
From Multi-Objective to Mono-Objective
Refactoring via Developer’s Knowledge Extraction

Vahid Alizadeh
CIS Department

University of Michigan
Dearborn, Michigan, USA

alizadeh@umich.edu

Houcem Fehri
CIS Department

University of Michigan
Dearborn, Michigan, USA

houcemf@umich.edu

Marouane Kessentini
CIS Department

University of Michigan
Dearborn, Michigan, USA

marouane@umich.edu

Abstract—Refactoring studies either aggregated quality met-
rics to evaluate possible code changes or treated them separately
to find trade-offs. For the first category of work, it is challenging
to define upfront the weights for the quality objectives since
developers are not able to express them upfront. For the second
category of work, the number of possible trade-offs between
quality objectives is large which makes developers reluctant to
look at many refactoring solutions. In this paper, we propose,
for the first time, a way to convert multi-objective search into
a mono-objective one after interacting with the developer to
identify a good refactoring solution based on his preferences. The
first step consists of using a multi-objective search to generate
different possible refactoring strategies by finding a trade-off
between several conflicting quality attributes. Then, an unsuper-
vised learning algorithm clusters the different trade-off solutions,
called the Pareto front, to guide the developers in selecting their
region of interests and to reduce the number of refactoring
options to explore. Finally, the extracted preferences from the
developer are used to transform the multi-objective search into a
mono-objective one by taking the preferred cluster of the Pareto
front as the initial population for the mono-objective search and
generating an evaluation function based on the weights that are
automatically computed from the position of the cluster in the
Pareto front. Thus, the developer will just interact with only one
refactoring solution generated by the mono-objective search. We
selected 32 participants to manually evaluate the effectiveness of
our tool on 7 open source projects and one industrial project.
The results show that the recommended refactorings are more
accurate than the current state of the art.

Index Terms—Search Based Software Engineering, Interactive
Refactoring, Software Quality

I. INTRODUCTION

Software restructuring, or refactoring [1], is critical to
improve software quality and developers’ productivity, but can
be complex, expensive, and risky [2]–[4]. A recent study [5]
shows that developers are spending over 50% of their time
struggling with existing code (e.g. understanding, restructur-
ing, etc.) rather than creating new code.

While code-level refactoring, such as Move-Method, Pullup-
Method, etc, is widely studied and well-supported by tools
[6]–[16], understanding the refactoring rationale, or the
preferences of developers, is still lacking and yet not well
supported. In our recent survey, supported by an NSF I-Corps
1 project, with 127 developers at 38 medium and large compa-
nies (Google, eBay, IBM, Amazon, etc.), 84% of face-to-face

1https://www.nsf.gov/news/special reports/i-corps

interviewees confirmed that most of the existing automated
refactoring tools detect and recommend hundreds of code-level
issues (e.g. anti-patterns and low quality metrics/attributes) and
refactorings but do not specify where to start or how they can
be relevant for their context and preferences. This observation
is consistent with another recent study [17]. Furthermore,
refactoring is a human activity that cannot be fully automated
and requires developers’ insight to accept, modify, or reject
some of these recommendations because the developers un-
derstand the problem domain intuitively and may have a clear
target design in mind. Several studies reveal that automated
refactoring does not always lead to the desired architecture
even when the quality issues are well detected, due to the
subjective nature of software design [12], [14], [16], [18]–
[21]. However, manual refactoring can be error-prone and
time-consuming [22], [23].

Few studies have been proposed, recently, to interactively
evaluate refactoring recommendations by developers [17],
[24]–[27]. The developers can provide feedback about the
refactored code and introduce manual changes to some of
the recommendations. However, this interactive process can
be expensive since developers must evaluate a large num-
ber of possible refactoring strategies/solutions and eliminate
irrelevant ones. Both interactive and automated refactoring
approaches have to deal with a big challenge to consider
many quality attributes for the generation of refactoring solu-
tions. Thus, refactoring studies either aggregated these quality
metrics to evaluate possible code changes or treated them
separately to find trade-offs [12], [16]–[19], [21], [25], [28].
However, it is challenging to define upfront the weights for
the quality objectives since developers are not able to express
them upfront. Furthermore, the number of possible trade-offs
between quality objectives is large which makes developers
reluctant to look at many refactoring solutions due to the time-
consuming and confusing process.

In this paper, we propose an approach that takes advantage
of both existing categories of refactoring work. Thus, we
propose, for the first time, a way to convert multi-objective
search into a mono-objective one after few interactions with
the developer. The first step consists of using a multi-objective
search, based on the evolutionary algorithm NSGA-II [29], to
generate a diverse set of refactoring strategies by finding a
trade-off between several conflicting quality attributes. Then,

an unsupervised learning algorithm clusters the different trade-
off solutions, called the Pareto front, to guide the developers
in selecting their region of interests and reduce the number
of refactoring options to explore. Finally, the extracted pref-
erences from the developer are used to transform the multi-
objective search into a mono-objective one by taking the
preferred cluster of the Pareto front as the initial population
for the mono-objective search and generating an evaluation
function based on the weights that are automatically calculated
from the center of the preferred cluster in the Pareto front.
Therefore, the developer will just interact with only one
refactoring solution generated by the mono-objective search.

Our approach is taking the advantages of mono-objective
search, multi-objective search, clustering and interactive com-
putational intelligence. Multi-objective algorithms are power-
ful in terms of diversifying solutions and finding trade-offs
between many objectives but generate many solutions as an
output. The clustering and interactive algorithms are useful
in terms of extracting developers’ knowledge and preferences.
Mono-objective algorithms are the best in terms of optimiza-
tion power once the evaluation function is well-defined and
generate only one solution as an output. We selected 32
active developers to manually evaluate the effectiveness of
our tool on 6 open source projects and one industrial system.
The results show that the participants found their desired
refactorings faster and more accurate than the current state
of the art. A tool demo of our interactive refactoring tool of
this paper and an appendix containing all the details of the
experiments can be found in the following link [30].

II. MOTIVATIONS

While successful tools for refactoring have been proposed,
several challenges are still to be addressed to expand the
adoption of refactoring tools in practice. To investigate the
challenges associated with current refactoring tools, we con-
ducted a survey, as part of an NSF I-Corps project, with 127
professional developers at 38 medium and large companies
including eBay, Amazon, Google, IBM, and others. 112 of
these interviews were conducted face-to-face.

The question we encounter most during our industrial
collaborations in refactoring is ”We agree that this is a
problem, but what should we do?” Although code-level anti-
patterns can largely be automated, higher-level refactoring —
such as redistributing functionality into different components,
decoupling a large code base into smaller modules, redesigning
to a design pattern— requires abstractions determined by
human architects. In these cases, the architect usually has
a desired design in mind as the refactoring target, and the
developer needs to conduct a series of low-level refactorings
to achieve this target. Without explicit guidance about which
path to take, such refactoring tasks can be demanding: It took
a software company several weeks to refactor the architecture
of a medium-size project (40K LOC) [27]. Several books
[2], [31], [32] on refactoring legacy code and workshops on
technical debt [33] present the substantial costs and risks of
large-scale refactorings. For example, Tokuda and Batory [34]

Figure 1: The output of a multi-objective refactoring tool
[26] finding trade-offs between QMOOD quality attributes on
ganttproject v1.10.2

presented two case studies where architectural refactoring
involved more than 800 steps, estimated to take more than
2 weeks.

Prior work [35] shows that even semi-automated tools for
lower-level refactorings have been underutilized. Given that
fully automatic refactoring usually does not lead to the desired
architecture and that a designer’s feedback should be included,
we propose an interactive architecture refactoring recom-
mendation system to integrate higher-level abstractions from
humans with lower-level refactoring automation. Over 77% of
the interviewees reported that the refactorings they perform
do not match the capabilities of low-level transformations
supported by existing tools, and 86% of developers confirmed
that they need better design guidance during refactoring: ”We
need better solutions of refactoring tasks that can reduce the
current time-consuming manual work. Automated tools provide
refactoring solutions that are hard and costly to repair because
they did not consider our design needs.”

Based on our extensive experience working on licensing
refactoring research prototypes to industry, developers always
have a concern on expressing their preferences upfront as an
input for a tool to guide refactoring suggestions. They prefer
to get insights from some generated refactoring solutions then
decide which quality attributes they want to improve. However,
several existing refactoring tools fail to consider the developer
perspective, as the developer has no opportunity to provide
feedback on the refactoring solution as it is being created.
Furthermore, as development must halt while the refactoring
process executes, fully-automated refactoring methods are not
useful for floss refactoring where the goal is to maintain
good design quality while modifying existing functionality.
The developers have to accept the entire refactoring solution
even though they prefer, in general, step-wise approaches
where the process is interactive and they have control of the
refactorings being applied. Determining which quality attribute
should be improved and how is never a pure technical problem
in practice. Instead, high-level refactoring decisions have to
take into account the trade-offs between code quality, available
resources, project schedule, time-to-market, and management
support. Based on our survey, it is very challenging to ag-
gregate quality objectives into one evaluation function to find
good refactoring solutions since developers are not able, in
general, to express their preferences upfront. Figure 1 shows

an example of a Pareto front of non-dominated refactoring
solutions improving the QMOOD [19] quality attributes of a
Gantt Project generated using an existing tool [26]. QMOOD
is one of the widely accepted software quality models in
industry based on our previous collaborations with industry
and recent studies [26], [27], [36]–[38]. While developers
were interested to give a feedback for some of the refactoring
solutions but they expected to see only one refactoring solution
in the future after this interaction. This means after the first
round of optimization and evaluation, the developer wants to
have a single personalized solution. The extraction of develop-
ers’ knowledge from the interaction data is beyond the scope of
existing refactoring tools. Furthermore, existing search-based
software engineering approaches did not explore converting
multi-objective into mono-objective search after knowledge
extraction. While multi-objective search algorithms are known
to be good in diversifying solutions but they cannot beat well-
formulated mono-objective search algorithms in terms of the
optimization power.

III. APPROACH OVERVIEW

Our proposed approach includes three main phases. First,
we use multi-objective optimization to find a set of non-
dominated refactoring solutions capable of improving the
quality of the software. Second, we cluster these solutions and
obtain the center of each cluster to reduce the exploration effort
of the Pareto-front by the decision maker. Third, we extract
automatically the preferences and utilize them to transform
the multi-objective problem to a mono-objective one after
the user’s interaction and evaluation of the recommended
refactoring solutions. Finally, the output of the mono-objective
search is a single solution fitting to the user’s expectations
and preferences then the developer can interact with that
solution if needed and continue the execution of the mono-
objective algorithm until selecting a final refactoring solution.
The pseudo code of our algorithm is described in the appendix
[30]. In the following, we will explain, in details, the steps of
our proposed technique.

A. Phase 1: Multi-Objective Refactoring

Considering the goals and objectives of refactoring a soft-
ware, this challenging task can be formulated as a multi-
objective optimization problem as follow:

Minimize F (x) = (f1(x), f2(x), ..., fM (x)),

Subject to x ∈ S,
S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

where S is the subset of all feasible solution, Rm, which
satisfy the inequality and equality constraints, g(x) and h(x),
respectively. The functions fi are objective or fitness functions.
In multi-objective optimization, the quality of an optimal
solution is determined by dominance. The set of feasible
solutions that are not dominated with respect to each other
is called Pareto-optimal or Non-dominated set.

The result of the first phase of our approach, as it is shown in
the Figure 1, is a set of Pareto-optimal refactoring solutions. In
the following subsections, we briefly summarize the adaptation
of multi-objective search to the software refactoring problem.

1) Solution Representation: We encode a refactoring
solution as an ordered vector of multiple refactoring op-
erations. Each operation is defined by an action (eg.
move method, extract class, etc.) and its specific control-
ling parameters (e.g. source and target classes, attributes,
methods, etc.). We considered a set of the most impor-
tant and widely used refactorings in our experiments: Ex-
tract Class/SubClass/SuperClass/Method, Move Method/Field,
PullUp Field/Method, PushDown Field/Method, Encapsulate
Field and Increase/Decrease Field/Method Security. During the
process of population initialization or mutation operation of
the algorithm, the refactoring operation and its parameters are
formed randomly. Therefore, due to the random nature of the
process, it is crucial to evaluate the feasibility of a solution
meaning to preserve the software behavior without breaking
it. This evaluation is based on a set of specific pre- and post-
conditions for each refactoring operation [39].

2) Fitness Functions: We used the Quality Model for
Object-Oriented Design (QMOOD) [40] as a means of es-
timating the effect of a refactoring operation on the quality of
a software. This model is developed based on the international
standard for software product quality measurement and widely
used in industry. QMOOD is a comprehensive way to assess
software quality and includes four levels. Using the first two
levels, Object-oriented Design Properties and Design Quality
Attributes, as fitness functions, we formulated the problem
as discovering refactorings to improve the design quality of
a software system. Therefore, the fitness functions to be
calculated are: Understandability, Functionality, Reusability,
Effectiveness Flexibility, Extendibility, Complexity, Cohesion
and Coupling. We considered the relative change of these
quality attributes after applying a refactoring solution as the
fitness function formulated as follows:

FitnessFunctioni =
Qafter

i −Qbefore
i

Qbefore
i

(1)

where Qbefore
i and Qafter

i are the value of the quality metric
i before and after applying a refactoring solution, respectively.

B. Phase 2: Clustering Refactoring Solutions and Extracting
Developer Preferences

One of the most challenging and tedious tasks for the user
during every multi-objective optimization process is the deci-
sion making. Since many Pareto-optimal solutions are offered,
it is up to the user to select among them which requires
exploration and evaluation of the Pareto-front solutions.

The main goal of this step is to cluster and categorize the
solutions based on their similarity in the objective space. These
clusters of solutions help the user to have an overview of
the possible existing options. Therefore, this technique gives
the user a more clear initial step of exploration where she

can initiate the interaction by evaluating each cluster center
or representative member. Based on our previous refactoring
collaborations with industry, developers are always highlight-
ing the time consuming and confusing process to deal with
the large population of Pareto-front solutions: ”where should
I start to find my preferred solution?”. This observation is valid
for various SBSE applications using multi-objective search
[27].

1) Clustering the Pareto-front: Clustering is an unsuper-
vised learning method to discover a meaningful underlying
structure and pattern between a set of unlabelled data. It puts
the data into groups where the similarity of the data points
within each group is maximized while keeping a minimized
similarity between the groups.

Determining the optimal number of clusters is a funda-
mental issue in clustering techniques. One of the methods to
overcome this issue is to optimize a criterion where we try to
minimize or maximize a measure for the different number of
clusters formed on the data set. For this purpose, we utilized
Calinski Harabasz (CH) Index which is an internal clustering
validation measure based on two criteria: compactness and
separation [41]. CH assesses the clustering outcomes based
on the average sum of squares between and within clusters.
Therefore, we execute the clustering algorithm on the Pareto-
front solutions with a various number of components as the
input. The CH score is calculated for each execution, and the
result with the highest CH score is recognized as the optimal
way of clustering our data.

After determining the best number of clusters, we em-
ployed a probabilistic model-based clustering algorithm called
”Gaussian Mixture Model” (GMM). GMM is a soft-clustering
method using a combination of Gaussian distributions with
different parameters fitted on the data. The parameters are
the number of distributions, Mean, Co-variance, and Mixing
coefficient. The optimal values for these parameters are esti-
mated using Expectation-Maximization (EM) algorithm [42].
EM trains the variables through two steps iterative process.
After the convergence of EM, the membership degree of each
solution to a fitted Gaussian or cluster is kept for preference
extraction step. Furthermore, in order to find a representative
member of each cluster, we measure the corresponding density
for each solution and select the solution with the highest
density value.

The line chart of Pareto-front solutions after clustering is
shown in Figure 2. Compared to the original chart in Figure
1, the color of each line indicates its cluster and the solutions
marked with triangles are the cluster representative member.

2) Interaction and preference extraction: The results of
multi-objective refactoring after clustering are presented to the
user in various interactive tables and charts alongside with
extensive analysis to explain and guide the process of deci-
sion making. These explanations are automatically generated
using statistical analysis and investigating the content of the
solutions and clusters.
The explanations of Pareto-front assist the user to gain a
vibrant picture of the available options, costs, and benefits.

Figure 2: The output of phase 2 (Clustering) on ganttproject
v1.10.2.

Furthermore, by clustering similar solutions, it requires less
effort to initiate the exploration and finally making a decision.
The user may begin to evaluate the cluster center solutions
or expand the search to the other solutions in the cluster.
The interaction can be performed at the cluster, solution, and
refactoring operation levels depending on the user’s desire.
The feedback is quantified to a continuous score in the range
of [-1,1].
The developer can evaluate a solution by modifying its refac-
toring operations (edit, add, delete, re-order) or just rate the
whole solution or cluster. After the developers interaction,
Solution score (Scoresi) and Cluster score (Scoreck) are
computed as the average score of operations in a solution and
the average score of solutions in a cluster, respectively.
The cluster of solutions with the highest score is considered
as the region of interest in the solution space. It indicates
the preferred objectives, code locations, and refactoring oper-
ations. For instance, if the solutions in the selected cluster tend
to emphasize on improving Extendibility by applying mostly
Generalization category of refactoring operations on certain
packages or classes of the software, we consider these factors
as the user preferences in the execution of the next phase of
our approach.
For this purpose, we compute the weighted probability of
refactoring operations (RWP) and target classes of the source
code (CWP) as follow:

RWPp =

∑
si∈cj γij × (|rp ∈ si|)∑

rm∈Ref

∑
si∈cj γij × (|rm ∈ si|)

(2)

CWPq =

∑
si∈cj γij × (|clq ∈ si|)∑

clm∈Cls

∑
si∈cj γij × (|clm ∈ si|)

(3)

where j is the index of selected cluster, si is the solution
vector, γij is the membership weight of solution i to the cluster
j, r is refactoring action, Ref is the set of all refactoring
operations, and Cls is the set of all classes in the source code.

C. Phase 3: Preference-base Mono-objective Refactoring

One of the main contributions of this paper is the ability to
convert a multi-objective algorithm into a mono-objective one
after interacting with the developer to extract his preferences
and knowledge. Mono-objective algorithms are known to be
the best in terms of optimization but require that the fitness

function should be well defined based on the decision maker’s
preferences. The Multi-objective Evolutionary Algorithm used
in Phase 1 might not provide high-quality solutions in the
region of interest of the developer because of the high
dimensionality nature of the problem and the need to find
trade-offs. Therefore, it is important to consider the user
preferences extracted in Phase 2.

The goal of this phase is to use the preferences extracted
from the developer after the multi-objective optimization to
transform the problem into a single objective optimization
problem by aggregating objectives according to the user’s
preferences. This transformation gives the decision maker a
single solution in the region of interest. Consequently, our
proposed approach is a combination of all three categories of
preference-based search where the preferences are expressed
after the first evolutionary process, then they are incorporated
to guide the single objective optimization.
One way to convert a multi-objective optimization problem
to a mono-objective problem and achieve a single solution
is called the Weighted Sum Method (WSM). In this method,
the single preference fitness function is computed as a linear
weighted sum of multiple objectives. The main drawback of
the WSM method is that it needs the weights parameters
to be given. Fortunately, in our case, those parameters are
computed automatically from the decision maker preferences
of the interactive optimization process (preferred cluster) in
the objectives space (quality attributes). Thus, the weight of
one or more objectives can get the value 0 (or almost) if the
selected cluster by the developer penalized them while favor-
ing other objectives. Also, the WSM is not computationally
expensive unlike the other scalarization methods. Therefore,
the optimization problem can be formulated as:

Minimize PF (X) =

M∑
i=1

ωifi(x),

Subject to X ∈ S,

ωi ≥ 0;

M∑
i=1

ωi = 1;

Where PF (X) is the single scalar preference function, and
weights ωi reflects the a priori preferences of the user over the
objectives. The weights are a tool to steer the search along the
Pareto-front into a direction determined by the user. This way,
the decision maker is offered a single solution that corresponds
to his interests and reduces on him the burden of having to go
through multiple solutions.
In order to solve the converted mono-objective problem, we
adopted a standard Genetic Algorithm (GA). To adapt the
GA algorithm to our refactoring context, we use the same
solution representation and quality fitness functions as reported
in phase 1. Algorithm 1 explains the steps of this phase.

We begin by normalizing the values of each fitness function
separately for all solutions in the preferred cluster. Then, we
pick the center of the cluster and normalize this solution’s

Algorithm 1: Preference-based Mono-objective
Optimization

Input : Preferences (P),
Preferred Cluster (PC),
Cluster Center (CC)

Output: RecommendedSolution

begin Calculating Objective’s Weight
NormalizeAll(PC);
Wi ← NormalizeUnitSum(CC);

begin Mono-objective Optimization
initialPopulation ← PC;
if size(initialPopulation) ¡ N then

initialPopulation + = fillPopulation();

while ¬ stoppingCondition() do
customSelection();
Crossover();
customMutation();
fitness← weightedSum(fi, wi);
evaluate(fitness);

RecommendedSolution ← getFittest();

Return RecommendedSolution;

fitness values. We use the result as the aggregation weights in
WSM where the condition

∑M
i=1 ωi = 1 is satisfied. Therefore,

we assign the importance of the objectives accordingly based
on the intuition and preferences of the user.
The obtained single fitness function is employed to evaluate
the solutions in the execution of adapted GA. We consider
the preferences extracted in the previous phase, to customize
the components of GA via Preference-based initial population
generation and Preference-based Mutation/Selection operators.
Instead of generating the initial population randomly, we
acquire the user preferred cluster as the elite set of solution
from which the search process is initiated. Thus, we do not
generate solutions randomly for the mono-objective GA but
we take the solutions in the preferred cluster as the initial
population thus we do not lose the knowledge extracted from
the developer. Since the number of solutions in the preferred
cluster might be less than the required size, we form new
individuals to fill the gap. The new solutions are produced
based on CWP and RWP probability distribution. It means,
for each new solution, we pick the operation and its target
class attribute from a distribution aligned with the preferences
of the user.
The preference probability distribution for code locations and
refactoring operations are used during the mutation process
similarly.
The selection operator which is used to keep the most valuable
solutions of the population is customized to consider the
distance of a solution to the region of interest. Therefore,
being closer to the preferences and having higher fitness
value are both measured to be factors of selecting an elite

Figure 3: The output of phase 3 (Mono-objective) on GanttPro-
ject v1.10.2 system

solution. Finally, the solutions are evaluated via the prefer-
ence function aggregated from multiple objectives. When the
stopping condition is satisfied, the single optimal solution is
recommended to the user. Similar to Phase 1, the user can
interact with this solution via editing/adding/removing the
refactoring operations.

If the developer is still not satisfied, he can proceed with
the search process in two ways: 1) going back to Phase 2 and
selecting another cluster. 2) returning to Phase 1 and executing
the multi-objective optimization again where, in this time, the
approach is customized to accommodate the prior knowledge
of the preferences. The result of Phase 3 is represented in
Figure 3. As it is shown, at this step, the user is required
to only interact with one customized solution where it takes
shorter effort and time and produces less confusion.

IV. EVALUATION

A. Research Questions

We defined three main research questions to measure
the correctness, relevance and benefits of our interactive
clustering-based multi-objective refactoring tool comparing
to existing approaches that are based on interactive multi-
objective search [43], fully automated multi-objective search
(Ouni et al.) [44] and fully automated deterministic tool not
based on heuristic search (JDeodorant) [45]. A tool demo of
our interactive refactoring tool and supplementary appendix
materials (questionnaire, setup of the experiments, statistical
analyses, and detailed results) can be found in our study’s
website 2. The appendix includes:(a) Study-steps; (b) Pre/Post-
study-questionnaires (QMOOD, experience, comments, etc.);
(c) Parameters-tuning;(d) Box-plots/statistical-tests to give
more details than the median.

The research questions are as follows:
• RQ1: Benefits. To what extent can our approach make

relevant recommendations for developers compared to
existing refactoring techniques?

• RQ2: The relevance of developers’ knowledge ex-
traction. To what extent can our approach reduce the
interaction effort, comparing to existing refactoring tech-
niques, while quickly identifying relevant refactoring
recommendations?

2Demo and supplementary appendix materials can be found in the following
link: https://sites.google.com/view/scam2019

Table I: Statistics of the studied systems.
System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

• RQ3: Tool usefulness. How do developers evaluate the
relevance of our tool in practice (post-study survey)?

B. Experimental Setup

We considered a total of seven systems summarized in
Table I to address the above research questions. We selected
these seven systems because of their size, have been actively
developed over the past 10 years and extensively analyzed
by the competitive tools considered in this work. UTest3 is a
project of our industrial partner used for identifying, reporting
and fixing bugs. We selected that system for our experiments
since five developers of that system agreed to participate
in the experiments and they are very knowledgeable about
refactoring (they are part of the maintenance team). Table I
provides information about the size of the subject systems (in
terms of number of classes and KLOC).

To answer RQ1, we asked a group of 32 participants to
identify and manually evaluate the relevance of the refactoring
solutions that they selected using four other tools. The first tool
is an existing interactive multi-objective refactoring approach
proposed by Mkaouer et al. [24], [26] but the interactions
were limited to the refactorings (accept/reject) and there is no
clustering of the Pareto front or learning mechanisms from the
interaction data. The second tool is an interactive clustering
based multi-objective approach proposed by Alizadeh et al.
[27] however they did not consider the developers’ knowledge
extraction neither the use of mono-objective search to directly
converge towards one refactorings solution after extracting
developers preferences. The comparison with these tools will
help us evaluating the main new contribution of this paper
related to converting multi-objective to a mono-objective one
after extracting the developers’ preferences from exploring the
clusters and the Pareto front. We have also compared our
IMMO approach to two fully-automated refactoring tools by
means of Ouni [44] and JDeodorant [45]. Ouni [44] proposed
a multi-objective refactoring formulation based on NSGA-II
that generates a solution to maximize the design coherence and
refactorings reuse from previous releases. JDeodorant [45] is
an Eclipse plugin to detect bad smells and apply refactorings.
As JDeodorant supports a lower number of refactoring types
with respect to the ones considered by our tool, we restrict
our comparison with it to these refactorings. We used these
two competitive tools to evaluate the benefits of the interaction
feature in helping developers identifying relevant refactorings
especially with the preferences extraction feature and the
mono-objective search.

We preferred not to use the antipatterns and internal quality
indicators as proxies for estimating the refactorings relevance
since the developers manual evaluation already includes the

3Company anonymized for double-blind.

review of the impact of suggested changes on the quality.
Furthermore, not all the refactorings that improve any quality
attributes are relevant to the developers, which is one of the
main motivations of this work. The only rigorous way to
evaluate the relevance of our tool is the manual evaluation of
the results by active developers. This manual evaluation score,
MC, consists of the number of relevant refactorings identified
by the developers over the total number of refactorings in the
selected solution.

Unlike fixing bugs, refactoring is a very-subjective activity
and there is no unique solution to refactor a code/design thus it
is very difficult to construct a gold-standard for large-systems
which makes calculating the recall very challenging. Does the
deviation from an expected refactoring solution means that the
recommendation is wrong or simply another way to refactor
the code? The context of our work is related to “incremental”
refactoring rather than the rare “root canal” refactoring where
developers will look at the whole architecture/system to make
major refactorings. In this context of incremental refactoring,
the main factor is the precision. In addition, developers can
check via our tool the impact of the refactoring solutions
on the overall code quality using many attributes. Thus, they
continue to interactively evaluate and apply refactorings until
that they are satisfied in terms of improving the quality
attributes that they consider them concerning. Our tool enables
the developers to evaluate the current quality of the system
then tuning the search algorithm to focus on specific locations
of the code based on their needs. With the current large-size of
the systems, it is unrealistic to look for all possible refactoring
strategies targeting the whole project which is not also the
scope of this paper(root-canal refactoring).

Participants were first asked to fill out a pre-study ques-
tionnaire containing six questions. The questionnaire helped
to collect background information such as their role within
the company, their programming experience, and their famil-
iarity with software refactoring. Although the vast majority
of participants are already familiar with refactoring as part of
their job and graduate studies, all the participants attended one
lecture of two hours on software refactoring by the organizers
of the experiments. The details of the selected participants can
be found in Table II, including their programming experience
(years) and level of familiarity with refactoring. Each partici-
pant was asked to assess the meaningfulness of the refactorings
recommended after using up-to two out of the five tools on
up-to two different systems to avoid the training threat. The
participants did not ”only” evaluate the suggested refactorings
but were asked to configure, run and interact with the tools
on the different systems. The only exceptions are related to
the five participants from the industrial partner where they
agreed to evaluate only the industrial software. We assigned
the tasks to the participants according to the studied systems,
the techniques to be tested and developers’ experience. Each
of the five tools has been evaluated at least one time on each
of the seven systems. 3 out of 32 participants were asked
to refactor two projects to ensure that all the seven projects
are refactored using the five different tools. To mitigate the

Table II: Selected programmers.
System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
ArgoUML 5 7.5 Very High
JHotDraw 5 8 Very High
Azureus 5 9.5 High
GanttProject 5 7 High
UTest 5 15.5 Very High
Apache Ant 5 9 Very High
JFreeChart 5 7 Very High

training threat, the counter-balanced design ensured that these
three participants: (1) did not evaluate the same system using
two different tools; (2) did not evaluate the same tool more
than one time (even on different projects) and(3) did not
evaluate the same type of technique more than one time. Thus,
if the participant used a multi-objective tool, then he/she will
evaluate JDeodorant (deterministic) on another project.

To answer RQ2, we measured the time (T) that developers
spent to identify the best refactoring strategies based on their
preferences and the number of refactorings (NR). Furthermore,
we evaluated the number of interactions (NI) required on the
Pareto front comparing to the one required once the mono-
objective search is executed. This evaluation will help to
understand if we efficiently extracted the developer preferences
after the Pareto-front interactions. For this research question,
we decided to limit the comparison to only the interactive
multi-objective work of Mkaouer et al. [24], [26] and Alizadeh
et al. [27] since they are the only ones offering interaction
with the users and it will help us understand the real impact
of the knowledge extraction and mono-objective features (not
supported by existing studies) on the refactoring recommen-
dations and interaction effort.

To answer RQ3, we collected the opinions of participants
based on a post-study questionnaire. To better understand
subjects’ opinions with regard to usefulness and usability of
our approach in a real setting, the post-study questionnaire was
given to each participant after completing the refactoring tasks
using our approach and all the techniques considered in our
experiments. The questionnaires collected the opinions of the
participants about their experience in using our tool compared
to the remaining tools used in these experiments and their past
experience.

The stopping criterion was set to 100,000 evaluations for
all search algorithms in order to ensure fairness of comparison
(without counting the number of interactions since it is part
of the users’ decision to reach the best solution based on
his/her preferences). The mono-objective search was limited
to 10,000 evaluations after the interactions with the user. The
other parameters’ values are as follows for both the multi-
objective and mono-objective algorithms: crossover probabil-
ity = 0.4; mutation probability = 0.7 where the probability of
gene modification is 0.5. Each parameter has been uniformly
discretized in some intervals. Values from each interval have
been tested for our application. Finally, we pick the best values
for all parameters. Hence, a reasonable set of parameter’s
values have been experimented.

C. Results

Results for RQ1: Benefits. Figure 4 summarizes the man-
ual validation results of our IMMO approach comparing to the
state of the art as evaluated by the participants. It is clear from

the overall results that interactive approaches generated much
more relevant refactorings to the programmers comparing to
the automated tools of Ouni et al. and JDeodorant. Among
the interactive approaches, IMMO outperformed the existing
interactive approaches of Mkaouer et al. and Alizadeh et al.
which may confirm the importance of extracting the develop-
ers’ preferences and the performance of mono-objective search
in terms of optimization when the fitness function is well-
defined based on knowledge extraction from the user. On
average, for all of our seven studied projects, 89% of the
proposed refactoring operations are considered to be useful
by the software developers of our experiments. The remaining
approaches have an average of 83%, 71%, 67%, and 56%
respectively for Alizadeh et al. (interactive with clustering),
Mkaouer et al. (interactive multi-objective approach), Ouni et
al. (fully automated multi-objective approach) and JDeodorant
(deterministic non-search based approach). The highest MC
score is 96% for the Azureus project, and the lowest score
is 86% for JHotDraw. The participants were not guided on
how to interact with the systems, and they mainly looked to
the source code to understand the impact of recommended
refactorings.

When comparing manually the results of the different
tools, we found that automated refactorings generate a lot of
false positive and noise of developers. Both Ouni et al. and
JDeodroant tools recommended a large number of refactorings
comparing the interactive tools where several of them are not
interesting for the context of the developers thus they reject
them even if they are correct. For instance, the developers
of the industrial partner rejected several recommendations
from these automated tools simply because they are related
to a stable code or code fragments out of their interests.
The majority of them will not change a code out of their
ownership as well. Furthermore, they were not interested to
blindly change anything in the code just to improve quality
attributes. Comparing to the remaining interactive approaches,
we found that some of the refactoring solutions of IMMO will
never be proposed by Mkaouer et al. or Alizadeh et al. since
they are emphasizing specific objectives than others. In fact,
one of the main challenges of multi-objective search is the
noise introduced by sacrificing some objectives and trying to
diversify the solutions. Thus, the use of mono-objective search
when the preferences of the user are extracted is powerful
both in terms of interaction and optimization. The mono-
objective search helped to focus on specific code locations and
quality attributes rather than wasting the optimization power
on multiple objectives. To conclude, our IMMO approach out-
performed the four remaining refactoring approaches in terms
of recommending relevant refactoring solutions for developers
(RQ1).

Results for RQ2: The relevance of developers’ knowl-
edge extraction. Figures 5, 6 and 7 give an overview about
the number of refactorings of the selected solution, number
of required interaction and the time, in minutes, using our
tool, the interactive clustering approach of Alizadeh et al.,
and the interactive multi-objective approach of Mkaouer et al.

Figure 4: Average manual evaluations, MC, on the 7 systems.

Figure 5: The median number of recommended refactorings,
NR, of the selected solution on the 7 systems.

Figure 6: The median number of required interactions (ac-
cept/reject/modify/selection), NI, on the 7 systems.

Based on the results of Figure5, it is clear that our approach
significantly reduced the number of recommended refactorings
comparing to both other interactive approaches while increas-
ing the manual correctness as described in RQ1. The highest
number of refactorings was observed on the industrial system
with 34 refactorings using IMMO, 48 using Alizadeh et al. and
72 refactorings using Mkaouer et al. It may be explained by
the size and the quality of this system along with the fact that
it was evaluated by some of the original developers of UTest.
The lower number of recommended refactorings using IMMO
comparing to interactive approaches is mainly related to the
elimination of the noise in multi-objective search to handle

Figure 7: The average execution time, T, in minutes on the 7
systems.

multiple quality attributes and the extraction of developers
preferences. It is normal to see fewer refactorings when the
search space is reduced which was the case of IMMO.

Figure 6 shows that IMMO required much fewer developer
interactions than the remaining interactive approaches. For
instance, only 13 interactions to modify, reject and select
refactorings were observed on JFreeChart using our approach
while 24 and 37 interactions were needed respectively for
Vahid et al. and Mkaouer et al. The reduction of the number of
interactions are mainly due to the move from multi-objective
to mono-objective search after one round of interactions since
the developers will not deal anymore with a set of solutions
in the front but only one.

The participants also spent less time to find the most
relevant refactorings on the different systems compared to the
remaining interactive approaches. For instance, the average
time is reduced by over 65% comparing to Mkaouer et al. for
the case of JHotDraw (from 62 minutes to just 21 minutes).
The time includes the execution of the multi-objective and
mono-objective search (if any), the clustering (if any) and the
different phases of interaction until the developer is satisfied
with a specific solution. The drop of the execution time is
mainly explained by the fast execution of the mono-objective
search and the reduced search space after the interactions with
the developers.

Figure 8 shows a qualitative example extracted from our
experiments using IMMO on the Gantt project based on the
four interaction phases. After the generation of the Pareto
front, the clustering algorithm of the non-dominated refactor-
ing solutions identified three different main clusters for the
two objectives selected by the developer (extendibility and
effectiveness). During the first phase, the developer selected
the cluster with id 0 as the preferred one after exploring several
refactoring solutions in that cluster including mainly the solu-
tion located at the center of the cluster. Thus, the next phase
took the solutions in the id 0 cluster and generated an initial
population for the mono-objective genetic algorithm, and the
center of the selected cluster was used to generate the weights
for the fitness function. The output of the mono-objective
search is one refactoring solution (instead of many solutions

like the multi-objective search) that optimize better the se-
lected objectives than all the solutions in the preferred cluster.
Finally, the interactions with the user (accept/reject/modify
some refactorings) on that solution helped to converge towards
a better final solution by continuing the execution of the mono-
objective search.

Results for RQ3: Impact. We did a post-study question-
naire to collect the feedback of the developers about the
different evaluated refactoring tools. We found that 26 out
the 32 participants highlighted that they preferred IMMO
comparing to the remaining tools because of mainly the ability
to interact with one solution (instead of a front) and the
fast improvement of the refactoring results after just a few
interactions. One of the participants submitted the following
message: ”It is really great to see only refactoring solutions
meeting my needs after just a couple of interactions!”.

21 out the 32 participants appreciated the combination of
multi-objective and mono-objective search algorithms. They
found that multi-objective search was useful to get some
insights about several possible strategies to improve the code
then the mono-objective powerful in generating better so-
lutions based on their feedback. For instance, one of the
developers commented the following: ”I had no idea about
the beginning from where to start but looking to the first set
of recommendations and their code impact, I had a clear
idea on what quality metrics I need to target then it was
easy to just give feedback to only one strategy (solution).”
29 out the 32 participants found that the major refactoring
suggestions of both Ouni et al. and JDeodorant hard to evaluate
and understand. They found the lack of interactions as a
main limitation since they have to accept or reject the whole
refactoring suggestions and it is difficult to estimate their
impacts. The participants noticed, in the survey, that they
were satisfied with the the considered quality attributes and
refactoring types by our tool. They did not suggest to add
new types of refactoring or quality attribute.

V. THREATS TO VALIDITY

Conclusion validity. Since we used a variety of computa-
tional search and machine learning algorithms, the parameter
tuning used in our experiments creates an internal threat that
we need to evaluate in our future work. The parameters’ values
used in our experiments are found by trial-and-error. However,
it would be an interesting perspective to design an adaptive
parameter tuning strategy for our approach so that parameters
are updated during the execution in order to provide the best
possible performance. Another conclusion threat is the number
of interactions with the developers since we did not force
them to use the same interaction effort which may sometimes
explain the out-performance of our approach. However, the
participants were given the same maximum amount of time to
use the tool (limited to 3 hours).

Internal validity. The variation of correctness and speed
between the different groups when using our approach and
other tools can be one internal threat. Our approach may not
be the only reason for the superior performance because the

Figure 8: A qualitative example of three executions extracted from our experiments on Ganttproject to illustrate the process
of converting a multi-objective search into a mono-objective one.

participants have different programming skills and familiarity
with refactoring tools. To counteract this, we assigned the
developers to different groups according to their programming
experience so as to reduce the gap between the different
groups, and we also adopted a counter-balanced design. Re-
garding the selected participants, we have taken precautions to
ensure that our participants represent a diverse set of software
developers with experience in refactoring, and also that the
groups formed had, in some sense, a similar average skill set
in the refactoring area.

External validity. The first threat is the limited number of
participants and evaluated systems, which externally threatens
the generalizability of our results. In addition, our study was
limited to the use of specific refactoring types and quality
attributes. Furthermore, we mainly evaluated our approach
using NSGA-II and GA algorithms, but other state-of-the-art
metaheuristic algorithms can be used. Future replications of
this study are necessary to confirm our findings.

VI. RELATED WORK

Search-based techniques [46]–[49] are widely studied to
automate software refactoring where the goal is to improve the
design quality of a system based mainly on a set of software
metrics. The majority of existing work combines several
metrics in a single fitness function to find the best sequence of
refactorings [47]–[57]. Seng et al. [58] have proposed a single-
objective optimization approach using a genetic algorithm to
suggest a list of refactorings to improve software quality.
The work of O’Keeffe et al. [59] uses various local search-
based techniques such as hill climbing and simulated annealing
to provide an automated refactoring support. They use the
QMOOD metrics suite to evaluate the improvement in quality.
The majority of existing multi-objective refactoring techniques
[18], [28], [44], [60] propose as output a set of non-dominated
refactoring solutions (the Pareto front) that find a good trade-
off between the considered maintainability objectives. This
leaves it to the software developers to select the best solution
from a set of possible refactoring solutions, which can be a
challenging task as it is not natural for developers to express

their preferences in terms of a fitness functions value. Thus,
the exploration of the Pareto front is still performed manually.

Some recent studies [17], [26], [27] extended a previous
work [24] to propose an interactive search based approach for
refactoring recommendations. The developers have to specify
a desired design at the architecture level then the proposed
approach try to find the relevant refactorings that can generate
a similar design to the expected one. In our work, we do
not consider the use of a desired design, thus developers are
not required to manually modify the current architecture of
the system to get refactoring recommendations. Furthermore,
developers maybe interested to change the architecture mainly
when they want to introduce an extensive number of refac-
torings that radically change the architecture to support new
features.

VII. CONCLUSION

In this paper, we proposed a novel approach to extract de-
velopers’ knowledge and preferences to find good refactoring
recommendations. We combined the use of multi-objective
search, clustering, mono-objective search and users interaction
in our approach. To evaluate the effectiveness of our tool,
we conducted an evaluation with 32 software developers who
evaluated the tool and compared it with the state-of-the-art
refactoring techniques. As part of our future work, we are
planning to evaluate our approach on further projects and
a more extensive set of participants. We will also adapt
our approach to address other problems requiring developer
interactions such as bugs localization.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Jul.
1999.

[2] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004.
[3] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,

and A. Shapochka, “A case study in locating the architectural roots of
technical debt,” in Proc. 37th, May 2015.

[4] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework
for making architectural decisions in a business context,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
vol. 2. IEEE, 2010, pp. 149–157.

[5] “The developer Coefficient.” [Online]. Available:
https://stripe.com/reports/developer-coefficient-2018

[6] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a refactor-
ing reconstruction tool based on logic query templates,” in Proceedings
of the International Symposium on Foundations of Software Engineering,
ser. FSE, 2009, pp. 371–372.

[7] R. Marinescu, “Detection strategies: metrics-based rules for detecting
design flaws,” in 20th International Conference on Software Mainte-
nance (ICSM), Sept 2004, pp. 350–359.

[8] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in Proceedings of the International Conference on Software
Engineering, 2009, pp. 287–297.

[9] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in ECOOP, vol. 4067,
2006, pp. 404–428.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,
pp. 355–371, 2004.

[11] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refactoring
speed by 10x,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 1145–1156.

[12] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach for
code-smells detection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, 2014.

[13] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintain-
ability defects detection and correction: a multi-objective approach,”
Automated Software Engineering, vol. 20, no. 1, pp. 47–79, 2012.

[14] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing. ACM, 2014, pp. 331–336.

[15] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling
and cohesion of existing code,” in 11th Working Conference on Reverse
Engineering (WCRE), 2004, pp. 144–151.

[16] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering: An
industrial case study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[17] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 535–546.

[18] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni, “Many-objective software remodularization using nsga-iii,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 3, p. 17, 2015.

[19] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, and
K. Deb, “On the use of many quality attributes for software refactoring: a
many-objective search-based software engineering approach,” Empirical
Software Engineering, vol. 21, no. 6, pp. 2503–2545, 2016.

[20] M. Kessentini, T. J. Dea, and A. Ouni, “A context-based refactoring
recommendation approach using simulated annealing: two industrial case
studies,” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 1303–1310.

[21] I. H. Moghadam and M. O. Cinneide, “Automated refactoring using de-
sign differencing,” in Software maintenance and reengineering (CSMR),
2012 16th European conference on. IEEE, 2012, pp. 43–52.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2012.

[23] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java code
for concurrency via concurrent libraries,” in Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 397–407.

[24] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
“Recommendation system for software refactoring using innovization
and interactive dynamic optimization,” in Proceedings of the Interna-
tional Conference on Automated Software Engineering, 2014, pp. 331–
336.

[25] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: the aries project,” in

34th International Conference on Software Engineering (ICSE). IEEE
Press, 2012, pp. 1419–1422.

[26] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, “An interactive and dynamic search-based approach to
software refactoring recommendations,” IEEE Transactions on Software
Engineering, 2018.

[27] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018. New York, NY, USA: ACM, 2018, pp. 464–474.
[Online]. Available: http://doi.acm.org/10.1145/3238147.3238217

[28] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam, “Experimental assessment of software metrics
using automated refactoring,” in International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2012, pp. 49–58.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[30] “Less is More: From Multi-Objective to Mono-Objective Refactoring.”
[Online]. Available: https://sites.google.com/view/scam2019

[31] M. Feathers, Working Effectively with Legacy Code. Prentice Hall PTR,
2004.

[32] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[33] “The Seventh International Workshop on Managing Technical Debt,”
http://www.sei.cmu.edu/community/td2015/.

[34] L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” in Proceedings of International Conference on Automated
Software Engineering, 1999, pp. 174–181.

[35] E. R. Murphy-Hill and A. P. Black, “Why don’t people use refactoring
tools?” in Proceedings of the Workshop on Refactoring Tools in conjunc-
tion with the European Conference on Object-Oriented Programming,
2007, pp. 60–61.

[36] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 488–498.

[37] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th international conference on
Software engineering. ACM, 2008, pp. 181–190.

[38] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis, “Investigating
quality factors in object-oriented designs: an industrial case study,” in
Proceedings of the 1999 International Conference on Software Engi-
neering (IEEE Cat. No. 99CB37002). IEEE, 1999, pp. 345–354.

[39] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1992.

[40] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[41] T. Caliński and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1–
27, 1974.

[42] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood
and the EM algorithm,” SIAM review, vol. 26, no. 2, pp. 195–239, 1984.

[43] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó
Cinnéide, “Recommendation system for software refactoring using
innovization and interactive dynamic optimization,” Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering - ASE ’14, pp. 331–336, 2014.

[44] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-
criteria code refactoring using search-based software engineering: An
industrial case study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[45] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “JDeodor-
ant: identification and application of extract class refactorings,” in Pro-
ceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 1037–1039.

[46] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[47] M. Kessentini, M. Wimmer, H. Sahraoui, and M. Boukadoum, “Gen-
erating transformation rules from examples for behavioral models,”
in Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications. ACM, 2010, p. 2.

[48] U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb, “Multi-view refac-
toring of class and activity diagrams using a multi-objective evolutionary
algorithm,” Software Quality Journal, vol. 25, no. 2, pp. 473–501, 2017.

[49] ——, “Multi-view refactoring of class and activity diagrams using
a multi-objective evolutionary algorithm,” Software Quality Journal,
vol. 25, no. 2, pp. 473–501, 2017.

[50] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi,
“Model transformation modularization as a many-objective optimization
problem,” IEEE Transactions on Software Engineering, 2017.

[51] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using multi-
objective optimization,” Information and Software Technology, vol. 83,
pp. 55–75, 2017.

[52] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of
web service defects,” in International Conference on Service-Oriented
Computing. Springer, 2016, pp. 352–368.

[53] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb,
“A robust multi-objective approach to balance severity and importance
of refactoring opportunities,” Empirical Software Engineering, vol. 22,
no. 2, pp. 894–927, 2017.

[54] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What you like in design
use to correct bad-smells,” Software Quality Journal, vol. 21, no. 4, pp.
551–571, 2013.

[55] A. ben Fadhel, M. Kessentini, P. Langer, and M. Wimmer, “Search-
based detection of high-level model changes,” in Software Maintenance
(ICSM), 2012 28th IEEE International Conference on. IEEE, 2012,
pp. 212–221.

[56] M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wimmer, “Search-
based design defects detection by example,” in International Conference
on Fundamental Approaches to Software Engineering. Springer, Berlin,
Heidelberg, 2011, pp. 401–415.

[57] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Example-based
model-transformation testing,” Automated Software Engineering, vol. 18,
no. 2, pp. 199–224, 2011.

[58] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” in 8th annual Conference on Genetic and Evolutionary Com-
putation (GECCO). ACM, 2006, pp. 1909–1916.

[59] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software
maintenance,” Journal of Systems and Software, vol. 81, no. 4, pp. 502–
516, 2008.

[60] M. Harman and L. Tratt, “Pareto optimal search based refactoring at
the design level,” in 9th annual conference on Genetic and evolutionary
computation (GECCO), 2007, pp. 1106–1113.

