
Interactive Software Refactoring Bot
Vahid Alizadeh, Mohamed Amine Ouali, Marouane Kessentini and Meriem Chater

Software Engineering Intelligence Lab, CIS Department, University of Michigan, USA
alizadeh,mouali,marouane,meriemchater@umich.edu

Abstract—The adoption of refactoring techniques for contin-
uous integration received much less attention from the research
community comparing to root-canal refactoring to fix the quality
issues in the whole system. Several recent empirical studies
show that developers, in practice, are applying refactoring
incrementally when they are fixing bugs or adding new features.
There is an urgent need for refactoring tools that can support
continuous integration and some recent development processes
such as DevOps that are based on rapid releases. Furthermore,
several studies show that manual refactoring is expensive and
existing automated refactoring tools are challenging to configure
and integrate into the development pipelines with significant
disruption cost.

In this paper, we propose, for the first time, an intelligent soft-
ware refactoring bot, called RefBot. Integrated into the version
control system (e.g. GitHub), our bot continuously monitors the
software repository, and it is triggered by any ”open” or ”merge”
action on pull requests. The bot analyzes the files changed during
that pull request to identify refactoring opportunities using a
set of quality attributes then it will find the best sequence of
refactorings to fix the quality issues if any. The bot recommends
all these refactorings through an automatically generated pull-
request. The developer can review the recommendations and their
impacts in a detailed report and select the code changes that he
wants to keep or ignore. After this review, the developer can close
and approve the merge of the bot’s pull request. We quantitatively
and qualitatively evaluated the performance and effectiveness of
RefBot by a survey conducted with experienced developers who
used the bot on both open source and industry projects.

Index Terms—Software bot, refactoring, quality

I. INTRODUCTION

Refactoring, defined as a set of program transformations
intended to improve the system design while preserving the
desired behaviour, is becoming a critical software maintenance
activity, especially with the growing complexity of software
systems [1]. A recent study by the US Air Force Software
Technology Support Center (STSC) shows that restructuring
the code of a large project reduced developers’ time by over
60% when introducing new features. However, refactoring is
expensive. Developers take an average of 6 weeks to refactor
the design of medium-size projects (around 30K LOC) [2].
There has been much work done on various techniques and
tools for software refactoring [3]–[7] and these approaches
can be classified into three main categories: manual, semi-
automated and fully-automated approaches.

In manual refactoring, the developers refactor with no tool
support except the execution part, identifying the parts of the
program that require attention and performing all aspects of the
code transformation by hand. It may seem surprising that a de-

veloper would eschew the use of tools in this way, but Murphy-
Hill et al. [8] found in their empirical study of the developers’
usage of the Eclipse refactoring tooling that in almost 90% of
cases the developers performed refactorings manually and did
not use automated refactoring tools. Kim et al. [9] confirmed
this observation, finding that the interviewed developers from
Microsoft preferred to perform refactoring manually in 86%
of cases. Despite its apparent popularity, manual refactoring is
very limited. However, several studies have shown that manual
refactoring is error-prone, time-consuming, not scalable and
not practical for extensive application of refactorings to fix
major quality issues [4], [10], [11]. Although developers are
doing refactorings manually, the surveys confirmed that they
are not frequently refactoring their code because of the above
limitations.

In fully-automated refactoring, developers provide their
code as input, and the tool will provide refactoring recommen-
dations automatically [12]. The majority of existing automated
refactoring tools assume that developers want to fix code
smells [13]–[15]. This approach is appealing, in that it is
a complete solution and requires little developer effort, but
it suffers from several serious drawbacks as well. First, the
recommended refactoring sequence may change the program
design radically, and this is likely to cause the developer to
struggle to understand the refactored program, and they lose
any control of the introduced code changes. Second, it lacks
flexibility since the developer has to either accept or reject
the entire refactoring solution. In fact, developers intentions
may not be, most of the time, fixing code smells or the
majority of them. Third, it fails to consider the developer
perspective, as the developer has no opportunity to provide
feedback on the refactoring solution as it is being created.
Furthermore, as development must halt while the refactoring
process executes, fully-automated refactoring methods are not
useful for floss refactoring where the goal is to maintain
good design quality while modifying existing functionality.
The developers have to accept the entire refactoring solution
even though they prefer, in general, step-wise approaches
where the process is interactive and they have control of the
refactorings being applied [16]. Finally, one of the significant
limitations of existing automated refactoring tools is the high
configuration effort required to integrate them into the current
development pipeline of the team/company. In fact, several
companies are now using continuous integration and DevOps,
which make the adoption of current automated refactoring
tools very challenging.



Recently, few interactive refactoring techniques were pro-
posed [17]–[20]. They provide to the developers the flexibility
to approve or reject the recommended refactoring that can
improve the quality. However, this interaction process is time-
consuming, and developers get frustrated from providing feed-
back on files that are out of their interests/ownership or nav-
igating through many refactoring recommendations/strategies
to improve several quality metrics.

To address all the above challenges, we propose the first
attempt to design and build an intelligent refactoring bot as
a GitHub app that can be easily integrated into any project
repository on GitHub. The bot can be customized to monitor
the quality in the repository after some pull-requests repeatedly
or automatically executed when the quality analysis shows
a significant decrease. The bot analyzes the files changed
during that pull request(s) to identify refactoring opportunities
using a set of quality attributes then it will find the best
sequence of refactorings to fix the quality issues if any. The bot
recommends all these refactorings through an automatically
generated pull-request. The developer, whenever available
without interrupting the development pipeline, can review the
recommendations, and their impacts in a detailed report and
select the code changes that he wants to keep or ignore. After
this review, the developer can close and approve the merge
of the bot’s pull request. We quantitatively and qualitatively
evaluated the performance and effectiveness of RefBot by a
survey conducted with experienced developers who used the
bot on both open source and industry projects.

The primary contributions of this paper can be summarized
as follows:

1) The paper introduces a novel way to refactor software
systems using autonomous intelligent software bots but
still considering developers interaction to review the
generated pull-request.

2) We propose an implementation of the refactoring bot as
a Git app that can be quickly adopted in a continuous
integration environment or DevOps process.

3) The paper reports the results of an empirical study on
an implementation of our approach. The obtained results
provide evidence to support the claim that, on average,
our bot is more efficient than existing automated refac-
toring techniques based on a benchmark of six open
source systems and one industrial project. The paper also
evaluates the relevance and usefulness of the suggested
refactorings for software developers in improving the
quality of the modified files in several pull-request.

The remainder of this paper is structured as follows. Section
2 presents the relevant related work. Section 3 describes our
intelligent refactoring bot, while the results obtained from our
experiments are presented and discussed in Section 4. Threats
to validity are discussed in Section 5. Finally, in Section 6, we
summarize our conclusions and present some ideas for future
work.

II. RELATED WORK

Our work is mainly related to [21]–[31] 1) refactoring
recommendations; 2) empirical studies on refactoring, mostly
the ones investigating its relationship with fault-proneness; and
3) software bots.

A. Refactoring Recommendation

Much effort has been devoted to the definition of ap-
proaches supporting refactoring. One representative example is
JDeodorant, the tool proposed by Tsantalis and Chatzigeorgiou
[16].Our paper is mostly related to approaches exploiting
search-based techniques to identify refactoring opportunities,
and our discussion focuses on them since the bot is based
on multi-objective refactoring. We point the interested reader
to the survey by Bavota [32] for an overview of approaches
supporting code refactoring.

O’Keeffe and Cinnéide [33] presented the idea of formulat-
ing the refactoring task as a search problem in the space of
alternative designs, generated by applying a set of refactoring
operations. Such a search is guided by a quality evaluation
function based on eleven object-oriented design metrics that
reflect refactoring goals. Harman and Tratt [34] were the first
to introduce the concept of Pareto optimality to search-based
refactoring. They used it to combine two metrics, namely CBO
(Coupling Between Objects) and SDMPC (Standard Deviation
of Methods Per Class), into a fitness function and showed
its superior performance as compared to a mono-objective
technique [34].

The two aforementioned works [33], [34] paved the way
to several search-based approaches aimed at recommending
refactoring operations [17], [18], [35]–[38]. Several other
studies proposed refactorings at the model level as well [21],
[22], [26], [27], [29], [39]–[41]. A representative example of
these techniques is the recent work by Alizadeh et al. [20],
who proposed an interactive multi-criteria code refactoring
approach to improve the QMOOD quality metrics while
minimizing the number of refactorings. In our approach, we
decided to rely on a simpler optimization algorithm by only
considering the refactoring of recently changed files in other
pull requests rather than the root-canal refactoring approach
of Alizadeh et al. [20].

B. Empirical Studies on Refactoring

Empirical studies on software refactoring mainly aim at
investigating the refactoring habits of software developers
and the relationship between refactoring and code quality.
We only discuss studies reporting findings relevant to our
work. Murphy-Hill [8] investigated how developers perform
refactorings. Examples of the exploited datasets are usage
data from 41 developers using the Eclipse environment and
information extracted from versioning systems. Among their
several findings, they show that developers often perform floss
refactoring; namely, they interleave refactoring with other
programming activities, confirming that refactoring is rarely
performed in isolation. Kim [9] present a survey of software
refactoring with 328 Microsoft engineers. They show that



the major obstacle of adopting many existing refactoring
tools is their configuration and painful integration within
their pipelines without disturbing developers with their current
focus in terms of meeting deadlines and making regular code
changes. Those findings stress out the need for refactoring
bots that can be adopted for continuous integration without
considerable configuration effort.

C. Software Bots

The design and implementation of software bots are still in
its infancy with a significant focus on chatbots. For instance,
Lebeuf et al. [42], [43] discussed the potential of using chat
bots in software engineering and how they can be helpful
to increase collaborations between programmers. The authors
also proposed a possible classification of potential benefits of
using software bots in various domains, especially to improve
the productivity of developers.

An extensive empirical study of over 90 software bots was
performed by Wessel et al. [44] to provide a classification
and taxonomy for them. They found that around 21 bots
were actually tried on GitHub repositories and the dominant
majority are around testing but without providing any code
actions or recommendations to developers. The authors found
that none of these bots provides explanations of their analysis
which reduced the adoption by developers.

Some examples of regression testing bots include Travis
CI and the bot designed by Urli et al. [45] to repair bugs.
These tools did not open a new pull-request, but they are
executed manually by the developers where they can check
the recommended patches. Another bot related to quality
assessment but not refactoring is Fix-it [46]. It is mainly
limited to a few types of code changes, mainly targeting
dynamic analysis metrics.

Finally, Wyrich et al. [47] proposed a vision paper to
emphasize the importance of refactoring bots and motivates
their potential use in practice. They proposed a prototype, not
a complete bot, by running SonarQube to detect code smells.
However, the work is still in its initial stage where refactorings
are not recommended yet.

III. APPROACH

We developed the ”Refactoring Bot” (RefBot) as a GitHub
App using which the workflow can be automated, and the
developers can integrate the bot easily to any repository of
their interest. The overview of the Refactoring bot is shown
in Figure 1.

A. RefBot Installation

The first step of utilizing the Refactoring bot is to install its
GitHub application on organizations or user accounts and to
set up the appropriate permissions. As the installation page in
Figure 2 shows, the user can select the repositories. Therefore,
RefBot is granted access to the specific repositories via the
GitHub API. RefBot has read and write permissions to ”Pull
Requests” and ”WebHook”, and also is subscribed to ”Pull
Requests” and its related ”reviews and comments” events.

After this step, RefBot automatically sets up a web-hook for
the developer’s profile which means the permitted activities
on the selected repositories will be posted as JSON-formatted
payloads to the designated external server.

B. Processing a Pull Request

RefBot continuously monitors the actions performed on the
repository by checking the subscribed payloads delivered to
its server. In our current configuration, opening a new pull
request action triggers the RefBot’s workflow.

First, the commits in the pull request are compared to the
commit at the point where the branch is created to extract the
list of all files changed by the pull request. Then, two versions
of the files, before and after the pull request, are downloaded
to the external server for further processing and modifications.

By processing only the changed files by the pull request, we
ensure that the developers are provided with the reports and
refactorings limited to the codes they recently modified. This
feature facilitates the evaluation of recommended refactorings
and is aligned with the idea of maintaining/improving the
code quality in the continuous development process.

1) Calculating Quality Changes: The RefBot analyses
the code quality of the extracted files. For this purpose, we
adopted QMOOD quality assessment methodology, which is
a hierarchical model for object-oriented designs [48].

QMOOD model comprises of four levels from which we
utilized the first level, Design Quality Attributes, to mea-
sure code quality changes of the pull request. This quality
attributes set is defined based on ISO 9126 and consists of
”Reusability”, ”Flexibility”, ”Understandability”, ”Functional-
ity”, ”Extendibility”, and ”Effectiveness”. Table I describes the
QMOOD metrics definitions.

It is shown that QMOOD metrics model is highly effective
in predicting software defects in both traditional and iterative
(like agile) software development processes [49].

Since the QMOOD metrics are not limited to a specific
range, it is difficult for the user to interpret their values.
Therefore, we built a software quality benchmark dataset
consisting of the quality metrics calculated for over 100 open-
source and industrial software projects. Then, to summarize all
six quality attributes, we defined a super metric called Total
Quality Index (TQI) as the linear summation of the metrics.

Finally, we compared the quality metrics and TQI of a new
project/file with the range of the benchmark and assigned a
quality label (A, B, C, and D) based on the quartile of a value.

This method facilitates the analysis of quality reports and
gives meaning to the metrics in terms of the quality level
(low/high) of software compared to other standard projects.

2) Optimization using Refactoring: Finding a refactoring
solution can be a challenging task since a huge search space
requires to be explored. This search space is the outcome
of the number of refactoring operations and the importance
of their order and combination. To search this space, we
employed an adaptation of the non-dominated sorting genetic



Fig. 1. The overview of RefBot Pipeline

Fig. 2. Installing RefBot on a repository

algorithm (NSGA-II) [50] to discover a trade-off between
multiple quality attributes.

NSGA-II is a multi-objective evolutionary algorithm oper-
ating on a population of candidate solutions that are evolved
toward the Pareto-optimal solution set. NSGA-II uses an
explicit diversity-preserving strategy together with an elite-
preservation strategy. [50].

A refactoring solution is designed as a vector that consists
of an ordered sequence of multiple refactoring operations.
Each refactoring operation includes a refactoring action and
its specific controlling parameters. The refactoring operations

TABLE I
QUALITY ATTRIBUTES AND THEIR COMPUTATION EQUATIONS.

Quality attributes
Definition
Computation

Reusability
A design with low coupling and high cohesion is
easily reused by other designs.
0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗
Messaging + 0.5 ∗DesignSize

Flexibility
The degree of allowance of changes in the design.
0.25∗Encapsulation−0.25∗Coupling+0.5∗
Composition+ 0.5 ∗ Polymorphism

Understandability
The degree of understanding and the easiness of
learning the design implementation details.
0.33 ∗Abstraction+ 0.33 ∗Encapsulation−
0.33 ∗ Coupling + 0.33 ∗ Cohesion − 0.33 ∗
Polymorphism− 0.33 ∗Complexity− 0.33 ∗
DesignSize

Functionality
Classes with given functions that are publicly
stated in interfaces to be used by others.
0.12 ∗ Cohesion + 0.22 ∗ Polymorphism +
0.22∗Messaging+0.22∗DesignSize+0.22∗
Hierarchies

Extendibility
Measurement of design’s allowance to incorporate
new functional requirements.
0.5 ∗ Abstraction − 0.5 ∗ Coupling + 0.5 ∗
Inheritance+ 0.5 ∗ Polymorphism

Effectiveness
Design efficiency in fulfilling the required func-
tionality.
0.2 ∗ Abstraction + 0.2 ∗ Encapsulation +
0.2 ∗Composition+0.2 ∗ Inheritance+0.2 ∗
Polymorphism



TABLE II
LIST OF REFACTORING OPERATIONS INCLUDED IN REFBOT.

Refactoring Controlling Parameter

Moving Features Between Objects

Move Method Source, Target, Method

Move Field Source, Target, Attribute

Extract Class Source, Target, Attributes, Methods

Organizing Data

Encapsulate Field Source, Attribute

Simplifying Method Calls

Decrease Field Security Source, Attribute

Decrease Method Security Source, Method

Increase Field Security Source, Attribute

Increase Method Security Source, Method

Dealing with Generalization

Pull Up Field Source, Target, Attribute

Pull Up Method Source, Target, Method

Push Down Field Source, Target, Attribute

Push Down Method Source, Target, Method

Extract SubClass Source, Target, Attributes, Methods

Extract SuperClass Source, Target, Attributes, Methods

considered in RefBot cover the most used operations se-
lected from different categories: ”Moving features”, ”Data
organizers”, ”Method calls simplifiers”, and ”Generalization
modifiers”. These refactorings are listed in Table II. Refac-
toring operations are created or modified randomly during
the population initialization or mutation. Also, the size of a
solution vector which is the number of included refactoring
operation is randomly selected between lower and upper bound
values. Therefore, it is crucial to examine the feasibility of a
solution using related pre-conditions and post-conditions [51].
These conditions ensure that the program will not break while
the behaviour is preserved by the refactoring.

To evaluate a candidate refactoring solution, a fitness func-
tion is defined to estimate its goodness. In order to measure
the impact of a refactoring solution on the software project, we
utilized six QMOOD quality attributes. The relative change of
each quality attribute after applying the refactoring solution to
the software system is considered as the fitness function and
is expressed as:

FitnessFunctioni =
AQMafter

i (CC)−AQM before
i (CC)

AQM before
i (CC)

(1)
where AQM before

i and AQMafter
i are the averages of the

quality metric i before and after applying a refactoring solution
over all changed classes CC, respectively.

By defining the fitness function in this way, we aim to find
the solutions capable of improving the quality attributes of the
pull request.

Additionally, we constraint the search process to the solu-
tions in which at least a ”class” controlling parameter is in the

set of changed files in the pull request. For this purpose, we
modified a variation operator of the search algorithm called
”Selection Operator”. Variation operators help to navigate
through the search space and to maintain a good diversity
in the population. Parent selection is a crucial step that
directly affects the convergence rate. We added the controlling
parameter constraint to the selection process.

After the execution of the refactoring search algorithm is
finished, the instruction of applying each refactoring operation
is added to the related files as a distinctive marker format
similar to the Git conflict marker. Finally, RefBot creates a
new pull request to introduce the changes to the repository.

C. Developer’s Interaction

One of the main advantages of RefBot is to include the
developer in the refactoring process loop. When the internal
workflow of RefBot on a pull request is completed, the
developer is notified by email and also via GitHub checks
API in the same page of the pull request. These notifications
contain a link to the report page of the pull request where
the users can analyze the results and give feedback to the
recommended refactorings.

There are three levels of reports generated for each pull
request and provided for the user:
• Solution Report: contains the quality history of the pull

request and the impact of the recommended solution on
the changed files.

• File Report: includes the list of refactorings applied to the
selected file and the detailed quality history and impact
of refactoring.

• Refactoring Report: represents the instruction of a single
refactoring and the high-level code abstraction of source
and target classes which are transformed by the operation.

Analyzing these simple yet effective reports give the ability
of swift detection of required improvements based on individ-
ual preferences.

The developer can interact with the refactoring results of
RefBot with three actions. Each refactoring can be ”rejected”,
”applied with a code marker”, or ”applied automatically”.

By rejecting a refactoring, it is not considered in the pull
request. Applying with a code marker adds the refactoring
instruction as a marker inside the related files. Therefore, the
developer can manually implement the required changes. Last,
applying automatically, gives permission to RefBot to change
and apply the refactorings to the source code itself.

The reason we have both manual and automated refactoring
is that sometimes the developers prefer to take control of the
refactoring process and the changes in the structure of their
code either for the whole software or a specific set of important
classes/files.

When the developer is satisfied with the feedback, he/she
can update the previously created RefBot’s pull request.

RefBot can be combined with continuous integration tools
like TravisCI, Jenkins, or CircleCI to identify the problems



that may occur during the automated refactoring by running
integration tests.

D. Configuration and Customization

RefBot is highly customizable in terms of setting its internal
workflow parameters and execution management.

Sometimes a developer is not willing to be disturbed for
every new pull request. Therefore, RefBot can be configured
to monitor the repository at a specific time interval or even
can be triggered manually for a specific pull request.

Furthermore, users can enable/disable different refactoring
types and quality attributes. In this way, they can control the
optimization process and limit the search to the refactoring
operations they are willing to apply and to the quality attributes
they prefer to improve.

Additional materials such as the default parameter settings
for NSGA-II and video demo of RefBot can be found at this
publication’s web page 1.

E. Running Example

In this section, to illustrate the process of RefBot and its
performance in refactoring a pull request, we provide a running
example on a real open-source software system.

We considered a pull request from ”atomix” software repos-
itory and manually triggered RefBot to process it. Figure
3 represents part of the file quality table in the solution
report page, which is generated for the selected pull request.
It shows the TQI grade for the changed files before and
after creating the pull request alongside with the impact of
the recommended refactoring solution on the quality. As an
example, the quality of the second file is degraded from 4.05
(B) to 1.18 (C). The solution which RefBot found for the pull
request contains seven refactoring operations applied to this
file. These refactorings could improve the file quality to 5.72
(B).

The user can view the detailed report page for each file.
The bar charts in the file report page are provided in Figure
4. It shows the quality changes after the pull request and
the refactoring solution impact for each of the six quality
attributes, individually. We can observe that the recommended
refactoring solution improves 5 out of 6 quality attributes for
the file compared to the pull request quality.

Another section in the file report page is shown in Figure
5. It lists the refactoring operations from the recommended
solution which have a controlling parameter applied to the
selected file. The developer can interact with this list and reject
or apply (code mark/auto options are as a popup window) each
of the refactorings.

Additionally, the developer can further investigate each of
the refactorings by viewing the refactoring report page. Figure
6 represents the abstract code changes after applying the
selected refactoring on the source and target classes. This
report can facilitate the decision making of users and help
them to understand the changes in the structure introduced by
a specific refactoring.

1https://sites.google.com/view/ase2019refbot

When a developer completes the interaction and analysis,
the pull request is updated in the software repository, including
the feedbacks on the refactorings. For any refactoring that
applied as a code marker, the instructions are added to the
top of the related files. Figure 7 depicts an example of the
format of these markers.

IV. VALIDATION

We define three categories of research questions to evalu-
ate RefBot and compare it to state-of-the-art techniques for
automated refactoring:
• RQ1: Quality improvement. To what extent can our

refactoring bot improve the quality of software systems as
compared to existing automated refactoring techniques?
In RQ1, we use the internal quality attributes [48] and
code smells as proxies to assess the quality improvement
brought by the refactoring operations generated by the
RefBot for a set of selected pull-requests on different sys-
tems. We compare the performance of our approach (MO-
MFO) with two, state-of-the-art, refactoring techniques:
Ouni [38] and JDeodorant [52]. Ouni [38] proposed an
automated multi-objective refactoring formulation based
on NSGA-II using an aggregation of quality metrics
while reducing the number of refactorings. JDeodorant
[52] is an Eclipse plugin able to detect code smells
and automatically recommend refactorings to fix them.
JDeodorant is not based on the use of heuristics search.
As JDeodorant supports a lower number of refactoring
types with respect to the ones we considered, we restrict
our comparison with it to these refactorings. We have
also limited the comparison to the changed files in the
pull-requests.

• RQ2: Refactoring meaningfulness. Are the refactoring
recommendations produced by the RefBot meaningful
from a developer’s point of view? How do they compare
with those generated by existing automated refactoring
techniques? Using antipatterns or internal quality indica-
tors as proxies for code quality (as we do in RQ1) has
substantial limitations. For this reason, in RQ1, we survey
25 developers asking for their opinion about the meaning-
fulness of the refactorings recommended by our technique
and by the automated refactoring competitive technique
[38]. In RQ2, we do not compare with JDeodorant since
we preferred to focus on the most similar competitive
technique in the literature to better study the advantages
brought by the refactoring bot. The main substantial
difference between RefBot and the approach by Ouni [38]
is indeed the interactive and incremental approach of the
refactoring bot to focus on pull-requests.

• RQ3: Industrial validation. To what extent can RefBot
support of refactoring in a real-world continuous inte-
gration setting? We integrated a beta version of Refbot
into a previously licensed refactoring tool and asked one
of our industrial partners to use it for a limited period
of 3 business days (with six developers involved) on
their regular pull-request after installing the bot on their



Fig. 3. The quality table in solution report page

Fig. 4. The quality bar charts in file report page for all six quality attributes.

Fig. 5. The list of refactoring operations recommended for a single file.

repository. During this period, we checked the ability of
RefBot to select relevant refactorings for the recent pull-
requests introduced by the programmers during their daily
activities.

The context of our study is represented by the seven systems
in Table III. We selected these seven systems for our validation
because they range from medium to large-size projects and

Fig. 6. The code abstraction of source and target classes after applying a
specific refactoring.

Fig. 7. The refactoring instructions related to a single file are added to the
source code as a marker style.

TABLE III
STATISTICS OF THE STUDIED SYSTEMS.

System Release #classes #smells KLOC
Xerces-J v2.7.0 991 91 240
JHotDraw v7.5.1 585 25 21
JFreeChart v1.0.18 521 72 170
GanttProject v1.11.1 245 49 41
JDI v5.8 638 88 247
Apache Ant v1.8.2 1191 112 255
Rhino v1.7.5 305 69 42

have been actively developed over the past 10 years. JDI2 is
an industrial project for which 6 of the developers involved in
the JDI maintenance agreed to take part in our experiments.

Table III provides information about the size of the subject

2Company anonymized for double-blind.



systems (in terms of the number of classes and KLOC), and
the number of code smells affecting them as detected with the
rules defined in [53].

A. Data Collection

We present the data collection and analysis process grouped
by research question category.

To address RQ1, we calculated NF as the percentage of
code smells fixed by the refactoring solutions generated by
the three considered approaches, over the total number of code
smells which are affecting recent pull-requests of the subject
systems. We selected the latest ten pull-requests for each of
the open-source systems while a total of 8 pull-requests were
opened during the three business days of the RefBot trial by
our industrial partner. The detection of code smells before/after
applying a refactoring solution was performed with the rules
defined in [53]. The considered code smells are Blob, Feature
Envy (FE), Data Class (DC), Spaghetti Code (SC), Functional
Decomposition (FD), and Shotgun Surgery (SS).

Since the concept of code smell is very subjective (different
developers may have different opinions on whether a code
component is smelly or not) [54], we also use more objective
metrics to assess the quality of the refactorings generated by
the experimental approaches. We adopted the G metric based
on QMOOD [48] that estimates the quality improvement of
the system by comparing the quality before and after refac-
toring independently from the number of fixed design defects.
Six quality factors are considered by QMOOD: reusability,
flexibility, extendibility, functionality, understandability and
effectiveness. All of them are formalized using a set of quality
metrics. Hence, the total gain in quality G for each of the
considered QMOOD quality attributes qi before and after
refactoring can be estimated as:

G =

∑6
i=1 Gqi

6
where Gqi = q′i − qi (2)

where q′i and qi represent the value of the quality attribute i
respectively after and before refactoring.

To answer RQ2 we asked 25 developers to evaluate the
meaningfulness of the refactorings recommended by RefBot
and by the approach of Ouni [38] for pull-requests on the
seven subject systems. Before explaining the study design for
RQ2, it is important to remember that both the experimental
techniques generate output sequences of refactoring operations
that make sense when considered together rather than when
looking at them in isolation. However, it is not an option to ask
a developer to assess the meaningfulness of all the refactoring
operations generated for a given system. For this reason, we
started by filtering for each system the sequences of refactoring
operations impacting the files of a set of pull-requests to make
a fair comparison between both tools. Then, the developers
manually evaluated the outcomes of both tools for each pull-
request.

Each participant was then asked to assess the meaningful-
ness of the sequences of refactoring operations. Since on six

of the seven systems (all but JDI) we involved external de-
velopers (professional developers who did not take part in the
development of the subject system), we made sure that each
participant only evaluated refactoring sequences recommended
by the two competitive techniques on one specific system
(JHotDraw). The rationale for such a choice is that an external
developer would need time to acquire a system’s knowledge
by inspecting its code, and we did not want participants to
comprehend the code from four different systems since this
would introduce a strong tiring effect in our study.

To answer RQ3, the six developers of the JDI project
evaluated the refactoring sequences generated for that system,
since here we wanted to exploit their experience as original
developers of the system. They used RefBot, as a beta version
tool, during a period of 3 days instead of a refactoring tool that
we licensed to their company in the past. Our industrial partner
was motivated to try out RefBot since they are interested
in upgrading their current quality assessment tool to another
one that can support DevOps like our RefBot. They also
expressed a concern about the lack of customization and high
configuration effort/training required by existing automated
refactoring tools.

To support such a complex experimental design, we built
a Java Web-app that automatically assigns the refactored
pull-requests to be evaluated to the developers. The Web-
app showed each participant one sequence of refactoring
operations on a single page, providing the developer with (i)
the list of refactorings (move method mi to class Cj , then
push down field fk to subclass Cj , ), (ii) the code of the
classes impacted by the sequence of refactorings, and (iii) the
complete code of the system subject of the refactoring with
the description of the opened pull-request and the generated
refactoring pull-request by the refactoring bot. The web page
showing the refactoring sequence asked participants the ques-
tion Would you apply the proposed refactorings? with a choice
between no (the refactoring sequence is not meaningful),
maybe (the refactoring sequence is meaningful, but the quality
improvement it brings does not justify changing the code),
or yes (the refactoring sequence is meaningful and should be
implemented). Moreover, participants were allowed to leave a
comment justifying their assessment (this was optional). The
Web-app was also in charge of:

Balancing the evaluations per system. We made sure that
each system received roughly the same number of participants
evaluating the different refactored pull-requests (files associ-
ated/modified by these pull-requests) by the two approaches.

Keeping track of the time spent by participants in the eval-
uation of each refactoring sequence/refactoring pull-request.
The time spent by participants was counted in seconds since
the moment the Web-app showed the refactoring on the
screen to the moment in which the participant submitted their
assessment. This feature was done to remove participants
from our data set who did not spend a reasonable amount of
time in evaluating the refactorings. We consider less than 60



TABLE IV
PARTICIPANTS INVOLVED IN RQ2.

System #Partic. Avg. Prog. Avg. Java Avg. Refact.
Experience Experience Exp.(1-5)

Xerces-J 4 11 9 4.0 (high)
JHotDraw 4 10 7 3.0 (medium)
JFreeChart 4 10 7 3.3 (medium)
GanttProject 4 9 8 3.5 (high)
JDI 6 14 12 4.5 (very high)
Apache Ant 3 9 7 3.7 (high)

seconds a reasonable threshold to remove noise (we removed
all evaluation sessions in which the participant spent less than
60 seconds in analyzing a single refactoring sequence).

Collecting demographic information about the participants.
We asked their programming experience (in years) overall and
in Java, and a self-assessment of their refactoring experience
(from very low to very high).

Table IV shows the participants involved in our study and
how they were distributed in the evaluation of the refactoring
sequences generated on the seven systems.

For the three days industrial validation, we integrated a rou-
tine in our RefBot to record all the actions of the 6 developers
including the number of applied and rejected refactorings,
number of selected test cases, the introduced code changes
and commit messages.

B. Experimental Setting and Data Analysis

For each algorithm and each system, we performed a set of
experiments using several population sizes: 50, 100, 200, and
300. Then, we specified the maximum chromosome length
(maximum number of operations/test cases per solution).
The resulting vector length is proportional to the number of
refactorings that are considered, and the size of the program
to refactor. Based on those considerations, the upper and
lower bounds on the chromosome length were set to 10 and
350, respectively. The stopping criterion was set to 10,000
fitness evaluations for all algorithms to ensure fairness. In
order to have significant results, for each couple (algorithm,
system), we use the trial and error method [55] for parameter
configuration.

Concerning RQ2, we report the percentage of refactoring
sequences assessed with a no, maybe, or yes by developers
for each treatment (RefBot and Ouni system [38]). Then,
we discuss interesting comments left by developers when
justifying their assessment.

C. Results

RQ1: Quality improvement. Figures 8 and 9 provide the
percentage of fixed code smells (NF) and the quality gain (G)
based on the QMOOD model, respectively. The average NF on
the seven systems is 91% with peaks of ∼96% for JHotDraw
and GanttProject.

The recommended refactorings also improved the G metric
values (Figure 9) of the seven systems. The average quality
gain for the Rhino system was the highest among the seven
systems with 0.43. The improvement in the quality gain shows
that the recommended refactorings help to optimize different

Fig. 8. Median percentage of fixed code smells (NF) on the different pull-
requests of the seven systems.

Fig. 9. Median quality gain (G) on the different pull-requests of the seven
systems.

TABLE V
RQ2: WOULD YOU APPLY THE PROPOSED REFACTORINGS OF THE

GENERATED REFACTORING PULL-REQUEST?

Approach no maybe yes
RefBot 4/68 (5%) 11/68 (16%) 53/68 (77%)
Ouni [38] 29/83 (34%) 41/83 (49%) 13/83 (15%)

quality metrics. Besides, the performance of RefBot is superior
as compared to the competitive refactoring techniques [38],
[52], even though the difference in terms of fixed code smells
is not that marked (Figure 8). This latter result is also due
to the fact that RefBot does not only recommend refactoring
operations aimed at removing code smells it also focuses
on refactoring classes not affected by code smells but were
changed during recent pull-requests. For example, in a manual
investigation of the refactorings recommended by RefBot for
JFreeChart, we found that 17 of the impacted classes do not
exhibit any criticality as indicated by code smells and they
were still improved in terms of quality attributes.

RQ2: Refactoring meaningfulness. Table V summarizes
the manual refactoring evaluation results obtained from the 25
participants. Note that there is a slight deviation between the
total number of refactorings evaluated by the two approaches
(68 vs 83) since, as explained in Section IV, we did not con-
sider for the data analysis the evaluations in which participants
spent less than 60 seconds to assess the meaningfulness of the
refactoring sequence under analysis and also the approach of
Ouni et al. tends to generate much more refactorings on the



analyzed files from the pull-requests.
The analysis of the quality by the Refactoring Bot improved

the relevance of the recommended refactorings compared to
the fully automated multi-objective approach. Indeed, the
percentage of meaningful recommendations (the sum of the
maybe and yes answers) is much better for RefBot comparing
to Ouni et al. (94% for RefBot and 66% for Ouni ). The
percentage of refactorings that participants believe must be
applied (yes answers) is significantly higher for Refbot as well
(77% vs 15%).

By looking at the comments left by participants when justi-
fying their assessment, four out of the six original developers
of the JDI system highlighted in their comments for three
refactoring sequences that they found the refactorings relevant
because it is improving the modularity of a class that they
frequently modify in all the most recent pull-requests. For
example, one of the developers wrote in a comment: “That
is a very good recommendation, I spent days working on this
class recently there, so I like this move method very much
and extract sub-class. It will improve the reusability a lot as
highlighted by the explanations of the bot”. We found this
comment as important qualitative evidence of the value of our
refactoring bot in terms of analyzing the recently closed pull-
requests to identify changed files and fix the identified quality
issues in these files.

RQ3: Industry validation. Figures 8 and 9 summarize the
results of deploying our RefBot during 3 business days to our
industrial partner on the JDI repository. The six developers
used the bot as part of their daily programming activities
instead of a previously licensed refactoring tool. The tool
was deployed as a Git app that connects automatically to a
private GitHub repository whenever some code changes are
introduced by the developers to check for refactorings and
generate a new pull-request for the review of developers.

Overall, the achieved results confirm the effectiveness of our
bot to generate efficient refactoring pull-requests. We found
that the developers approved 9 out of 11 refactoring pull-
requests generated by the bot during the three days. For the
two remaining pull-requests, we found that a total of 7 out of
11 refactorings were approved. The achieved results confirm
the basic intuition behind this work, showing that developers
are more motivated to apply refactorings when the tool is
easy to integrate within their development pipeline. The six
developers also confirmed that they feel more comfortable in
applying refactorings due to the high level of control proposed
by the bot to review the generated pull-request which gives
them more confidence and trust to the tool. This may explain
the reason why a good number of recommended refactorings
were applied.

V. THREATS TO VALIDITY

Our refactoring bot mainly focuses on the recent pull-
requests, but developers may have different priorities based
on their current context. However, the developers can modify
the configuration of our bot to focus on commits, branches,
specific files or developers’ contributions. Another internal

threat is related to the used quality attributes since developers
may want to express different preferences than QMOOD, or
they want to tune them based on their needs or how critical
is the code.

Construct validity is concerned with the relationship be-
tween theory and what is observed. To evaluate the results
of our approach, we selected a set of pull-requests when
comparing with other techniques, but may perform better on
other pull-requests where the quality of them are different.

External validity refers to the generalize-ability of our find-
ings. We performed our experiments on open-source systems
belonging to different domains, and one industrial project,
by involving participants in the evaluations of the refactoring
operations. However, we cannot assert that our results can
be generalized to other applications, and other developers.
Future replications of this study are necessary to confirm our
findings.

VI. CONCLUSION

We presented a first attempt to propose an intelligent
software refactoring bot, as GitHub app, that can submit a pull-
request to refactor recent code changes. The salient feature of
the proposed bot is that it incorporates interaction support,
via our Web app, hence allowing developers to approve or
modify or reject the applied code refactoring. The refactoring
bot also provides support to explain why the refactorings are
applied by quantifying the quality improvements. To evaluate
the effectiveness of our technique, we applied it to four open-
source and one industrial projects comparing it with state-of-
the-art approaches. Our results show promising evidence on
the usefulness of the proposed interactive refactoring bot. The
participants highlighted the high usability of the bot in terms
of easy integration with their development environments with
the least configuration effort.

Future work will involve validating our technique with
additional refactoring types, programming languages, quality
issues and participation from practitioners to investigate the
general applicability of the proposed methodology.

REFERENCES

[1] S. A. Bohner and R. S. Arnold, Software change impact analysis. IEEE
Computer Society Press Los Alamitos, 1996, vol. 6.

[2] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 535–546.

[3] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[4] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth, “Improving usability
of software refactoring tools,” in 2007 Australian Software Engineering
Conference (ASWEC’07). IEEE, 2007, pp. 307–318.

[5] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“High dimensional search-based software engineering: finding tradeoffs
among 15 objectives for automating software refactoring using nsga-
iii,” in Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2014, pp. 1263–1270.

[6] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

[7] J. Simmonds and T. Mens, “A comparison of software refactoring tools,”
Programming Technology Lab, 2002.



[8] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering (TSE), vol. 38,
no. 1, pp. 5–18, 2011.

[9] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoringchallenges and benefits at microsoft,” Software Engineering,
IEEE Transactions on, vol. 40, no. 7, pp. 633–649, July 2014.

[10] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in European
Conference on Object-Oriented Programming. Springer, 2013, pp. 552–
576.

[11] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual
and automatic refactoring,” in Proceedings of the 34th International
Conference on Software Engineering. IEEE Press, 2012, pp. 211–221.

[12] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans.
Software Eng., vol. 30, no. 2, pp. 126–139, 2004.

[13] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E.
Johnson, “Use, disuse, and misuse of automated refactorings,” in Pro-
ceedings of the 34th International Conference on Software Engineering.
IEEE Press, 2012, pp. 233–243.

[14] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Fault-
buster: An automatic code smell refactoring toolset,” in 2015 IEEE
15th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2015, pp. 253–258.

[15] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” Empirical Software
Engineering, 2017.

[16] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[17] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineer-
ing (ASE 2014), pp. 331–336.

[18] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni, “Many-objective software remodularization using nsga-iii,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 3, pp. 17:1–17:45, 2015.

[19] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: ACM, 2018, pp. 464–474.
[Online]. Available: http://doi.acm.org/10.1145/3238147.3238217

[20] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software
Engineering, 2018.

[21] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective optimization
problem,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1009–1032, 2017.

[22] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using multi-
objective optimization,” Information and Software Technology, vol. 83,
pp. 55–75, 2017.

[23] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of
web service defects,” in International Conference on Service-Oriented
Computing. Springer, Cham, 2016, pp. 352–368.

[24] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb,
“A robust multi-objective approach to balance severity and importance
of refactoring opportunities,” Empirical Software Engineering, vol. 22,
no. 2, pp. 894–927, 2017.

[25] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design
use to correct bad-smells,” Software Quality Journal, vol. 21, no. 4, pp.
551–571, 2013.

[26] A. ben Fadhel, M. Kessentini, P. Langer, and M. Wimmer, “Search-based
detection of high-level model changes,” in 2012 28th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 2012, pp. 212–
221.

[27] M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wimmer, “Search-
based design defects detection by example,” in International Conference
on Fundamental Approaches to Software Engineering. Springer, Berlin,
Heidelberg, 2011, pp. 401–415.

[28] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based
model-transformation testing,” Automated Software Engineering, vol. 18,
no. 2, pp. 199–224, 2011.

[29] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Gen-
erating transformation rules from examples for behavioral models,”
in Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications. ACM, 2010, p. 2.

[30] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refac-
toring of class and activity diagrams using a multi-objective evolutionary
algorithm,” Software Quality Journal, vol. 25, no. 2, pp. 473–501, 2017.

[31] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-objective
code-smells detection using good and bad design examples,” Software
Quality Journal, vol. 25, no. 2, pp. 529–552, 2017.

[32] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Recommending
refactoring operations in large software systems,” in Recommendation
Systems in Software Engineering, M. P. Robillard, W. Maalej, R. J.
Walker, and T. Zimmermann, Eds. Springer Berlin Heidelberg, 2014,
pp. 387–419.

[33] M. O’Keeffe and M. Ó Cinnéide, “A stochastic approach to automated
design improvement,” in International Conference on Principles and
practice of programming in Java. Computer Science Press, Inc., 2003,
pp. 59–62.

[34] M. Harman and L. Tratt, “Pareto optimal search based refactoring at
the design level,” in 9th annual conference on Genetic and evolutionary
computation, 2007, pp. 1106–1113.

[35] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in International conference on Genetic and evolutionary
computation. ACM, 2006, pp. 1909–1916.

[36] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni,
“Design defects detection and correction by example,” in International
Conference on Program Comprehension (ICPC). IEEE, 2011, pp. 81–
90.

[37] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-based refactoring
using recorded code changes,” in Proceedings of the 17th European
Conference on Software Maintenance and Reengineering (CSMR 2013),
pp. 221–230.

[38] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering: an
industrial case study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[39] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, “Web service
antipatterns detection using genetic programming,” in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation.
ACM, 2015, pp. 1351–1358.

[40] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing code-
smells correction tasks using chemical reaction optimization,” Software
Quality Journal, vol. 23, no. 2, pp. 323–361, 2015.

[41] M. Kessentini, A. Bouchoucha, H. Sahraoui, and M. Boukadoum,
“Example-based sequence diagrams to colored petri nets transformation
using heuristic search,” in European Conference on Modelling Founda-
tions and Applications. Springer, Berlin, Heidelberg, 2010, pp. 156–
172.

[42] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE
Software, vol. 35, no. 1, pp. 18–23, 2018.

[43] ——, “How software developers mitigate collaboration friction with
chatbots,” arXiv preprint arXiv:1702.07011, 2017.

[44] M. WESSEL, B. M. DE SOUZA, I. STEINMACHER, I. S. WIESE,
I. POLATO, A. P. CHAVES, and M. A. GEROSA, “The power of bots:
Understanding bots in oss projects,” Proceedings of the ACM on Human-
Computer Interaction, vol. 2, pp. 1–19, 2018.

[45] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a pro-
gram repair bot?: insights from the repairnator project,” in Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 95–104.

[46] V. Balachandran, “Fix-it: An extensible code auto-fix component in
review bot,” in 2013 IEEE 13th International Working Conference on
Source Code Analysis and Manipulation (SCAM). IEEE, 2013, pp.
167–172.

[47] M. Wyrich and J. Bogner, “Towards an autonomous bot for automatic
source code refactoring.”

[48] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.



[49] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict fault-
proneness of object-oriented classes developed using highly iterative or
agile software development processes,” IEEE Transactions on software
Engineering, vol. 33, no. 6, pp. 402–419, 2007.

[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[51] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1992.

[52] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 33rd
International Conference on Software Engineering (ICSE), 2011, pp.
1037–1039.

[53] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach for
code-smells detection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, 2014.

[54] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,
“Do they really smell bad? A study on developers’ perception of
bad code smells,” in 30th IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 101–110.

[55] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 1–10.


