ADDITIVE REPRESENTATION IN THIN SEQUENCES,
II: THE BINARY GOLDBACH PROBLEM
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§l. Introduction. Most prominent among the classical problems in addi-
tive number theory are those of Waring and Goldbach type. Although use
of the Hardy-Littlewood method has brought admirable progress, the finer
questions associated with such problems have yet to find satisfactory solutions.
For example, while the ternary Goldbach problem was solved by Vinogradov
as early as 1937 (see Vinogradov [16], [17]), the latter’s methods permit one to
establish merely that almost all even integers are the sum of two primes (see
Chudakov [4], van der Corput [5] and Estermann [7]). Subsequent investi-
gations have resulted in sharper estimates for the number of possible excep-
tions. In particular, writing (N) for the number of even natural numbers
not exceeding N which are not the sum of two primes, we have the celebrated
theorem of Montgomery and Vaughan [10] which shows that ./ (N)<N'"?
for some small § > 0. One may seek to gain greater insight regarding the nature
of any possible exceptional set by investigating the extent to which natural
numbers in thinner sequences are represented in the proposed manner. The
literature concerning such questions is presently enjoying a phase of rapid
expansion, and now includes material on short intervals (see, for example,
Ramachandra [13], Perelli and Pintz [12], Languasco and Perelli [9] and Baker,
Harman and Pintz [1]), polynomial sequences (see Perelli [11]), and even rather
sparse sequences provided by such sets as {[exp ((logn)")]:neN} for 1<y <
3/2 (see Briidern and Perelli [3]). The goal of this paper is to provide methods
for the binary Goldbach problem which address the problem of providing
more refined information concerning exceptional sets in polynomial sequences.

In order to set the scene for the specific problem at hand, we recall a result
of Perelli [11]. Let ®e Z[x] be a polynomial of degree k with positive leading
coefficient, and let <, (N; ®) denote the number of natural numbers n, with
I=n= N, for which the equation

20(n)=p+p2

has no solution in primes p;,p,. Then Perelli shows that, for any positive
number A4, one has

“W(N; @) < 4.0 Nlog N) ™, (1)

whence almost all values of the polynomial 2d(#n) are the sum of two primes.
We are able to improve considerably the quality of the estimate (1). Thus, in
§4, we establish the following theorem.

THEOREM 1. Let ®eZ[x] be a polynomial of degree k with positive leading
coefficient, and let ,(N; ®) be as defined in the previous paragraph. Then there
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is an absolute constant ¢ >0 such that

o (N; D)< o N 775,

We remark that estimates of the strength provided by Theorem 1 are not
even available in the literature under the assumption of the Riemann Hypoth-
esis for Dirichlet L-functions (see Perelli [11]). With little additional effort it
is possible to establish a significantly stronger conclusion than that of Theorem
1 in the case that ®(r) = ¥, provided that one is prepared to restrict attention
to smooth values of ¢. Let

.7 (P, Ry={ne[l, PInZ: p prime, pln=p<R}.

Also, let ?k(N, R) denote the number of natural numbers ne. .. (N, R), for
which the equation 2#* = p, + p, has no solution in primes p,, p,.

THrOREM 2. There exist positive absolute constants Ny and 8 such that,
for every natural number k, whenever 0 <1 <ng, and R is a real number with
NV2< R<N", then one has

RN, R)y<yq N'7°.

We refer the reader to our earlier paper [2] for a lengthy discussion concern-
ing the broad ideas and philosophy underlying our approach to estimating
exceptional sets in thin sequences. For now, suffice it to say that we consider
the possible set of exceptions in the binary Goldbach problem directly,
employing an exponential sum over the latter exceptions, and exploiting mean
values of this sum within our application of the Hardy-Littlewood method.
It is crucial to our argument that this exponential sum preserve arithmetic
information concerning the set of exceptions, information which is lost, or at
least exploited rather inefficiently, in more traditional approaches involving
the use of Bessel’s inequality.

Throughout, the letter £ will denote a sufficiently small positive number.
We take N to be the basic parameter, a large real number depending at most
on k, €, and any coefficients of implicit polynomials if necessary. We use «
and >» to denote Vinogradov’s well-known notation, implicit constants
depending at most on k, £ and implicit polynomials. Also, we write [x] for the
greatest integer not exceeding x. Summations start at 1 unless indicated other-
wise. In an effort to simplify our analysis, we adopt the following convention
concerning the parameter €. Whenever £ appears in a statement, we assert
that, for each € >0, the statement holds for sufficiently large values of the main
parameter. Note that the “value” of € may consequently change from state-
ment to statement, and hence also the dependence of implicit constants on &.

§2. An averaged minor arc contribution. A little preparation is required
before embarking on our quest for Theorem 1 in earnest. Let ®eZ[f] be a
polynomial of degree k& with positive leading coefficient. It is convenient to
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write k=2""%. Let #(N; ®) denote the number of natural numbers n, with

kN <n=N, for which the equation
20(n) =p, +p2 2)

has no solution in primes p;,p,. We aim to show that there is an absolute
constant ¢>0 such that < #(N;®)«<N' % The conclusion of Theorem 1
follows by collecting together the exceptional n from intervals K’ N<n<x'"'N,
where /e N.

Let N be a large real number, and write X = 20 (N ). Then plainly one has
X=N*. We take & to be a sufficiently small, though fixed, positive real number
to be chosen later, and write P = X°°. We define the exponential sum S(c) by

Se)= ¥ (logple(op),

P<psX

where the summation is over prime numbers, and when 8 [0, 1] we write

r(n; B) = J S(aYe(-an)de. 3)
B

For brevity we write #(rn) = r(rn; [0, 1]), and note that »(2d(n)) counts the solu-
tions of (2) with weight (logp,)(logp,). We apply the Hardy-Littlewood
method, defining the major arcs I to be the union of the intervals

Mg, a) = {ae[0,1]: |gor —a| < PX"}

with 0<sa<g<P and (a,¢)=1. We define the minor arcs m by
m = [0, I\, and note that, for each n with kN<n=<N, one has

rRo(n)) = rQR®(n); M) + r(2®(n); m). C))]
We first show that, on average, the contribution of the minor arcs in (4) is

small. It is here that we profit handsomely compared to previous treatments.

LemMa 1. There is a positive real number a = a(8), depending at most on
8, such that

Y [rQOn); m)| < XNk

—
KN<n=N

Proof. Motivated by the observation that the expression r(/; m) is real for
every natural number /, we define 1n(/), for each /e N, by

1, when r(/; m)=0,
n() = .
-1, when r(/; m) <0.
Thus it follows from (3) that
Y rQem);m)|= j S(e)’K(-a)da, (5)
KN<n=sN
m

where
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Ka)= ¥ nQRdHn)eemoa).
kN<n<sN
We next observe that, when ¢ is an even natural number, then the mean
value | +|K(av)|'da counts the number of solutions of an underlying diophan-
tine equation, with each solution counted with weight at most 1 in modulus,
whence it follows that

1 1

j!K(a)l’daSJ Y e2®(n)a)| do.
4] 0 =N
Let
t=2[(2 —log 8)K. (6)

Then, by combining a classical version of Vinogradov’s mean value theorem
(see, for example, Vaughan [15], Theorem 5.1) with Theorem 1 of Ford [8],
one obtains, for each integer m with 1 <m =<k, the estimate

1
f|K(a)‘tda<<Ntfk+A/m’

0

where
A =3k exp (—(t — 2k — m(m — 1))/ (2k%)) < 8k°.

We take m = k, and thereby deduce that
1
f |K(a)|'dor < N* = =9k, (7)
0

Finally, we note that by orthogonality one has

1

f [S()’da= ¥ (logp)’«<XlogX, (8)

P<p=sX
0

and that, by Vaughan [15], Theorem 3.1,

sup |S(a)| < XP*(log X)*« X' " (log X)*. )
ac

On applying Hélder’s inequality to (5), one obtains
Y [reem);m)|

kN<nsN

1 1-1/t 1 1/t

2/t
s(sup |s<a>|) j 1S(a) der j |K(o) ot |

xe 0 0
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whence, on recalling that X>=N* and making use of (7)—(9), we conclude from
(6) that

Y QP (n); m)| < N' T (X log X)) TV X0 (Jog Xy

kN<n=sN
« NXl —58/t (10g X)3’

and the desired conclusion follows immediately.

§3. The major arc contribution. Our treatment of the major arc contri-
bution in (4) depends heavily on the work of Montgomery and Vaughan [10],
and in order to make use of the latter we will require some additional notation.
Recall that there exists a positive constant ¢; >0 such that

&1

L(o, x)#0 foro=1 1 10)

ogP’
for all primitive Dirichlet characters ¥ of modulus g=< P, with the possible
exception of at most one real primitive character, henceforth called the excep-
tional character. 1If such a character exists, we write ¥ for this exceptional
character, and 7 for its modulus. It then follows that L(s, ) has a unique zero
ﬁ violating (10), and moreover one has

Ci

7 (logF) P« 1-B=<

, 11
log P (1

in which the implicit constant is absolute. We refer the reader to Davenport
[6], Chapter 14, for an account of such matters.

LEMMA 2. Suppose that Y is a real number with 1< Y<X®*_ Then one has
r®(n); PM)>»> XY ? (log X)
for all n satisfying kXN <n<N, with the possible exception of O(N'**Y™") values

of n.

Proof. For the proof of this lemma, we follow closely §8 of Montgomery
and Vaughan [10]. In this context, it may be useful to the reader to note that
the expression R (n) in the latter corresponds to r(n; ) in the present paper.

Suppose first that there is no exceptional character. Then, as in §8 of
Montgomery and Vaughan [10], it follows that for kN <n<N one has

r®(n); M) > X, (12)

and the conclusion of the lemma is immediate. Suppose then that the excep-
tional character exists. Then again we find from Montgomery and Vaughan
(10], §8, that, when kN<un<N and 2®(n),7)=1, one has the lower bound
(12). We therefore deduce that the lemma will follow, on showing that the
number of integers » satisfying k N <rn< N, for which

QQd(n),7)>1 and rQ®(n);M)<XY " (log X)',
is at most O(N' "¢ Y.
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Observe next that, when (2@(n), 7) > 1, one has 7(2®(n)) =0. Under such
circumstances, it follows from equations (6.17) and (7.1) of Montgomery and
Vaughan [10] that

Ir2® (n); M) ~ 20 (MSQP () ~ IQPMNS P ()| < ex(T, + T2),  (13)
where ¢, is a positive absolute constant,
_ 20 (n)
P(2D(n))

and here again ¢s is a positive absolute constant, the function ¢ denotes the
Euler totient, and for the purposes of the present discussion it suffices to note
that, by (6.16), (6.18), (8.5) and the argument following (6.17) of Montgomery
and Vaughan [10], one has, for each n with kN<n<N,

T, = X" °P12d(n), 7), 7, (1-B)xe PlogpP, (14)

_ ®(n)

20 =2—>z=], 15
SQ®(n) D) (15)
1Q®(n) < (2@ (n)’ <20 (n), (16)
ISQemy|<sem) 1 (p-20" (17)

plF
prod(n)
We note further that, since 7 is the modulus of a real primitive character, then
necessarily 7 takes the shape

F=2"u, (18)

where v and u are integers with 0<<v<3, 21y and u(u)’ = 1.
Since 7 takes the shape (18) with u square-free, the integers n with

kN<n=<N and 2®(n), 7/} > Y number at most

Y Y 1< ¥ d°+N/d)y<N'**y .

dd>' fY d| [nZ?I)I(Vn) dd>| FY
In consequence, we may discard these integers without loss, counting them
amongst the possible exceptions of the statement of the lemma. Suppose then
that » is an integer with kN<n<N and 1 <(Q2®(n),7)<Y. Then one finds
from (14) that

T, <X'%y'2 (19)

Further, if the product in (17) is non-empty, then it follows from (13)-(17),
(19) and (11) that, when 9§ is sufficiently small in terms of ¢,, ¢,, ¢, one has

r2® (n); M) = (1 — 9c1c,6™°)YS 2D (n)D (1) > X,
and the bound (12) again holds.
Suppose then that the product in (17) is empty, whence by (18) one has

F
2®0(n), =11 p=—.
(2®(n), ) Py

p>3
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Since by hypothesis we have 2®(n), /)<Y, it follows that 7« Y. We therefore
deduce from (16), together with (6.21) of Montgomery and Vaughan [10], that
for each such n with kN <n=<N one has

20 (MBSO (n)) + 120 (1)S 2D (1)) = @ (M)SQP())(1 - B) log P

for a certain absolute positive constant ¢;. For this last class of integers #,
therefore, it follows from (13), (14) and (19) that

rQR®(n); M)
=(cs~ 90,6 SR )P (n)(1 — B)log P+ O(X' Y3

whence, by (11), (15) and our earlier observation that 7« Y, we conclude that,
whenever 6 is sufficiently small in terms of ¢, ¢,, ¢3, ¢4, One has

r2d(n); My > XY *(log X) . (20)

Collecting together our earlier conclusions, we find that the lower bound
(20) holds for all integers n satisfying kN <n<N, with at most O(N' *¢Y")
possible exceptions. This completes the proof of the lemma.

§4. The proofs of Theorems | and 2. The proof of Theorem 1 may now
be swiftly overwhelmed. We take & to be a fixed positive number, sufficiently
small in the context of Lemmas | and 2, and write T=3min {8, a(5)}. We then
take Y= N"*, and note that by Lemma 1 we have

r2®(n); my< XY™’

for each integer n satisfying kN <n=< N, with at most E, possible exceptions,
where E| satisfies

E, e 3 [rQen); m)| <« YN' " <« NY™.
XKN<néN

On the other hand, it follows from Lemma 2 that (20) holds for all integers n

with k N<n=<N, with at most O(N' "Y'} possible exceptions. On recalling

{4), we find that r(2®(n)) >0 for each integer n with x N <n< N, with at most

O(N' ***#) possible exceptions. The conclusion of Theorem 1 is now

immediate.

So far as the proof of Theorem 2 is concerned, we note merely that the
methods of Wooley [18] (see the corollary to Wooley [19], Theorem 2.1; the
methods of Vaughan [14] would aiso suffice for our purpose) show that, with
t =2[(2 —log 8)]k, one has for sufficiently small n the bound

1

|

0

t

k ~k+A
Y e(an®)| do«<, N' 7574,
kN<n=N
ne. » (N, R)

where A = kexp(l —t/k)< k. Then the argument of the proof of Lemma 1
shows that, for some positive real number g = a(6)< 6,
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¥ J S(o)’e(-2n*a)der| <, XN'™,
kKN<n=N

ne. . (N,R) m

and here again we use the definitions introduced in §2 of this paper. But
Lemma 2 shows that

J S(a)’e(-2r*a)do > XN 3
pifs

for all n with kN<n=N and ne. «/(N, R), with the exception of at most
O(N'~“/?) values of n. Then, on recalling that our hypotheses concerning R
ensure that card (/' (N, R)n[kN, N])», N, we may apply the argument used
to conclude the proof of Theorem 1 to deduce that, for each integer n satisfying
ne .7 (N, R)n[xN, N], with at most O(N' ~“'°) possible exceptions, one has
r(2n*)>0. When 1, is sufficiently small but positive, the conclusion of The-
orem 2 is immediate.
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