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THE CONNECTIVITY FUNCTION OF A GRAPH

LOWELL W. BEINEKE AND FRANK HARARY

The vertex-connectivity and the edge-connectivity of a graph involve minimum
sets of vertices and edges, respectively, whose removal results in a disconnected graph.
However, the mixed case of separating sets consisting of both vertices and edges
appears to have been overlooked. Such considerations might apply to vulnerability
problems, such as that of disrupting a railway network with both tracks and depots
being destroyed. Depending on the relative costs, a particular combination of
tracks and depots might be optimal for the purpose.

The purpose of this note is to study the pairs (k, I) of non-negative integers satisfying
minimality conditions for disconnecting a graph by the removal of k vertices and
/ edges. It is shown that there are few restrictions on the collections of such pairs
associated with some graph. The theorem of Menger on connectivity is then extended
to the mixed cases of vertices and edges.

1. The connectivity function of a graph. The vertex-connectivity K (resp., edge-
connectivity X) of a graph G is the minimum number of vertices (resp., edges) whose
removal results in a disconnected or trivial graph. The reason for the trivial graph
being included in the definition is that there is no set of vertices whose removal dis-
connects a complete graph. One can also consider minimum sets of vertices or edges
whose removal separates two specified vertices, called terminals, of a graph. The two
" theories ", which may be regarded as global and local, are equivalent, and we shall
proceed from one to the other to suit the circumstances. In Fig. 1, for the terminals
s and t, the vertex-connectivity is 3 and the edge-connectivity 5.

Fig. l

A connectivity pair of a graph G is an ordered pair (k, I) of non-negative integers
such that there is some set of k vertices and / edges whose removal disconnects the
graph and there is no set of k — 1 vertices and / edges or of k vertices and / — 1 edges
with this property. Clearly two connectivity pairs of G are (K, 0) and (0, X), so
that the vertex- and edge-connectivities are special cases of this concept. It is also
readily seen that for each value of k, 0 ^ k < K, there is a unique connectivity pair
(k, lk); thus G has exactly K + 1 connectivity pairs. An alternative (and equivalent)
definition is that given k < K, (k, I) is a connectivity pair if / is the minimum edge-
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connectivity among all subgraphs obtained by removing k vertices from G. The
graph G of Fig. 1 has (0, 5), (1, 4), (2, 1), and (3, 0) as its connectivity pairs for the
terminals s and t.

The connectivity pairs of a graph thus determine a function / from the set
{0, 1, ..., K}  into the non-negative integers such that /(/c) = 0. This is called the
connectivity function of the graph. It is strictly decreasing, since if (k, I) is a con-
nectivity pair with k < K there is obviously a set of k + 1 vertices and I — 1 edges
whose removal disconnects the graph or leaves only one vertex. The following
theorem shows that these are the only conditions a connectivity function must satisfy.

THEOREM 1. Every decreasing function f from {0, 1, ..., K} into the non-negative
integers such that /(/c) = 0 is the connectivity function of some graph.

All that is required to prove this theorem is a rather simple construction. Let
k = / ( 0 ) and form K + 1 disjoint complete graphs HO,HU ...,HK each having k
vertices. Denote the vertices of Hk by vkJ for j = 1, 2, ..., k. Add a vertex u0

adjacent to every vertex in Ho. For 0 < k ^ K, add vertices uk< jforj=\,2,...,k
adjacent to all vertices in Hk_l and Hk and join vertices vk_lti and vki for
i = 1, 2, ...,f(k). This determines a disconnecting set of A: vertices and f(k) edges,
for each k. That this has the minimality required for (k, f(k)) to be a connectivity
pair is a bit tedious to verify, but not difficult. The details will be omitted.

Fig. 2 illustrates this construction. It is understood, but not shown, that u3i is
adjacent to all the vertices in H2 and H3, and so on.

This construction of course requires many vertices indeed. For two-terminal
graphs one can give a construction requiring considerably fewer vertices, as follows.
T a k e t h r e e s e t s , U, V, a n d W o f v e r t i c e s w i t h U = { u u u 2 , . . . , u x } , V = { v t , v 2 , ••-,v K}
and W = {H1!, W2, •••,  wx}. Join one terminal s to each vertex of U and join the
other terminal t to each vertex of W. Make joins between V and W in the following
way: For 0 < k < K, join vs to wu w2, ..., w/(fc_D for each j ^ k. Make the
corresponding joins between U and V.

It is readily seen that the removal of the set of vertices vu v2, ..., vk and edges
w±t, w2t, ..., Wfdfit separates s and t. For, if j > k, the vertex vk is adjacent only
to vertices wt with / ^ f(k), so there are no paths from V to t when the above set is
removed.

Now assume that there is a set of k vertices whose removal results in a graph G'
in which fewer than/(fc) edges separate s and t. Note that any vertex in U, V, or W is
adjacent to (at least) all those vertices to which a vertex in the same set but having a
higher subscript is adjacent. Thus we may assume that the vertices of V which have
been removed are vu v2, •••,  vm (m < k). The vertex vm+1 is adjacent to
wu w2, •••,  wf(m) in G and to at least all but k — m of these vertices in G'. Thus there
are at least/(m) — k + m paths of the form vm+i Wj t in G', and also this many paths of
the form sujVm+l. From the strictly decreasing property o f / it follows that
k — m ^ /(m) —f(k), so that there are at least f(k) edge-disjoint paths sujvm+l Wjt
joining s and t in G'. This completes the proof that (k, f(k)) is indeed a connectivity
pair.

This construction is illustrated in Fig. 3 for the pairs (0, 5), (1, 3), (2, 2), (3, 0),
where the pattern of differences in the second elements contrasts that of Fig. 1.

2. The mixed form ofMenger's Theorem. The two variations of Menger's theorem



200 L. W. BEINEKE AND F. HARARY

"5 V.

Fig. 3

pertaining to the vertex- and edge-connectivities of a graph are well-known. There
are many equivalent ways of stating them, including the following.

THEOREM I. (Menger [4]). The maximum number of non-intersecting paths
joining two non-adjacent vertices s and t is the minimum number of vertices whose removal
separates s and t.

THEOREM II. (Elias, Feinstein, and Shannon [2]; Ford and Fulkerson [3]). The
maximum number of edge-disjoint paths joining s and t is the minimum of edges whose
removal separates them.

The two theorems above apply to two of the ordered pairs, namely (K, 0) and (0, X),
of the connectivity function. The following theorem gives an extension to all of the
connectivity pairs of the graph.

THEOREM 2. / / {k, I) is a connectivity pair for vertices s and t in graph G, then there
are k + l  edge-disjoint paths joining s and t, of which k are mutually non-intersecting.

Before proving this result, some indication of its strength is given. Under the
hypotheses of the theorem, there is of course a set of k vertices and / edges whose
removal separates s and t, so that any path joining them contains at least one of these
k + I elements. The theorem implies that one can choose k + I edge-disjoint paths,
each containing one element of the separating set. Those containing the vertices can
be chosen to be mutually non-intersecting (a statement slightly stronger than the
theorem). One might conjecture that this set of k paths can be chosen so that each
of them intersects none of the other k + I — 1 paths. The graph in Fig. 4 shows that
this is not always possible. One connectivity pair is (2, 2), but one cannot choose

Fig. 4
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four edge-disjoint paths joining s and / so that two do not meet any of the others.
Four paths which satisfy the theorem are

SViVsVgVut, SV2V6V10V13t, SV3V7V9V12t, S l>4 l>7 tf10 l > 1 4 *•

Here the vertices v5 and v6 and edges v-, vg and v-, v10 separate s and t, and the first
two paths contain v5 and v6 and do not intersect.

Another conjecture which might be made is that the sets of k edge-disjoint paths
and K non-intersecting paths joining two vertices can be chosen so that the latter
are a subset of the former. Indeed, in the above example, the first three of the above
four edge-disjoint paths are mutually non-intersecting. However, in the graph of
Fig. 5, for the two terminals, K = 3 and A = 5, but any choice of three non-intersecting
paths contains all of the edges et of a cut set, so that no set can be extended to five-line
disjoint paths.

Fig. 5

Returning to Theorem 2 itself, the proof given here is based on that of Dirac [1]
for Theorem I. Following his notation, an s: t path is a path from s to t, and a
(k, ^-collection of s: t paths consists of k + l edge-disjoint s: t paths of which k are
non-intersecting. Also, an s: t connectivity pair and an s: t separating set refer to the
terminals s and t as expected. The proof is given for graphs which may have multiple
edges joining pairs of vertices.

Proof. Assume the theorem is not true. Then there exists a graph with an s: t
connectivity pair (k, 1) which does not have a (k, /)-collection of s: t paths. One can
choose k and / so that k + I is minimal in this respect. By Theorem II, we may
also take k > 0. Let G be a graph with this property having the smallest number
of vertices. Clearly, we can also assume that for any edge e of G, (k, 1) is not an
s: t connectivity pair for G — e.

For any edge e = uv of G, G — e must have (k, I — 1) or (k — 1, /) as an s: t con-
nectivity pair. Let A be a corresponding s: t separating set. If (k, / — 1) is an s: t
connectivity pair of G—e, then A u {e} is an s: t separating set in G, while if (k—1,1)
is an s: t connectivity pair of G — e, then 4 u {«}  is an i : ( separating set when u # s
or t and A u {v} is one when v # s or t.

No vertex in an s: t separating set can be adjacent to both s and t. For, if v is,
then G — v has (k — 1, /) as an s: t connectivity pair and thus has a {k — 1, Z)-collection
of s: t paths by the minimality of k + 1. These paths together with the path svt form
a (k, /)-collection in G, which is impossible. Similarly, it is clear that no edge joins
s and t.
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Consider a mixed set B of vertices and edges. We say that B touches a vertex
w of G if every element of B is adjacent to or incident with w. We now show that
every (k, I) set B which separates s and t touches s or t. Assume the contrary and
let B = {vu ..., vk, eu ..., e,} with e,- = Sjtj.

Let G(s:B) be the subgraph of G which is the union of all paths from s to an element
(vertex or edge) of B, containing no other element of B. Let H be the graph obtained
from G(s: B) by identifying the / vertices tj as t' and joining each v{ to f. Then H
has fewer vertices than G and has an s: f separating set of k vertices and / edges; in
fact, {vu ..., vk, Sit', ..., stt'} is such a set. Furthermore, H cannot have an s:t'
separating set of k — 1 vertices and / edges or k vertices and / — 1 edges since the
corresponding set in G would be an s: t separating set, so that (k, I) is an s: t' con-
nectivity pair in H. Therefore there is in H a (k, /)-collection of s: t' paths with those
paths containing vertices vt being non-intersecting. These can be used to construct
a corresponding collection of k + I paths in G(s: B), and hence in G, terminating in
the elements of B, such that those containing any vt are non-intersecting. Similarly
there is such a collection of k + I paths in G joining the elements of B with t. These
two collections of paths can be pieced together to get a (k, /)-collection of s: t paths
in G, an impossibility which verifies the assertion.

There must be a vertex v not adjacent to both s and t. Without loss, assume v
is at distance 2 from s, with suv being a path. Since e = uv is not incident with s or t,
it cannot be in any s: t separating set. Therefore, {k — 1, /) must be a connectivity
pair for G — e. Let A be a corresponding s: t separating set as before. Then
A u {«} is a separating set in G, so that u is in some separating set. Therefore u,
being adjacent to s, is not adjacent to t. Hence, every element of A u {«}  is adjacent
to or incident with s. But A u {v} is also an s: t separating set so that every vertex in
it, in particular v, is also adjacent to s. But this contradicts the choice of v. The
theorem is thus proved.
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