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Small laboratory animals are powerful models for investigating in vivo viral

pathogenesis of a number of viruses. For adenoviruses (AdVs), however, spe-

cies-specificity poses limitations to studying human adenoviruses (HAdVs) in

mice and other small laboratory animals. Thus, this review covers work on

naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-

1), a member of the species Murine mastadenovirus A. Molecular genetics,

virus life cycle, cell and tissue tropism, interactions with the host immune

response, persistence, and host genetics of susceptibility are described. A brief

discussion of MAdV-2 (member of species Murine mastadenovirus B) and

MAdV-3 (member of species Murine mastadenovirus C) is included. We

report the use of MAdVs in the development of vectors and vaccines.
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Study of animal adenoviruses is of importance both

because of the fundamental knowledge gained from

comparative biology with human adenoviruses

(HAdVs) and because of the ability to study the patho-

genesis of an adenovirus (AdV) in its natural host using

experimental infections, which is not possible for

HAdVs. Moreover, AdV species-specificity limits the

use of small animal models for the study of human

AdV pathogenesis. The ease and relative low cost of

studying mice in the laboratory is augmented by the

wealth of genetically distinct inbred strains of Mus mus-

culus and the ability to make transgenic mice to test the

functional importance of mouse genes for virus infec-

tion. These are coupled with a rich supply of immuno-

logical reagents for studying the mouse host response.

Mouse adenovirus MAdV-1 (Ad-FL) [1] was among

the first nonprimate adenoviruses identified in the

1950s and 1960s, along with canine hepatitis virus,

CAdV-1 [2], fowl AdV-1 (CELO)[3], and bovine AdV

[4]. MAdV-1 has a tropism for endothelial cells and

cells of the monocyte/macrophage lineage, and it also

infects astrocytes [5–7]. MAdV-1 infects tissues

throughout the mouse, and the highest levels of virus

are found in the brain, spinal cord, and spleen after

intraperitoneal infection [5,6,8]. MAdV-1 causes

encephalitis in susceptible mice [6,8,9], myocarditis

[10–12], and respiratory infection [13,14]. A second

mouse AdV, MAdV-2 (K87), was isolated from feces

of laboratory mice in Japan in 1966 [15]. Both in cul-

tured cells and in mice, MAdV-2 has a tropism for

cells of the intestinal tract, but it does not cause

apparent disease in mice [15–17]. MAdV-1 and -2 were

isolated from laboratory mice, whereas a third type of

mouse AdV, MAdV-3, was isolated from a liver from
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a striped field mouse, Apodemus agrarius [18]. MAdV-3

has a primary tropism for cardiac tissue, and it is pre-

sent at high levels in myocardium, not in the brain,

and at lower levels in most other organs [18]. MAdV-3

is genetically more similar to MAdV-1 than to

MAdV-2.

The MAdV types discovered to date seem to have

low significance as natural pathogens, and only a lim-

ited number of prevalence studies in the wild [19–21]

and in commercial or research colonies [22–26] have

been performed. These studies indicate a moderate

serologic prevalence of MAdV-2 with considerable

site-to-site variability. More recently, virome profiling

studies have added more insights and provided evi-

dence for new rodent adenoviruses [27–29]. The ‘mur-

ine’ adenoviruses that have been characterized to date

do not infect infant rats [30], and thus this review

covers only mouse adenoviruses.

MAdVs have similarities and differences compared

to HAdVs that will be discussed below. We include

comparisons of molecular genetics and gene expres-

sion, cell and tissue tropism, and viral persistence. The

MAdV-mouse host system enables studies of viral

pathogenesis that have no direct comparison to HAdV

studies. We also discuss the use of MAdVs for vacci-

nes and gene delivery vectors. Readers are also direc-

ted to previous reviews of mouse adenoviruses [31,32]

for additional historical perspectives and further

details.

Mouse adenovirus type 1

Isolation, physical, and molecular genetic

properties

MAdV-1 was isolated by Hartley and Rowe when

they were establishing Friend mouse leukemia virus

in culture, and they subsequently isolated it from

Swiss mice in a mouse colony, designating it ‘M.Ad.

virus strain FL’ [1]. The virus has physical and sero-

logic properties like HAdVs [1,31], and infected mice

transmit the virus to uninoculated cage contacts, but

there is no apparent transmission through the air or

via bedding from cages of infected mice [1,33].

MAdV-1 has subsequently been studied in cell culture

and mice. One isolate of MAdV-1 is in the American

Type Culture Collection (Cat. no. VR550), deposited

by Steven Larsen; we and others from 1981 onward

have used an isolate obtained directly from Dr. Lar-

sen, referred to as ‘standard’. These two isolates have

minor molecular and pathogenetic differences [34],

and it is not known which strain (if either) was used

prior to 1981.

MAdV-1 has a 30 944 bp double-stranded genome

with 93 nt inverted terminal repeats [34–36]. The com-

plete sequence is available as NC_000942.1 [37].

Another entry with in silico-derived annotations of the

same sequence is AC_000012.1 [38]; it has some pre-

dicted genes not in agreement with published experi-

mental evidence (e.g., in silico E1A annotation does

not match transcription mapping and cDNA sequenc-

ing data) [31].

In broad terms, the genome structure of MAdV-1 is

similar to that of HAdV-5. It encodes genes with

sequence and functional similarity to HAdV early (E)

regions 1–4, a major late promoter (MLP) with a tri-

partite leader, and late (L) genes encoding the major

virion proteins and proteins involved in morphogenesis

[reviewed in Ref. [31]]. The gene arrangement is like

that of HAdVs. A terminal protein is associated with

the 50 end of each end of the genome [36]. In fine

details, there are some differences between HAdVs and

MAdV-1 in gene expression and function. For exam-

ple, MAdV-1 does not encode virus-associated RNA

(VA RNA) [37], which in HAdV infections counteracts

the host protein kinase R (PKR) antiviral response

[39].

Instead of two major isoforms of the E1A protein

found in HAdV-5, MAdV-1 only has one 200 aa pro-

tein, corresponding to the larger (289 aa, ‘13S’)

HAdV-5 protein [40]. Although its overall sequence

similarity to HAdV E1A proteins is low, it has about

40% similarity to conserved regions 1 (CR1), CR2,

and CR3. MAdV-1 E1A has functional similarity to

HAdV E1A; it interacts with cellular proteins pRb and

p107 via its CR2 domain and is involved in the regula-

tion of cell proliferation of quiescent cells [41]. MAdV-

1 E1A, like HAdV E1A, interacts with a component

of the mediator transcriptional complex, Sur2, now

known as Med23, through the E1A CR3 domain [42].

This finding enabled the demonstration that Med23 is

required for efficient replication of adenoviruses, which

was unable to be tested directly using HAdVs.

Transcription mapping has not been done for

MAdV-1 E2, but the predicted proteins have good

sequence similarity with the three HAdV E2 proteins,

which are involved in viral DNA synthesis. The DNA

polymerase, DNA binding protein, and pTP, which is

involved in protein priming of DNA synthesis, have

33–57% sequence similarity to HAdV proteins [37,43].

MAdV-1 E3 is distinct from the E3 regions of

HAdVs. There are three mRNAs encoded that share

50 and 30 termini but differ in splicing of the third

exon, such that the three predicted proteins share

amino terminal sequences but have different carboxy-

terminal domains [44]. Only one of the MAdV-1 E3
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proteins is detected in wild-type virus-infected cells,

the E3 gp11K protein [45]. As is true of the HAdVs,

the E3 region of MAdV-1 is involved in viral patho-

genesis [45,46]. MAdV-1 E3 functions are not directly

comparable to those of HAdVs, however. For exam-

ple, one of the first viral immune evasion strategies

identified for any virus is downregulation of class I

major histocompatibility complex (MHC) antigens on

the surface of infected cells by HAdV-2 [47]. This

function of HAdV E3 gp19K is not mimicked by

MAdV-1 infection [48]. The MAdV-1 E3 proteins do

not have sequence similarity to other known proteins.

Unlike the E4 mRNAs of HAdVs, which are 50 and
30 coterminal, the MAdV-1 E4 mRNAs have different

50 ends but share 30 ends [49]. Predicted proteins have

sequence similarity to HAdV-2 E4orf6 (34K protein)

(MAdV-1 protein originally identified as orf a/b),

E4orf3 protein (MAdV-1 orf a/c), E4orf2, and E4orf6/

7 (MAdV-1 orf d) [34,49]. Little has been reported

about function of the MAdV-1 E4 proteins. However,

when E4orf6 is introduced into human cells by trans-

fection, it coimmunoprecipitates with Cullin 2 (Cul2),

Elongin C, and MAdV-1 E1B 55K protein [50].

Importantly, mouse p53 is degraded when it and

MAdV-1 E4orf6 and E1B 55K protein are coex-

pressed, indicating that E4orf6 (together with E1B

55K) functions as a ubiquitin ligase.

The MLP of MAdV-1 has features like the HAdV-1

MLP, including a TATA box and an inverted CAAT

box, but it lacks a sequence that binds the transcrip-

tion factor USF and it lacks the initiator (INR)

sequence [51]. At late times, the MLP is functional in

MAdV-1-infected cells, as demonstrated by RNAse

protection assays of infected cell RNAs. MAdV-1 late

mRNAs have a typical tripartite leader structure (C.

Coombes, J. Boeke, L. Gralinski, and K. Spindler,

unpublished).

Receptor studies indicate that the mouse coxsackie-

adenovirus receptor (CAR) homolog of the human

CAR used by many HAdVs as the attachment recep-

tor is not used by MAdV-1 [52]. Transfection of

mouse CAR into Chinese hamster ovary cells does not

increase attachment of virus relative to untransfected

cells, and purified HAdV-5 fiber knob does not com-

pete with MAdV-1 binding. MAdV-1 penton base pro-

tein does not have an Arg-Gly-Asp (RGD) sequence

that in HAdVs is important for interaction with entry

receptors. However, the MAdV-1 fiber knob has an

RGD motif in a sequence of the knob that represents

an insertion relative to HAdV-1 fiber sequences [53].

This RGD sequence plays a role in MAdV-1 infection

of cultured fibroblasts. Competition studies indicate

that the fiber knob is the viral attachment protein. Cell

surface heparan sulfate is important for infection, and

av integrin acts as a primary receptor for MAdV-1.

MAdV-1 associates with factor X and factor IX, but

this does not result in increased cellular attachment,

unlike the case for HAdV [54].

MAdV-1 pathogenesis—Tropism,
adaptive immune responses

In contrast to HAdVs, which have an epithelial trop-

ism, MAdV-1 primarily infects endothelial cells and

monocytes/macrophages, and astrocytes can also be

infected [5–8,55,56]. The virus causes a pantropic infec-

tion; high levels of virus found in the central nervous

system (CNS) lead to increased permeability of the

blood–brain barrier, accompanied by altered tight

junction-protein expression and encephalitis [5,6,8,56–

58]. MAdV-1 CNS infection is characterized by viral

brain loads that correlate with disease severity and

induction of matrix metalloproteinase (MMP) activity

[7,59]. Enzyme activity of MMP2 and MMP9, which

are induced in brains during microbial infection or

neurological disease, is increased in mice and cultured

cells upon MAdV-1 infection. This is not accompanied

by increases in MMP mRNA levels, indicating that

the MMP activation is a post-transcriptional event.

MAdV-1 does infect epithelial cells and infects the res-

piratory tract when inoculated intranasally, and

neonatal mice are more susceptible than adults to res-

piratory infection [13,14]. MAdV-1 also causes

myocarditis that is accompanied by myocyte and

endothelial necrosis when inoculated intraperitoneally

or intranasally [10–12]. Many mouse primary cell

types, cell strains, and established cell lines can sup-

port MAdV-1 replication in vitro, including fibroblasts

(3T6, 3T12 and L929) [35,60], endothelial cells

(MBMEC) [57], preadipocyte cells (3T3-L1) [61],

epithelial cells (LA-4, MLE-12 and MLE-15; J.B.

Weinberg, unpublished), cardiac myocytes [12] macro-

phages/monocytes [55], and tumor cells such as lung

adenoma (LA-4), renal adenocarcinoma (RAG) [48],

and rectal carcinoma (CMT-93) cells [62].

Mice infected with MAdV-1 develop adaptive

immune responses, both cell-mediated and humoral.

These responses are important for host survival,

because RAG-1�/� mice and SCID mice (deficient in

T cells and B cells) are more susceptible to infection

than wild-type mice [56,63]. Virus-specific cytotoxic

T cells can be detected 4 days postinfection (dpi), peak

at 10 dpi, and then decrease in numbers [64–67]. Stud-

ies with immunodeficient mice have shown that T cells

are required for long-term survival of infection and

contribute to immunopathology during the acute phase
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of infection [68]. CD8 T cells, but not CD4 T cells, are

required for efficient clearance of MAdV-1 from the

lungs and for virus-induced inflammation and weight

loss [69]. These effects of CD8 T cells are not mediated

exclusively by IFN-c, perforin, or Fas/FasL [69,70].

MAdV-1-induced humoral responses have been studied

in outbred and inbred mice. Sublethal infection of out-

bred mice leads to high neutralizing antibody titers

2 weeks after infection that increase for a year before

declining [71]. Infection of inbred mice leads to B cell

proliferation in the spleen 10 dpi, stimulating predomi-

nantly IgG2a antibody [72–74]. Using B-cell-deficient

mice, Moore et al. showed that B cells help prevent

disseminated MAdV-1 infection, and they produce

T-cell-independent antiviral IgM [63]. In studies using

a model in which mice are made immunodeficient by

cyclophosphamide, humoral immunity is important for

protection from MAdV-1 disseminated infection, and

survival correlates with presence of MAdV-1-specific

antibodies [75].

MAdV-1 pathogenesis—Innate immune
responses

The innate immune response to MAdV-1 infection is

dependent on immune cells and cytokines. Macro-

phages are infected by the virus [5,55]. Peritoneal and

splenic macrophages from infected mice express viral

early and late genes, and peritoneal macrophages pro-

duce infectious virus [5,55]. However, the level of virus

production is low, suggesting that replication is ineffi-

cient or only some cells can produce virus. Bone

marrow-derived macrophages and CD11c+ cells (pre-

dominantly dendritic cells) infected ex vivo express

MAdV-1 mRNAs and proteins [55]. Depletion of

macrophages by clodronate liposome treatment

increases MAdV-1 infection severity [55]. Macrophages

are thus targets and effectors in MAdV-1 infection. In

contrast, depletion of mice of their natural killer (NK)

cells either genetically or biochemically does not alter

MAdV-1 brain viral loads, indicating that in contrast

to other viral infections, NK cells are not required for

control of MAdV-1 infections in the brain [76].

Interferons (IFNs) are major antiviral cytokines.

In vitro, wild-type MAdV-1 infections are resistant to

the effects of type I and type II IFN [77]. In contrast,

E1A mutant infections are sensitive to both types of

IFN, and expression of E1A in the absence of other

viral gene products rescues vesicular stomatitis virus

from the effects of type I IFN. The results indicate

that MAdV-1 uses E1A to inhibit expression of IFN-

stimulated genes. IFNc is not a major antiviral cyto-

kine in MAdV-1 respiratory infection or myocarditis

[12,78]. However, it is necessary for cardiac inflamma-

tion induced by intranasal infection of neonatal mice

[12]. The virus replicates in both neonates and adult

mice, but only neonates develop myocarditis, and there

is higher IFN-c expression in neonates compared to

adults. Thus IFN-c is a proinflammatory mediator in

AdV-induced myocarditis. IFN-c is important for the

induction of the immunoproteasome, an inducible

form of the proteasome involved in protein degrada-

tion and generation of peptides for MHC class I pre-

sentation [79]. Intranasal inoculation of MAdV-1

results in significantly increased immunoproteasome

activity in the lung and heart compared to uninfected

mice [80], and this is dependent on IFNc. The

immunoproteasome is important for survival of neona-

tal mice infected with MAdV-1 [60].

The role of interleukin 1b (IL-1b) in MAdV-1

encephalitis was examined in mice lacking the IL-1

receptor. IL-1b is a proinflammatory cytokine that

contributes to inflammation in the CNS. Surprisingly,

the lack of IL-1 signaling in the mutant mice results in

increased mortality and inflammation during MAdV-1

infection compared to control mice; this is accompa-

nied by an increase in transcription of type I IFN-

stimulated genes [81]. Thus IL-1b, although proinflam-

matory, protects mice from some of the pathogenic

effects of MAdV-1 CNS infections. A similar result is

found in herpes simplex virus 1-induced encephalitis,

in which IL-1b acts synergistically with tumor necrosis

factor alpha [82].

IL-17 is another proinflammatory cytokine; it is pro-

duced by a subset of helper T cells known as Th17

cells. Pulmonary infection of mice by MAdV-1 results

in increased IL-17 mRNA and protein compared to

uninfected mice [83]. IL-17 knockout mice have less

recruitment of neutrophils to the lung than wild-type

mice, but peak viral loads, clearance of virus, and pro-

tective immunity do not differ. This indicates that the

Th17 responses during respiratory infection are not

required for viral control or for pulmonary inflamma-

tion.

Prostaglandin E2 (PGE2) is a lipid mediator that

increases during many viral infections, and it can have

effects on many immune cell types. Production of

PGE2 increases during MAdV-1 respiratory infection,

promoting production of a variety of cytokines [84].

However, mice deficient in PGE2 production do not

differ from wt mice in virus replication, virus-induced

lung inflammation, or protective immunity.

Alpha-defensins are short antimicrobial peptides

with antibacterial activity [85]. These peptides can also

neutralize viruses, and a-defensin binding to HAdV-5

blocks in vitro infection by stabilizing the capsid and
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preventing uncoating of the virion [86–88]. In vivo evi-

dence that defensins are a protective host response for

AdV infection comes from study of MAdV-1 infection

of mice lacking functional enteric a-defensin process-

ing [62]. When mice lacking functional a-defensins in

their small intestine are orally infected with MAdV-1,

there is a dose-dependent increase in susceptibility

compared to wild-type control mice. However, when

the mice are infected intraperitoneally, there is no dif-

ference between mutant and wild-type mice, indicating

that the defensin protective effect is specific to the

small intestine. The effect is not dependent on the host

intestinal microbiota. Viral loads in the defensin-defi-

cient mice are higher in brain, spleen, and ileum only

at late times after infection, suggesting that rather than

directly delaying viral dissemination, a-defensins act

indirectly to protect orally infected mice. Histological

and humoral response assays indicate that the adaptive

immune response to MAdV-1 infection, particularly

the neutralizing antibody response, is delayed in the

absence of functional a-defensins.
A major innate response to virus infection is PKR

activation. PKR is an interferon-stimulated kinase that

is activated by binding to double-stranded RNA pro-

duced in infections by DNA and RNA viruses [89–92].

Activation of PKR leads to phosphorylation of

eukaryotic translation initiation factor eIF2a, which

halts protein synthesis [93,94]. Viruses have evolved a

variety of ways to circumvent this antiviral host

response, including inhibiting PKR phosphorylation,

sequestering PKR, dephosphorylating eIF2a, and

degrading PKR [95]. HAdVs encode VA RNAs that

sequester PKR by binding it as a monomer, preventing

its autophosphorylation/activation [96]. However,

MAdV-1 does not encode a VA RNA [37], and it cir-

cumvents the antiviral PKR response by a mechanism

not previously shown for DNA viruses. MAdV-1

degrades PKR in multiple cell types infected in vitro

[97]. PKR degradation has not been previously

observed for DNA viruses. Inhibiting the proteasome

blocked MAdV-1-induced PKR degradation, indicat-

ing that the degradation likely proceeds by a proteaso-

mal mechanism. The viral gene(s) involved in PKR

degradation have not been identified, but the data

point toward an early viral gene.

MAdV-1 pathogenesis—Persistence
and host genetics of susceptibility

Like HAdVs, MAdV-1 persists in the host after acute

infection [32,33,98]. MAdV-1 is detected in brains,

spleens, and kidneys of outbred mice up to 55 weeks

after intraperitoneal infection [33], and in urine for

up to 2 years [71]. After intranasal inoculation,

MAdV-1 viral genomes can be detected in the hearts

of inbred mice at 9 weeks postinfection [12]. This per-

sistence in the heart can lead to cardiomyocyte hyper-

trophy. It is not known whether MAdV-1 also

persists in lymphocytes, as has been found for

HAdVs [99–101], including in lymphocytes of the gut

lamina propria [102].

Different strains of outbred and inbred mice differ

in their susceptibility to MAdV-1 [6,8,9]. Adult SJL/J

mice are highly susceptible to the virus, whereas other

inbred strains, such as BALB/cJ, are resistant [9]. The

H-2S haplotype of SJL/J mice is not associated with

susceptibility, which was shown to be a quantitative

trait [103]. Genetic mapping using an interstrain back-

cross identified a major quantitative trait locus (QTL)

on mouse chromosome (Chr) 15, Msq1SJL, that

accounts for a significant portion of the total trait

variance between SJL/J and BALB/cJ strains. Fine

mapping localized the QTL to a region of Chr 15 that

encodes genes of the hematopoietic cell surface-ex-

pressed LY6 family [104]. Further mapping was unable

to identify specific Ly6 genes involved in MAdV-1 sus-

ceptibility (Spindler, unpublished), but interestingly,

Ly6E is among other IFN-stimulated genes shown to

enhance the replication of several enveloped viruses,

by targeting a late viral entry step [105,106]. Interval-

specific congenic mice for the Msq1SJL locus were used

to examine the contribution of the locus to disease

phenotypes of intraperitoneally infected mice

[9,58,104]. The locus is responsible for a subset of the

physiological phenotypes that correlate with MAdV-1-

induced encephalitis. Disease phenotype differences

between the congenic mice and parental SJL mice indi-

cate that there are additional host genes involved in

CNS disease in mice.

Mouse adenoviruses type 2 and 3

The genomic sequence of MAdV-2 (HM049560.1) has

been determined and compared to those of MAdV-1

and MAdV-3 (EU835513.1) [18,37,107,108]. Phyloge-

netic analyses showed that the three mouse AdVs have

a close common ancestor, but MAdV-1 and MAdV-3

are closer to each other than to MAdV-2. Strikingly,

although the number of predicted genes is almost the

same, the MAdV-2 genome size of 35 203 bp is con-

siderably larger than the genomes of MAdV -1 and

MAdV-3 (30, 944 and 30 570 bp, respectively). This is

mainly due to larger genes and ORFs in MAdV-2,

although there are also some differences in the number

of ORFs for the early regions E1, E3, and E4. A pecu-

liar feature was noted when analyzing the leader
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sequence of the late mRNA transcripts: in MAdV-1

and -3, as in most AdVs, the leader consists of three

spliced sequences (tripartite sequence), whereas in

MAdV-2, it is a bipartite leader sequence [109]. A

bipartite leader is also found in fowl AdV type 10

[110]. It has been hypothesized that MAdV-2 is a gen-

uine mouse AdV that has continuously coevolved with

M. musculus, whereas MAdV-1 may have switched to

this host from some other species and is still in an

adaption process, including remodeling of the genetic

content [107]. This could also explain the elevated

pathogenicity of MAdV-1 in the house mouse.

The receptors for MAdV-2 and -3 are not known.

Just as in MAdV-1 and -3, no RGD motif is found

in penton base of MAdV-2 [107]. However, the RGD

motif present in the fiber knob of MAdV-1 and -3 is

lacking in the fiber knob of MAdV-2, which has little

sequence identity (10–16%) to AdV fibers of known

structures. A high-resolution crystal structure of the

carboxy-terminus of the MAdV-2 fiber reveals a

domain with the typical AdV fiber head topology and

a domain containing two triple b-spiral repeats of the

shaft domain [111]. The fiber head contains a

monosaccharide N-acetylglucosamine (GlcNAc) bind-

ing site that allows binding to GlcNAc-containing

mucin glycans, potentially representing a target in the

mouse gut. As reported for MAdV-1, mouse CAR

does not serve as receptor for MAdV-2 or -3. Studies

with mouse CAR-transfected B16 melanoma cells did

not reveal increased MAdV-2 or -3 infection (M.

Bieri and S. Hemmi, unpublished). This is consistent

with the fact that few of the residues important for

CAR binding are conserved in the MAdV-2 fiber

head [111]. Competition studies with recombinant

MAdV-2 fiber knob demonstrated that fiber knob is

the attachment protein [111,112], paralleling competi-

tion results for MAdV-1 fiber knob discussed above

[53]. However, the receptors for MAdV-1 and

MAdV-2 on cultured cells are not the same, because

purified MAdV-2 fiber knob does not inhibit MAdV-

1 infection [112].

As discussed above, enteric a-defensins have potent

antiviral effects on in vivo and in vitro MAdV-1 infec-

tion. For enteric MAdV-2, a-defensins have the oppo-

site effect and enhance infection of mouse colon CMT-

93 cells and stem cell-derived small intestinal enteroids

[112]. The enteroid experiments accurately predicted

increased MAdV-2 shedding in the feces of wild-type

mice compared to mice lacking functional a-defensins.
These results are in line with in vitro findings for

human enteric viruses and suggest that some viruses

have evolved to use these host a-defensin proteins to

enhance their replication.

MAdVs as vaccines and vectors

Only a few studies to date have used wild-type or

recombinant MAdVs for therapeutic approaches. This

may be due in part to the relatively fastidious growth

of the viruses and the difficulty in generating recombi-

nant vectors. Robinson et al. engineered an oncolytic

MAdV-1 in which a small deletion in the E1A ren-

dered the protein deficient for binding to pRb, thereby

resembling the human AdVΔ24 vector that has been

shown to replicate selectively in cancer cells defective

for the pRb pathway [113]. This MAdV-1 was engi-

neered to express the immune stimulatory GM-CSF

and tested in immunocompetent syngeneic tumor

models. Compared to the parental vectors, the

MAdV-1 vector with GM-CSF was more effective in

reducing tumor growth in the low immunogenic

Pan02 tumor model and induced a greater systemic

antitumor immune response. This system represents

substantial progress for testing armed oncolytic

viruses, since oncolytic HAdVs cannot productively

infect mouse cells, and effects of immunostimulatory

transgenes on overall virus potency, virus dissemina-

tion, and vector safety cannot be readily assessed in

immunocompromised models, such as nude or SCID

mice.

Genetically modified mouse cells (and possibly

mice) capable of supporting HAdV replication rep-

resent an alternative immunocompetent mouse

model. They would have the advantage that the

vast number of oncolytic HAdV vectors could be

tested directly. Initial studies showed that coinfec-

tion of HAdV-C5 and MAdV-1 or heterologous

overexpression of HAdV-C5 L4-100K can partially

complement late protein expression, which has been

identified as a bottleneck for HAdV-C5 replication

in mouse cells [114]. A second detailed complemen-

tation study used the HAdV-B-derived oncolytic

virus, enadenotucirev (EnAd), in coinfections either

with MAdV-1 or with EnAd viruses containing 24

different MAdV-1 ORFs [113,115]. These transcom-

plementations with MAdV-1 genes failed to rescue

EnAd replication. Thus, the mechanisms preventing

productive replication of HAdVs in mouse cells

seem to vary for the different HAdV species, and

more work needs to be done to understand and

overcome these hurdles.

Oral replication-competent vaccines against HAdV-4

and -7 have long been used to immunize the US mili-

tary against severe respiratory infection caused by

these viruses [116]. MAdV-1 has recently been exam-

ined as a model to study oral replication-competent

AdV vaccines in vivo in a natural host [117].
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Intranasal, intraperitoneal, and natural MAdV-1 infec-

tion generate neutralizing antibodies [1,6,60,63]. Oral

infection of C57BL/6 mice, which have intermediate

susceptibility to MAdV-1 [104], leads to a systemic

infection with moderate bowel pathogenesis and antivi-

ral neutralizing antibody responses [62]. In the MAdV-1

vaccine study, when BALB/c mice, which are more

resistant to MAdV-1 infection [104], were inoculated

orally, there was only a subclinical infection that

also generated a virus-specific neutralizing antibody

response [62,117]. Although clinical signs of disease

were not seen after oral infection of the BALB/c mice,

sporadic shedding of virus in feces occurred, as mea-

sured by qPCR. Importantly, oral immunization with

MAdV-1 protected against homologous virus challenge,

similar to the HAdV-4 and -7 immunizations, with gen-

eration of an adaptive immune response. However, the

oral administration of MAdV-1 alone led to a systemic

infection, even at low doses. Whether this occurs in

humans is not known; the authors note that the HAdV

oral vaccines have been primarily used on a specific

population of young, healthy adults. It would be inter-

esting to test whether the enteric MAdV-2 gives rise to

similar levels of neutralizing antibodies, perhaps in the

absence of systemic spread. The findings of dissemi-

nated infection after MAdV-1 oral infection should

be considered if HAdVs are developed for broader

vaccination.

Conclusions and Perspectives

Mouse adenoviruses are important because they enable

the study of adenoviruses in their natural hosts. Stud-

ies of mouse adenoviruses have revealed tropisms and

pathologies distinct from those seen in HAdV infec-

tions. They have also increased our knowledge of ade-

noviral pathogenesis and revealed new mechanisms of

virus response to the host response in the ‘arms race’

between viruses and cells. While humanized mouse

models [118] and organoid systems [119,120] may

enable study of HAdV pathogenesis, their complexity

and costs may limit their use. Study of mouse AdV

pathogenesis in its natural host, with all the benefits of

mouse genetics and immunological reagents, will con-

tinue to advance our understanding of viral–host inter-
actions.
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