
ATL refactoring techniques with a 95% confidence level (α < 5%).
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using the different ATL refactoring techniques.

The highest MC score is 100% for the XML2MySQL program and the lowest

score is 89% for XML2KML program. Thus, it is clear that the results are

independent of the size of the ATL programs and the number of recommended635

refactorings. Most of the refactorings that were not manually approved by the

developers were found to be either violating some post-conditions or introducing

design incoherence.

Since the MC metric just evaluates the correctness and not the relevance of

the recommended refactorings, we also compared the proposed operations with640

some expected ones defined manually by the different participants for several

ATL code fragments extracted from the seven programs. Figure 9 and Figure

10 summarize our findings. We found that a considerable number of proposed

refactorings, with an average of more than 91% in terms of precision and 96%

of recall, were already applied by the software development team and suggested645

manually (expected refactorings). The recall scores are higher than precision

ones since we found that the refactorings suggested manually by developers are
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incomplete compared to the solutions provided by our automated approach and

this was confirmed by the manual evaluation (MC). In addition, we found that

the slight deviation with the expected refactorings is not related to incorrect650

operations but to the fact that different refactoring strategies are equivalent in

terms of quality even if the applied refactoring types are different. Furthermore,

the use of the fitness function to minimize the number of refactorings may help

to reduce the noise in the recommended solutions and focus mainly on the

refactorings which improved the quality metrics.655

We decided to evaluate the performance of our approach using evaluation

metrics different than the fitness functions (quality metrics) to ensure a fair

comparison with existing techniques as detailed in the next research questions.

To summarize and answer RQ2, the experimentation results confirm that our

QMOOD based multi-objective approach helps the participants to refactor their660

ATL programs efficiently by finding the relevant refactorings and improve the

quality of all the five programs.

Results for RQ3: Figures 8, 9 and 10 confirm the average superior per-

formance of our QMOOD multi-objective approach compared to our previous

work based on NSGA-II (and limited to coupling and cohesion) [24] and a mono-665

objective GA aggregating all the objectives in an equal way. Figure 8 shows that

our approach provides significantly higher manual correctness results (MC) than

NSGA-II (as used in [24]), a mono-objective formulation having MC scores be-

tween 89% and 79% on the different ATL programs. The same observation is

valid for the precision and recall as described in Figures 9 and 10. Thus, it is670

clear that all the different objectives considered in our formulation are conflict-

ing justifying the outperformance of NSGA-II whether based on QMOOD or

not. Furthermore, the results confirm that the QMOOD metrics formulation

is more aligned with the preferences of ATL developers than the limited use of
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fan-in and fan-out.675

Since our proposal is based on multi-objective optimization, it is important

to evaluate the execution time (CT). It is evident that both NSGA-II adap-

tations require higher execution time than RS and GA since NSGA-II is con-

sidering a higher number of objectives and change operators. In addition, the

use of QMOOD metrics made the execution time slower comparing to our pre-680

vious multi-objective work. All the search-based algorithms under comparison

were executed on machines with Intel Xeon 3 GHz processors and 8 GB RAM.

Overall, RS, GA and NSGA-II algorithms were faster than QMOOD-NSGA-II.

In fact, the average execution time for QMOOD-NSGA-II NSGA-II, GA and

RS were respectively 23, 19, 15 and 10 minutes. However, the execution for685

QMOOD-NSGA-II is reasonable because the algorithm is not executed daily by

the developers and the refactoring of ATL programs is not a real-time problem.

To conclude, our QMOOD multi-objective approach provides better results,

on average, than our previous multi-objective work, a mono-objective refactor-

ing algorithm aggregating the different objectives (answer to RQ3).690

Results for RQ4: Since it is not sufficient to compare our proposal with

only search-based work, we compared the performance of QMOOD-NSGA-II

with the semi-automated refactoring approach proposed in [14]. Figures 8, 9

and 10 summarizes the results of the precision, recall and manual correctness

obtained on the 7 ATL programs. The precision of the semi-automated refactor-695

ing approach is slightly lower than NSGA-II in all the programs on an average

of 90%; however, the precision scores are lower than our proposal on all the

programs. The manual precision of both approaches is comparable and almost

the same.

In fact, the good precision achieved by the semi-automated approach can be700

easily explained by the fact that the refactorings are manually detected by the
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programmers but just automatically executed. In addition, the recall is lower

than QMOOD-NSGA-II because it is time-consuming for the programmers to

identify a large set of relevant refactorings which is automatically generated us-

ing QMOOD-NSGA-II. It is also clear that the semi-automated refactoring ap-705

proach [14] is time consuming with an average of more than 45 minutes however

our QMOOD-NSGA-II algorithms can recommend and apply relevant refac-

torings in a time frame lower than 25 minutes as described in Figure 11. To

conclude, our QMOOD-NSGA-III adaption also outperforms, on average, an

existing semi-automated approach not based on meta-heuristic search (RQ4).710

Results for RQ5: We have asked the participants to take a post-study

questionnaire after completing the refactoring tasks using our multi-objective

refactoring tool and all the techniques considered in our experiments. The

post-study questionnaires collected the opinions of the participants about their

experience in using our approach compared also to the semi-automated refac-715

toring tool [14] and our previous multi-objective work not based on QMOOD

[24]. The post-study questionnaire asked participants to rate their agreement

on a Likert scale from 1 (complete disagreement) to 5 (complete agreement)

with the following statements:

• The automated refactoring recommendations are a desirable feature in720

ATL.

• The multi-objective automated manner of recommending refactorings by

our approach is a useful and flexible way to refactor ATL model transfor-

mation programs compared to semi-automated or manual refactorings.

• The use of QMOOD quality attributes is relevant to improve the quality725

of ATL programs.

The agreement of the participants was 4.8, 4.4 and 4.8 for the three state-
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ments, respectively. This confirms the usefulness of our approach for the soft-

ware developers considered in our experiments. The remaining questions of the

post-study questionnaire were about the benefits and also limitations (possible730

improvements) of our multi-objective approach. In addition, the questionnaire

confirms that the developers found the use of QMOOD attributes is relevant

to identify refactoring opportunities for model transformation programs. We

summarize in the following the feedback of the developers. Most of the partic-

ipants mention that our automated approach is faster than semi-automated or735

manual refactoring since they spent a long time with these techniques to find

the locations where refactorings should be applied and which ones to select.

For example, developers spend time when they decide to extract a rule to find

the elements to move to the newly created rule. Thus, the developers liked

the functionality of our tool that helps them to automatically recommend the740

refactorings and finding quickly the right controlling parameters based on the

recommendations. Furthermore, refactorings may affect several locations in the

ATL source code, which is a time-consuming task to perform manually, but they

can perform it instantly using our tool.

Another important feature that the participants mentioned is that our ap-745

proach allows them to take the advantages of using multi-objective optimization

for ATL refactoring without the need to learn anything about optimization and

exploring explicitly the Pareto front to select one “ideal” solution. The im-

plicit exploration of the Pareto front using the Knee point strategy represents

an important advantage of our tool.750

The participants also suggested some possible improvements to our multi-

objective ATL refactoring approach. Some participants believe that it will be

very helpful to extend the tool by adding a new feature to apply automatically

some regression testing techniques on ATL programs to generate test cases to
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test applied refactorings. Another possibly suggested improvement is to use755

some visualization techniques to evaluate the impact of applying a refactor-

ing sequence. In addition, they did not appreciate sometimes the long list of

refactoring suggested by our tool since they want to take control of modifying

and rejecting some refactorings. In addition, the validation of this long list of

refactorings is time-consuming. Finally, the developers also highlighted that it760

will be interesting to consider the quality attributes of QMOOD with different

weights since they may not be equally important.

5. Threats to Validity

Following the methodology proposed by [37], there are four types of threats

that can affect the validity of our experiments. We consider each of these in the765

following paragraphs.

5.1. Conclusion Validity

Conclusion validity is concerned with the statistical relationship between

the treatment and the outcome. We addressed conclusion threats to validity by

performing 30 independent simulation runs for each problem instance and sta-770

tistically analyzing the obtained results using the Wilcoxon rank sum test with

a 95% confidence level (α = 5%). However, the parameter tuning of the different

optimization algorithms used in our experiments creates another internal threat

that we need to evaluate in our future work. The parameters’ values used in our

experiments are found by trial-and-error. However, it would be an interesting775

perspective to design an adaptive parameter tuning strategy for our approach

so that parameters are updated during the execution in order to provide the

best possible performance. In addition, our multi-objective formulation treats

the different types of refactoring with the same weight in terms of complexity
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when calculating one of the fitness functions. However, some refactoring types780

can be more complex than others to apply by developers.

5.2. Internal Validity

Internal validity is concerned with the causal relationship between the treat-

ment and the outcome. We dealt with internal threats to validity by performing

30 independent simulation runs for each problem instance. This makes it highly785

unlikely that the observed results were caused by anything other than the ap-

plied multi-objective approach. Another potential threat is related to the users

study that is performed mainly by students. We mitigate this threat by selecting

students who are active programmers in industry. They all have a strong back-

ground in refactoring and software quality as they all took a graduate course790

in software quality assurance. We also made sure that they understand ATL

concepts by giving them a lecture and applications about it. All the participants

took a test to evaluate a set of 5 refactorings before performing the experiments.

5.3. Construct Validity

Construct validity is concerned with the relationship between theory and795

what is observed. To evaluate the results of our approach, we selected solutions

at the knee point when we compared our approach with the mono-objective GA

and random search, but the developers may select a different solution based on

their preferences to give different weights to the objectives when selecting the

best refactoring solution. The different developers involved in our experiments800

may have divergent opinions about the recommended refactorings in terms of

correctness and readability. We considered in our experiments the majority of

votes from the developers. For the selection threat, the participant diversity

in terms of experience could affect the results of our study. We addressed the

selection threat by giving a lecture and examples of ATL refactorings already805
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evaluated with arguments and justification. For the fatigue threat, we did not

limit the time to fill the questionnaire and we also sent the questionnaires to

the participants by email and gave them the required time to complete each of

the required tasks.

Another construct threat is related to our choices when formulating the810

QMOOD model for model transformations. To mitigate this threat, we did a

mapping of the low-level OO metrics into ATL metrics and we tried to keep

the high-level definitions of the quality attributes. For instance, ATL programs

are composed by a set of rules instead of methods and its syntax and seman-

tic reflects that possible analogy between methods and rules. The experiments815

confirmed our hypothesis and choices during that mapping phase by generat-

ing correct and useful refactorings as manually validated by the participants.

However, it is possible that some of the quality attributes may not reflect the

developers preference due to subjective nature of refactoring.

5.4. External Validity820

External validity refers to the generalizability of our findings. In this study,

we performed our experiments on seven different ATL programs belonging to

different domains and having different sizes. However, we cannot assert that our

results can be generalized to other programs, and other practitioners. Future

replications of this study are necessary to confirm our findings. In addition,825

our study was limited to the use of specific refactoring types and ATL metrics.

Future replications of this study are necessary to confirm our findings, e.g., if the

general approach is also applicable for OCL-related refactorings [38, 39, 40, 41].

6. Related Work

Regarding the contribution of this paper, we discuss the main three threads830

of related work. First, we discuss the different kinds of work regarding the
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evaluation of the quality of model transformations. Second, we discuss the use

of search-based software engineering to solve model-driven engineering prob-

lems. Finally, we discuss work specifically dealing with the refactoring of model

transformations.835

6.1. Quality of Model Transformations

Of course, there is substantial work regarding the quality of software, thus,

we will only discuss the most closely related work especially those focusing on the

quality of model transformations. The authors in [42] defined the characteristics

of a quality framework for model-driven engineering (MDE). In [43], the authors840

discussed the various challenges that affect the quality of model transformations

and proposed design patterns as well as quantitative metrics to assess the quality

of transformations.

There is a decent amount of work revolving around the definition of met-

rics to assess the quality of model transformations in general or for a particular845

transformation language [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 23]. Both

[55, 56] defined metrics for ATL, the latter though categorized ATL metrics

into three main groups; rule, unit, and helper metrics. Similarly, in [57] met-

rics were divided into four groups; rule, helper, dependency, and miscellaneous

metrics. In [58], however, the authors defined 27 quality metrics to measure850

six quality attributes: understandability, modularity, modifiability, reusability,

completeness, and consistency. An emphasis of the need to relate metrics to

quality attributes for ATL is detailed in [10] and the relation between perfor-

mance and the size and complexity of input model was put under examination in

[59] in addition to a comparison between the performance of execution engines855

for three transformation languages: ATL, QVTr, and QVTo.

In [60], the authors evaluated the external quality of transformation by ap-

plying metrics to both source and target models and evaluate the impact of the
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transformation on the model’s quality. In [61], a set of metrics were proposed to

measure the change impact of ATL model transformations. Other contributions860

focused on a particular quality attribute; [62] identified the differences between

transformation languages in terms of comprehensibility, whereas a set of metrics

to measure the maintainability of QVT relational transformations has been pro-

posed in [63]. Finally, in [64] the authors discuss the concept of technical depth

for transformation languages by adapting quality flaws based on metrics for865

program code for different model transformation languages. Bad smells based

on metrics for transformations written in the Epsilon Transformation Language

(ETL) are reported in [65].

6.2. Search-Based Software Engineering and Model Driven Engineering

SBSE has been used to tackle major MDE challenges for a while, as the870

associated search spaces have the potential to be very large, SBSE techniques are

gaining popularity in both academia and industry since they are very beneficial

in terms of finding good solutions in a reasonable time [66].

Model transformation testing is considered as one of the main challenges in

MDE as detailed in [67, 68]. The authors in [69, 70, 71, 72, 73] focused on875

test data generation. Others worked on minimizing the test suite [74], the def-

inition of oracle function [44], and the automatic derivation of well-formedness

rules [75].

Besides testing, the SBSE approach is extended to cover various MDE chal-

lenges; model versioning or model merging [76, 77, 78], transformation rules880

orchestration [79, 80, 81, 82, 83], and model refactoring in both design- and

code-levels as is discussed next.

There is a number of studies that used an SBSE approach to detect or

recommend model-refactoring opportunities; The authors in [84] proposed the

REMODEL approach which uses both genetic programming and software met-885
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rics (based on QMOOD [25]) to generate design refactorings. The main two

objectives of REMODEL are: (i) using QMOOD metrics to improve the design

quality, and (ii) improving the maintainability of the software by introducing

design patterns. A multi-level refactoring approach was presented in [85, 86],

where both the source code and the design are taken into consideration dur-890

ing the refactoring process. The developer initially tailors the desired target

design that is better in terms of quality metrics or developer’s perspective (or

both) and the source code will then be refactored accordingly. The model refac-

toring by example approach was considered in [87], the authors used genetic

programming to detect refactoring opportunities concerning multiple model de-895

sign anti-patterns by analyzing a couple of design defects examples from various

systems and using this knowledge to generate defect detection rules. The au-

thors went the extra mile by using an interactive genetic algorithm (IGA) in

[88]. By adding the user’s feedback to the fitness function, the approach became

able to adapt the recommended sequence of refactorings to accommodate the900

developer’s needs since the IGA better understood the semantics of the software

system.

The idea of formalizing model transformations as a combinatorial optimiza-

tion problem was first proposed in [89], several work followed this initiative to

use search-based optimization techniques with model transformations for differ-905

ent intents. The pioneer contributions applied the search-based techniques to

the model transformation by example either to generate transformation rules

[45, 90, 91], recover transformation traces [92], or to generate target mod-

els [89, 93].

6.3. Refactoring in Model Driven Engineering910

With respect to the automatic exploration of model transformation refac-

torings opportunities, we discuss in this section related approaches. Compared
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to refactorings for different modeling languages, e.g., cf. [5, 94, 95, 51, 77, 96],

to mention just a few approaches and surveys, only a few dedicated approaches

have been developed for refactoring model transformations.915

Dedicated refactoring operators for graph transformations have been pre-

sented in [12] with a concentration on certain quality aspects such as changeabil-

ity, conciseness, and comprehensibility. Henshin-specific model transformation

bad smells which have an impact on the performance have been discussed in [97].

The authors in [13] proposed clone detection and a merge-based rule refactoring920

approach for graph transformations which is related to inheritance-based ATL

refactorings. However, the study focusses on the correctness of the merge-based

rule refactorings, while we focus on the application of inheritance-based ATL

refactorings with respect to quality metrics. Recently, Strüber et al. proposed a

variability-based model transformation approach, in order to tackle two issues;925

the maintainability and the performance of model transformations [98].

In [14], the first refactoring catalog for model transformations is presented

which has been implemented for ATL. In our contributions, we build on the

refactoring operations presented but go beyond the automation support ini-

tially proposed by [14]. While in the previous work, the refactoring process is930

semi-automated, meaning that the refactoring operations have to be explicitly

triggered by the user, in our work we provide a fully automated approach for

searching the refactoring space of a model transformation.

6.4. Synopsis

While there have been efforts of defining metrics for determining the quality935

of model transformations as well as the creation of refactoring catalogs, these

efforts have been happening mostly in an isolated manner. Furthermore, only

semi-automated refactoring approaches have been proposed which do not al-

low to deal with the huge search space of model transformation refactoring in
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a scalable manner. With this paper, we close the gap between reasoning on940

the quality of model transformations as well as their improvement in terms of

refactoring by proposing a fully automated approach which is able to deal with

the huge search space.

7. Conclusion

In this paper, we proposed an automated approach for refactoring ATL pro-945

grams to find a trade-off between different conflicting objectives. We have also

adapted an existing quality model, QMOOD, for the case of model transfor-

mations to guide the search for relevant refactorings. Our automated approach

allows developers to benefit from search-based refactoring tools without manu-

ally identifying refactoring opportunities. To evaluate the effectiveness of our950

tool, we conducted a user study with several software developers who evalu-

ated the tool and compared it with random search, a multi-objective adaption

based on two quality metrics, an existing mono-objective formulation, and an

approach not based on heuristic search. Statistical analysis of our experiments

showed that our proposal performed significantly better than random search,955

our previous multi-objective work not based on QMOOD [24], a mono-objective

formulation and the manual refactoring selection approach presented in [14] with

an average precision and recall of 89% and 95% respectively when compared to

manual solutions provided by a set of developers. The software developers, who

participated in our experiments, confirmed also the relevance of the suggested960

refactorings as an outcome of a survey study.

Future work involves the extension of our approach to support automated

regression testing since it is important to test the refactorings introduced to

the ATL programs. Furthermore, we will address the problem of identifying

antipatterns in ATL programs rather than just relying on quality attributes.965
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Finally, we will consider extending our current quality model with additional

quality metrics such as the modularity measures discussed in [9, 10, 33]. In

addition, we will adopt our multi-objective approach to consider the inclusion

of ATL design patterns, defined in [34], which may increase further the quality

of generated ATL programs.970
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[66] I. Boussäıd, P. Siarry, M. Ahmed-Nacer, A survey on search-based model-

driven engineering, automated software engineering 24 (2) (2017) 233–294.

[67] R. V. D. Straeten, T. Mens, S. V. Baelen, Challenges in model-driven

software engineering, in: Models in Software Engineering, Workshops and1175

Symposia at MODELS 2008, 2009, pp. 35–47.

[68] B. R. Bryant, J. G. Gray, M. Mernik, P. Clarke, G. Karsai, Challenges and

directions in formalizing the semantics of modeling languages, Computer

Science and Information Systems 8 (2) (2011) 225–253.

[69] A. A. Jilani, M. Z. Iqbal, M. U. Khan, A search based test data generation1180

approach for model transformations, in: Proceedings of the International

Conference on Theory and Practice of Model Transformations (ICMT),

2014, pp. 17–24.

[70] J. Shelburg, M. Kessentini, D. R. Tauritz, Regression testing for model

transformations: A multi-objective approach, in: Proceedings of the In-1185

57



ternational Symposium on Search Based Software Engineering, 2013, pp.

209–223.

[71] W. Wang, M. Kessentini, W. Jiang, Test cases generation for model trans-

formations from structural information, MDEBE@MoDELS (2013) 42–51.

[72] J. J. C. Gomez, B. Baudry, H. Sahraoui, Searching the boundaries of a1190

modeling space to test metamodels, in: Proceedings of the Fifth Interna-

tional Conference on Software Testing, Verification and Validation, 2012,

pp. 131–140.

[73] D. Sahin, M. Kessentini, M. Wimmer, K. Deb, Model transformation test-

ing: a bi-level search-based software engineering approach, Journal of Soft-1195

ware: Evolution and Process 27 (11) (2015) 821–837.

[74] L. M. Rose, S. M. Poulding, Efficient probabilistic testing of model trans-

formations using search, in: Proceedings of the 1st International Workshop

on Combining Modelling and Search-Based Software Engineering, 2013, pp.

16–21.1200

[75] M. Faunes, J. J. Cadavid, B. Baudry, H. A. Sahraoui, B. Combemale,

Automatically searching for metamodel well-formedness rules in examples

and counter-examples, in: Proceedings of the 16th International Conference

on Model-Driven Engineering Languages and Systems, 2013, pp. 187–202.

[76] M. Kessentini, W. Werda, P. Langer, M. Wimmer, Search-based model1205

merging, in: Proceedings of the 15th annual conference on Genetic and

evolutionary computation, 2013, pp. 1453–1460.

[77] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh, K. Deb,

Momm: Multi-objective model merging, Journal of Systems and Software

103 (2015) 423–439.1210

58



[78] C. Debreceni, I. Ráth, D. Varró, X. D. Carlos, X. Mendialdua, S. Trujillo,

Automated model merge by design space exploration, in: Proceedings of

the 19th International Conference on Fundamental Approaches to Software

Engineering, 2016, pp. 104–121.

[79] J. Denil, M. Jukss, C. Verbrugge, H. Vangheluwe, Search-based model op-1215

timization using model transformations, in: International Conference on

System Analysis and Modeling, 2014, pp. 80–95.

[80] M. Fleck, J. Troya, M. Wimmer, Marrying search-based optimization and

model transformation technology, Proc. of NasBASE (2015) 1–16.

[81] S. Gyapay, Ákos Schmidt, D. Varró, Joint optimization and reachability1220

analysis in graph transformation systems with time, Electronic Notes in

Theoretical Computer Science 109 (2004) 137–147.

[82] M. W. Mkaouer, M. Kessentini, S. Bechikh, D. R. Tauritz, Preference-based

multi-objective software modelling, in: Proceedings of the 1st International

Workshop on Combining Modelling and Search-Based Software Engineer-1225

ing, 2013, pp. 61–66.
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