
SUMS OF THREE CUBES

TREVOR D. WOOLEY

§1. Introduction. The set of integers represented as the sum of three cubes
of natural numbers is widely expected to have positive density (see Hooley [7]
for a discussion of this topic). Over the past six decades or so, the pursuit of
an acceptable approximation to the latter statement has spawned much of the
progress achieved in the theory of the Hardy-Littlewood method, so far as its
application to Waring's problem for smaller exponents is concerned. Write
R(N) for the number of positive integers not exceeding N which are the sum
of three cubes of natural numbers. Then, by exploiting methods based on the
use of diminishing ranges, Davenport [4] established that R(N)»NU/I5~E, SL
bound which Davenport [5] himself subsequently improved to obtain
R(N)»N41/54~e. It remained until the work of Vaughan for further improve-
ment to be achieved. First, in work which may be considered as a natural
development of Davenport's methods, Vaughan [11,12] obtained the lower
bound R(N)»_/V19/21 ^e. Later, as a consequence of his "new iterative method"
involving the use of exponential sums over smooth numbers, Vaughan [13]
obtained the sharper bound R(N)»Nu/12~e (see also Ringrose [10] for an
intermediate estimate). Most recently, the author has developed an extension
of the new iterative method in which fractional moments of exponential sums
over smooth numbers are estimated non-trivially, and thereby (see Corollary
B to Theorem 1.2 of Wooley [15]) has obtained the lower bound

where <jj denotes the positive root of the polynomial <^3+16^2 + 2 8 ^ - 8 , so
that £ - 0-24956813.... The purpose of the present paper is to obtain a further
modest sharpening in the lower bound for R(N).

THEOREM 1.1. For each positive number e, one has

R(N)»Na~\

where a= (166- V2833)/123.

For comparison, one has the lower bound a > 0-916862, whereas
1 - 4/3 < 0-916811. Although this improvement in the lower bound for R(N)
may be the smallest in history, it is to be hoped that the progress described
herein may at least stimulate further progress in this stubborn problem. We
remark that, subject to the truth of an unproved Riemann Hypothesis concern-
ing certain Hasse-Weil L-functions, one has the conditional estimate
/?(A^)»Af'"£ due to Hooley [8, 9] and Heath-Brown [6]. Unfortunately, the
latter L-functions are not yet known to possess an analytic continuation inside
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the critical strip, and thus the resolution of a Riemann Hypothesis seems a
distant prospect.

We establish Theorem 1.1 in routine manner by exploiting a mean value
estimate of independent interest. In order to discuss this estimate, we require
some notation. Denote by / (P, R) the set of /^-smooth numbers of size at
most P, that is

/ (P, R) = {ne[l,P]nZ:p\n andp prime =*p*£R}.  (1.1)

As usual, we write e(z) for elKlz, and define the smooth Weyl sum
f(a)=f(a;P,R) by

f(a;P,R)= I e(ax\ (1.2)
.IE , (P,K)

and the classical Weyl sum F(a) - F(a; P) by

F(a;P)= X e(ax\ (1.3)

In §2 we establish the estimates contained in the following theorem.

THEOREM 1.2. For each e > 0, there exists a positive number r\ = r)(e) such
that whenever R^PV, one has

F(a; P)2f(a; P, R)4\da«P3 + 5"  + e (1.4)

0

and

1

I \f(a;P,R)\5da«P5/2 + 5s + e, (1.5)
o

where

V2833-43 V2833-49
<S6 = and 85= . (1.6)

For comparison, Theorem 1.2 and Lemma 5.1 of Wooley [15] establish
similar estimates to those of Theorem 1.2 with <56 = tt, and 8$ = 3^/(8 + 2^),
where t, is the number defined in the opening paragraph. Earlier work of
Vaughan [13, Theorem 4.4] had established the upper bound

\f(a;P,R)\6da«Pu/4

and this yields the estimate (1.5) with <55 = 1/8 via Schwarz's inequality. It may
be useful to record that the values 85 and <56 recorded in (1.6) satisfy

<55 = 008804028. . . and <S6 = 0-24941301 . . . .
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As will be familiar to experts, the upper bound (1.4) of Theorem 1.2 has
immediate consequences for estimates concerning the exceptional set for sums
of four cubes. Let E(X) denote the number of natural numbers not exceeding
X which are not the sum of four cubes of natural numbers. Then by following
the argument of Brildern [2], one readily establishes the estimate contained in
the following theorem. We provide no further discussion of the proof of this
theorem.

THEOREM 1.3. For each positive number e, one has

where ft = (422 - 6

The aforementioned work of Brudern [2] yields a similar conclusion with
j3 = 5/42, this having been improved in Corollary B to Theorem 1.2 of Wooley
[15] to p= ( 4 - 6 ^ / 2 1 < 0119172. For comparison, the value of j3 recorded in
Theorem 1.3 satisfies p > 0119215.

We establish the mean value estimates of Theorem 1.2 by means of the
iterative method described in Wooley [15]. The key feature of the latter method
is that it estimates non-trivially the fractional moments of smooth Weyl sums,
and in the proof of Theorem 1.2 it is the fifth moment which plays the leading
role. For the most part we follow the treatment applied in §5 of Wooley [15],
but now we exploit sharper major arc estimates following the differencing oper-
ation in order to permit greater use to be made of the fifth moment. The
sharper estimates presented in Theorem 1.2 lead to small improvements in all
small moments of cubic smooth Weyl sums, and this topic we briefly discuss
at the end of §2.

We use e and 77 to denote sufficiently small positive numbers, and P to
denote a large positive number depending at most on e and 77. The implicit
constants in Vinogradov's well-known notation, « and » , will depend at most
on e and 77. We adopt the following convention concerning the numbers e
and R. Whenever e or R appear in a statement, either implicitly or explicitly,
we assert that for each e > 0, there exists a positive number r](e) such that the
statement holds whenever R^P11. Note that the "value" of e, and r\, may
change from statement to statement, and hence also the dependency of implicit
constants on e and 77. We observe that, since our iterative methods will involve
only a finite number of statements (depending at most on e), there is no danger
of losing control of implicit constants through the successive changes in our
arguments.

§2. The proof of Theorem 1.2. Before establishing the mean value estimates
contained in Theorem 1.2, we must recall some notation from Wooley [15].
When .v is a positive real number, define the mean value US(P, R) by

1

US(P,R)= [\f(a;P,R)\'da.
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We say that an exponent [is is permissible whenever the exponent has the prop-
erty that, with the notational conventions defined above, one has
US(P, R)«P^' + e. It follows easily as in [15] that, for each s, a permissible
exponent [i s exists satisfying s/2^nŝ s. It is convenient to refer to an
exponent 8S as an associated exponent when /xs = s/2 + 8S is permissible.

We provide associated exponents 85 by applying Lemma 5.1 of [15], which
we record below in the following lemma.

LEMMA  2.1. Suppose that 86 is an associated exponent. Then the exponent
85 = 356/(8 + 256) is associated.

It is in the analysis of the associated exponents 56 that our treatment differs
from that of Wooley [15].

LEMMA  2.2. Suppose that 85 and 86 are associated exponents. Then the
exponent 8'6 is associated, where

(2.1)

Moreover, one has

i
r

\F(a;P)2f(a;P,R)4\da«P3 + s'6 + £. (2.2)

Proof. Initially, we follow the treatment of Lemma 5.2 of Wooley [15].
Let (p be a real number with 0^<p^ 1/7, and write

M^P*, H=PM3 and Q=PM\

Next define the exponential sum

*"i(a)= I X X  e(2ah(3z2 + h2m%

and define the mean value I(.'jf), when ^c [0 ,1 ) , by

/(.*)= (V1(a)/(a;2g,*)4|<fa. (2.3)

Then the inequality (5.3) of [15] yields the estimate

1

\F(a; Pff(a; P, R)4\da«PEM\PMQ2 + /([0, 1))). (2.4)

On considering the underlying Diophantine equation, the integral on the left-
hand side of (2.4) provides an upper bound for Ub(P, R), and hence the esti-
mate (2.2) establishes that the exponent 8'b defined in (2.1) is associated.
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Let m denote the set of points a in [0, 1) with the property that, whenever
there exist aeZ and qsN with {a,q)= 1 and \qa -a\=sPQ~3, then one has
q>P. Further, let 3ft = [0, l)\m. We aim to apply the Hardy-Littlewood
method to estimate the mean value /([0,1)), and from this the desired upper
bound (2.2) will follow.

We begin by estimating the contribution of the minor arcs m to /([0,1)).
By applying Holder's inequality to (2.3), we obtain

/(m)«/1/5C/45
/5, (2.5)

where

i

J- \\F\{a)fda and Us=  |f(a;2Q,R)\5da. (2.6)

m
But by inequality (5.4) of [15] together with the argument of the proof of
Lemma 3.7 of Vaughan [13], one has

sup |F,(a)| \F,{a)\2da
a em / J

« Pe((PM)l/2H)3(PMH).

Also, on recalling that d5 is an associated exponent, we have

U5«Q5/2 + Ss + e.

Thus it follows from (2.5) that

I(m)«Pe(PM)U2H4/5Q2+4Si/s. (2.7)

In order to provide a satisfactory estimate for I(M), we investigate an
auxiliary mean value. Observe that M is the union over aeZ and qeN
satisfying (a, q) = 1 and O^a^q^P, of the intervals

,a) = {ae[0, \):\qa-a\^PQT1}.

Define the function A(a) for ae[0,1) by

\(q + Q3\qa - a\y\ when ae W(q, a) c M,
A(a) = .

[0, otherwise,

and define the mean value

K=lA(a)\f(a;2Q,R)\2da. (2.8)
w

Plainly,

\f(a;2Q,R)\2=
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where y/(l) denotes the number of solutions of the equation z\ - z\ = I with z,,

z2e,y/ (2Q, R). One evidently has

Q and X y/(l) = / (0 ;2g, Rf«Q2.

Applying the latter estimates within Lemma 2 of Brudern [1], we deduce that

A(a)\f(a;2Q,R)\2da«Qe'3(PQ+Q2)«PQl! '2. (2.9)
mt

Next we note that, by Lemmata 3.1 and 3.4 of Vaughan [13], when aeW
one has

F1(a)«Pe(PHMA(a)m + PHM'/2A(a)]/2).

Then, by combining (2.3) with (2.8) via Holder's inequality, we obtain
1/3

I(W)«P{+EHMK2/i\ \f(a;2Q,R)\%da

1/2

P1+£HMW2KI/2 \f(a;2Q,R)\bda\ .

Consequently, on recalling Hua's Lemma (see Lemma 2.5 of Vaughan [14]),
and making use of (2.9) and our hypothesis that <56 is an associated exponent,
we deduce that

On recalling (2.7) and (2.4), we thus obtain the bound

\F(a; Pff(a; P, Rf\da « PeM\PMQ2 + I(W) + /(in))

o

-<D, + O4), (2.10)

where

O, = PM, 4>2 = (PMy/2H4/sQ4Si/s,

* 3 = P5/3HMQ-5/\ O4 = P3/2HMW2Q^-3)/2.

In view of the definitions of M, H and Q, however, one finds that <J>3 =
PM" 1 / 3^O, , that whenever

3 + 8<55
m> - ,

29 + 855

one has O ^ ^ , and that whenever <ps=56/(4+ 56), one has O!^O4 . Thus,
on setting

f 3 + 8 5̂ 86 1
(2.11)29 + 85, 4 + 5 j
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we deduce from (2.10) that

\F(a; Pff(a; P, R)4\da«Pl

whence the desired estimate (2.2) follows immediately from (2.11).

Theorem 1.2 follows by applying Lemmata 2.1 and 2.2 iteratively, as we
now demonstrate.

The proof of Theorem 1.2. Suppose that 8,(t=5,6) are associated
exponents. Then, by applying Lemmata 2.1 and 2.2 repeatedly, we obtain a
sequence of such associated exponents, $r ) (t = 5, 6), with the property that
<5<0) = S, and for r 3=0,

<55 = — and ok =2max —, --\. (2.12)
8 + 28ir) l29 + 85(r) 4 + 5 H k '

If the second expression in the maximum defines 8<i+l)  in (2.12) for infinitely
many values of r, then plainly 5*6

r)—>0 as r->co, and likewise for 5(
5
r). We may

therefore suppose that, for all sufficiently large r, it is the first expression which
defines 6*6+ l> in (2.12). Then, taking the limit as r—>co, we deduce that the
exponents 8f and 8% are associated, where 8f and 8% satisfy the equations

_„ 356*  , 3 + 85?
5̂* = -—™IT and 8t = 2

It follows that 8* is the smaller zero of the polynomial 41<^2 + 86^ -24 , whence

5f and 8f =
41 48

The estimates (1.4)-(1.6) now follow directly from Lemmata 2.1 and 2.2.

Theorem 1.1 follows immediately from Theorem 1.2 by means of an appli-
cation of Cauchy's inequality. Since this argument is so often suppressed, we
briefly describe the details for the benefit of inexperienced readers. We take
P — 7V1/3, and R — Nn with r\ — r)(e) a sufficiently small positive number. Then,
on writing r(ri)  for the number of representations of the natural number n in
the shape « = x3 + / + z3, with l ^ x ^ P and >>,ze.v/ (P, R), one finds that

r(n)»P3,
1 «5 « =£ TV \^n^-N
r(n) > 0

and

i

t
\F(a; P)2f(a; P, R)4\da «P7"H
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where 86 is the real number denned in (1.6). Thus, since by Cauchy's inequality

r(n) > 0

we deduce that

The conclusion of Theorem 1.1 is thus an immediate corollary of the estimate
(1.4) of Theorem 1.2.

We conclude with a brief discussion of permissible exponents fis for
4<s< 8. This topic is investigated in detail in §4 of Brudern and Wooley [3].
One finds, in particular, that methods currently available to us yield permiss-
ible exponents fis for 5 < s < 6 which simply interpolate linearly between fx5 and
He, and indeed a similar situation occurs for 6<.v<6-5. The explanation for
this phenomenon is clear. One may provide bounds for /ub by means of the
mean value estimate (2.4), and thus the exponential sum F,(a), involving vari-
ables running over complete intervals, plays a prominent role. When s is not
an even integer, the relevant mean values involve an analogue of F,(a) in
which certain linear combinations of variables are restricted to be smooth, and
thus minor arc bounds for this analogue of Fi(a) are too weak to be of use.
It thus transpires that the method of estimating /xs when s = 6 is so much more
efficient than that available for neighbouring values of s, that convexity argu-
ments triumph close to s = 6. This phenomenon dictates that, when estimating
the mean value /(m) defined by (2.3), applications of Holder's inequality which
exploit mean values U,(P, R) should yield exponents /j.6 which are local extrema
when t = 5, 6 and 6.5. The only obstacles to such a conclusion arise when
estimating the contribution of the major arcs in the Hardy-Littlewood dissec-
tion, but in the present situation such obstacles have been removed. Thus we
believe that the conclusion of Theorem 1.2 is the best available within the
compass of our methods.

As noted in the introduction, the estimates of Theorem 1.2 may be recycled
within §4 of Brudern and Wooley [3]. However, the new permissible exponents
obtained for 4 <5^7-365 improve on those of §4 of [3] only in the 4th, 5th or
6th decimal places, and thus we avoid further discussion of this matter herein.
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