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Abstract
Aim: Present Amazonian diversity patterns can result from many different mecha‐
nisms and, consequently, the factors contributing to divergence across regions and/
or taxa may differ. Nevertheless, the river‐barrier hypothesis is still widely invoked 
as a causal process in divergence of Amazonian species. Here we use model‐based 
phylogeographic analyses to test the extent to which major Amazonian rivers act 
similarly as barriers across time and space in two broadly distributed Amazonian taxa.
Local: Amazon rain forest.
Taxon: The lizard Gonatodes humeralis (Sphaerodactylidae) and the tree frog 
Dendropsophus leucophyllatus (Hylidae).
Methods: We obtained RADseq data for samples distributed across main river bar‐
riers, representing main Areas of Endemism previously proposed for the region. We 
conduct model‐based phylogeographic and genetic differentiation analyses across 
each population pair.
Results: Measures of genetic differentiation (based on FST calculated from genomic 
data) show that all rivers are associated with significant genetic differentiation. 
Parameters estimated under investigated divergence models showed that divergence 
times for populations separated by each of the 11 bordering rivers were all fairly 
recent. The degree of differentiation consistently varied between taxa and among 
rivers, which is not an artifact of any corresponding difference in the genetic diver‐
sities of the respective taxa, or to amounts of migration based on analyses of the 
site‐frequency spectrum.
Main conclusions: Taken together, our results support a dispersal (rather than vi‐
cariance) history, without strong evidence of congruence between these species and 
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1  | INTRODUC TION

Direct links between speciation and diversity patterns with land‐
scape change, in particular, the formation of large rivers, has been 
a classic biogeographic explanation for the generation and mainte‐
nance of strikingly high Amazonia rain forest diversity (Haffer, 1974; 
Ribas, Aleixo, Nogueira, Miyaki, & Cracraft, 2012). However, given 
its large geographic extent, very dynamic geomorphological and his‐
torical climate setups, and the distinct habitat preferences of spe‐
cies involved, no single process can fully explain Amazonian diversity 
(Leite & Rogers, 2013; Moritz, Patton, Schneider, & Smith, 2000). 
Observed diversity patterns can result from many different mecha‐
nisms (Hoorn et al., 2010; Rangel et al., 2018) and, consequently, the 
factors contributing to divergence across regions and/or taxa may 
differ. Nevertheless, the river‐barrier hypothesis (RBH) is still widely 
invoked as a causal process in the divergence of Amazonian species 
and populations.

The traditional RBH posits that river establishment split broadly 
distributed populations, serving as primary barriers to dispersal 
and prompting diversification and speciation events (Haffer, 1974; 
Wallace, 1852). Evidence that rivers have acted as strong dispersal 
barriers (for example the Amazon river; Pomara, Ruokolainen, & 
Young, 2014), contrasts with evidence that others may be more per‐
meable (for example the Negro river – Smith et al., 2014; the Tapajós 
river – Moraes, Pavan, Barros, & Ribas, 2016). Permeability of rivers 
to dispersal may depend on its physical attributes, such as flow rate 
and margin properties, as well as the species’ intrinsic characteris‐
tics, including their dispersal abilities and habitat preferences (see 
Collevatti, Leoi, Leite, & Gribel, 2009—but also see Naka, Bechtoldt, 
Henriques, & Brumfield, 2012). Differing support for the RBH across 
individual taxa (e.g. Fernandes, Wink, & Aleixo, 2012; Nazareno, 
Dick, & Lohmann, 2017) has begun to highlight the complexities 
surrounding this hypothesis. This includes uncertainty surround‐
ing the geologic history of the region, including debate over a late 
Miocene (Figueiredo, Hoorn, van der Ven, & Soares, 2009; Hoorn 
et al., 2010) versus Plio–Pleistocene establishment for the transcon‐
tinental Amazon River drainage (Rossetti et al., 2015). These peri‐
ods actually correspond to two different developmental phases of 
the main drainage. In the Plio–Pleistocene, the Amazon river (and 
its tributaries) would have been more entrenched and likely with 

vast fluctuations in discharge controlled by Quaternary climate 
fluctuations (see Irion & Kalliola, 2010). Such debate poses specific 
challenges to biological interpretations regarding the RBH based on 
estimates of divergence times. For example, estimated divergence 
times across species of trumpeter birds (genus Psophia) that range 
between 3 and 0.5 million years ago are consistent with the RBH as 
the main diversification driver if the Amazon drainage was estab‐
lished during the Plio–Pleistocene (Ribas et al., 2012). On the other 
hand, if the late Miocene hypothesis is more accurate, as some geo‐
chemical and palynological data suggests (Hoorn et al., 2017), then 
lineage persistence in the landscape after dispersal across rivers 
would become the de facto process structuring species diversity in 
Amazonia, with rivers acting mostly as secondary barriers (Cowman 
& Bellwood, 2013). That is, an alternative to the vicariant model of 
divergence envisioned under the classic RBH is that divergence may 
be initiated by dispersal events across rivers (see Smith et al., 2014). 
Lastly, the same river may be involved in the generation and mainte‐
nance of species diversity differently, acting as both a primary and 
secondary barrier (Naka & Brumfield, 2018).

Here, we leverage the resolution afforded by genomic data and 
a model‐based approach with broad geographic sampling across 
multiple rivers in two common and widespread Amazonian ver‐
tebrate taxa with different ecologies to test if major Amazonian 
rivers act as barriers. The first focal species, Gonatodes humeralis 
(Sphaerodactylidae, Squamata), is a widely distributed semi‐arbo‐
real gecko that occurs in a wide range of ecological conditions in 
Amazonia and northern Pantanal, and is frequently the most com‐
mon lizard within local assemblages (Ribeiro‐Júnior, 2015). A recent 
analysis of species delimitation for this taxa demonstrated that it is a 
unique clade, though the processes responsible for the local patterns 
of population genetic structure is unclear (Pinto et al., 2019). The 
second taxon, Dendropsophus leucophyllatus/D. triangulum (Hylidae, 
Amphibia) species complex, which hereafter is referred to simply as 
D. leucophyllatus (see Appendix S1), is a small‐sized tree frog associ‐
ated with temporary and permanent ponds across all of Amazonia 
(Rodriguez & Duellman, 1994). Although no study specifically ad‐
dressed its phylogeographic structure, the combination of morpho‐
logical, bioacoustics and phylogenetic analyses of mtDNA suggests 
that D. leucophyllatus likely represents a species complex (Caminer et 
al., 2017; Peloso, Orrico, Haddad, Lima‐Filho, & Sturaro, 2016).

rivers. However, once a species crossed a river, populations separated by each and 
every river have remained isolated—in this sense, rivers act similarly as barriers to any 
further gene flow. This result suggests differing degrees of persistence and gives rise 
to the seeming contradiction that the divergence process indeed varies across time, 
space and species, even though major Amazonian rivers have acted as secondary bar‐
riers to gene flow in the focal taxa.

K E Y W O R D S

Amazonia, comparative phylogeography, Dendropsophus leucophyllatus, Gonatodes humeralis, 
neotropical diversity, river‐barrier hypothesis

for Enhanced Engagement in Research 
(PEER), Grant/Award Number: AID-
OAA-A-11-00012; L'Oreal‐UNESCO For 
Women In Science Program; Fundação 
de Amparo à Pesquisa do Estado de São 
Paulo, Grant/Award Number: 2003/10335-
8, 2011/50146-6 and 2013/50297-0; 
Dimensions of Biodiversity Program; NSF, 
Grant/Award Number: 1343578

Handling Editor: Carina Hoorn



2446  |     PIRANI et al.

With analyses of ddRADseq, we test the RBH for sampling local‐
ities/populations of these two taxa delimited by major rivers whose 
geographical distribution correspond to the Amazonian Areas of 
Endemism – AoEs (sensu Silva, Rylands, & da Fonseca, 2005). More 
specifically, we investigate if there is concordance across both taxa in 
terms of each river's spatial effectiveness as barrier to gene flow and 
the divergence times of populations separated by each river. If in fact 
rivers act as barriers, we expect to find congruent genetic differenti‐
ation patterns with limited gene flow between populations separated 
by rivers in both taxa, although the degree of temporal congruence 
may differ depending upon when and how differentiation occurred 
(e.g. a vicariant role of separating previously widespread ancestors 
vs. an impediment to gene flow following an initial dispersal event 
across the river; Peres, Patton, & Silva, 1996; Smith et al., 2014). 
Alternatively, there may be species‐specific divergence patterns in 
which one of the two taxa show a systematic difference in the degree 
of differentiation across rivers because of divergent traits (ecological, 
morphological or sexual) that may inhibit gene flow (Zamudio, Bell, & 
Mason, 2016), or affect population persistence after dispersal across 
a river (Smith et al., 2014). For example, given that D. leucophyllatus 
exhibits morphological differentiation (Caminer et al., 2017), which is 

so far unknown for G. humeralis (Avila‐Pires, 1995; Pinto et al., 2019), 
the effectiveness of a river barrier may be enhanced by further re‐
ductions in gene flow across any common river barrier in the for‐
mer, but not in the latter. By focusing on broadly distributed taxa, 
our study avoids the pitfalls of tests that are limited in geographic 
scope, and with separate analyses for each putative river barrier we 
avoid the reduced predictive power of generic phylogeographic tests 
(Papadopoulou & Knowles, 2016).

2  | MATERIAL S AND METHODS

2.1 | Areas of Endemism delimited by main 
Amazonian rivers

Given the focus of our study is on testing the hypothesis of rivers as 
barriers, we follow the limits of Areas of Endemism (AoEs) as defined 
by Silva et al. (2005), which are separated by the major rivers and 
supported by biogeograhic distributions of some terrestrial verte‐
brates, to refer to specific populations (see Figure 1). These AoEs 
were used as predefined groups of sampled individuals for subse‐
quent tests of genetic differentiation, and model‐based analysis of 

F I G U R E  1   Map of sampled localities of Gonatodes humeralis (circles) and Dendropsophus leucophyllatus (stars) across each species’ range, 
with different colours highlighting populations separated by the main Amazonian rivers; areas are named according to Silva et al. (2005) 
areas of endemism. Numbers 1–5 represent the five segments of the Amazon River that where considered separately. Photos: tree frog 
(Santiago Ron), lizard (Rodrigo Tinoco) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the divergence process. We also verified general agreement be‐
tween the AoEs limits and population spatial structure (see below).

2.2 | Sampling, ddRADseq genomic data 
generation and processing

Tissue samples were collected in the field and/or obtained from 
museum collections of the lizard G.  humeralis and the tree frog 
D. leucophyllatus. We obtained 194 samples of G. humeralis from 37 
localities, and 109 samples of D.  leucophyllatus from 41 localities 
(Figure 1). Genomic DNA was extracted from the muscle or liver of 
each individual using the Qiagen DNeasy Blood and Tissue Kit. Two 
reduced representation libraries for the lizard samples and two for 
the frog samples were constructed using double digest restriction 
associated DNA sequencing approach (ddRADseq), following the 
protocol by Peterson, Weber, Kay, Fisher, and Hoekstra (2012); for 
details see Appendix S1. Briefly, double digested DNA with ligated 
unique barcodes from each individual was pooled and 350–450 bp 
fragments size selected using Pippin Prep (Sage Science). Libraries 
were sequenced in the Illumina 2,500 platform at The Center for 
Applied Genomics (Toronto, Canada) to generate 150  bp single‐
end reads. Genomic data were processed for each taxon separately 
using STACKS 1.41 pipeline (Catchen, Amores, Hohenlohe, Cresko, 
& Postlethwait, 2011; Catchen, Hohenlohe, Bassham, Amores, & 
Cresko, 2013) for de novo assembly from the fastQ files from the 
Illumina sequencing runs. All details regarding bioinformatic process‐
ing and data following quality control filters are given in the Appendix 
S1. All STACKS modules were run under parallel execution with eight 
threads on the University of Michigan Flux computing cluster.

The software PLINK 1.9 (Chang et al., 2015) was used to filter 
SNPs and individuals based on the frequency of missing data. For 
G. humeralis we excluded SNPs with more than 10% of missing data, 
resulting in a final dataset of 160 individuals with 28,474 unlinked 
SNPs, and a genotyping rate of 0.95. For D. leucophyllatus, SNPs with 
more than 20% of missing data were excluded, resulting in a final 
dataset of 99 individuals with 1,982 unlinked SNPs, and a genotyp‐
ing rate of 0.91 (see Table S1 for details in Appendix S1); a higher 
threshold of missing data was used in the tree frogs given the library 
was less complete than the lizards.

2.3 | Genetic diversity and genetic differentiation 
across rivers

Genetic diversity was measured within populations separated by 
major rivers (Figure 1). Specifically, average nucleotide diversity (π) 
based on polymorphic sites was calculated directly in STACKS using 
the population module (Catchen et al., 2013). To account for potential 
differences on genetic diversity that could be attributed to an area 
effect of each AoE, we also investigated for correlation between nu‐
cleotide diversity and geographic area in each taxon using R version 
3.3.2 (Team, 2016).

Genetic differentiation across each river barrier separating ad‐
jacent AoEs was measured by FST. Specifically, pairwise FST‐values, 

with their significance assessed from 10,000 bootstrap replicates 
with a Bonferroni correction for multiple comparisons, were calcu‐
lated in Arlequin 3.5.2.2 (Excoffier & Lischer, 2010) across a total of 
11 river barriers (see Figure 1). Because of insufficient samples, we 
did not consider the Napo and Imeri as separate AoEs (as defined 
by Silva et al., 2005); this is a practical decision and does not imply 
in any questioning about the validity of these two bioregions (e.g. 
Borges & Silva, 2012). Samples from the Marajó Island were con‐
sidered as part of the Belém AoE given that geological sediment 
similarities suggest a shared regional history (Rossetti, Almeida, 
Amaral, Lima, & Pessenda, 2010). We evaluate genetic differentia‐
tion across five different segments of the Amazon River separately 
(see Figure 1), given that the Amazon River borders several areas 
dissected by other major rivers. To evaluate the effect of rivers as 
barriers on the partitioning of genomic variation among populations, 
within populations and individuals, we used a hierarchical analysis 
of molecular variance (AMOVA) using Arlequin 3.5.2.2 (Excoffier & 
Lischer, 2010), by estimating their statistical significance based on 
20,000 random permutations.

2.4 | Estimated effective migration surfaces

To evaluate if population structure of both taxa supports the pre‐
defined population groups based on the geographic limits of AoEs, 
we used the Estimated Effective Migration Surfaces method (EEMS; 
Petkova, Novembre, & Stephens, 2016) that analyses population 
structure from geo‐referenced genetic samples and identifies barri‐
ers separating areas where the decay of genomic differences across 
geographical distances is higher than expectations of a model of iso‐
lation by distance. With this approach, a triangular grid spanning the 
entire geographic range of sampling (i.e. from a sampling area cover‐
ing most of the Amazonia biome and parts of the Cerrado biome, 
from −44 to −77 degrees of longitude and −19 to –6 of latitude for 
both species) divides the distribution of each species, in this case 
into 600 demes. Each individual is assigned to the nearest vertex 
of the grid and the migration parameter m is estimated by Bayesian 
inference for every edge of the grid by Markov chain Monte Carlo 
(MCMC) sampling based on observed genetic dissimilarities based 
on the unlinked SNPs. When viewed graphically across the species 
distributions, areas of reduced gene flow can be visualized based on 
estimates of the posterior probabilities of m. We performed 10 in‐
dependent runs to assess convergence, with 10 million MCMC itera‐
tions, with 2 million burn‐in and a thinning of 9,999 used for each 
run. Convergence among runs was accessed with the package in R 
rEEMSplots, available with the EEMS pipeline.

2.5 | Divergence history for each river 
barrier and species

For each river barrier, parameterized divergence models were esti‐
mated using a composite‐likelihood method based on the joint site 
frequency spectrum (SFS) implemented in FASTSIMCOAL2 (Excoffier, 
Dupanloup, Huerta‐Sanchez, Sousa, & Foll, 2013). Datasets were 
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reprocessed for each river barrier separately using the POPULATION 
module from STACKS pipeline (Catchen et al., 2013) and PLINK soft‐
ware (Chang et al., 2015) to maximize the number of loci for each sep‐
arate analysis. Specifically, POPULATION was run to obtain vcf files 
with unlinked SNPs and the folded joint SFS (i.e. minor allele) using a 
python script for each separate FASTSIMCOAL analysis (available on 
Github/KnowlesLab; He & Knowles, 2016). Note that the requirement 
of no missing data precluded a global analysis considering all barri‐
ers in a single model (see Excoffier et al., 2013). For G. humeralis, the 
SFS was calculated based on 20–30 individuals per analysis, whereas 
10–20 individuals were analysed for D. leucophyllatus to maximize the 
number of loci that could be included in each analysis, given D. leuco‐
phyllatus had fewer individuals with a common set of loci.

Divergence models were estimated with and without a migra‐
tion parameter. The time of divergence, TDIV, the population size 
of the other population, N2, the ancestral population size NANC, 
and migration, m (for those models that included migration), were 
estimated from the SFS using uniform priors (see Table 1 for de‐
tails). For all divergence models, the effective population size of 
one population (N1) was fixed to improve the accuracy of param‐
eter estimates from the SFS—following the recommendations of 
the program (Excoffier & Foll, 2011). Specifically, N1 was calculated 
directly from the empirical data based on nucleotide diversity (π) 
of variant and invariant sites, where π = 4Nμ, assuming a mutation 
rate of 3.25 × 10−8 for G. humeralis and 3.46 × 10−8 for D. leucophyl‐
latus. These rates were estimated from the regression formula for 
cellular organisms (Lynch, 2010) based on genome sizes estimated 
in related species (i.e. Teratoscincus scincus for G. humeralis and 
Dendropsophus microcephalus for D.  leucophyllatus; www.genom​
esize.com), and considering one generation per year (Crump, 1974; 
Vitt, Magnusson, Ávila‐Pires, & Lima, 2008). To account for poten‐
tial errors in mutation rates estimates derived from estimates of 
genome sizes, we also conducted another set of analyses using a 
lower mutation rate from the literature based on estimates from 
mitochondrial DNA (i.e. 6.45 × 10−10 for G. humeralis Prates, Rivera, 
Rodrigues, & Carnaval, 2016 and 7.35 × 10−9 for D. leucophyllatus 
Gehara et al., 2014). A total of 40 runs were conducted for each 
river barrier and we present the point estimate of the highest like‐
lihood across runs, as well as 95% confidence intervals on the pa‐
rameter estimates calculated using a parametric bootstrap of 100 
simulated datasets. Each analysis was based on 100,000–250,000 
simulations for likelihood estimation with a stopping criterion of 
0.001, and 10–40 expectation‐conditional cycles (ECM).

3  | RESULTS

3.1 | Genetic diversity and differentiation across 
rivers

Genetic differentiation (FST) was generally high in both the gecko and 
the frog, although FST‐values varied across river barriers, and D. leuco‐
phyllatus consistently had higher levels of genetic differentiation be‐
tween populations across rivers than G. humeralis (Figure 2a), with an 

average FST of 0.3924 (±0.1421 SE) and 0.1324 (±0.0532 SE), respec‐
tively (see Tables S2 and S3 in Appendix S1). The only river barriers 
where populations exhibited similar levels of genetic differentiation 
in both taxa were the Madeira and Solimões rivers (Figure 2a).

Estimates of genetic diversity (π) were comparable across pop‐
ulations in each species (Figure 2b). This indicates that the con‐
sistently lower FST‐values among populations of G.  humeralis were 
not due to a systematically higher genetic diversity in this species, 
which would confound comparisons of FST between the taxa (see 
Cruickshank & Hahn, 2014). Instead, the only substantial difference 
in genetic diversity between the taxa was in two populations—the 
Inambari and Napo. However, in both cases diversity was slightly 
lower in G.  humeralis than in D.  leucophyllatus, indicating that the 
higher differentiation observed in D. leucophyllatus is not an artifact 
of depressed genetic diversity. In fact, the higher genetic diversity 
observed in D. leucophyllatus in the Inambari and Napo populations 
(Figure 2b) contributes to the fairly similar levels of genetic differen‐
tiation in both species for the Solimões and Madeira river barriers 
(Figure 2a), the only two cases in which FST‐values did not differ be‐
tween taxa. Genetic diversity was not significantly correlated with 
the geographic area of a region in either taxa (p = .87 for G. humeralis 
and p = .17 for D. leucophyllatus; see Figure S2 in Appendix S1). An 
AMOVA showed significant structuring of genetic variation among 
populations in both species (Table S4 in Appendix S1), explaining 
19.19% and 22.26% of the variance in G. humeralis and D. leucophyl‐
latus, with the bulk of the variance attributed to variation among and 
within individuals (for details see Table S4 in Appendix S1).

Evidence of significant genetic structuring among populations 
identified in the AMOVA (Table S4 in Appendix S1) was supported, 
in part, by the Bayesian analysis EEMS (i.e. the inferred contours of 
barriers correspond to the rivers; Figure 3). We see reduced gene 
flow corresponding to most, but not all the rivers. Notably, reduced 
migration was not inferred for the Western Amazonian region in the 
lizard G. humeralis, in contrast to the strong correspondence between 
inferred areas of reduced migration and the geographic position of 
rivers. In the frog D. leucophyllatus the EEMS map showed some, but 
less correspondence than in the lizards, between areas of inferred 
reduced migration and the geographic position of rivers, most no‐
tably for the Xingu and Tapajós rivers (Figure 3) to the south of the 
Amazon River (Figure 1). In both species, we note that the inferred 
reduced migration areas do not match exactly the geographic coor‐
dinates of the rivers; however, given the method divides the species’ 
distributions into triangular grids that may or may not match exactly 
the position of rivers, this is not all that unexpected. For this reason, 
we focus more on whether there are areas of inferred migration that 
resemble the geographic configuration of rivers in our analyses.

3.2 | Parameterized divergence models

Several generalizations emerge from comparing the divergence 
model parameters estimated for each separate river barrier for 
G.  humeralis and D.  leucophyllatus (Table 1). First, estimated di‐
vergence times were relatively recent for each of the 11 rivers 

http://www.genomesize.com
http://www.genomesize.com
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separating populations in both species, with all divergence occurring 
within the last 116 kya (see Table 1), or within the 650 kya when ap‐
plying a lower mutation rate (see Table S5 in Appendix S1). However, 
divergence times varied among river barriers and differed between 
the species (Table 1). For example, a divergence time of 4,630 years 
was estimated in G.  humeralis for segment 1 of the Amazon river 
(Figure 1) compared to 44,011 years in D. leucophyllatus.

Although for any given river barrier the timing of divergence dif‐
fered between species, there was a consistent pattern with respect 
to the relative timing of divergence across river barriers. Specifically, 
as with the patterns of genetic differentiation based on FST‐analyses 
(Figure 2a), parameterized divergence models consistently estimated 
older divergence times for D.  leucophyllatus compared with G.  hu‐
meralis (Table 1), except for the Xingu river. Both species also showed 
no evidence of ongoing gene flow among populations separated by 
the different river barriers. Parameter estimates of migration, m, 
were always 0 or <0.0001, indicating negligible gene flow; there‐
fore, only the results from divergence models without migration are 
presented (Table 1). Note that the prior on m spanned very low to 
relatively high levels of migration to accommodate a range of values 
(i.e. a log‐uniform prior of 1e‐8 to 1e2).

Consideration of the relative divergence times estimated for each 
pair of populations separated by a river barrier showed the order of 
divergence times was not congruent between species. For exam‐
ple, the oldest divergence time for G. humeralis was associated with 
the Negro river, followed by Amazon 4, Xingu, Tapajós, Amazon 3, 
Amazon 5, Amazon 1, Amazon 2, Madeira and the Tocantins followed 
by the Solimões with the most recent divergence time. For D. leuco‐
phyllatus the order differed, with the oldest divergence time associ‐
ated with the Amazon segment 5, followed by Amazon 3, Amazon 4, 
Amazon 1, Tapajós, Amazon 2, Negro, Tocantins, Madeira, and the 
Solimões followed by the Xingu with the most recent divergence 
time. In general, there was not any obvious consistency in divergence 
between species with respect to river size (Table S6), or flow direction 
(e.g. headwater to the mouth of Amazon river; Table 1).

4  | DISCUSSION

By considering the divergence history associated with different 
rivers separately, our study tested not only for similarities, but 
also for how rivers might differ as barriers across time, space and 

F I G U R E  2   (a) Estimated pairwise 
FST‐values between areas separated 
by a major river (i.e. labels identify the 
river barrier) along with (b) estimated 
genetic diversity, as measured by average 
nucleotide diversity, π, in Gonatodes 
humeralis (circles) and Dendropsophus 
leucophyllatus (stars)

(a)

(b)
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species. Specifically, genomic samples of the two broadly distributed 
Amazonian taxa we studied (the lizard G. humeralis and the tree frog 
D. leucophyllatus) show significant genetic differentiation associated 
with each of the 11 tested rivers borders separating populations, and 
with little to no ongoing migration across rivers (Table 1), the data 
are consistent with rivers acting similarly as barriers to gene flow 
(see Figure 2 and Table S3 in Appendix S1). However, divergence 
times were too recent to support a vicariant history directly linked to 
the formation and establishment of Amazonian rivers (even if muta‐
tion rates were an order of magnitude lower than the ones applied 
here). Moreover, the relative timing of divergence differed among 
taxa, suggesting the lack of a common history affecting them at the 
local level of individual rivers (Table 1; see also Naka & Brumfield, 

2018). Interestingly, the degree of differentiation consistently varied 
between taxa, which is not an artifact of any corresponding differ‐
ence in the genetic diversities of the respective taxa (Figure 2 and 
Table S4 in Appendix S1). Consequently, even though rivers are ef‐
fective secondary barriers to gene flow, they differ in terms of when 
they became a barrier and taxon‐specific histories are an important 
consideration for understanding temporal differences among rivers 
regarding when divergence was initiated (i.e. impediments to disper‐
sal, instead of vicariant barriers; Cowman & Bellwood, 2013; Naka & 
Brumfield, 2018).

4.1 | Similar but different

There is no doubt that Amazonian rivers can act as barriers to gene 
flow in some instances. Support for the RBH ranges from classic 
studies based on distributional data or divergence times across river 
banks estimated from a few sequenced loci (Aleixo, 2004; Boubli 
et al., 2015; Foley et al., 2014; Funk et al., 2007) to recent analyses 
based on multiple loci (e.g. Lutz, Weckstein, Patane, Bates, & Aleixo, 
2013; Naka & Brumfield, 2018; Nazareno et al., 2017). However, 
once studies move beyond a focus on a specific river, and as data 
accumulate across more taxa, support for rivers as either primary 
or secondary barriers became mixed (e.g. Nazareno et al., 2017; 
Solomon, Bacci, Martins, Vinha, & Mueller, 2008). As such, it is 
difficult to draw generalizations about why one river, but not an‐
other, may impede gene flow, and only in certain taxa (see Ayres & 
Clutton‐Brock, 1992). As we advocate here, to maximize insights, we 
need to move beyond concordant or discordant divergence histories. 
Instead, through the study of multiple, widespread species we can 
consider the diversity of processes that might underlie the observed 
genetic differentiation associated with river barriers without the 
confounding factors that arise from tests in which the constituent 
set of taxa used in tests differ across rivers (e.g. Smith et al., 2014).

Amazonian rivers have different characteristics such as pH, type 
of water, stability and origin and geomorphological history (see Table 
S6 in Appendix S1). Such differences may influence the propensity 
for species dispersal across rivers (e.g. Ayres & Clutton‐Brock, 1992; 
Naka et al., 2012). In this study, and as secondary barriers, the rivers 
seem to act in a similar way across taxa (i.e. they impede ongoing 
gene flow and partially structure populations). Nonetheless, there 
are notable differences across rivers and taxa: the timing of diver‐
gence varies among rivers and there is no chronological order of 
these divergences shared between the analysed species (Table 1). 
When these similarities and differences are considered jointly, they 
point to avenues of further exploration to improve our under‐
standing of the varying role of rivers in the divergence history of 
Amazonian taxa.

As widespread taxa with divergence times that post‐date the 
rivers’ origins (i.e. independent of the geological scenario for the 
establishment for the transcontinental Amazon River drainage di‐
vergence times are more recent), both G. humeralis and D.  leuco‐
phyllatus must have crossed rivers at least once as they obtained 
their current ranges, which encompass all of Amazonia (Figures 

F I G U R E  3   Estimated effective migration surfaces (EEMS) plots 
showing the effective migration rates (m) on a log10 scale between 
all samples of (a) Gonatodes humeralis and (b) Dendropsophus 
leucophyllatus. Geographic regions of low migration are shown in 
orange, representing migration barriers. Areas in blue represent 
geographic regions where the genetic similarity is higher, or in other 
words, where samples are connected by migration rates higher 
than that expected under isolation by distance. The dots represent 
the sampled localities, and show localities with more samples as 
the difference in the relative size of the dots. The mean migration 
across the 10 independent EMMS runs is presented in each species. 
Photos: lizard (Rodrigo Tinoco), tree frog (Santiago Ron) [Colour 
figure can be viewed at wileyonlinelibrary.com]

-2 -1 0 1 2
Posterior mean migration rates m (on the log10 scale)

(a)

(b)

www.wileyonlinelibrary.com
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1 and 3). Empirical evidence suggest that a simple colonization 
with range expansion is unlikely to have occurred (e.g. Lima et 
al., 2017). The relative timing of divergence across rivers differs 
between taxa, which, unlike absolute divergence time estimates 
(see Table 1), is not contingent upon specific mutation rates used 
with applications of the molecular clock, and the timing of diver‐
gence does not follow an obvious geographic pattern. This points 
us to a divergence process with cyclical periods of connections 
and isolations (Haffer, 2008), where previous dispersal events 
across rivers prompted by recent meander belt dynamics are likely. 
Indeed, recent studies suggest a very dynamic drainage network 
in the Amazonian lowlands during the Quaternary, with frequent 
river captures and fluvial changes affecting the barriers’ stabil‐
ity and permeability (Pupim et al., 2019; Ruokolainen, Massaine 
Moulatlet, Zuquim, Hoorn, & Tuomisto, 2018). Moreover, changes 
in water availability and vegetation distribution caused by climatic 
changes might also have promoted repeated periods of gene flow 
and isolation of populations separated by the river barriers (Cheng 
et al., 2013; Haffer, 2008). Admittedly, with any genetic signature 
of this older history overridden by the divergence in allopatry 
that dates to a relative recent past (Table 1), it is not clear why 
earlier dispersal events were not associated with long‐term iso‐
lation, especially considering the persistence of isolation over the 
tens to hundreds of thousands of years documented here in both 
species, and even longer in some cases within D.  leucophyllatus. 
Given the analysed taxa are widespread and common where they 
occur, it is unlikely that local extinctions (at least at the geographic 
scale examined here; Figure 1), are driving colonization dynam‐
ics (see Papadopoulou & Knowles, 2017). Instead, it is more likely 
that abiotic factors associated with shifting river physiography 
(e.g. flood‐pulse patterns, Junk et al. (2011), and river captures, 
Rossetti, Bertani, Zani, Cremon, and Hayakawa (2012)) might 
be at play, for some, but most likely not all rivers. For example, 
recent divergences were observed for the Solimões in both spe‐
cies, whereas relatively older divergences were observed for the 
Tapajós, Amazon 4 and Amazon 3 in both species, which suggest 
that patterns of genetic divergence could be reflecting a shared 
response to a common abiotic factor (see Table S6 in Appendix S1). 
In contrast, the Negro and the rest of the Amazon river segments 
show opposing divergence patterns between the taxa, with very 
recent divergence times in G. humeralis but some of the oldest di‐
vergence events estimated in D. leucophyllatus. We note that these 
contrasting divergence times cannot be explained by difference in 
mutation rates between the lizard and frog taxa given the cova‐
rying divergence patterns between the taxa for the other afore‐
mentioned rivers (Figure 1), but the very recent divergence times 
in G.  humeralis might explain the highest portion of the genetic 
variation being allocated within individuals of G. humeralis (Table 
S4 in Appendix S1).

Biotic factors might also influence the genetic divergence associ‐
ated with rivers, and in particular, the effectiveness of the barrier itself 
(Nosil, Harmon, & Seehausen, 2009). However, in the case of our focal 
taxa, both are found in different Amazonian forest types, including 

"várzea" (floodplain forest) and “terra firme” (upland forest; Ribeiro‐
Júnior, 2015; Rodriguez & Duellman, 1994, personal observations). 
This suggests no obvious differences in the restrictions imposed by 
the landscape on their respective dispersal abilities, unlike other taxa 
where dispersal across rivers is influenced by the surrounding habitat 
(Collevatti et al., 2009). However, lizards may be more capable of dis‐
persal in general than frogs, since they have fewer environmental re‐
strictions (Duellman, ), which might contribute to the consistently lower 
FST‐values observed in G. humeralis (Figure 2). For instance, G. humeralis 
is a semi‐arboreal lizard easily observed on tree trunks where they in‐
habit and reproduce (Vitt et al., 2008), and could have passively dis‐
persed more frequently between river banks with floating vegetation (a 
pattern not unexpected for the group, since even trans‐Atlantic disper‐
sal has been documented for related gecko lizards; Gamble et al., 2011). 
Dendropsophus leucophyllatus, though also a common species, has a re‐
production mode directly related to lentic water systems (temporary 
and permanent ponds), where the eggs are deposited for the hatching 
of the tadpoles (Rodriguez & Duellman, 1994). It is also possible that the 
consistent tendency of greater genetic differentiation (Figure 2) and 
older divergence times in D. leucophyllatus than G. humeralis (Table 1) 
may reflect the decreased gene flow and/or more long‐term effective‐
ness of the barrier because of local adaptation within each of the AoEs/
river interfluves (Ortiz, Lima, & Werneck, 2018). For example, the tree 
frog, unlike the lizard, exhibits phenotypic differentiation across its 
range that might impact interbreeding (Caminer et al., 2017).

4.2 | Rivers as drivers of species diversity

The role of rivers in preventing gene flow and promoting diversifica‐
tion is supported by the existence of AoEs, such as those delimited 
by the borders of major Amazonian rivers, and which are supported 
by diversity patterns of different taxonomic groups (Fernandes et 
al., 2012; Godinho & da Silva, 2018; Lynch Alfaro et al., 2015). Our 
work extends these findings to population divergence of frogs and 
lizards, but we cannot predict if the observed genetic structure of 
D. leucophyllatus and G. humeralis associated with river barriers could 
promote speciation in these taxa over time (Sukumaran & Knowles, 
2017). Dates based on phylogenetic studies suggest that species di‐
versification predates population divergence by hundreds of thou‐
sands to millions of years in both species (e.g. Duellman, Marion, & 
Hedges, 2016; Gamble, Simons, Colli, & Vitt, 2008).

In several Amazonian taxa, population differentiation within spe‐
cies is commonly correlated with their speciation rates (Harvey et al., 
2017). To the extent that this finding is generalizable, the significant 
genetic structure and relatively older divergence times between 
D.  leucophyllatus populations compared to those of G.  humeralis 
suggests that genetic divergence has proceeded further along the 
speciation continuum (see Huang & Knowles, 2016) in the former. 
Indeed, recent taxonomic work suggests that D. leucophyllatus con‐
stitutes a species complex (see supplemental information: D. leuco‐
phyllatus taxonomy; Caminer et al., 2017). However, we note that 
genetic differentiation associated with the proposed new putative 
species (i.e. Inambari population; Caminer et al., 2017) is not any 
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more pronounced than the intraspecific differentiation associated 
with other river barriers (see Table S2, S3 and S6 in Appendix S1).

5  | CONCLUSION

It is well known that large rivers can limit the distribution of some 
species without necessarily indicating that they represent vicariant 
barriers that caused allopatric speciation (Losos & Glor, 2003), but 
few studies focus on widespread taxa, where the primary role of 
rivers is likely as secondary barriers (i.e. impediments to dispersal; 
Cowman & Bellwood, 2013), at least for taxa whose current ranges 
post‐date the origin of the river barriers (e.g. Moraes et al., 2016; 
Naka & Brumfield, 2018). Our work shows that the rivers indeed act 
as barriers restricting gene flow (Cowman & Bellwood, 2013; Naka & 
Brumfield, 2018). However, with the divergence times of each river 
varying, and the relative divergence times differing between species, 
our work supports the contention that the barriers represented by 
rivers may be much more dynamic than classic views of vicariant his‐
tories promoted by river formation (Lynch et al., 2015; Ribas et al., 
2012). Moreover, by detailing how genetic divergence varies tempo‐
rally, spatially and across taxa, our work lends support to the hypoth‐
esized proposal of cyclical periods of connections and isolations (i.e. 
a transient barrier; Cowman & Bellwood, 2013), that could be caused 
by both climatic fluctuations and recent river dynamics. Moreover, 
with consistent differences in the degree of differentiation between 
these two common and widespread Amazonian taxa, ecological pref‐
erences and local adaptation may potentially influence the long‐term 
effectiveness of river barriers by further reducing gene flow during 
the divergence history of the tree frog D.  leucophyllatus relative to 
the gecko G. humeralis. Only with future studies that consider sup‐
port for these alternative modes of divergences, as opposed to fo‐
cusing exclusively on tests of concordance across taxa or vicariance, 
will the diversity of processes associated with rivers as barriers begin 
to be better understood.
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