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Background:We hypothesize that changes expression are crucial

to Alzheimer’s disease (AD) development. Previously we

examined how DNA alleles control downstream expression of

RNA transcripts and how those relationships are changed in

pathologically confirmed AD tissue. We present a new pipeline

to examine how proteins are incorporated into those network

relationships. Methods: Two separate sets of human brain tis-

sues were used for analysis. Set 1 contains tissues from brain

banks located in the US that are funded through ADRCs

(n¼345, 49% AD). Set 2 contains tissues from an epidemio-

logic cohort developed by the Rush ADRC (n¼409, 35% AD,

28% MCI). Genome, transcriptome and proteome data was

collected and analyzed to determine key drivers for Alz-

heimer’s pathology. Differential expression was used to inform

selection of specific transcriptomic and proteomic modules

from co-expression analysis using WCGNA. The seeding set

was expanded to include other targets within the known

KEGG/GO pathways and an in-house literature-based knowl-

edgebase for the enriched modules. These seeding sets were

then further examined in top-down modeling Bayesian proce-

dures to develop causal links. Further analysis involved using

key driver analysis to predict the crucial members for each

module. Results:Comparison of our two datasets yields several

modules which had significant overlap considering clustering

separately in AD and control populations (p-value¼0 to 0.03

comparing AD datasets; p-value¼0 to 0.03 comparing control

datasets). We found several functional modules that were over-

represented in our data, including immune system processes,

which we had previously discovered in a similar approach

(see Zhang et al). Of further interest, we found about 50 key

Table (Continued )

Self-reported Physical Activity and Hazard of Dementia: Results from the Johns Hopkins Precursors Study (N¼676)

Predictor Age Hazard ratio (95 CI) N

Carrying groceries, Any limitation, age 60,69 (zphys_c60) 60-69 1.15 (0.15, 8.71) 368

Climbing flights of stairs, Any limitation, age 60,69 (zphys_d60) 60-69 2.73 (0.95, 7.84) 369

Climbing flights of stairs, Any limitation, age 70,79 (zphys_d70) 70-79 1.46 (0.38, 5.57) 74

Climbing one flight, Any limitation, age 60,69 (zphys_e60) 60-69 2.49 (0.31, 20.02) 367

Bending, kneeling or stooping, Any limitation, age 50,59 (zphys_f50) 50-59 0.82 (0.10, 6.93) 235

Bending, kneeling or stooping, Any limitation, age 60,69 (zphys_f60) 60-69 2.50 (0.86, 7.25) 368

Bending, kneeling or stooping, Any limitation, age 70,79 (zphys_f70) 70-79 1.12 (0.30, 4.23) 74

Walking more than a mile, Any limitation, age 50,59 (zphys_g50) 50-59 1.87 (0.21, 16.89) 235

Walking more than a mile, Any limitation, age 60,69 (zphys_g60) 60-69 3.50* (1.13, 10.82) 369

Walking more than a mile, Any limitation, age 70,79 (zphys_g70) 70-79 1.66 (0.44, 6.28) 74

Walking several blocks, Any limitation, age 50,59 (zphys_h50) 50-59 5.38 (0.59, 48.85) 234

Walking several blocks, Any limitation, age 60,69 (zphys_h60) 60-69 1.67 (0.21, 13.19) 367

Walking one block, Any limitation, age 60,69 (zphys_i60) 60-69 3.52 (0.43, 28.76) 365

Bathing or dressing, Any limitation, age 60,69 (zphys_j60) 60-69 5.33 (0.68, 41.71) 368
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drivers within our data, approximately half of which are novel

targets. Conclusions:We present a novel pipeline for the analysis

of our existing Human Brainome data.
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Background: Gene expression is a fundamental mechanism in

susceptibility to and manifestation of complex disease. Prior

studies suggest that abnormal gene expression patterns may

contribute to the onset and progression of late-onset Alz-

heimer’s disease (LOAD). We performed genome-wide tran-

scriptome meta-analysis and whole-brain cortical thickness

analysis in LOAD using blood-based microarray gene expres-

sion profiles. Methods: 1,440 non-Hispanic Caucasian partici-

pants (661 from the ADNI as a discovery sample and 674

and 105 from the AddNeuroMed and Mayo cohorts as

Figure 1. Volcano plot of transcriptome analysis results in the ADNI cohort

(discovery sample). Red circles represent significantly differentially ex-

pressed genes in AD compared to CN.

Figure 2. Association ofCREB5 gene expression levels with brain structure

using whole brain surface-based analysis using two independent cohorts: (a)

ADNI (discovery sample) and (b) AddNeuroMed (replication sample).

Whole-brain cortical thickness analysis demonstrated the identification

and replication of brain regions, especially entorhinal cortex, significantly

associated with expression of CREB5. Statistical maps computed using

SurfStat were thresholded using random field theory (RFT) as a multiple

testing correction at p-corrected < 0.05.

Figure 3. Results of cis-eQTL mapping analysis of CREB5 using two inde-

pendent cohorts: (a) ADNI (discovery sample) and (b) AddNeuroMed

(replication sample). cis-eQTL mapping analyses of CREB5 detected 5 sig-

nificant associations with p< 5310-8 in the ADNI. The most significant cis-

eQTL SNP (rs56388170) in the ADNI was replicated in the AddNeroMed.

All SNPs are plotted based on their -log10 p-values, NCBI build 37 genomic

position, and recombination rates calculated from the 1000 Genomes Proj-

ect reference data.
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