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ABSTRACT

The advent of e-commerce has impacted the retail industry, as retail firms have in-

novated in response to customers increasingly preferring to purchase products online.

This dissertation studies operational problems that accompany such retail innovations,

and provides tractable heuristic solutions developed using stochastic and robust opti-

mization methods. In particular, the first two chapters focus on the value of fulfillment

flexibility – online orders can be fulfilled from any node in the firm’s fulfillment net-

work. The first chapter is devoted to omnichannel retailing, where e-commerce demand

is integrated with the physical network of stores through ship-from-store fulfillment.

For a retailer with a network of physical stores and fulfillment centers facing two de-

mands (online and in-store), we consider the following interlinked decisions – how much

inventory to keep at each location and where to fulfill each online order from. We show

that the value of considering fulfillment flexibility in inventory planning is highest when

there is a moderate mix of online and in-store demands, and develop computationally

fast heuristics with promising asymptotic performance for large scale networks, which

are shown to improve upon traditional strategies.

The second chapter considers a pure play e-commerce fulfillment network, and

studies the inventory placement decision. As e-commerce demands are volatile due

to a variety of factors (price-matching, recommendation engines, etc.), we consider

a distributionally robust setting, where the objective is to minimize the worst-case

expected cost under given mean and covariance matrices of the underlying demand

distribution. For this NP-hard problem, we develop computationally tractable heuristic

in the form of a semi-definite program, with dimension quadratic in the size of the

ix



network. In the face of distribution uncertainty, we show that the robust heuristic

outperforms inventory solutions that assume incorrect distributions.

The final chapter offers a new take on a classic problem in retail – customer returns,

which has grown to be an important issue in recent times with firms competing to pro-

vide lenient and convenient return policies to boost their e-commerce sales. However,

several customers take advantage of such policies, which can lead to loss in revenue and

increase in inventory costs. We study different return policies that a firm can employ

depending on the information about customers’ return behavior that is available to the

firm. We derive the structure of the optimal return policies and show that personal-

izing return policies based on customers’ historical data can significantly improve the

firm’s profits, but allows the firm to extract all customer surplus.
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CHAPTER 1

Introduction

Internet has changed how humans interact and transact with businesses. Customers are

increasingly preferring to conduct their shopping online, which provides new challenges

to retail firms to reinvent supply chain strategies in the digital era.

There are several operational problems that need to be addressed by firms which

face online demands – inventory placement (where to position inventory in the net-

work), fulfillment decisions (where to fulfill an incoming online order), assortment (on-

line and in-store, online recommendations), pricing (dynamic pricing, price-matching

with competitors, differentiation between online and in-store), returns (free returns or

partial returns, leniency in return window), etc. While most of these problems have

been studied in literature in the context of brick-and-mortar retail, e-commerce de-

mand introduces additional flexibility and challenges. In particular, from the point of

view of the online shopper, policies (pricing, assortment, return policy, etc.) can now

be personalized based on a customer’s historical data collected by the firm; from the

point of view of the firm, online orders can be fulfilled from any node (stores, fulfill-

ment centers, etc.) in the network, which can be used as a strategic lever to manage

operations across the network.

In this thesis, we look at three such important problems faced by modern retail

firms. The first two chapters deal with inventory and fulfillment decisions that are

brought about by the fulfillment flexibility in dealing with online demand – an online

order can be fulfilled from any node in the fulfillment network. The third chapter fo-

cuses on the value of personalizing return policies for customers based on their historical

return behavior.

In the first chapter, we study the problem of inventory and fulfillment optimization

for omnichannel retail firms. Omnichannel refers to the seamless integration of a re-

tailer’s sales channels, such as in-store and online. While this integration is motivated

by giving flexibility to customers, it leads to pooling of demands within and across

1



locations. Thus, such integration can lead to reduction in cost that can be achieved

through efficient inventory management. To this end, we consider a retailer with a

network of physical stores and fulfillment centers facing two demands (online and in-

store), where online demand can be fulfilled from any location with available inventory.

We model the setting as a stochastic optimization problem, by considering order-up-to

policies for a general multi-period model with multiple locations and zero lead time,

and online orders fulfilled multiple times in each period. We develop a simple, scalable

heuristic for the multi-location problem based on analysis from the two-store problem,

for the special case where online orders are only fulfilled at the end of a period. For

the case where fulfillment is done dynamically, we develop a simple threshold-based

policy which reserves inventory at stores for future in-store demand. We then employ

a realistic numerical study to analyze the benefits of using the combined inventory and

fulfillment heuristic over traditional decentralized and myopic strategies.

In the second chapter, we consider the inventory placement problem in e-commerce

fulfillment centers through a distributionally robust approach. In network inventory

planning, the joint distribution of the random demands is needed to optimize inventory

levels at each node in the network. However, in the case of e-commerce demands, the

exact distribution may be inaccessible due to high volatility in online customer behav-

ior arising from factors such as competition, the use of dynamic price-matching strate-

gies and flash promotions, recommendation engines that manipulate click-streams, etc.

Assuming that the firm knows only the mean and covariance matrices, we solve a

distributionally robust multi-location newsvendor model for network inventory opti-

mization. The objective is to minimize the worst-case expected cost over the set of

demand distributions satisfying the known mean and covariance information. For the

special case of two homogeneous customer locations with correlated demands, we show

that a six-point distribution achieves the worst-case expected cost, and derive a closed-

form expression for the optimal inventory decision. The general multi-location problem

can be shown to be NP-hard. We develop a computationally tractable upper bound

through the solution of a semidefinite program (SDP), which also yields heuristic in-

ventory levels, for a special class of fulfillment cost structures, namely nested fulfillment

structures. We also develop an algorithm to convert any general distance-based fulfill-

ment cost structure into a nested fulfillment structure which tightly approximates the

expected total fulfillment cost.

In the third chapter, we consider the important problem of managing customer

return policies. With lenient return policies growing popular in recent times, several

customers take advantage of such policies. Retail firms keep track of customer return

2



behavior through the data they collect themselves or through third-party companies –

recently, Amazon has banned several customers who were considered to be fraudulent

returners. We study how the firm can use information about customers’ return behavior

to tailor personalized return policies. For heterogeneous customers who differ in their

perceived hassle cost of returns (which can be thought of as a proxy for return rates

under lenient return policies), we derive the firm’s optimal return policy, which consists

of two components: 1) a return window (short or long), and 2) a refund fee. The firm

benefits from a shorter return window, as returned items are less likely to be damaged

and more likely to be resold during the selling season (modeled by a higher salvage

price), whereas customers are inconvenienced by shorter windows (modeled by increase

in their return hassle). When the firm offers full refunds to returning customers,

consistent with Amazon’s practice, we show that low-hassle customers must be banned

from returning. However, when the firm is allowed to personalized return fees, we show

that the firm benefits from selling to these low-hassle customers under strict return

policies (short window and high return fees). Identifying and targeting customers

based on their historical return behavior can lead to significant increase in profits,

however, we show that customer surplus is wiped out. This provides implications for

customers’ privacy in retail settings, and the value of consumer behavior data.

3



CHAPTER 2

Joint Inventory and Fulfillment Decisions

for Omnichannel Retail Networks

2.1 Abstract

With e-commerce growing at a rapid pace compared to traditional retail, many brick-

and-mortar firms are supporting their online growth through an integrated omnichan-

nel approach. Such integration can lead to reduction in cost that can be achieved

through efficient inventory management. A retailer with a network of physical stores

and fulfillment centers facing two demands (online and in-store) has to make impor-

tant, interlinked decisions – how much inventory to keep at each location and where to

fulfill each online order from, as online demand can be fulfilled from any location. We

consider order-up-to policies for a general multi-period model with multiple locations

and zero lead time, and online orders fulfilled multiple times in each period. We first

focus on the case where fulfillment decisions are made at the end of each period, which

allows separate focus on the inventory decision. We develop a simple, scalable heuristic

for the multi-location problem based on analysis from the two-store case, and prove

its asymptotic near-optimality for large number of omnichannel stores under certain

conditions. We extend this to the case where fulfillment can be done multiple times

within a period and combine it with a simple, threshold-based fulfillment policy which

reserves inventory at stores for future in-store demand. With the help of a realistic

numerical study based on a fictitious retail network embedded in mainland USA, we

show that the combined heuristic outperforms a myopic, decentralized planning strat-

egy under a variety of problem parameters, especially when there is an adequate mix

of online and in-store demands. Extensions to positive lead times are discussed.
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2.2 Introduction

By the end of 2016, e-commerce sales accounted for around 9% of the total retail sales

in the United States (U.S. Census Bureau, 2016). Although this is a small portion of

the total sales, online sales have been increasing at a rapid growth rate of around 16%

each year (Zaroban, 2018), and projected to account for 17% of all retail sales within

the next five years (Lindner, 2017). In comparison, the growth in traditional retail has

dwindled to around 2% in recent years. With customers increasingly favoring the online

channel, traditional brick-and-mortar (B&M) firms are compelled to develop their e-

commerce capabilities to remain competitive against pure play e-commerce firms like

Amazon (Leiser, 2016), which alone accounted for 53% of the e-commerce sales growth

in 2016 (Kim, 2017). In order to improve efficiency and flexibility, retailers resort to

an omnichannel approach to integrate the online channel with their physical stores.

Omnichannel refers to the seamless integration of a retailer’s sales channels, such

as in-store and online. Customers can purchase an item in different ways, including

placing an order through the online store (websites), through mobile devices (mobile

apps), as well as through the traditional practice of walking into physical stores. In

addition, customers placing orders online can also choose how they receive the item,

which has led to various omnichannel initiatives: they can pick up their items from

a nearby physical store (in-store pickup) or from designated self-service kiosks like

Amazon Lockers, or simply have the item shipped directly to their homes (ship-to-

customer).

Providing an omnichannel customer experience is regarded as a brand differentiator

by many retailers, and integrating the online channel with the physical stores increases

revenue, reduces shipping costs and improves customer satisfaction (Forrester, 2014).

Hence, there is an industry-wide shift to omnichannel retailing, with onetime B&M

firms like Macy’s and Walmart leveraging their existing network of retail stores in

their integration of the online channel (Nash, 2015). Amazon has also joined these

firms through the acquisition of a network of physical stores across the US by means

of its purchase of Whole Foods Market. This allows Amazon to not only operate an

omnichannel grocery chain, but also absorb the stores into its distribution network to

reduce logistic costs.

One of the key aspects of this channel integration is store fulfillment, which is

the use of physical stores to fulfill online orders. Store fulfillment has now become

indispensable for firms like Walmart and Macy’s, that rely on a network of physical

stores close to population centers to offer same day and next-day delivery options to
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customers (Giannopoulos, 2014). Dedicated floor space and store staff are required to

fulfill online orders from stores.

In spite of potential benefits, many firms have struggled in their implementation of

channel integration: from 2010 to 2014, even as retail and online sales increased, inven-

tory turnover decreased (Kurt Salmon, 2016). One possible cause for this inefficiency

could be insufficient planning in inventory management. While firms have traditionally

managed inventory levels at stores based on demands in the corresponding locations,

such a decentralized approach ceases be optimal in an integrated system.

The optimal inventory decisions depends on the fulfillment policy followed, and

there does not seem to be a standard approach to online fulfillment across the industry.

Some firms primarily fulfill from online fulfillment centers (FCs), and resort to store

fulfillment in case the online FC runs out of stock. Some firms fulfill online orders from

stores, but are agnostic to store inventory levels, while others do not fulfill from stores

running low on inventory.

In this paper, we study the problem of an omnichannel firm with a network of

physical stores and online FCs facing online (ship-to-customer) and in-store demands,

by means of a general multi-period, multi-location model. We consider a dynamic

setting, where we allow online fulfillment decisions to be made multiple times within

each period. Online orders can be routed to any store or online FC in the network, and

items are picked off the shelves, packed, labeled and shipped to the customers’ homes.

This has several advantages over the dedicated use of online FCs including reduced

shipping costs, quicker deliveries and efficient use of store inventory (UPS Compass,

2014).

Our goal is to optimize inventory levels and fulfillment decisions for a single product.

The decisions have to be made based on the network as a whole as opposed to a

decentralized approach, in order to take into account demand pooling of online demands

across the network, in addition to demand pooling of in-store and online demands in

each region.

The firms’s problem is described as follows. A retail firm owns a network of stores

and online FCs, and has integrated the online channel into the physical stores through

store fulfillment. Following a periodic review inventory model, each store orders up

to a certain level at the beginning of each review period, to fulfill in-store demand

(customers walking into physical stores) and online demand (customers ordering online,

expecting items to be shipped directly to them) during the course of the period. The

in-store demand at a store is fulfilled as it arrives, until that store runs out of inventory.

Unlike in-store demand, online demand can be fulfilled from any location in the
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network, and there is typically a delay between the time an order is placed and when

items are picked off the shelf. Firms may delay fulfillment decisions due to various

reasons:

� for strategic reasons, orders from the same customer or region can be consol-

idated to lower shipping costs (Xu, Allgor, and Graves, 2009; Wei, Jasin, and

Kapuscinski, 2017),

� or for practical reasons, as the timing of orders fulfilled from stores is affected by

store staffing schedules and pick-up times of third-party carriers like UPS.

To model this dynamic, a review period is further divided into T fulfillment epochs,

where in-store demands are fulfilled as they arrive, and online fulfillment decisions

(assigning online orders to fulfillment locations) are made at the end of each epoch

after observing the demands during the epoch, with unmet demands being lost. The

inventory and fulfillment decisions are made centrally by the firm to minimize holding,

penalty and shipping costs. For the sake of clarity, the two units of time are described

below:

� a review period is the amount of time between two consecutive inventory replen-

ishments. For stores that are replenished daily, the review period is a single

day.

� a fulfillment epoch is the time between two fulfillment decisions. Over the course

of an epoch, online orders are aggregated, and fulfillment decisions are made

at the end of each epoch. For stores replenished daily, the length of an epoch

can range from a whole day (e.g. Macy’s stores fulfill online orders once a day

through UPS (Lewis, 2013)) to a few minutes (e.g. firms like Amazon make more

frequent fulfillment decisions).

As described, the definition of a fulfillment epoch carries flexibility, and by choosing

large enough values for T , we can closely approximate the continuous time setting,

where firms make fulfillment decisions as online orders arrive.

The online fulfillment decisions are similar to transshipment decisions for online

demand, except that instead of items being shipped between stores, they are shipped

directly to the customer. The setting can thus be cast as planning of order-up-to levels

in a transshipment problem with a replenishment leadtime of T − 1 periods, with a

planning horizon of T periods. This makes the problem hard, as it has been shown

that optimal transshipment decisions are intractable, let alone joint optimization of
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initial inventory levels and transshipment decisions, even for two locations (Tagaras

and Cohen, 1992).

The general structure of the problem is also subject to complications from other

sources - multiple locations, multiple fulfillment epochs, and two non-identical classes

of demands. Our main contribution is a combined inventory and fulfillment heuristic

for omnichannel retailing, which we derive from a general multi-location, multi-period

model shown to be mathematically intractable due to the various generalizations in-

volved. Specifically, the inventory heuristic calculates the stocking levels at each loca-

tion based on the demands in the network, rather than individually at that location,

and the fulfillment heuristic provides location-specific, time-varying inventory thresh-

olds which dictate the rationing between in-store and online demands.

The strength of our combined heuristic lies in the ease of computation and compre-

hension, and we show by means of a realistic numerical study that our heuristic creates

value by planning for virtual pooling of online demands across locations, and diligently

reserving inventory at stores for future demands. Our solutions are generalizable, and

offer a framework to build further complexities on, which can yield valuable decision

support tools for firms.

The approach we take to address this problem is as follows. We model the general

problem in Section 2.4, and describe the complexities involved. To obtain a heuristic

solution to this problem, we first decouple the inventory and fulfillment decisions by

considering the case with a single fulfillment epoch (T = 1) in Section 2.5. When

there is no leadtime, a myopic fulfillment policy would be optimal in this case - fulfill

online demand as much as possible with the available inventory in each review period.

Given this fulfillment policy, we discuss the optimal inventory solution for the two-

store case, and develop a simple, asymptotically near-optimal inventory heuristic for

the multi-location case.

In Section 2.6, we extend this inventory heuristic to the general problem where

online orders are fulfilled multiple times within each review period (T > 1), and develop

a simple threshold fulfillment policy in each fulfillment epoch, where stores fulfill online

orders only when the inventory levels are above a certain threshold.

In Section 2.7, by means of a realistic numerical study on a network of stores and

online FCs embedded in mainland USA, we show that our combined inventory and

fulfillment heuristic improves greatly upon a benchmark solution which naively sets

inventory levels in a decentralized fashion and fulfills online orders myopically. We test

the relative performance of our heuristic over a variety of problem parameters such

as shipping costs, online market share, network size, etc. Finally, we conclude with
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Section 2.8 by discussing further generalizations including non-identical leadtimes and

costs, and areas for future research.

2.3 Literature Review

Omnichannel retailing is a relatively new area in operations management literature,

and has been gaining traction in recent years. Readers are referred to Rigby (2011)

and Brynjolfsson et al. (2013) for comprehensive reviews of the topic. Existing papers

in this area focus on the impact of online channel integration: Gao and Su (2017) study

the impact of implementing store pickup on store operations, and Gallino et al. (2017)

focus on sales dispersion from implementing store pickup. Other papers study the

impact from the customers’ point of view: Bell et al. (2017); Ansari et al. (2008), and

Gallino and Moreno (2014) study customer migration due to product information, and

Gao and Su (2016) analyze the effect of information provided to strategic omnichannel

customers on store operations.

When there is no in-store demand, the problem is analogous to the pure play

e-commerce setting, which has enjoyed recent attention in literature: Acimovic and

Graves (2017) study the optimal allocation of replenishment to fulfillment centers to

reduce shipping costs and mitigate costly spillovers, Lei et al. (2018) consider the

joint pricing and fulfillment strategy to maximize the expected profits (revenue minus

shipping costs), and Acimovic and Graves (2014) focus on fulfillment strategies to

minimize outbound shipping costs.

There have been some studies which discuss integration of online demand to physical

stores by means of a separate online fulfillment center, as this was the primary mode

of fulfillment in the e-commerce channel in its nascent stages. Seifert et al. (2006)

consider the inventory management of a system where an online warehouse handles

online orders, and in case of stockouts, stores can fill these orders. Chen et al. (2011)

consider a three location system consisting of two stores and an etailer, with a hierarchy

to fulfillment - the etailer can fulfill online orders with the least cost, followed by store

1 and then store 2.

We consider a generalized setting representing the current retailing situation

wherein physical stores are the primary ports of online fulfillment. To the best of our

knowledge, the study closest to ours in emulating the problem setting, where online

demand is integrated with the physical stores through store fulfillment is by Jalilipour

Alishah et al. (2015). They consider a single store with online and in-store demands,

and analyze decisions at three levels — fulfillment structure, inventory optimization
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and inventory rationing. They show that the optimal rationing policy between in-

store and online demands is threshold-based, but their results do not extend to the

multi-store case due to the complexity involved in an additional rationing decision -

online orders from other regions. This setting is rather important in the context of

e-commerce, and falls under the purview of the transshipment literature, where it has

been shown to be an intractable problem to solve.

The key feature that online demands can be fulfilled from any store in the system

is analogous to a reactive transshipment setting with zero transshipment lead time, as

pointed out by Yang and Qin (2007), who called this ’virtual lateral transshipment’. In

addition, our problem has multiple demand classes (online and in-store), where some

classes of demand (in-store) cannot be subject to transshipment. For an extensive

review of the transshipment literature, the readers are referred to Paterson et al. (2011).

The fact the the problem in question can be related to the transshipment literature

offers little solace. Transshipment problems are infamously hard to solve, and ana-

lytical approaches can be done only for simplified cases with zero replenishment and

transshipment leadtimes and two locations (Tagaras, 1989) or identical shipping costs

across locations (Dong and Rudi, 2004). Tagaras and Cohen (1992) show that when

there is positive replenishment leadtime, the problem becomes intractable even for two

locations, as obtaining the optimal transshipment policy is mathematically complex

due to its interdependence on demands during the leadtime, on-hand inventory and

in-transit inventory.

Obtaining optimal order-up-to policies are by extension intractable as well, as they

need to be calculated based on the optimal transshipment policy. Yao et al. (2016)

have recently considered the optimal joint initial stocking and transshipment decisions

for the two-store case, where stocking is done once at the beginning of a selling season,

and transshipment is done multiple times during the season. Their analysis is limited

to two stores, as key mathematical properties like submodularity do not extend to

multiple locations.

Characterization of optimal policies in periodic review systems are especially diffi-

cult for lost-sales (see Bijvank and Vis 2011 for a review). However, Huh et al. (2009)

find that optimal inventory levels assuming backordering provide a reasonable approxi-

mation to the lost-sales case when the penalty costs are very high compared to holding

costs.

Due to the various complexities involved such as multiple stores, multiple epochs

and periods, lost sales and joint optimization of inventory and fulfillment, one cannot

hope to obtain a provably tight bound for a problem of this stature, let alone ana-
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lytically finding the optimal solutions. We will instead develop simple, tractable and

scalable heuristics, which perform well compared to naive strategies in most cases, with

help from techniques used in literature.

Finally in the zero leadtime case, when online demand is fulfilled only once at the

end of each review period, we show that the problem is analogous to a newsvendor net-

work, with virtual lateral transshipment as a ‘discretionary policy’ (van Mieghem and

Rudi, 2002). Newsvendor networks have been analyzed in great detail by van Mieghem

and Rudi (2002) and van Mieghem (2003), building up from the multi-dimensional

newsvendor models proposed by Harrison and van Mieghem (1999). However, as we

shall show later, the canonical approach to optimizing inventory levels is difficult even

for two stores due to the number of random demands involved, and is intractable for

the multi-store case.

2.4 The General Problem - Model and Assump-

tions

Consider a system composed of a firm which owns N facilities R1, R2, . . . , RN in dif-

ferent customer regions, selling a single product. Considering multiple products intro-

duces complex combinatorial features to the fulfillment problem as a multi-item order

can be fulfilled in different ways (Jasin and Sinha, 2015); we disregard this in our anal-

ysis to better study the interplay between inventory and fulfillment decisions. There

are two classes of demand originating in each region i, modeled by non-negative and

continuous random variables with well-behaved density functions.

1. the in-store demand (Dis) consists of customers picking items off the shelves (all

the inventory is available on the shelf), with unmet demand lost immediately

2. the online (ship-to-customer) demand (Dio), consisting of customers ordering

through the website or mobile app, with items delivered directly to their homes.

For orders fulfilled from stores, the store staff pick up the item from the shelf,

followed by packing and labeling in the store backroom, and shipping to the

customer. A sale is lost when there is no available inventory for fulfillment at

any location.

The demands are exogenous and are temporally independent, but can have any

general channel or location correlation structure, while we require that the total de-

mands in each region and across the system have continuous and well-defined density
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Ss - Traditional B&M Stores Sso - Omnichannel Stores So - Online FCs

In-store Customers - Dis

Online Customers - Dio

Figure 2.1: Three types of facilities in a fulfillment network a) Traditional brick-and-
mortar stores (Ss), b) Omnichannel stores (Sso), and c) Online Fulfillment Centers
(So).

functions.

A typical retail fulfillment network is shown in Figure 2.1, where dashed lines

represent customers visiting physical stores and solid lines represent items shipped

to customers’ homes. We consider three different types of facilities described by the

following sets:

� Ss - physical stores which handle only in-store demand.

� So - online fulfillment centers (OFCs) which handle only online orders.

� Sso - omnichannel physical stores which handle both online and in-store demands.

Since traditional B&M stores plan for inventory independent of other facilities in

the network, we exclude them from our analysis. We are hence interested in locations

involved in online fulfillment, namely the omnichannel stores and online fulfillment

centers, denoted by the set of facilities S = So ∪ Sso, and the number of such facilities

is N = |S|.
An important feature to be noted in the omnichannel problem is that unfulfilled

in-store demand at one region cannot be fulfilled by stores in other regions. Any facility

with available inventory can fulfill an online order, and hence there is pooling of online

demands across regions in addition to pooling of in-store and online demands within

each region.
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2.4.1 Periodic Review Setup

We consider a periodic review model, where an order is placed by each facility at

the start of each review period, and received with zero replenishment leadtime. The

demands are realized during the course of the period based on the facility considered.

We are interested in an optimum from the class of order-up-to policies, due to ease of

implementation and practical relevance, and the order-up-to levels in each period are

y1, . . . , yN .

Based on conversations with industry executives, there are certain situations in the

context of omnichannel stores where the leadtime is effectively negligible: in major

cities like New York, store replenishment can only be done at night-time due to traffic

restrictions. Such stores handle high volumes of sales, and are usually replenished

daily from warehouses in nearby cities. An order placed in the afternoon can often be

replenished before the following day. Positive leadtimes can significantly complicate

analyses, and we discuss extending our heuristics to the case of non-identical leadtimes

across locations in Section 2.8.

We assume that online orders are fulfilled in multiple batches in each review period,

which we model by dividing a review period into T fulfillment epochs: in each epoch,

in-store demand is fulfilled as it arrives, whereas online fulfillment decisions are made at

the end of the epoch after observing demand, and orders are fulfilled with the available

inventory.

The assumption reflects practical constraints in store operations: fulfillment ac-

tivities in stores are usually done by store personnel, who in most cases also share

additional store responsibilities. In such situations, it is better to fulfill online orders

in batches, as opposed to having store staff picking items every time an online order is

received.

2.4.2 Cost Parameters

We consider a per-unit service cost sij for online demand from region j fulfilled by Ri,

which encapsulates the cost of picking the item off the shelf, packing and labelling, as

well as the shipping cost for delivery. We have sij > sii,∀j 6= i, as it is costlier to ship

an item over longer distances. We will refer to the service costs sii (within the same

region) as shipping costs, and sij (across regions) as cross-shipping costs.

In practice, the handling (pick-pack-and-label) component of the service cost is

higher for stores fulfilling online demand, as it involves human labor, than for OFCs

where the process can be automated and streamlined. The shipping component of the
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service cost can be higher for the OFCs which are usually located farther away from

population centers.

We have identical costs at each location, including shipping costs sii = s, ∀i. At

the end of a fulfillment epoch, each unit of unused inventory incurs an overage cost

h, and each unit of unfulfilled in-store and online demands incur penalty costs ps and

po respectively. We assume that ps > po − s > 0, as in-store demand is fulfilled first

and costlier to lose, and cross-shipping always leads to a myopic reduction in cost:

sij (= sji) < h+ po, ∀i, j. We ignore the purchasing cost of inventory, but this can be

incorporated through linear terms.

2.4.3 Stochastic Programming Formulation

We are now ready to write the total expected per period cost function for the case

where online demand is fulfilled over T fulfillment epochs in each review period. We

focus on the single period to obtain order-up-to levels, which we show in Section 2.5.2

to be optimal in a multi-period setting in the case of negligible replenishment leadtimes.

In each fulfillment epoch t, let the starting inventory levels be denoted by xt =

(xti)i, and D̃t = (Dt
is, D

t
io)i denotes the demands. From location Ri, let zti be the

amount of inventory used to fulfill the in-store demand, and Zt
ij be the amount of

inventory shipped to fulfill online demand from region j, denoted in vector form as

zt,Zt respectively.

We have a T -stage stochastic program, with the cost-to-go function in epoch t,

Ct(x
t, D̃t) is given by:

Ct(x
t, D̃t) = min

zt,Zt∈∆

[
P (xt, D̃t, zt,Zt) + ECt+1

((
xti − zti −

N∑
j=1

Zt
ij

)
i
, D̃t+1

)]
(2.1)

where P (xt, D̃t, zt,Zt) is the total cost in fulfillment epoch t, given by:

P (xt, D̃t, zt,Zt) =
N∑
i=1

h

(
xti − zti −

N∑
j=1

Zt
ij

)
+

N∑
i=1

ps(D
t
is − zti)

+
N∑
j=1

po

(
Dt
jo −

N∑
i=1

Zt
ij

)
+

N∑
i=1

sZt
ii +

N∑
i=1

N∑
j=1,j 6=i

sijZ
t
ij

(2.2)

and ∆ is the set of feasible fulfillment decisions, described by the following set of
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constraints:

zti +
n∑
j=1

Zt
ij ≤ xti, ∀i ∈ [N ],∀t ∈ [T ]

zti ≤ Dt
is, ∀i ∈ [N ],∀t ∈ [T ]

n∑
i=1

Zt
ij ≤ Dt

jo, ∀j ∈ [N ],∀t ∈ [T ]

zt,Zt ≥ 0, ∀t ∈ [T ]

(2.3)

The first inequality in ∆ represents the supply constraint, and the second and third

inequalities model the fulfillment constraints. Note that the online demand in one

region can be fulfilled from any facility in the network, as seen in the third inequality

in (2.3).

The goal is to obtain the initial stocking level y = (yi)i. The single period, T -epoch

problem can thus be stated as follows: min
y≥0

E[C1(y, D̃)]. This is a convex minimization

problem, as we will later show in Section 2.6, but it is intractable to solve. The

fulfillment decisions are similar to optimal transshipment decisions with non-negligible

lead time, as decisions in any fulfillment epoch depend on future demands in that

review period. As pointed out by Tagaras and Cohen (1992) for the two-store case in

traditional transshipment, while the optimal fulfillment policy may be threshold-based,

the optimization becomes intractable due to the complexity of the decision space in

the dynamic programming formulation.

We cannot hope to solve this problem to optimality, and we resort to heuristic

solutions that perform well compared to simple, naive strategies and hindsight optimal

lower bounds. Note that a heuristic solution specifies both the initial stocking level

and fulfillment policy.

We first develop the inventory heuristic in the following way: treat the T -epoch

problem as a single fulfillment epoch. A similar method was also used by Tagaras

and Cohen (1992) to set heuristic inventory levels for the two-location transshipment

problem with leadtime, based on numerical evidence that most transshipments took

place at or near the end of the planning horizon, when stockouts are more likely to

happen.

Our problem is different in two aspects: 1) we have in-store demands which are more

costly to lose than online demands and do not have pooling flexibility, and 2) demands

follow lost sales. However, we adopt this single fulfillment epoch approximation as

it provides a tractable alternative by decoupling inventory and fulfillment decisions,
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because:

1. a myopic fulfillment policy is optimal, where online demands are fulfilled to the

maximum possible extent with the available inventory, and as a result,

2. the inventory problem reduces to a single stage stochastic linear program.

With the help of results obtained through this approximation, we formulate inven-

tory and fulfillment heuristic solutions for the multi-period, multi-location problem in

Section 2.6, and numerically test their performance in Section 2.7.

2.5 The Single Fulfillment Epoch Case (T=1) -

Model and Analysis

In this setting, items are ordered and received at the beginning of the period with zero

lead time, and in-store demand is fulfilled as it arrives. Due to the single fulfillment

epoch assumption, the fulfillment of online demand is done once at the end of the

review period, after in-store demands are fulfilled. There is no benefit to reserving

inventory for future demands as replenishments arrive immediately. In such a case, a

myopic fulfillment policy is optimal, where online orders are fulfilled to the maximum

possible extent in each period.

The case of single fulfillment epoch is quite common in present day omnichannel

retailing where stores are replenished daily. Most stores still rely on third party carriers

such as UPS and FedEx to ship items to customers. Online orders to be shipped are

loaded onto these trucks once a day from the store backroom, usually towards the end of

the day. This is especially popular in the context of same-day and next-day deliveries,

where stores allow online ordering until a cutoff time, and these orders are ready to

be shipped by the end of the day. However with developments in drone technology in

the future, one can easily envision stores that fulfill multiple times in a day, which we

address through the general case of multiple fulfillment epochs (T > 1) in Section 2.6.

We first consider the two-store setting to exhibit the complicated nature of the

decoupled inventory problem alone, given the optimal fulfillment policy is myopic.

The insights derived in this case inform our analysis of a generalized multi-location

case, which includes a network of omnichannel stores and online FCs.
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D1s D2s

D2oD1o

R2R1

D1s D2s

D2oD1o

R2R1

Decentralized Inventory Planning (DIP) Integrated Inventory Planning (IIP)

Figure 2.2: Two methods of inventory planning - 1) Decentralized inventory planning
(DIP) and 2) Integrated inventory planning (IIP)

2.5.1 The Two-store System

A firm owns two retail stores R1 and R2 serving different regions, with two demand

streams originating form each region – in-store demand (D1s, D2s), and online demand

(D1o, D2o). The objective is to set the initial inventory levels y1 and y2 to minimize

the total expected cost. We consider two solutions – decentralized inventory planning

(DIP) and integrated inventory planning (IIP), which are represented in Figure 2.2.

The assumptions on cost parameters are recapitulated in the set Ψ in Equation 2.4.

Ψ =
{
ps > po − si > 0, ∀i; h+ po > sij > s, ∀i, j 6= i

}
(2.4)

2.5.1.1 The Decentralized Inventory Planning (DIP) Strategy (Pooling

within Regions)

We first consider the case where the firm plans for inventory at its stores in a de-

centralized fashion, without planning in advance for cross-shipping. This serves as a

benchmark for any inventory heuristic we may develop for the centralized planning

case. The inventory level at store i is set with an objective to minimize the total

expected cost incurred in meeting the demands from that region, given by:

CDIP (yi) =E
[
h
(
(yi −Dis)

+ −Dio

)+
+ ps(Dis − yi)+

+ po
(
Dio − (yi −Dis)

+)+
+ smin

(
(yi −Dis)

+ , Dio

) ] (2.5)
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where x+ = max(x, 0). The cost function is convex, which can be seen by expressing

Equation 2.5 in terms of the total demands Di = Dis +Dio as follows:

CDIP (yi) =sµio + E
[
h (yi −Di)

+ + (po − s) (Di − yi)+ + (ps − (po − s)) (Dis − yi)+
]

(2.6)

where µio = E[Dio]. The simplification is done using the identities min(x, y) = y −
(y − x)+, and (Dis − yi)+ +

(
Dio − (yi −Dis)

+)+
= (Di − yi)+, the latter holds when

demands are non-negative. The optimal inventory levels (yDIP1 , yDIP2 ) can obtained

from implicit equations:

(h+ po − s)Fi
(
yDIPi

)
+ (ps − po + s)Fis

(
yDIPi

)
= ps, ∀i = 1, 2 (2.7)

where Fi is the cumulative distribution function of demand Di. A line search yields

unique optimum, as the left hand side is increasing in yDIPi , and the right hand side is

constant.

2.5.1.2 The Integrated Inventory Planning (IIP) Strategy (Pooling within

and across Regions).

This is similar to the DIP scenario, except that after Ri has fulfilled its own in-store

and online demands, unfulfilled online orders from region j (6= i) can be fulfilled using

any available inventory at Ri. In the two-store problem, the cross-shipped quantity

from store Ri to region j can be explicitly calculated as the minimum of the inventory

available at Ri and the unfulfilled online demand at Rj, after each store has attempted

to fulfill its own demands. The total expected one-period cost function is:

CIIP (y1, y2) = E

[∑
i

(
h
(
(yi −Dis)

+ −Dio

)+
+ ps(Dis − yi)+

+ po
(
Dio − (yi −Dis)

+)+
+ smin

(
(yi −Dis)

+ , Dio

))
+ (s12 − h− po) min

((
(y1 −D1s)

+ −D1o

)+
,
(
D2o − (y2 −D2s)

+)+
)

+ (s21 − h− po) min
((

(y2 −D2s)
+ −D2o

)+
,
(
D1o − (y1 −D1s)

+)+
)]
(2.8)

18



The additional terms in Equation 2.8 that are absent in Equation 2.5 represent the

value of cross-shipping: the total savings by cross-shipping a unit from Ri to region

j, h + po − sij, times the total quantity cross-shipped from Ri to region j. The total

cross-shipped quantity can be expressed as

∑
i

(
Dio − (yi −Dis)

+)+ −
(∑

i

Dio −
∑
i

(yi −Dis)
+

)+

The first term represents the total unfulfilled online demand if there was no cross-

shipping allowed, and the second term represents the unfulfilled online demand with

cross-shipping. Naturally, the difference yields the cross-shipped quantity. By using

this expression, as well as the simplification techniques used in Equation 2.6, we can

simplify Equation 2.8 as follows:

CIIP (y1, y2) = s
∑
i

µio +
∑
i

E
[
h (yi −Di)

+ + (ps − po + s)(Dis − yi)+ + (po − s) (Di − yi)+
]

+ (s12 − h− po)

[∑
i

(Di − yi)+ −
∑
i

(Dis − yi)+ −

(∑
i

Dio −
∑
i

(yi −Dis)
+

)+ ]
(2.9)

We can rearrange the terms to a convex expression, except

(∑
i

Dio −
∑
i

(yi −Dis)
+

)+

,

which is non-convex in yi’s. This is seen by keeping y1 constant and changing y2.(∑
i

Dio −
∑
i

(yi −Dis)
+

)+

=


(
D1o +D2o − (y1 −D1s)

+)+
, if y2 ≤ D2s

D2 +D1o − (y1 −D1s)
+ − y2, if D2s < y2 < D2 +D1o − (y1 −D1s)

+

0, if y2 ≥ D2 +D1o − (y1 −D1s)
+

(2.10)

In the event that Dis = 0,∀i (similar to traditional transshipment considered by Dong

and Rudi, 2004), the formulation in Equation 2.9 would directly yield a convex cost

function. Convexity is not obvious in our case, as the nested piecewise linear function

in Equation 2.10 is neither convex nor concave, and this is purely due to the fact that

in-store demand is fulfilled first and cannot be subject to cross-shipment. However,

the total cost can be shown to be jointly convex in the inventory levels (Proposition

2.5.1):
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Proposition 2.5.1 Under the conditions on cost parameters in Ψ,

(a) CIIP (y1, y2) is jointly convex in the order-up-to levels.

(b) There exist regions Ωk(y1, y2) in the demand space, such that in each region the

dual-price vector λk corresponding to the variables y1, y2 remains constant, and

the gradient of the IIP cost function can be written as

∇CIIP (y1, y2) = (h, h)ᵀ −
∑
k

λkP (Ωk (y1, y2))) (2.11)

All proofs are relegated to the Appendix. We first observe that under the assumptions

in Ψ, CIIP can be expressed as the expectation of a linear program, through which

joint convexity in inventory levels is established. By noting structural similarities with

a newsvendor network (van Mieghem and Rudi, 2002), we derive an expression for the

gradient based on the dual prices λ = (λ1, λ2)ᵀ, which are simply the shadow prices

of the constraints involving y1 and y2 in the linear program representation (Equation

A.1, Appendix A.1).

The demands are shown to be separable into independent regions Ωk based on the

values of y1 and y2, within which the dual prices λk = (λk1, λ
k
2) are constant (refer

to Appendix A.2 for a detailed discussion), which enables formulating the gradient

as shown in Equation 2.11. The optimal solution (yIIP1 , yIIP2 ) can thus be obtained

by a gradient descent algorithm. Given values of (y1, y2) in each iterative step, the

probability of realization of every demand region has to be calculated. As we extend

to N stores, we face the following hurdles:

� exponentially increasing number of demand regions Ωk (in which the dual prices

remain constant), whose identification is non-trivial, and

� repeated probability calculations of a 2N -dimensional multivariate distribution

for these demand regions.

The non-triviality in identification of these demand regions arises from the fact

that cross-shipment quantities are now set by a transportation linear program, as

compared to explicit expressions in the two-store case. Hence we develop a tractable

lower bound which yields a heuristic solution for the two-store case, which we later

extend to multiple locations.
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2.5.1.3 Lower Bound and Heuristic for the Two-Location Problem

An important feature which complicates the IIP cost function is that the in-store de-

mands are not pooled across regions, which in turn leads to complex and non-convex

coupled terms in the cost function. We relax this by treating unfulfilled in-store

demand as online demand which can be fulfilled by cross-shipping. Specifically, we

replace the total unfulfilled demand
∑
i

(Dis − yi)+ +

(∑
i

Dio −
∑
i

(yi −Dis)
+

)+

by

its lower bound, which is the total unfulfilled demand when all demands are pooled(∑
i

Di −
∑
i

yi

)+

. Substituting this in Equation 2.9 and simplifying, we get the fol-

lowing cost function:

CLB(y1, y2) = s(µ1o + µ2o) + E
[
h (y1 + y2 −D)+ + (po − s12) (D − y1 − y2)+

+ (po − s− (po − s12)) (D1 − y1)+ + (po − s− (po − s12)) (D2 − y2)+

+ (ps − (po − s)) (D1s − y1)+ + (ps − (po − s)) (D2s − y2)+
]

where D = D1 + D2, the total demand. Proposition 2.5.2 establishes CLB as a lower

bound:

Proposition 2.5.2 CLB(y1, y2) ≤ CIIP (y1, y2), ∀y1, y2 ≥ 0

By removing the nested piecewise linear terms in CIIP from Equation 2.9, we no longer

need the gradient descent approach, as the first order conditions for CLB are greatly

simplified:

(h+ po − s12)FD

(∑
j=1,2

yj

)
+ (s12 − s)FDi(yi) + (ps − po + s)FDis(yi) = ps, ∀i

(2.12)

We have a system of two equations with two variables, which can be solved using

numerical methods to yield a heuristic solution yLBH with expected cost CLBH =

CIIP (yLBH). Equation 2.12 is of a similar structure to the first order conditions ob-

tained by Dong and Rudi (2004) for the case of constant transshipment cost, with

a key difference: there is an additional term stemming from the presence of in-store

demands with a higher underage cost than the online demands. This allows us to fix

inventory levels at each location separately, in contrast to Dong and Rudi (2004) where

the optimality equation only yields a system-wide inventory level.

We make the following relaxation to formulate the lower bound:
∑
i

(Dis − yi)+ +
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Figure 2.3: Shows the effect of online market share on CIIP , CLBH , and CDIP (left)
and the corresponding optimal order quantities per store (right).

(∑
i

Dio −
∑
i

(yi −Dis)
+

)+

with

(∑
i

Di −
∑
i

yi

)+

; this relaxation will be tight when

the in-store demand is very small compared to the online demand, as the optimal

inventory levels are set based on the total demands. We test this numerically by

changing the mix of in-store and online demands in Figure 2.3. The mean in-store and

online demands are calculated as a proportion of a fixed total mean demand (= 100) in

each region. The demands are normal and identical across regions, with the coefficient

of variation fixed at 0.3 for each demand. The cost parameters are: h = 5, ps = 100,

po = 100, s = 10, s12 = 15.

From Figure 2.3a, we see that the heuristic provides savings over the DIP strategy

for most cases, except for small values of online market share (< 10%). However,

we note that for such small values of online market share, the potential savings from

centralized planning is also small, as seen from comparing the IIP and DIP costs. In

such cases, one can simply resort to planning for each region separately using the DIP

strategy.

Centralized inventory planning is most valuable when there is a moderate mix

of online and in-store demands. As online demand grows in comparison to in-store

demands, the effect of pooling across regions increases, due to two reasons: 1) more

demand is pooled across regions which leads to a bigger reduction in variability of the

total online demand, and 2) pooled online demands can better absorb the variability

in the in-store demands. Thus, the maximum savings is achieved when there is a good

mix of online and in-store demands so that the pooling across channels and locations

work in synergy.

22



As the in-store demand becomes smaller, the probability that there will be unful-

filled in-store demand decreases, and the heuristic solution converges to the optimal IIP

solution (Figure 2.3b). Thus for high values of online market share, in-store demand

can effectively be treated as online demand which explains the stable savings achieved

by the IIP solution.

The cost savings directly arise from a change in inventory levels in anticipation of

pooling across locations. Proposition 2.5.3 addresses this observation from Figure 2.3b

that the IIPH solution consistently stocks less than the DIP solution at each store.

Proposition 2.5.3 For identical stores and normally distributed demands, yLB ≤ (≥
)yDIP whenever yDIP ≥ (≤)µ, where µ is the mean total demand at a store. Under

perfect positive correlation across locations, yLB = yDIP = yIIP .

Similar to the intuition in newsvendor settings, yDIP ≥ µ would hold when underage

costs are greater than overage costs, but this does not translate into an analytical

proof due to the structure of the optimality equations in Equation 2.7, which has a

mixture distribution as compared to a simple normal distribution in newsvendor theory.

Lastly, positive correlation across locations reduces the pooling benefits achieved by

cross-shipping, and under perfect correlation, there is no benefit from pooling as all

locations either have too much or too little inventory without any imbalance.

2.5.2 The Multi-Location Problem

We extend the two-store problem discussed so far to a generalized setting with multiple

regions, as described earlier in Section 2.4 (Figure 2.1). The cross-shipping costs are

taken to be sij = s + f(dij), where dij is the distance between location Ri and region

j, and f is a non-negative, increasing function such that f(d) → 0 as d → 0. Also,

supd∈D f(d) ≤ h + po − s, where D = {dij,∀i, j}, so that the conditions in Equation

2.4 hold true.

The decentralized solution yDIP derived from Equation 2.7 readily extends to the

multiple locations as the problem is decoupled by region, whereas the optimal IIP

solution cannot be obtained due to the computational infeasibility even of the two-

store approach. However, we can extend the heuristic and lower bound developed in

the two-store case, by lowering all cross-shipping costs to smin = min
i 6=j

sij, yielding the
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first order conditions:

(h+ po − smin)FD
(∑
j∈S

yj
)

+ (smin − s)FDi(yi) + (ps − po + s)FDis(yi) = ps, ∀i ∈ S

(2.13)

The corresponding cost function yields a lower bound to the multi-location problem,

satisfying Propositions 2.5.2 and 2.5.3 (the proofs are similar to the two-store case,

and hence omitted). The optimal solution can be found easily for small number of

stores by iterative root-finding algorithms such as the Newton-Raphson method. The

computational burden of this solution, although reduced from the newsvendor network

approach by van Mieghem and Rudi (2002), is still significant for omnichannel networks

in practice with thousands of stores due to the number of variables involved. A small

change to the parameters: reducing smin to s yields a weaker lower bound:

CLBN(y1, . . . , yN) = s
∑
i∈S

µio +

[
Eh

(∑
i∈S

yi −DS

)+

+ E (po − s)

(
DS −

∑
i∈S

yi

)+

+ E (ps − po + s)
∑
i∈Sso

(Dis − yi)+

]
(2.14)

CLBN is convex in the inventory levels, and can be solved to yield a heuristic solution

yLBN characterized by the first order conditions:

(h+ po − s)FDS

(∑
j∈S

yLBNj

)
+ (ps − po + s)FDis(y

LBN
i ) = ps, ∀i ∈ S (2.15)

Parallels can be drawn to Equation 2.12 and Dong and Rudi (2004), as the presence of

in-store demands enables the characterization of inventory levels at each individual lo-

cation. As a consequence, the calculation of yLBN is computationally light, established

by the following Proposition.

Proposition 2.5.4 The heuristic solution is unique, and when demands follow a mul-

tivariate normal distribution, the heuristic inventory levels at stores are at the same

critical fractile of their corresponding in-store demands.

In contrast with Equation 2.13, we only need to solve for one variable, namely the

common critical fractile of the in-store demands. This reduces the computational
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effort drastically, even for very large networks. However, the optimal solution has zero

inventory in the OFCs – this is because when all cross-shipping costs are lowered to s,

a unit of inventory at the OFC can lead to a decrease in total cost if it was instead at

a store, as it can also serve to fulfill in-store demands.

We modify yLBN to obtain the heuristic solution yIIPH for multiple locations by

calculating order quantities for the OFCs separately, and using them in Equation 2.15

to compute order quantities for the omnichannel stores. The order-up-to quantities for

OFCs are calculated from the pooled total order quantity for OFCs, which is deter-

mined using the newsvendor quantity for the combined online demand DSo =
∑
i∈So

Dio.

∑
j∈So

yIIPHj = F−1
DSo

(
po − s

h+ po − s

)
(2.16)

The actual underage cost for online demands at the OFCs would be less than po − s
and would depend on inventory information of stores, as stores can fulfill these online

orders with available inventory. The calculation of inventory levels at stores and OFCs

are dependent on each other, but since we are forced to estimate the inventory at OFCs

separately, we inflate the underage cost to po−s which yields a higher overall inventory

level at the OFCs. This is a limitation that arises out of our heuristic approximation,

but it allows us to extend the heuristic to the case where OFCs have a different service

cost (so) compared to the stores (s), as the inventory calculation for the OFCs is done

separately.

To calculate the individual order quantities yIIPHi , i ∈ So, we use the method

of obtaining order-up-to quantities for multiple products with capacity constraints,

as described in Chopra and Meindl (2007, p. 367). The total capacity is the total

order-up-to quantity calculated from Equation 2.16, and the order-up-to quantity for

each product corresponds to the order-up-to quantity for each OFC. Each unit from∑
j∈So

yIIPHj is allocated incrementally to the OFCs based on the individual expected

marginal costs. Once the order-up-to quantities for the OFCs are obtained, they are

used in Equation 2.17 to determine order-up-to levels for other omnichannel stores.

(h+ po − s)FDS

(∑
j∈S

yIIPHj

)
+ (ps − po + s)FDis

(
yIIPHi

)
= ps, ∀i ∈ Sso (2.17)

Note that individual store inventory levels are directly obtained from Equation 2.17

due to the presence of in-store demands. Calculating the heuristic solution yIIPH is
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also computationally fast, as Proposition 2.5.4 still applies to Equation 2.17. The cost

of the heuristic solution is given by CIIPH = CIIP (yIIPH). We capture the effect of

virtual pooling among the facilities in this heuristic, and the systematic approach is

shown in Algorithm 1.

Algorithm 1 Procedure to calculate the heuristic solution yIIPH

1: For physical stores in set Ss, set yIIPHi = F−1
is

(
ps

h+ps

)
,∀i ∈ Ss.

2: for i ∈ So (OFCs) do

3: Calculate total order quantity: yTOT = F−1
DSo

(
po−s

h+po−s

)
, where DSo =

∑
i∈So

Dio.

4: Set yIIPHi = 0,∀i ∈ So, and rem =
⌊
yTOT

⌋
.

5: Calculate marginal cost MCi
(
yIIPHi

)
= − (po − s) (1 − FDio(y

IIPH
i )) +

hFDio
(
yIIPHi

)
6: Choose i∗ = min

i∈So
MCi(y

IIPH
i ). Set yIIPHi∗ ← yIIPHi∗ + 1

7: Set rem← rem− 1. If rem > 0, go to Step 3.

8: for i ∈ Sso do
9: Calculate order quantities implicitly from the optimality equations:

(h+ po − s)FDS

(∑
j∈S

yIIPHj

)
+ (ps − po + s)FDis

(
yIIPHi

)
= ps, ∀i ∈ Sso.

The performance of the heuristic clearly depends on the structure of the network

which directly influences the cross-shipping costs, in addition to the mix of in-store and

online demands. However in practice, the range of shipping costs is not too large: for

a 5lb package, the ratio maxi,j sij/s is less than 2 for the UPS Ground option, and less

than 3 for the UPS Next Day Air option (UPS, 2017) for locations within the mainland

US. We test the sensitivity for factors that adversely affect heuristic performance in

Section 2.7 (Figure 2.5).

As the problem scale increases, and the number of stores grows large within a

given area to accommodate the increase in demand, it is highly likely that a store

with unfulfilled online demand can find a close-by store with available inventory, and

hence, almost all cross-shipping takes place over short distances, at a cost close to s.

Thus, we can expect the heuristic solution to be close to the optimal solution, and as a

consequence of this notion, Proposition 2.5.5 shows that the heuristic is near optimal

in an asymptotic sense.

Proposition 2.5.5 As the number of omnichannel stores in a given area increases,

with demands bounded and i.i.d. across regions, for sufficiently small h > 0, the

heuristic is near optimal in an asymptotic sense with a constant approximation factor,

i.e.
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CIIPH

CLBN(yIIPH)
≤ h+ ps
ps − po + s

, as N →∞

The proposition holds when all locations have omnichannel stores, and yLBN = yIIPH .

We first show that reducing cross-shipping costs to s preserves optimality in the asymp-

totic setting, by considering a simplified setting where the stores are uniformly dis-

tributed in the given region, which is in-turn divided into identical sub-regions. As

the number of stores grows large, each sub-region has sufficient supply to fulfill its

demands, and hence cross-shipping takes place only within the sub-regions with costs

converging to s.

The assumption that in-store demands are pooled can affect the heuristic when

online demands are small. However, we bound the heuristic performance by a constant

approximation factor dependent only on cost parameters. While this bound is not

tight, it shows that the heuristic is not critically affected by its assumptions as the

problem scale grows.

2.6 Multi-Period, Multi-Location, and Multiple

Fulfillment Epochs

So far, we have discussed the single review period setting where online fulfillment is done

once, at the end of the period. We now switch back to the general version of the problem

described in Section 2.4, with multiple review periods and online demand fulfilled over

T fulfillment epochs in each review period. This is a more realistic representation of

practice, as we closely approximate the continuous time case, because the value of T

can be flexibly large. We start by proving convexity for the single period problem

described in Equation 2.1.

Proposition 2.6.1 The single-period, T -fulfillment-epoch expected cost function given

by C(y) = EC1(y, D̃) is jointly convex in the inventory levels yi.

The proof follows by induction. Let the optimal solution to the single period prob-

lem be denoted by yIIP. We extend our analysis to the finite horizon case with multiple

periods.

Proposition 2.6.2 For the finite horizon problem with lost sales and zero replenish-

ment leadtime, a stationary base-stock policy is optimal, with order-up-to levels yIIP.
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For the zero replenishment leadtime case with lost sales, the multi-period problem

reduces to solving a single-period problem, and the proof is similar to traditional multi-

period inventory problems involving lost-sales. As noted earlier, solving for yIIP is

difficult, as optimal fulfillment decisions are intractable. Hence, we resort to heuristic

solutions developed from our analysis of the single period problem.

2.6.1 Inventory Levels

To obtain a heuristic solution to set order-up-to levels, we use the procedure described

in Algorithm 1, by approximating the problem as a single fulfillment epoch problem.

Naturally, the demands used to calculate the heuristic solutions are the total review-

period demands at each location. For example, the review-period in-store demand at

store i is given by Dis =
T∑
t=1

Dt
is. Also, the holding cost parameter used in the algorithm

is the review-period holding cost, which is given by h̄ = h∗T .

We compare this heuristic solution with the naive strategy which plans for inven-

tory in a decentralized fashion. We extend the DIP solution derived in Equation 2.7,

by using the total review-period demands for each location and holding cost h̄. We

will continue to denote the heuristic solution derived in this fashion by IIPH and the

decentralized solution as DIP for the numerical studies in the following sections.

2.6.2 Fulfillment Policies

We consider two fulfillment policies, which dictate how online orders are fulfilled:

1. the myopic fulfillment (MF) policy, where online demands in the current ful-

fillment epoch are fulfilled to the maximum possible extent with the available

inventory, without consideration for demands in the future, and

2. the threshold fulfillment (TF) policy, which reserves inventory at each location

for future in-store demands, by halting online fulfillment from a location when

the inventory level falls below a certain threshold in each fulfillment epoch.

As future in-store demands are costlier to lose and do not have the additional

flexibility of cross-shipping, it is intuitive that the TF policy can lead to reduction in

costs compared to the MF policy when implemented well. Rationing inventory between

high-priority and low-priority demands has been studied in literature (for a review, refer

to Kleijn and Dekker, 1999), and along similar lines, Jalilipour Alishah et al. (2015)
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Algorithm 2 Implementation of the Threshold Fulfillment (TF) Policy

1: At the start of the review period, evaluate thresholds wti , ∀i, t using Equation 2.18.
2: In each fulfillment epoch t, each location first fulfills its own in-store demand to

the maximum possible extent, and the leftover inventory at location i is x̂i
t.

3: Calculate fulfillment capacities for each location i as Kt
i = (x̂i

t − wti)+.
4: Online fulfillment decisions Zt

ij are obtained from the transportation linear pro-

gram:
{

min
∑
i,j

(sij−h−po)Zt
ij, subject to:

∑
k

Zt
kj ≤ Djo,

∑
k

Zt
ik ≤ Kt

i , Zt
ij ≥

0, ∀i, j
}

prove the existence of an optimal threshold rationing policy between in-store and online

demands at a single store.

In our case it is not straightforward to estimate the underage cost for the low-

priority (online) demand, as it is endogenized by the fulfillment policy followed and

depends on where an order is fulfilled from. The optimal thresholds depend on in-store

and online demands in a complicated, network-based fashion, as online demands are

pooled across locations, and their calculation is akin to obtaining optimal transship-

ment decisions based on such a threshold structure. We propose simple newsvendor-

based thresholds which only take into account future in-store demands. In any fulfill-

ment epoch t, an amount wti is reserved at store i for future in-store demands in that

review period, where

wti = F−1
Dtis

(
ps

h(T − t+ 1) + ps

)
, where Dtis =

T∑
t̂=t+1

Dt̂
is (2.18)

We have developed a static fulfillment policy, as these thresholds can be evaluated at

the start of the review period based on the demand forecasts. We formalize the TF

policy in Algorithm 2. The MF policy places no such restriction on fulfillment, and

can simply be recovered from Algorithm 2 by setting the thresholds wti to be zero in

step 1.

Note that the fulfillment heuristic is agnostic to current inventory levels and online

demands. While including such information would be valuable, we show that such a

simple policy, when combined with a good inventory heuristic which positions inventory

in a calculated fashion, can provide considerable savings compared to naive strategies.

To evaluate the performance of the fulfillment policies, we compare them with the

so-called hindsight-optimal policy. The cost of this policy can be evaluated through

a linear program which minimizes the total cost in the review period, given that all
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uncertainty is realized at the beginning of the period. Given inventory levels, the cost

of such a policy is a natural lower bound for the cost of any fulfillment policy, and we

numerically show that the simple TF policy performs very well compared to this lower

bound in Section 2.7.

2.7 Numerical Analysis

We employ a realistic setting to test the performance of the inventory and fulfillment

heuristic solutions, based on a fictitious network embedded in mainland US. We shall

mainly focus on the case with zero lead time and multiple fulfillment epochs.

We evaluate the total expected costs through a Monte-Carlo simulation with a

sample size of 104, for two inventory heuristics - IIPH (integrated planning heuristic)

and DIP (decentralized planning), and two fulfillment heuristics - MF (myopic) and

TF (threshold-based). We mostly focus on comparing our combined heuristic, the

〈IIPH,TF〉 strategy, to the benchmark 〈DIP,MF〉 strategy, which represents a naive

solution.

2.7.1 Network Setup

We take the locations of the stores to be at the most populous cities in mainland US

(Wikipedia, 2016) and the OFCs are located according to the list of most efficient

warehouses in the US, in terms of possible transit lead-times (Chicago Consulting,

2013). The shipping costs are calculated using the cost equation estimated by Jasin

and Sinha (2015) based on UPS Ground shipping rates for an item weighing one pound:

sij = 9.182 + 0.000541dij, where dij is the distance in miles from region i to region

j. We also perform sensitivity analysis for the slope of the shipping cost with respect

to distance, to study the effect of shipping costs on the relative performance of our

combined heuristic. Other cost parameters used are: h̄ = 5, ps = po = 100, s = 9.182.

The review-period demands are taken to be independent and normally distributed

with mean and standard deviations calculated based on the population of the cities.

To study the effect of online market share (α) on the performance of the heuristic

solutions, we take that the sum of the mean in-store and online demands in each

region to be a fixed proportion of the cities’ populations. This represents the average

market size of the region, and the review-period mean in-store and online demands

are calculated as 1 − α and α proportions respectively of this mean market size in

each region. The coefficient of variation of the review-period demands are fixed at 0.2.
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Figure 2.4: Shows the effect of network size on the performance of 〈IIPH,TF〉 compared
to 〈DIP,MF〉, in terms of cost (left), inventory imbalance and inventory efficiency (right)

Demands are identical and independently distributed across fulfillment epochs, with

parameters calculated from the review-period demands. In the base case, α = 0.5 and

T = 5, and we perform sensitivity analyses with respect to these parameters. Let ns

be the number of physical stores and no be the number of OFCs. An online order can

be fulfilled from any physical store or OFC with available inventory. Further details

on the numerical setup and a brief overview of the simulation process can be found in

Appendix A.3.

2.7.2 Results

We tabulate the results obtained. We mainly focus on comparing the cost of the

combined heuristic 〈IIPH,TF〉 to that of the naive strategy 〈DIP,MF〉. In some cases,

to test the severity of assumptions made to derive the inventory heuristic, we compare

〈IIPH,TF〉 and 〈DIP,TF〉, keeping the fulfillment policy fixed.

2.7.2.1 Network Size.

As the network size increases, centralized inventory planning and strategic fulfillment

can be valuable, as there is more flexibility in terms of options available in fulfill-

ment. Figure 2.4a shows that increasing network size have a positive and marginally

decreasing effect on the relative performance of the combined heuristic.

We also compare the strategies based on two important metrics, inventory imbal-

ance and inventory efficiency, and the results are shown in Figure 2.4b for no = 2.

Higher imbalance can lead to costly spillovers and local stockouts (Acimovic and
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Figure 2.5: Shows the effect of the slope of cross-shipping costs with distance by varying
the ratio smax/s (left) and online market share (right) on the performance of 〈IIPH,TF〉
compared to 〈DIP,TF〉.

Graves, 2017), which in turn can cause markdowns in stores. We measure imbalance

by recording the variance of ending inventory positions across locations at the end of

each epoch, and taking the average value over the review period. Although this is

different from the metric used by Acimovic and Graves (2017), it captures the essence

of imbalance among locations in an omnichannel network. We see that our combined

heuristic achieves a lower imbalance across locations as compared to the 〈DIP,MF〉
strategy, and this effect is more pronounced for larger networks.

We define another metric, inventory efficiency, as an equivalent measure for in-

ventory turnover, calculated as the ratio of the total fulfilled demand to the average

inventory level of the system in a review period (calculated as the mean of the starting

inventory level and expected ending inventory at the end of the review period). Higher

efficiency achieved by the heuristic stems from a reduction in inventory levels without

a considerable decrease in service levels, due to planning in advance for cross-shipping.

This offers a potential solution to decreasing trend in turnovers in the retail industry

in recent years (Kurt Salmon, 2016).

2.7.2.2 Cross-shipping Costs and Online Market Share.

As discussed in Section 2.5.2, two major factors affect the inventory heuristic perfor-

mance – shipping cost structure and online market share. For fixed fulfillment policy

TF, we compare the 〈IIPH,TF〉 and 〈DIP,TF〉 strategies to understand the effect of

these parameters on the inventory heuristic. We found similar results when comparing
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to the 〈DIP,MF〉 strategy.

We first vary the slope of shipping costs with respect to distance, thereby increasing

the ratio smax/s (value of 1.2 corresponds to the base case setting). As expected, the

relative performance of the heuristic decreases as shipping costs become more sensitive

to distance (Figure 2.5a). For a perspective, the costliest shipping option, the UPS Next

Day Air, has a ratio of smax/s less than 3 for shipping a 5lb package within mainland

US. Hence the heuristic provides significant savings for most existing shipping cost

structures.

Figure 2.5b shows the effect of online market share. As expected, we see that

the heuristic performs worse than the decentralized solution when the online market

share is low (< 20%). This reflects the deficiency noted in the two-store case, as

the inventory heuristic assumes that in-store demands are pooled across locations.

When the online demand is very low compared to the in-store demand, the value from

centralized planning is limited (as previously seen in Figure 2.3a), and the firm can

simply resort to decentralized planning.

However, the heuristic provides a valuable alternative to the decentralized solution

for products that have adequate online market shares: for example, books, computers

and consumer electronics have an online market share of about 50% (FTI Consulting,

2015). Additionally, with rapidly increasing online sales, firms can obtain considerable

savings through centralized inventory strategies, and for most cases, our heuristic serves

as a viable proxy for inaccessible optimal decisions.

2.7.2.3 Number of Fulfillment Epochs (T ).

By increasing the number of times online fulfillment decisions are made, we can closely

model the continuous time case. We keep the total review-period demand parameters

constant, and keep demands across fulfillment epochs independent and identically dis-

tributed. To reduce the computational burden associated with higher values of T , we

use a smaller network with ns = 10, no = 2.

The results are shown in Figure 2.6. In Figure 2.6a, we compare the MF and TF

fulfillment strategies with IIPH inventory levels, against the hindsight optimal strategy

HF, which makes fulfillment decisions with all uncertainty realized at the start of the

review period.

As T increases, the MF policy is punished for failing to reserve inventory for future

in-store demands (Figure 2.6a). The TF policy on the other hand proves to be a simple

but effective fulfillment strategy, achieving costs within 0.5% of the HF lower bound.

For a fixed fulfillment policy TF, we compare the 〈IIPH,TF〉 and 〈DIP,TF〉 strate-
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Figure 2.6: Shows the effect of increasing the number of fulfillment epochs in a single
review period on the cost of fulfillment policies with respect to the hindsight optimal
policy (left) and the performance of 〈IIPH,TF〉 compared to 〈DIP,TF〉 (right).

gies in Figure 2.6b, and see that the effect of increasing T has a decreasing effect on

the relative performance of the inventory heuristic.

Finally, we note that our heuristics are extremely scalable with respect to network

size - for a network with ns = 150, no = 10 and T = 5, calculating the inventory

levels using the heuristic takes only around 10 seconds, and the calculation of ful-

fillment thresholds takes around 2 minutes. Real-life retail networks are often much

bigger in size – for instance, Target ships online orders from more than 1000 stores

(Lindner, 2016), and our heuristic can provide considerable improvements compared

to traditional strategies in most cases.

2.8 Conclusion

Despite numerous retailers struggling with the operational problems posed by om-

nichannel retailing, the area has received comparatively less attention in literature.

Our research addresses an important facet of omnichannel retailing — inventory man-

agement, by demonstrating the value in utilizing the pooling benefits offered by om-

nichannel retailing, through a combined inventory and fulfillment policy.

Our heuristic policies, though derived from a complicated multi-location and multi-

period model, are quite generalizable. We can extend our analysis to demands orig-

inating from abstract regions, by treating them as OFCs that carry zero inventory.

Disparity in service costs at OFCs and stores can also be taken into account by using
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so, the service cost from OFCs, instead of s in Equation 2.16, as inventory planning is

done separately for OFCs. We still need to make the assumption that demands from

a region with an omnichannel store can be fulfilled from that store with the least cost.

Otherwise, the demand at this store will be assigned to be fulfilled from the online

FC with the least fulfillment cost, which can lead to different first order conditions in

inventory planning for the online FC.

We can also extend the heuristic solutions to the case of positive leadtimes as

follows: assuming each location i has a replenishment leadtime of Li review periods, the

total planning horizon for order-up-to policies is (Li+1) review periods, or equivalently,

(Li + 1)T fulfillment epochs for each location. Using the total demands during the

planning period for each location instead of review period demands, we can directly

extend our inventory heuristic to set order-up-to levels for each location.

For the fulfillment heuristic, an additional threshold for inventory position needs to

be calculated based on future in-store demands in the remainder of the current planning

horizon, which can also be computed based on a simple newsvendor formula. Online

fulfillment from a location is temporarily stopped in an epoch when either threshold is

violated.

An important direction for future research is to include multiple classes of online de-

mand, especially in-store pickups, which is a popular mode of omnichannel fulfillment.

A heuristic control for managing multiple products is also an interesting and impor-

tant extension to be considered. Future research may also focus on further extensions

such as capacities and stochastic leadtimes. We believe that our framework provides a

platform to build further complexities on, which can yield important decision support

tools for the industry.
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CHAPTER 3

The Distribution-free Inventory Problem

for E-commerce Fulfillment Networks

3.1 Abstract

With rapidly increasing e-commerce sales, firms are leveraging a network of inventory

nodes to fulfill online orders by its customers. This results in demand spillovers: de-

mand is first fulfilled using the nearest node, but then demand can spill over to other

nodes when there are stockouts. Inventory planning for e-commerce is challenging due

to this complex nature of fulfillment. Further, e-commerce demand is difficult to esti-

mate due to flash promotions, recommendation engines, and other strategies typically

employed by e-tailers. We address this by solving a distributionally robust inventory

problem where the fulfillment network has a nested hierarchy and the firm only knows

the mean and covariance of the demand. The objective is to minimize the worst-case

expected total cost of procurement, fulfillment, and penalties for any unmet demand.

If there are two nodes in the nested network, we derive a tight bound for the

expected cost of unmet demand that only requires mean, variance, and correlation

of the demands in the two locations. We show that this new bound is significantly

tighter than the well-known Scarf bound in the regime when inventory levels are low

and demand spillovers are likely to occur. For general nested fulfillment networks, the

problem is NP-hard. We develop a heuristic by deriving an upper bound to the expected

cost of unmet demand that ensures the nested structure of fulfillment is preserved. The

heuristic is computationally tractable since it relies on solving a semidefinite program

with dimension quadratic in the number of nodes. We also develop an algorithm

to approximate any general distance-based fulfillment cost structure with a nested

structure, which we show in numerical experiments to result in tight approximations

to the expected total cost.
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3.2 Introduction

As e-commerce continues to grow rapidly (Zaroban, 2018), retail firms are equipping

themselves with the ability to fulfill online orders from multiple inventory nodes (stores,

fulfillment centers, etc.) in their network. In many modern e-commerce fulfillment

systems, a customer order may be fulfilled by a shipment originating from any inventory

node in the retail network. Shipping rates are proportional to distances, so typically

the nearest node to the customer location is chosen first. However, in the event of

stockouts, the demand would “spill over” to other nodes (Acimovic and Graves, 2017),

guaranteeing that the demand is not lost while there is inventory still remaining in

the retail network. This is reminiscent of the flexibility offered in brick-and-mortar

retail with periodic store transshipments. However, a key difference is that, since the

transaction is conducted through a virtual store, e-commerce always allows for this

flexibility without the need for inventories to be first prepositioned in a customer’s

location.

Allowing demand spillovers essentially pools the geographically separate inventories.

Hence e-commerce fulfillment requires less inventory than what would be recommended

by traditional decentralized inventory models that do not account for demand spillovers.

Therefore, in order to reduce the burden of carrying too much inventory, e-commerce

inventory planning must use network-based models that capture fulfillment flexibility.

However, there are several challenges in inventory planning for e-commerce retail.

One such challenge is demand estimation, since e-commerce demand often has a

higher variance than brick-and-mortar demand. Reasons for this include the ease with

which online customers could choose to purchase from any of multiple competing e-

tailers, the use of dynamic price-matching strategies and flash promotions, recommen-

dation engines that manipulate click-streams, etc. Hence the empirical distribution of

past sales is a less reliable estimate of the distribution of future e-commerce demands.

A common heuristic is to assume that the underlying uncertainty (i.e., the vector

of demands in customer locations) has a multivariate normal distribution. Such an

assumption can help an inventory planner in two ways. First, describing a multivariate

normal demand vector requires information about only the first two moments, namely

the mean and covariance matrices, which can be reliably estimated. Second, the nor-

mal distribution lends itself to simple analytic solutions (e.g. Dong and Rudi, 2004).

However, the normal distribution assumption can lead to solutions that overestimate

pooling benefits if the true demand distribution is non-normal. Eppen (1979) showed

that for demand distributions that are of ‘light-tailed nature’ (including the normal
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Figure 3.1: Example of a nested network: 1 - San Francisco, 2 - Los Angeles, 3 - New
York, 4 - Pittsburgh.

distribution), pooling can lead to savings in expected cost that scale with
√
n, where

n is the number of random demands being pooled. However, Bimpikis and Markakis

(2015) show that the pooling benefits can scale significantly lower than
√
n when the

demand distribution is heavy-tailed. There have been earlier studies that show evi-

dence of real-life demands exhibiting non-normal distributions: Bimpikis and Markakis

(2015) give empirical evidence of heavy-tailed demands for movies at Netflix and shoes

at a major retailer, Agrawal and Smith (1996) show that the negative binomial distri-

bution fits the sales data for men’s slacks at a major retailer better than Poisson or

Normal.

In this paper, we address the challenge in demand estimation by adopting a distri-

butionally robust approach. Since this approach assumes an adversary always chooses

a distribution resulting in the highest expected cost, it leads to robust decisions for a

firm that has access to only partial information of the demand distribution. Specifi-

cally, we assume that the only information known about the demand vector is its mean

and covariance.

Another challenge in e-commerce inventory planning is the complex nature of ful-

fillment in the retail network due to demand spillovers. Inspired by e-commerce ful-

fillment, we assume that the fulfillment network is nested, which results in a natural

hierarchy in the demand spillovers. Figure 3.1 is an example of a nested fulfillment

network with four inventory nodes (San Francisco, Los Angeles, Pittsburgh, and New

York).

Consider an online customer located in New York. When the nearest fulfillment

center (node 3, New York) stocks out, the next best option is to fulfill from the nearby

node in Pittsburgh (node 4). If this node is also stocked out, fulfillment from San
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Francisco (node 1) or Los Angeles (node 2) will roughly have the same cost—one that

is higher than the cost of fulfillment from Pittsburgh—as these locations are farther

away. This is similarly true for a customer in San Francisco—node 1 is preferred,

followed by node 2, then by nodes 3 and 4. Thus, to fulfill an unmet demand, nodes

or groups of nodes are considered progressively based on their proximity (in terms of

distance or cost) to the unmet demand. We refer to cost structures that induce such

hierarchical levels of fulfillment as nested fulfillment structures, and networks with such

cost structures as nested networks.

The focus of this paper is the problem of deciding the inventory levels for firm

that fulfills sales of a single product through a nested network of multiple inventory

nodes (such as warehouses, stores, etc.) when the firm only knows the mean and the

covariance matrix of the demand vector. The firm incurs inventory purchasing costs,

penalty costs for unmet demand, and fulfillment costs. We consider a single-period

model where network fulfillment occurs after the demands across multiple locations

are realized.

Main Results and Contributions

1. The distributionally robust inventory problem with a single node can be analyt-

ically solved using the well-known result by Scarf (1958) that provides a tight

bound for the expected cost of unmet demand which only requires mean and vari-

ance. We extend this result to the case of demand spillovers by deriving a tight

bound for the expected cost of unmet demand in a nested fulfillment network

with two nodes. This bound only requires the mean, variance, and correlation

of demands in the two locations. This yields a closed-form expression for the

optimal inventory levels in the distributionally robust problem under a nested

network with two nodes. We show that the new bound is significantly tighter

than the Scarf bound in the regime of low inventory levels where demand spillover

is most likely to occur.

2. We introduce the class of nested fulfillment structures that greatly simplify the

computation of the expected cost of the firm. Specifically, we derive a closed-form

expression for the expected cost under this general class. We develop a simple

algorithm (based on hierarchical agglomerative clustering) to approximate any

general distance-based fulfillment cost structure as a nested fulfillment structure.

We show empirically that this structure tightly approximates the expected total

fulfillment cost under a variety of distributions. A nested fulfillment structure not
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only yields tractability for our robust problem, but also for stochastic systems.

3. For general nested fulfillment networks with multiple nodes, the distributionally

robust problem is NP-hard. We develop a heuristic for the robust inventory

problem by deriving an upper bound to the expected cost of unmet demand in

a nested network with demand spillover that requires only mean and covariance

data. The bound is constructed to ensure that the nested structure of fulfillment

is preserved. Moreover, it is computationally tractable since it relies on solving

a semidefinite program (SDP) with dimension O(n2), where n is the number of

inventory nodes. By means of numerical experiments, we show that the distri-

butionally robust heuristic can lead to significant savings in expected cost as

compared to stochastic solutions that assume an incorrect distribution.

3.2.1 Literature Review

Our study is related to the literature on inventory pooling, since e-commerce fulfill-

ment virtually pools geographically separate inventories. We mention only works that

establish the importance of distributional properties of the stochastic demand in pool-

ing. Eppen (1979) showed that if n normal and uncorrelated demands are pooled,

the benefit from inventory pooling is
√
n, and the benefit decreases with increasing

positive correlation among demands. Corbett and Rajaram (2006) extended Eppen’s

result to more general distributions. Yang and Schrage (2009) study various cases of

‘inventory anomaly’ (a situation where pooling leads to an increase in inventory as

opposed to a reduction), one of which is for right-skewed demand distributions with

product substitution. Berman et al. (2011) found through numerical simulations that

the normal distribution misestimates the benefits of pooling stemming from a reduc-

tion in variance. Bimpikis and Markakis (2015) find that the benefit from pooling

under heavy-tailed demand distributions can be significantly lower than
√
n. Specif-

ically, they show that the benefit from pooling decreases as the tail of the demand

becomes heavier. All these studies indicate that pooling benefits crucially depend on

the distribution of the demands being pooled.

The inventory problem for e-commerce network fulfillment is mathematically iden-

tical to reactive lateral transshipments in brick-and-mortar retail networks, which have

been discussed in great detail in the literature (for a review, refer to Paterson et al.,

2011). Two features make the transshipment problem difficult to analyze. First, for

more than two locations, analytically optimal solutions become elusive as a linear pro-

gram recourse is needed to model the network flow problem among multiple locations
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(Robinson, 1990). Second, in a multi-period setting with leadtimes, the optimal trans-

shipment decisions are intractable due to complexity in the state space even for the two

location problem, as it can be ex-post optimal to reserve inventory for future use rather

than transshipping to another location (Tagaras and Cohen, 1992). In this paper, we

focus on the multi-location problem in a single period setting. Dong and Rudi (2004)

consider a similar setting for the special case where the transshipment cost between any

two locations is a constant. However, none of these works consider a distributionally

robust framework.

Distributionally robust inventory problems have a long history, dating back to Scarf

(1958) who considers the classic newsvendor problem with only mean, variance and

support information. He shows that a two-point demand distribution results in the

smallest expected profit given the inventory level, and derives the optimal inventory

level of the robust max-min problem. After 35 years, Gallego and Moon (1993) ex-

tended this framework to multiple products with moments (mean and variance) of

the marginal distributions. Recourse decisions were also studied in Gallego and Moon

(1993) (by allowing an additional order to be placed after demand is realized) and in

Mostard et al. (2005) (by allowing returned products to be resold if there is sufficient

demand).

The multiple-product setting was further extended by Hanasusanto et al. (2015)

to include mean and covariance of the joint distribution, and they show that the re-

sulting distributionally robust newsvendor problem is NP-hard. Natarajan and Teo

(2017) develop a tractable heuristic for this problem in the form of a semi-definite pro-

gram. They achieve this by expressing piecewise linear terms through integer variables,

and relaxing the equivalent completely positive program into a semi-definite program.

They relax the integrality constraints through a boolean quadric polytope, previously

studied by Padberg (1989). Natarajan et al. (2017) use similar techniques to derive

tractable heuristics for the multi-item newsvendor with known mean, covariance and

semivariance information, which additionally captures asymmetry in the distribution.

Our work is related to distributionally robust inventory problems over a network

that allow for recourse network flows after the demand is realized. Chou et al. (2006)

addresses such a problem by assuming that the transshipment quantities are linearly

dependent on some primitive uncertainties with known support, forward and backward

deviations. Linear decision rules are common in approximating multi-stage programs

(Ben-Tal et al., 2004), however they are not necessarily optimal. In contrast to their

work, our study models the optimal flows by directly approximating the nested ful-

fillment cost structure, and assuming known mean and covariance matrices of the
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demands, rather than allowing the demands to depend on primitive uncertainties that

may be hard to estimate. Recently, Yan et al. (2018) used techniques from Natarajan

et al. (2011) to obtain an exact reformulation of the distributionally robust min-cost

network flow problem as a completely positive program, given the mean and covari-

ance information and under restricted 0-1 edge costs. Our paper in contrast allows

for general nested fulfillment cost structures under which the problem becomes more

difficult, but which are more appropriate for e-commerce network fulfillment.

We note that the nested structure is similar to a tree metric, which has been studied

in the Computer Science literature. Bartal (1998) and Fakcharoenphol et al. (2004)

consider probabilistic approximations of metric spaces using a tree metric, where the

nodes of a graph forms the leaves of a rooted tree. The distance between two nodes

is approximated by the sum of edge weights on the shortest path between them, and

probabilistic approximations of O(log n) are available. A distinction in the quality of

approximation is that these papers study how closely the generated tree metric approx-

imates the actual distance metric, whereas we consider the closeness in approximating

the expected fulfillment cost.

Finally, our study can also be related to the growing literature in e-commerce inven-

tory and fulfillment optimization. Acimovic and Graves (2017) show that decentralized

inventory solutions can lead to costly spillover effects, and perform poorly compared

to network-based policies. Govindarajan et al. (2018) consider joint optimization of

inventory and fulfillment decisions in an omnichannel setting where in-store demands

cannot be flexibly fulfilled from other locations, whereas e-commerce demand can.

More generally, we relate to the problem of capacity allocation in networks with flexi-

bilities, which has been recently gaining relevance due to applications in e-commerce;

Lyu et al. (2017) study the optimal allocation policy given target fill rates, and find

that the required capacity levels in a long-chain network are close to the levels in a

fully flexible network. DeValve et al. (2018) study the benefit of adding fulfillment

flexibility to a large online retailer’s network by combining an allocation policy based

on a stochastic program with a fulfillment policy which restricts the spillover demand

that is fulfilled. Given the volatility in online customer behavior, we contribute to the

above streams of literature by studying the distributionally robust inventory allocation

problem where only lower order moments of the demands can be reliably estimated.
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3.2.2 Preliminaries

For any integer n, we use notation [n] to denote the set {1, 2, . . . , n}. We denote by

2[n] the power set of [n], defined as the set of all subsets of [n] including the empty

set. We denote by en the n-dimensional column vector of all ones, where we drop the

subscript if the size is clear from the context. We denote by In the identity matrix of

size n× n, and 0m,n the zero matrix of size m× n.

We denote by < the set of real numbers, and by <≥0 the set of nonnegative real

numbers. We similarly denote by <n the set of n-dimensional vectors of real numbers,

and <n≥0 := {x ∈ <n|x ≥ 0} its subset of nonnegative vectors. For a scalar variable

x ∈ <, we define x+ := max(0, x) as the positive part of x. For a column vector

x = (xi) ∈ <n, we define x+ := (x+
i ) as the positive part of each element in x. We

write A � 0 if a square matrix A is symmetric positive semidefinite. We write B ≥ 0

if all entries of the matrix B are nonnegative.

3.2.3 Outline

The rest of the paper is organized as follows. In Section 3.3, we describe the model,

and introduce the nested fulfillment cost structure. Section 3.4, presents closed-form

bounds on the expected unmet demand in a nested network with two nodes, and

contrasts the bound to Scarf. Section 3.5 is devoted to developing computationally

tractable heuristics for the multi-location case for nested networks. In Section 3.6, we

develop an algorithm to recover the nested structure from a general cost structure,

and empirically test the strength of approximation. In Section 3.7, we analyze the

multi-location heuristic solutions numerically to understand the effect of additional

information and to test the performance of the heuristic solutions. Extensions and

future directions follow in Sections 3.8 and 3.9.

3.3 The Model

Consider a firm managing the inventory in a network of nodes (e.g., stores or ware-

houses) that support sales of a product during a selling horizon. We assume that there

is no inventory replenishment during the selling horizon (as is typically the case when

the horizon is short compared to the procurement lead time), so the firm only needs to

decide the initial inventory levels. We assume that demand for the product originates

from n geographic regions. For simplicity of the model, we consider a fulfillment net-

work with n inventory nodes, where one node is located in each customer region. Our
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framework can easily be extended to general networks by modeling customer regions

without a fulfillment node as zero-inventory nodes.

3.3.1 Nested fulfillment networks

We assume that the firm incurs a per-unit “fulfillment” cost (e.g. shipping cost and/or

handling cost) for using an inventory node to fulfill demand in a customer region, and

this cost depends on both the inventory node and the customer region. Specifically, if

a unit of demand in region j ∈ [n] is met with inventory from the node in the same

region j, then the fulfillment cost is sjj, where sjj > 0; if met with inventory from a

node i 6= j, then the fulfillment cost is sij. We assume that sij = sji and sij ≥ sjj

for all i, j. We further assume that not all fulfillment costs are the same (otherwise,

the location of inventory does not matter). We denote the n × n matrix of per-unit

fulfillment costs as S = (sij).

Motivated by e-commerce, we focus our attention to fulfillment networks where the

cost structure has a nested hierarchy. We refer to these as nested fulfillment networks

since they result in a hierarchical ordering of nested node sets. Before introducing the

general definition, we first provide a simple example of such a network.

Example 1 (A 3-level nested network) Consider the network discussed earlier in

Figure 3.1 with n = 4 (nodes) regions. Suppose that in-location fulfillment has a per-

unit cost s0 > 0 (using our notation, sjj = s0 for j = 1, 2, 3, 4). Fulfillment from region

1 to 2 (and vice versa) incurs cost s1, and fulfillment between regions 3 and 4 also has

cost s1 (i.e., s12 = s34 = s1). Fulfillment between any other pairs of regions has cost s2

(i.e., s13 = s14 = s23 = s24 = s2). If s0 < s1 < s2, the fulfillment structure induces the

nested hierarchy illustrated in Figure 3.2 since a higher level fulfillment is used only if

fulfillment in a lower level is not possible due to lack of inventory. Since there are three

levels to this hierarchy, we refer to this as a 3-level nested fulfillment network.

We now describe a general L-level nested fulfillment network. For a given level `,

where ` = 0, 1, . . . , L−1, the regions are partitioned into n` sets, where n` ≤ n. (In the

previous example, there are four sets (i.e., {1}, {2}, {3}, {4}) in the level 0 partition,

and two sets (i.e., {1, 2}, {3, 4}) in the level 1 partition). We denote the n` sets in

partition ` as {I(`)
1 , I(`)

2 , . . . , I(`)
n` }. By definition, the sets in a partition must cover all

regions, and that the intersection of any two sets is empty.

The fulfillment network is nested because of the following property: any set in level

` is the union of sets in the preceding level ` − 1. That is, I(`)
k = ∪

m∈K(`)
k
I(`−1)
m where
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Figure 3.2: Example of a 3-level nested fulfillment cost structure with four warehouses
W1, ..,W4.

K(`)
k are the indices of the level `− 1 children of I(`)

k . Note that n0 > n1 > · · · > nL−1,

since there are fewer sets in higher order levels. We assume that for level 0, n0 = n

and I(0)
i = {i} for all i ∈ [n]. For the final level L − 1, nL−1 = 1 and I(L−1)

1 = [n].

Any L-level nested fulfillment structure can be represented as an L-level tree similar

to Figure 3.2 (another example is Figure 3.7b).

The nested hierarchical structure can also be represented through the assignment

matrices Ξ = {E0,E1, . . . ,EL−1}. We define the level ` assignment matrix E` as the

binary matrix of size n` × n where the (k, i) entry is equal to 1 if and only if i ∈ I(`)
k .

Note that E0 is the n× n identity matrix, and that EL−1 is the row vector of all ones.

To complete the description of the nested fulfillment network, we next discuss the

fulfillment costs. If two regions are in set I(`)
k , then the per-unit cost of fulfillment

between the two regions is s`,k. (In Example 1, regions 1 and 2 are in the same level

1 set, so the fulfillment cost between them is s1. Note that in the example, all level 1

costs are equal; however, in general, we allow sets in the same level to have different

costs.) To induce the nested hierarchy, we assume that it is less costly to fulfill demand

using fulfillment in lower levels. Mathematically, if k(`)(i) is the level ` set index of

region i, then we assume that s0,k(0)(i) ≤ s1,k(1)(i) ≤ · · · ≤ sL−1. We denote by s = {s`,k}
the set of all fulfillment costs.

The nested hierarchy, Ξ, and the fulfillment costs, s, fully characterize the nested

fulfillment network. As we later discuss in Section 3.3.4, this class of fulfillment struc-

tures can approximate general fulfillment cost structures.

3.3.2 The cost function

At the start of the selling horizon, the firm decides the vector of initial inventory lev-

els y = (yi) to fulfill demands that arrive throughout the selling season. We assume

that fulfillment is done at the end of the selling horizon, so that the problem can be
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approximated as a single period problem.1 The single-period approximation allows

us to study inventory pooling in a distribution-free context by side-stepping the com-

plications that arise from dynamic fulfillment decision-making, and focusing on the

inventory decisions. In Section 3.7, we empirically show that the single-period assump-

tion is a tight approximation for the dynamic setting under the common practice of

myopic fulfillment.

We let d̃j denote the stochastic demand in region j ∈ [n] (a variable with a tilde

placed on top refers to a random variable; the same variable without the tilde is a

particular realization). The vector of stochastic demands in the n customer regions is

D̃ = (d̃j) (unless otherwise stated, any vector is a column vector). In the single period

setting, the vector of customer demands D = (dj) is realized at the end of the period,

and the firm fulfills the demand with the objective of minimizing the total newsvendor

cost (i.e., penalty, overage, and fulfillment costs). Unmet demand in any region incurs

a per-unit penalty cost p, while unsold inventory in any node incurs a per-unit overage

cost h. Without loss of generality, we assume that any fulfillment cost in the nested

network does not exceed p+ h; that is, the firm prefers to fulfill any unmet demand if

there is available inventory in the network. (If s`,k > p+ h, then the children nodes of

set k will never use level ` fulfillment, and the problem decomposes as each level `− 1

child of set k can be removed to form new networks. )

Mathematically, if zij units of inventory from node i is used to satisfy demand in

region j, then the fulfillment quantities Z = (zij) are determined through the following

network flow problem:

C(y,D) := minimize
Z≥0

h ·
∑
i∈[n]

yi −∑
j∈[n]

zij

+p ·
∑
j∈[n]

dj −∑
i∈[n]

zij

+
∑
i∈[n]

∑
j∈[n]

sijzij

subject to
∑
j∈[n]

zij ≤ yi, ∀i ∈ [n]

∑
i∈[n]

zij ≤ dj ∀j ∈ [n] (3.1)

where the terms in the objective are the overage cost, the penalty cost, and the ful-

fillment cost, respectively. The first constraint specifies that the units used to fulfill

demand from inventory node i should not exceed the initial stocking level yi. The

1While taking into account dynamic fulfillment decisions is more realistic, the problem becomes
complicated due to the well-known curse of dimensionality (see Tagaras and Cohen (1992) for a
stochastic system, and Ben-Tal et al. (2004) for the robust system). Multi-location considerations
often complicate the problem further by adding complexity to the action space, as a linear program
recourse is needed to make fulfillment decisions.
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second constraint specifies that the total units used to fulfill demand in region j must

not exceed dj.

Since the fulfillment network has a nested hierarchical structure, we are able to

express the total cost (3.1) in closed form.

Lemma 3.3.1 Under the L-level nested fulfillment cost network,

C(y,D) = h · e>(y −D) + s>0 D +
L−1∑
`=0

η>` (E`D− E`y)+ (3.2)

where ηL−1 = p+h−sL−1 and, for ` ≤ L−2, η` = (η`,k)k∈[n`] with η`,k = s`+1,m(`+1)(k)−
s`,k where m(`+1)(k) is the index of the level `+ 1 parent of set I(`)

k .

Note that η`,k = s`+1,m(`+1)(k) − s`,k ≥ 0, and can be interpreted as the marginal

benefit of fulfillment in level ` instead of level ` + 1 of any demand occuring in I(`)
k .

Similarly, ηL−1 is the marginal benefit using a unit of inventory for fulfillment with the

highest cost instead of holding onto it.

Proof. To obtain the fulfillment cost of a demand realization D in an L-level

nested fulfillment cost structure, we sum the fulfillment costs in each level. The total

fulfillment cost in level 0 is
∑

i∈[n] s0,i ·min(di, yi) = s>0 D−
∑

i∈[n] s0,i · (di− yi)+, where

s0 = (s0,i)i∈[n]. For ` = 1, 2, . . . , L − 1, the total units of demand in regions of I(`)
k

fulfilled at level ` (at a per-unit fulfillment cost s`,k) is

∑
m∈K(`)

k

 ∑
i∈I(`−1)

m

di −
∑

i∈I(`−1)
m

yi

+

︸ ︷︷ ︸
unmet demand in I`k after level `− 1

−

∑
i∈I(`)k

di −
∑
i∈I(`)k

yi


+

︸ ︷︷ ︸
unmet demand in I(`)k after level `

,

where K(`)
k are all level ` − 1 children of set I(`)

k . Since p + h is strictly greater than

all fulfillment costs, then the penalty cost is p ·
(
e>D− e>y

)+
, and the overage cost is

h ·
(
e>y − e>D

)+
. Therefore, the total cost (overage, penalty and fulfillment) is equal

to

C(y,D) = h · e>(y −D) + s>0 D + (p+ h− sL−1) ·
(
e>D− e>y

)+

+
L−2∑
`=0

∑
k∈[n`]

(s`+1,m(`+1)(k) − s`,k) ·

∑
i∈I(`)k

di −
∑
i∈I(`)k

yi


+

,
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where m(`+1)(k) ∈ [n`+1] is the level `+1 parent of set k ∈ [n`]. Using compact notation

with the parameters η` and assignment matrices E`, we obtain the lemma. �

3.3.3 Distributionally robust framework

If the firm knew that the stochastic multi-location demand D̃ has a joint distribution

f : <n 7→ <+, then the firm will choose the initial inventory vector y so as to minimize

the expected total cost. Mathematically, the firm’s problem is equivalent to solving

the two-stage stochastic program:

min
y≥0

Ef
[
C(y, D̃)

]
, (3.3)

where Ef is the expectation operator under the joint probability distribution f . Note

that the objective is to minimize the expected total cost, where C(y,D) is as described

in (3.2). Since inventory in one location can be routed to meet demand in another

location, we will refer to (3.3) as the multi-location newsvendor problem with inventory

risk pooling. Note that the above problem can be numerically solved as a linear program

either by sample average approximation using large enough number of samples, or

by approximating the joint distribution by a discrete distribution. Under the nested

structure, we can also obtain closed-form first order conditions, which can be solved

numerically to yield the optimal solution.

In reality, however, firms do not have a complete description of the joint distribution

of the multi-location demands. At best, the firm may only have partial information

about the distribution. We will assume that the firm only has knowledge of the mean

vector m and the covariance matrix Σ. We chose this information set as in practice, e-

commerce firms may have a good sense of how demands across locations are correlated.

Moreover, it is known from the literature that covariance across locations is crucial for

decisions that take pooling benefits into account.

As discussed in Section 3.2, if the firm assumes a particular distribution for the

demand vector, say a multivariate normal distribution with parameters (m,Σ), then

the optimal decision resulting from the stochastic program (3.3) may be suboptimal

with a high expected cost under the true (unknown) demand distribution. To protect

against such cases, we adapt a minmax distributionally robust approach (Scarf, 1958;

Gallego and Moon, 1993; Hanasusanto et al., 2015; Natarajan et al., 2017) that aims

to choose inventory levels y to minimize the maximal expected cost over all demand

distributions consistent with the information known to the firm.

To understand the minmax robust approach, assume that after the firm makes a
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decision on the inventory levels y, an “adversary” is able to choose a joint distribution f

that results in the highest expected cost Ef (y, D̃) for the firm. However, the adversary

cannot choose just any f ; consistent with the known mean and covariance, it has to

belong to the distribution set:

F≥0 :=
{
f : <n≥0 7→ <≥0 | Ef (1) = 1, Ef

(
D̃
)

= m, Ef
(
D̃D̃>

)
= Σ + mm>

}
,

(3.4)

which is the set of all joint probability distributions of the n-dimensional demand, whose

support is nonnegative, where the sum of probabilities equal to 1, the expectation is m,

and the covariance is Σ. The firm’s best strategy against this adversary is to choose y

that minimizes the “worst-case” expected cost (i.e., the maximum expected cost among

distributions in F≥0). Mathematically, this is done by solving the following minmax

robust problem

C∗ := min
y≥0

sup
f∈F≥0

Ef
[
C(y, D̃)

]
. (3.5)

We denote the optimal value of (3.5) as C∗ and its optimal solution as y∗. If the

firm chooses the initial inventory level y∗, then it can be guaranteed that the expected

cost is no larger than C∗ under any joint demand distribution with mean-covariance

(m,Σ). Since the inventory levels are chosen to be robust to any specific distribution,

we also refer to (3.5) as the distributionally robust multi-location newsvendor problem

with inventory risk pooling.

3.3.4 Discussion of the model

For the special case of sij > h + p for all i 6= j, it is never optimal to allow demand

spillover (i.e., zij = 0 for any i 6= j and zii = min(di, yi)), so the cost reduces to n

separable single-location newsvendor costs. Note that in this special case, while the

newsvendor cost is separable by location, the minmax robust problem (3.5) is not,

due to the joint constraints (3.4) on the joint probability distribution. Hanasusanto

et al. (2015) proved that a minmax robust problem of n single-location newsvendor

costs with joint mean and covariance information is NP-hard even in the absence of

constraints on the support.

The minmax robust problem under a general fulfillment network (where sij ≤ h+p)

is intractable, due to the recourse network flow linear program. In general, there are

two ways that previous studies in the literature deal with such issues. The first method
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is to assume a linear decision rule (Ben-Tal et al., 2004). Using this technique, Chou

et al. (2006) develop a tractable formulation for the robust transshipment problem,

where the decision variables are assumed to be linear functions of some underlying

primitive uncertainties, and that these primitives have known support, and known

forward and backward deviations. Linear decision rules usually have little basis in

reality and are used solely to yield tractability, and hence there is no guarantee that

they approximate the optimal second-stage flows well.

The second method (which this paper employs), is to approximate the cost structure

of the network flow problem. Recently, Yan et al. (2018) studied the distributionally

robust network flow problem under restricted 0-1 cost structures. This simplified cost

structure gives rise to binary solutions in the dual program, which are then exploited

using techniques from Natarajan et al. (2011). In our study, we extend this analysis

to a more general class of fulfillment cost structures which preserve tractability. It is

worthwhile to note that the simplest case of a 2-level nested fulfillment structure is

similar to the problem analyzed by Yan et al. (2018).

The nested fulfillment structure is a good approximation whenever the geographical

region inherently contains this hierarchical cluster structure. In particular, this is com-

mon in countries like the US that have dispersed population centers, where inter-cluster

distances are much higher than intra-cluster distances. Indeed, errors in approximation

arise when we ascribe a single fulfillment cost to fulfillment between any two locations

in two different clusters. However the number of units being shipped in these higher

levels is small when more demands are being pooled within each cluster, and as a result

the error in approximation of the total fulfillment cost is small.2

The ubiquity of the nested structure can also be understood by noting its similarity

to a tree metric, which is an approximation for a general metric on n nodes derived

from an edge-weighted rooted tree with the n nodes as leaves. The tree metric has

found applications in various problems that exhibit hierarchial characteristics, and the

approximation of a general metric by a tree metric has been studied in the Computer

Science literature (see Bartal, 1998; Fakcharoenphol et al., 2004).

In Section 3.6, we develop a simple algorithm that employs hierarchical agglomer-

ative clustering to recover an n-level nested structure from a general distance-based

2Govindarajan et al. (2018, Proposition 5) showed that the error from assuming a constant ful-
fillment cost diminishes to zero in the asymptotic case where there are infinite number of locations
while holding positive safety stock. This is because, as the number of inventory nodes in a given area
increases, the chance that a unit of unfulfilled demand from one location is fulfilled from a close-by
location is high. In our case, a similar intuition applies: the probability that fulfillment happens in
higher levels is low, as there is enough supply to fulfill the pooled demand in lower levels. As a result,
the error contribution to the expected total shipping cost from higher levels of fulfillment is low.
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fulfillment cost structure, and empirically show that this nested structure tightly ap-

proximates the actual expected total fulfillment cost under a variety of distributions.

3.4 Closed-form bounds

As can be seen from the closed-form expression in Lemma 3.3.1, solving a distribution-

ally robust newsvendor-type problem requires finding a tight bound on the expected un-

met demand. In previous works on the classical newsvendor, tight closed-form bounds

have been derived that rely on specific parameters of the demand distribution. The

most well-known of these uses mean and variance (Scarf, 1958; Gallego and Moon,

1993), which we state below for completeness.

Lemma 3.4.1 (Scarf 1958; Gallego and Moon 1993) If D̃ has mean m and

standard deviation σ, then for any y,

E
(
D̃ − y

)+

≤ 1

2

(
m− y +

√
(m− y)2 + σ2

)
. (3.6)

It has been shown that this bound is tight, in the sense that there exists a demand

distribution where (3.6) holds with equality.

The challenge in deriving tight closed-form bounds in our setting is that there are

multiple demands which interact, not only because they are correlated, but also from

the nested terms resulting from inventory pooling. From Lemma 3.3.1, a näıve bound

for the expected cost is to simply use the Scarf result to get the bound:

η`,k · E
(
e>`,kD− e>`,ky

)+ ≤ η`,k
2

(
e>`,km− e>`,ky +

√(
e>`,km− e>`,ky

)2
+ e>`,kΣe`,k

)
,

(3.7)

where e>`,k is the kth row of matrix E`. Combining these for all `, k results in a bound

for the expected total cost. While this bound uses covariance information, what it

loses however is the information from the nested hierarchy of fulfillment. Hence, for a

nested network with multiple locations, using the Scarf bound would result in a loose

bound for the expected total cost.

We demonstrate this precisely for the special case of two identical regions, i.e., they

have the same fulfillment cost parameters (s12 = s21 = s > s0) and the demands d̃1, d̃2,

though correlated, have the same mean and standard deviation. Suppose that m and

σ are the mean and standard deviation, respectively, of both demands. We denote the
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correlation coefficient by ρ. We refer to the set of all joint distributions with these

statistics as Fmσρ.
The symmetry of the problem yields the following lemma.

Lemma 3.4.2 If there are two identical regions, then there exists optimal inventory

levels in each node that are also identical of the form y = (y, y)ᵀ for some y ≥ 0.

The proof is relegated to the Appendix, and relies on the convexity of the min-max

robust problem in (3.5). This property aids us in simplifying the derivation, since we

can restrict our analysis to only inventory decisions where the quantity is identical

in both locations. Note that from the definition of Fmσρ, we allow the demands to

take all values in <2, including negative values.3 The later sections would assume a

nonnegative support.

For the case with two identical locations, each with an initial inventory level y, we

are able to derive a tight bound on the combined unmet demand, which we state as a

proposition below.

Proposition 3.4.1 (Nested bound) For any ζ > 0, y, and f ∈ Fmσρ,

Ef
[
(d̃1 − y)+ + (d̃2 − y)+ + ζ

(
d̃1 + d̃2 − 2y

)+
]
≤ (ζ + 1)

(
m− y +

√
(m− y)2 + γσ2

)
(3.8)

where γ := ζ+1+ζρ
2ζ+1

∈ (0, 1]. Moreover, if γ(ν2 + 1) ≥ 2, where ν := 3ζ+1
ζ+1

, then this

bound is tight for some probability distribution f ∗y ∈ Fmσρ with six support points.

The left-hand side is the cost of unmet demand in a network with two regions,

where the inventory level in each region is y. If there is not enough inventory within a

region, a penalty cost (normalized to 1) is incurred, with an additional penalty cost ζ

when demand remains unmet after pooling.

We prove Proposition 3.4.1 in the appendix, however, we provide a discussion here.

The supremum in Fmσρ of the left-hand side of (3.8) is a moment problem which we

show to be equivalent to the dual problem:

max
t,u,r,v

t+ 2mr + 2(m2 + σ2)u+ (m2 + ρσ2)v

s.t. g(d1, d2; t, u, r, v) ≤ q(d1, d2) ∀(d1, d2) ∈ <2 (3.9)

3If we assume a nonnegative support for the distribution f , the derivation of the analytic expression
becomes more complicated; to simplify the derivation, we assume that the support is <2 for the two-
location problem.
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(a) (b)

(c) (d)

Figure 3.3: Illustration of the dual program. (a) The piecewise-planar function
q(d1, d2), (b) The quadratic function g(d1, d2), (c) The functions corresponding to a
dual feasible solution, (d) The functions corresponding to the dual optimal solution.

where q(d1, d2) is a piecewise linear function in (d1, d2) with six pieces (shown in Figure

3.3a) and g(d1, d2) := t + r(d1 + d2) + u(d2
1 + d2

2) + vd1d2 is a quadratic function in

(d1, d2) (shown in Figure 3.3b). The dual variables t, u, r, v are the parameters of the

quadratic function.

Note that the dual program (3.9) has infinitely many constraints. A dual solution

(t, u, r, v) is feasible if the quadratic function is bounded above by the piecewise-planar

function in all of <2 (Figure 3.3c shows these functions corresponding to a dual feasible

solution). The optimal dual solution results in the two functions touching at exactly six

points in <2 (shown as the bright points in each face of the piecewise-planar function

in Figure 3.3d). The points where the two functions touch are the support points of

the demand distribution where the bound (3.8) holds with equality.

We note that the cap function q(d1, d2) is a linear transformation of the function

inside the expectation in (3.8). Therefore, the information about the hierarchical nest-

ing is reflected in this cap function. Because of this additional structure, we can easily

check that the bound in (3.8) can be much smaller than the corresponding Scarf bound.

This is especially true for small values of y when demand spillover is more likely to

occur (hence, the pooling term is more likely to be positive), as illustrated in Figure 3.4.

Therefore, this motivates the need to develop a new solution framework that uti-
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Figure 3.4: Scarf bound and nested bound (Proposition 3.4.1) for two identical locations
with ζ = 4,m = 100, σ = 50, ρ = 0.

lizes the cascading structure of the cost function (3.3.1) under a hierarchical nested

fulfillment network. Unfortunately, the general problem is NP-hard, and only in the

simplest case (two identical locations) do we have an exact solution due to the exis-

tence of a closed-form tight bound (though the proof is cumbersome). In Section 3.5,

we propose such a solution framework that works on any hierarchical nested fulfillment

network.

An implication of Proposition 3.4.1 is that the worst-case expected cost of inven-

tory level y = (y, y): maxf∈Fmσρ Ef [C(y, D̃)] = C̄(y) is attained under a six-point

distribution f ∗y .

Theorem 3.4.1 If there are two identical regions, then for any y = (y, y),

sup
f∈Fmσρ

Ef [C(y, D̃)] ≤ C̄(y) := 2s0m− (p− h− s0)(y −m) + (p+ h− s0)
√

(y −m)2 + γσ2,

(3.10)

where γ := (p+h−s)(1+ρ)+s−s0
2(p+h)−s−s0 . Moreover, if γ(ν2 + 1) ≥ 2, where ν := 3(h+p−s0)−2(s−s0)

h+p−s0 ,

then Ef∗y [C(y, D̃)] = C̄(y) for some probability distribution f ∗y ∈ Fmσρ with six support

points.

Proof. From Lemma 3.3.1, we know that

C(y,D) = h(2y − d1 − d2) + s0(d1 + d2)

+
∑
j=1,2

(s− s0)(dj − y)+ + (p+ h− s)(d1 + d2 − 2y)+.

Taking the expectation, the theorem immediately follows from Proposition 3.4.1 with
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ζ = p+h−s
s−s0 . �

A corollary of Theorem 3.4.1 is an analytic expression for the robust optimal in-

ventory level under the two-location nested fulfillment network. The proof is relegated

to the appendix.

Proposition 3.4.2 If there are two identical regions, and if γ(ν2 + 1) ≥ 2 where

γ := (p+h−s)(1+ρ)+s−s0
2(p+h)−s−s0 and ν := 3(h+p−s0)−2(s−s0)

h+p−s0 , then the inventory levels that minimize

the maximal expected cost over distributions in Fmσρ is y∗ = (y∗, y∗), where

y∗ = m+

(
p− h− s0

2

√
γ

h(p− s0)

)
σ. (3.11)

The minmax expected cost is C∗ = 2s0m+ 2σ
√
γh(p− s0).

If demand spillover is not allowed or if s > p+ h, then inventory is decentralized with

each location solving a classical single-location newsvendor problem. In this case, the

minmax robust inventory level is y∗Sc (where Sc denotes the Scarf solution), given by:

y∗Sc = m+

(
p− h− s0

2
√
h(p− s0)

)
σ.

Since γ ≤ 1, it directly follows that y∗ ≤ y∗Sc whenever p − s0 ≥ h, and that y∗ ≥ y∗Sc
whenever p − s0 ≤ h. Since p − s0 is the underage cost without pooling, then when

p − s0 ≥ h, the decentralized solution y∗Sc is large due to the high underage cost. On

the other hand, in a centralized system, unmet demand can be fulfilled by inventory

from any location, so the solution y∗ is lower when p − s0 ≥ h. For a similar reason,

when p − s0 ≤ h, the decentralized solution is low due to the high overage cost. In

a centralized system, excess inventory in one location can be used elsewhere, so the

solution y∗ is higher when p − s0 ≤ h. Hence, the fact that |y∗ − m| ≤ |y∗Sc − m| is

because of inventory risk sharing resulting from pooling, mirroring similar results from

stochastic systems. Indeed, as ρ→ 1, we have γ → 1, and as a result, y∗ converges to

the decentralized solution y∗Sc.

3.4.1 The Effect of Cost and Demand Parameters on the

Worst-case Distribution

We provide in the Appendix the expressions for the support points and the probabilities

of the worst-case discrete distribution f ∗y (the subscript y is to emphasize that the
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(y; y)

(y − νΦy; y + Φy)

(y + Φy; y − νΦy)

(y − Φy; y − Φy)

(y + Φy; y + Φy)

(y + νΦy; y − Φy)

(y − Φy; y + νΦy)

y

y

Region 1 Region 2

Region 3 Region 4

Figure 3.5: The six support points of f ∗y . Each support point lies on one of three solid
lines passing through (y, y), where the distance from this point increases in proportion
to Φy =

√
(y −m)2 + γσ2. The dashed line corresponds to a perfect balance between

demand and supply after demand spillover.

worst-case distribution depends on the inventory level).

Figure 3.5 shows the support points of f ∗y , where Φy :=
√

(y −m)2 + γσ2. From

the figure, we observe that each support point lies on one of three solid lines that

pass through point (y, y). When we either increase |y −m|, increase σ, or increase ρ,

the distance of the support points to (y, y) increases proportionally in the direction

indicated by the arrows in Figure 3.5.

The dashed line in the figure (d1+d2 = 2y) corresponds to a perfect balance between

demand and inventory after demand spillover. Two of the solid lines converge to this

dashed line as ν → 1, which occurs when h + p decreases to the limit s. Thus, when

the overage or the underage cost is high (or the fulfillment cost s is low), the solid lines

pivot further away from the dashed line, and hence the support points of the worst-case

distribution result in very large excess inventory or unmet demand after pooling.

We call a system imbalanced if, after in-location fulfillment, there is leftover in-

ventory in one location and unfulfilled demand at the other location. In Figure 3.5,

we divide the demand region into four quadrants (Regions 1 through 4 demarcated by

the two dotted lines), and observe that when the demand realizations are in Regions 1

and 4, there is imbalance in the system. In these regions, we measure the magnitude

of imbalance as the sum of the leftover inventory and unfulfilled demand. Mathemat-

ically, this is the L1 distance between the support point and (y, y). We find that the

magnitude of imbalance induced by the support points is increasing in |y −m|, σ and

ρ.
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The probability of imbalance (sum of probabilities of realizations in Regions 1 and

4), however, is no more than γσ2/Φ2
y. When the decision maker chooses inventory lev-

els with high safety stock (as is typically done in practice), the worst case distribution

causes imbalance across locations with low probability, but of large magnitude. Thus

retailers should strive to eliminate such low-probability extreme situations, which can

be done by adopting various demand-shaping strategies that prevent imbalances in the

customer locations, such as strategic location-specific product display, recommenda-

tions and flash promotions.

3.5 Heuristic for general nested fulfillment net-

works

Our objective in this section is to develop a computationally tractable solution method

that is able to find an upper bound on

Ef

[
L−1∑
`=0

η>`

(
E`D̃− E`y

)+
]
, (3.12)

requiring only the mean and the covariance of D̃, where Ξ = {E`}L−1
`=0 defines the

structure of a nested fulfillment network. Importantly, the solution method should

preserve the cascading nature of the hierarchical nested fulfillment network, resulting

in a tighter bound than by simply using Scarf-type bounds (3.7). This provides a

computationally tractable heuristic that results in a good approximation to the robust

newsvendor problem under a general nested fulfillment network

Before developing our solution method, we first introduce the following lemma.

Lemma 3.5.1 If F is the set of all joint probability distributions with mean vector m

and covariance matrix Σ � 0, then for any y ∈ <n,

sup
f∈F

Ef

[
L−1∑
`=0

η>`

(
E`D̃− E`y

)+
]

= minimize
t,r,Y

t+ r>m + 〈Y,Σ + mm>〉

subject to:

(
Y 1

2
(r− a)

1
2
(r− a)> t+ a>y

)
� 0, ∀a ∈ L,

(3.13)

where L :=

{
a | a =

∑L−1
`=0 E>` (η` � eA`) for some (A0, A1, · · · , AL−1) ∈ 2[n0] × 2[n1] ×
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· · · × 2[nL−1]

}
and eA` is an n`-dimensional binary vector where eA`,k = 1 if and only

if k ∈ A`.

The proof is relegated to the Appendix and relies on strong duality in moment prob-

lems.

Note that because of the form of C(y,D) under an L-level nested fulfillment network

(Lemma 3.3.1), the implication from Lemma 3.5.1 is that an exact solution y∗ to the

minmax robust problem can be found through solving a semidefinite program (SDP)

with 2N semidefinite constraints, where N :=
∑L−1

`=0 n` is the total number of nodes in

the tree representation of the nested fulfillment structure (similar to Figure 3.2). This

is done by defining y as a decision variable in the SDP.

Semi-definite programs, much like linear programs, can be solved through interior

point methods which have polynomial time worst-case complexity (Vandenberghe and

Boyd, 1996). However, the SDP in (3.13) is not computationally tractable beyond small

values for n, since it involves O(2N) constraints that each require a (n + 1) × (n + 1)

matrix to be positive semidefinite. In the worst case, N = n(n+1)
2

if the number of

levels is L = n and n` = n− `. This motivates the need for tractable approximations

to the tight bound for larger values of n.

We begin our discussion by reformulating the expectation of the nested function

(3.12) as follows:

Ef

 max
x(0)∈{0,1}n0 ,

x(1)∈{0,1}n1 ,··· ,
x(L−1)∈{0,1}nL−1

L−1∑
`=0

(
x(`) � η`

)> (
E`D̃− E`y

)
 (3.14)

where x(`) is an n`-dimensional binary vector, for ` = 0, 1, . . . , L − 1, and � is the

element-wise product operator.

We observe that formulation (3.14) preserves the hierarchical structure of the net-

work since the implied optimization problem inside the square brackets finds a solution

{x(`)(D)}L−1
`=0 that obeys the nested structure for a particular demand realization D.

To see this, note that since η`,k ≥ 0 for any ` and k ∈ n`, we have that x
(`)
k (D) = 0 if

and only if e>`,kD̃ < e>`,ky. In words, x
(`)
k (D) = 0 will be chosen only if there is inventory

remaining after level ` fulfillment of regions in I(`)
k . Note that this can only occur if

there exists at least one path in the tree from level 0 to level ` (for example, the path

through {I(0)
k0
, I(1)

k1
, . . . , I(`)

k`
}) where there is excess inventory in all sets in this path.
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This makes sense because level ` fulfillment will not occur unless there was excess in-

ventory after all the less costly lower level fulfillments. Mathematically, if x
(`)
k (D) = 0,

then there must exist at least one path where x
(0)
k0

(D) = x
(1)
k1

(D) = · · · = x
(`−1)
k`−1

(D) = 0.

The inherent interdependence among the values in {x(`)(D)}L−1
`=0 is due to the nested

structure of the fulfillment network.

Since the value of the maximizer depends on the specific realization of random

demands, the maximizers are random variables, which we denote as {x̃(`)}L−1
`=0 . Hence,

(3.14) is equivalent to

Ef

(
L−1∑
`=0

(
x̃(`) � η`

)> (
E`D̃− E`y

))
, (3.15)

where we use tilde on the binary variables to emphasize that they are stochastic vari-

ables.

Note that reformulation (3.15) has cross products of random variables, where the

underlying uncertainty has a joint distribution f with nonnegative support and with

mean m and covariance Σ. A method to relax a bilinear function into a linear formula-

tion is to introduce new variables, which lifts the problem to a higher dimensional space

(see for instance Sherali and Alameddine 1992). This method was used in developing

heuristics for the multidimensional robust newsvendor problems in Natarajan and Teo

(2017) and Natarajan et al. (2017), where such cross products of random variables

occur, though these papers study simpler networks without demand spillover.

Consider the N -dimensional random vector x̃ :=
(
x̃(L−1)> x̃(L−2)> · · · x̃(0)>

)>
.

We linearize the function (3.15) by lifting it to a higher dimensional space by intro-

ducing the following new variables:

x := Ef (x̃) ∈ <N , (3.16)

Q := Ef
(
x̃D̃>

)
∈ <N×n, (3.17)

R := Ef
(
x̃x̃>

)
∈ <N×N . (3.18)

Defining NL−1 := 0 and N` :=
∑L−`−2

m=0 nL−1−m for ` = 0, 1, . . . , L − 2, we now have

that (3.15) is equivalent to the linear function

L−1∑
`=0

∑
k∈[n`]

η`,k ·

∑
i∈I(`)k

QN`+k,i −
∑
i∈I(`)k

xN`+k · yi

 . (3.19)
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Therefore, an upper bound to (3.12) can be found by taking the maximum of the

linear function (3.19) with respect to the variables (x,Q,R) that satisfy some feasibility

constraints which are consistent with their definition in (3.16)–(3.18). First, since the

joint distribution f has mean m and covariance Σ, we have the constraint that the

symmetric matrix

Ef


 1

D̃

x̃


 1

D̃

x̃


> =

 1 m> x>

m Σ + mm> Q>

x Q R

 ,

is positive semidefinite. Second, since the support of f is nonnegative, then it must

follow that Q ≥ 0. A third necessary condition follows from the fact that x̃ ∈ {0, 1}N ,

implying that(
1 x>

x R

)
:= Ef

( 1

x̃

)(
1

x̃

)> ∈ conv


(

1

w

)(
1

w

)>
: w ∈ {0, 1}N

 .

(3.20)

That is, the left-hand side matrix is a convex combination of a set of Boolean matrices

where each matrix is itself a product of Boolean variables. The convex hull of such

matrices is often refered to as the Boolean quadric polytope (Padberg, 1989).

Computing the convex hull is a difficult problem since unconstrained binary

quadratic programming is NP-hard in general. We instead use a simple linear relax-

ation of this polytope. Note that if the matrix on the left-hand side of (3.20) belongs

to the Boolean quadric polytope, then R ≥ 0 and, for all i, j ∈ [N ], Rii = xi, Rij ≤ xi,

and Rij ≥ xi + xj − 1.

Therefore, we have the following proposition.

Proposition 3.5.1 If f is a joint probability distribution with nonnegative support and
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with mean vector m and covariance matrix Σ � 0, then for any y ∈ <n,

Ef

[
L−1∑
`=0

η>`

(
E`D̃− E`y

)+
]
≤ max

x,Q,R

L−1∑
`=0

∑
k∈[n`]

η`,k ·

∑
i∈I(`)k

QN`+k,i −
∑
i∈I(`)k

xN`+k · yi


s.t.

 1 m> x>

m Σ + mm> Q>

x Q R

 � 0

Rii = xi i ∈ [N ]

Rij ≤ xi i ∈ [N ], j ∈ [N ]

Rij ≥ xi + xj − 1 i ∈ [N ], j ∈ [N ]

Q,R ≥ 0 (3.21)

The proposition states that the expected unmet demand can be bounded by the

optimal value of a semidefinite program with a single semidefinite constraint of size

(N + n + 1) × (N + n + 1). Contrast this with the tight bound in Lemma 3.5.1 from

an SDP with O(2N) semidefinite constraints of size (n+ 1)× (n+ 1).

The dual of the SDP (3.21) is a minimization problem. Therefore, from

Lemma 3.3.1, an upper bound to the minmax cost C∗ defined in (3.5), is

CH := min
y,t0,t,Y,u,
B,W,U,V

h · e>(y −m) + s>0 m + t0 + t>m + 〈Y,Σ + mm>〉+ e>Be

s.t.

 t0
1
2
t> 1

2
u>

1
2
t Y −1

2
V>

1
2
u −1

2
V U

 � 0

u = −We +
(
B + B>

)
e + Py

V ≥ P

U ≤W −B

W,B ≥ 0

t0 ∈ <, t ∈ <n, u ∈ <N ,

Y ∈ <n×n, B,W,U ∈ <N×N , V ∈ <N×n. (3.22)

where P :=
(
E>L−1diag(ηL−1) E>L−2diag(ηL−2) · · · E>0 diag(η0)

)>
∈ <N×n. Thus, a

computationally tractable heuristic for finding robust inventory levels under a nested
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Figure 3.6: Experiments with the optimal minmax cost and the optimized upper bound
cost. (a) The gap between the two optimized costs is small, revealing that optimiz-
ing the upper bound is a good heuristic for the minmax robust problem. (b) The
computational time of the heuristic is significantly smaller than the optimal SDP.

fulfillment network is to choose the inventory levels based on the optimal solution y

to the SDP (3.22), which we denote as yH (recall that the true robust inventory levels

are y∗).

Whether yH is a close approximation to y∗ depends on whether the SDP (3.21) can

tightly approximate (3.13). We demonstrate this in computational experiments (since

there is no support restriction in Lemma 3.5.1, we allow negative values for q and Q,

so the third constraint in (3.22) is an equality constraint). Our experiment is on a

2-level structure: in level 0, in-location fulfillment has a per-unit cost s0, and in level

1, inventory from any location in the network can be used to meet unfulfilled demand

at a per-unit cost s.

Figure 3.6 shows the results of the experiment as the number of locations is varied,

with h = 1, p = 100, s = 1, s0 = 0, with identical marginal distributions (mean

m = 100 and standard deviation σ = 50), and with each pair of locations having a

correlation coefficient of ρ = 0.25. Figure 3.6a shows the gap between the minmax cost

C∗ and the optimal value CH of the SDP (3.22). The plot shows that CH is close to

the minmax cost (within 0.2%) and, in general, this gap decreases with the number of

locations. Therefore, the upper bound (3.21) is empirically tight in the neighborhood

of yH and y∗. This reveals that our proposed solution method provides a good heuristic

for approximating the robust inventory levels in a nested fulfillment network.

Figure 3.6b shows the computational tractability of this heuristic compared to solv-

ing for the robust inventory levels through (3.13). We observe that the computational

time of the heuristic is significantly smaller compared to the optimal SDP, as demon-
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strated in the figure.4 As a result, our proposed heuristic solves a general class of

problems with nested fulfillment cost structures, with significantly less computational

burden than the optimal SDP.

3.6 Approximating distance-based fulfillment costs

with a nested structure

We now describe how to approximate a general distance-based fulfillment cost structure

by a nested fulfillment structure. Suppose that the fulfillment cost is a function of

the distance between two regions. In particular, for any two regions i, j, suppose

sij = φ(rij), where rij is the distance between the regions and φ is an increasing

function. We denote by R = (rij)ij the distance matrix and S = (sij)ij the fulfillment

cost matrix.

A decomposition of a general cost structure with n locations into an n-level nested

fulfillment structure is done by hierarchical agglomerative clustering, which has been

extensively studied in literature, dating back to Johnson (1967). We outline the pro-

cedure in Algorithm 3.

Algorithm 3 Hierarchical Agglomerative Clustering Algorithm

1: Let S = {1, 2, . . . , n}. Set R̄ = (r̄ij)i,j∈S = R.
2: while |S| > 1 do
3: Choose the two closest nodes i∗, j∗ = argmini,j∈S r̄ij.
4: Cluster i∗, j∗ into a single node: S ← S + {i∗, j∗} − {i∗} − {j∗}
5: Recalculate distance matrix R̄ = (R̂ij)i,j∈S

The algorithm proceeds by progressively clustering the two closest nodes into a

single node starting from the n leaf nodes corresponding to locations, until there re-

mains only one cluster node which encompasses all the locations. In each step of the

algorithm, the number of nodes is reduced by 1. Note that in order to choose the two

closest nodes in each step, we need a notion of distance between clusters of nodes.

A variety of measures can be considered to define the distance between two clusters,

namely the minimum or maximum or average distance between the nodes in the two

clusters, Ward’s method, distance between the center of masses of the two clusters,

etc.
4Even for n = 9, the optimal robust solution required around 20,000 unique SDP variables involved

in the SDP constraints, whereas the heuristic required only 20 unique SDP variables, and the disparity
is clearly seen in the computational times. The heuristic could solve up to n = 100 in under an hour,
whereas the optimal solution could not be evaluated even for n = 10 due to memory constraints.
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Figure 3.7: Approximating a distance-based fulfillment cost structure with a nested
fulfillment structure. Panel (a) is the dendrogram obtained by hierarchical clustering
based on the distance matrixR. Panel (b) is the corresponding 5-level nested fulfillment
structure.

We demonstrate the algorithm using an example, where define the distance between

two clusters as the average distance measure, namely the Unweighted Pair Group

Method with Arithmetic Mean (UPGMA). The UPGMA distance between clusters

I1, I2 is r̂I1,I2 = 1
|I1| ·

1
|I2| ·

∑
i∈I1,j∈I2 rij. In other words, it is the average distance

between any two pairs of locations in I1 and I2.

Consider the following distance matrix among 5 nodes, and the corresponding ful-

fillment cost matrix constructed by the equation sij = 10 + 0.005 · rij:

R =


0 1, 220 1, 411 770 872

1, 220 0 2, 404 624 420

1, 411 2, 404 0 1, 785 2, 187

770 624 1, 785 0 557

872 420 2, 187 557 0

 , S =


10.0 16.1 17.1 13.8 14.4

16.1 10.0 22.0 13.1 12.1

17.1 22.0 10.0 18.9 20.9

13.8 13.1 18.9 10.0 12.8

14.4 12.1 20.9 12.8 10.0



Applying Algorithm 3 with UPGMA as the distance metric, we obtain the dendro-

gram shown in Figure 3.7a. The dendogram depicts the clustering in each step (level).

L = 5 levels are shown, where level ` = 0 consists of {3, 1, 4, 5, 2}, ` = 1 consists of

{3, 1, 4, {5, 2}} and so on, with ` = n−1 corresponding to the cluster of all nodes. The

dendogram also depicts the distance between the entities being clustered: in level 2 for

instance, {4} is clustered with {5, 2} at the UPGMA distance r̂4,{5,2} = 590.6. This

means that any fulfillment between nodes 4 and 5, or between nodes 4 and 2 takes

place at a cost ŝ4,{5,2} = 10 + 0.005 · r̂4,{5,2}. Thus we have an approximation of the
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Figure 3.8: The approximation of the expected total fulfillment cost by a nested ful-
fillment structure. Panel (a) shows the relative gap in expected total fulfillment cost
under a variety of distributions as fulfillment costs become more sensitive to distance.
Panel (b) shows the quality of approximation and computational time as the number
of levels in the nested structure is varied.

distance and fulfillment cost matrices:

R̂ =


0 954 1, 947 954 954

954 0 1, 947 591 420

1, 947 1, 947 0 1, 947 1, 947

954 591 1, 947 0 591

954 420 1, 947 591 0

 , Ŝ =


10.0 14.8 19.7 14.8 14.8

14.8 10.0 19.7 13.0 12.1

19.7 19.7 10.0 19.7 19.7

14.8 13.0 19.7 10.0 13.0

14.8 12.1 19.7 13.0 10.0


Algorithm 3 always results in a nested fulfillment structure with L = n levels (see

Figure 3.7b). We can also generate a nested fulfillment structure for any general L.

We do this by cutting the dendrogram horizontally at L − 2 places across the y-axis:

the `th line from the bottom gives rise to a partition of the set of locations by cutting

through links that cluster these partitioned sets further. This partition gives us the

clusters at level `. We provide a detailed example in Appendix B.3.

3.6.1 Quality of nested approximations

We next study the nested network approximation in realistic fulfillment networks in-

spired from U.S. data. In these experiments, n = 10. (Further details of the exper-

imental setup can be found in Section 3.7.2.) In particular, we calculate the relative

gap in expected total fulfillment costs under the nested structure and under the actual

fulfillment structure where sij = s0 + λ · rij. Given the inventory levels, if the gap is
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found to be small, we can confidently use the proposed heuristic to approximate the

robut inventory levels for general networks with distance-based fulfillment costs.

Indeed, we see that the nested cost structure with L = n tightly approximates the

expected total fulfillment cost for a variety of distributions such as Normal, exponential,

lognormal and gamma (Figure 3.8a). The approximation is detriorating as fulfillment

costs become more sensitive to distance, however, even for high values of the distance

sensitivity factor λ, the relative gap in expected total fulfillment costs is less than

3%. (We note that the distance sensitivity factors for the UPS Ground shipping is

0.0005 as estimated by Jasin and Sinha (2015), which is ten times lower than the

lowest value of distance sensitivity considered in this experiment.) As a result, the

nested fulfillment structure can serve as a good approximation for most distance-based

shipping alternatives seen in practice.

Larger number of levels L best approximates general fulfillment networks, however

it is at the expense of increased computational effort in solving the SDP (3.22). We next

test how the approximation and the computational time are affected by the number

of levels. The results under an exponential distribution are shown in Figure 3.8b. As

expected, increasing L improves approximation quality, albeit marginally for L > 7,

however, the computational time increases exponentially. Hence nominal values of L

can achieve good approximations in relatively shorter time.

3.7 Numerical Analysis

We conduct multiple experiments on the proposed heuristic solutions. First, we com-

pare the heuristic solution to stochastic optimal solutions in the 2-level structure (con-

stant fulfillment cost for spillover demand) for various distributions to understand the

expected value of additional information (EVAI) in a pooling context, which is de-

fined as the loss incurred due to incomplete information about the distribution, as the

heuristic solution only uses mean and covariance information. We then conduct exper-

iments on simulated data to illustrate the superiority of the robust heuristic solution

compared to stochastic solutions.

3.7.1 Experiments with a 2-level nested network

We begin by studying the performance of our proposed heuristic in a 2-level nested

network where fulfillment costs for spillover demands are constant (sij = s > s0 for

all i 6= j). The simple 2-level structure is useful because we can isolate the effect of
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Figure 3.9: Relative gaps (CH
f −C∗f )/C∗f (robust actual cost) and (CH−C∗)/C∗ (minmax

cost). The x-axis spread of the data around each value of p is solely for visual clarity.

pooling from the network structure.

We randomly generate distribution parameters for the following parametric fam-

ilies: Normal, exponential, beta prime, and Student-t (the details for the parameter

generation are given in Appendix B.4). Given a specific joint demand distribution

f , we estimate the optimal expected cost C∗f := miny≥0 Ef
[
C(y, D̃)

]
using sample

average approximation with 104 samples of the demand vector. Given the mean and

the covariance of the random demand, we use our heuristic to approximate the robust

inventory levels with yH. We then compute the expected cost of the heuristic solution

under the known true distribution f (which we denote as CH
f ).

Figure 3.9 illustrates the gap CH
f − C∗f (the ◦ markers), which represents the per-

formance of the heuristic under a specific distribution f . In these experiments, n = 5,

h = 1, s = 1, s0 = 0.5, and we vary p ∈ {0.5, 1, 2, 4, 8}. We observe that the per-

formance of the heuristic depends on p, seen from the small optimality gap for small

values of p. If the distribution is either Normal or exponential, the heuristic has an

actual expected cost that is close to optimal even for high values of p, with relative

gaps in the order of .1% or 1%. For the beta prime and the Student-t distribution

families, we observe that the relative gap can be as high as the order of 10%.
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Figure 3.10: Reduction in expected cost (under the true distribution) of the robust
inventory levels with partitioned statistics information.

The figure also shows the gap CH−C∗f (the + markers). Since under beta prime or

Student-t distributions, the circle markers are close to the plus markers, we can infer

that the expected cost under these distributions is close to the worst-case expected cost

in the neighborhood of yH. (Note that the plus markers are always above the circle

markers since CH
f ≤ CH.) We next discuss how the performance of a distributionally

robust heuristic can be improved for these cases.

Since there are multiple joint ditributions in F , then the range of possible values

of Ef [C(y, D̃)] for a given y could potentially be wide. This ambiguity may result in

the true optimal solution to be different from the robust solution under some distribu-

tions (e.g. under beta prime or Student-t). A way to reduce ambiguity is by further

restricting the distribution set, which can be accomplished by adding more informa-

tion to F . This can be done with partitioned statistics information, specifically, the

mean and covariance of random vector (D̃+, D̃−) whose ith elements are (d̃i−mi)
+ and

(mi− d̃i)+, respectively. Partitioned statistics measures asymmetry of the distribution

that is not represented by covariance alone (Natarajan et al., 2017). Moreover, we

can utilize the techniques from this paper, hence adapt Proposition 3.5.1, for a dis-

tributionally robust heuristic under this additional information (see Appendix B.5 for

the complete formulation). Figure 3.10 shows that the additional information could

significantly reduce the expected cost of the distributionally robust inventory levels.

It is no surprise that asymmetry information is important to estimate the impact of

pooling, as this is in line with results from the pooling literature, specifically Yang and

Schrage (2009) who show that right-skewed demand distributions can cause inventory

levels to increase rather than decrease under pooling.
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3.7.2 Experiments with realistic networks

3.7.2.1 Network Setup.

We now use realistic networks of fulfillment centers located in mainland US to study

the performance of our heuristic solutions. We build these networks based on publicly

available data from Chen (2017), who use unofficial data of a US-based online retailer’s

fulfillment center network. The dataset contains information about locations of the

fulfillment centers, population of the US by zipcode, and estimated shipping costs

based on UPS Ground and UPS Next Day Air from the fulfillment centers to customer

locations.

We consider networks of size n = 10, by choosing n random fulfillment centers from

the 87 fulfillment centers available in the data. Since the results of our experiments

depend on network characteristics, we take a sample of 102 networks and conduct our

experiments for each sample, reporting the mean values over all the networks for the

metrics considered.

For each network, the mean demands at customer locations (approximated by zip-

codes) are the population in millions, and each customer location demand is assigned to

the nearest fulfillment center. That is, the fulfillment centers can fulfill demands from

their assigned customer locations at the in-location fulfillment cost. The coefficient of

variation is taken to be equal to 1. We generate a random correlation matrix based on

Numpacharoen and Atsawarungruangkit (2012), such that the maximum correlation

coefficient has an absolute value less than 0.4. We take 103 samples of the demand

vector for sample average approximations.

Similar to Jasin and Sinha (2015) and Lei et al. (2018), we take the fulfillment

costs to be linear functions of the distance. Specifically we have sij = s0 + λ · rij,
where rij is the distance in miles, λ = 0.005 is the distance sensitivity factor, with

in-location fulfillment done at cost s0 = $10. This gives fulfillment costs in the range

of [$10, $23.6] for the entire network. The overage and underage cost parameters are

taken to be: h = $10, p = $50. We use Algorithm 3 to generate the L-level nested

fulfillment structure with L = n as the base case.

3.7.2.2 Misspecifying the Distribution.

We study the effect of misspecifying demand distributions. In particular, we compare

the expected costs under the nested fulfillment cost structure achieved by the following

two inventory solutions:

1. The robust inventory solution yH derived from our proposed heuristic
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Figure 3.11: The relative gap in expected costs under the true distribution, of the
robust solution yH and the Normal solution yN. The x-axis spread of the data is solely
for visual clarity.

2. The stochastic inventory solution yN = argminy≥0Ef [C(y, D̃)] that assumes f

is the Normal distribution (the solution is approximated using sample average

approximation).

The expected costs Ef [C(y, D̃)] are calculated under the true distributions, where f

is a Normal, exponential, lognormal, or gamma distribution (details are provided in

Appendix B.4).

The results are shown in Figure 3.11. Each circle corresponds to a randomly chosen

network of size n = 10. Indeed, if the true demand distribution were Normal, then

yN will be the true optimal solution, in which case the relative gap in expected cost

achieved by the robust solution is negative. However, this is not usually the case in

reality, as the real joint distribution of demands can seldom be accurately predicted.

We see that for certain networks, when the true distribution is non-Normal, significant

reduction in expected costs can be realized by using the robust solution instead of the

Normal solution. The savings are likely to be higher for larger networks as the normal

distribution perceives higher pooling benefits which may not be the case under the true

distribution.

3.7.2.3 Dynamic Myopic Fulfillment.

By considering a dynamic setting where demands arrive at random, we study the

quality of the single-period assumption made in our study. We model random arrivals

in the following fashion: we generate the single period demand vector, and randomize

the sequence in which each unit of demand arrives. The decision on which location
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Figure 3.12: Figure showing the relative gap in expected costs between the dynamic
setting under myopic fulfillment and the single-period lower bound for various distri-
butions.

fulfills an incoming unit of demand is taken myopically – the nearest location with

available inventory is chosen to fulfill the demand, which is the fulfillment norm in

practice.

The starting inventory levels are set by the robust heuristic. Note that given any

inventory levels, the single period cost is a hindsight optimal lower bound for the cost

under the dynamic setting. We see in Figure 3.12 that the relative gap in expected

costs between the single-period and dynamic settings is less than 2%, and hence the

single-period expected cost can serve as a good approximation for the expected cost

under a dynamic setting. Note that the myopic strategy need not be the optimal

fulfillment strategy in a dynamic setting, and hence the actual relative gap in expected

costs will be less than 2%. Similar results were observed when the nested fulfillment

structure was used in place of the actual fulfillment costs.

3.8 Extensions

3.8.1 Location-specific Demand Classes

In the previous sections, we made the assumption that all demands can be fulfilled

by inventory in any node, regardless of the demand location or the inventory node

location. However, in some settings, there may be classes of demand that cannot be

fulfilled by inventory nodes in a different location. One example is an omni-channel

store network; in each location, there are two types of customers: those purchasing
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from the local brick-and-mortar store, and those placing an order through the online

store. Demand from store customers can only be met with inventory that is located in

the local store. On the other hand, demand from an online customer can be fulfilled

from any store location, through what is known in the retail industry as ship-from-store

fulfillment.

Note that there are two different types of inventory risk pooling involved here.

First, within a location, store demand and local online demand are pooled since they

deplete from the same store inventory. Second, online demand across locations are

pooled since they are fulfilled from inventory in the store network. While ignoring the

first type (for instance, by keeping a separate inventory for store customers) simplifies

the problem to one explored in the previous section, it results in suboptimal inventory

levels since it is likely that local demands are highly correlated.

Detailed analyses of this setting can be found in Appendix B.6. We show that this

problem can also be analyzed in a similar fashion to Section 3.5, except that there are

nested piecewise linear terms of the form (x− (y− z)+)+ in the objective. Introducing

integer variables similar to what was done in (3.19) yields products of integer variables.

We deal with this complication by introducing new integer variables to replace these

product terms, and we obtain the heuristic in the form of an SDP of increased size,

though still polynomial in the number of nodes).

3.8.2 Uncertainty in Moment Information

As e-commerce demands are highly volatile, there may be uncertainty in the moment

information estimated from the data. Such uncertainty may be in the form of confidence

intervals constructed around the moment information through empirical estimation

from the data, or in the form of more complicated uncertainty sets. These can be

incorporated easily into our models by simply including the constraint (µ,Σ) ∈ U ,

where U is a non-empty, closed and convex uncertainty set for the estimated mean and

covariance matrices, and allowing µ and Σ to be variables that are constrained in the

above fashion, rather than parameters (Natarajan et al., 2011).5

Natarajan et al. (2011) provide two examples of uncertainty set representations:

1. Linear: U = {(µ,Σ) : µL ≤ µ ≤ µU ,ΣL ≤ Σ ≤ ΣU}. This can simply be incorpo-

rated as linear constraints, for which the dual can be taken easily.

5Note that this modification is to be made before taking the dual SDP of the inner robust problem
– the constraint (µ,Σ) ∈ U is included in the SDP relaxation of the moment problem in maximization
form in (3.21).
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2. Ellipsoidal (Delage and Ye, 2010): (µ−µ0)ᵀΣ−1
0 (µ−µ0) ≤ γ1, Σ−2µµᵀ0+µ0µ

ᵀ
0 ≤

γ2Σ0, where µ0,Σ0 are the estimated mean and covariance matrices, and γ1, γ2 are

parameters. Notice that the first constraint is non-linear, but can be expressed

as the following semi-definite constraint:(
γ1 (µ− µ0)ᵀ

(µ− µ0) Σ0

)
� 0

We note that any uncertainty set that can be characterized by linear or semi-definite

constraints can be included, as they easily yield themselves to dualizing.

3.9 Conclusion

Robust strategies are gaining importance in retail due to the increase in complexity

arising from innovations. Particularly for e-commerce demands, incorrect forecasting

may lead to disastrous results, as inventory planning is done at the network level.

We provide a framework to analyze the distributionally robust newsvendor network

problem where there are network flows after realization of uncertainty. We solve the

two-location setting to yield a closed-form nested bound that serves as an analogue to

the Scarf bound for a system with inventory pooling.

For the multi-location case, we provide a heuristic approximation and upper bound

for the case where the fulfillment costs exhibit a nested fulfillment structure, where

the cost function can be written as the sum of piecewise linear terms. We show how

any general fulfillment cost structure can be approximated by this nested fulfillment

structure through simple agglomerative clustering algorithms, and that the approxi-

mation of the expected total fulfillment cost is empirically tight for commonly seen

distance-based shipping cost structures under various distributions.

Following Natarajan et al. (2017), we show that the value of asymmetry informa-

tion is significant for a system with pooling, which also echoes results from pooling

literature which state that the shape of the distributions have a significant effect on

pooling benefits. We also demonstrate that a distributionally robust solution can sig-

nificantly outperform stochastic inventory solutions that assume a particular demand

distribution.

Multiple directions for future work exist. A multi-period formulation can be con-

sidered, where actions in the current period affect the future state. While tractable

formulations can elude us, we can approximate future stages through an affine approxi-
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mation, where the future actions are restricted to be affine functions of the correspond-

ing data (Ben-Tal et al., 2004). Under such settings, robust fulfillment decisions can

be analyzed which can yield helpful tools for practitioners to fulfill online demands.

Our heuristic also yields the probability of stockout at the end of the period for each

node in the nested fulfillment structure, which can also be used to guide dynamic ful-

fillment. Another natural extension is to consider how the network should look like in

the first place: the solution from the inventory optimization can inform network design

decisions, which is an important unexplored area in e-commerce.
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CHAPTER 4

The Value of Personalized Return Policies

in Retail

4.1 Abstract

With increasing online purchases and retail firms competing to provide lenient return

policies, customer returns has become an important problem with roughly 10% of all

the products being returned. In this paper, we consider a firm that jointly decides the

inventory level and return policy at the start of the selling season. In particular, the

return policy consists of two components – a return window and a return fee. The

return policy affects the hassle experienced by the customer in returning the product,

and customers are heterogeneous in how they perceive this hassle. In the absence

of information about customers’ hassle types, the firm can only offer blanket return

policies, or a menu of return policies for customers to choose from; however, knowing

customers’ hassle types, the firm can offer personalized return policies. We show that

the firm can achieve higher profits by offering a menu of policies as compared to blanket

policies. When the firm provides full refunds and personalizes return windows, we

show that, consistent with industry practice, low-hassle types (customers that return

frequently under lenient policies) must be banned from returning. However when the

firm can also personalize return fees, we show that the firm should prioritize sales to

low-hassle types by offering them strict return policies (short return window and high

return fee). We also show that personalization based on customer behavior data wipes

out the customer surplus, providing implications for usage of customer behavior data

in enforcing operational policies.
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4.2 Introduction

The advent of e-commerce has infused intense competition in the retail industry, with

firms competing for customers in both physical stores as well as digital platforms. In

this competitive landscape, customers returns has emerged as a significant problem –

in 2018, the total merchandise returns accounted for nearly $369 billion in lost sales

for US retailers, which is around 10% of the total sales (Appriss Retail, 2018). Cus-

tomer returns have been allowed by retail firms to incentivize purchases by alleviating

customers’ uncertainty over product fit, and this feature has become crucial for online

purchases due to the lack of direct interaction with the product at the time of purchase.

Return rates in e-commerce sales are much higher (more than 30%) compared to

brick-and-mortar sales (around 10%) (Saleh, 2016), due to lenient return policies which

is one of the most important drivers of online purchases, next only to free shipping

(Walker Sands, 2018). With online sales channels becoming a principal part of most

retail firms, high return rates are accompanied by several problems; the product can

be returned outside the selling season, the product can be in a state (damaged or used)

that is not suitable for reselling, restocking costs, etc. In addition, many e-commerce

firms also bear the brunt of return shipping fees, which is estimated to cost $550 billion

by 2020, representing an increase of 75% over the costs in 2016 (Statista, 2018).

Retailers have adopted various strategies to reduce the cost of returns due to the

problems mentioned above. Some firms have reduced the return window – firms such as

LL Bean and Bed, Bath and Beyond, which had an unlimited return window (customers

could return items years after purchase and did not need receipts to do so), have

shortened the return window to one year, citing return abuse by certain customers

(Rosato, 2018). While full refunds are common, some retailers charge customers upon

return of certain items (e.g. electronic products) in the form of a flat restocking fee or

partial refunds. To reduce return shipping costs on online purchases, firms may pass

on the return shipping costs (wholly or partially) to the customer, or in the case of

omnichannel retailers such as Macy’s and Target (with physical stores), customers are

allowed to return to one of their physical stores free of cost (which is later transported to

return processing centers through internal logistics). While refunds and return windows

are common levers in return policies, Janakiraman and Syrdal (2016) list other aspects

of returns which firms can focus on, such as leniency on the cause of return, selectivity

based on products and customers (members vs non-members), and starting the return

policy later by allowing trial windows.

While these initiatives have helped reduce cases of misuse by customers, they still
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suffer from a fundamental problem – these policies are agnostic to variations in cus-

tomers’ return behaviors. Abbey et al. (2018) segment customers based on profitability

using transaction data from a retailer into three groups – non-returners (47.7% of cus-

tomers), legitimate returners (52% of customers, 23% return rate) and abusive returners

(0.4% of customers, 60% return rate). The profit contributions were $1,445, $222 and

-$1,254 per year respectively. It is clear that in such a case, a one-size-fits-all policy

that aims to target the small fraction of abusive returners can hurt profits by adversely

affecting the majority of profitable customers.

Indeed, strategies that target different segments of customers relies on the firm’s

knowledge of its customers. This is particular easy for e-commerce firms as huge

amounts of data are collected when users interact with online platforms. Several brick-

and-mortar retailers also track their customers with the use of third-party companies

such as The Retail Equation, which creates a risk report for customers based on their

historical return behavior (Safdar, 2018). Equipped with this data, firms can tailor

return policies to their customers. In fact, many firms have already started engag-

ing in this practice – Amazon.com (Safdar and Stevens, 2018) and Costco (Hanbury,

2018) have banned several customers that they identified as fraudulent returners, and

61% of US retailers are ready to ban frequent returners from shopping on their web-

sites (Brightpearl, 2018). Motivated by this practice of targeting customers based on

historical data, we address the following research questions in this paper:

1. Knowing information about customers’ return behavior, how should a firm per-

sonalize return policies to maximize profits?

2. What is the value in collecting information about customers to offer personalized

policies?

3. What is the effect of personalized policies on consumer welfare and surplus?

We employ a stylized, single-period newsvendor model to analyze the problem,

where there is uncertainty in the aggregate demand as well as customers’ valuation for

the product. As return policies (partial refunds, return windows, return shipping fees)

primarily affect the customers’ disutility once they decide to return (and in turn their

purchasing decision itself), we choose to model demand as a continuous mass of cus-

tomers that are heterogeneous in their perceived hassle in returning items. Perceived

hassle may include the physical hassle (distance or access to the nearest store or ship-

ping center), as well as psychological hassle (mental characteristics inhibit returning

items). Incidentally, the hassle types of customers can also be thought of as a proxy
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for return rates under lenient return policies – low-hassle customers are more likely to

return items due to lower disutility in doing so, whereas high-hassle customers are less

likely to exercise the return option.

We assume that the return policy consists of two components: 1) a return window

(short or long), and 2) a refund fee. The firm benefits from a shorter return window, as

returned items are less likely to be damaged and more likely to be resold during the sell-

ing season (modeled by a higher salvage price), whereas customers are inconvenienced

by shorter windows (modeled by increase in their return hassle).

First, when the firm offers only a blanket policy for all customers, we show that for

products that lose value quickly, short return window policy leads to higher profits by

minimizing the loss due to returns. However, for products that have a relatively stable

value over time (e.g. non-perishable goods), long return windows are more profitable

as they increase sales by lowering the hassle due to returns. We also show that the firm

can achieve higher profits compared to the blanket policy case by offering customers a

menu of policies to choose from.

When the firm provides full refunds but personalizes the return window for each

customer, we show that low-hassle customers (who return frequently under lenient

return policies) must be banned from returning, consistent with industry practice of

banning serial returners. However, when refunds can also be personalized, we show that

when inventory is limited, the firm benefits by prioritizing sales to low-hassle customers

under strict return policies (short return window and high return fees). When firms

can identify customers based on their return behavior, we show that customer surplus

is wiped out. This provides implications for customers’ privacy in retail settings, and

the value of data about customer behavior.

The rest of the paper is organized as follows. We discuss the relevant literature

in Section 4.3. We then introduce the stylized model in Section 4.4, detailing cus-

tomer decisions and the firm’s profit maximization problem. In Section 4.5, we analyze

retailer return policies in the absence of personalized information about customers’

return behavior. In Section 4.6, we analyze the optimal personalized return policy. We

conclude with extensions in Section 4.7 and future directions in Section 4.8.

4.3 Literature Review

Our research primarily belongs to the stream of literature on consumer return policies.

In particular, there are several studies on the refund amount: Davis et al. (1995)

and Che (1996) consider full-refund and no-refund return policies when customers face
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uncertainty in their valuation of the product. Lenient return policies have been shown

to be useful tools – Moorthy and Srinivasan (1995) show that full refund policies can

be used as a signal for high product quality, and Petersen and Kumar (2009) find

that positive return experiences build trust in the firm, and in turn leads to positive

behavioral outcomes.

In studying return policies, several studies jointly consider pricing and refund deci-

sions. Su (2009) shows the optimality of partial return policies, with the optimal refund

amount being equal to the salvage price, and also examine the impact of consumer re-

turns on supply chain performance. Shulman et al. (2009) consider a two-product set-

ting where products can also be exchanged, and find that the optimal refund need not

be the same as the salvage price. Altug and Aydinliyim (2016) show that the optimal

refund is bounded by the clearance price when customers are strategic when purchas-

ing under full price, and offer explanations for the commonly seen “no-restocking-fee”

return policies. Shang et al. (2017) consider price and restocking fee decisions when

customers indulge in ‘wardrobing’ (misuse of trial periods intended to identify fit),

and find that the optimal price and refund are decreasing in the extent of wardrobing

among the customers.

Some researchers have also studied return policies in the form of return windows

(time to return the product to obtain refund). Ülkü et al. (2013) consider a firm that

decides the price and return window, where customer valuations and salvage price of

inventory is affected by the return window. Ülkü and Gürler (2018) also considers the

return window decision, however in the context of a newsvendor that decides inventory

levels rather than price. Both these studies explicitly model fraudulent customers that

buy products with no intention of keeping them, a feature also seen in Hess et al. (1996)

and Chu et al. (1998). We take a different approach by attributing high return rates

to customers who perceive little or no hassle in returning items that they deem unfit.

We model customer behavior and firm’s policy based on the return hassle perceived

by the customer. Davis et al. (1998) models hassle as a decision variable that the

firm can set, and find that the retailer should offer low-hassle policies when the salvage

value is high, or when there are opportunities for cross-selling, or the products’ benefits

cannot be consumed during a short period of time. There are two studies that explicitly

model customer heterogeneity in hassle costs. Hsiao and Chen (2012) compare two

cases: first, under full returns, the firm sets the optimal amount of hassle for the

customers, and second, a hassle-free policy with partial returns. Hsiao and Chen

(2014) study the interplay between price, return policy and quality risk, where the

firm decides the quality of the product in addition to price and return policy. In both
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studies, customers are segmented into two groups – high hassle low hassle customers. In

contrast, we use a more general model for hassle heterogeneity where the firm may not

know the hassle-types or valuations of customers, and we focus on inventory decisions

as compared to price optimization.

While it is common to examine pricing decisions along with return policies, there

are several papers that place return policies in other contexts. Alptekinoğlu and Grasas

(2014) study the optimal retail assortment when consumer returns are allowed. Sim-

ilar to our setting, Akçay et al. (2013) and Ketzenberg and Zuidwijk (2009) consider

inventory decisions along with pricing when product returns can be salvaged or resold.

There have also been studies that analyze supply chain interactions due to consumer

returns. Crocker and Letizia (2014) studies return policies between a manufacturer

and retailer who receives customer returns; Shulman et al. (2010) study how retailer’s

optimal return policy is affected by the reverse channel structure, namely whether re-

turns are salvaged by the manufacturer or by the retailer; and Ferguson et al. (2006)

address the problem of reducing false failure returns through supply chain coordination

methods, as manufacturers primarily incur the cost of these returns, whereas efforts to

reduce returns are primarily taken by retailers.

There has been a growing literature recently on role of return policies specifically

in the context of e-commerce and omnichannel firms. Nageswaran et al. (2017) study

the pricing and return policy decisions of an omnichannel retailer, whose customers

can purchase products in-store (and return in-store) or online (and return online or in-

store). They find that generous refunds observed in practice are driven by customers’

channel choice and the convenience of returning in-store. Ofek et al. (2011) consider

the strategies of competing retailers with respect to opening an internet outlet, as

online purchases lead to higher likelihood of costly product returns. Some firms like

Jet.com have started offering the no-returns option to customers at a discounted price.

Najafi and Duenyas (2018) consider a firm’s decision to offer the no-returns option,

while offering full refunds when purchased at the full price. Hsiao and Chen (2015)

show that allowing retailers to implement the no-return option can sometimes improve

supply chain efficiency by eliminating the manufacturer’s attempt to induce inefficient

cosumer returns.

Finally, we note that although customer returns has been well-researched, we pro-

vide a new perspective on this problem by considering the case where the firm can

personalize return policies based on historical customer behavior. There have been

papers that study personalization in other areas in retail, such as pricing (Fudenberg

and Villas-Boas, 2006; Liu and Zhang, 2006; Choe et al., 2017), assortment (Golrezaei
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et al., 2014; Gallego et al., 2016), and advertising (Bleier and Eisenbeiss, 2015). To the

best of our knowledge, our paper is the first to study behavior-based personalization

in return policies in retail.

4.4 Model

We consider a monopolistic firm selling finite inventory of a single product at a fixed

price p. We model the demand as a continuous mass of customers with a mean valuation

V for the product, and their true valuation can only be realized after purchase of the

product. This is a common assumption in literature, and is justified in the context of

e-commerce retail where customers can only experience the product after purchase. If

a customer chooses to buy the product, she realizes the true valuation V + ε, where ε

is drawn from a distribution G. Once the product is purchased and the true valuation

is realized, the customer can choose to return the product, in which case she incurs

a hassle cost (this models the customer’s proximity to store or ease of returning the

product, or the customer’s psychological hassle in returning the product), as well as

a return fee (equivalent to partial refunds). 1 If the customer chooses not to buy the

product, she leaves the system and receives a utility of 0.

Customers are characterized by their hassle type θ, which influences their perceived

hassle in returning a product. In particular, a customer of type θ returning a product

incurs a hassle cost that is linear in θ. We assume that each customer knows their

hassle-type θ, and their purchasing decision takes into account the hassle cost of returns.

However, the valuation uncertainty ε is only realized after purchase. We assume that

θ and ε are independent and uniformly distributed: θ ∼ U [0, θ̄], and ε ∼ U [ε, ε̄]. 2

In the base case where the firm does not have knowledge of each customer’s hassle

type, we assume that the distribution of the hassle types H across customers is known

to the firm. The aggregate demand is assumed to be a random variable D following

distribution F . In addition to uncertainty from the aggregate demand, the firm’s

decisions also depend on customer behavior with respect to purchasing and return

decisions, which in turn depend on customers’ hassle types and valuations. Thus, the

firm has knowledge of the distributions F , G and H.

At the start of the period, the firm decides the starting inventory level y ≥ 0

(purchased at a per-unit cost c), as well as the return policy π, which maps each

1The return fee can also include any return shipping fees that the customer bears.
2We note here that the distribution of ε is constrained such that the resultant valuation V + ε is

non-negative, and we also have p < V + ε̄ so that the price is not too high so that no one buys.
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customer of hassle-type θ to a combination of a return window and a return fee: π(θ) =

(T π(θ), rπ(θ)). The return policy affects the customers’ disutility when they choose to

return a product after purchase. In particular, when a customer of type θ purchases

the product under policy π(θ) and chooses to return the product, they face a disutility

comprised of two components – a perceived hassle cost of θ
Tπ(θ)

, and the return fee rπ(θ).
3 We note that in the case where the firm does not have access to each customer’s type

θ, the return window and return fees are necessarily independent of θ.

To simplify analysis, we assume that T π(θ) can only take one of three values T π(θ) ∈
{T∅, TS, TL}, with 0 = T∅ < TS < TL where TS and TL correspond to short and

long return windows respectively, and T∅ corresponds to the no-return option. We

make the implicit assumption that shorter return windows inconvenience the customer,

and hence are associated with a higher hassle cost, whereas longer return windows

provide flexibility to the customer, and hence are associated with lower hassle cost.

We assume that the no-return option increases the perceived hassle cost to −∞, and

hence returning is not an option for any customer that is offered T∅.

In practice, returned items can rarely be resold at the full price as they lose some

of their value, primarily due to two reasons – first, the item may be damaged during

the time that it spends with the customer, and second, the item may be returned at a

time outside the normal selling season. In such cases, the firm either spends restocking

efforts to sell the product at a discount, or directly salvages the product (Phillips,

2018). Consistent to a single period setting, we assume that items that are returned

within the short window carry a higher salvage price of s′ compared to the salvage

price s for unsold items or items that are returned later under the long window policy,

i.e. s′ > s.

Finally, we note that charging a return fee of r is equivalent to a refund amount

of p − r. Thus, r = 0 is equivalent to full refunds, and r > 0 is equivalent to partial

refunds. We assume that the firm cannot profit off a return: that is, the profit from a

customer keeping the product is higher than the profit if she returns it. Mathematically,

this means that p− rπ(θ) ≥ s′, or rπ(θ) ≤ p− s′.

4.4.1 Customer Decisions

We first analyze the decision of a customer once she arrives and observes the return

policy offered to her: (T π(θ), rπ(θ)). The customer decision tree is shown in Figure 4.1.

3We assume that the values of Tπ(θ) are normalized to make the fraction θ
Tπ(θ) comparable to the

return fee
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Buy

Don't Buy
Price p

0

Valuation V

−

θ

Tπ(θ) − rπ(θ)

V + ǫ− p

Return

Don't Return

ǫ realized

Type θ

Return Policy π(θ)

Figure 4.1: Figure showing the decision tree for customer of hassle-type θ when offered
a return policy π(θ).

If a customer decides to purchase the product, she realizes her random valuation

V + ε for the product. The customer will choose to keep the product if and only if the

utility of keeping the product (V + ε− p) is greater than the utility from returning the

product.

In our model, when the customer returns the product, she gets p− rπ(θ) as refund

towards her purchase cost of p, but she also incurs a hassle cost of θ
Tπ(θ)

. Therefore,

the utility from returning the product is − θ
Tπ(θ)

− rπ(θ) (we refer to the negative of

this value as the disutility of product returns).

Suppose that the return disutility is equal to K. Then, the expected utility of

purchasing the product is

U(K) := Eε [max (V + ε− p,−K)] . (4.1)

A customer will only purchase the product if the expected utility is at least equal to

zero.

We note here that if p ≤ V , the firm is better off not offering the return option to

customers. This is because, all customers will buy the product irrespective of whether

the return option is offered or not since

U(K) ≥ Eε [max (V + ε− V,−K)] ≥ Eε [ε] = 0

The firm is better off if customers keep their products (rπ(θ) + s′ ≤ p), and hence

allowing returns only serves to decrease the profits in this case. Offering the return

option allows the firm to charge a higher price, as customers now have a recourse in

case they are dissatisfied with the product. Hence, we will only assume that p > V ,

and we discuss the no-returns option as an extension in Section 4.7.

Since the customer type θ only influences the hassle cost, hence, the disutility of
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returns, we have a simple threshold rule to characterize customers’ buying behavior.

This is formalized in the following proposition.

Proposition 4.4.1 There exists a threshold K̄ (independent of θ) such that a customer

buys the product if and only if her return disutility does not exceed this threshold. That

is, a customer type θ will buy if and only if θ
Tπ(θ)

+ rπ(θ) ≤ K̄.

The Proposition states that K̄ is the maximum return disutility that customers

are willing to accept before purchasing, and that this threshold is independent of θ.

This threshold exists because the expected utility of buying the product (4.1) is non-

increasing in K. Since ε is independent of the customer type θ, there exists a threshold

K̄ that is independent of θ and where U(K) ≥ 0 for all K ≤ K̄ and U(K) < 0 for all

K > K̄.

An implication of the Proposition is that K̄ is the maximum return fee that the

firm will charge to any customer. While charging a return fee higher than K̄ results in

a higher profit for returns, this benefit will never be realized since the customer never

buy the product. Therefore, we can assume that K̄ ≤ p− s′. This is due to our earlier

assumption that the return fee rπ(θ) charged to a customer cannot exceed p− s′.
Suppose that customers with type θ are offered policy (rπ(θ), T π(θ)). There will

be demand for the product from this customer type if the threshold rule in Proposi-

tion 4.4.1 is satisfied. Further, given that this customer purchases the product (con-

tingent on inventory being available), the probability of a product return is

Pε
(
V + ε− p < − θ

T π(θ)
− rπ(θ)

∣∣∣ θ, buys

)
= G

(
p− V − θ

T π(θ)
− rπ(θ)

)
, (4.2)

which is the probability that the valuation is too low to justify keeping the product.

4.4.2 Firm’s Problem

We now formulate the firm’s expected profit maximization problem. As a result of

Proposition 4.4.1, customers that are offered T∅ do not buy the product (since V < p)

and do not affect the profit function, and hence we can ignore these customers while

formulating the profit function.

The salvage value of returned products depends on when the product is returned.

Therefore, knowing when the product is returned is important for evaluating the firm’s

expected profit. We denote by ξπS and ξπL the fraction of customers that demand the
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product and are offered a short window and a long window, respectively. Mathemati-

cally,

ξπS =

∫
θ∈ΩπS

h(θ)dθ, ξπL =

∫
θ∈ΩπL

h(θ)dθ, (4.3)

where

Ωπ
S :=

{
θ ∈ [0, θ̄] : T π(θ) = TS, r

π(θ) ≤ K̄ − θ

TS

}
, (4.4)

Ωπ
L :=

{
θ ∈ [0, θ̄] : T π(θ) = TL, r

π(θ) ≤ K̄ − θ

TL

}
. (4.5)

are the set of customers offered a short (long) return window and have a nonnegative

utility for purchasing the product. Note that the total demand rate is ξπ = ξπS + ξπL.

If there is infinite inventory, all customers with positive purchase utility will be able

to buy the product. If this is the case, the rate of early returns and late returns are

given by:∫
θ∈ΩπS

G
(
p− V − θ

T π(θ)
− rπ(θ)

)
h(θ)dθ,

∫
θ∈ΩπL

G
(
p− V − θ

T π(θ)
− rπ(θ)

)
h(θ)dθ.

(4.6)

Note that the integration is over all customer types who generate demand for the

product (Proposition 4.4.1). In the case of infinite inventory, these customers are able

to purchase the product, and (4.2) is the return probability conditional on purchasing

the product. Thus, the expression for the total salvage value is straightforward from

(4.6).

On the other hand, if inventory is finite, the rate of early or late returns depends

on how the inventory is allocated between customers offered a short return window

and those offered a long window. For example, suppose that all inventory has been

allocated to customers given a long return window. Then even if there is demand

from customers with a short return window, the early return rate will be zero. Hence,

expressing the total salvage value requires keeping track of which customers possess

each unit of inventory.

In the interest of tractability, we make the following reasonable assumption: we

assume that inventory is sold at the same rate of purchase for the two classes of

customers Ωπ
S and Ωπ

L in the following fashion: if y is the inventory level,
ξπS
ξπ
· y is

available for customers belonging to set Ωπ
S, and likewise,

ξπL
ξπ
·y for customers belonging
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to set Ωπ
L. Under this assumption, the firm’s expected total sales is

Emin

(
ξπS
ξπ
y, ξπSD

)
+ Emin

(
ξπL
ξπ
y, ξπLD

)
, (4.7)

where D is the random total demand.

We require a final assumption to be able to formulate the expression for the rate of

early and late returns. This is due to the fact that the return behavior depends on the

specific customer types in Ωπ
S and Ωπ

L that receive the product. For example, though

the salvage value of returns from types θ1 and θ2 (where θ1 < θ2 and θ1, θ2 ∈ Ωπ
S)

is the same, selling the product to the former customer type will result in a lower

probability of return. Hence, as before, expressing the rate of returns requires keeping

track of which specific customer types receive the product. To address this issue, we

assume that customers in Ωπ
S have equal chances of receiving the product, and similarly,

customers in Ωπ
L have equal chances of receiving the product.

Under this last assumption, the expected return probability ψπS of a customer se-

lected at random among all who purchased in Ωπ
S is:

ψπS : = Eθ
[
G
(
p− V − θ

TS
− rπ(θ)

) ∣∣∣ θ ∈ Ωπ
S

]
=

1

ξπS
·
∫

θ∈ΩπS

G
(
p− V − θ

TS
− rπ(θ)

)
h(θ)dθ (4.8)

Similarly, the expected return probability ψπL of a customer selected randomly from

those who purchased in Ωπ
L is:

ψπL : = Eθ
[
G
(
p− V − θ

TL
− rπ(θ)

) ∣∣∣ θ ∈ Ωπ
L

]
=

1

ξπL
·
∫

θ∈ΩπL

G
(
p− V − θ

TL
− rπ(θ)

)
h(θ)dθ (4.9)

Note that, due to our assumption, these expected return probabilities do not depend

on the actual sales from Ωπ
S or Ωπ

L. Hence, the expected total returns is equal to:

ψπS · Emin

(
ξπS
ξπ
y, ξπSD

)
+ ψπL · Emin

(
ξπL
ξπ
y, ξπLD

)
. (4.10)

Since (4.10) distinguishes between early returns (the first term which has salvage value

s′) and late returns (the second term whose salvage value is s), we are able to compute
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the expected total salvage value.

To complete the specification of the firm’s expected profit, we need to determine

the expected total refunds that the firm will issue for product returns. Let Rπ
S and

Rπ
L are the expected return fees collected from a customer selected at random from

those who purchased in Ωπ
S and Ωπ

L, respectively, and who have returned the product.

Mathematically,

Rπ
S = Eθ,ε

[
rπ(θ)

∣∣ θ ∈ Ωπ
S, V + ε− p < − θ

TS
− rπ(θ)

]
=

1

ξπSψ
π
S

∫
θ∈ΩπS

rπ(θ)G
(
p− V − θ

TS
− rπ(θ)

)
h(θ)dθ (4.11)

Rπ
L = Eθ,ε

[
rπ(θ)

∣∣ θ ∈ Ωπ
L, V + ε− p < − θ

TL
− rπ(θ)

]
=

1

ξπLψ
π
L

∫
θ∈ΩπL

rπ(θ)G
(
p− V − θ

TL
− rπ(θ)

)
h(θ)dθ (4.12)

Putting everything together, the firm’s expected total profit is given by:

Π(y, π) = −c · y + p · Emin

(
ξπS
ξπ
y, ξπSD

)
+ p · Emin

(
ξπL
ξπ
y, ξπLD

)
︸ ︷︷ ︸

profit from sales

− (p− s′ −Rπ
S)ψπSEmin

(
ξπS
ξπ
y, ξπSD

)
︸ ︷︷ ︸

S returns salvaged at s′

− (p− s−Rπ
L)ψπLEmin

(
ξπL
ξπ
y, ξπLD

)
︸ ︷︷ ︸

L returns salvaged at s

+ s · E
(
ξπS
ξπ
y − ξπSD

)+

+ s · E
(
ξπL
ξπ
y − ξπLD

)+

︸ ︷︷ ︸
unsold items salvaged at s

Simplifying, we get:

Π(y, π) = (s− c) · y

+

(
p− s− 1

ξπ
· [(p− s′ −Rπ

S) ξπSψ
π
S + (p− s−Rπ

L) ξπLψ
π
L]

)
· Emin (y, ξπD)

(4.13)
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The firm’s problem is to choose (y, π) so as to maximize its expected profit Π(y, π) in

(4.13).

We next discuss how the return policy affects the firm’s expected profit. To do this,

let us derive an alternative expression for the profit function by first defining

p̃π :=
1

ξπ
· [(p− s′ −Rπ

S) ξπSψ
π
S + (p− s−Rπ

L) ξπLψ
π
L] . (4.14)

Then, we have:

Π(y, π) = (s− c) · y + (p− p̃π − s) · Emin (y, ξπD) (4.15)

We will assume that for all return strategies, p̃π ≤ p− s and c ≤ p− p̃π, as otherwise,

it is optimal to keep zero inventory. Comparing (4.15) with the profit in a traditional

newsvendor setting, it seems at first glance that implementing a return policy reduces a

firm’s profit since it reduces the effective price at which the product is sold by p̃π, while

also reducing the demand. However, this is not true since the traditional newsvendor

setting does not model customer choice, so all customers are willing to buy the product

at price p even without the option of returns. In our setting, if price p > V is offered

without the option for returns, no customer will buy the product so the expected profit

is zero. 4 Given a fixed price, the effect that a return policy has on the expected profit

is two fold: first, it limits the effective demand, as some customers may choose to not

buy the product due to higher price in spite of the return option; and second, allowing

returns reduces the effective revenue, as the firm loses the sale and only obtains the

salvage value of the product and any return fee it may have charged.

These effects demonstrate the tradeoff in setting a return policy – imposing a lenient

return policy (i.e., by increasing the return window or by reducing the return fee)

encourages more people to buy (reflected in a higher ξπ); however, it also increases the

revenue loss p̃π by either a lower salvage value or a higher rate of return. Strict return

policies can serve to keep the revenue loss due to returns low, however it reduces

the effective demand due to increased hassle in returns. Janakiraman and Syrdal

(2016) advise that retailers “should approach return policies as a balancing act between

increasing demand and limiting returns”; we thus capture the essence of return policies

through our model as a tradeoff between limiting demand and limiting the revenue loss

from returns.

4Offering returns allows the firm to charge a higher price p > V than in the case where no returns
are offered. For the purpose of this study, we assume that the price is exogenous to the model (we
discuss optimizing the price when no-returns option is also offered in Section 4.7).
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We have the following Proposition that establishes the structure of the profit func-

tion given a return strategy π.

Proposition 4.4.2 Given a return strategy π, the expected profit function Π(y, π) is

concave in y, with the optimal inventory level y∗(π) given by:

y∗(π) = ξπ · F−1

(
1− c− s

p− s− p̄π

)
, (4.16)

Thus, the problem of optimizing the expected profit can be restated as a problem

where the return strategy π is the only variable. However, optimizing Π(y∗(π), π) can

be complicated. In fact, even when the inventory level y is fixed, it is not immediately

clear what the optimal return policy π∗(y) looks like. In the following sections, we

solve these problems under various cases:

1. Blanket Return Policies (πSB, and πLB) where all customers are offered the same

return policy,

2. Menu of Return Policies (πM) where all customers can choose among a set of

return policies, and this set is the same for all customers,

3. Personalized Return Policies (π∗) where the return policy is specific to each cus-

tomer type

4.5 Return Policies without Customer-Specific In-

formation

In this section, we assume that all customers regardless of their type are offered the

same return policy. This can be because either the firm does not have information

about the individual customer hassle costs, or because the firm chooses not to imple-

ment a customer-specific return policy. Mathematically, we assume that the firm only

knows the distribution of customer types G, but that the return policy π = (T, r) is

independent of the customer type θ. As in Section 4.4.2, we ignore the no-returns

option (T∅) since it is inconsequential to the profit function in these cases.
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4.5.1 Blanket Policies

A typical practice seen in retail is to offer the same return policy π = (T, r) to every

customer. A natural question is: if the firm imposes a blanket return policy, should

the return window be short or long? By shortening the return window, the firm can

earn a higher salvage value for returned products; however, this is at the cost of a lower

demand rate since the option of buying the product with a short return window is less

attractive. In this section, we will investigate the conditions under which a firm should

impose a short return window or a long return window.

We start with a simple result. The following corollary of Proposition 4.4.1 es-

tablishes the customer types that are willing to buy under a blanket return policy

π = (T, r):

Corollary 4.5.1 The set of customer types willing to buy the product under blanket

return policy π = (T, r) is Ω =
{

0 ≤ θ ≤
(
K̄ − r

)
T
}
.

We next compare two blanket return policies:

1. The Short Blanket Policy, where all customers are offered πSB = (TS, rS), and

2. The Long Blanket Policy, where all customers are offered πLB = (TL, rL)

Using Corollary 4.5.1 to calculate customer parameters that should be substituted

in Equation 4.15, the expected profits of the firm given inventory level y and return

fees rSB, rLB are given by:

Π(y, πSB) = (s− c) · y +
(
p− s− p̃SB

)
· Emin

(
ξSBD, y

)
(4.17)

Π(y, πLB) = (s− c) · y +
(
p− s− p̃LB

)
· Emin

(
ξLBD, y

)
(4.18)

where:

p̃SB = (p− s′ − rSB) · ψSB (4.19)

p̃LB = (p− s− rLB) · ψLB (4.20)

Note that early returns under πSB are salvaged at price s′, whereas late returns under

πLB are salvaged at price s, however unsold inventory are salvaged at price s in both

cases.

Given an inventory level y ≥ 0, let ΠSB(y) and ΠLB(y) denote the optimal expected
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profit under a short-blanket and a long-blanket policy, respectively. That is,

ΠSB(y) = max
rS∈[0,K̄]

Π(y, TS, rS) (4.21)

ΠLB(y) = max
rL∈[0,K̄]

Π(y, TL, rL) (4.22)

We have the following Proposition which sheds a light on the choice of blanket policy

based on the salvage price s′:

Proposition 4.5.1 Let ∆Π(y) = ΠSB(y)−ΠLB(y) denote the difference in the optimal

expected profits under a short blanket policy and a long blanket policy. Then,

1. For low values of s′ (close to s), ∆Π(y) ≤ 0, so the firm should impose a long

blanket policy, and

2. ∆Π(y) is monotonically increasing in s′.

The proposition implies that shortening return windows can lead to higher profits for

products that lose value quickly with the time they spend with the customer. For

products that have a relatively stable value over time (e.g. non-perishable consumer

goods), longer return windows are more profitable as they boost sales by lowering the

hassle cost of return. However for products that do not lose value and can be resold

efficiently, shorter return windows may be preferable due to lower rates of return and

increased values for returned goods.

While Proposition 4.5.1 provides guidance for the firm to choose between short and

long window policies, it does not provide any information about the optimal return fee

that the firm has to charge to maximize profits. Let y∗(r) denote the optimal inventory

level for a blanket policy that charges a return fee of r with a return window of T ,

given by Equation 4.16:

y∗(r) = ξ(r) · F−1

(
1− c− s

p− s− p̃(r)

)
. (4.23)

The effect of increasing r on y∗(r) is characterized by two effects: first, the demand

effect, which is due to the decrease in the demand rate ξ(r), and second, the revenue

effect, which is due to the decrease in the revenue loss p̃(r). The following Proposition

establishes the structure of the expected profit function in terms of the return fee r.

Proposition 4.5.2 Given a return window T , when the demand effect of increasing

return fees is dominant (i.e. y∗(r) is decreasing in r), then Π(y∗(r), T, r) is unimodal
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Figure 4.2: Figure showing the decision tree for a customer of hassle-type θ, when
offered a menu of policies (πM,S, πM,L).

in r. Furthermore, there exists a threshold c̄ such that whenever c > c̄, it is optimal

for the firm to charge a return fee r∗ > 0. For low values of c, it is only optimal for

the firm to offer full refunds (r∗ = 0) when the revenue loss due to returns is not too

large.

4.5.2 Menu of Policies

While blanket policies are commonly seen in practice, in the absence of customer-

specific information, the firm can also offer a menu of policies and allow customers to

choose the policy that suits them best. We analyze the case where the firm offers two

policies πM,S : (TS, rS) and πM,L : (TL, rL).

The decision tree of the customer’s decision is shown in Figure 4.2.

As the customers are free to choose their return policy, they choose the policy

that maximizes their expected utility. First, following Proposition 4.4.1, we have the

following Corollary:

Corollary 4.5.2 There exists thresholds θM,S and θM,L where

θM,S =
(
K̄ − rS

)
· TS

θM,L =
(
K̄ − rL

)
· TL,

such that customers with θ > θM,S will never buy the product under πM,S, and similarly
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Figure 4.3: Figure showing the customer adoption under a menu of policies
(πM,S, πM,L). Customer θ1 (in red) buys with policy πM,S, and customer θ2 (in green)
buys with policy πM,L. The darker lines represent the choice of customers correspond-
ing to the option that yields the highest expected utility (or lowest return disutility).

customers with θ > θM,L will never buy the product under πM,L.

Corollary 4.5.2 is illustrated in Figure 4.2. Note that a customer type θ will only

buy if her disutility from product returns is less than the threshold K̄. The figure

plots the return disutility as a linear function of θ (each return policy in the menu

is associated with one disutility function). θM,S and θM,L are the points where these

disutility functions cross K̄. The figure also shows that the fee charged for product

returns coincides with the vertical intercept of the disutility function. So increasing

the fee charged for product returns will result in a shift up of the disutility function

(i.e., less customers would be willing to buy).

Given the option between πM,S and πM,L, a customer will choose the return policy

that results in the lower disutility of product returns. Hence, we can use the lower

envelope of the two return disutility functions in Figure 4.3 to determine which return

policy each customer type will choose. This is formalized in the following proposition:

Proposition 4.5.3 Let ΩM,S and ΩM,L denote the sets of customers who buy the prod-

uct under πM,S and πM,L, respectively, when offered the menu of return policies. As-

suming that rS, rL ∈ [0, K̄] and rS ≤ rL ≤ rS · TSTL + K̄ ·
(

1− TS
TL

)
, then

1. ΩM,S = {θ ≤ θM,SL},
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2. ΩM,L = {θM,SL ≤ θ ≤ θM,L}

where θM,SL = rL−rS
1
TS
− 1
TL

∈ [0, θM,S].

The conditions of Proposition 4.5.3 are needed so that the customer choice is non-

trivial. Note that we require rS ≤ rL since, otherwise, all customers will choose πM,L

over πM,S. Further if rL is too high, no customer will ever choose πM,L. Hence, we

need
θM,S
TL

+ rL ≤ K̄.

Let Π(y, πM) denote the expected profit under the menu of policies πM , and let

ΠM(y) denote the maximum expected profit given an inventory level y ≥ 0, given by:

ΠM(y) = max
rS∈[0,K̄],

rL∈
[
rS ,rS ·

TS
TL

+K̄·
(

1−TS
TL

)]Π(y, πM) (4.24)

Proposition 4.5.4 ΠM(y) ≥ max
(
ΠSB(y),ΠLB(y)

)
, ∀y ≥ 0.

Interestingly, Proposition 4.5.4 shows that if the firm is able to optimize the refund

fees, its profit from offering a menu of return policies is higher than what it can earn

when it imposes a blanket return policy. Thus the firm can achieve higher expected

profits by allowing customers to choose from a menu of policies, rather than offering a

single blanket policy.

4.6 Personalized Return Policies with Customer-

Specific Information

In this Section, we establish important structural results about the optimal personalized

return strategy that the firm should follow to maximize its expected profits. In order to

understand the optimal policy better, and to contrast with industry practices, we first

analyze the case where the retailer offers full refunds (i.e., r = 0), but can personalize

the return window according to the customer types.

4.6.1 Personalized Return Policies with Full Refunds

In the case of the firm offering full refunds, we have rπ(θ) = 0 for all θ, but the firm

can choose T π(θ) ∈ {T∅, TS, TL}. First, we rewrite the expected profit function from
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Figure 4.4: Figure showing the optimal personalized policy under full refunds. The
dotted regions correspond to customers not buying the product.

Equation 4.13 for the case of full refunds as follows:

Π(y, π) = (s− c) · y +

(
p− s− 1

ξπ
· [(p− s′) ξπSψπS + (p− s) ξπLψπL]

)
· Emin (y, ξπD)

(4.25)

We have the following Proposition that establishes the structure of the optimal policy

π∗,F :

Proposition 4.6.1 Given inventory level y ≥ 0, there exists an optimal policy such

that:

1. For any θ ≤ K̄TS, if T ∗,F (θ) = T∅, then for any other θ′ < θ, T ∗,F (θ′) = T∅.

2. For any θ ≤ K̄TL, if T ∗,F (θ) = TS, then for any other θ′ < θ, T ∗,F (θ′) = TS or

T ∗,F (θ′) = T∅.

3. If θ ≤ K̄TS, T ∗,F (θ) 6= TL.

We restate the proposition in the following Corollary:

Corollary 4.6.1 Given an inventory level y ≥ 0, the optimal return policy π∗,F that

maximizes the expected cost has a threshold structure:

π∗,F =


T∅, if 0 ≤ θ ≤ θ∗,F1

TS, if θ∗,F1 < θ ≤ θ∗,F2

TL, if θ∗,F2 < θ ≤ K̄TL

(4.26)

where 0 ≤ θ∗,F1 ≤ K̄TS ≤ θ∗,F2 ≤ K̄TL.

This paints an intuitive picture of the optimal policy, shown in Figure 4.4. We see

that the optimal policy bans customers of low-hassle types from buying the product,

which is consistent with the strategies seen in practice by Amazon.com and Costco,

who identify customers who return frequently and ban them from purchasing products.
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We also note that there is another set of customers that may not end up purchasing

the products – as opposed to low-hassle customers for whom offering the option of

return is too lenient, we have customers for whom offering the long-return window is

too lenient. As a result, they are only offered the short-return window, and hence they

do not purchase the product.

4.6.2 Personalized Return Policies with General Refunds

We now move on to the general case where return fees can be applied to customers. We

first establish the importance of return fees. It is apparent that the expected profit can

be increased, if the effective revenue loss due to returns p̃π can be decreased (keeping ξπ

the same). One way of doing this is to increase the return fee for customers – increasing

return fees can reduce the rate of returns, as the utility in returning the item decreases.

Additional revenue is also obtained from returning customers in the form of increased

return fees. The following lemma establishes the dependency of the effective revenue

loss on the return policy:

Lemma 4.6.1 Let π1 and π2 be two return policies such that

1. T π1(θ) = T π2(θ)
(

:= T π(θ)
)
, ∀θ.

2. for any θ with rπ2(θ) ≤ K̄− θ
Tπ(θ)

, it is also true that rπ2(θ) ≤ rπ1(θ) ≤ K̄− θ
Tπ(θ)

.

Then, p̃π1 ≤ p̃π2.

The lemma solidifies the intuition behind the benefits of increasing the return fees.

Keeping the set of purchasing customers fixed, increasing the return fee for these cus-

tomers can increase the expected profit. It is to be noted that the firm cannot charge

customers drastically high return fees, as this can dissuade the customers from pur-

chasing the product in the first place.

Let π∗ be the optimal personalized return strategy which maximizes the expected

profit given any inventory level y (π∗’s dependence on y is abbreviated for notational

clarity), and π∗ assigns each θ to a return window T ∗(θ) and a return fee r∗(θ). Let

Ωπ = ΩS ∪ ΩL denote the set of customers that will buy the product.

With the help of Lemma 4.6.1, we have the following Proposition which establishes

the structure of the optimal personalized return policy π∗ given any inventory level y:

Proposition 4.6.2 For any given y, there exists a profit maximizing return policy π∗,

corresponding to return fee r∗(θ) and return window T ∗(θ) for every θ such that the

following are true:
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1. ∀θ ∈ Ωπ, − θ
T ∗(θ)

− r∗(θ) = −K̄.

2. For θ ≤ K̄TS, if θ ∈ Ωπ, then θ ∈ ΩS if and only if θ ≤ s′−s
1
TS
− 1
TL

.

3. If θ ∈ Ωπ, then for all θ′ < θ, θ′ ∈ Ωπ.

Proposition 4.6.2 (1) reiterates the result from Lemma 4.6.1, by stating the cus-

tomers should be charged the maximum return fee that they are willing to accept to

purchase the product. However, it stops short of addressing which customers ought to

be allowed to purchase the product. This is addressed by Proposition 4.6.2 (2) and (3),

which state that customers with lower values of θ are preferred by the firm to purchase

the product. To understand these better, we have the following Corollary:

Corollary 4.6.2 An optimal policy that has the properties in Proposition 4.6.2 can be

obtained by optimally choosing θ∗ ≤ K̄TL, and implementing the following policy:

π∗(θ∗) =


(
TS, K̄ − θ

TS

)
, if θ ≤ min(θ∗, θ∗1)(

TL, K̄ − θ
TL

)
, if min(θ∗, θ∗1) < θ ≤ θ∗

T∅, if θ > θ∗

(4.27)

where

θ∗1 = min

(
s′ − s
1
TS
− 1

TL

, TS · K̄

)
(4.28)

Note that for any θ ≤ θ̃S (where θ̃S = TS · K̄), two policies can satisfy the condition

in Proposition 4.6.2 (1):
(
TS, K̄ − θ

TS

)
and

(
TL, K̄ − θ

TL

)
. Both these policies yield

the same return disutility to the customer, and hence the probability of return is also

the same. When the customer returns under TS, a higher salvage value s′ is obtained,

and a return fee of K̄− θ
TS

is collected. However, when the customer returns under TL,

a lower salvage value s is obtained, but a higher return fee K̄ − θ
TL

is collected. Thus,

θ∗1 is the value at which these two are equal, which yields Equation 4.28.

Thus, the profit-maximizing policy is given by the optimization problem:

Π∗(y) = max
θ∗≤K̄TL

Π(y, θ∗) (4.29)

Finally, since any return policy is a feasible solution to the personalized return

policy, we have the following Proposition:
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Figure 4.5: Figure showing the structure of the optimal personalized policy with general
refunds. First, a threshold θ∗ is chosen, which determines the demand rate. Then,
customer θ1 (in red) is offered a policy (TS, K̄ − θ1

TS
), and customer θ2 (in green) is

offered a policy (TL, K̄ − θ2
TL

).

Proposition 4.6.3 Π∗(y) ≥ ΠM(y), ∀y ≥ 0.

Thus from Propositions 4.5.4 and 4.6.3, we have:

max
(
ΠSB(y),ΠLB(y)

)
≤ ΠM(y) ≤ Π∗(y), ∀y ≥ 0 (4.30)

Additionally, since customers are offered the maximum return fee that they are willing

to pay, the firm extracts all the surplus from the customers. The structure of the

optimal strategy is illustrated in Figure 4.5.

Note that the optimal policy prioritizes low-hassle type customers as opposed to

high-hassle customers, which is in direct contrast to the case where full refunds are

offered. This is because, when partial refunds are allowed, it is more profitable to

extract the surplus from low-hassle customers than to ban them from purchasing the

product. This suggests that firms such as Amazon.com and Costco may be better off in

offering strict return policies to customers who return frequently rather than banning

them outright, as if the firm can identify these customers, the firm can also extract all
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their surplus.

4.7 Extensions

4.7.1 No Returns Option

Note that we have trivialized the no-returns option so far, as whenever p > V , when

customers are offered the no-returns option they will choose to not buy the product.

However, we now consider a case where the no-returns option is provided at a lower

price equal to V . This is common practice for retailers like Jet.com that provide the

no-return option at a lower price compared to the regular option of buying the item

with a return option.

We can extend our analyses easily to the case where customers have an option

to buy the product with the no-return option at a lower price V , compared to the

option of buying the product at the regular price of p > V under a return policy π.

In this case, any customer that did not buy in the original formulation will now buy

the product under the no-returns option at price V , as this gives them a non-negative

(zero) expected utility.

In Section 4.4.2, we thus include an additional set of buying customers:

ξπ∅ =

∫
θ∈Ωπ∅

h(θ)dθ (4.31)

where Ωπ
∅ := (Ωπ

S ∪ Ωπ
L){. Note that the total demand rate is now ξπ = ξπS+ξπL+ξπ∅ = 1.

That is, ξπ∅ = 1− ξπS − ξπL. The firm’s expected total profit is thus:

Π(y, π) = −c · y + p · Emin (ξπSy, ξ
π
SD) + p · Emin (ξπLy, ξ

π
LD) + V · Emin (ξπ∅ y, ξ

π
∅D)

− (p− s′ −Rπ
S)ψπSEmin

(
ξπS
ξπ
y, ξπSD

)
− (p− s−Rπ

L)ψπLEmin

(
ξπL
ξπ
y, ξπLD

)
+ s · E (ξπSy − ξπSD)+ + s · E (ξπLy − ξπLD)+ + s · E (ξπ∅ y − ξπ∅D)+

Simplifying, we get:

Π(y, π) = (s− c) · y + (p− p̃π − s) · Emin (y,D) (4.32)
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where p̃π = [(p− V ) · (1− ξπS − ξπL) + (p− s′ −Rπ
S) ξπSψ

π
S + (p− s−Rπ

L) ξπLψ
π
L].

We note that all the results in our paper continue to hold in this setting. In

addition, as can be seen from Equation 4.32, the inventory and return policy decisions

are decoupled, as the total demand rate is equal to 1. Thus, we can first optimize the

return policy by solving the problem

min
π
p̃π (4.33)

and substituting the optimal policy π∗ into:

y∗ = F−1

(
1− c− s

p− s− p̃π∗
)

(4.34)

We also note that in some cases (such as personalized return policy with partial

refunds), where the optimal return policy has a simple structure, we can obtain the

optimal threshold in closed-form in terms of the price. This also implies that we can

find the optimum price that the firm should charge to maximize profits, as the price

optimization can also be done independent of the inventory situation.

4.8 Conclusion

With recent innovations in retailing due to the rapid rise in sales conducted over the

internet, retail firms are increasingly focusing on personalizing customer experiences

through collected historical data about customer behavior. Personalized policies have

been implemented in various areas such as pricing, promotions, recommendations, bun-

dle deals, etc., and firms are competing to innovate in this space. We address the

important problem of consumer returns in retail by analyzing the value of personalized

return policies that are tailored based on customers’ historical return behavior.

When the firm does not have access to customer’s individual behavior information,

we show that the firm can achieve higher expected profits by offering customers a menu

of policies as compared to a single blanket policy. Equipped with information about

individual customers, the firm can offer personalized return policies – we show that

when the firm offers full refunds, customers with low-hassle types (those that return

frequently under lenient policies) ought to be banned from returning items, as seen in

practice with firms like Amazon.com and Costco banning customers for returning too

frequently. However, when the firm can personalize refunds, we find that it is better to

sell to the low-hassle customers, as they can be charged higher return fees as compared
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to high-hassle customers.

Several future directions exist. One stream of research that can follow is personal-

izing other features that affect customers’ experience. One such feature where blanket

policies are common is shipping policies, where firms apply one policy to every cus-

tomer irrespective of their locations. Another avenue for customization is fulfillment

options, where the firm can strategically offer incentives for customers to select fulfill-

ment options that reduce the firm’s fulfillment costs.

While our model tries to capture different features such as product value uncertainty

and hassle due to return policies, customer behavior in reality can be quite complex.

For instance, Janakiraman and Syrdal (2016) show that increasing the return window

can lead to reduced return rates, which is attributed to endowment effect – customers’

valuation for the product increases with the time that they spend keeping the product.

This information asymmetry cannot be captured in our model, as customers do not

anticipate the endowment effect while deciding to purchase the item, but the firm

does. An additional difficulty that arises in this feature is heterogeneity in customer’s

endowment effects arising from keeping the product for longer times. We leave this as

an opportunity for future research.

As more and more firms are getting access to data about their customers from

various sources (in-house, social media, third-party companies, etc.), personalization

is at the forefront of retail innovation. While personalization can improve customer

satisfaction in certain areas (product recommendations), as we show in our study,

personalization is not always beneficial to customers – the firm’s effort to maximize

profits through personalized strategies based on data about customers’ behavior comes

directly at the cost of customer surplus. This provides policy implications for usage

of customer-centric information, especially in monopolistic markets, where customer

choice is limited.
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APPENDIX A

Appendix to Chapter 2

A.1 Proofs

A.1.1 Proof of Proposition 2.5.1

We first observe that given a realization of the demands, the optimal cost can be

obtained using a linear program. The proof follows in similar fashion to Seifert et al.

(2006, Proposition 1). Consider the linear program P (y1, y2, D̃), where zi represents

the amount of inventory at Ri used to fulfill its in-store demand, and zij represents the

amount of inventory of Ri used to fulfill online demand from region j.

P (y1, y2, D̃) = min
zi,zii,zij

∑
i

h(yi − zi−
∑
j

zij) +
∑
i

ps(Dis− zi)

+
∑
i

po(Dio −
∑
j

zji) +
∑
i

szii +
∑
i

∑
j 6=i

sijzij

subject to zi +
∑
j

zij ≤ yi, ∀i

zi ≤ Dis, ∀i∑
j

zji ≤ Dio, ∀i

zi, zij ≥ 0, ∀i, j
(A.1)

To show that the function P represents CIIP for a given demand D̃, notice

that the coefficients of the decision variables zi, zii, zij,(j 6=i) in the objective func-

tion follow (−h − ps) < (s − h − po) < (sij − h − po), under the conditions in Ψ

in Equation 2.4. The linear program can be solved greedily, and it is easy to see

that the optimal solution is given by zi = min (yi, Dis), zii = min
(
(yi −Dis)

+ , Dio

)
,

zij = min
((

(yi −Dis)
+ −Dio

)+
,
(
Djo − (yj −Djs)

+)+
)

.

The sequence of fulfillment is clear: in-store demand is fulfilled first, followed by on-
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line demand from the same region, and finally cross-shipment to other regions. Hence,

we have CIIP (y1, y2) = ED̃
(
P
(
y1, y2, D̃

))
. The objective function is linear and the

constraint set in (A.1) is a polyhedral convex set with linear constraints, and hence by

Heyman and Sobel (2003, Proposition B-4), P is jointly convex in y1, y2, D̃. As the

expectation of a convex function is convex, it follows that CIIP (y1, y2) is jointly convex

in y1 and y2.

The structure of CIIP as an expectation of a linear program draws direct comparison

with the value function in newsvendor networks (van Mieghem and Rudi, 2002). Similar

to Proposition 2 in Harrison and van Mieghem (1999), the gradient of the function

P (y1, y2, D̃) with respect to (y1, y2) can be written as:

∇y1,y2P
(
y1, y2, D̃

)
= (h, h)T − λ

(
y1, y2, D̃

)
where λ(y1, y2, D̃) is the dual-price vector corresponding to the constraints with y1 and

y2 in (A.1). The 4-dimensional demand space can be divided into domains Ωk (y1, y2)

such that in each domain, the optimal values of the decision variables zi, zii and zij

are linear in y1 and y2, and hence the dual-price vector λ(y1, y2, D̃) is constant (refer

to Appendix B for a discussion). The first-order conditions are:

∇y1,y2C
IIP (y1, y2) = 0 = ∇y1,y2ED̃

(
P
(
y1, y2, D̃

))
(A.2)

We can interchange the gradient and expectation on the right hand side of Equation A.2

(see Harrison and van Mieghem (1999) for a proof), and thus Equation A.2 becomes

∇y1,y2C
IIP (y1, y2) = 0 = ED̄∇y1,y2P

(
y1, y2, D̃

)
= (h, h)T − ED̃λ

(
y1, y2, D̃

)
= (h, h)T −

∑
k

λkP (Ωk (y1, y2))

where λk is the constant λ
(
y1, y2, D̃

)
for D̃ ∈ Ωk (y1, y2). �

103



A.1.2 Proof of Proposition 2.5.2

Based on the approximation used to formulate CLB, the difference in costs between

CIIP and CLB is:

CIIP (y)− CLB(y)

= (h+ po − s12)E
[(∑

i

Dio −
∑
i

(yi −Dis)
+
)+

+
∑
i

(Dis − yi)+ −
(
D −

∑
i

yi

)+]
≥ (h+ po − s12)E

[(∑
i

Dio −
∑
i

(yi −Dis)
+ +

∑
i

(Dis − yi)+
)+

−
(
D −

∑
i

yi

)+]
= 0

The first inequality follows from : a+ + b+ ≥ (a + b)+, and further simplification uses

x+ − (−x)+ = x. �

The proof follows for any number of stores, as long as the cross-shipping cost is a

constant and s12 < h+ po. The proof also follows when s12 is reduced to s, as done in

Equation 2.14.

A.1.3 Proof of Proposition 2.5.3

A similar result is proved in Dong and Rudi (2004, Lemma 1), who consider the case

of traditional transshipment. Substituting yDIP into the first order condition for CLB

in Equation 2.12, we have:

(h+ po− s12)FD

(∑
j

yDIPj

)
+ (s12 − s)FDi(yDIPi ) + (ps − po + s)FDis((y

DIP
i )− ps

= (h+ po − s12)

(
Φ

(
zDIP

∑
i

σi/σ

)
− Φ

(
zDIP

))

where Φ is the CDF of the standard normal distribution. The equality follows from the

fact that yDIP satisfies Equation 2.7, and the normality of demands, as we can write

yDIPi = µi+zDIPσi, where Di ∼ N (µi, σi), and D ∼ N (µ, σ). As
∑
i

σi/σ ≥ 1, it follow

that the gradient of CLB at yDIP is ≥ 0(≤ 0) whenever zDIP ≤ (≥)µi. Also, writing

σ =
√∑

i

σ2
i +

∑
j

2ρlσiσj, where ρl is the correlation coefficient between locations, yDIP

is optimal to CLB and CIIP when ρl = 1. �
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A.1.4 Proof of Proposition 2.5.4

Due to similarities to Dong and Rudi (2004), we have a similar solution where the

optimal inventory at each location is at the same critical fractile of the location’s

demands. Equation 2.15 can be written as:

yLBNi = F−1
Dis

(
m

ps − po + s

)
, ∀i ∈ Sso (A.3)

where m = ps−(h+po−s)FDS (
∑
j∈S

yLBNj ). Substituting Equation A.3 into the definition

of m, we have: ∑
j∈S

F−1
Dis

(
m

ps − po + s

)
= F−1

DS

(
ps −m

h+ po − s

)
Solving this yields a unique solution for m, which in turn yields a unique solution

yLBN, where each stores stocks at the same critical fractile of their in-store demand,

as seen from Equation A.3. �

For OFCs (i ∈ So), yLBNi = 0, as otherwise, the value of m is forced to be ps−po+s,

which renders Equation A.3 to infinity.

A.1.5 Proof of Proposition 2.5.5

Consider a square of unit area in which N stores are uniformly distributed. Let the

square be divided into
√
N identical cells, such that each cell contains

√
N stores. The

dimensions of each cell are thus 1

N
1
4
× 1

N
1
4

. The superscript l for a demand variable

(e.g. Dl
is) denotes that the demand belongs to a store in cell l.

Let CLB′ be the cost function obtained from CIIP by lowering all cross-shipping

costs to the within-region shipping cost s. Let CIIPc and CLB′c be the functions ob-

tained by restricting CIIP and CLB′ respectively, so that cross-shipments can only be

made between two stores belonging to the same cell. Clearly, CIIP (y) ≤ CIIPc(y) and

CLB′(y) ≤ CLB′c(y) for any y ≥ 0. Let g(y,N) denote the cost incurred by N stores

starting with inventory y each, without the option of cross-shipping:

g(y,N) =
N∑
i=1

[
h (y −Di)

+ + ps (Dis − y)+

+ po
(
Dio − (y −Dis)

+)+
+ smin

(
Dio, (y −Dis)

+) ]
Note that g(y,N) represents the sum of costs incurred by individual stores, and hence,
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Eg(y,N) = E
√
N∑

l=1

g(y,
√
N) =

√
Ng(y,

√
N). Let CSij(y,N) denote the cross-shipped

quantity between stores i and j, when there are N stores with order-up-to quantity

y each (CSlij when defined within a cell). Note that both the functions g and CSij

also depend on the demand vector, but the dependency is ignored for notational con-

venience. As the cells are identical in terms of demands and costs, we have:

CIIPc(yIIPH) = E

√N∑
l=1

g(yIIPH ,
√
N) +

√
N∑

i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSlij(yIIPH ,
√
N)


= Eg(yIIPH , N) + E

√N∑
l=1

√N∑
i=1

√
N∑

j=1,j 6=i

(slij − h− po)CSlij(yIIPH ,
√
N)


CLB′(yIIPH) = CLB′c(yIIPH)

+ (s− h− po)E

√N∑
l=1

√N∑
i=1

Dl
io −

(
yIIPH −Dl

is

)+

+

−

(
N∑
i=1

Dio −
(
yIIPH −Dis

)+

)+


= Eg(yIIPH , N) + E

√N∑
l=1

√N∑
i=1

√
N∑

j=1,j 6=i

(s− h− po)CSlij(yIIPH ,
√
N)


+ (s− h− po)

√NE

√N∑
i=1

Dl
io −

(
yIIPH −Dl

is

)+

+

− E

(
N∑
i=1

Dio −
(
yIIPH −Dis

)+

)+


The expression for CLB′ is written as the sum of CLB′c which restricts cross-shipping to

within each cell, and the cost of the additional cross-shipped units with this restriction

removed. We know that CLB(yIIPH) ≤ CLB′(yIIPH) ≤ CIIP (yIIPH) ≤ CIIPc(y), where

the first inequality follows from Proposition 2.5.5. We first show that CIIPc (yIIPH)

CLB′ (yIIPH)
→ 1

as N →∞. We have:

CIIPc(yIIPH)

CLB′(yIIPH)
− 1

=

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i
(slij − s)CSlij(yIIPH ,

√
N)

))
CLB′(yIIPH)

+

(h+ po − s)

[
√
NE
(√

N∑
i=1

Dl
io −

(
yIIPH −Dl

is

)+
)+

− E
(

N∑
i=1

Dio −
(
yIIPH −Dis

)+
)+
]

CLB′(yIIPH)

We have slij−s = f(dlij) ≤ f
( √

2

N
1
4

)
, as the maximum distance within a cell is

√
2

N
1
4

. Thus,
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using CLB′(yIIPH) ≥ E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i
(s)CSlij(y

IIPH ,
√
N)

))
for the first term, and

CLB′(yIIPH) ≥ sµoN for the second term, we have

CIIPc(yIIPH)

CLB′(yIIPH)
− 1 ≤

f
( √

2

N
1
4

)
s

+

(
h+ po − s
sµo
√
N

)
E

√N∑
i=1

Dio −
(
yIIPH −Dis

)+

+

(A.4)

The first term on the right hand side vanishes to zero as N → ∞, as f(d) → 0 as

d→ 0. To simplify the second term, we need the following lemmas.

Lemma A.1.1 If h < po − s, then yIIPH > µ where µ = µs + µo, and if additionally

h < (ps − po + s)Fs(µ),

yIIPH → F−1
s

(
ps − po + s− h
ps − po + s

)
∈ (0,∞), as N →∞

Proof: Lemma 1 is proved from the optimality equations of CLBN (Equation 2.15) for

identical stores:

(h+ po − s)P

(
N∑
i=1

Di ≤ NyIIPH

)
+ (ps − po + s)FD1s(y

IIPH) = ps

From the above equation, when h < po − s, we have

ps < 2 (po − s)P

(
N∑
i=1

Di ≤ NyIIPH

)
+ (ps − po + s)

This simplifies to yield yIIPH > µ. Now, by applying the central limit theorem as

N → ∞ and yIIPH > µ, P
( N∑
i=1

Di/N ≤ yIIPH
)
→ 1, and the result follows. Note

that the asymptotic solution should also satisfy yIIPH > µ, which translates to the

condition h < (ps − po + s)Fs(µ). �

Lemma A.1.2 When h < po− s and h < ps− (po− s), and the demands are bounded

above as Dis ≤Ms and Dio ≤Mo for all i,

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+

 ≤ exp

{
−2
√
N(yIIPH − µ)2

Mo +Ms

}
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Proof:

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+


= P

√N∑
i=1

(
Di −

(
Dis − yIIPH

)+
)
>
√
NyIIPH

 ≤ P

√N∑
i=1

Di >
√
NyIIPH


≤ exp

{
−2
√
N(yIIPH − µ)2

Mo +Ms

}
→ 0, as N →∞

The final inequality follows from the Hoeffding bound for tail probabilities Hoeffding

(1963), as yIIPH > µ and demands are bounded, and the limit exists as yIIPH ap-

proaches a finite positive quantity as N → ∞ by Lemma 1. The expectation in the

second term of Equation A.4 can be bounded as follows:

E

√N∑
i=1

(
Dio −

(
yIIPH −Dis

)+
)+

= E

√N∑
i=1

(
Dio −

(
yIIPH −Dis

)+
)+ ∣∣∣∣∣

√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+


≤ E

√N∑
i=1

Dio

∣∣∣∣∣
√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+


≤Mo

√
N exp

{
−2
√
N(yIIPH − µ)2

Mo +Ms

}

The last inequality follows from Lemma 2 and the boundedness of the demands as

Dis ≤Ms, and Dio ≤Mo for all i with 0 < Ms,Mo <∞. �

Thus, we have:

CIIPc(yIIPH)

CLB′(yIIPH)
≤ 1 +

f
( √

2

N
1
4

)
s

+

(
h+ po − s

sµo

)(
Mo

√
N exp

{
−2
√
N(yIIPH − µ)2

Mo +Ms

})
→ 1, as N →∞

(A.5)

The next step is to show the CLBN is off by a constant factor from the CLB′ . From
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the proof of Proposition 2.5.2, the difference simplifies to:

CLB
′

(yIIPH)− CLBN(yIIPH)

= (h+ po − s)E

[(
N∑
i=1

Dio −
(
yIIPH −Dis

)+

)+

+
N∑
i=1

(
Dis − yIIPH

)+ −

(
D −

N∑
i=1

yIIPH

)+ ]

where D =
∑N

i=1 Dis +Dio.

Similar to what was done to bound the second term in Equation A.4, we can show

that whenever the conditions in Lemma 2 are satisfied

E

(
N∑
i=1

Dio −
(
yIIPH −Dis

)+

)+

≤MoN exp

{
−2N(yIIPH − µ)2

Mo +Ms

}

Thus, we have:

CLB
′

(yIIPH)− CLBN(yIIPH)

≤ (h+ po − s)

[
MoN exp

{
−2N(yIIPH − µ)2

Mo +Ms

}
+

N∑
i=1

(
Dis − yIIPH

)+

]

Using CLBN(yIIPH) ≥ sµoN and CLBN(yIIPH) ≥ (ps − po + s)
N∑
i=1

(
Dis − yIIPH

)+
, we

have:

CLB′(yIIPH)

CLBN(yIIPH)
− 1 ≤

(
h+ po − s

sµo

)(
Mo exp

{
−2N(yIIPH − µ)2

Mo +Ms

})
+

(
h+ po − s
ps − po + s

)
(A.6)

Thus, from Equations A.5 and A.6, as N →∞, we have

CIIPc(yIIPH)

CLBN(yIIPH)
≤ 1 +

h+ po − s
ps − po + s

⇒ CIIPH

CLBN(yIIPH)
≤ h+ ps
ps − po + s

The final step follows from CIIPc(yIIPH) ≥ CIIP (yIIPH) = CIIPH . �

The result may hold subject to some generalizations, such as the unit square can

be replaced with any finite area, and non-identical cells as long as the number of stores
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in each cell grows to infinity as N → ∞. The resulting cases may call for a more

complicated proof, and is outside the scope of this study.

A.1.6 Proof of Proposition 2.6.1

Consider the single period case, where items are ordered at the start of the pe-

riod, and online demands are fulfilled over T fulfillment epochs. Assume that

CT+1(xT+1, D̃T+1) = 0 without loss of generality. Thus, CT (xT, D̃T ) is given by a

simple linear program which is jointly convex in (xT, D̃T ). This leads to the base case

result that CT (xT, D̃T ) is convex in xT given any D̃T . By backward induction, we

need to show that Ct(x
t, D̃t) is convex in xt for any given D̃t, with the assumption

that Ct+1(xt+1, D̃t+1) is convex in xt+1 given any D̃t+1. The cost-to-go function can

be represented by Ct(x
t, D̃t) = min

zt,Zt∈∆
G(xt, D̃t, zt,Zt), where

G(xt, D̃t, zt,Zt) =
[
P (xt, D̃t, zt,Zt) + ECt+1(xti − zti −

N∑
j=1

Zt
ij, D̃

t+1)
]

(A.7)

Consider any µ ≥ 0, and xt
1,x

t
2 ≥ 0. Let (zt

i ,Z
t
i ) = arg min

zt,Zt∈∆

G(xt
i , D̃

t, zt,Zt).

Note that P is a linear function in its variables (Equation 2.2), and ECt+1(xt+1, D̃t+1)

is convex in xt+1, as expectation preserves convexity. Let x̄t = µxt
1 + (1 − µ)xt

2,

z̄t = µzt
1 + (1− µ)zt

2 and Z̄t = µZt
1 + (1− µ)Zt

2. We have:

Ct(x̄
t, D̃t)

= min
zt,Zt∈∆

[
P (x̄t, D̃t, zt,Zt) + ECt+1(x̄ti − zti −

N∑
j=1

Zt
ij, D̃

t+1)
]

≤ P (x̄t, D̃t, z̄t, Z̄t) + ECt+1(x̄ti − z̄ti −
N∑
j=1

Z̄t
ij, D̃

t+1)

≤ µP (xt
1, D̃

t, zt
1,Z

t
1) + (1− µ)P (xt

2, D̃
t, zt

2,Z
t
2) + ECt+1(x̄ti − z̄ti −

N∑
j=1

Z̄t
ij, D̃

t+1)

The first inequality follows from the feasibility of z̄t, Z̄t in ∆, as (zt
1,Z

t
1) and

zt
2,Z

t
2) are feasible in ∆. The second inequality follows from the convexity of P .
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As ECt+1(xt+1, D̃t+1) is convex in xt+1, we have:

ECt+1

(
x̄ti − z̄ti −

N∑
j=1

Z̄t
ij, D̃

t+1
)

= ECt+1

[
µ

(
xt1,i − zt1,i −

N∑
j=1

Zt
1,ij

)
+ (1− µ)

(
xt2,i − zt2,i −

N∑
j=1

Zt
2,i

)
, D̃t+1

]

≤ µECt+1

[
xt1,i − zt1,i −

N∑
j=1

Zt
1,ij, D̃

t+1

]
+ (1− µ)ECt+1

[
xt2,i − zt2,i −

N∑
j=1

Zt
2,i, D̃

t+1

]

Thus, from Equation A.7, we have:

Ct(x̄
t, D̃t) ≤ µG(xt

1, D̃
t, zt

1,Z
t
1) + (1− µ)G(xt

2, D̃
t, zt

2,Z
t
2)

= µCt(x
t
1, D̃

t) + (1− µ)Ct(x
t
2, D̃

t)

The equality follows from the definitions of (zt
1,Z

t
1) and (zt

2,Z
t
2). �

A.1.7 Proof of Proposition 2.6.2

Let the single period cost function be given by CIIP (y) = EC1(y, D̃), and let yIIP be

the optimal solution. When the initial level of inventory xi at region i before ordering,

the cost function is as follows:

V IIP (x) = min
y≥x

CIIP (y) = CIIP (yIIP )

As yIIP minimizes the function CIIP , for any {x : x ≤ yIIP}, it is optimal to order

up to yIIP . We ignore cases where xi > yIIPi for some i, as eventually the system is

brought to the state x ≤ yIIP .

For the multiple period case, we have M time periods: m = 1, 2, ..,M . The in-store

demands {Dm
is ,m > 0} and online demands {Dm

io ,m > 0} are assumed to be i.i.d. The

available inventory at the end of a review period serves as the initial inventory for

the next review period, and we assume zero purchasing costs. The discount factor is

δ ∈ (0, 1].

The proof is by induction, and similar to the proof of Proposition 4 in van Mieghem

and Rudi (2002). If we show that V IIP
m (xm), the expected cost-to-go function evaluated

in review period m with the initial inventory xm, is convex and affine, a stationary base

stock policy would be optimal. For the M + 1th review period, the cost function is

V IIP
M+1(xM+1) = 0 (assuming zero purchasing costs) which is trivially convex and affine
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in xM+1. Let V IIP
m+1 be convex and affine in xm+1. The cost function for review period

m is:

V IIP
m (x) = min

y≥x

[
CIIP (y) + δEV IIP

m+1

(
f
(
y, D̃

)) ]
= min

y≥x
U IIP
m (y)

where f (y, D) is the vector of ending inventories. D̃ is the demand vector constituting

the in-store and online demands for both the regions. As taking expectation preserves

convexity, and the sum of convex functions is convex, U IIP
m (y) is convex in y. It only

remains to be shown that V IIP
m is affine in x. To show this, consider any y ≤ yIIP , so

that f
(
y, D̃

)
≤ y ≤ yIIP . We have

U IIP
m (y) = CIIP (y) + δEV IIP

m+1

(
f
(
y, D̃

))
= CIIP (y) + δEV IIP

m+1

(
yIIP

)
as V IIP

m+1 is affine in xm+1 and the purchasing cost is zero. Clearly, y = yIIP minimizes

U IIP
m for y ≤ yIIP . Thus, V IIP

m (x) = max
y≥x

U IIP
m (y) is affine (constant) in x for all

x ≤ yIIP , and hence a stationary base-stock policy yIIP is optimal if x ≤ yIIP . If

there is some i for which xi > yIIPi , the optimal policy will be more complicated, but

eventually, the system comes back to x ≤ yIIP . �

A.2 Demand Regions for the IIP Solution

We illustrate the identification of demand regions in which the dual vector λ is constant

(as discussed in Section 2.5.1.2) and the calculation of the corresponding probabilities.

For any given (y1, y2), the demand space (D1s, D1o, D2s, D2o) can be divided into a

number of independent regions. Based on the values taken by the variables in the

optimal solution in (A.1), Table A.1 shows the different cases that are possible given

y1 and y2. From these cases, the independent demand regions are listed in Table

A.2 along with the constant dual prices in those regions. The underlined cases are

redundant, and can be discarded while calculating the probability for each region.

Table A.1: Table showing the various demand cases based on the values of y1, y2

A B C D

1 y1 < D1s D1s ≤ y1 < D1 D1 ≤ y1 < D1 +D2o y1 ≥ D1 +D2o

2 y2 < D2s D2s ≤ y2 < D2 D2 ≤ y2 < D2 +D1o y2 ≥ D2 +D1o

3 y1 + y2 < D1 +D2 y1 + y2 ≥ D1 +D2

The dual prices λ1, λ2 are the shadow prices of the constraints which contain y1 and y2
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Table A.2: Table showing the various demand regions and the corresponding constant
dual-prices.

Region Case λ1 λ2 Region Case λ1 λ2

Ω1 A1,A2,A3 h+ ps h+ ps Ω11 C1,A2,A3 h+ po − s12 h+ ps

Ω2 A1,B2,A3 h+ ps h+ po − s Ω12 C1,B2,A3 h+ po − s12 h+ po − s
Ω3 A1,C2,A3 h+ ps h+ po − s12 Ω13 C1,B2,B3 0 s12 − s
Ω4 A1,D2,A3 h+ ps 0 Ω14 C1,C2,B3 0 0

Ω5 A1,D2,B3 h+ ps 0 Ω15 C1,D2,B3 0 0

Ω6 B1,A2,A3 h+ po − s h+ ps Ω16 D1,A2,A3 0 h+ ps

Ω7 B1,B2,A3 h+ po − s h+ po − s Ω17 D1,A2,B3 0 h+ ps

Ω8 B1,C2,A3 h+ po − s h+ po − s12 Ω18 D1,B2,B3 0 s12 − s
Ω9 B1,C2,B3 s12 − s 0 Ω19 D1,C2,B3 0 0

Ω10 B1,D2,B3 s12 − s 0 Ω20 D1,D2,B3 0 0

respectively, namely the first set of constraints zi+
2∑
j=1

zij ≤ yi,∀i in the linear program

in (A.1), and can be obtain in a standard fashion from linear programming theory. For

example, for the demand regions with the case D1, that is, y1 ≥ D1 +D2o, irrespective

of the value of y2, there will be inventory left over at retail store 1 at the end of the

period. Thus the constraint z1 +
2∑
j=1

z1j ≤ y1 will not bind, and hence λ1 = 0.

The probability for each region is calculated as follows, when demands follow normal

distributions. The region is expressed as an inequality of the form RkD̃ <= SkY ,

where D̃ = [D1s, D1o, D2s, D2o]
ᵀ and Y = [y1, y2]ᵀ. For example, Ω3 = (A1, C2) =

{y1 < D1s, D2 ≤ y2 < D2 +D1o}. This can be expressed as:

−1 0 0 0

0 0 1 1

0 −1 −1 −1



D1s

D1o

D2s

D2o

 ≤
−1 0

0 1

0 −1

[y1

y2

]

RkD̃ is multivariate normal with mean Rkµ and covariance matrix RkΣΣᵀRᵀk, where

µ and Σ are the mean and covariance matrices of D̃. The probability of region k reduces

to evaluating the cumulative distribution function of AkD̃ at BkY . For general demand

distributions, numerical methods have to be employed.
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A.3 Additional Details for Numerical Analyses

All numerical analyses were done on a desktop computer (i7-3770 CPU @3.7GHz,

16GB RAM). The total market is assumed to be the top 300 most populous cities in

mainland US. The demands for the OFCs are calculated based on the population not

covered by omnichannel stores. This online demand is allocated to each OFC based

on the optimal throughput rates estimated by Chicago Consulting (2013).

A.3.1 Simulation Procedure

A brief overview of the simulation is listed below:

1. The parameters for demands in each fulfillment epoch are calculated based on

review-period demands estimated from population data. The starting inventory

level vectors yDIP and yIIPH are calculated using the demand information based

on Equation 2.7 and Algorithm 1 respectively.

2. We generate a sample of size 104, where each sample is a realization of demands

in a review period, although fulfillment decisions in each fulfillment epoch are

made without knowing future demands. For each sample, we iterate over steps

3-7, and take the sample averages as approximations for expectations.

3. The fulfillment thresholds for the TF policy are calculated based on Equation

2.18. For the MF policy, these thresholds are set to zero.

4. For t = 1, . . . , T , iterate over steps 5-6. The starting inventory levels are set

based on the inventory policy followed (IIPH or DIP).

5. Implement Algorithm 2 based on the fulfillment policy followed (MF or TF) and

the corresponding thresholds calculated in Step 3.

6. At the end of each fulfillment epoch, the holding, penalty and fulfillment costs are

calculated. The ending inventory at a location becomes the starting inventory

for the next epoch.

7. The total cost in a review period is the sum of the costs in each fulfillment epoch

in that period.
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APPENDIX B

Appendix to Chapter 3

B.1 Proofs

B.1.1 Proof of Lemma 3.4.2

The identical two location problem is described as:

C∗ = min
y1,y2≥0

sup
f∈Fmσρ

Ef
[
C(y1, y2, D̃)

]
:= min

y1,y2≥0
G(y1, y2)

It is easy to see that Ef
[
C(y1, y2, D̃)

]
is jointly convex in y1, y2, as C can be expressed

as a linear program, and expectation preserves convexity. Note that C is also symmetric

with respect to y1 and y2 when the locations are identical. Thus, we have G(y1, y2) =

G(y2, y1). If we show that G is jointly convex in y1, y2, we are done, because if (y∗1, y
∗
2)

is an optimal solution to C∗, then so is (y∗2, y
∗
1), and so is

(
y∗1+y∗2

2
,
y∗1+y∗2

2

)
.

To show joint convexity of G, consider two points: (ŷ1, ŷ2) and (ȳ1, ȳ2). Let λ ∈
[0, 1]. We have:

G (λŷ1 + (1− λ)ȳ1, λŷ2 + (1− λ)ȳ2)

= sup
f∈Fmσρ

Ef
[
C
(
λŷ1 + (1− λ)ȳ1, λŷ2 + (1− λ)ȳ2, D̃

)]
≤ sup

f∈Fmσρ

(
λ · Ef

[
C(ŷ1, ŷ2, D̃)

]
+ (1− λ) · Ef

[
C(ȳ1, ȳ2, D̃)

])
= λ · Ef∗

[
C(ŷ1, ŷ2, D̃)

]
+ (1− λ) · Ef∗

[
C(ȳ1, ȳ2, D̃)

]
≤ λ · sup

f∈Fmσρ

(
Ef
[
C(ŷ1, ŷ2, D̃)

])
+ (1− λ) · sup

f∈Fmσρ

(
Ef
[
C(ȳ1, ȳ2, D̃)

])
= λG(ŷ1, ŷ2) + (1− λ)G(ȳ1, ȳ2)
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where f ∗ = arg supf∈Fmσρ
(
λ · Ef

[
C(ŷ1, ŷ2, D̃)

]
+ (1− λ) · Ef

[
C(ȳ1, ȳ2, D̃)

])
. The

first inequality follows from joint convexity of Ef
[
C(y1, y2, D̃)

]
. �

B.1.2 Proof of Proposition 3.4.1

Define

M(y) := inf
f

Ef

[
ζ min

(
d̃1 + d̃2, 2y

)
+
∑
j=1,2

min
(
d̃j, y

)]
s.t. Ef (1)= 1,

Ef (d̃j)= m, j = 1, 2,

Ef (d̃2
j)= m2 + σ2, j = 1, 2,

Ef (d̃1d̃2)= m2 + ρσ2,

f(D) ≥ 0, ∀D ∈ <2.

(B.1)

Using the relation (a − b)+ = a − min(a, b), we observe that the left-hand side of

(3.8) is equivalent to

(ζ + 1)(2m)− Ef

[
ζ min

(
d̃1 + d̃2, 2y

)
+
∑
j=1,2

min
(
d̃j, y

)]
.

Therefore, to prove the proposition, it suffices to show that

M(y) = (ζ + 1)
(
y +m−

√
(y −m)2 + γσ2

)
,

and that the distribution that solves (B.1) has no more than six support points.

The dual of the semi-infinite linear program (B.1) is as follows:

sup
t, u1, u2, r1, r2, v

t+m(r1 + r2) + (m2 + σ2)(u1 + u2) + (m2 + ρσ2)v

s.t. t+ r1d1 + r2d2 + u1d
2
1 + u2d

2
2 + vd1d2

≤ ζ min(d1 + d2, 2y) + min(d1, y) + min(d2, y), ∀(d1, d2) ∈ <2.

A result by Smith (1995) is that strong duality holds for moment problems if the

moment vector is an interior point of the set of feasible moments. For Fmσρ, this is

true for σ > 0 and ρ ∈ (−1, 1).

Note that because d̃1 and d̃2 are interchangeable in the primal, r1 and r2 must be
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interchangeable in the dual. The same argument applies for u1 and u2 as well. This

implies, r1 = r2 = r, and u1 = u2 = u. Thus, we have the following dual formulation:

sup
t, u, r, v

t+ 2mr + 2(m2 + σ2)u+ (m2 + ρσ2)v

s.t. t+ r(d1 + d2) + u(d2
1 + d2

2) + vd1d2

≤ ζ min(d1 + d2, 2y) + min(d1, y) + min(d2, y), ∀(d1, d2) ∈ <2.

The right hand side of the constraint is a piecewise linear function in <2. For

notational brevity, define the quadratic function g(d1, d2; t, u, r, v) = t + r(d1 + d2) +

u(d2
1 + d2

2) + vd1d2. Hence, the dual formulation can be equivalently reformulated as

sup
t, u, r, v

t+ 2mr + 2(m2 + σ2)u+ (m2 + ρσ2)v

s.t. g(d1, d2; t, u, r, v) ≤ (ζ + 1)(d1 + d2), ∀d1 ≤ y, d2 ≤ y

g(d1, d2; t, u, r, v) ≤ ζ(d1 + d2) + d1 + y, ∀d1 ≤ y ≤ d2, d1 + d2 ≤ 2y

g(d1, d2; t, u, r, v) ≤ ζ(d1 + d2) + y + d2, ∀d2 ≤ y ≤ d1, d1 + d2 ≤ 2y

g(d1, d2; t, u, r, v) ≤ (ζ + 1)(2y), ∀d1 ≥ y, d2 ≥ y

g(d1, d2; t, u, r, v) ≤ ζ(2y) + d1 + y, ∀d1 ≤ y ≤ d2, d1 + d2 ≥ 2y

g(d1, d2; t, u, r, v)≤ ζ(2y) + y + d2, ∀d2 ≤ y ≤ d1, d1 + d2 ≥ 2y.

(B.2)

Note that the dual feasible set is the set of all bi-quadratic functions g(x1, x2)

that are bounded above by a piecewise linear function with six facets (one for each

constraint). Let qi(x1, x2) denote the linear function for facet i, i.e., the right hand

side of the constraint i in model (B.2).

Let us consider the case where g(d1, d2) touches the piecewise linear function at

exactly 6 points, one on each facet. We will later show that this case corresponds to

the dual optimal solution. To find these points, for each i, we equate ∇g(d1, d2) =

∇qi(d1, d2) and solve for (d∗1, d
∗
2) as a function of the dual variables t, u, r, v. Then,

setting g(d∗1, d
∗
2) = qi(d

∗
1, d
∗
2) gives us a condition on the dual variables for which the

two functions touch at exactly one point. We for now ignore the ranges of d1, d2 in

which each constraint is valid (we will later use these ranges to establish constraints

on the dual variables). Table B.1 gives, for each facet, the points of contact and the

condition on dual variables t, u, r, v. Note that we have the following four equations

that need to be satisfied for g(d1, d2) to touch all six facets of the piecewise linear
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Facet i ∇g(d∗1, d
∗
2) = ∇fi(d∗1, d∗2) g(d∗1, d

∗
2) = fi(d

∗
1, d

∗
2)

1 (d∗1, d
∗
2) =

(
ζ+1−r
2u+v ,

ζ+1−r
2u+v

)
t = (ζ+1−r)2

2u+v

2 (d∗1, d
∗
2) =

(
ζ+1−r
2u+v + v

4u2−v2 ,
ζ+1−r
2u+v −

2u
4u2−v2

)
y(4u2 − v2) + u− (ζ + 1− r)(2u− v) = 0

3 (d∗1, d
∗
2) =

(
ζ+1−r
2u+v −

2u
4u2−v2 ,

ζ+1−r
2u+v + v

4u2−v2

)
y(4u2 − v2) + u− (ζ + 1− r)(2u− v) = 0

4 (d∗1, d
∗
2) =

(
−r

2u+v ,
−r

2u+v

)
t = r2

2u+v + 2(ζ + 1)y

5 (d∗1, d
∗
2) =

(
−r

2u+v + 2u
4u2−v2 ,

−r
2u+v −

v
4u2−v2

)
t = r(r−1)(2u−v)+u

4u2−v2 + ζ(2y) + y

6 (d∗1, d
∗
2) =

(
−r

2u+v −
v

4u2−v2 ,
−r

2u+v + 2u
4u2−v2

)
t = r(r−1)(2u−v)+u

4u2−v2 + ζ(2y) + y

Table B.1: Points of contact of biquadratic with each facet, and conditions on (t, u, r, v)
for biquadratic and facet to touch at exactly one point.

function:

t =
(ζ + 1− r)2

2u+ v
, (B.3)

y(4u2 − v2) + u− (ζ + 1− r)(2u− v) = 0, (B.4)

t =
r2

2u+ v
+ 2(ζ + 1)y, (B.5)

t =
r(r − 1)(2u− v) + u

4u2 − v2
+ ζ(2y) + y. (B.6)

We use the following transformation of variables:

θ = 2u− v (B.7)

φ = 2u+ v (B.8)

We convert all the dual variables into functions of θ and φ. It directly follows that:

u = 1
4
(φ+ θ) and v = 1

2
(φ− θ).

From (B.3) and (B.5), we have:

r =
ζ + 1

2
− yφ. (B.9)

Using (B.9) in (B.3), we have:

t =

(
yφ+ ζ+1

2

)2

φ
. (B.10)
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Using (B.9) and (B.10) in (B.6), we have the following:

φ = θ (2ζ + 1) . (B.11)

Note that we have not used (B.4) yet, but substituting (B.9)–(B.11) into (B.4), we

find that (B.4) is satisfied already. That is, of the four equations (B.3)–(B.6), one of

them is linearly dependent on other three.

We can now write all the dual variables t, u, v, r as a function of θ, summarized as

follows:

r =
ζ + 1

2
− yθ (2ζ + 1) , (B.12)

t =

(
yθ (2ζ + 1) + 1

2
(ζ + 1)

)2

θ (2ζ + 1)
, (B.13)

u =
1

2
θ(ζ + 1), (B.14)

v = θζ. (B.15)

Thus, we know that the dual variables need to be of this form so that the biquadratic

touches all six facets. We still need to check whether the points at which the biquadratic

touches each facet satisfies the corresponding ranges of d1, d2 in (B.2). Substituting

the values (B.12)–(B.15) of the dual variables into the touching points in Table B.1,

and observing that ζ > 0, we find that the dual variables are feasible (i.e., the touching

points are in the required range) for any θ < 0 (see Table B.2).

Thus, we consider the following optimization program:

sup
θ<0

1

4(2ζ + 1)

[
a+ bθ +

c

θ

]
(B.16)

where,

a = 4(y +m)(ζ + 1) (2ζ + 1) , (B.17)

b = 4 (2ζ + 1)2

[
(y −m)2 + σ2

(
ζ + 1 + ζρ

2ζ + 1

)]
, (B.18)

c = (ζ + 1)2, (B.19)

Note that the objective function is the objective of a dual feasible solution (B.12)–

(B.15) parameterized by θ. The supremum is achieved at θ∗ = −
√

c
b
, where b > 0

since we have that ζ > 0, σ > 0, and ρ ∈ (−1, 1). Let γ := ζ+1+ζρ
2ζ+1

∈ (0, 1]. The
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Facet i Contact points Condition on θ

1 (d∗1, d
∗
2) =

(
y + 1

2
(ζ+1)
θ(2ζ+1) , y + 1

2
(ζ+1)
θ(2ζ+1)

)
d∗1 ≤ y, d∗2 ≤ y ⇔ θ < 0

2 (d∗1, d
∗
2) =

(
y + 1

2
3ζ+1
θ(2ζ+1) , y −

1
2

ζ+1
θ(2ζ+1)

)
d∗1 ≤ y ≤ d∗2, d∗1 + d∗2 ≤ 2y ⇔ θ < 0

3 (d∗1, d
∗
2) =

(
y − 1

2
ζ+1

θ(2ζ+1) , y + 1
2

3ζ+1
θ(2ζ+1)

)
d∗2 ≤ y ≤ d∗1, d∗1 + d∗2 ≤ 2y ⇔ θ < 0

4 (d∗1, d
∗
2) =

(
y − 1

2
ζ+1

θ(2ζ+1) , y −
1
2

ζ+1
θ(2ζ+1)

)
d∗1 ≥ y, d∗2 ≥ y ⇔ θ < 0

5 (d∗1, d
∗
2) =

(
y + 1

2
ζ+1

θ(2ζ+1) , y −
1
2

3ζ+1
θ(2ζ+1)

)
d∗1 ≤ y ≤ d∗2, d∗1 + d∗2 ≥ 2y ⇔ θ < 0

6 (d∗1, d
∗
2) =

(
y − 1

2
3ζ+1
θ(2ζ+1) , y + 1

2
ζ+1

θ(2ζ+1)

)
d∗2 ≤ y ≤ d∗1, d∗1 + d∗2 ≥ 2y ⇔ θ < 0

Table B.2: Condition on θ so that the points of contact of biquadratic with each facet
occurs in the required range.

optimal θ∗ is given by:

θ∗ = − (ζ + 1)

2 (2ζ + 1)
√

(y −m)2 + γσ2
. (B.20)

The corresponding dual value is 1
4(2ζ+1)

(a − 2
√
bc), where a, b, c are according to the

equations (B.17)–(B.19), which simplifies to:

(ζ + 1)
(
y +m−

√
(y −m)2 + γσ2

)
≤M(y), (B.21)

where the inequality follows from weak duality.

All that is left to prove the proposition is to show that, if γ(1 + ν2) ≥ 2 where

ν := 3ζ+1
ζ+1
∈ (1, 3), then there exists a six-point distribution f ∗y ∈ Fmσρ whose objective

value (B.1) is

Ef∗y

[
ζ min(d̃1 + d̃2, 2y) +

∑
j=1,2

min(d̃j, y)

]
= (ζ + 1)

(
y +m−

√
(y −m)2 + γσ2

)
.

(B.22)

To construct the distribution, we use the contact points of the biquadratic to each

facet as the support points. Define zy := (y −m)/σ and Φ(zy) :=
√
z2
y + γ, where we

note that Φ(zy) > zy. If we use the optimal θ∗, defined in (B.20), to find the associated
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contact points in Table B.2, where we use the fact that θ∗ (2ζ + 1) = −1
2Φ(zy)σ

(ζ + 1), we

get the following six support points of f ∗y :

D(1) =

[
m+ (zy − Φ(zy))σ

m+ (zy − Φ(zy))σ

]
, D(2) =

[
m+ (zy − νΦ(zy))σ

m+ (zy + Φ(zy))σ

]
, D(3) =

[
m+ (zy + Φ(zy))σ

m+ (zy − νΦ(zy))σ

]

D(4) =

[
m+ (zy + Φ(zy))σ

m+ (zy + Φ(zy))σ

]
, D(5) =

[
m+ (zy − Φ(zy))σ

m+ (zy + νΦ(zy)

]
, D(6) =

[
m+ (zy + νΦ(zy)σ

m+ (zy − Φ(zy))σ

]

We next construct probabilities for the distribution f ∗y to ensure that it is a feasible

distribution in Fmσρ. In particular, we find the probabilities π1, π2, . . . , π6 such that

the following relationships are true:

6∑
i=1

πi = 1 (B.23)

6∑
i=1

πiD
(i) =

[
m

m

]
(B.24)

6∑
i=1

πiD
(i) �D(i) =

[
m2 + σ2

m2 + σ2

]
(B.25)

6∑
i=1

πid
(i)
1 d

(i)
2 = m2 + ρσ2, (B.26)

where a� b = (aibi) denotes element-wise multiplication of vectors a,b.

From the equalities (B.23)–(B.26), we have the following system of linear equations:

(where for notational brevity, we drop the subscript on zy and drop the dependence of

Φ on zy)

π1 + π2 +π3 + π4 +π5 + π6 = 1

(z − Φ)π1 + (z − νΦ)π2 +(z + Φ)π3 + (z + Φ)π4 (z − Φ)π5 + (z + νΦ)π6 = 0

(z − Φ)π1 + (z + Φ)π2 +(z − νΦ)π3 + (z + Φ)π4 +(z + νΦ)π5 + (z − Φ)π6 = 0

(z − Φ)2π1 + (z − νΦ)2π2 +(z + Φ)2π3 + (z + Φ)2π4 (z − Φ)2π5 + (z + νΦ)2π6 = 1

(z − Φ)2π1 + (z + Φ)2π2 +(z − νΦ)2π3 + (z + Φ)2π4 +(z + νΦ)2π5 + (z − Φ)2π6 = 1

(z − Φ)2π1 + (z − νΦ)(z + Φ)π2 +(z − νΦ)(z + Φ)π3 + (z + Φ)2π4 +(z + νΦ)(z − Φ)π5 + (z + νΦ)(z − Φ)π6 = ρ

By simple row operations, we can show that the last equation is linearly dependent

on the others. Additionally, it is easy to see that if we interchange π2 and π3 as well as

π5 and π6, the equations remain unaltered, thus π2 = π3 and π5 = π6. Thus, the new
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Facet i Support Point Probability

1 (d∗1, d
∗
2) = (m+ (zy − Φ(zy))σ, m+ (zy − Φ(zy))σ) 1

2 + 2ζπ
ζ+1 +

zy

2
√
z2y+γ

− (1−γ)
2(ν−1)(z2y+γ)

2 (d∗1, d
∗
2) = (m+ (zy − νΦ(zy))σ, m+ (zy + Φ(zy))σ) −π + (1−γ)

(ν2−1)(z2y+γ)

3 (d∗1, d
∗
2) = (m+ (zy + Φ(zy))σ, m+ (zy − νΦ(zy))σ) −π + (1−γ)

(ν2−1)(z2y+γ)

4 (d∗1, d
∗
2) = (m+ (zy + Φ(zy))σ, m+ (zy + Φ(zy))σ) 1

2 −
2ζπ
ζ+1 −

zy

2
√
z2y+γ

− (1−γ)(3−ν)
2(ν2−1)(z2y+γ)

5 (d∗1, d
∗
2) = (m+ (zy − Φ(zy))σ, m+ (zy + νΦ(zy)) π

6 (d∗1, d
∗
2) = (m+ (zy + νΦ(zy))σ, m+ (zy − Φ(zy))σ) π

Table B.3: The support points and the corresponding probabilities in a worst-case
probability distribution f ∗y,π, where max(0, α1) ≤ π ≤ min(β1, β2).

system of equations are:

π1 + 2π2 +π4 + 2π5 = 1

(z − Φ)π1 + (2z + (1− ν)Φ)π2 +(z + Φ)π4 + (2z − (1− ν)Φ)π5 = 0

(z − Φ)2π1 + ((z − νΦ)2 + (z + Φ)2)π2 +(z + Φ)2π4 ((z − Φ)2 + (z + νΦ)2)π5 = 1

Since we have three equations and four unknowns, we use parameter π5 = π. Then,

the solution to the set of equations are as follows:

π1 =
1

2
+

2ζπ

ζ + 1
+

z

2
√
z2 + γ

− (1− γ)

2(ν − 1)(z2 + γ)

π2 = π3 = −π +
(1− γ)

(ν2 − 1)(z2 + γ)

π4 =
1

2
− 2ζπ

ζ + 1
− z

2
√
z2 + γ

− (1− γ)(3− ν)

2(ν2 − 1)(z2 + γ)

π5 = π6 = π

We need to ensure that the probabilities lie in [0, 1] (they already sum up to one

because of (B.23)), which can be accomplished by putting restrictions on the value of

π. Defining:

α1(z) :=

(
ζ + 1

2ζ

)(
−1

2
− z

2
√
z2 + γ

+
(1− γ)(ν + 1)

2(ν2 − 1)(z2 + γ)

)
,

β1(z) :=
1− γ

(ν2 − 1)(z2 + γ)
,

β2(z) :=

(
ζ + 1

2ζ

)(
1

2
− z

2
√
z2 + γ

+
(1− γ)(ν − 3)

2(ν2 − 1)(z2 + γ)

)
,
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we have that the probabilities are nonnegative for max(0, α1) ≤ π ≤ min(β1, β2). Note

that β1 ≥ 0. If β2 < 0, β1 < α1, or β2 < α2, then the set of feasible values for π is

empty. However, according to the following lemma, if γ(ν2 + 1) ≥ 2 then this set is

non-empty for all values of z.

Lemma B.1.1 If γ(ν2 + 1) ≥ 2, then β2(z) ≥ 0, α1(z) ≤ β1(z), and α1(z) ≤ β2(z) for

all z ∈ <.

Proof. Since ν − 1 = 2ζ
ζ+1

, we can rewrite the following:

α1 :=

(
1

2(ν − 1)

)(
−1− z

Φ(z)
+

(1− γ)(ν + 1)

(ν2 − 1)Φ2(z)

)
,

β1 :=
1− γ

(ν2 − 1)Φ2(z)
,

β2 :=

(
1

2(ν − 1)

)(
1− z

Φ(z)
+

(1− γ)(ν − 3)

(ν2 − 1)Φ2(z)

)
,

Note that β2(z) ≥ 0 if and only if: Φ(z)(Φ(z)−z) ≥ (1−γ)(3−ν)
(ν2−1)

. Let w(z) = Φ(z)(1−
z). Then w′(z) = 2z− z2√

z2+γ
−
√
z2 + γ, and w′′(z) = 2− 3z√

z2+γ
+ z3

(z2+γ)
3
2

. Note that

w′′(z) can be shown to be non-negative (we can prove: −2 ≤ − 3z√
z2+γ

+ z3

(z2+γ)
3
2
≤ 2),

implying that w(z) is a convex function minimized at z = 0 (from equating w′(z) = 0).

Thus, whenever γ ≥ (1−γ)(3−ν)
(ν2−1)

, we have β2(z) ≥ 0 for all z. The sufficient condition

translates to: γ ≥ 3−ν
ν2−ν+2

.

β2(z) ≥ α1(z) if and only if: 2(1−γ)
(ν2−1)Φ2(z)

≤ 1, which simplifies to: z2 ≥ 2−γ(ν2+1)
ν2−1

.

Thus, a sufficient condition is given by: 0 ≥ 2−γ(ν2+1)
ν2−1

, which translates to: γ(ν2 + 1) ≥
2. Note that the condition γ ≥ (1−γ)(3−ν)

(ν2−1)
is implied by γ(ν2 + 1) ≥ 2.

β1(z) ≥ α1(z) if and only if: Φ(z)(Φ(z) + z) ≥ (1−γ)(3−ν)
(ν2−1)

. The left hand side can

be shown to be a convex function minimized at z = 0 from the same argument in the

case β2(z) ≥ 0. Thus, the sufficient condition is the same as the case β2(z) ≥ 0. �

Let us define f ∗y,π as the six-point distribution that is summarized in Table B.3 for

some valid π. Note that the probabilities of f ∗y,π only ensure that the distribution has

the appropriate moments to belong in Fmσρ. We also need to ensure that the strong
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duality condition (B.22) is true. The left-hand side of (B.22) evaluates to

P (y) =

(
1

2
+

2ζπ

ζ + 1
+

z

2
√
z2 + γ

− (1− γ)

2(ν − 1)(z2 + γ)

)(
2 (ζ + 1) (m+ (z − Φ(z))σ))

)
+ 2

(
−π +

(1− γ)

(ν2 − 1)(z2 + γ)

)(
(ζ + 1)(2m+ σ(2z + (1− ν)Φ(z)))− σΦ(z)

)
+

(
1

2
− 2ζπ

ζ + 1
− z

2
√
z2 + γ

+
(1− γ)(ν − 3)

2(ν2 − 1)(z2 + γ)

)(
2(ζ + 1)y

)
+ 2 (π)

(
(ζ + 1)(2y)− σΦ(z)

)
(B.27)

The coefficient of π in (B.27) is given by:

=
2ζ

ζ + 1

(
2(ζ + 1) [m+ (z − Φ(z))σ − y]

)
+ 2(ζ + 1) [2y − 2m− σ(2z + (1− ν)Φ(z))]

= 4ζ(−σΦ(z)) + 2(ζ + 1)(−σ(1− ν)Φ(z)) (y = m+ zσ)

= 0 (1− ν = −2ζ/(ζ + 1))

Hence, for any π, the left-hand side of (B.22) with f ∗y = f ∗y,π simplifies to

P (y) = (ζ + 1)(2y − (z + Φ(z))σ) = (ζ + 1)(y +m− Φ(z)σ)

= (ζ + 1)(y +m−
√

(y −m)2 + γσ2)

which is equal to the right-hand side of (B.22). This completes our proof. �

B.1.3 Proof of Proposition 3.4.2

Let y∗ = (y∗1, y
∗
2) be the optimal solution of the distributionally robust problem (3.5).

Since the locations are identical, we have that y∗1 = y∗2 = y∗ for some y∗. Hence, we

need only consider the subset of inventory levels y = (y, y), for which we derive an

analytic expression of the worst-case cost as C̄(y) in (3.10). Thus, the distributionally

robust problem (3.5) is equivalent to miny C̄(y). The first two derivatives of C̄(y) are

C̄ ′(y) = −(p− h− s0) +
(p+ h− s0)(y −m)√

(y −m)2 + γσ2

C̄ ′′(y) =
(p+ h− s0)γσ2

((y −m)2 + γσ2)
3
2
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Since γ > 0, C̄(y) is convex in y, and the optimal solution is given by the first-order

condition C̄ ′(y∗) = 0, which gives y∗ as the right-hand side of (3.11). �

B.1.4 Proof of Lemma 3.5.1

We define

M(y) = max
f

Ef

[
L−1∑
`=0

η>` (E`D− E`y)+

]
s.t. Ef (1) = 1

Ef
(
D̃
)

= m

Ef
(
D̃D̃>

)
= Σ + mm>

f(D) ≥ 0, ∀D ∈ <n.

which is equal to the left-hand side of (3.13).

Since Σ � 0, then the moments (m,Σ) are strictly in the interior of the feasible

moment cone. Hence, strong duality of moment problems holds (Smith, 1995). The

dual of the moment problem is

M(y) = min
t,r,Y

t+ r>m + 〈Y,Σ + mm>〉

s.t t+ r>x + x>Yx ≥
L−1∑
`=0

η>` (E`x− E`y)+ , ∀x ∈ <n

We can reformulate the dual as the following semi infinite linear program:

M(y) = min
t,r,Y

t+ r>m + 〈Y,Σ + mm>〉

s.t t+ r>x + x>Yx ≥
L−1∑
`=0

(η` � eA`)
> (E`x− E`y) , ∀x ∈ <n

∀(A0, A1, · · · , AL−1) ∈ 2[n0] × 2[n1] × 2[nL−1]

where � is the element-wise product operator, and eA` is an n`-dimensional binary

vector whose kth element is 1 if and only if k ∈ A`. For simplicity, we can write the

right-hand side as a>k x + b>k y for k ∈ [2N ], where N =
∑L−1

`=0 n`. The constraint now
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becomes: x>Yx + (r− ak)>x + t− b>k y ≥ 0,∀x. This is true if and only if[
Y 1

2
(r− ak)

1
2
(r− ak)> t− b>k y

]
� 0, ∀k. �

�

B.2 Optimal Inventory Solutions for Two-

Locations Systems

We have four cases for which the distributionally robust solution needs to be calculated:

pooling/no pooling (P/NP), and known/unknown correlation (C/NC). Note that we

restrict the search to identical solutions of the form (y, y).

1. No pooling, ρ unknown: This is the same setting as Scarf (1958), and the

optimal inventory and worst-case cost are given by:

yNP,NC = m+
p− h− s0

2
√
h(p− s0)

· σ

CNP,NC = 2m(s0 − h) + 2hy + (p+ h− s0)(m− y +
√
σ2 + (m− y)2)

2. No pooling, ρ known: This is the same setting as Natarajan and Teo (2017),
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and the solutions are given through an SDP.

CNP,C := min
t0,r,u,v,y

2(s0 − h)m+ 2hy + (p+ h− s0)
(
t0 + 2rm

+ 2u(m2 + σ2) + v(m2 + ρσ2)
)

s.t.

 t0 + 2y 1
2
(r − 1) 1

2
(r − 1)

1
2
(r − 1) u 1

2
v

1
2
(r − 1) 1

2
v u

 � 0

 t0 + y 1
2
(r − 1) 1

2
r

1
2
(r − 1) u 1

2
v

1
2
r 1

2
v u

 � 0

t0 + y 1
2
r 1

2
r

1
2
r u 1

2
v

1
2
r 1

2
v u

 � 0

 t0
1
2
r 1

2
r

1
2
r u 1

2
v

1
2
r 1

2
v u

 � 0

y ≥ 0

3. With pooling, ρ unknown: This is simply an extension of our setting where

only marginal information (m,σ) is known, and cross-moment information (ρ) is
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unknown. The solutions are given through an SDP.

CP,NC := min
t0,r,u,y

h(2y − 2m) + 2s0m+ t0 + 2rm+ 2u(m2 + σ2)

s.t.

 t0
1
2
r 1

2
r

1
2
r u 1

2
v

1
2
r 1

2
v u

 � 0

t0 + (s− s0)y 1
2
r 1

2
(r − s+ s0)

1
2
r u 0

1
2
(r − s+ s0) 0 u

 � 0

t0 + (s− s0)y 1
2
(r − s+ s0) 1

2
r

1
2
(r − s+ s0) u 0

1
2
r 0 u

 � 0

t0 + 2(p+ h− s0)y 1
2
(r − p− h+ s0) 1

2
(r − p− h+ s0)

1
2
(r − p− h+ s0) u 0

1
2
(r − p− h+ s0) 0 u

 � 0

t0 + y(s− s0) + 2y(p+ h− s) 1
2
(r − p− h+ s) 1

2
(r − p− h+ s0)

1
2
(r − p− h+ s) u 0

1
2
(r − p− h+ s0) 0 u

 � 0

t0 + y(s− s0) + 2y(p+ h− s) 1
2
(r − p− h+ s0) 1

2
(r − p− h+ s)

1
2
(r − p− h+ s0) u 0

1
2
(r − p− h+ s) 0 u

 � 0

y ≥ 0

4. With pooling, ρ known: This is the setting considered by our paper, and the

solutions yP,C , CP,C are given in closed-form in Proposition 3.4.2.

B.3 Example for Generating Nested Fulfillment

Structure with L < n

Example 2 Consider Figure B.1, where a nested fulfillment structure with L = 4 is

created from the dendrogram in Figure 3.7a. Here, the range of distances are partitioned

into three quantiles by the two lines drawn on the dendrogram. In Figure B.1a, the

lower line gives rise to three connected components: {{3}, {1}, {4, 5, 2}}. The nodes in

each connected component are considered to be a single cluster in level l = 1, and the
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(a) (b)

Figure B.1: Creating a nested fulfillment structure with L = 4 from a dendrogram.

UPGMA distances are recalculated for the new clusters. The upper line gives rise to

two connected components: {{3}, {1, 4, 5, 2}}, which form the two components at level

l = 2, resulting in Figure B.1b.

B.4 Details for Numerical Experiments

B.4.1 Constant Fulfillment Heuristic

For n = 5, the marginal distribution parameters for the four distributions (Normal,

Exponential, BetaPrime and Student-t) in the following way:

1. Normal: the means are identical with m = 300, and the standard deviation is

chosen at random from [100, 800].

2. Exponential: the mean of the exponential distribution is chosen at random from

[100,500]. The standard deviation is equal to the mean.

3. BetaPrime: the mean is fixed at m = 2. The parameters α and beta are chosen

as follows. β is chosen at random from [2, 3], and α = m · (β − 1).

4. Student-t: the parameter ν is chosen at random from [2, 3].

We generate 50 such instances of marginal distribution parameters. We generate a

random correlation matrix based on Numpacharoen and Atsawarungruangkit (2012).

Then, using the method of Gaussian copula, we generate 5000 correlated random de-

mand samples for each distribution, and report the sample average approximations.
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B.4.2 Nested Fulfillment Heuristic

The mean and covariance matrices are calculated based on the populations for each

fulfillment center. Given mean m and variance v for a demand distribution, we calcu-

late the marginal distribution parameters for four distributions (Normal, Exponential,

BetaPrime and Pareto) as follows:

1. Normal: Mean µ = m, Variance σ2 = v

2. Exponential: Mean 1
λ

= m =
√
v

3. BetaPrime: β = 2 + m·(m+1)
v

, α = m · (β − 1)

4. Generalized Pareto: k = − v
m2 +

√
v2

m4 + v
m2 , σ = m · k · (1− k), θ = σ

k
.

We generate a random correlation matrix based on Numpacharoen and Atsawarungru-

angkit (2012) such that the correlation coefficients do not exceed .4 in magnitude. We

then use the Gaussian copula to generate 103 training samples of correlated random

vectors. The stochastic solutions are calculated based on a sample average approxima-

tion linear program using these training samples, and the robust solution is calculated

based on the partitioned statistics estimated from the training samples. The inventory

solutions are then evaluated through simulations based on 103 test samples generated

in a similar fashion to the training samples.

B.5 Asymmetry Information

Based on Natarajan et al. (2017), we incorporate into our robust models the parti-

tioned statistics information. Specifically, the mean and covariance of random vector

(D̃+, D̃−) whose ith elements are (d̃i −mi)
+ and (mi − d̃i)+, respectively, are defined

to be:

E

[(
D̃+

D̃−

)]
=: m̄ E

[(
D̃+

D̃−

)(
D̃+

D̃−

)ᵀ]
=: Q̄ (B.28)

The set of distributions that the random demand can take is defined as F̄≥0, which

specifies that the random demand has non-negative support, with mean m, and with

mean and covariance of the partitioned statistics given in (B.28). We follow the same

approach as in Theorem 4.3 in Natarajan et al. (2017) to derive the following upper

bound including the partitioned statistics information. We omit the proof to avoid

repetition.
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Proposition B.5.1 For the n-location newsvendor problem under inventory risk pool-

ing with a L-level nested fulfillment cost structure, we have supf∈F̄≥0
Ef [C(y, D̃)] ≤

¯̄CL(y) for any y ∈ <n, where

¯̄CL(y) := min
t0,t,Y,u,
B,W,U,V

h · e>(y −m) + s>0 m + t0 + t>m̄ + 〈Y, Q̄〉+ e>Be

s.t.

 t0
1
2
t> 1

2
u>

1
2
t Y −1

2
V>

1
2
u −1

2
V U

 � 0

u = −We +
(
B + B>

)
e + P(y −m)

V ≥ P̄

U ≤W −B

W,B ≥ 0

t0 ∈ <, t ∈ <2n, u ∈ <N , Y ∈ <2n×2n, B,W,U ∈ <N×N , V ∈ <N×2n,

with P :=
(
E>L−1diag(ηL−1) E>L−2diag(ηL−2) · · · E>0 diag(η0)

)>
∈ <N×n, and P̄ =[

P −P
]
∈ <N×2n.

The heuristic solution can be similarly obtained by setting y as a decision variable,

constrained by y ≥ 0.

B.6 Multiple Demand Channels

To simplify our discussion, we consider a two-level nested fulfillment cost structure for

the online demand (i.e., where cross-location fulfillment cost is constant), though the

technique can be generalized to an L-level structure. Let pb and po be the penalty

cost of unmet brick-and-mortar store demand and online demand, respectively. The

per-unit overage cost is h. We normalize the cost for meeting store demand to zero.

As before, the cost of in-location fulfillment of online demand is s0, and the cost of

cross-location fulfillment is s, where s > s0. For a customer region j ∈ [n], let d̃oj and

d̃bj be the stochastic online demand and the stochastic store demand, respectively. We

denote the vector of online demands as D̃o = (d̃oj) and the vector of store demands

as D̃b = (d̃bj). We let D̃ = (D̃b, D̃o) as the vector of all demands with a mean vector

m =
(
mb, mo

)
and covariance matrix Σ.

Store demand can only be met with inventory from the same location. However,

online demand can be fulfilled from inventory from any location. We assume that
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po + h > s, that pb + h > s, and that pb + s0 > po. Given our assumptions on the

cost parameters, it is optimal for each local store to first meet the store demands to

the maximum extent possible, then for excess inventory to be used to fulfill in-location

online demand, before cross-location fulfillment is used. To see why, note that since

pb + s0 > po, then it is cheaper to use an inventory unit to meet store demand than to

fulfill a local online demand. Moreover, the assumptions imply that pb+h+s0 > s, so it

is cheaper to use cross-location fulfillment on an online demand than to use in-location

fulfillment and not meet a store demand. Therefore, we can write the cost as

C(y,D) = h ·

∑
j∈[n]

(
yj − dbj

)+ −
∑
j∈[n]

doj

+

+ po ·

∑
j∈[n]

doj −
∑
j∈[n]

(
yj − dbj

)+

+

+ pb ·
∑
j∈[n]

(
dbj − yj

)+
+ s0 ·

∑
j∈[n]

doj −
∑
j∈[n]

(
doj −

(
yj − dbj

)+
)+


+ s ·

∑
j∈[n]

(
doj −

(
yj − dbj

)+
)+

−

∑
j∈[n]

doj −
∑
j∈[n]

(
yj − dbj

)+

+
We observe that, due to the presence of store demand which is prioritized due to

its lower cost of fulfillment, the cost structure is more complicated than before. In

particular, the last term in the cost function has a composition of a function f(x) =

(a − x)+ and g(x) =
∑

j x
+
j . This requires a careful treatment in developing the

tractable SDP heuristic. We first simplify the cost function by reducing the number of

such terms using the relationship that if a ≥ 0, then (a−(b−c)+) = (a+c−b)+−(c−b)+.

Also using the fact that (c− b)+ = b− c+ (c− b)+, we can simplify the cost function

to

C(y,D) = h · e>
(
y −Do −Db

)
+ s0 · e>Do

+ (h+ pb + so − s) ·
∑
j∈[n]

(
dbj − yj

)+
+ (s− s0) ·

∑
j∈[n]

(
doj + dbj − yj

)+

+ (h+ po − s) ·

∑
j∈[n]

(
doj + dbj − yj

)
−
∑
j∈[n]

(
dbj − yj

)+

+

We define the constants γ := h + pb + so − s, η0 := s − s0, and η1 := h + po − s.
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Hence, the minmax expected cost under the omni-channel demand is equivalent to

C∗o := min
y

(
(s0 − h) · e>mo + h · e> (y −ms) +Mo(y)

)
where Mo(y) is the optimal value of the moment problem

Mo(y) := max
f∈F

Ef

[
γ ·
∑
j∈[n]

(
d̃bj − yj

)+

+ η0 ·
∑
j∈[n]

(
d̃oj + d̃bj − yj

)+

+ η1 ·

∑
j∈[n]

(
d̃oj + d̃bj − yj

)
−
∑
j∈[n]

(
d̃bj − yj

)+

+ ]
.

We can write the moment problem as

Mo(y) := max
f∈F≥0

[
max

x(0)∈{0,1}n,x(1)∈{0,1},z∈{0,1}n
γ · z>

(
D̃b − y

)
+ η0 · x(0)>

(
D̃o + D̃b − y

)
+ η1 · x(1) ·

(
e>
(
D̃o + D̃b − y

)
− z>

(
D̃b − y

))]

To see why, note that the coefficient of zj is equal to
(
γ − η1x

(1)
)
·
(
d̃bj − yj

)
. Based

on our assumptions on the cost parameters, we have that γ = h+ pb + so− s > 0, and

γ − η1 = pb − po + s0 > 0. Therefore, zj is equal to 1 if and only if dbj − yj ≥ 0. Note

that unlike in the previous section where the newly introduced variables only interact

with other constants or the random demand, we have cross interactions between the

new variables from the term x(1) · z. Hence, we introduce a new n-dimensional vector

w = x(1) · z.

Consider the (3n + 1)-dimensional random vector x̃ :=
(
x̃(1)> x̃(0)> z̃> w̃

)>
,

which collects all the new binary variables into a single vector. We again have the

following transformation

x := Ef (x̃) ∈ <3n+1,

Q := Ef
(
x̃D̃>

)
∈ <(3n+1)×(2n),

R := Ef
(
x̃x̃>

)
∈ <(3n+1)×(3n+1).
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Therefore, we have linearized the objective to

γ ·
∑
j∈[n]

(Q1+n+j,j − x1+n+j · yj) + η0 ·
∑
j∈[n]

(Q1+j,j +Q1+j,n+j − x1+j · yj)

+ η1 ·
∑
j∈[n]

(Q1,j +Q1,n+j − x1 · yj −Q2n+1+j,j + x2n+1+j · yj)

The constraints are the same as before, but with the addition of a few other constraints

that follow from the fact that w̃j = x̃(1) · z̃j for all j ∈ [n]. In particular, note that

R1,n+1+j = x1+2n+j, ∀j ∈ [n],

R1+n+i,1+2n+j = R1+2n+1,1+2n+j, ∀i ∈ [n], j ∈ [n].

The first constraint follows since the left-hand side is by definition equal to Ef
(
x̃(1) · z̃j

)
,

and the right-hand side is Ef (w̃j). In the second constraint, the left-hand side is

equal to Ef (z̃i · w̃j) = Ef
(
x̃(1)z̃iz̃j

)
. The right-hand side is equal to Ef (w̃i · w̃j) =

Ef
(
x̃(1)x̃ix̃j

)
since (x̃(1))2 = x̃(1). Due to the nonnegativity of demand, aside from the

constraint that Q ≥ 0, we also have that z ≤ x(0). This is because dbj − yj ≥ 0 impies

that dbj + doj − yj ≥ 0, which is equivalent to the condition that z̃j ≤ x̃
(0)
j .

Proposition B.6.1 For the n-location newsvendor problem under inventory risk pool-

ing with online and store demand in each location, if the cross-location fulfillment costs

of online demand are all equal to s, then supf∈F≥0
Ef [C(y, D̃)] ≤ C̄o(y) for any y ∈ <n,
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where

C̄o(y) :=

min
t0,t,Y,u,

B,W,U,V,
g,h,H

h · e>
(
y −mo −mb

)
+ s0 · e>mo + t0 + t>m + 〈Y,Σ + mm>〉+ e>Be

s.t.

 t0
1
2
t> 1

2
u>

1
2
t Y −1

2
V>

1
2
u −1

2
V U

 � 0

u = −We +
(
B + B>

)
e +


01,n

−In

In

0n,n

g +


01,n

0n,n

0n,n

−In

h +


η1 · e>n
η0 · In
γ · In
−η0 · In

y

V ≥


η1 · e>n η1 · e>n
η0 · In η0 · In
γ · In 0n,n

−η0 · In 0n,n



U ≤W −B +


01,n+1 h> 0>n

0n,n+1 0n,n 0n,n

0n,n+1 0n,n H

0n,n+1 0n,n −H


g,W,B ≥ 0

t0 ∈ <, g,h ∈ <n, t ∈ <2n, u ∈ <3n+1, H ∈ <n×n

Y ∈ <2n×2n, B,W,U ∈ <(3n+1)×(3n+1), V ∈ <(3n+1)×2n.

Proof. Suppose that (z(D),x(D),w(D)) are the optimal recourse variables
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for demand realization D. Let us define the following variables z

x

w

 = Ef


 z(D̃)

x(D̃)

w(D̃)




 y>zs y>zo

Yxs Yxo

Yws Ywo

 = Ef


 z(D̃)

x(D̃)

w(D̃)

( D̃s

D̃o

)>
X̄ = Ef

(
x(D)x(D)>

)
X̂ = Ef

(
z(D)x(D)x(D)>

)
.

Also define the constants

Σ + mm> =

(
Qss Q>so

Qso Qoo

)
.

Note that



1

Ds

Do

z(D)

x(D)

w(D)





1

Ds

Do

z(D)

x(D)

w(D)



>

=



1 D>s D>o z(D) x(D)> w(D)>

Ds DsD
>
s DsD

>
o Dsz(D) Dsx(D)> Dsw(D)>

Do DoD
>
s DoD

>
o Doz(D) Dox(D)> Dow(D)>

z(D) z(D)D>s z(D)D>o z(D) w(D)> w(D)>

x(D) x(D)D>s x(D)D>o w(D) x(D)x(D)> z(D)x(D)x(D)>

w(D) w(D)D>s w(D)D>o w(D) z(D)x(D)x(D)> z(D)x(D)x(D)>


where we use: z(D)2 = z(D), x(D)w(D)> = z(D)x(D)x(D)>, z(D)x(D) = w(D),

z(D)w(D) = z(D)2x(D) = z(D)x(D) = w(D), and finally, w(D)w(D)> =

z(D)2x(D)x(D)> = z(D)x(D)x(D)>. Taking the expectation on both sides, we have

that 

1 m>s m>o z x> w>

ms Qss Q>so yzs Y>xs Y>ws

mo Qso Qoo yzo Y>xo Y>wo

z y>zs y>zo z w> w>

x Yxs Yxo w X̄ X̂

w Yws Ywo w X̂ X̂


� 0,

136



and that 
1 z x> w>

z z w> w>

x w X̄ X̂

w w X̂ X̂

 ∈ BQP.

Note that the a linear relaxation of the BQP constraints is the following:

w ≤ x,

w ≤ z · e,

−w + x + z · e ≤ 1,

X̄ii = xi,

X̄ij ≤ xi,

−X̄ij + xi + xj ≤ 1,

X̂ii = wi,

X̂ij ≤ wi,

−X̂ij + wi + wj ≤ 1,

X̂ij ≤ xi,

−X̂ij + xi + wj ≤ 1.

Removing redundant constraints and taking the dual of this SDP gives the Lemma.

�
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APPENDIX C

Appendix to Chapter 4

C.1 Proofs

C.1.1 Proof of Proposition 4.4.1

The customer of type θ will choose to buy if and only if their expected utility from buying is

non-negative. The uncertainty involved in the customer’s decision is the valuation uncertainty

ε, which is assumed to be independent of their type θ. Also, the value that the return window

T π(θ) takes is either TS or TL which is independent of θ.

Let K denote the return disutility imposed on the customer. Thus, a customer will buy

if she observes a disutility that satisfies:

U(K) := Eε [max (V + ε− p, −K)] ≥ 0 (C.1)

We see that U(K) is decreasing in K, and is independent of θ. Thus, there exists a threshold

K̄ such the customer observing a return disutility of K will buy if and only if K ≤ K̄.

Note that K̄ can be found as the highest value of K that satisfies Equation C.1. Also, K̄

is finite, as if K̄ =∞, we have:

U(K̄) := Eε [max (V + ε− p, −∞)] = Eε max (V + ε− p) = V − p < 0

Thus, K̄ can be found by solving:

U(K̄) = Eε
[
max

(
V + ε− p, −K̄)

)]
= 0 (C.2)

�
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C.1.2 Proof of Propostion 4.4.2

The profit function is given by:

Π(y, π) = (s− c) · y + (p− p̃π − s) · Emin (y, ξπD) (C.3)

= (p− p̃π − c) · y − (p− p̃π − s) · E (y − ξπD)+ (C.4)

= (p− p̃π − c) · y − (p− p̃π − s) ·

y
ξπ∫

0

(y − ξπD) f(D)dD (C.5)

Given π, the first and second order differentials with respect to y are:

dΠ(y, π)

dy
= p− p̃π − c− (p− p̃− s) · F

(
y

ξπ

)
d2Π(y, π)

dy2
= −(p− p̃− s) · f

(
y

ξπ

)

It is clear that d2Π(y,π)
dy2

≤ 0, and hence Π(y, π) is concave in y, and the first order conditions

yield the optimal y∗(π) given in the Proposition. �

C.1.3 Proof of Proposition 4.5.1

Proof of i): Consider the case where s′ = s. For any value of rSB, we can choose rLB =

K̄ ·
(

1− TS
TL

)
+ rSB · TSTL such that from Propostion 4.5.3, we have ΩSB

S = ΩLB
L , and hence,

ξSB = ξLB. Also, for any θ ∈ ΩSB
S ,

θ

TL
+ rLB −

(
θ

TS
+ rSB

)
= θ ·

(
1

TL
− 1

TS

)
+ rLB − rSB

= θ ·
(

1

TL
− 1

TS

)
+
(
K̄ − rSB

)
·
(

1− TS
TL

)
=

(
1

TL
− 1

TS

)
·
((
K̄ − rSB

)
TS − θ

)
≥ 0

where the second equality follows by substituting the value of rLB, and the final inequality

follows from Proposition 4.5.3. Thus, we have:

ψLB = Eθ
[
G
(
p− V − θ

TL
− rLB

)
| θ ∈ ΩLB

L

]
≤ Eθ

[
G
(
p− V − θ

TS
− rSB

)
| θ ∈ ΩSB

S

]
= ψSB
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We have shown that for any chosen rSB, we can find a value of rLB such that

ΠSB(y, πSB) ≤ ΠLB(y, πLB). Thus, max
y,πSB

ΠSB(y, πSB) ≤ ΠLB(ȳ, π̄LB) for some ȳ and π̄LB,

and we also have: ΠLB(ȳ, π̄LB) ≤ max
y,πLB

ΠLB(y, πLB).

Hence, we have ∆Π ≤ 0 when s′ = s, and hence the firm should offer the short-blanket

policy. By the continuity of ∆Π, this is also true for values of s′ close to s. �

Proof of ii): The difference in the optimal profits between the short-blanket and long-blanket

policies is given by:

∆Π = max
y,πSB

ΠSB(y, πSB)− max
y,πLB

ΠLB(y, πLB) (C.6)

It is easy to see from Equation 4.19 that p̃SB is continuous and decreasing in s′, and hence

ΠSB(y, πSB) is increasing in s′. Since ΠLB is independent of s′, this implies that ∆Π is

increasing in s′. �

C.1.4 Proof of Proposition 4.5.2

We have:

y∗(r) = ξ(r) · F−1

(
1− c− s

p− s− p̃(r)

)
(C.7)

where

ξ(r) =
(K̄ − r)T

θ̄

p̃(r) = (p− s′ − r) ·
(
p− V − ε− K̄

2
− r

2

)
Dropping the dependence on r for convenience, we have: y∗(r) := ξ · α, where we define

α = F−1
(

1− c−s
p−s−p̃(r)

)
. We have:

dξ

dr
= −T

θ̄
dp̃

dr
= − 1

ε̄− ε
·
(

1

2
· (p− s′ − r) + p− V − ε− r

2
− K̄

2

)
We also have:

F (α) = 1− c− s
p− p̃− s

dF (α)

dα
· dα
dr

= −
(c− s) · dp̃dr
(p− s− p̃)2

dα

dr
= −

(c− s) · dp̃dr
(p− s− p̃)2 · f(α)
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Given a return window T , the expected profit function only in terms of r is given by:

Π(r) = (s− c) · (ξα) + (p− s− p̃) · Emin (ξα, ξD) (C.8)

= (p− c− p̃) · ξ · α− (p− s− p̃) · ξ · E (α−D)+ (C.9)

Differentiating the profit function in Equation C.9, we have:

dΠ

dr
=

[
(p− c− p̃)

(
−T
θ̄

)
+ ξ ·

(
−dp̃
dr

)]
· α + (p− c− p̃) · ξ · dα

dr

−
[
(p− s− p̃)

(
−T
θ̄

)
+ ξ ·

(
−dp̃
dr

)]
· E (α−D)+ − (p− s− p̃) · ξ · dα

dr
· F (α)

= −
[
(p− c− p̃)

(
T

θ̄

)
+ ξ ·

(
dp̃

dr

)]
· α+

[
(p− s− p̃)

(
T

θ̄

)
+ ξ ·

(
dp̃

dr

)]
· E (α−D)+

+
dα

dr
· ξ · (p− c− p̃− (p− s− p̃) · F (α))

= − Π(r)

(K̄ − r)
−
[
ξ ·
(
dp̃

dr

)]
· α+

[
ξ ·
(
dp̃

dr

)]
· E (α−D)+

+
dα

dr
· ξ ·

(
p− c− p̃− (p− s− p̃) ·

(
p− c− p̃
p− s− p̃

))
Simplifying, we get:

dΠ

dr
= − Π(r)

(K̄ − r)
+

(
−dp̃
dr

)
· Emin (ξα, ξD) (C.10)

Now, the second order differential of the profit function is given by differentiating Equation

C.10:

d2Π

dr2
= −

(K̄ − r)dΠ
dr −Π(r)(−1)

(K̄ − r)2
+

d

dr

((
−dp̃
dr

)
· Emin (ξα, ξD)

)
(C.11)

= −
(K̄ − r) ·

(
−dp̃
dr

)
· Emin (ξα, ξD)

(K̄ − r)2
+

d

dr

((
−dp̃
dr

)
· Emin (ξα, ξD)

)
=

1

K̄ − r
·
[
−
(
−dp̃
dr

)
· Emin (ξα, ξD) + (K̄ − r) · d

dr

((
−dp̃
dr

)
· Emin (ξα, ξD)

)]
d2Π

dr2
=

1

K̄ − r
· d
dr

[(
K̄ − r

)
·
(
−dp̃
dr

)
· Emin (ξα, ξD)

]
(C.12)

The second equality follows from Equation C.10. Note that Π(K̄) = 0, as there is no demand.

Thus, we will assume that Π(r) cannot be monotone increasing, as it is then optimal to not

sell the product. Thus, Π(r) is either monotone decreasing, or there exists at least one interior
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point r∗ where dΠ
dr = 0. For any such r∗, we have:

− Π(r∗)

(K̄ − r∗)
− ξ ·

(
dp̃

dr

∣∣∣∣
r=r∗

)
· Emin (α,D) = 0

− Π(r∗)

(K̄ − r∗)
− ξ ·

(
dp̃

dr

∣∣∣∣
r=r∗

)
·

 Π(r∗)
ξ − (s− c)α
p− s− p̃

 = 0

Π(r∗) =

(s− c)ξα · (K̄ − r∗) · dp̃dr

∣∣∣∣
r=r∗

p− s− p̃+ (K̄ − r)dp̃dr

∣∣∣∣
r=r∗

(s− c) · (��ξα) + (p− s− p̃) · Emin (��ξα, ��ξD) =

(s− c)��ξα · (K̄ − r∗) ·
dp̃
dr

∣∣∣∣
r=r∗

p− s− p̃+ (K̄ − r)dp̃dr

∣∣∣∣
r=r∗

(p− s− p̃) · Emin (α,D) = (s− c)α ·

 (K̄ − r∗) · dp̃dr

∣∣∣∣
r=r∗

p− s− p̃+ (K̄ − r)dp̃dr

∣∣∣∣
r=r∗

− 1



������
(p− s− p̃) · Emin (α,D) = −(s− c)α ·

 �����p− s− p̃

p− s− p̃+ (K̄ − r)dp̃dr

∣∣∣∣
r=r∗


(
p− s− p̃+ (K̄ − r)dp̃

dr

∣∣∣∣
r=r∗

)
· Emin (α,D) = −(s− c)α(

p− s− p̃+ (K̄ − r)dp̃
dr

∣∣∣∣
r=r∗

)
· Emin (ξα, ξD) = −(s− c)ξα (C.13)

Π(r∗) = (K̄ − r)
(
−dp̃
dr

∣∣∣∣
r=r∗

)
· Emin (ξα, ξD) (C.14)

Note that from Equation C.14, Π(r∗) ≥ 0. For any such r∗, if we show that d2Π
dr2

∣∣∣
r∗
≤ 0, then

Π(r) is unimodal. From Equation C.12, it is clear that if Emin (ξα, ξD) is decreasing in r at

r = r∗, we will have d2Π
dr2

∣∣∣
r∗
≤ 0.
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We have:

d (Emin (ξα, ξD))

dr

=
d

dr

(
Π(r)− (s− c) · (ξα)

p− s− p̃

)
=

1

p− s− p̃
·
(
dΠ

dr
+ (c− s)d(ξα)

dr

)
+ (Π(r)− (s− c) · (ξα)) ·

(
− 1

(p− s− p̃)2

)
·
(
−dp̃
dr

)
=

1

p− s− p̃
·
[
dΠ

dr
+ (c− s)d(ξα)

dr
+ Emin (ξα, ξD) ·

(
dp̃

dr

)]
=

1

p− s− p̃
·
[
− Π(r)

(K̄ − r)
+ (c− s)d(ξα)

dr

]
The first equality follows from Equation C.8, the second equality follows from differentiation,

the third equality again follows from C.8, and the fourth equality follows from Equation C.10.

Since Π(r) ≥ 0 and r ≤ K̄, if we have d(ξα)
dr

∣∣∣∣∣
r∗

≤ 0, we are done. �

Now, if Π(r) is either monotone decreasing or unimodal, then r = 0 is optimal whenever
dΠ
dr

∣∣∣
r=0
≤ 0. let ξ0, α0 denote the values of ξ and α when r = 0 respectively.

From (C.10), we have:

dΠ

dr

∣∣∣
r=0

= −Π(0)

K̄
+

(
−dp̃
dr

∣∣∣
r=0

)
· Emin (ξ0α0, ξ0D) (C.15)

=
1

K̄
·
(

(c− s)ξ0α0 −
(
p− s− p̃(0)− K̄

(
−dp̃
dr

∣∣∣
r=0

))
· Emin (ξ0α0, ξ0D)

)
(C.16)

Whenever c− s ≥
(
p− s− p̃(0)− K̄

(
−dp̃
dr

∣∣∣
r=0

))
, we have:

dΠ

dr

∣∣∣
r=0
≥ c− s

K̄
· (ξ0α0 − Emin (ξ0α0, ξ0D))

≥ c− s
K̄
· (ξ0α0 − ξ0α0)

= 0

Thus, whenever c ≥
(
p− p̃(0)− K̄

(
−dp̃
dr

∣∣∣
r=0

))
, the function Π(r) is unimodal with an inte-

rior solution r∗ > 0.

Consider the case where c→ s. In this case, α0 →∞, hence:

dΠ

dr

∣∣∣
r=0

= −ξ0 · E(D)

K̄
·
(
p− s− p̃(0)−

(
−dp̃
dr

∣∣∣
r=0

))
(C.17)

Thus, only when p − s − p̃(0) −
(
−dp̃
dr

∣∣∣
r=0

)
≥ 0, or p̃(0) ≤ p − s −

(
−dp̃
dr

∣∣∣
r=0

)
, we have

dΠ
dr

∣∣∣
r=0
≤ 0, and the optimal solution is r = 0. Otherwise, we will have dΠ

dr

∣∣∣
r=0
≥ 0, and an

interior point r∗ > 0 will be optimal. �
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C.1.5 Proof of Proposition 4.5.3

Any customer of type θ will choose the option that yields the maximum expected util-

ity. By Proposition 4.4.1, we know that the customer will choose to buy only if θ ≤
max

((
K̄ − rS

)
TS ,

(
K̄ − rL

)
TL
)

=
(
K̄ − rL

)
TL = θM,L. Thus, for θ ≤ θM,L, the expected

utility is:

max

(
Eε max

[
V + ε− p,− θ

TS
− rS

]
, Eε max

[
V + ε− p, − θ

TL
− rL

])
Clearly, the choice between (TS , rS) and (TL, rL) only depends on the return disutility imposed

on the customer by these policies. Thus, customer of type θ ≤ θM,L will choose (TS , rS) if

and only if:

θ

TS
+ rS ≤

θ

TL
+ rS

⇒ θ ≤ rL − rS
1
TS
− 1

TL

= θM,SL

and the customer chooses (TL, rL) for θM,SL < θ ≤ θM,L. �

C.1.6 Proof of Proposition 4.5.4

Let:

r∗SB = arg max
rS∈[0,K̄]

Π(y, πSB)

r∗LB = arg max
rL∈[0,K̄]

Π(y, πLB)

(r∗,MS , r∗,ML ) = arg max
rS∈[0,K̄],

rL∈
[
rS ,rS ·

TS
TL

+K̄·
(

1−TS
TL

)]Π(y, πM )

Let π∗,SB, π∗,LB and π∗,M denote the optimal policies respectively. The proof follows by

showing that both r∗SB and r∗LB can be implemented under πM , and hence are feasible solu-

tions to the menu of policies.

Consider a feasible policy πM1 under the menu of policies such that rS = r∗SB and rL =

rSB · TSTL + K̄ ·
(

1− TS
TL

)
. We thus have: Ω

πM1
L = ∅ since θM,S = θM,SL = θM,L. Also,

Ω
πM1
S = Ωπ∗,SB

S , and each buying customer in both policies is offered the same return window

and return fee (TS , r
∗
SB). Hence, ΠSB(y) = Π(y, πM1 ) ≤ ΠM (y).

Similarly, consider another feasible policy πM2 under the menu of policies such that rS =

rL = r∗LB. In this case, we have: Ω
πM2
S = ∅ since θM,SL = 0, and we also have Ω

πM2
L =

Ωπ∗,LB
L . Since each buying customer in both policies is offered the same return window and

fee (TL, r
∗
LB), we have ΠLB(y) = Π(y, πM2 ) ≤ ΠM (y).
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Thus, we have: ΠM (y) ≥ max
(
ΠSB(y),ΠLB(y)

)
. �

C.1.7 Proof of Proposition 4.6.1

We begin the proof by noticing that, keeping ξπS and ξπL constant, the expected profit Π(y, π)

is decreasing in ψπS and ψπL. We have:

ξπS =
1

θ̄
·
∫

θ∈ΩπS

dθ

ξπL =
1

θ̄
·
∫

θ∈ΩπL

dθ

ξπSψ
π
S =

1

θ̄(ε̄− ε)
·
∫

θ∈ΩπS

(
p− V − ε− θ

TS

)
dθ

ξπLψ
π
L =

1

θ̄(ε̄− ε)
·
∫

θ∈ΩπL

(
p− V − ε− θ

TL

)
dθ

ξπSψ
π
S + ξπLψ

π
L =

1

θ̄(ε̄− ε)
·

[ ∫
θ∈ΩπS∪ΩπL

(
p− V − ε− θ

TS

)
dθ +

∫
θ∈ΩπL

θ

(
1

TS
− 1

TL

)
dθ

]

Proof of i): For any θ ≤ K̄TS, if T ∗,F (θ) = T∅, then for any other θ′ < θ, T ∗,F (θ′) = T∅.

Consider an optimal policy π∗,F where T ∗,F (θ) = T∅ for some θ ≤ K̄TS , and T ∗,F (θ′) = TS

for some θ′ < θ. The proof for the case where T ∗,F (θ′) = TL follows similarly.

Consider an alternative policy π̂ that is identical to π∗,F except that T̂ (θ′) = T∅, and

T̂ (θ) = TS . Thus, ξπ
∗,F

S = ξπ̂S , and ξπ
∗,F

= ξπ̂. However, ξπ
∗,F

S ψπ
∗,F

S > ξπ̂Sψ
π̂
S since θ′ < θ.

Thus, we have ψπ
∗,F

S > ψπ̂S , implying Π(y, π∗,F ) ≤ Π(y, π̂), and thus π̂ is also optimal.

Proof of ii): For any θ ≤ K̄TL, if T ∗,F (θ) = TS, then for any other θ′ < θ, T ∗,F (θ′) = TS

or T ∗,F (θ′) = T∅.

Consider an optimal policy π∗,F where T ∗,F (θ) = TS for some θ ≤ K̄TL, and T ∗,F (θ′) = TL

for some θ′ < θ. There are three cases that ensue depending on the values of θ′ and θ.

Case 1: θ′ < θ ≤ K̄TS : Consider an alternative policy π̂ that is identical to π∗,F except

that T̂ (θ′) = TS . This ensures that ξπ
∗,F

= ξπ̂. Since θ′ < θ, we also have

ξπ
∗,F

S ψπ
∗,F

S < ξπ̂Sψ
π̂
S

ξπ
∗,F

L ψπ
∗,F

L > ξπ̂Lψ
π̂
L

ξπ
∗,F

S ψπ
∗,F

S + ξπ
∗,F

L ψπ
∗,F

L > ξπ̂Sψ
π̂
S + ξπ̂Lψ

π̂
L

Let ξπ̂Sψ
π̂
S − ξπ

∗,F
S ψπ

∗,F
S = ∆1, and ξπ

∗,F
L ψπ

∗,F
L − ξπ̂Lψπ̂L = ∆2. Thus, 0 < ∆1 < ∆2. Hence,
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we have:

p̃π
∗,F − p̃π̂ =

1

ξπ̂
·
[
(p− s′)(−∆1) + (p− s)(∆2)

]
≥ p− s′

ξπ̂
· [∆2 −∆1]

≥ 0

Hence, Π(y, π∗,F ) ≤ Π(y, π̂), and thus π̂ is also optimal.

Case 2: θ′ ≤ K̄TS < θ. Consider an alternative policy π̂ that is identical to π∗,F except

that T̂ (θ′) = T∅, and T̂ (θ) = TL. This ensures that ξπ
∗,F

S = ξπ̂S , and ξπ
∗,F

= ξπ̂. It is also

clear that since θ′ < θ, we have ψπ
∗,F

L > ψπ̂L, with ψπ
∗,F

S > ψπ̂S . Hence, Π(y, π∗,F ) ≤ Π(y, π̂),

and thus π̂ is also optimal.

Case 3: K̄TS < θ′ < θ. Consider an alternative policy π̂ that is identical to π∗,F except

that T̂ (θ′) = TS , and T̂ (θ) = TL. This ensures that ξπ
∗,F

S = ξπ̂S , and ξπ
∗,F

= ξπ̂. It is also

clear that since θ′ < θ, we have ψπ
∗,F

L > ψπ̂L, with ψπ
∗,F

S > ψπ̂S . Hence, Π(y, π∗,F ) ≤ Π(y, π̂),

and thus π̂ is also optimal. �

Proof of iii): If θ ≤ K̄TS, T ∗,F (θ) 6= TL.

Let there exist an optimal policy π∗,F where T ∗,F (θ) = TL for some θ ≤ K̄TS . Consider

an alternative policy π̂ that is identical to π∗,F except that T̂ (θ) = TS . Then, we have:

ξπ
∗,F

S ψπ
∗,F

S < ξπ̂Sψ
π̂
S

ξπ
∗,F

L ψπ
∗,F

L > ξπ̂Lψ
π̂
L

ξπ
∗,F

S ψπ
∗,F

S + ξπ
∗,F

L ψπ
∗,F

L > ξπ̂Sψ
π̂
S + ξπ̂Lψ

π̂
L

The rest of the proof follow the same steps as the proof of Case 1 of Part ii). �

C.1.8 Proof of Lemma 4.6.1

The expected return fees are:

RS = E
[
rπ(θ)

∣∣ θ ∈ ΩS , V + ε− p < − θ

TS
− rπ(θ)

]
=

1

ψS
· E
[
rπ(θ) · G

(
p− V − θ

TS
− rπ(θ)

) ∣∣ θ ∈ ΩS

]
(C.18)

RL = E
[
rπ(θ)

∣∣ θ ∈ ΩL, V + ε− p < − θ

TL
− rπ(θ)

]
=

1

ψL
· E
[
rπ(θ) · G

(
p− V − θ

TL
− rπ(θ)

) ∣∣ θ ∈ ΩL

]
(C.19)
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We have p̃π = 1
ξπ ·
[
ξS ((p− s′)ψS −RSψS) + ξL ((p− s)ψL −RLψL)

]
. Considering each term,

we have:

(p− s′)ψS −RSψS

= (p− s′) · E
[
G
(
p− V − θ

TS
− rπ(θ)

)
| θ ∈ ΩS

]
− E

[
rπ(θ) · G

(
p− V − θ

TS
− rπ(θ)

)
| θ ∈ ΩS

]
= E

[(
p− s′ − rπ(θ)

)
· G
(
p− V − θ

TS
− rπ(θ)

) ∣∣∣∣ θ ∈ ΩS

]
(C.20)

(p− s)ψL −RLψL

= (p− s) · E
[
G
(
p− V − θ

TL
− rπ(θ)

)
| θ ∈ ΩL

]
− E

[
rπ(θ) · G

(
p− V − θ

TL
− rπ(θ)

)
| θ ∈ ΩL

]
= E

[
(p− s− rπ(θ)) · G

(
p− V − θ

TL
− rπ(θ)

) ∣∣∣∣ θ ∈ ΩL

]
(C.21)

It is easy to see that for any θ, both (p− s− rπ(θ)) · G
(
p− V − θ

TS
− rπ(θ)

)
as well as

(p− s′ − rπ(θ)) · G
(
p− V − θ

TL
− rπ(θ)

)
are decreasing in rπ(θ). Since ΩS,π1 = ΩS,π2 and

ΩL,π1 = ΩL,π2 , this implies that p̃π1 ≤ p̃π2 , which completes the proof. �

C.1.9 Proof of Proposition 4.6.2

The proofs follow by constructing an optimal policy that possesses the properties in Propo-

sition 4.6.2 from another optimal policy that does not possess these properties. Proof of i):

Let π∗ be an optimal policy where there exists Ω̄ =
{
θ : − θ

T ∗(θ) − r
∗(θ) 6= −K̄

}
6= ∅ such

that Ω̄ ⊂ Ω. Consider policy π1 which is identical to π∗ except that r∗(θ) = K̄ − θ
T ∗(θ) for

all θ ∈ Ω̄. By Lemma 4.6.1, it follows that p̃π
∗ ≥ p̃π1 and consequently Π(y, π∗) ≤ Π(y, π1),

which implies that π1 is also optimal.

Proof of ii): From (i), we can update the definition of ΩS and ΩL as:

Ωπ∗
S =

{
θ : T ∗(θ) = TS , −

θ

TS
− r∗(θ) = −K̄

}
(C.22)

Ωπ∗
L =

{
θ : T ∗(θ) = TL, −

θ

TL
− r∗(θ) = −K̄

}
(C.23)

147



From Equations C.20 and C.21, for θ ∼ U [0, θ̄], we have:

p̃π =
1

ξπ
·
(
E
[(
p− s′ − rπ(θ)

)
· G
(
p− V − θ

TS
− rπ(θ)

)
1 (θ ∈ Ωπ

S)

]
+ E

[
(p− s− rπ(θ)) · G

(
p− V − θ

TL
− rπ(θ)

)
1 (θ ∈ Ωπ

L)

])
=

1

θ̄ · ξπ
·

( ∫
θ∈ΩπS

(
p− s′ − rπ(θ)

)
· G
(
p− V − θ

TS
− rπ(θ)

)
dθ

+

∫
θ∈ΩπL

(p− s− rπ(θ)) · G
(
p− V − θ

TL
− rπ(θ)

)
dθ

)
(C.24)

By (i), for any optimal policy π∗, we have:

p̃π
∗

=
1

θ̄ · ξπ∗
·

( ∫
θ∈Ωπ

∗
S

(
p− s′ − r∗(θ)

)
· G
(
p− V − K̄

)
dθ

+

∫
θ∈Ωπ

∗
L

(p− s− r∗(θ)) · G
(
p− V − K̄

)
dθ

)

=
G
(
p− V − K̄

)
θ̄ · ξπ∗

·

( ∫
θ∈Ωπ

∗
S

(
p− s′ − r∗(θ)

)
dθ +

∫
θ∈Ωπ

∗
L

(p− s− r∗(θ)) dθ

)
(C.25)

It is clear from (i) that for any θ ≤ K̄ · TS and θ ∈ Ωπ, two policies are possible:(
TS , rS = K̄ − θ

TS

)
and

(
TL, rL = K̄ − θ

TL

)
. Since the rate of return is constant under both

policies (= G(p− V − K̄)), the contribution to p̃π
∗

of both these policies are p− s′ − rS and

p− s− rL respectively. Due to Lemma 4.6.1, the policy that is chosen for θ is one that leads

to the lowest p̃π
∗
. Thus, (TS , rS) is chosen if and only if:

p− s′ − rS ≤ p− s− rL

−s′ − K̄ +
θ

TS
≤ −s− K̄ +

θ

TL

θ ≤ s′ − s
1
TS
− 1

TL

�

Proof of iii): Note that for any θ > K̄ · TS and θ ∈ Ωπ, it must be the case that T ∗(θ) = TL.

Thus, a corollary of (ii) is that there is an optimal policy in which there exists a threshold
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θSL such that T ∗(θ) = TS only if θ ≤ θSL, where

θSL = min

(
s′ − s
1
TS
− 1

TL

, K̄ · TS

)

Thus, it is sufficient to show that if for any θ2 > θSL, θ2 ∈ ΩL, then any other θ1 such that

θSL < θ1 < θ2 should also be in ΩL.

Let θ1 6∈ ΩL. This implies that θ1 6∈ Ω, as θ1 > θSL. Consider an alternate strategy π′

which is identical to π∗ except that θ2 6∈ ΩL, and θ1 ∈ ΩL. That is, − θ1
TL
− r′(θ1) = −K̄ =

− θ2
TL
− r∗(θ2). Hence, we have r′(θ1) > r∗(θ2) and ξπ

′
= ξπ

∗
:= ξ.

Let Ω̂L = ΩL,π∗ − {θ2}, and ΩL,π′ = Ω̂L ∪ {θ1}. Thus,

p̃π
∗

=
1

θ̄ · ξ
·

( ∫
θ∈ΩS

(
p− s′ − r∗(θ)

)
· G
(
p− V − K̄

)
dθ

+

∫
θ∈Ω̂L∪{θ2}

(p− s− r∗(θ)) · G
(
p− V − K̄

)
dθ

)

p̃π
′

=
1

θ̄ · ξ
·

( ∫
θ∈ΩS

(
p− s′ − r′(θ)

)
· G
(
p− V − K̄

)
dθ

+

∫
θ∈Ω̂L∪{θ1}

(
p− s− r′(θ)

)
· G
(
p− V − K̄

)
dθ

)

Since p−s′−r′(θ1) < p−s′−r∗(θ2), we have p̃π
′
< p̃π

∗
, and hence Π(y, π′) ≥ Π(y, π∗), which

implies that π′ is also optimal. �
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C.2 Customer Parameters under Return Policies

C.2.1 General Setting

ξπS =
1

θ̄
·
∫

θ∈ΩπS

dθ

ξπL =
1

θ̄
·
∫

θ∈ΩπL

dθ

ψπS =

∫
θ∈ΩπS

(
p− V − ε− θ

TS
− rπ(θ)

)
dθ

ξπS θ̄(ε̄− ε)

ψπL =

∫
θ∈ΩπL

(
p− V − ε− θ

TL
− rπ(θ)

)
dθ

ξπLθ̄(ε̄− ε)

RπS =
1

ξπSψ
π
S θ̄(ε̄− ε)

·
∫

θ∈ΩπS

rπ(θ)

(
p− V − ε− θ

TS
− rπ(θ)

)
dθ

RπL =
1

ξπLψ
π
Lθ̄(ε̄− ε)

·
∫

θ∈ΩπL

rπ(θ)

(
p− V − ε− θ

TL
− rπ(θ)

)
dθ

C.2.2 Blanket Policies

For a return window T and flat return fee r, we have:

ξ =
(K̄ − r)T

θ̄

ψ =

(
p− V − ε− K̄

2
− r

2

)
R = r
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C.2.3 Menu of Policies

ξS = H(θM,SL) =
θM,SL

θ̄
=

rL − rS
θ̄
(

1
TS
− 1

TL

)
ξL = H(θM,L)−H(θM,SL) =

θM,L − θM,SL

θ̄
=
K̄
(
TL
TS
− 1
)

+ rS − rL · TLTS
θ̄
(

1
TS
− 1

TL

)

ψS =

∫
θ≤θM,SL

G
(
p− V − θ

TS
− rS

)
h(θ)dθ

H(θM,SL)

=
1

ε̄− ε
·
[
p− V − ε− rS −

θM,SL

2TS

]

ψL =

θM,L∫
θM,SL

G
(
p− V − θ

TL
− rL

)
h(θ)dθ

H(θM,L)−H(θM,SL)

=
1

ε̄− ε
·
[
p− V − ε− rL −

θM,SL + θM,L

2TL

]

RS = rS

RL = rL

C.2.4 Personalized Policies with General Refunds

The fraction of customers buying the product are:

ξ∗S = H (min(θ∗, θ∗1)) =
min(θ∗, θ∗1)

θ̄

ξ∗L = H(θ∗)−H (min(θ∗, θ∗1)) =
θ∗ −min(θ∗, θ∗1)

θ̄

ξπ
∗

= H(θ∗) =
θ∗

θ̄

The conditional probability of return (probability of return given purchase) for the customers

in Ω:

ψ∗S = G
(
p− V − K̄

)
ψ∗L = G

(
p− V − K̄

)
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Note that the rate of return is independent of θ, as all customers obtain the same utility

upon return (−K̄). The expected return fees collected by the firm RS and RL are given by:

R∗S = K̄ − 1

TS
· E
[
θ
∣∣ θ ≤ min(θ∗, θ∗1)

]
= K̄ − 1

2TS
·min(θ∗, θ∗1)

R∗L = K̄ − 1

TL
· E
[
θ
∣∣ min(θ∗, θ∗1) < θ ≤ θ∗

]
= K̄ − 1

2TL
· (θ∗ + min(θ∗, θ∗1))

The effective revenue loss per unit is thus:

p̃π
∗

=
1

ξπ
·
[(
p− s′ −RS

)
ξSψS + (p− s−RL) ξLψL

]
=
G(p− V − K̄)

H(θ∗)
·

[ (
p− s′ − K̄

)
ξS +

(
p− s− K̄

)
ξL

+
1

TS
E
[
θ
∣∣ θ ≤ min(θ∗, θ∗1)

]
ξS +

1

TL
E
[
θ
∣∣ min(θ∗, θ∗1) < θ ≤ θ∗

]
ξL

]

= G(p− V − K̄) ·
[
p− s− K̄ − (s′ − s)H (min(θ∗, θ∗1))

H (θ∗)

]
+
G(p− V − K̄)

H(θ∗)
·
[

1

TS
E [θ · 1 (θ ≤ min(θ∗, θ∗1))] +

1

TL
E [θ · 1 (min(θ∗, θ∗1) < θ ≤ θ∗)]

]
= G(p− V − K̄) ·

[
p− s− K̄ − (s′ − s)H (min(θ∗, θ∗1))

H (θ∗)

]
+
G(p− V − K̄)

H(θ∗)
·
[(

1

TS
− 1

TL

)
· E [θ · 1 (θ ≤ min(θ∗, θ∗1))] +

1

TL
E [θ · 1 (θ ≤ θ∗)]

]
= G(p− V − K̄) ·

[
p− s− K̄ − (s′ − s)min(θ∗, θ∗1)

θ∗

]
+
G(p− V − K̄)

θ∗
·

[(
1

TS
− 1

TL

)
· (min(θ∗, θ∗1))2

2
+

1

TL

(θ∗)2

2

]

Hence,

p̃π
∗

=

G(p− V − K̄) ·
(
p− s′ − K̄ + θ∗

2TS

)
, if θ ≤ θ1

G(p− V − K̄) ·
(
p− s− K̄ + θ∗

2TL
− θ21

2θ∗ ·
(

1
TS
− 1

TL

))
, o/w
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