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Summary

In this paper, we propose a new framework of particle filtering that adopts
the minimax strategy. In the approach, we minimize a maximized risk, and
the process of the risk maximization is reflected when computing the weights
of particles. This scheme results in the significantly reduced variance of the
weights of particles that enables the robustness against the degeneracy problem,
and we can obtain improved quality of particles. The proposed approach is
robust against environmentally adverse scenarios, particularly when the state of
a target is highly maneuvering. Furthermore, we can reduce the computational
complexity by avoiding the computation of a complex joint probability density
function. We investigate the new method by comparing its performance to that
of standard particle filtering and verify its effectiveness through experiments.
The employed strategy can be adopted for any other variants of particle filtering
to enhance tracking performance.
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1 INTRODUCTION

Conventional adaptive filters such as the adaptive Kalman filter can be applied to maneuvering target tracking.1 In this
adaptive filter, two additional schemes exist beyond the standard Kalman filtering, ie, maneuvering detection and adjust-
ing the state noise variance. This adaptive filter can be applied to the problems of tracking a maneuvering target by
white-noise acceleration models. More recently, the interactive multiple model extended Kalman filter (IMM-EKF) was
proposed for tracking maneuvering targets where the state model varies based on multiple constant turn models. More-
over, IMM-EKF has been successfully applied for tracking a maneuvering target across various problems. Particle filtering
(PF) was applied in the form of IMM that outperformed conventional IMM-EKF.2,3

In addition, PF was applied for solving this highly nonlinear estimation problem where the particles are used to
approximate the probability density function because we cannot compute the expected state with respect to the poste-
rior function in a closed-form; PF has demonstrated powerful tracking performance in various dynamic state estimation
problems, particularly when the state system and measurement functions are nonlinear functions with respect to
the “state.” Since its initial implementations in the 1990s, PF has become even more powerful owing to significant
advancements in computing processors that enabled practical implementations in various problems.4,5 Furthermore, var-
ious variants of PF have been proposed since its initial proposal such as auxiliary PF (APF),6 regularized PF (RPF),7
Kullback-Leibler divergence PF (KLDPF),8-10 Gaussian PF (GPF),11,12 and cost-reference PF.13-15 The APF algorithm
is the same as that of sequential importance resampling PF (SIRPF) until the resampling process; thereafter, we go
back to the previous time step and propagate the particles again based on resampled particles. Standard PF (SPF)
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undergoes its inherent defect of particle impoverishment, and RPF was particularly modified from SPF to overcome
the problem. The primary feature of KLDPF is that the number of employed particles is optimized adaptively based
on a predefined error bound at every time step. In addition, GPF comprises a simple algorithm with excellent per-
formance that does not require resampling, which makes GPF robust against particle impoverishment phenomenon
that results from the resampling process. Cost-reference PF is applied with unknown noise statistical information and
is robust against particle impoverishment because the employed proposal density is based on a Gaussian function
as in GPF.

Theoretically, PF can show optimal performance with infinitely many particles in nonlinear problems, and outperforms
various suboptimal approaches such as the extended Kalman filter and Kalman variants, with a reasonable number of
particles. Nevertheless, occasionally, we are not able to obtain satisfactory results by PF when the time-varying target
state varies drastically and highly maneuvers. One crucial factor for the nonideal performance of PF is that degener-
acy problem; that is, after a few iterations, we have only one particle that has meaningful weight while all the other
particles have almost zeros weights, and the variance of the weights only increases over time that eventually results in
unsatisfactory performance of PF.16 To get over with the degeneracy problem, the resampling process is adopted that
regenerate high-quality particles more often; nonetheless, we also have a side effect of particle impoverishment by resam-
pling that we may have all the same particles within a few iterations, particularly when we have very small state noise.
Therefore, the variance of the weights of particles is crucial to obtain the successful performance of PF approaches.
To this end, we adopt a minimax strategy by which we can obtain significantly reduced the variance of the weights
of particles that eventually results in robustness against maneuvering target and improved tracking performance of PF
approaches. In this framework, we maximize a predefined risk function on the condition that the risk is bounded over
time; subsequently, we obtain the estimator that minimizes the maximized risk function. Therefore, the bounded max-
imum risk is minimized in this strategy to avoid the worst-case divergence from true trajectories and provides more
robust performance. In this strategy, the focus is directed to avoiding large errors rather than merely minimizing errors
in the problem where large errors exist due to large variations in the state. To accomplish this goal, we follow the
same criterion of minimum mean square error (MMSE) while using the possible maximum MSE as a risk function to
be minimized.

In this paper, we propose a new algorithm of minimax-PF (MPF), especially for tracking problems where a target state
is highly maneuvering. We show the outperforming results of the proposed MPF compared with the standard PF. Further,
we employ the minimax strategy to IMM-PF and show its outperforming result over conventional IMM-EKF and IMM-PF.
The proposed approach can be adopted for any variants of PF to improve their tracking performances as shown in the
experiments.

This paper is organized as follows. In Section 2, we describe the problem formulation. In Section 3, we describe the
proposed MPF. In Section 4, we assess the performance of the proposed MPF compared to nonminimax particle filers;
besides, we apply the minimax strategy to IMM-PF and compare the performances of IMM-EKF, IMM-PF, and IMM-MPF.
Finally, we conclude and provide remarks in the last section.

2 PROBLEM FORMULATION

In this problem, we track the location and velocity of a single target in a two-dimensional space where a target is moving
with random acceleration based on range and bearing measurements. This problem is of interest in various applications
such as radar systems and is a paradigm for target tracking problems. We estimate the state of the target based on observa-
tions measured at the origin of the coordinate system, as shown in Figure 1A. The moving direction of the target is subject
to the acceleration that is determined by the process noise in the state equation. We denote the state and measurement
by 𝜽 and z, respectively, and the state equation is expressed as follows17-19:

⎡⎢⎢⎢⎣
rx,k
r𝑦,k
vx,k
v𝑦,k

⎤⎥⎥⎥⎦
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=
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𝜽k−1

+ A2uk, (1)
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FIGURE 1 Target is tracked based on range R and bearing B in
radar [Colour figure can be viewed at wileyonlinelibrary.com]

where

A2 =

⎡⎢⎢⎢⎢⎣
T2

2
0

0 T2

2
T 0
0 T

⎤⎥⎥⎥⎥⎦
, uk =

[
ux,k
u𝑦,k

]
. (2)

r, v, u, and (x, y) denote the location, velocity, acceleration, and coordinates, respectively. T is the sampling period, and k
is the discrete-time index. Therefore, the time-varying state is composed of four elements, ie, 2D location and 2D velocity.
The state of the location and the velocity are subjected to a random process of uk. The range and bearing compose the
measurement equation, which is highly nonlinear, and described as follows:

zk = f (𝜽k) + 𝝐k = [Rk Bk]⊤ + 𝝐k, (3)

where

zk = [z1,k z2,k]⊤, f (𝜽k) = [𝑓1(𝜽k) 𝑓2(𝜽k)]⊤, (4)

the range

z1,k = zR,k = Rk + 𝜖R,k =
√

r2
x,k + r2

𝑦,k + 𝜖R,k, (5)

the bearing

z2,k = zB,k = Bk + 𝜖B,k = arctan 2(r𝑦,k, rx,k) + 𝜖B,k, (6)

and the measurement noise 𝝐k = [𝜖R,k 𝜖B,k]⊤. arctan 2(r𝑦,k, rx,k) denotes the four-quadrant inverse tangent that acts on ry,k
and rx,k elementwise to return Bk. We assume that a measurement noise 𝜖i for the measurement zi,k follows a zero-mean
white Gaussian

𝜖i,k ∼  (
0, 𝜎2

i,k

)
for i = 1, … ,M, (7)

where M is the total number of employed measurements. In this case, the likelihood function with respect to only zi,k
becomes

p(zi,k|𝜽k) =
1√

2𝜋𝜎2
i,k

exp

{
−
[zi,k − 𝑓i (𝜽k)]2

2𝜎2
i,k

}
. (8)

3 PROPOSED APPROACH

3.1 Minimax approach
In game theory, a minimax approach is employed as a solution for zero-sum game problems.20,21 We model the tracking
problem as a game where one player is the estimator that tries to obtain the accurate values of the time-varying state
whereas the other player is the environment that adds the noise to the state and measurements to disturb the other
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player estimating the state. In this approach, the cost function is designed based on the strategy that the probability of the
maximum expected point-loss is minimized regardless of the strategy of the opponent. Therefore, the expected point-loss
becomes the risk that is maximized before the minimization in the minimax strategy. The minimax approach minimizes
its maximal risk among all estimators, which can be described as follows:

inf
�̂�k

sup
𝝐k

k
(
𝜽k, �̂�k

)
, (9)

where “inf,” “sup,” and  denote “infimum,” “supremum,” and risk, respectively.

3.2 Minimax particle filtering (MPF)
In the MMSE criterion of Bayesian estimation, the following mean square error is defined as the risk function to be
minimized:

∫
(
𝜽k − �̂�

MMSE
k

)2
p(𝜽0∶k|z1∶k)d𝜽k (10)

to obtain the following MMSE:

�̂�
MMSE
k = ∫ 𝜽kp(𝜽0∶k|z1∶k)d𝜽k, (11)

where the square error, (𝜽k − �̂�
MMSE
k )2 is defined as the cost function in this MMSE estimator. Similarly, in PF,

PF
k =

N∑
𝑗p=1

[(
𝜽
𝑗p

k − �̂�
PF
k

)2
𝜔
𝑗p

k

]
, where

N∑
𝑗p=1

𝜔
𝑗p

k = 1 (12)

is the risk function that we minimize, where N is the number of employed particles, jp is the particle index, 𝜔𝑗p

k is the
weight of the particle jp at time step k, and 𝜽

𝑗p

k is the particle with the index jp; therefore, we obtain

�̂�
PF
k =

N∑
𝑗p=1

𝜔
𝑗p

k 𝜽
𝑗p

k (13)

because
𝜕PF

k

𝜕�̂�
PF
k

= −2
N∑

𝑗p=1
𝜽
𝑗p

k 𝜔
𝑗p

k + 2�̂�PF
k

N∑
𝑗p=1

𝜔
𝑗p

k , (14)

and (13) makes (14) zero.
To formulate the minimax strategy for PF, from (12), we describe a new risk function with respect to each particle as

follows:

MPF
k =

N∑
𝑗p=1

(MPF,𝑗p

k

)
=

N∑
𝑗p=1

[(
𝜽
𝑗p

k − �̂�
MPF
k

)2
𝜔
𝑗p

k

]
. (15)

In the proposed minimax-PF, we adopt a minimax strategy to the computations of the weights of particles. In particular,
we select only one measurement that may incur the highest risk. That is, for M measurements, we use only use one
measurement that provides the minimum weight rather than the maximum weight. Therefore, to apply this approach,
multiple measurements are required; otherwise, the approach becomes identical to that of regular PF.

According to (15), only 𝜔
𝑗p

k is the factor that affects the magnitude of the risk, and the weight can be associated with a
measurement as follows:

𝜔
𝑗p

k ∈
{
𝜔
𝑗p

1,k, 𝜔
𝑗p

2,k, … , 𝜔
𝑗p

M,k

}
, (16)

where, for example, 𝜔𝑗p

1,k is the weight of the particle 𝜽
𝑗p

k computed based on only the measurement z1,k. The argument
i is determined with respect to each particle. Therefore, in minimax-PF, we maximize the risk with respect to each
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TABLE 1 Algorithm of minimax
particle filtering (PF) for sequential
importance resampling PF. Only
the steps, which are boldfaced, ie,
(b) ∼ (d), of computing the weights
of particles are different from those
of standard PF

• Initialization
for jp = 1, … ,N

Particles are generated: 𝜽𝑗p
0 ∼ p (𝜽0), and assign weights: 𝜔𝑗p

0 = 1∕N.
end

• Recursive update
for k = 1, … ,K(total time steps),
for jp = 1, … ,N,
(a) Generate particles from a proposal density q(·): 𝜽𝑗p

k ∼ q(𝜽k|𝜽𝑗p

k−1, zk).

(b) Compute the weights with respect to each measurement: 𝜔𝑗p

i,k = p(zi,k|𝜽𝑗p

k ) for i = 1, … ,M

assuming we employ prior density, q(𝜽k|𝜽𝑗p

k−1, zk) = p(𝜽k|𝜽𝑗p

k−1), as the proposal density.
end

for jp = 1, … ,N,

(c) Normalize the weights with respect to each measurement: �̄�𝑗p

i,k =
𝜔
𝑗p
i,k∑N

𝑗p=1 𝜔
𝑗p
i,k

for i = 1, … ,M.

(d) Select the minimum weight among M weights for each particle:
𝜔
𝑗p

k = �̄�
𝑗p

ip ,k
, where ip = argmin

i∈{1,… ,M}
�̄�
𝑗p

i,k.

end

(e) Normalize the weights: �̄�𝑗p

k = 𝜔
𝑗p
k∑N

𝑗p=1 𝜔
𝑗p
k

for jp = 1, … ,N.

(f) Compute the estimate: �̂�MPF
k =

∑N
𝑗p=1 �̄�

𝑗p

k 𝜽
𝑗p

k .
(g) Resample the particles.16

end

particle by associating the minimum weight to a particle among M weights. Subsequently, we maximize the following
total risk:

MPF,Max
k =

N∑
𝑗p=1

[(
𝜽
𝑗p

k − �̂�
MPF
k

)2
𝜔
𝑗p

ip,k

]
, (17)

where the association between the measurement index ip and the particle jp is determined by

ip = argmin
i∈{1,… ,M}

𝜔
𝑗p

i,k, (18)

and the estimate of MPF at time step k

�̂�
MPF
k =

N∑
𝑗p=1

𝜔
𝑗p

ip,k
𝜽
𝑗p

k . (19)

At every time step, for the computation of the weight of every single particle, we may select a different single measurement
that devalues the particle as low as possible.

The MPF algorithm is summarized in Table 1 where only the boldfaced steps, ie, (b) ∼ (d), of computing the weights
of particles are different from those of a standard PF. Applying the proposed minimax strategy to any variants of PF is
straightforward because it only requires modifying the step of computing the weights of particles.

4 PERFORMANCE ASSESSMENT

In this section, we assess the performance of the proposed minimax-PFs by comparing to that of regular PFs. We consider
SIRPF first for a regular PF. Regarding the state noises, we first specify a parameter 𝜉 and randomly generate a noise
variance to be “𝜉 · (0, 1),” where  (0, 1) is the standard uniform distribution. Subsequently, random noise is generated
by a Gaussian distribution that has zero mean with the generated variance of 𝜉 · (0, 1). We performed experiments with
two kinds of 𝜉 in terms of magnitude to represent low and high maneuvering targets, respectively. We denote scenarios
by SS and SL for small and large values of 𝜉, respectively. Figure 2 shows an illustrative example of two trajectories of a
target where two significantly different magnitudes of 𝜉 are employed. With 𝜉 = 10 for the state noise, the trajectory of
the target labeled as T-1 shows highly maneuvering. On the contrary, a run with 𝜉 = 0.1 results in the trajectory labeled
as T-2 that shows significantly less maneuvering compared to T-1 during the same elapsed time.
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FIGURE 2 An illustrative example of two trajectories of a target
with 𝜉 = 0.1 and 10 for the state noise during the same elapsed time.
It is highly maneuvering with 𝜉 = 10, ie, T-1 [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 3 Performance comparison between sequential importance resampling particle filtering (PF) and minimax (PF). Trajectories
manifest significant maneuvering when 𝜉 = 1. Moreover, 500 runs were performed with 500 particles. Comparison with Cramér-Rao lower
bound (CRLB) was performed, as derived in the appendix. A, Mean distance error (MDE) with 𝜉 = 0.1; B, Mean square error of distance
(MSED) with 𝜉 = 0.1; C, MDE with 𝜉 = 1; D, MSED with 𝜉 = 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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For the measurement noises, we use 𝜁 that plays the same role as 𝜉 of the state noise. We have two 𝜁s for range and
bearing measurements, ie, 𝜁R and 𝜁B, respectively. We select 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5 for SS and 𝜉 = 1,
𝜁R = 5 × 10−3, and 𝜁B = 5 × 10−4 for SL The number of total time steps K = 100. We performed 500 experiments to obtain
the mean square error (MSE) of distance (MSED) and mean distance error (MDE) for each location over time. The initial
state is generated with a known variance.

The MDE and MSED of SPF, MPF, and Cramér-Rao lower bound (CRLB) are compared in Figure 3. Figures 3A and
3B show the results under SS (𝜉=0.1). Figures 3A and 3B show that the performance of SPF and MPF is similar in
this low maneuvering scenario while MPF shows marginally better performance than PF. The result with 𝜉 = 1 is
shown in Figures 3C and 3D where we have significantly maneuvering trajectories and MPF shows better performance
than PF.

Based on (12), we computed the risk function for both PF frameworks, and the mean values over 500 runs are shown
in Figures 4 and 5. Figure 4 shows that the risk by MPF is much higher than that of SPF. For comparison purposes,
Figure 5 shows the mean risk of PFwmax in addition to those of MPF and SPF. In the PFwmax framework, the minimum
risk is adopted for each particle as opposed to the case of MPF. The resulting mean risk of PFwmax is not bounded, and
it diverges significantly such that we cannot perform a minimization to obtain an estimate. Although we did not show
results, the estimation performance of PFwmax is unduly poor, which is not acceptable. In the following sections, we assess
the performance of the minimax versions of PF approaches for other variants such as APF, RPF, and KLDPF.

FIGURE 4 Mean risk over 500 runs with 500 particles in log-scale
based on (12). Results regarding only rx are shown, and those of the
remaining elements are similar to those of rx . Mean risk for
sequential importance resampling particle filtering (SIRPF) and
minimax particle filtering (MPF) for 𝜉 = 0.1 and 10. The same values
of 𝜉R = 0.1 and xiB = 0.001 are applied for both scenarios [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Mean risk over 500 runs with three measurements and
500 particles in log-scale based on (12). Results regarding only rx are
shown, and those of the remaining elements are similar to those of
rx . Mean risk of PFwmax is not bounded and diverges over time steps
where we use the maximum weight for particles in PFwmax. MPF,
minimax particle filtering; PF, particle filtering; SIRPF, sequential
importance resampling particle filtering [Colour figure can be
viewed at wileyonlinelibrary.com]
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4.1 Auxiliary particle filter
Here, APF was initially introduced in the work of Pitt and Shephard22 as a variant of SIRPF. We adopted the algorithm
based on the work of Arulampalam et al.16 In this variant, the algorithm is the same to SIRPF except for the resampling
process. Specifically, APF returns to the previous time step after the resampling particles and then propagates the particles
again for the next time step. We used 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5 for SS and 𝜉 = 10−2, 𝜁R = 10−3, and 𝜁B = 10−4

for SL in the experiments.
The results are shown in Figure 6 where minimax-APF (MAPF) outperforms APF even under the scenario of SS.

4.2 Regularized PF
In the RPF, PF was modified to resolve the particle impoverishment problem.23 Moreover, RPF employs a kernel density
that perturbs the state of a particle to achieve the diversity of the particle states. Specifically, the posterior density is
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FIGURE 6 Performance comparison between auxiliary particle filtering (APF) and minimax-APF (MAPF). Here, 500 runs were
performed with 500 particles. A, Mean distance error (MDE) with 𝜉 = 10−3; B, Mean square error of distance (MSED) with 𝜉 = 10−3; C, MDE
with 𝜉 = 10−2; D, MSED with 𝜉 = 10−2. CRB, Cramér-Rao bound [Colour figure can be viewed at wileyonlinelibrary.com]
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approximated in RPF as follows:

p(𝜽k|z1∶k) ≈
M∑

i=1
𝜔
𝑗p

k Γ𝜅

(
𝜽k − 𝜽

𝑗p

k

)
, (20)

where Γ𝜅(𝜽) = 1
𝜅n

𝜽

Γ
(

𝜽

𝜅

)
is the rescaled kernel density for any kernel bandwidth 𝜅 > 0 and n𝜽 is the dimension of the state

parameter 𝜽. The optimal choice of the kernel is the Epanechnikov kernel; however, it can be replaced by the Gaussian
kernel.24 Subsequently, the associated optimal bandwidth is

𝜅opt = AN− 1
n
𝜽
+4 , where A =

(
4

n𝜽 + 2

) 1
n
𝜽
+4

. (21)

In this study, we use n𝜽 = 4 with N = 500 particles to perform experiments and compare the performances of RPF and
minimax-RPF (MRPF). We used 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5 for SS and 𝜉 = 1, 𝜁R = 0.1, and 𝜁B = 10−2 for SL
in the experiments. The results are shown in Figure 7, where MRPF outperforms RPF even under the scenario of SS, as
shown in Figures 7A and 7B. Under both scenarios, MRPF outperforms RPF.
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FIGURE 7 Performance comparison between regularized particle filtering (RPF) and minimax-RPF (MRPF). Here, 500 runs were
performed with 500 particles. A, Mean distance error (MDE) with 𝜉 = 0.1; B, Mean square error of distance (MSED) with 𝜉 = 0.1; C, MDE
with 𝜉 = 1; D, MSED with 𝜉 = 1. CRB, Cramér-Rao bound [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


LIM ET AL. 645

4.3 Kullback-Leibler divergence PF
A primary feature of KLDPF is that the number of employed particles is optimized adaptively based on a predefined
error bound at every time step.8 While it may not show better performance than SPF, the number of employed particles is
dynamically adjusted to reduce redundant particles and also unnecessary computations accordingly. We adopt the KLDPF
algorithm introduced in the work of Li et al9 with an error bound of 0.01. The initial number of employed particles is 250,
and the maximum number of particles is bounded by 500. The probability bound is 0.01; the bin size is 1∕2 ×

√
𝜹uk × 4 as

suggested in the aforementioned work,9 where 1∕2 is from A2; 𝛿uk is the variance of the state noise with respect to vx or
vy. Although KLDPF adaptively optimizes the number of particles at every time step, the algorithm inherently requires a
higher computational cost than those of other PF variants.

We used 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5 for SS and 𝜉 = 10, 𝜁R = 0.1, and 𝜁B = 10−3 for SL in the experiments.
Minimax-KLDPF (MKLDPF) outperforms KLDPF in both scenarios as shown in Figure 8. Figure 9 shows the mean
number of the employed particles for the scenarios of highly maneuvering target tracking, where MKLDPF requires
marginally more number of particles than that required by regular KLDPF.
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FIGURE 8 Performance comparison between Kullback-Leibler divergence particle filtering (KLDPF) and minimax-KLDPF (MKLDPF).
The initial number of particles is 200 with a maximum of 500 particles. A, Mean distance error (MDE) with 𝜉 = 10−3; B, Mean square error of
distance (MSED) with 𝜉 = 10−3; C, MDE with 𝜉 = 10−2; D, MSED with 𝜉 = 10−2. CRB, Cramér-Rao bound [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


646 LIM ET AL.

FIGURE 9 The number of employed particles with 500 maximum
particles in Kullback-Leibler divergence particle filtering (KLDPF),
two measurements, and 𝜉 = 10. MKLDPF, minimax-KLDPF [Colour
figure can be viewed at wileyonlinelibrary.com]
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4.4 Comparison with interactive multiple model filters
Finally, we adopt the minimax strategy to the IMM particle filtering (IMM-PF). A conventional IMM-EKF evaluation
is compared to the IMM-minimax-PF (IMM-MPF) approach in this experiment. We refer to the works of Xu25 and Li
and Wang3 for IMM-EKF and IMM-PF, respectively. The results are shown in Figure 10 where IMM-MPF outperforms
IMM-PF and IMM-EKF. We used 𝜉 = 0.1, 𝜁R = 10−2, and 𝜁B = 10−2 in the experiments.

4.5 Discussion
The proposed MPF was derived based on the same criterion as a Bayesian method that minimizes MSE, except for the
main difference that the proposed approach adopts the maximum risk among various options of risk functions. Unlike
conventional Bayesian-MMSE-PF approaches where the weight of each particle is computed based on joint probability
density (ie, usually multiplication of likelihood functions of all measurements assuming white Gaussian noise), the pro-
posed minimax approach selects the minimum weight based on a single measurement for each particle. We obtain the
estimate based on these weights that are selected to minimize the maximized risk. This strategy enables the significantly
reduced variance of the weights of particles. We can obtain improved quality of particles by the reduced variance and
eventually improve the tracking performance. Therefore, the proposed minimax strategy makes the filter robust against
the degeneracy problem of standard PF approaches.

FIGURE 10 Mean distance error comparison of interactive
multiple model extended Kalman filter (IMM-EKF), IMM particle
filtering (IMM-PF), and IMM minimax-PF (IMM-MPF) under SS,
where 𝜎u𝜔

is the noise variance of the turn rate. MDE, mean distance
error [Colour figure can be viewed at wileyonlinelibrary.com]
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The proposed approach is computationally efficient because it does not require computing a joint probability for the
weight of a particle. Computation of joint probability based on multiple measurements typically undergoes substantial
computational load owing to additional multiplications.

We compared the performances of all minimax-PF approaches together. The results are shown in Figures 11 and 12
under SS and SL scenarios, respectively. We used 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5 for SS and 𝜉 = 1, 𝜁R = 0.1, and
𝜁B = 10−2 for SL in the experiments. All minimax PFs show similar performance under the scenario of SS, while both
MAPF and MRPF show similarly better performance compared with the other two approaches under the scenario of SL.

We also computed the mean variance of the weights of particles during the previous experiments for all minimax-PFs.
Figure 13 shows the mean variances of each minimax-PF under both scenarios of SS and SL. The results show that we can
obtain significantly reduced variances by minimax-PFs compared with regular PFs regardless of the scenarios.

We obtained normalized estimation error squared (NEES) and average NEES (ANEES) for all particle filtering
approaches concerning both regular and minimax versions. We used 𝜉 = 10−3, 𝜁R = 10−4, and 𝜁B = 10−5, which is close
to the scenario of SS in the experiments. Based on the work of Li et al,26 NEES and ANEES are defined, respectively, as
follows:

𝜒r =
(
𝜽r − �̂�r

)⊤P−1
r

(
𝜽r − �̂�r

)
(22)

�̄�r =
1

LR

R∑
r=1

𝜒r, (23)
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FIGURE 11 Results of mean distance error (MDE) for minimax
approaches under SS. All show similar performance. MAPF,
minimax auxiliary particle filtering; MKLDPF, Kullback-Leibler
divergence particle filtering; MPF, minimax particle filtering; MRPF,
minimax regularized particle filtering [Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 12 Results of mean distance error (MDE) for minimax
particle filtering (MPF) approaches under SL. Minimax auxiliary
particle filtering (MAPF) and minimax regularized particle filtering
(MRPF) show similarly better performance than the other two.
MKLDPF, minimax Kullback-Leibler divergence particle filtering
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Mean variance of the weights of particles. The results are shown from at the time step 20 for particle filtering (PF), regularized
PF (RPF), and Kullback-Leibler divergence PF (KLDPF) for clear visibility. A, Mean variance: PF and minimax-PF (MPF); B, Mean variance:
auxiliary PF (APF) and minimax-APF (MAPF); C, Mean variance: RPF and minimax-RPF (MRPF); D, Mean variance: KLDPF and
minimax-KLDPF (MKLDPF) [Colour figure can be viewed at wileyonlinelibrary.com]

where r is the index of a run, L is the dimension of the state 𝜽, P is the estimator-provided error covariance, and R is the
number of runs, respectively. According to the work of Li et al,26 ANEES is recommended for testing whether an estimator
should be rejected as not credible or is optimistic or pessimistic. The closer to 1 the ANEES is, the more credible the
estimator. If ANEES is much greater than 1, the actual estimation error is much larger than what the estimator believes
(ie, the estimator is unduly optimistic); if ANEES is much smaller than 1, the actual estimation error is much smaller
than what the estimator believes (ie, the estimator is unduly pessimistic). Figure 14 shows the result of ANEES for four
of all particle filtering methods concerning both regular and minimax versions. The results are under SS and various
sizes of variances of initial values. The ANEES depends on the noises and the magnitude of the variance of the initial
values; however, most results show more or less around 1 with small noises that we applied in these 300 runs. In our case,
L = 4. Most of the approaches are somewhat too pessimistic, ie, the actual estimation error is much smaller than what
the estimator believes.
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FIGURE 14 Average normalized estimation error squared (ANEES) with the scenario of SS. A, ANEES for particle filtering (PF) vs
minimax-PF (MPF); B, ANEES for auxiliary PF (APF) vs minimax-APF (MAPF); C, ANEES for regularized PF (RPF) vs minimax-RPF
(MRPF); D, ANEES for Kullback-Leibler divergence PF (KLDPF) vs minimax-KLDPF (MKLDMPF) [Colour figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUSION

In this paper, we proposed a new PF framework for highly maneuvering target tracking. The minimax strategy was
adopted in this framework, which results in the significantly reduced variance of the weights of particles and in the robust-
ness against the degeneracy problem of regular PF approaches. The robustness made it possible to overcome the difficulty
in tracking a highly maneuvering target where particularly the state noise variance is large. We verified the effectiveness
of the proposed MPF by experiments in various scenarios and showed that MPF outperforms nonminimax PF approaches.
The proposed minimax strategy can be adopted for any other variants of PF provided that multiple measurements are
available, including sensor networks environment. The computational complexity in MPF was reduced because the com-
putation of complex joint probability density function was avoided in the proposed algorithm. We further showed that
the minimax strategy is effective in the form of IMM-PF and minimax IMM-PF outperformed IMM-PF and conventional
IMM-EKF.
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APPENDIX

The variance of any unbiased estimate, �̂� is bounded as follows:

Var(�̂�t) ≥ [
I−1(𝜽)

]
tt, (A1)

where I is the Fisher information matrix, 𝜽 is a vector state, and t is the element index. When the measurement noise is
Gaussian and the measurement is given by

z ∼  (𝑓 (𝜽),Cv(𝜽)), (A2)
we can obtain

[I(𝜃)]tl =
[
𝜕𝑓 (𝜽)
𝜕𝜃t

]⊤
Cv

−1(𝜽)
[
𝜕𝑓 (𝜽)
𝜕𝜃l

]
+ 1

2
tr
[(

Cv
−1(𝜽)𝜕Cv(𝜽)

𝜕𝜃t
Cv

−1(𝜽)𝜕Cv(𝜽)
𝜕𝜃l

)]
. (A3)

For three measurements, f(𝜽) = [f1 f2 f3]⊤ = [R B M]⊤, and the covariance matrix C𝜖(𝜽) = diag
(
𝜎2
𝜖R

𝜎2
𝜖B
𝜎2
𝜖M

)
, where diag(·)

denotes a diagonal matrix,
𝜎2
𝜖𝑓i

= 𝑓i
2 · 10(−SNRz1∕10), (A4)

where SNRz1, SNRz2, and SNRz3 represent the SNRs for the corresponding measurements and are computed as follows:

SNRzi = 10 log10

[
𝑓i

2

𝜎2
𝜖𝑓i
(𝜽)

]
. (A5)

The Fisher information is a 4 × 4 matrix, and [I(𝜃)]11 and [I(𝜃)]22 are the corresponding elements for rx and ry, respectively.
From (A3),

[I(𝜃)]11 = R−4 ·
⎡⎢⎢⎣2r2

x +
rx

2

10(−SNRz1∕10)
+

r2
𝑦 · 10

(
SNRz2∕10

)
[
arctan 2

(
r𝑦, rx

)]2 +
2r2

𝑦[
arctan 2

(
r𝑦, rx

)]2

⎤⎥⎥⎦ + 10
(

SNRz3∕10
)

rx2 + 2
rx2 , (A6)

and

[I(𝜃)]22 = R−4 ·
⎡⎢⎢⎢⎣2r2

𝑦 +
r𝑦2

10(−SNRz1∕10)
+

r2
x · 10

(
SNRz2∕10

)
[
arctan

(
r𝑦
rx

)]2 +
2r2

x[
arctan

(
r𝑦
rx

)]2

⎤⎥⎥⎥⎦ +
10

(
SNRz3∕10

)
r𝑦2 + 2

r𝑦2 . (A7)

Similarly, we can compute the remaining elements; subsequently, we obtain CRLB as follows:

Var(r̂x) ≥ [
I−1(𝜽)

]
11, Var(r̂𝑦) ≥ [

I−1(𝜽)
]

22. (A8)

When using only two measurements of range and bearing, we can obtain the lower bound similarly. For example, [I(𝜃)]11

can be obtained by removing the last two terms in (A6). If CRLB for the distance estimation, ie,
√

r2
x + r2

𝑦 is to be computed,

we can use vector parameter CRLB for transformations and is easily derived as follows.27 If we define𝜶 = h(𝜽) =
√

r2
x + r2

𝑦 ,
CRLB is derived as

Var(�̂�) ≥ 𝜕h(𝜽)
𝜕𝜽

I−1(𝜽)𝜕h(𝜽)⊤

𝜕𝜽
, (A9)

where a Jacobian matrix 𝜕h(𝜽)
𝜕𝜽

is described as

𝜕h(𝜽)
𝜕𝜽

=
[
𝜕h(𝜽)
𝜕𝜃1

𝜕h(𝜽)
𝜕𝜃2

… 𝜕h(𝜽)
𝜕𝜃L

]
=
⎡⎢⎢⎢⎣

rx√
r2

x + r2
𝑦

r𝑦√
r2

x + r2
𝑦

0 0
⎤⎥⎥⎥⎦ . (A10)
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