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ABSTRACT

Database administration has always been a challenging task, and is becoming even more
difficult with the rise of public and private clouds. Today, many enterprises outsource
their database operation to cloud service providers (CSPs) in order to reduce operating
costs. CSPs, now tasked with managing an extremely large number of database instances,
cannot simply rely on database administrators. In fact, humans have become a bottleneck
in the scalability and profitability of cloud offerings. This has created a massive demand
for building autonomous databases—systems that operate with little or zero human su-
pervision.
While autonomous databases have gained much attention in recent years in both
academia and industry, many of the existing techniques remain limited to automating
parameter tuning, backup/recovery, and monitoring. Consequently, there is much to be
done before realizing a fully autonomous database. This dissertation examines and offers
new automation techniques for three specific areas of modern database management.

1. Automated Tuning – We propose a new generation of physical database designers
that are robust against uncertainty in future workloads. Given the rising popular-
ity of approximate databases, we also develop an optimal, hybrid sampling strat-
egy that enables efficient join processing on offline samples, a long-standing open
problem in approximate query processing.

2. Performance Diagnosis – We design practical tools and algorithms for assisting
database administrators in quickly and reliably diagnosing performance problems
in their transactional databases.

3. Resource Decentralization – To achieve autonomy among database components
in a shared environment, we propose a highly efficient, starvation-free, and fully
decentralized distributed lock manager for distributed database clusters.
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CHAPTER 1

Introduction

Database management systems (DBMSs) are among the most critical software components in
our world today. Many vital applications across enterprise, science, and government depend
on database technology to derive insight from their data and make timely decisions. However,
database management has become extremely demanding due to advances in database technology
and its ever-increasing complexity.

Recently, many enterprises have shifted to hosting their database in the cloud to save on costs
for its hardware and software. Cloud databases present many advantages to these enterprises over
hosting their own database infrastructure: they are cheaper, more flexible, and more scalable. Users
of cloud databases can expect them to work 24/7 under a service-level agreement (SLA) with
cloud service providers (CSPs). For this, CSPs need to monitor, diagnose, and fine-tune hosted
databases continuously. Previously, these tasks were mostly done manually by humans, database
administrators (DBAs), but they are quickly becoming a bottleneck in database management as the
number of databases managed per DBA increases rapidly.

To solve this problem, the notion of autonomous databases has gained much attention lately.
For instance, Oracle [14] has introduced its autonomous database, defined as “a cloud database
that uses machine learning to eliminate the human labor associated with database tuning, security,
backups, updates, and other routine management tasks traditionally performed by database admin-
istrators (DBAs).” While the term itself is not limited to the cloud environment, it gets marketed
as a cloud database because that is where it is currently most wanted by users. However, all exist-
ing databases, including Oracle’s new autonomous database, are not yet fully autonomous and can
automate only some functionalities, like backup and parameter tuning.

From both the database research community and commercial database vendors, there has been
much previous work in a number of areas, such as physical design [35, 36, 72, 73, 74, 120, 123,
197,225,231] and parameter tuning [95,106,162,232,241], to make databases more autonomous.
However, there are still many areas that are fundamentally difficult to automate, as they require
human insight, such as performance diagnosis. In this dissertation, we focus on two different
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aspects of autonomous databases: a) autonomy from human supervision, and b) autonomy among
database components. Then, we explore three specific areas where modern database systems can
improve in either of those two aspects: 1) automated tuning; 2) performance diagnosis; and 3)
resource decentralization. In each of these areas, we study new frameworks and algorithms that
achieve better autonomy than previous approaches. In the following sections, we briefly discuss
the two aspects of database autonomy, and provide background information on the three specific
areas of database management mentioned above.

1.1 Two Aspects of Database Autonomy

By definition, an autonomous database is one that can operate with little or (ideally) no human su-
pervision, ultimately reducing operating costs of a database. The second aspect to an autonomous
database is making its components autonomous from one another, providing fault-tolerance and
scalability. In the subsequent sections, we discuss both of these two aspects in detail.

1.2 Autonomy from Human Supervision

The notion of autonomous databases is relatively new, and there is no standard metric that measures
the level of autonomy from human supervision in the context of database systems. However, there
is a well-known taxonomy for autonomous driving, called six levels of vehicle autonomy [84], as
shown in Figure 1.1.

Figure 1.1: Six levels of vehicle autonomy [1].
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Here, we apply a similar taxonomy to discuss levels of autonomy from human supervision in
the context of database systems. Each level can be translated as follows:

• Level 0 (Manual): A DBMS does not provide any automation. It simply provides an inter-
face for the user and operates manually, merely following instructions from the user.

• Level 1 (Assistant): A DBMS provides an assistant tool to recommend a better configuration
for a DBMS’s component to the user. However, it is still the user’s responsibility to apply
the changes and monitor the effects.

• Level 2 (Partial): A DBMS can automatically configure or manage some components of the
system, but it can still fail or conflict with the user’s interests. The user needs to consistently
pay attention to override the undesirable behavior from the system.

• Level 3 (Conditional): A DBMS provides an automatic configuration or management for
some components of the system in a more comprehensive way than Level 2, requiring less
attention from the user. The user still expects to intervene from time to time.

• Level 4 (High): A DBMS provides a complete autonomy for some components of the sys-
tem. The user only needs to provide a high-level direction for global configuration issues.

• Level 5 (Full): A DBMS is completely autonomous. It requires zero intervention from
humans to be able to operate at full capacity.

In this dissertation, we focus on the two specific areas of database management, performance
diagnosis and automated tuning, for improving the level of autonomy from human supervision.
We can grade the current level of autonomy in each of the two areas as the following:

Performance Diagnosis— Most performance diagnosis tools in databases [49, 98, 105] can be
classified as Level 1, but they are limited to looking at only database parameters and unable to ex-
plain the root cause of the performance problems. Outside of database context, decision trees [155]
and robust statistics [213] have been used for automatic performance explanation of map-reduce
jobs and cloud services, respectively.

Automated Tuning— Many previous auto-tuning tools for physical design [34, 35, 36, 75] and
parameter tuning [95, 106, 162] can be classified as Level 1. Several recent works achieve Level 3
in auto-indexing [8, 93].

Next, we provide detailed backgrounds on each of these two areas in the following sections.
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1.2.1 Automated Tuning

A fundamental problem in database systems is choosing the best physical design (i.e., a small set
of auxiliary structures) that enables the fastest execution of future queries. Almost all commercial
databases come with designer tools [33, 34, 47, 73, 91, 221]. They create some indices or materi-
alized views (together comprising the physical design) that they exploit during query processing.
Existing designers are what we call nominal; that is, they assume that their input parameters are
precisely known and equal to some nominal values. In practice, however, these parameters are
often noisy or missing. Since nominal designers do not account for the influence of such uncer-
tainties, they find designs that are sub-optimal and remarkably brittle. To solve this problem, a new
type of database designer, called CliffGuard [187], is proposed, which is robust against parameter
uncertainties, so that overall performance degrades more gracefully when future workloads deviate
from the past.

Huge datasets in the cloud make it considerably difficult and expensive to achieve interactive-
speed data analytics. Approximate query processing (AQP) is a viable solution to this problem,
as it significantly speeds up data analytics at the cost of slightly inaccurate answers. In the con-
text of AQP, the problem of choosing the best physical design in traditional databases translates
to the problem of generating an optimal set of samples that can answer given queries with the
best accuracy. However, to the best of our knowledge, there are no previous studies regarding the
best sampling strategy for joining random samples. Therefore, a hybrid sampling scheme, called
Stratified-Universe-Bernoulli Sampling (SUBS), is formalized, and its optimal sampling parame-
ters are analyzed to improve the understanding of sampling-based joins [137].

1.2.2 Performance Diagnosis

As businesses rely on databases to support their mission-critical and real-time applications, poor
database performance directly impacts their revenue and user experience. As a result, DBAs con-
stantly monitor, diagnose, and rectify any performance decays.

Unfortunately, the manual process of debugging and diagnosing database performance prob-
lems is exceptionally tedious and non-trivial. Rather than being caused by a single slow query,
performance problems in transactional databases are often due to a large number of concurrent and
competing transactions. They add up to compounded, non-linear effects that are difficult to isolate.
Sudden changes in request volume, transactional patterns, network traffic, or data distribution can
cause previously abundant resources to become scarce, and the performance to plummet.

As an example, consider Figure 1.2, which is a graph of average transaction latencies over
time. In practice, finding the root cause of this latency spike can be quite challenging. We observe
nearly the same performance plot in the following situations: (i) if the overall workload suddenly
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Figure 1.2: Identifying the root cause of a performance anomaly is non-trivial, as different causes
may lead to the same performance pattern.

spikes, (ii) if the number of poorly written queries spikes, or (iii) if a network hiccup occurs. To
establish the correct cause, the DBA has to plot several other performance metrics during the same
timespan as the latency spike. The DBA has to sort through hundreds of DBMS, OS, and network
telemetry, and even inspect several queries manually.

We propose a performance explanation framework called DBSherlock that combines techniques
from outlier detection and causality analysis. The framework assists DBAs in diagnosing perfor-
mance problems more quickly, more accurately, and in a more principled manner.

In the particular example of Figure 1.2, DBSherlock’s statistical analysis will lead to different
predicates depending on the cause. When (i) has occurred, DBSherlock generates a predicate show-
ing an increase in the number of lock waits and running DBMS threads compared to normal. In the
case of (ii), DBSherlock’s predicates indicate a sudden rise of next-row-read-requests, as well as
the CPU usage of the DBMS. Finally, (iii) leads to a predicate showing a lower than usual number
of network packets sent or received during a specific time. In other words, DBSherlock’s predicates
help to determine the root cause by automatically identifying appropriate signals and metrics.
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1.3 Autonomy among Database Components

Autonomy among database components is typically achievable via resource decentralization. This
is because, when a system has centralized resource management, every component of the system is
dependent on that central resource. Jim Gray [122] once emphasized the importance of decentral-
ization in distributed systems. His work highlighted that autonomy from decentralization makes it
easy to add or remove individual nodes in a distributed system, and ultimately promotes high scal-
ability. Similarly, the concept of an autonomous decentralized system (ADS) [184] is proposed to
build a system whose components are designed to operate independently. This paradigm enables
the overall system to function in the event of individual component failures, which provides fault-
tolerance. Both fault-tolerance and scalability are essential features in modern distributed database
systems.

Resource Decentralization— In today’s database technology, resource management is centralized
in most parts. Typical examples are compute, storage and lock management. For compute and
storage management, resource centralization is usually handled on an application-level (e.g., SQL-
on-Hadoop systems [2,3]), where applications are written as much as possible to be embarrassingly
parallel so that they can use resources in a decentralized manner. For lock management, it is
usually at a granularity of records, which means it is much harder for application developers to
decentralize it. Therefore, there is much higher demand for decentralizing lock management than
any other resource management.

In this dissertation, we focus on lock managers for achieving resource decentralization in dis-
tributed databases with RDMA(Remote Direct Memory Access)-enabled networks. This is be-
cause lock managers are a crucial component of modern distributed databases, as they dictate how
resources are accessed in the system. There are centralized lock managers that can ensure fairness
and prevent starvation using global knowledge of the system, but they are a single point of con-
tention and failure. It hurts the autonomy of each node in a distributed database significantly. Also,
they fall short in leveraging the full potential of RDMA networks.

On the other hand, decentralized lock managers enable each node to operate more autonomously.
However, existing decentralized RDMA-based lock managers either completely sacrifice global
knowledge to achieve higher throughput at the risk of starvation, or they resort to costly communi-
cations in order to maintain global knowledge, which can result in significantly lower throughput.
We present DSLR, an RDMA-based decentralized lock manager that is starvation-free and promotes
autonomy in distributed systems for better fault-tolerance and scalability.
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Area Framework/Algorithm Chapter
Performance Diagnosis DBSherlock: a performance explanation frame-

work for automating performance diagnostics.
2

Automated Tuning CliffGuard: a robust physical designer for
databases.

3

Joins on Samples: A hybrid sampling scheme
(SUBS) with an optimal strategy derived from a
theoretical analysis that achieves an information-
theoretical lower bound on the lowest variance
achievable by a constant factor.

4

Resource
Decentralization

DSLR: a decentralized lock manager for RDMA-
enabled networks, enhancing the autonomy
of individual database instances in distributed
databases.

5

Table 1.1: Dissertation Overview.

1.4 Overview and Contributions

This dissertation is organized as follows. First, we present a performance explanation framework,
DBSherlock, that can automate significant portions of the database performance diagnostic process
by combining techniques from outlier detection and causality analysis. Second, we introduce and
summarize two novel approaches in automated tuning: 1) CliffGuard for robust physical designs;
and 2) SUBS with its optimal parameters for sampling-based joins. We empirically study both
approaches with an extensive set of experiments to test their effectiveness in various use-cases,
and compare them against existing algorithms. Finally, we present a decentralized lock manager
for RDMA-enabled networks, DSLR. It improves the autonomy of individual nodes in distributed
databases by being fully decentralized, yet maintains high throughput and lower tail latencies,
which existing decentralized lock managers fail to achieve. Table 1.1 summarizes our approaches.

The contributions in this dissertation have been presented at Computer Science conferences,
including the 2015 ACM SIGMOD conference [188], the 2016 ACM SIGMOD conference [248],
and the 2018 ACM SIGMOD conference [246].
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CHAPTER 2

DBSherlock: A Performance Diagnostic Tool for
Transactional Databases

2.1 Motivation

Many enterprise applications rely on executing transactions against their database backend to store,
query, and update data. As a result, databases running online transaction processing (OLTP) work-
loads are some of the most mission-critical software components for enterprises. Any service
interruptions or performance hiccups in these databases often lead directly to revenue loss.

Thus, a major responsibility of database administrators (DBAs) in large organizations is to
constantly monitor their OLTP workload for any performance failures or slowdowns, and to take
appropriate actions promptly to restore performance. However, diagnosing the root cause of a
performance problem is generally tedious, as it requires the DBA to consider many possibilities
by manually inspecting queries and various log files over time. These challenges are exacerbated
in OLTP workloads because performance problems cannot be traced back to a few demanding
queries or their poor execution plans, as is often the case in analytical workloads. In fact, most
transactions take only a fraction of a millisecond to complete. However, tens of thousands of
concurrent transactions competing for the same resources (e.g., CPU, disk I/O, memory) can create
highly non-linear and counter-intuitive effects on database performance. Minor changes in an
OLTP workload can push the system into a new performance regime, quickly making previously
abundant resources scarce.

However, it can be quite challenging for most DBAs to explain (or even investigate) such phe-
nomena. Modern databases and operating systems collect massive volumes of detailed statistics
and log files over time, creating an exponential number of subsets of DBMS variables and statistics
that may explain a performance decay. For instance, MySQL maintains over 260 different statistics
and variables (see Section 2.2.1) and commercial DBMSs collect thousands of granular statistics
(e.g., Teradata [60]). Unfortunately, existing databases fail to provide DBAs with effective tools for
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analyzing performance problems using these rich datasets, aside from basic visualization and mon-
itoring mechanisms. As a consequence, highly-skilled and highly-paid DBAs (a scarce resource
themselves) spend many hours diagnosing performance problems through different conjectures
and manually inspecting various queries and log files, until the root cause is found [61].

To avoid this tedious, error-prone, and adhoc procedure, we propose a performance explanation
framework called DBSherlock that combines techniques from outlier detection and causality analy-
sis to assist DBAs in diagnosing performance problems more easily, more accurately, and in a more
principled manner. Through DBSherlock’s visual interface, the user (e.g., a DBA) specifies certain
instances of past performance that s/he deems abnormal (and optionally, normal). DBSherlock

then automatically analyzes large volumes of past statistics to find the most likely causes of the
user-perceived anomaly, presenting them to the user along with a confidence value, either in the
form of (i) concise predicates describing the combination of system configurations or workload
characteristics causing the performance anomaly, or (ii) high-level diagnoses based on the existing
causal models in the system. The DBA can then identify the actual cause within these few possi-
bilities. Once the actual cause is confirmed by the DBA, his/her feedback is integrated back into
DBSherlock to improve its causal models and future diagnoses.

Note that designing a tool for performance diagnosis is a challenging task due to the expo-
nential number of combinations of variables and statistics that may explain the cause of a perfor-
mance decay, making a naı̈ve enumeration algorithm infeasible. Though off-the-shelf algorithms
for feature selection exist, they are primarily designed to maximize a machine learning algorithm’s
predictive power rather than its explanatory and diagnostic power. Similarly, decision trees (e.g.,
PerfXplain [155]) and robust statistics (e.g., PerfAugur [213]) have been used for automatic per-
formance explanation of map-reduce jobs and cloud services, respectively. However, such models
are more likely to find secondary symptoms when the root cause of the anomaly is outside the
database and not directly captured by the collected statistics. (In Section 2.6, we show that con-
structing and using causal models leads to significantly more relevant explanations.) Finally, while
sensitivity-analysis-based techniques (e.g., Scorpion [242]) are highly effective in finding the in-
dividual tuples most responsible for extreme aggregate values in scientific computations, they are
not applicable to performance diagnosis of OLTP workloads. This is because databases often avoid
prohibitive logging overheads by maintaining aggregate statistics rather than detailed statistics for
individual transactions. For instance, instead of recording each transaction’s wait time for locks,
MySQL and Postgres only record the total wait time for locks across all transactions. Thus, list-
ing individual transactions is impractical (and often unhelpful for diagnosis, due to the complex
interactions among concurrent transactions).

In this chapter, we make the following contributions:

1. To the best of our knowledge, we propose the first algorithm specifically designed to explain
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and diagnose performance anomalies in highly-concurrent and complex OLTP workloads.

2. We adopt the notion of causality from the artificial intelligence (AI) literature, and treat user
feedback as causal models in our diagnostic tool. We formally define a notion of confi-

dence to combine predicate-based explanations and causal model predictions in a principled
manner.

3. We propose a new automatic anomaly detection algorithm with a competitive accuracy to
that of an expert. We also introduce a framework to prune secondary symptoms using basic
forms of domain knowledge.

4. We evaluate DBSherlock against the state-of-the-art performance explanation technique, across
a wide range of performance problems. DBSherlock’s predicates on average achieve 28%
(and up to 55%) higher F1-measures1 than those generated by previous techniques.

Section 2.2 describes the high-level overview of DBSherlock. Sections 2.3 and 2.4 present our
criterion and algorithm for generating predicate-based explanations, respectively. Section 2.5 de-
scribes our technique for incorporating domain knowledge and pruning secondary symptoms from
our explanations. Section 2.6 explains how our system incorporates user feedback (when available)
in the form of casual models in order to provide higher-level, descriptive explanations. Section 2.7
explains how automatic anomaly detection techniques can be combined with DBSherlock. Section
2.8 describes our experimental results.

2.2 System Overview

DBSherlock’s workflow for performance explanation and diagnosis consists of six steps, as shown
in Figure 2.1.
1. Data Collection. DBSherlock collects various log files, configurations, and statistics from the

DBMS and OS.

2. Preprocessing. The collected logs are summarized and aligned by their timestamps at fixed
time intervals (e.g., every second).

3. Visualization. Through DBSherlock’s graphical user interface, our end user (e.g., a DBA) can
generate scatter plots of various performance statistics of the DBMS over time.

4. Anomaly Detection. If the end user deems any of the performance metrics of the DBMS
unexpected, abnormal, or suspicious in any period of time, s/he can simply select that region of the

1F1-measure (a.k.a. balanced F-score) is a commonly used measure of a test’s accuracy. It considers both the
precision p and the recall r of the test, and is defined as: F1 = 2 · p·r

p+r .
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Figure 2.1: The workflow in DBSherlock.

plot and ask DBSherlock for an explanation of the observed anomaly. Alternatively, users can also
rely on DBSherlock’s automatic anomaly detection feature.

5. Anomaly Explanation. Given the user-perceived region of anomaly, DBSherlock analyzes the
collected statistics and configurations over time and explains the anomaly using either descriptive
predicates or actual causes.

6. Anomaly Diagnosis and User Feedback. Using DBSherlock’s explanations as diagnostic
clues, the DBA attempts to identify the root cause of the observed performance problem. Once s/he
has diagnosed the actual cause, s/he provides evaluative feedback to DBSherlock. This feedback is
then incorporated in DBSherlock as a causal model and used for improving future explanations.

Next, we discuss these steps in more detail: steps 1–2 in Section 2.2.1, steps 3–4 in Section
2.2.2, and steps 5–6 in Section 2.2.3. Then, we list the current limitations of DBSherlock in Section
2.2.4.

2.2.1 Data Collection and Preprocessing

We have implemented DBSherlock as a module for DBSeer [4]. DBSeer is an open-source suite
of database administration tools for monitoring and predicting database performance [185, 186,
247]. We have integrated our DBSherlock into DBSeer for two reasons. First, adding performance
diagnosis and explanation features will greatly benefit DBSeer’s current users in gaining deeper
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insight into their workloads. Second, DBSherlock can simply rely on DBSeer’s API for collecting
and visualizing various performance statistics from MySQL and Linux (the systems used in our
experiments). Here, we briefly describe the data collection and preprocessing steps performed by
DBSeer and used by DBSherlock, i.e., components (1) and (2) in Figure 2.1.

DBSeer collects various types of performance data by passively observing the DBMS and OS in

situ (i.e., as they are running in operation), via their standard logging features. Specifically, DBSeer
collects the following data at one-second intervals [185]:

(i) Resource consumption statistics from the OS (in our case, Linux’s /proc data), e.g., per-core
CPU usage, number of disk I/Os, number of network packets, number of page faults, number of
allocated/free pages, and number of context switches.

(ii) Workload statistics from the DBMS (in our case, MySQL’s global status variables), e.g., num-
ber of logical reads, number of SELECT, UPDATE, DELETE, and INSERT commands executed, num-
ber of flushed and dirty pages, and the total lock wait-time.2

(iii) Timestamped query logs, containing start-time, duration, and the SQL statements executed by
the system, as well as the query plans used for each query.

(iv) Configuration parameters from the OS and the DBMS, e.g., environment variables, kernel
parameters, database server configurations, network settings, and (relevant) driver versions.

DBSeer further processes this data. First, it computes aggregate statistics about transactions
executed during each time interval (e.g., their average and quantile latencies, total transaction
counts, etc.).3 These transaction aggregates are then aligned with the OS and DBMS statistics and
configurations according to their timestamps, using the following format:

(Timestamp, Attr1, . . . , Attrk)

where Timestamp marks the starting time of the 1-second interval during which these data were
collected, and {Attr1, ... , Attrk} are the attributes, comprised of the transaction aggregates
and other categorical and numerical metrics collected from the database and operating system.
DBSherlock uses these timestamped data for its performance explanation and diagnosis purposes.

2.2.2 User Interface

DBSherlock comes with a graphical user interface, where users can plot a graph of various perfor-
mance metrics over their time window of interest. This is shown as component (3) in Figure 2.1.

2To avoid performance overheads, DBSeer does not collect expensive statistics that are not maintained by default,
e.g., fine-grained locking information.

3Since the number of transactions per second varies, we do not use individual query plans as attributes. Rather, we
use their aggregate statistics, e.g., average cost estimates, number of index lookups.
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Figure 2.2: DBSherlock’s user interface.

For example, users might plot the average or 99% latency of transactions, number of disk I/Os, or
CPU usage over the past hour, day or week. Figure 2.2 is an example of a scatter plot of the aver-
age latency of transactions over time. After inspecting this plot, the user can select some region(s)
of the the graph where s/he finds some database metrics abnormal, suspicious, counter-intuitive,
or simply worthy of an explanation. Regardless of the user’s particular reason, we simply call the
selected region(s) an anomaly (or call them abnormal regions). Optionally, the user can also select
other areas of the graph that s/he thinks are normal (otherwise, the rest of the graph is implicitly
treated as normal). After specifying the regions, the user asks DBSherlock to find likely causes or
descriptive characteristics that best explain the observed anomaly.

When users cannot manually specify or detect the anomaly, DBSherlock relies on automatic
anomaly detection (see Section 2.7).

2.2.3 System Output

Given a user-perceived anomaly, DBSherlock provides explanations in one of the following forms:

(i) predicates over different attributes of the input data; or

(ii) likely causes (and their corresponding confidence) based on existing causal models.

First, DBSherlock generates a number of predicates that identify anomalous values of some
of the attributes that best explain the anomaly (Sections 2.3 and 2.4). For human readability,
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DBSherlock returns a conjunct of simple predicates to the user.4 For example, DBSherlock may
explain an anomaly caused by a network slowdown by generating the following predicates:

network send < 10KB ∧ network recv < 10KB ∧ client wait times > 100ms

∧ cpu usage < 5

showing that there are active clients waiting without much CPU activity. (In Section 2.6, we
show that with causal models, DBSherlock can provide even more descriptive diagnoses.) Once
the user identifies the actual problem (network congestion, in this example) using these predicates
as diagnostic hints, s/he can provide feedback to DBSherlock by accepting these predicates and
labeling them with the actual cause found. This ‘cause’ and its corresponding predicates comprise
a causal model, which will be utilized by DBSherlock for future diagnoses.

When there are any causal models in the system (i.e., from accepted and labeled predicates
during previous sessions), DBSherlock calculates the confidence of every existing causal model
for the given anomaly. This confidence measures a causal model’s fitness for the given situation.
DBSherlock then presents all existing causes in their decreasing order of confidence (as long as
greater than a minimum threshold). When none of the causal models yield a sufficiently large
confidence, DBSherlock does not show any causes and only shows the generated predicates to the
user.

Note that DBSherlock’s output in either case is only a possible explanation/cause of the anomaly,
and it is ultimately the end user’s responsibility to diagnose the actual root cause. The objective of
DBSherlock is to provide the user with informative clues to facilitate fast and accurate diagnosis.
In the rest of this chapter, we use the terms possible explanation and explanation interchangeably,
but always make a clear distinction between possible and actual causes as they are quite different
from a causality perspective.

2.2.4 Current Limitations

The current implementation of DBSherlock has two limitations:
(i) DBSherlock finds an explanation for an anomaly if the anomaly affects at least one of the
statistics available to the system.

(ii) Invariant characteristics of the system (e.g., fixed parameters or hardware specifications of the
database server) are not considered a valid explanation of an anomaly.

It is straightforward to see the reason behind (i): if the anomaly does not manifest itself in
any of the gathered statistics, DBSherlock has no means of distinguishing between abnormal and

4More complex predicates (e.g., with disjunction or negation) can easily overwhelm an average user, defeating
DBSherlock’s goal of being an effective tool for practitioners.
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normal regions. Similarly for (ii), since the invariants of the system remain unchanged across the
abnormal and normal regions, they cannot be used to distinguish the two. However, such invariants
may have ultimately contributed to the anomaly in question. For instance, with a small buffer pool,
dirty pages are flushed to disk frequently. Thus, when the number of concurrent transactions
spikes, the pages may be flushed even more frequently. The increase in disk IOs may then affect
transaction latencies. In such a case, DBSherlock reports the workload spike as the explanation
for the increased latencies. While one might argue that small memory was the root cause of the
problem, DBSherlock does not treat the memory size as a cause, as it is unchanged before and after
the anomaly. Here, the workload spike can distinguish the two regions (see Section 2.3) and is
hence returned as a cause to the user (i.e., with the justification that the memory was sufficient for
the normal workload).

However, DBSherlock’s reported cause can still be quite helpful even in the cases above. For
example, even when presented with workload spike as an explanation of the performance slow-
down, an experienced DBA may still rectify the problem by modifying system invariants (e.g.,
provisioning a larger memory or faster disk) or throttling the additional load.

2.3 Predicate Generation Criterion

Given an abnormal region A, a normal region N , and input data T , we aim to generate a conjunct
of predicates, where each predicate Pred is in one of the following forms: Attri < x, Attri > x,
or x < Attri < y when Attri is numeric, and Attri∈{x1, ... , xc} when Attri is categorical.
Intuitively, we desire a predicate that segregates the input tuples in A well from those in N . We
formally define this quality as the separation power of a predicate.

Separation power of a predicate. Let TN and TA be the input tuples in the normal and

abnormal regions, respectively. Also, let Pred(T ) be the input tuples satisfying predicate Pred.

Then the separation power (SP) of a predicate Pred is defined as:

SP(Pred) =
|Pred(TA)|
|TA|

− |Pred(TN)|
|TN |

(2.1)

In other words, a predicate’s separation power is the ratio of the tuples in the abnormal region
satisfying the predicate, subtracted by the ratio of the tuples in the normal region satisfying the
predicate. A predicate with higher separation power is more capable of distinguishing (i.e., sepa-
rating) the input tuples in the abnormal region from those in the normal one. Thus, DBSherlock’s
goal is to filter out individual attributes with low separation power.5

5This strategy is similar to single-variable classifiers in machine learning literature, whereby variables’ individual
predictive power is used for feature selection [124].
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Identifying predicates with high separation power is challenging. First, one cannot find a predi-
cate of high separation power by simply comparing the values of an attribute in the raw dataset.This
is because real-world datasets and OS logs are noisy and attribute values often fluctuate regardless
of the anomaly. Second, due to human error, users may not specify the boundaries of the abnormal
regions with perfect precision. The user may also overlook smaller areas of anomaly, misleading
DBSherlock to treat them as normal regions. These sources of error compound the problem of noisy
datasets. Third, one cannot easily conclude that predicates with high separation power are the ac-
tual cause of an anomaly. They may simply be correlated with, or be symptoms themselves of the
anomaly, and hence, lead to incorrect diagnoses. The following section describes our algorithm
for efficiently finding predicates of highest separation power, while accounting for the first two
sources of error. We deal with the third type of error in Section 2.5.

2.4 Algorithm

Our algorithm takes the aligned tuples as input (described in Section 2.2.1), which are separated
between the abnormal and the normal regions (other tuples are ignored by DBSherlock).

Figure 2.3 illustrates a high-level overview of our predicate generation algorithm. The majority
of our attributes are numeric (i.e., statistics), which are significantly noisier than our categorical
attributes. As a result, our algorithm uses two additional steps for numeric attributes (Steps 3 and
4). (In our discussion, we highlight the differences for categorical attributes when applicable.) The
first step is to discretize the domain of each attribute into a number of partitions (Step 1). Based
on the user-specified abnormal and normal regions, DBSherlock labels each partition of an attribute
as Abnormal, Normal, or Empty (Step 2 in Figure 2.3). Next, for numeric attributes, DBSherlock
filters out some of the Abnormal and Normal partitions, which are mingled at this point, to find
a predicate with high separation power (Step 3 in Figure 2.3). If the previous step is successful,
the algorithm then fills the gap between the two separated sets of partitions and generates the
candidate predicate accordingly (Steps 4 and 5 in Figure 2.3). The formal pseudo code of these
steps is presented in Algorithm 1. In the rest of this section, we explain each of these steps in
detail.

2.4.1 Creating a Partition Space

DBSherlock starts by creating a discretized domain for each attribute, called a partition space.

For each numeric attribute Attri, we create R equi-width partitions P = {P1,... ,PR} that range

16



2.	  Labeling

3.	  Filtering

4.	  Filling	  the	  gap

vi 5.	  Extrac5ng	  predicate
"A$ri	  >	  vi"

Normal
Abnormal
Empty

1.	  Creating a 
partition space

Figure 2.3: Example of finding a predicate over an attribute in the partition space. (Steps 3 & 4 are
only applied to numeric attributes.)

from Min(Attri) to Max(Attri). The width of each partition is

Max(Attri)− Min(Attri)

R

We denote the lower and upper bounds of partition Pj as lb(Pj) and ub(Pj), respectively. Pj

contains any value val of Attri where lb(Pj) ≤ val < ub(Pj).
For example, if the values of an attribute range from 0 to 100 and we discretize them into

buckets of size 20, their partition space will be {[0,20), [20,40), [40,60), [60,80), [80,100)}. We
use equi-width partitions to preserve and map the distribution of input tuples in the abnormal
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Inputs: T : input tuples (with k attributes)
A: abnormal region
N : normal region
R: number of partitions
θ: normalized difference threshold
δ: anomaly distance multiplier

Output: π: list of predicates with high separation power

π← ∅ // start with no predicate
foreach Attri ∈ {Attr1, ... , Attrk} do

if Attri is numeric then
P ← create a partition space for Attri with R partitions
PL← label P based on tuples T and regions A, N
PL,F iltered← filter PL
P ∗← fill the gap in PL,F iltered based on δ
Norm(Attri)← Normalization of Attri into [0, 1] values
µA← Average of Norm(Attri) for tuples in A
µN ← Average of Norm(Attri) for tuples in N
d← |µA − µN |
if P ∗ contains a single block of consecutive abnormal partitions and d > θ
then

Pred← extract a candidate predicate from P ∗

π← π ∪ Pred // add Pred into the list
end

else if Attri is categorical then
P ← create a partition space for Attri with |Unique(Attri)| partitions
PL← label P based on tuples T and regions A, N

if PL has at least one abnormal partition
then

Pred← extract a candidate predicate from PL
π← π ∪ Pred // add Pred into the list

end
end

end
return π

Algorithm 1: Predicate Generation.

and normal regions into the partition space, as shown in Figure 2.3. A secondary goal of our
discretization step is to reduce the influence of having more tuples with normal values than with
abnormal values. Thus, our discretization enables us to focus on the distribution of an attribute’s
value across the two regions.

Here, the number of partitions, R, is an important parameter, which decides the trade-off be-
tween our algorithm’s computation time (see Section 2.4.6) and the ability of the individual par-
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titions to distinguish normal from abnormal tuples. By default, DBSherlock uses 1,000 partitions
(R=1,000) for numeric attributes, which is large enough to separate abnormal and normal tuples,
yet small enough to optimize computation time.

For each categorical attribute Attri, we create |Unique(Attri)| number of partitions. Here,
|Unique(Attri)| is the number of unique values found in our dataset for Attri, i.e., one partition
per each value of the attribute. We use Cj to denote the (categorical) value represented by partition
Pj . Unlike numeric attributes, the order of partitions for categorical attributes is unimportant.

2.4.2 Partition Labeling

Once the partition space is created, the next step is to mark each partition with one of three labels:
{Empty, Normal, Abnormal}. For a numeric attribute Attri, an input tuple belongs to partition
Pj , if the tuple’s value for Attri lies within Pj’s boundaries. If every tuple belonging to Pj lies in
the abnormal region specified by the user, Pj is labeled as Abnormal. Conversely, if every tuple
belonging to Pj lies in the normal region, Pj is labeled as Normal. Otherwise, the partition label is
left Empty. (See Figure 2.3.)

For a categorical attribute, an input tuple belongs to a partition Pj , if the tuple’s value for Attri
equals the category value of the partition, i.e., Attri = Cj . Since our categorical attributes are less
noisy, we use a simpler labeling strategy. Let Pj(A) and Pj(N) be the number of tuples belonging
to Pj in the abnormal and normal regions, respectively. Pj is labeled as Abnormal if Pj(A) >

Pj(N). Similarly, Pj is labeled as Normal if Pj(A) < Pj(N). Otherwise, the partition label is left
with an Empty label. For categorical attributes, our algorithm extracts a candidate predicate from
the partition space right after the labeling step (see Section 2.4.5), skipping the next two steps.

2.4.3 Partition Filtering

After labeling, we filter some of the Normal and Abnormal partitions by replacing their labels with
an Empty one. The filtering step is only applied to our numeric attributes, which are quite noisy.
During this step, a partition Pj’s label is replaced with Empty, if its original label is different from
either of its two non-Empty adjacent partitions (i.e., the closest non-Empty partitions on the left and
right side of Pj in the partition space). Figure 2.4 demonstrates various cases where a partition Pj

is filtered out. Note that the only case where Pj remains unchanged is when both of its non-Empty
adjacent partitions have the same label as Pj itself (shown as Scenario 1 in Figure 2.4). If we only
have a single Normal or Abnormal partition to begin with, we deem it significant and do not filter it.
Once all non-Empty partitions are processed, their labels are changed to Empty simultaneously. We
do not perform this procedure incrementally to prevent a situation where partitions continuously
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Figure 2.4: Different scenarios of filtering Pj in the partition space.

filter each other out. If filtering is performed incrementally, the two partitions at each end of the
partition space will also get filtered in Scenarios 2 and 3 in Figure 2.4.

Our filtering strategy aims to separate the Normal and Abnormal partitions that are originally
mixed across the partition space (e.g., due to the noise in the data or user errors). If there is a
predicate on attribute Attri that has high separation power, the Normal and Abnormal partitions
are very likely to form well-separated clusters after the filtering step. This step mitigates some of
the negative effects of noisy data or user’s error, which could otherwise exclude a predicate with
high separation power from the output. This idea is visually shown in Figure 2.3.

2.4.4 Filling the Gaps

This step is only applied to numeric attributes. After the filtering step, there will be larger blocks
of consecutive Abnormal and Normal partitions, separated by Empty partitions. These Empty

partitions were either initially Empty or were filtered out during the filtering step. Our algorithm
fills these gaps before the predicate generation by labeling these Empty partitions as either Normal
or Abnormal as follows.

We compare the distance of each Empty partition Pj to its two adjacent non-Empty partitions. If
both adjacent partitions have the same label or if Pj has only one adjacent non-Empty partition (i.e.,
j=1 or j=R), Pj will receive the same label as its adjacent non-Empty partition(s) at the end of
this step. If Pj’s two adjacent non-Empty partitions have different labels, we calculate Pj’s distance
to each partition and assign it the label of the closer partition.

There is a special case where only Abnormal partitions remain after the filtering step. In this
case, if we naı̈vely fill the gaps, every partition will become Abnormal and the algorithm will not
find any predicates for the attribute. To handle this special case, we calculate the average value
of the attribute over the input tuples in the normal region and label the partition that contains this
average value as Normal regardless of its previous label. Then we fill the gaps according to the
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previously described procedure. (Without any Normal partitions, we will not be able to determine
the direction of the predicate in the next step of the algorithm, i.e., whether Attri < v or Attri >

v .)
To control the behavior of our algorithm, we also introduce a parameter δ, called the anomaly

distance multiplier. When the Empty partition Pj is processed by the above procedure, we multiply
its distance to its adjacent Abnormal partition by δ. Thus, δ>1 will cause more Empty partitions
to be labeled as Normal while δ<1 results in more Empty partitions being labeled as Abnormal.
In other words, with parameter δ, we can tune our predicates: δ<1 for more general predicates
(i.e., more likely to flag tuples as abnormal) and δ>1 for more specific ones (i.e., less likely to flag
tuples as abnormal). By default, DBSherlock uses δ = 10.

2.4.5 Extracting Predicates from Partitions

This step is applied to both numeric and categorical attributes using slightly different procedures.
For numeric attributes, the previous filtering step allows us to find attributes that have a predicate
with high separation power, but there is still a possibility that some of these attributes are not
related to the actual cause of the anomaly. To mitigate this problem, we perform the following
procedure. First, we normalize each numeric attribute Attri by subtracting its minimum value
from its original values vali and dividing them by the attribute’s range:

Norm(vali) =
vali − Min(Attri)

Max(Attri)− Min(Attri)
(2.2)

This results in the values of an attribute to range in [0, 1]. Let µA and µN be the average values
of Norm(Attri) for tuples in the abnormal and normal regions, respectively. DBSherlock extracts
a candidate predicate from Attri’s partition space only if |µA − µN |>θ, where θ is a parameter
called the normalized difference threshold. The user can tune this threshold to adjust the selectivity
of DBSherlock in finding predicates

After performing these normalization and thresholding procedures, we can extract candidate
predicates from the partition space, as follows. As noted in section 2.3, we only seek predicates
of the form Attri < x, Attri > x, and x < Attri < y. In the partition space, these types of
predicates correspond to a single block of consecutive Abnormal partitions. Therefore, we extract
a candidate predicate Pred for an attribute Attri if and only if there is a single block of consecutive
Abnormal partitions.

For categorical attributes, our procedure for extracting a candidate predicate is much simpler.
DBSherlock traverses the partition space of such attributes and extracts each category value Cj

if its partition Pj is labeled as Abnormal. A predicate for a categorical attribute is of the form
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Attri ∈ {c1, ... , cl}, where l is the number of partitions labeled as Abnormal and ci’s are their
corresponding category values.

2.4.6 Time Complexity

For each attribute, our predicate generation algorithm scans the input tuples to label each partition.
Then, it iterates over these partitions twice in the subsequent steps (i.e., ‘Filtering’ and ‘Filling the
gap’ in Figure 2.3). Thus, the time complexity of DBSherlock’s predicate generation algorithm is
O(k(X+R)), where R is the number of partitions,6 X is the number of input tuples, and k is the
number of attributes.

2.5 Incorporating Domain Knowledge

Our algorithm extracts predicates that have a high diagnostic power (see Section 2.8). However,
some of these predicates may be secondary symptoms of the root cause, which if removed, can
make the diagnosis even easier. This is because the fact that Predi implies an anomaly, we cannot
conclude that it also causes it. In fact, there could be another predicate, say Predj , causing both
Predi and the anomaly. While many existing algorithms [86, 172, 200, 201, 220] learn causal rela-
tionships by verifying whether the significant association between two variables persistently holds,
DBSherlock cannot simply use such algorithms to generate predicates or prune secondary symp-
toms, because they are applicable only when there are large enough data of database performance
anomalies available to learn causal relationships. Unfortunately, large enough data of database
performance anomalies are not readily available in academia. Therefore, DBSherlock’s algorithm
is developed so that it does not have to rely on having large training data of database performance
anomalies.

Thus, to further improve the accuracy of our predicates and prune secondary symptoms, DBSher-
lock allows for incorporating domain knowledge of attributes’ semantics into the system. However,
note that this mechanism is an optional feature, and as we show in our experiments, DBSherlock
produces highly accurate explanations even without any domain knowledge (see Section 2.8.3).
Also, DBSherlock is bootstrapped with domain knowledge only once for each specific version of
OS or DBMS. In other words, DBAs do not need to modify this, as the semantics of DBMS and
OS variables do not depend on the workload, e.g., OS CPU Usage always has the same meaning
regardless of the specific workload.

Every piece of domain knowledge is encoded as a rule: Attri→ Attrj . Each rule must satisfy
the following conditions:

6A similar analysis applies if the number of partitions differ.
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i. If predicates Predi and Predj (corresponding to attributes Attri and Attrj , respectively) are
both extracted, Predj is likely to be a secondary symptom of Predi.

ii. Attri→ Attrj and Attrj → Attri cannot coexist.

For instance, if Attri is the ‘DBMS CPU Usage’ and Attrj is the ‘OS CPU Usage’, then Attri→
Attrj is a valid rule since DBMS CPU usage effects OS CPU usage, but not vice versa.

However, given a rule Attri → Attrj , and the corresponding predicates Predi and Predj ,
whether Predj will be filtered out will require further analysis, since the domain knowledge may
not be a perfect reflection of the reality either. For instance, the rule ‘DBMS CPU Usage’ →
‘OS CPU Usage’ may occasionally break. For example, there might be other attributes, such as
‘Number of Processes’ or ‘Number of Threads’ that are not utilized by the DBMS, but may affect
‘OS CPU Usage’.

As a solution, DBSherlock tests the independence between Attri and Attrj based on their con-
tinuous (or categorical) values. For continuous attributes, we discretize the two attributes Attri

and Attrj with γ equi-width bins for each attribute. We then construct a two-dimensional joint
histogram from the input data, estimating the joint probability distribution of the two attributes.
For categorical attributes, a joint histogram is constructed from the input data. For testing inde-
pendence, we use the joint probability distribution of the two attributes to calculate their mutual

information.
We denote the mutual information of two attributes Attri and Attrj by MI(Attri, Attrj),

defined as:
MI(Attri, Attrj) = H(Attri) +H(Attrj)−H(Attri, Attrj)

where H(Attri) is the entropy of the attribute Attri and H(Attri, Attrj) is the joint entropy
of the two attributes [88]. An independence factor κ(Attri, Attrj) of the two attributes is then
calculated as follows:

κ(Attri, Attrj) =
MI(Attri, Attrj)

2

H(Attri)H(Attrj)

The value of κ will be 0, if the two attributes are independent and approaches 1 with higher de-
pendence. We perform the independence test by comparing the value of κ with a threshold κt (by
default, we use κt = 0.15), and the two attributes pass the test if κ < κt. If the two attributes do
not pass the independence test, we conclude that the rule Attri→ Attrj is indeed valid, and Predj

is merely a secondary symptom of Predi and filter out Predj . If the two attributes pass the inde-
pendence test, we conclude that the rule Attri → Attrj does not apply, and leave both predicates
in the output.

For MySQL on Linux, the following four rules are sufficient to encode such relationships:

1. DBMS CPU Usage→ OS CPU Usage
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2. OS Allocated Pages→ OS Free Pages

3. OS Used Swap Space→ OS Free Swap Space

4. OS CPU Usage→ OS CPU Idle

The first rule encodes the subset relationship. The last three rules encode the fact that one attribute
is always a constant value minus the other attribute, and is thus uninteresting. In Section 2.8.6, we
show that even without these rules, DBSherlock’s accuracy drops by only 2–3%.

2.6 Incorporating Causal Models

Previous work on performance explanation [155] has only focused on generating explanations in
the form of predicates. DBSherlock improves on this functionality by generating substantially more
accurate predicates (20-55% higher F1-measure; see Section 2.8.4). However, a primary objective
of DBSherlock is to go beyond raw predicates, and offer explanations that are more human-readable
and descriptive. For example, the cause of a performance hiccup could be a network congestion
due to a malfunctioning network router. Initially, the user will rely on DBSherlock’s generated
predicates as diagnostic clues to identify the actual cause of the performance problem more easily.
However, once the root cause is diagnosed, s/he can notify DBSherlock as to what the actual cause
was. DBSherlock then relates the generated predicates to the actual cause and saves them in the
form of a causal model. This model will be consulted in future diagnoses to provide a human-
readable explanation (i.e., ‘malfunctioning router’) for similar situations.

To utilize the user feedback, DBSherlock uses a simplified version of the causal model proposed
in the seminal work of Halpern and Pearl [129]. Our causal model consists of two parts: cause

variable and effect predicates. The cause variable is a binary, exogenous variable7 labeled by the
end user. When the cause variable is set to true, it activates all of its effect predicates. For example,
Figure 2.5 is a causal model with ‘Log Rotation’ as the cause variable and three effect predicates.
According to this model, if there is an event of ‘Log Rotation’ (i.e. cause variable is true) then
these three effect predicates will also be true.

The following example describes how such causal models are constructed and used in DBSherlock.
Consider a scenario where the user selects an abnormal region for which DBSherlock returns the
following predicates:

CpuWait> 50% ∧ Latency> 100ms ∧ DiskWrite> 5MB/s

7An exogenous variable is a variable whose values are determined by factors outside the model [129].
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Figure 2.5: An example of a causal model in DBSherlock.

Also, suppose that the user is able to diagnose the actual cause of the problem with the help of
these predicates; assume that by inspecting the recent system logs she establishes that the cause
was the rotation of the redo log file.8 Once this feedback is received from the user, DBSherlock
can link this cause with these predicates as shown in Figure 2.5. After that, for every diagnosis
inquiry in the future, DBSherlock calculates the confidence of this causal model and ‘Log Rotation’
is reported as a possible cause if its confidence is higher than a threshold λ. By default, DBSherlock
displays only those causes whose confidence is higher than λ=20%. However, the user can modify
λ as a knob (i.e., using a sliding bar) to interactively view fewer or more causes.

Over time, additional causal models might be added in the system as a result of inspecting
new performance problems. When multiple causal models are available in the system, DBSherlock
consults all of them (i.e., computes their confidence) and returns those models whose confidence
is higher than λ to the user, presented in their decreasing order of confidence. When none of the
causes offered by the existing models are deemed helpful by the user, she always has the option of
asking DBSherlock to simply show the original predicates instead. Also, when none of the causal
models achieve a confidence higher than λ (e.g., when the given anomaly has not been previously
observed in the system), DBSherlock only displays the generated predicates. Again, once the cause
is diagnosed and shared with the system, DBSherlock creates a new causal model to be used in the

8In MySQL, log rotations can cause performance hiccups when the adaptive flushing option is disabled.
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future. (See Figure 2.1 in Section 2.2.)
We evaluate the accuracy of the generated explanations in Section 2.8. Next, we explain how

DBSherlock computes the confidence of each causal model (Section 2.6.1), and how it merges
multiple models to improve their explanatory power (Section 2.6.2).

2.6.1 Confidence of a Causal Model

In DBSherlock we define the confidence of a causal model as the average separation power of its
effect predicates in the partition space. Note that, unlike equation (2.1), here we use the partition
space instead of the input tuples to reduce the effect of the noise in real-world data (see Section
2.4.1). Formally:

Confidence of a causal model. Let {Pred1, ... , Predn} be the effect predicates of a given

causal model M, where Predi is defined over Attri. Also, let Pi,N and Pi,A be the partitions

labeled as Normal and Abnormal in the partition space of Attri, respectively. We define the

confidence CM of the causal modelM as:

CM =

∑n
i=1

|Predi(Pi,A)|
|Pi,A|

− |Predi(Pi,N )|
|Pi,N |

n
(2.3)

where Pred(P ) is the set of partitions in P that satisfy predicate Pred.
The idea behind this definition is to estimate the likelihood of a cause variable being true given

the normal and abnormal partitions, based on the assumption that if the model’s cause variable

is true, then its effect predicates are also likely to exhibit high separation power in their partition
spaces.

2.6.2 Merging Causal Models

Among the effect predicates of a causal model, some predicates may have less or no relevance to the
actual cause, e.g., some predicates could simply be a side-effect of the actual cause. Also, since the
effect predicates of a single causal model reflect the specific values observed in a particular instance
of an anomaly, they may not be applicable to other instances of the same cause. In DBSherlock,
multiple causal models might be created for the same cause while analyzing different anomalies
over time. DBSherlock can improve such causal models by merging them into a single one.

Merging causal models eliminates some of the unnecessary and less relevant effect predicates,
while enabling relevant effect predicates to apply to different anomaly instances caused by the
same cause. We merge two causal models by:

1. keeping only those effect predicates that are on attributes common to both models; and
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2. merging two predicates on the same attribute into a single predicate that includes the boundaries
(or categories) of both.

Suppose that we have two causal models with the same cause: M1 with the effect predicates

{A > 10, B > 100, C > 20, E ∈ {‘xx’, ‘yy’, ‘zz’}}, andM2 with the effect predicates

{A > 15, C > 15, D < 250, E ∈ {‘xx’, ‘zz’}}. To mergeM1 andM2, we only keep {A
> 10, C > 20, E ∈ {‘xx’, ‘yy’, ‘zz’}} fromM1 and {A > 15, C > 15, E ∈ {‘xx’,
‘zz’}} fromM2 since attributes A, C and E are common to both models.

Next, we compare the two predicates on the same attribute and merge them such that the merged
predicate includes both. Here, merging {A > 10} and {A > 15} leads to {A > 10} and merging
{C > 20} and {C > 15} leads to {C > 15}. Likewise, merging {E ∈ {‘xx’, ‘yy’, ‘zz’}}
and {E ∈ {‘xx’, ‘zz’}} leads to {E ∈ {‘xx’, ‘zz’}}. Thus, in this example, the effect

predicates of the merged causal model will be {A > 10, C > 15, E ∈ {‘xx’, ‘yy’,

‘zz’}}. Note that numeric predicates with different directions (e.g., {A > 10} and {A < 30})
are considered inconsistent. Such predicates are not merged and will be discarded.

We study the effect of merging causal models in Section 2.8.5, where we show that the merged
causal models are on average 30% more accurate than the original models.

2.7 Automatic Anomaly Detection

Sometimes, an anomaly may not be visually obvious to a human user inspecting a performance
plot. In such situations, users may mistakenly specify a normal region as abnormal and vice versa.
To aid with these cases, DBSherlock also provides an option for automatic anomaly detection. Thus,
users can either (i) rely on DBSherlock to find and suggest anomalies to them, or (ii) continue to
manually find anomalies but compare them with those found by DBSherlock for reassurance.

There is much work on outlier detection in different contexts [64, 96, 154, 212, 213, 214, 226,
238, 239, 242, 249]. In DBSherlock, we introduce an algorithm for the automatic detection of the
anomaly regions. Our algorithm utilizes the DBSCAN clustering algorithm [108] and works as
follows.

First, we normalize each attribute Attri, which is equivalent to the normalization step in our
predicate generation algorithm (Equation (2.2) in Section 2.4.5). We then choose relevant attributes
to detect possible anomalies, which are characterized by a subsequence in the time series with an
abrupt change in the values. For attributes that we cannot identify such a behavior, we exclude
them from our analysis as they are likely to have an insignificant separation power. We quantify
this behavior and call it a potential power of an attribute, denoted as PP (Attri).

To calculate PP (Attri), we first define a sliding window w(τ) as a subsequence of size τ in
the time series. We also denote the median of Attri as Median(Attri) and denote the median of
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the values within a sliding window w(τ) as Median(Attri, w). Then PP (Attri) is calculated as
follows:

PP (Attri) = max
w∈W
|Median(Attri)− Median(Attri, w)| (2.4)

where W represents the set of all possible sliding windows of size τ . Equation (2.4) uses a median
filter to calculate the maximum absolute difference between the overall median and the median of
values in each window. We only include attributes with a potential power greater than a threshold
PPt ∈ [0, 1]. (DBSherlock uses τ = 20 and PPt = 0.3 as default values.)

We use DBSCAN to build clusters with the selected attributes from the previous step. DB-
SCAN takes two parameters, ε and minPts. For our algorithm, we fix minPts to 3 and use the
k-dist function to build a listLk of the distances of the k-th nearest neighbors, as suggested in [108],
to determine ε. We have empirically found ε = max(Lk)/4 to perform well in DBSherlock.

Given the clusters formed by DBSCAN, our algorithm returns the points in all clusters whose
sizes are less than 20% of the total number of data items. This is under the assumption that the
abnormal region is relatively smaller than the normal region.

2.8 Evaluation

In this section, we empirically evaluate the effectiveness of DBSherlock. The goals of our experi-
ments are to show that:

(i) Our causal models produce accurate explanations (Section 2.8.3).

(ii) Even without causal models, the raw predicates generated by DBSherlock are more accurate
than those generated by the state-of-the-art explanation framework (Section 2.8.4).

(iii) Our idea of merging causal models improves the quality of our explanations significantly (Sec-
tions 2.8.5).

(iv) Incorporating domain knowledge allows DBSherlock to achieve higher accuracy (Section 2.8.6).

(v) DBSherlock is able to explain compound situations where multiple anomalies arise simultane-
ously (Section 2.8.7).

(vi) Using our predicates, users can diagnose the actual cause of performance anomalies much
more accurately (Section 2.8.13).

2.8.1 Experiment Setup

To collect log data with different types of anomalies, we ran different mixtures of the TPC-C
benchmark [23] on Microsoft Azure [6] virtual machine instances. In all our experiments, we have
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used two Microsoft Azure A3-tier instances, each with 4 CPU cores of 2.1Ghz (AMD Opteron
4171H) and 7GB of RAM running Ubuntu 14.04. We employed one of the two A3 instances
to run MySQL 5.6.20 and the other to simulate clients (using OLTPBenchmark framework [7,
99]). For stress-based experiments, we also used a tool called stress-ng [11] which can artificially
stress the system by taking up excessive CPU, I/O and network resources when needed. Each
individual experiment (called a dataset) consisted of two minutes of normal activity plus one or
more abnormal situations (of varying length). We ran our experiments using TPC-C. The default
setting used in our TPC-C workload was a scale factor of 500 (i.e., 50GB) with 128 terminals. We
also experimented with different scale factors (from 16 to 500) and number of terminals (from 16
to 128). The results were consistent across these different settings, and thus we only report our
results using the default setting described above. In each dataset, we intentionally created various
abnormal situations on the server, as described next.

Type of anomaly Description
Poorly Written Query Execute a poorly written JOIN query, which would run efficiently if

written properly.
Poor Physical Design Create an unnecessary index on tables where mostly INSERT state-

ments are executed.
Workload Spike Greatly increase the rate of transactions and the number of clients

simulated by OLTPBenchmark (128 additional terminals with trans-
action rate of 50,000).

I/O Saturation Invoke stress-ng, which spawns multiple processes that spin on
write()/unlink()/sync() system calls.

Database Backup Run mysqldump on the TPC-C database instance to dump the table
to the client machine over the network.

Table Restore Dump the pre-dumped history table back into the database instance.
CPU Saturation Invoke stress-ng, which spawns multiple processes calling poll() sys-

tem calls to stress CPU resources.
Flush Log/Table Flush all tables and logs by invoking mysqladmin commands (‘flush-

logs’ and ‘refresh’).
Network Congestion Simulate network congestion by adding an artificial 300-milliseconds

delay to every traffic over the network via Linux’s tc (Traffic Control)
command.

Lock Contention Change the transaction mix to execute NewOrder transactions only
on a single warehouse and district.

Table 2.1: Ten types of performance anomalies used in our experiments.
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2.8.2 Test Cases

To test our algorithm, we created 10 different classes of anomalies to represent some of the im-
portant types of real-world problems that can deteriorate the performance of a database. During
the two-minute run of the normal workload in each dataset, we invoked the actual cause of an
anomaly with different start times and durations. For each type of anomaly, we collected 11 dif-
ferent datasets by varying the duration when possible (e.g., stressing system resources) or its start
time (i.e., the time when the cause of an anomaly is triggered) when the actual duration was impos-
sible to control (e.g., running mysqldump). The duration or start time of the anomalies ranged from
30 to 80 seconds with the increment of 5 seconds, yielding 11 datasets (i.e., 30, 35, · · · , 80) for
each type of anomaly (a total of 110 datasets). For each dataset, we manually selected a region of
anomaly via visual inspection; the region left unselected automatically became the normal region.

Table 2.1 lists the types and descriptions of the different classes of anomalies that we tested
within our experiments. These anomalies are designed to reflect a wide range of realistic scenarios
that can negatively impact the performance of a transactional database.

2.8.3 Accuracy of Single Causal Models

Our goal in this section is to evaluate the effectiveness of our causal models in producing correct
explanations. It is quite common that an anomaly from a certain cause is only observable a few
times over the lifetime of a database operation. This makes log samples of such anomalies quite
scarce in many cases (e.g., disk failure) and thus necessitates that our framework identifies the
correct cause even when our causal model is created from a single dataset. Thus, in each test case
we only used a single dataset to construct a causal model with θ=0.2 (which is the normalized
difference threshold, see Section 2.4.5). This is the default value of θ in DBSherlock chosen to
aggressively filter out attributes with insignificant behavior in the anomaly region. We applied the
constructed causal model on all the remaining 109 datasets to obtain its confidence in each test
case. We repeated this process until every dataset was chosen to construct a causal model.

With our algorithm, the correct causal models achieve the highest confidence in all 10 test cases
(i.e., the correct cause was shown as the most likely cause to the user). The margin (i.e., positive
difference) of confidence between the correct model and the highest among incorrect models is on
average 13.5%. In other words, not only does the correct model achieve the highest confidence
(and is shown to the user as the most likely cause), but its confidence is also well separated from
the highest-ranked incorrect model. (In Section 2.8.5, we show that our model merging technique
improves this margin even further.) Figure 2.6 shows the margin of confidence of the correct
causal model, which compares the average confidence of the correct causal model to the highest
confidence among all other (incorrect) models for different types of anomalies.
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Figure 2.6: The margin of confidence and the average F1-measure of the correct causal model for
different anomalies.

Here, anomalies caused by ‘Table Restore’ and ‘Flush Log/Table’ proved most illusive, as they
yielded the lowest confidence among the causal models. This was because the two anomalies
shared the common characteristic that the DBMS performed too many disk I/Os. However, even
in this case, DBSherlock could correctly distinguish the correct cause from the incorrect ones.

Overall, this challenging experiment is an extremely encouraging result showing that DBSherlock
is capable of generating the correct explanation even with a single dataset as a training sample and
in the presence of 9 other competing models.

2.8.4 DBSherlock Predicates versus PerfXplain

We compared the accuracy of our predicates with predicates generated by the state-of-the-art per-
formance explanation framework, PerfXplain [155]. Since PerfXplain is designed to work with
MapReduce logs, we had to re-implement PerfXplain’s algorithm to fit into our context. Origi-
nally, PerfXplain operates on pairs of MapReduce jobs. Instead, we modified it to use pairs of our
input tuples. We used the following query for PerfXplain:

EXPECTED avg latency difference = insignificant
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Figure 2.7: (a) The margin of confidence for single versus merged causal models, (b) the ratio of
correct explanations for merged causal models (if the top-k possible causes are shown to the user),
and (c) the effect of the number of datasets (i.e., number of manual diagnoses required) on the
accuracy of the casual model.

OBSERVED avg latency difference = significant

where two average latencies are deemed significant if their difference is at least 50% of the smaller
value. We chose the same parameters for PerfXplain as suggested in [155] (i.e., we used 2,000
samples and a weight value of 0.8 for its scoring rules). We also varied the number of predicates
from 1 to 10 and chose 2, which yielded the best results for PerfXplain. With 11 datasets for
each case, we used 10 datasets to generate predicates and the accuracy of generated predicates
was tested on the remaining dataset. Figure 2.8 demonstrates the average precision, recall and
F1-measure in comparison. Our predicates achieved better accuracy than PerfXplain in nearly all
cases (except for recall on one test case). Most notably, DBSherlock improves on PerfXplain’s F1-
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Figure 2.8: Average precision, recall and F1-measure of predicates generated by DBSherlock and
PerfXplain.

measure by upto 55% (28% on average). This shows that performance explanation and diagnosis
for OLTP workloads requires drastically different techniques than those developed for OLAP and
map-reduce workloads.

2.8.5 Effectiveness of Merged Causal Models

When multiple causal models are available (from diagnosing different datasets), DBSherlock tries
to merge them as much as possible in order to further improve the relevance and accuracy of the
generated explanations. To evaluate the effectiveness of our merging strategy, we conducted a
series of experiments, each using multiple datasets as training samples. We randomly assigned
about 50% of the datasets from each type of anomaly (i.e., 5 out of 11 datasets) to construct
and merge causal models for each type. Merged causal models were then used to calculate the
confidence on the remaining 6 datasets. The process was repeated 50 times, resulting in 300
instances of explanations for each test case. We used a lower value of θ, namely θ = 0.05, for our
merged causal models (in contrast to 0.20 used for our single causal models). With a lower value
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of θ, we can maximize the effect of merging causal models by having more predicates for each
causal model at the start.

The results of these experiments are summarized in Figure 2.7a, showing that merging signifi-
cantly increases the average margin of confidence against the second-highest confidence in all test
cases.

To compare the accuracy of each explanation, we counted the number of cases where the cor-
rect cause was included in the top-k possible causes shown to a user. As shown in Figure 2.7b,
DBSherlock presented the correct cause as the top explanation in almost every instance. In other
words, k=1 would always be sufficient for achieving an accuracy greater than 98%. If we allow
DBSherlock to list the top-2 possible explanations, then it identifies the correct cause in 99% of the
cases.

We also studied the effectiveness of merging causal models with respect to the number of
datasets used in constructing each causal model. As shown in Figure 2.7c, the accuracy of the
merged causal models increases with more datasets. The accuracy quickly reaches 95% with only
two datasets if only the top cause is returned, and it reaches 99% if the top two causes are returned.
This experiment highlights that DBSherlock only requires a few manual diagnoses of an anomaly
to construct highly accurate causal models.

In summary, the merging of causal models greatly improves the accuracy and quality of our
explanations, generating predicates that are more relevant to the cause. Only a few datasets of the
same anomaly are needed to construct a merged causal model that achieves an accuracy greater
than 95%.

2.8.6 Effect of Incorporating Domain Knowledge

To study the effect of incorporating domain knowledge, we incorporated the four rules introduced
in Section 2.5 into DBSherlock, and constructed single causal models with and without these rules,
similar to the setup of Section 2.8.3.

Accuracy if shown top-
1 cause

Accuracy if shown top-
2 causes

With Domain Knowledge 85.3% 94.8%
Without Domain Knowledge 82.7% 93.2%

Table 2.2: Ratio of correct causes with & without domain knowledge.

Table 2.2 reports the accuracy of single causal models with and without domain knowledge.
Domain knowledge removed predicates that were a secondary symptom, and thus less relevant
for the correct diagnosis of a given anomaly, improving the accuracy of causal models by 2.6%
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if shown the top-1 cause and 1.6% if shown the top-2 causes. On the other hand, this experiment
shows that, in practice, DBSherlock works surprisingly well even without any domain knowledge.

2.8.7 Explaining Compound Situations

It is not uncommon in a transactional database that multiple problems occur simultaneously. These
compound situations add a new level of difficulty to diagnostic systems. We ran an experiment to
address the framework’s capability in such compound situations. We created six cases, where two
or three anomalies happen at the same time during the two-minute run of our normal workload. For
this experiment, causal models were constructed for each individual test case by merging causal
models from every dataset. Explanations were then generated for the compound test cases.
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Figure 2.9: Ratio of the correct causes and their average F1-measure for compound situations
(when top-3 causes are shown to the user).

Figure 2.9 demonstrates the ratio and the average F1-measure of correct causes (when three
possible causes were offered to the user). On average, our explanation contained more than two-
thirds of the correct causes, except for ‘Workload Spike + Network Congestion’. For this dataset,
DBSherlock missed the ‘Workload Spike’ and only returned ‘Network Congestion’ as the correct
cause. This was because ‘Network Congestion’ had reduced the impact of ‘Workload Spike’ on the
system (by slowing down the rate of incoming queries), and hence made it difficult for DBSherlock
to identify their simultaneous occurrence.
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2.8.8 Accuracy for other workloads

To confirm whether DBSherlock’s capability of producing accurate explanations extends to other
workloads besides TPC-C, we conducted additional experiments using the TPC-E benchmark [12].
Here, we used TPC-E with 3,000 customers, resulting in a 50GB data size. We generated the
datasets and constructed merged causal models using a similar setup as in Section 2.8.5 (i.e., 5
datasets to construct merged causal models and 300 instances of explanations).

Type of Workload Accuracy if shown top-1 cause Accuracy if shown top-2
causes

TPC-C 98.0% 99.7%
TPC-E 92.5% 99.6%

Table 2.3: DBSherlock’s accuracy for TPC-C and TPC-E workloads.

Table 2.3 compares the percentage of correct answers when the top-1 or top-2 causes are re-
turned to the user for both TPC-C and TPC-E. When only the top-1 cause was shown to the user, the
accuracy for the TPC-E workload slightly dropped to 92.5% on average. This was mainly due to
DBSherlock’s lower accuracy for ‘Poor Physical Design’ with TPC-E, as the effects of ‘Poor Physi-
cal Design’ and ‘Lock Contention’ on the system were not as significant as they were with TPC-C.
The was due to the fact that TPC-E is much more read-intensive than TPC-C [77]. Nonetheless,
DBSherlock still achieved an impressive accuracy of 99% on average with the TPC-E workload
when the top-2 causes were shown to the user.

2.8.9 Over-fitting and Merged Causal Models

To verify if adding more datasets could further improve our merged models, we also ran a
leave-one-out cross validation experiment. With 11 datasets for each case, we constructed causal
models from 10 datasets and merged them. The final causal model then calculated confidence
on the remaining dataset of each test case. Overall, the average confidence of the correct model
increased slightly as shown in Figure 2.10a, but at the same time, the average margin of confidence
decreased in some test cases as shown in Figure 2.10b.

The decrease in the average margin of confidence in some test cases suggests that merging more
models than necessary can be ineffective. In other words, our proposed technique for merging
causal models continues to widen the scope of relevant predicates while filtering irrelevant ones
out. Once every irrelevant predicate has been filtered out, merging more models is not as effective.
This is similar to the over-fitting phenomenon in machine learning. Nonetheless, DBSherlock still

36



0
10
20
30
40
50
60
70
80
90
100

Co
nf
id
en

ce
	(%

)

Test	Cases

Merged	Causal	Models	(5	Datasets) Merged	Causal	Models	(10	Datasets)

(a)

0

10

20

30

40

50

60

70

M
ar
gi
n	
of
	C
on

fid
en

ce
	(%

)

Test	Cases

Merged	Causal	Models	(5	Datasets) Merged	Causal	Models	(10	Datasets)

(b)

0

20

40

60

80

100

Pe
rc
en

ta
ge
	o
f	C

or
re
ct
	E
xp
la
na
tio

ns
	(%

)

Test	Cases

Top-1	Cause	Shown Top-2	Causes	Shown

(c)

Figure 2.10: Evaluation of a merged causal model with 10 datasets in terms of (a) confidence,
compared to a merged causal model with 5 datasets, (b) margin of confidence, compared to a
merged causal model with 5 datasets, and (c) accuracy if top-k causes are returned.

succeeded in returning the correct cause among its top two explanations in every instance (except
for ‘Network Congestion’), as demonstrated in Figure 2.10c.

2.8.10 Rare Anomalies and Robustness Against Input Errors

As explained in Section 2.2.2, the user selects the abnormal regions manually after visual in-
spection of the performance plots (we have used the same method in our experiments—Section
2.8.2). However, users may not specify the regions with perfect precision. To understand how
robust DBSherlock is to input errors caused by human mistakes, we conducted the following exper-
iment. Using the same setup as Section 2.8.9, we extended the boundaries of the original anomaly
region by 10% in one experiment and shortened them by 10% in another. We also ran a third
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experiment where we randomly chose only two seconds of the original abnormal region as our
input anomaly. The goal of this test case was to evaluate DBSherlock’s effectiveness in diagnosing
anomalies that are rare or only last a few seconds. For each dataset, we repeated each experiment
10 times and averaged the result.

Width of Abnormal
Region

Accuracy if shown top-1 cause Accuracy if shown top-2
causes

Original 94.6% 99.1%
10% Longer 95.5% 100%
10% Shorter 95.5% 97.3%
Two Seconds 74.6% 86.4%

Table 2.4: DBSherlock’s robustness against rare and imperfect inputs.

Table 2.4 reports the percentage of correct answers when the top-1 or 2 causes are returned
to the user. The accuracy did not change significantly when the span of the abnormal region was
shorter or longer than the original one by 10%. More surprisingly, DBSherlock achieved reason-
able accuracy even when the abnormal region was only two seconds long (e.g., the top-2 causes
contained the correct explanation in 85% of the cases). These experiments show that DBSherlock
remains effective even when the abnormal regions are not perfectly aligned with the actual anomaly
or only last a very short period.

2.8.11 Different Parameters/Steps in DBSherlock

We conducted various experiments to study the effect of the individual steps and configurable
parameters of our predicate generation algorithm on its accuracy.

To evaluate the different steps of our algorithm (from Section 2.4), we compared it against its
simpler variants by omitting some of the steps each time. Since steps 1, 2 and 5 (i.e., Creating a

Partition Space, Partition Labeling and Extracting Predicates) form the skeleton of our algorithm
and cannot be excluded easily, we omitted the other two steps (i.e., Partition Filtering and Filling

the Gaps). Table 2.5 reports the average margin of confidence and accuracy of each variant. Skip-
ping either of the Partition Filtering or Filling the Gaps steps lowers the accuracy of our algorithm
significantly (down to 0–10%). Without both, our algorithm fails to find any relevant predicates
for explaining the given anomaly. This experiment underlines the significant contribution of these
two steps towards our algorithm’s overall accuracy.

Our predicate generation algorithm has three configurable parameters: the number of partitions
(R), the anomaly distance multiplier (δ) and the normalized difference threshold (θ). We conducted
experiments to study the effect of these parameters on the generated explanations. We ran our
algorithm on every dataset with different values of each parameter and averaged its confidence,
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Figure 2.11: The effect of (a) the number of partitions on our algorithm’s average confidence and
computation time, (b) the anomaly distance multiplier on its confidence, and (c) the normalized
difference threshold on its average confidence and number of generated predicates.

computation time, and number of generated predicates. For each experiment, we used 10 datasets
to construct merged causal models and calculated their confidence on the remaining dataset. We
used the default values of {R, δ, θ} = {250, 10, 0.2}.

We varied R using the following values {125, 250, 500, 1000, 2000}. As shown in Figure
2.11a, R >1000 increased the computation time significantly, without much improvement in con-
fidence. We also varied δ using the following values {0.1, 0.5, 1, 5, 10}. As shown in Figure 2.11b,
and as expected, δ >1 favored more specific predicates and led to higher confidence.

Lastly, we varied the value of θ using the following values {0.01, 0.05, 0.1, 0.2, 0.4}. As
shown in Figure 2.11c, increasing the value of θ reduced the number of generated predicates but
increased their confidence slightly. However, the confidence dropped significantly with θ = 0.4.
This is because a large value of θ filters out most predicates, leaving only a few predicates that are
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Algorithms Overall avg. margin of con-
fidence

Accuracy if shown top-1
cause

Original (all 5 steps) 37.4 94.6%
Without Filling the Gaps 9.3 10.1%
Without Partition Filtering 0.7 0%
Without Filling the Gaps &
Partition Filtering

0 0%

Table 2.5: Contributions of the different steps of our predicate generation algorithm to the overall
accuracy.

too specific to their training dataset and do not generalize to others.
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Figure 2.12: The effect of the parameter κt to average F1-measure.

We also performed a sensitivity analysis with the parameter κt that we use to filter secondary
symptoms with the domain knowledge. We compared the average F1-measures with different
values of κt. As demonstrated in Figure 2.12, the value of 0.15 for κt gave the highest average
F1-measure.

2.8.12 DBSherlock’s Accuracy with Automatic Anomaly Detection

We conducted an experiment to test DBSherlock’s accuracy when automatic anomaly detection is
used and also compared against another anomaly detection algorithm, PerfAugur. For PerfAugur,
we supplied the overall average latency as its performance indicator variable and used their naı̈ve
algorithm with the original scoring function to compute the abnormal region.
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For this experiment, we have generated datasets with the longer duration (i.e., 10 minutes) of
the normal workload to ensure that the normal region is larger than the abnormal region, necessary
for automatic detection algorithm to distinguish between both. Then, causal models were con-
structed for each individual test case by merging the causal models from 10 datasets. Abnormal
regions were manually specified with our ‘ground-truth’ knowledge of each test case, to simulate a
perfect user diagnosing the problem. The anomaly detection algorithm described in Section 2.7 and
PerfAugur then identified abnormal regions for the remaining dataset of each test case. This leave-
one-out cross validation set-up is designed to test the effectiveness of DBSherlock using merged
causal models, but in the absence of any user input. DBSherlock used the automatically detected
region of anomaly as its input and generated explanations for each test case.

Detection Algorithms Accuracy if shown top-1
cause

Accuracy if shown top-2
causes

Manual Anomaly Detection 94.6% 99.1%
Automatic Anomaly Detection 90% 95.5%
PerfAugur 77.3% 88.2%

Table 2.6: Ratio of the correct causes for different strategies.

As shown in Table 2.6, DBSherlock identified about 95% of the correct causes on average with
our algorithm, when top-2 possible causes were shown to a user. Our anomaly detection algorithm
also performed substantially better than PerfAugur’s detection algorithm. This promising result
demonstrates that DBSherlock can be used in an automated setting once it has enough user feedback
for well-constructed causal models. An interesting future work is to integrate a domain-specific
and a more sophisticated anomaly detection algorithm in DBSherlock.

2.8.13 User Study

We also performed a user study to evaluate the ability of our generated predicates in helping users
diagnose the actual cause of performance problems. We asked various people who had some expe-
rience with databases to participate in a web-based questionnaire. We categorized the participants
into three levels of competency based on their experience: Preliminary DB Knowledge (e.g., SQL
knowledge or undergraduate course on databases), DB Usage Experience, and DB Research or

DBA Experience. We used a few trivial questions to filter out spammers from genuine participants,
leaving us with a total of 20 participants in our study. The questionnaire consisted of 10 multiple-
choice questions. Each question had one correct cause and three randomly chosen incorrect causes.
In each question, we presented a graph of average latency to our participants, with a pre-specified
anomaly region and DBSherlock’s generated predicates explaining the anomaly.
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Background # of participants Avg. # of correct
answers (out of 10)

Baseline (No Predicates) N/A 2.5
Preliminary DB Knowledge 20 7.5
DB Usage Experience 15 7.8
DB Research or DBA Experience 13 7.8

Table 2.7: The summary of the user study.

Table 2.7 shows the summary of the user study. Here, the first row represents the random
baseline, i.e., where no predicates are presented to the user. Participants with preliminary database
knowledge were able to identify the correct cause in 75% of the cases. Participants with prac-
tical database usage or above identified the correct cause in 78% of the cases. This promising
result shows that the predicates generated by DBSherlock can help the end user correctly diagnose
anomalies in practice.

2.9 Related Work

Our work incorporates recent research in the fields of causality, performance diagnosis, and outlier
detection.

Causality. Our work draws on the notion of causality proposed by Halpern and Pearl [129,
130]. We apply a simplified version of their causal model to introduce the notion of causality in
our explanations. In the database literature, the notion of causality is brought together with data
provenance [62, 80]. Meliou et al. [182] adapt the notion of causality to explain the cause of an-
swers and non-answers in the output of database queries. In the context of probabilistic databases,
Kanagal et al. [151] define the notion of an input tuple’s influence on a query result. Scorpion [242]
explains outliers in aggregate results of a query by unifying the concepts of causality and influence.
Our notions of normal and anomaly are similar to Scorpion’s hold-out and outlier sets, respectively.

Performance diagnosis. There have been many applications of performance diagnosis in
databases [105], such as tuning query performance [47, 134], diagnosing databases that run on
storage area networks [56], or parameter tuning [106]. Benoit [49] and Dias et al. [98] propose
tools for automatic diagnosis of performance problems in commercial databases. However, [49]
requires DBAs to provide a set of manual rules and [98] relies on detailed internal performance
measurements from the DBMS (e.g., time spent in various modules of Oracle to process a query).
More importantly, these tools lack explanatory features to answer ‘why’ a performance problem
has occurred. In contrast, DBSherlock produces accurate explanations even without manual rules
and using only aggregate statistics. Also, previous work has not accounted for the interaction of
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the DBMS with the machine that it is running on. DBSherlock gives an explanation based on every
statistic it can gather both inside and outside the DBMS.

In the context of MapReduce, there is work on automatic tuning of MapReduce programs [44,
144]. Here, the most relevant work is PerfXplain [155], which generates predicate-based explana-
tions. PerfXplain helps debug MapReduce jobs, answering questions such as ‘Why Job A is faster
than Job B?’. DBSherlock is designed for OLTP workloads, its predicates are more accurate than
those of PerfXplain (see Section 2.8.4), and can incorporate causal models.

There has been much work on automated performance diagnosis in other areas. Gmach et
al. [116] use a fuzzy controller to remedy exceptional situations in an enterprise application. Their
controller, however, requires the rules to be hard-coded and pre-defined by experts. In contrast,
DBSherlock allows for causal models to be added, merged, and refined as new anomalies occur in
the future. Further, while DBSherlock allows for incorporating domain knowledge, it can provide
accurate explanations even without domain knowledge (see Section 2.8.6). Mahimkar et al. [178]
propose a tool for troubleshooting IPTV networks, but assume that large correlation and regression
coefficients among pairs of attributes imply causality. DBSherlock does not make this assumption.

Outlier detection. DBSherlock uses a simple but effective outlier detection strategy to au-
tonomously monitor database performance (Section 2.7). Allowing users to choose from additional
outlier detection algorithms (e.g., [64,96,154,212,213,214,226,238,239,242,249]) will make an
interesting future work.

2.10 Summary

Performance diagnosis of database workloads is one of the most challenging tasks DBAs face
on a daily basis. Besides basic visualization and logging mechanisms, current databases provide
little help in automating this adhoc, tedious, and error-prone task. In this chapter, we presented
DBSherlock, a framework that explains performance anomalies in the context of a complex OLTP
environment. A user can select a region in a performance graph, which s/he thinks is abnormal,
and ask DBSherlock to provide a diagnostic explanation for the observed anomaly. DBSherlock

explains the anomaly in the form of predicates and possible causes produced by causal models.
These explanations aid our users in diagnosing the correct cause of the performance problems more
easily and more accurately. We also demonstrated that the confidence of our causal models can be
increased via merging multiple causal models sharing the same cause. Our extensive experiments
show that our algorithm is highly effective in identifying the correct explanations and is more
accurate than the state-of-the art algorithm. As a much needed tool for coping with the increasing
complexity of today’s DBMS, DBSherlock is released as an open-source module in our workload
management toolkit [4].
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An important future work is to enable automatic actions for rectifying simple forms of perfor-
mance anomaly (e.g., throttling certain tenants or triggering a migration), once they are detected
and diagnosed with high confidence. We also plan to extend DBSherlock to go beyond creating
causal models upon successful diagnoses, by documenting and storing the actions taken by the
DBA to use as a suggestion for future occurrences of the same anomaly. Finally, DBSherlock’s
ideas might also be applicable to analytical workloads, e.g., in explaining performance problems
caused by workload drifts [188].
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CHAPTER 3

CliffGuard: A Principled Framework for Finding
Robust Database Designs

3.1 Motivation

Modern databases come with designer tools (a.k.a. auto-tuning tools) that take certain parameters
of a target workload (e.g., queries, data distribution, and various cost estimates) as input, and then
use different heuristics to search the design space and find an optimal design (e.g., a set of indices or
materialized views) within their time and storage budgets. However, these designs are only optimal
for the input parameters provided to the designer. Unfortunately, in practice, these parameters are
subject to many sources of uncertainty, such as noisy environments, approximation errors (e.g., in
the query optimizer’s cost or cardinality estimates [41]), and missing or time-varying parameters.
Most notably, since future queries are unknown, these tools usually optimize for past queries in
hopes that future ones will be similar.

Existing designer tools (e.g., Index Tuning Wizard [36] and Tuning Advisor in Microsoft SQL
Server [73], Teradata’s Index Wizard [59], IBM DB2’s Design Advisor [259], Oracle’s SQL Tun-
ing Adviser [91], Vertica’s DBD [163, 234], and Parinda for Postgres [179]) do not take into ac-
count the influence of such uncertainties on the optimality of their design, and therefore, produce
designs that are sub-optimal and remarkably brittle. We call all these existing designers nominal.
That is, all these tools assume that their input parameters are precisely known and equal to some
nominal values. As a result, overall performance often plummets as soon as future workload de-
viates from the past (say, due to the arrival of new data or a shift in day-to-day queries). These
dramatic performance decays are severely disruptive for time-critical applications. They also waste
critical human and computational resources, as dissatisfied customers request vendor inspections,
often resulting in re-tuning/re-designing the database to restore the required level of performance.

Robust Designer— To overcome the shortcomings of nominal designers, we propose a new

type of designers that are immune to parameter uncertainties as much as desired; that is, they are
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robust. Our robust designer gives database administrators a knob to decide exactly how much
nominal optimality to trade for a desired level of robustness. For instance, users may demand a
set of optimal materialized views with an assurance that they must remain robust against change in
their workload of up to 30%. A more conservative user may demand a higher degree of robustness,
say 60%, at the expense of less nominal optimality. Robust designs are highly superior to nominal
ones, as:

(a) Nominal designs are inherently brittle and subject to performance cliffs, while the perfor-
mance of a robust design will degrade more gracefully.

(b) By taking uncertainties into account, robust designs can guard against worst-case scenarios,
delivering a more consistent and predictable performance to time-sensitive applications.

(c) Given the highly non-linear and complex (and possibly non-convex) nature of database sys-
tems, a workload may have more than one optimal design. Thus, it is completely conceivable
that a robust design may be nominally optimal as well (see [51,52] for such examples in other
domains).

(d) A robust design can significantly reduce operational costs by requiring less frequent database
re-designs.

Previous Approaches— There has been some pioneering work on incorporating parameter uncer-
tainties in databases [41,70,82,103,181,206]. These techniques are specific to run-time query opti-
mization and do not easily extend to physical designs. Other heuristics have been proposed for im-
proving physical designs through workload compression (i.e., omitting workload details) [69,158]
or modifying the query optimizer to return richer statistics [113]. Unfortunately, these approaches
are not principled and thus do not necessarily guarantee robustness. (In Section 3.6.4, we compare
against commercial databases that use such heuristics.)

To avoid these limitations, adaptive indexing schemes such as Database Cracking [128, 142]
take the other extreme by completely ignoring the past workload in deciding which indices to
build; instead of an offline design, they incrementally create and refine indices as queries arrive,
on demand. However, even these techniques need to decide which subsets of columns to build an
incremental index on.1 Instead of completely relying on past workloads or abandoning the offline
physical design, in this chapter we present a principled framework for directly maximizing robust-
ness, which enables users to decide on the extent to which they want to rely on past information,
and the extent of uncertainty they want to be robust against. (We discuss the merits of previous
work in Section 3.7.)

1Moreover, on-demand and continuous physical re-organizations are not acceptable in many applications, which is
why nearly all commercial databases still rely on their offline designers.
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New Approach— Recent breakthroughs in Operations Research on robust optimization (RO)

theory have created new hopes for achieving robustness and optimality in a principled and tractable
fashion [51, 52, 78, 255]. In this chapter, we present the first attempt at applying RO theory to
building a practical framework for solving one of the most fundamental problems in databases,
namely finding the best physical design. In particular, we study the effects of workload changes
on query latency. Since OLTP workloads tend to be more predictable (e.g., transactions are often
instances of a few templates [185,186]), we focus on OLAP workloads where exploratory and ad-
hoc queries are quite common. Developing this robust framework is a departure from the traditional
way of designing and tuning databases: from today’s brittle designs to a principled world of robust
designs that guarantee a predictable and consistent performance.

RO Theory— The field of RO has taken many strides over the past decade [51]. In particular,
the seminal work of Bertsimas et al. [52] has been successfully applied to a number of drastically
different domains, from nano-photonic design of telescopes [52] to thin-film manufacturing [55]
and system-on-chip architectures [195]. To the best of our knowledge, developing a principled
framework for applying RO theory to physical design problems is the first application of these
techniques in a database context, which involves a number of unique challenges not previously
faced in any of these other applications of RO theory.

A common misconception about the RO framework is that it requires knowledge of the extent
of uncertainty, e.g., in our case, an upper bound on how much the future workload will deviate
from the past one.2 To the contrary, the power of the RO formulation is that it allows users to freely
request any degree of robustness that they wish, say Γ, purely based on their own risk tolerance and
preferences [48,53]. Regardless of whether the actual amount of uncertainty exceeds or stays lower
than Γ, the RO framework guarantees will remain valid; that is, the delivered design is promised
to remain optimal as long as the uncertainty remains below the user-requested threshold Γ, and
beyond that (i.e., if uncertainty exceeds Γ) is in accordance to user’s accepted degree of risk [53]. In
other words, the beauty of RO theory is that it provides a framework for expressing and delivering
reliability guarantees by decoupling them from the actual uncertainty in the environment (here, the
future workload).

Contributions— In this chapter, we make these contributions:

• We introduce and summarize a principled algorithm, called CliffGuard [187], which adapts
the state-of-the-art framework for solving non-convex RO problems. CliffGuard’s design is

2This misconception is caused by differing terminology used in other disciplines, such as mechanical engineering
(ME) where “robust optimization” refers to a different type of optimization which requires some knowledge of the
uncertainty of the physical environment [94]. The Operations Research notion of RO used in this chapter is called
reliability optimization in the ME literature [230].
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Figure 3.1: The CliffGuard architecture.

generic and can potentially work with any existing designers and databases without modify-
ing their internals (Section 3.4).

• We implement and evaluate CliffGuard using two major commercial databases (HP Vertica
and DBMS-X3) on two synthetic workloads as well as a real workload of 430+K OLAP
queries issued by one of Vertica’s major customers over a 1-year period (Section 3.6).

In summary, compared to Vertica’s state-of-the-art commercial designer [163, 234], our robust
designer reduces the average and maximum latency of queries on average by 7× and 18× (and up
to 14× and 40×), respectively. Similarly, CliffGuard improves over DBMS-X by 3–5×.

3.2 System Overview

In this section, we provide an overview of CliffGuard.

Physical Database Designs— A physical design in a database is a set of auxiliary structures, often
built offline, which are used to speed up future queries as they arrive. The type of auxiliary struc-
tures used often depend on the specific database architecture. Most databases use both materialized
views and indices in their physical designs. Materialized views are typically more common in an-
alytical workloads. Approximate databases use small samples of the data (rather than its entirety)
to speed up query processing at the cost of accuracy [25, 26, 30, 66, 252, 253]. Physical designs in
these systems consist of different types of samples (e.g., stratified on different columns [31, 66]).
Some modern columnar databases, such as Vertica [234], build a number of column projections,
each sorted differently. Instead of traditional indices, Vertica chooses a projection with the appro-
priate sort order (depending on the columns in the query) in order to locate relevant tuples quickly.
In all these examples, the space of these auxiliary structures is extremely large if not infinite, e.g.,
there are O(2N ·N !) possible projections or indices for a table of N columns (i.e., different subsets

3DBMS-X is a major database system, which we cannot reveal due to the vendor’s restrictions on publishing
performance results.
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and orders of columns). Thus, the physical design problem is choosing a small number of these
structures using a fixed budget (in terms of time, space, or maintenance overhead) such that the
overall performance is optimized for a target workload.

Design Principles— A major goal in the design of CliffGuard algorithm is compatibility with
almost any existing database in order to facilitate its adoption in the commercial world. Thus, we
have made two key decisions in our design. First, CliffGuard should operate alongside an existing
(nominal) designer rather than replacing it. Despite their lack of robustness, existing designers are
highly sophisticated tools hand-tuned over the years to find the best physical designs efficiently,
given their input parameters. Because of this heavy investment, most vendors are reluctant to
abandon these tools completely. However, some vendors have expressed interest in CliffGuard as
long as it can operate alongside their existing designer and improve its output. Second, CliffGuard
is designed to treat existing designers as a black-box (i.e., without modifying their internal im-
plementations). This is to conform to the proprietary nature of commercial designers and also to
widen the applicability of CliffGuard to different databases. By delegating the nominal designs to
existing designers, CliffGuard remains a genetic framework agnostic to the specific details of the
design objects (e.g., they can be materialized views, samples, indices, or projections).

These design principles have already allowed us to evaluate Cliff- Guard for two database
products with drastically different design problems (i.e., Vertica and DBMS-X). Without requiring
any changes to their internal implementations, CliffGuard significantly improves on the sophisti-
cated designers of these leading databases (see Section 3.6). Thus, we believe that CliffGuard can
be easily used to speed up other database systems as well.

Architecture— Figure 3.1 depicts the high-level workflow of how CliffGuard is to be used along-
side a database system. The database administrator states her desired degree of robustness Γ to
CliffGuard, which is located outside the DBMS. CliffGuard in turn invokes the existing physical
designer via its public API. After evaluating the output (nominal) design sent back from the existing
designer, CliffGuard may decide to manipulate the existing designer’s output by merely modify-
ing some of its input parameters (in a principled manner) and invoking its API again. CliffGuard
repeats this process, until it is satisfied with the robustness of the design produced by the nominal
designer. The final (robust) design is then sent back to the administrator, who may decide to deploy
it in the DBMS.

3.3 Problem Formulation

In this section, we present a formulation of robustness used by CliffGuard in the context of phys-
ical database design. This formulation allows us to employ recently proposed ideas in the theory
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of robust optimization (RO) and develop a principled and effective algorithm for finding robust
database designs, which will be described in Section 3.4. First, we define some notations.

Notations— For a given database, the design space S is the set of all possible structures of interest,
such as indices on different subsets of columns, materialized views, different samples of the data, or
a combination of these. For example, Vertica’s designer [234] materializes a number of projections,
each sorted differently:

CREATE PROJECTION projection name

AS SELECT col1, col2, ..., colN

FROM anchor table

ORDER BY col1', col2', ..., colK';

Here, S is extremely large due to the exponential number of possible projections. Similarly, for
decisions about building materialized views or (secondary) indices, S will contain all such possible
structures. Existing database designers solve the following optimization problem (or aim to4):

Dnom = D(W0, B) = ArgMin
D⊆S , price(D)≤B

f(W0, D) (3.1)

where W0 is the target workload (e.g., the set of user queries), B is a given budget (in terms of
storage or maintenance overhead), D is a nominal designer that takes a workload and budget as
input parameters, price(D) is the price of choosing D (e.g., the total size of the projections in
D), and f(W0, D) is our cost function for executing workload W0 using design D (e.g., f can
be the query latency). We call such designs nominal as they are optimal for the nominal value of
the given parameters (e.g., the target workload). All existing designers [36, 91, 179, 234, 259] are
nominal: they either minimize the expression above directly, or follow other heuristics aimed at
approximate minimization. Despite several heuristics to avoid over-fitting a given workload (e.g.,
omitting query details [69, 158]), nominal designers suffer from many shortcomings in practice;
see Sections 3.1 and 3.6.4.

Robust Designs— CliffGuard’s goal is finding designs that are robust against worst-case scenarios
that can arise from uncertain situations. This concept of robustness can be illustrated using the toy
example of Figure 3.2, which features a design space with only three possible designs and a toy
workload that is represented by a single real-value parameter µ. When our current estimate of µ
is µ0, a nominal designer will pick design D1 since it minimizes the cost at µ0. But if we want a
design that remains optimal even if our parameter changes by up to Γ, then a robust designer will
pick design D2 instead of D1, even though the latter has a lower cost at µ0. This is because the

4Existing designers often use heuristics or greedy strategies [180], which lead to approximations of the nominal
optima.
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Figure 3.2: Design D1 is nominally optimal at µ0 while designs D2 and D3 are robust against an
uncertainty of ±Γ and ±Γ′ in our parameter µ0, respectively.

worst-case cost ofD2 over the [µ0−Γ, µ0 +Γ] is lower than that ofD1; that is, D2 is robust against
uncertainty of up to Γ. Similarly, if we decide to guard against a still greater degree of uncertainty,
say for an estimation error as high as Γ′ > Γ, a robust designer would this time pick D3 instead of
D2, as the former has a lower worst-case cost in [µ0 − Γ′, µ0 + Γ′] than the other designs.

Formally, a robust design Drob can be defined as:

Drob = D̃(W0, B,U) = ArgMin
D⊆S , price(D)≤B

Max
W∈U(W0)

f(W,D)

where U(W0) defines an uncertainty region around our target workload W0. Here, D̃ is a robust
designer that will search for a design that minimizes the cost function regardless of where the target
workload lands in this uncertainty region. In other words, this MiniMax formulation of robustness
defines a robust design as one with the best worst-case performance.

Although the uncertainty region U(W0) does not have to be circular, for ease of presentation in
this chapter, we always define U(W0) as a circular region of radius Γ ≥ 0 centered at W0, which
we call the Γ-neighborhood of W0. For instance, the Γ-neighborhood will be an interval when
W0 ∈ R (see Figure 3.2) and a circle when Γ ∈ R2. Since database workloads are not easily
represented as real numbers, we need to use a distance function to define the Γ-neighborhood of a
database workload W0, namely:

Drob = D̃(W0, B,Γ) = ArgMin
D⊆S , price(D)≤B

Max
δ(W,W0)≤Γ

f(W,D) (3.2)

Here, δ(.) is a user-defined distance function that takes a pair of workloads and returns a non-
negative real number as their distance. Formulation (3.2) allows users to express their desired level
of robustness by choosing the value of Γ ≥ 0, where the larger the Γ, the more robust their design

51



is. Note that a nominal design is a special case of a robust design where Γ = 0. In the rest of this
chapter, we will not explicitly mention the price(D) ≤ B constraint in our notations, but it will
always be implied in both nominal and robust designs.

A Knob for Robustness— As mentioned in Section 3.1, the role of Γ in RO formulation (3.2)
is sometimes misunderstood to be an upper bound on the degree of uncertainty, i.e., Γ should be
chosen such that the future workload W will lie in W0’s Γ-neighborhood. To the contrary, the
beauty of formulation (3.2) is that it allows users to choose any Γ value based purely on their own
business needs and risk tolerance, regardless of the actual amount of uncertainty in the future. In
other words, Γ is not an upper bound on the actual uncertainty in the environment, but rather the
amount of actual uncertainty that the user decides to guard against. This is a subtle but important
distinction, because robustness comes at the price of reduced nominal optimality. In the example
of Figure 3.2, D2 is robust against a greater degree of uncertainty than D2 but is nominally more
expensive at µ = µ0. Therefore, it is important to interpret Γ as a robustness knob and not a
prediction of future uncertainty.

The choice of Γ depends completely on the end users’ risk tolerance and is not the focus of this
chapter. Our framework will deliver a design that guarantees the requested level of robustness for
any value of Γ chosen by the user. For instance, a user may take the simplest approach and use the
sequence of workload changes over the past N windows of queries, say

δ(W0,W1), δ(W1,W2), · · · , δ(WN−1,WN)

and take their average, max, or k×max (for some constant k>1) as a reasonable choice of Γ

when finding a robust design for WN+1 using WN . Alternatively, a user may employ more so-
phisticated techniques (e.g., timeseries forecasting [65]) to obtain a more accurate prediction for
δ(WN ,WN + 1). Regardless of the strategy, the actual uncertainty can always exceed a user’s
predictions. However, this problem is no different from any other provisioning problem. For in-
stance, many customers provision their database resources according to, say, 3× their current peak
load. This means that according to their business needs, they accept the risk of their future work-
load suddenly increasing by 4×. This is analogous to the user’s choice of Γ here. Also, note that
even if users magically knew the exact value of δ(WN ,WN+1) in advance, the existing nominal
designers’ performance would remain the same since they have no mechanism for incorporating
a bounded uncertainty into their analysis. (A nominal designer would only perform better if we
knew the actual WN+1 and not just its distance from WN .) As previously explained, while our
proposed designer does not require any prior knowledge of the uncertainty in order to deliver the
user’s robustness requirements, it can naturally incorporate additional of the future workload if
made available by the user.
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In Section 3.6.5, we study the effects of different Γ choices and show that, in practice, our algo-
rithm performs no worse than the nominal designer even when presented with poor (i.e., extremely
low or extremely high) Γ choices.

3.4 Summary of CliffGuard’s Algorithm

In the previous section, we provided the RO formulation of the physical design for databases.
Over the past decade, there have been many advances in the theory of RO for solving problems
with similar formulations as (3.2), for many different classes of cost functions and uncertainty
sets (see [51] for a recent survey). Here, the most relevant to our problem is the seminal work
of Bertsimas et al. [52], hereon referred to as the BNT algorithm. Unlike most RO algorithms,
BNT does not require the cost function to have a closed-form. This makes BNT an ideal match
for database context: the cost function is often the query latency, which does not have an explicit
closed-form, i.e., latency can only be measured by executing the query itself or approximated using
the query optimizer’s cost estimates. BNT’s second strength is that it does not require convexity:
BNT guarantees a global robust solution when the cost function is convex, and convergence to a
local robust solution even when it is not convex. Given the complex nature of modern databases,
establishing convexity for query latencies can be difficult (e.g., in some situations, additional load
can reduce latency by improving the cache hit rate [185]).5

First, we provide background on the BNT framework in Section 3.4.1. Then, in Section 3.4.2,
we summarize the BNT-based CliffGuard algorithm. For more details on the algorithm, please
refer to [189].

3.4.1 The BNT Algorithm

In this section, we offer a geometric interpretation of the BNT algorithm for an easier understand-
ing of the main ideas behind the algorithm. (Interested readers can find a more formal discussion
of the algorithm in the Operations Research literature [52].)

We use Figure 3.3a to illustrate how the BNT algorithm works. Here, imagine a simplified
world in which each decision is a 2-dimensional point in Euclidean space. Since the environment is
noisy or unpredictable, the user demands a decision x∗ that comes with some reliability guarantees.
For example, instead of asking for a decision x∗ that simply minimizes f(x), the user requires an

5When the cost function is non-convex, the output of existing nominal designers is also only locally optimal. Thus,
even in these cases, finding a local robust optimum is still a worthwhile endeavor.
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x∗ whose worst-case cost is minimized for arbitrary noise vectors ∆x within a radius of Γ, namely:

x∗ = ArgMin
x

Max
||∆x||2≤Γ

f(x+ ∆x) (3.3)

Here, ||∆x||2 is the length (L2-norm) of the noise vectors. This means that the user expresses
his/her reliability requirement as an uncertainty region, here a circle of radius Γ, and demands
that our f(x∗ + ∆x) still be minimized no matter where the noisy environment moves our initial
decision within this region. This uncertainty region (i.e., the Γ-neighborhood) is shown as a shaded
disc in Figure 3.3a.

To meet the user’s reliability requirement, the BNT algorithm takes a starting point, say x̂,
and performs a number of iterations as follows. In each iteration, BNT first identifies all the
points within the Γ-neighborhood of x̂ that have the highest cost, called the worst-neighbors of
x̂. In Figure 3.3a, there are four worst-neighbors, shown as u1, · · · , u4. Let ∆x1, · · · ,∆x4 be the
vectors that connect x̂ to each of these worst-neighbors, namely ui = x̂+ ∆xi for i=1, 2, 3, 4.

(a) (b)

Figure 3.3: (a) A descent direction d∗ is one that moves away from all the worst-neighbors
(θmax≥90°); (b) here, due to the location of the worst-neighbors, no descent direction exists.

Once the worst-neighbors of x̂ are identified, the BNT algorithm finds a direction that moves
away from all of them. This direction is called the descent direction. In our geometric interpreta-
tion, a descent direction ~d∗ is one that maximizes the angle θ in Figure 3.3a by halving the reflex
angle between the vectors connecting x̂ to u1 and u4. The BNT algorithm then takes a small step
along this descent direction to reach a new decision point, say x̂′, which will be at a greater distance
from all of the worst-neighbors of x̂. The algorithm repeats this process by looking for the new
worst-neighbors in the Γ-neighborhood of x̂′. (Bertsimas et al. prove that taking an appropriately-
sized step along the descent direction reduces the worst-case cost at each iteration [52].) The
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algorithm ends (i.e., a robust solution is found) when no descent direction can be found. Figure
3.3b illustrates this situation, as any direction of movement within the Γ-neighborhood will bring
the solution closer to at least one of the worst-neighbors. (Bertsimas et al. prove that this situa-
tion can only happen when we reach a local robust minimum, which will also be a global robust
minimum when the cost function is convex.)

Figure 3.4: Geometric interpretation of the iterations in BNT.

To visually demonstrate this convergence, we again use a geometric interpretation of the algo-
rithm, as depicted in Figure 3.4. In this figure, the decision space consists of two-dimensional real
vectors (x1, x2) ∈ R2 and the f(x1, x2) surface corresponds to the cost of different points in this
decision space. Here, the Γ-neighborhood in each iteration of BNT is shown as a transparent disc
of radius Γ. Geometrically, to move away from the worst-neighbors at each step is equivalent to
sliding down this disc along the steepest direction such that the disc always remains within the cost
surface and parallel to the (x1, x2) plane. The algorithm ends when this disc’s boundary touches
the cost surface and cannot be sliced down any further without breaking through the cost surface—
this is the case with the bottom-most disc in Figure 3.4; when this condition is met, the center of
this disc represents a locally robust solution of the problem (marked as x∗) and its worst-neighbors
lie on the boundary of its disc (marked as ×). The goal of BNT is to quickly find such discs and
converge to the locally robust optimum.

The pseudocode of BNT is presented in Algorithm 2. Here, xk is the current decision at the
k’th iteration. As explained above, each iteration consists of two main steps: finding the worst-
neighbors (neighborhood exploration, Line 5) and moving away from those neighbors if possible
(local robust move, Lines 7–16).

Theoretical Guarantees— When f(x) is continuously differentiable with a bounded set of mini-
mum points, Bertsimas et al. [52] show that their algorithm converges to the local optimum of the
robust optimization problem (3.3), as long as the steps sizes tk (Line 14 in Algorithm 2) are chosen
such that tk > 0, limk→∞ tk = 0, and

∑∞
k=1 tk =∞. For convex cost surfaces, this solution is also

the global optimum. (With non-convex surfaces, BNT needs to be repeated from different starting
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points to find multiple local optima and choose one that is more globally optimal.6)

Inputs: Γ: the radius of the uncertainty region,
f(x): the cost of design x

Output: x∗: a robust design, i.e., x∗ = ArgMin
x

Max
||∆x||2≤Γ

f(x+ ∆x)

1 x1← pick an arbitrary vector // the initial decision
2 k ← 1 // k is the number of iterations so far
3 while true do

// Neighborhood Exploration:
5 U ← Find the set of worst-neighbors of xk within its Γ-neighborhood

// Robust Local Move:
7 ~d∗ ← FindDescentDirection(xk, U )

// See Fig 3.3a for FindDescentDirection’s geometric intuition (formally defined
in [189])

9 if there is no such direction ~d∗ pointing away from all u ∈ U
then

11 x∗ ← xk // found a local robust solution
12 return x∗

else
14 tk ← choose an appropriate step size
15 xk+1 ← xk+tk·~d∗ // move along the descent direction
16 k ← k + 1 // go to next iteration

Algorithm 2: Generic robust optimization via gradient descent.

3.4.2 CliffGuard: Algorithm

In this section, we describe the algorithm of CliffGuard, which builds upon BNT’s principled
framework by tailoring it to the problem of physical database design.

Before presenting this algorithm, we need to clarify a few notional differences. Unlike BNT,
where the cost function f(x) takes a single parameter x, the cost in CliffGuard is denoted as a
two-parameter function f(W,D) where W is a given workload and D is a given physical design.
In other words, each point x in this space is a pair of elements (W,D). However, unlike BNT
where vector x can be updated in its entirety, in CliffGuard (or any database designer) we only
update the design element D; this is because the database designer can propose a new physical

6When f(x) is non-convex, the output of existing designers is also a local optimum. Thus, even in this case, finding
local robust optima is still preferable (to a local nominal optimum).
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design to the user, but cannot impose a new workload on her as a means to improve robustness.
Algorithm 3 presents the pseudocode for CliffGuard. Like Algorithm 2, Algorithm 3 itera-

tively explores a neighborhood to find the worst-neighbors, then moves farther away from these
neighbors in each iteration using an appropriate direction and step size. However, to apply these
ideas in a database context, Algorithm 3 differs from Algorithm 2 in the following important ways.

Initialization (Algorithm 3, Lines 1–2)— CliffGuard starts by invoking the existing designer D
to find a nominal design D for the initial workload W0. (Later, D will be repeatedly replaced
by designs that are more robust.) CliffGuard also creates a finite set of perturbed workloads
P = {W1, · · · ,Wn} by sampling the workload space in the Γ-neighborhood of W0. In other
words, given a distance metric δ, we find n workloads W1, · · · ,Wn such that δ(Wi,W0) ≤ Γ for
i = 1, 2, · · · , n. ( [189] discusses in more details about how to define δ for database workloads,
how to choose n, and how to sample the workload space efficiently.) Next, as in BNT, CliffGuard
starts an iterative search with a neighborhood exploration and a robust local move in each iteration.

Neighborhood Exploration (Algorithm 3, Line 6)— To find the worst-neighbors, in CliffGuard

we need to also take the current design D into account (i.e., the set of worst-case neighbors of W0

will depend on the physical design that we choose). Given that we cannot rely on the differen-
tiability (or even continuity) of worst-case cost function, we use the worst-case costs on sampled
workloads P a proxy; instead of solving

Max
δ(W,W0)≤Γ

f(W,D) (3.4)

we solve
Max
W∈P

f(W,D) (3.5)

Note that (3.5) cannot provide an unbiased approximation for (3.4) simply because P is a finite
sample, and finite samples lead to biased estimates for extreme statistics such as min and max
[233]. Thus, we do not rely on the nominal value of (3.5) to evaluate the quality of a design.
Rather, CliffGuard uses the solutions to (3.5) as a proxy to guide the search in moving away
from highly (though not necessarily the most) expensive neighbors. In the actual implementation,
CliffGuard further mitigate this sampling bias by loosening its selection criterion to include all
neighbors that have a high-enough cost (e.g., top-K or top 20%) instead of only those that have the
maximum cost. To implement this step, we simply enumerate each workload in P and measure its
latency on the given design.

Robust Local Move (Algorithm 3, Lines 8–15)— To find equivalent database notions for finding
and moving along a descent direction (C3 and C4), we use the following idea. The ultimate goal of
finding and moving along a descent direction is to reduce the worst-case cost of the current design.
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In CliffGuard, we can achieve this goal directly by manipulating the existing designer by feeding
it a mixture of the existing workload and its worst-neighbors as a single workload.7 The intuition
is that since nominal designers (by definition) produce designs that minimize the cost of their input
workload, the cost of its previous worst-neighbors will no longer be as high, which is equivalent
to moving its design farther away from those worst-neighbors. The questions then are (i) how do
we mix these workloads, and (ii) what if the designer’s output leads to a higher worst-case cost?

The answer to question (i) is a weighted union, where we take the union of all the queries in
the original workload as well as those in the worst-neighbors, after weighting the latter queries
according to a scaling factor α, their individual frequencies of occurrence in their workload, and
their latencies against the current design. Taking latencies and frequencies into account encourages
the nominal designer to seek designs that reduce the cost of more expensive and/or popular queries.
Scaling factor α, which serves the same purpose as step-size in BNT, allows CliffGuard to control
the distance of movement away from the worst-neighbors.

We also need to address question (ii) because unlike BNT, where the step size tk could be com-
puted to ensure a reduction in the worst cost, here α factor may in fact lead to a worse design (e.g.,
by moving too far from the original workload). To solve this problem, CliffGuard dynamically
adjusts the step-size using a common technique called backtracking line search [57], similar to a
binary-search. Each time the algorithm succeeds in moving away from the worst-neighbors, we
consider a larger step size (by a factor λsuccess >1) to speed up the search towards the robust solu-
tion, and each time we fail, we reduce the step size (by a factor 0< λfailure <1) as we may have
moved past the robust solution (hence observing a higher worst-case cost).

Termination (Algorithm 3, Lines 16–19)— We repeat this process until we find a local robust
optimum (or reach the maximum number of steps, when under a time constraint).

7Remember that existing designers only take a single workload as their input parameter.
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Inputs: Γ: the desired degree of robustness,
δ: a distance metric defined over pairs of workloads,
W0: initial workload,
D: an existing (nominal) designer,
f : the cost function (or its estimate),

Output: D∗: a robust design, i.e., D∗ = ArgMin
D

Max
δ(W−W0)≤Γ

f(W,D)

1 D ← D(W0) // Invoke the existing designer to find a nominal design for W0

2 P ← {Wi | 1 ≤ i ≤ n, δ(Wi,W ) ≤ Γ} // Sample some perturbed workloads in the
Γ-neighbor of W0

3 Pick some α > 0 // some initial size for the descending steps

4 while true do
// Neighborhood Exploration:

6 U ← {W̃1, · · · , W̃m} where W̃i∈P and f (W̃i, D)= Max
W∈P

f (W ,D) // Pick perturbed

workloads with the worst performance on D

// Robust Local Move:
8 Wmoved ←MoveWorkload(W0, {W̃1, · · · , W̃m}, f,D, α) //Build a new workload by

moving closer to W0’s worst-neighbors (see Alg. 4)
9 D′ ← D(Wmoved) // consider the nominal design for Wmoved as an alternative design

10 if Max
W∈P

f(W,D′) < Max
W∈P

f(W,D) // Does D′ improve on the existing design in terms

of the worst-case performance?
then

12 D ← D′ // Take D′ as your new design
13 α← α ∗ λsuccess (for some λsuccess > 1) // increase the step size for the next

move along the descent direction
else

15 α← α ∗ λfailure (for some λfailure < 1) // consider a smaller step next time
16 if your time budget is exhausted or many iterations have gone with no improvements

then
D∗ ← D // the current design is robust

19 return D∗

Algorithm 3: The CliffGuard algorithm.

3.5 Expressing Robustness Guarantees

In this section, we describe a database-specific distance metric δ in CliffGuard so that users can
express their robustness requirements by specifying a Γ-neighborhood (as an uncertainty set, de-
scribed in Section 3.3) around a given workload W0, and demanding that their design must be
robust for any future workload W as long as δ(W0,W ) ≤ Γ. Thus, users can demand arbitrary de-
grees of robustness according to their performance requirements. For mission-critical applications
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more sensitive to sudden performance drops, users can be more conservative (specifying a larger
Γ). At the other extreme, users expecting no change (or less sensitive to it) can fall back to the
nominal case (Γ = 0).

A distance metric δ must satisfy the following criteria to be effectively used in our BNT-based
framework (the intuition behind these requirements can be found in the technical report [189]):

1. Soundness, which requires that the smaller the distance δ(W1,W2), the better the perfor-
mance of W2 on W1’s nominally optimal design. Formally, we call a distance metric sound

if it satisfies:

δ(W1,W2)≤δ(W1,W3)⇒f(W2,D(W1)) ≤ f(W3,D(W1)) (3.6)

2. δ should account for intra-query similarities; that is, if r1
i > r2

i and r1
j < r2

j , the distance
δ(W1,W2) should become smaller based on the similarity of the queries qi and qj , assuming
the same frequencies for the other queries.

3. δ should be symmetric; that is, δ(W1,W2) = δ(W2,W1) for any W1 and W2. (This is needed
for the theoretical guarantees of the BNT framework.)

4. δ must satisfy the triangular property; that is, δ(W1,W2) ≤ δ(W1,W3) + δ(W3,W2) for
any W1,W2,W3. (This is an implicit assumption in almost all gradient-based optimization
techniques, including BNT.)

Before introducing a distance metric fulfilling these criteria, we need to introduce some nota-
tions. Let us represent each query as the union of all the columns that appear in it (e.g., union-
ing all the columns in the select, where, group by, and order by clauses). With this over-
simplification, two queries will be considered identical as long as they reference the same set of
columns, even if their SQL expressions, query plans, or latencies are substantially different. Us-
ing this representation, there will be only 2n − 1 possible queries where n is the total number
of columns in the database (including all the tables). (Here, we ignore queries that do not ref-
erence any columns.) Thus, we can represent a workload W with a (2n − 1)-dimensional vector
VW = 〈r1, · · · , r2n−1〉where ri represents the normalized frequency of queries that are represented
by the i’th subset of the columns for i = 1, · · · , 2n − 1. With this notation, we can now introduce
our Euclidean distance for database workloads as:

δeuclidean(W1,W2) = |VW1 − VW2| × S × |VW1 − VW2|T (3.7)

Here, S is a (2n−1)×(2n−1) similarity matrix, and thus δeuclidean is always a real-valued number
(i.e., 1×1 matrix). Each Si,j entry is defined as the total number of columns that are present only
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in qi or qj (but not in both), divided by 2 · n. In other words, Si,j is the Hamming distance between
the binary representations of i and j, divided by 2 · n. Hamming distances are divided by 2 · n to
ensure a normalized distance, i.e., 0 ≤ δeuclidean(W1,W2) ≤ 1.

One can easily verify that δeuclidean satisfies criteria (b), (c), and (d). In Section 3.6.3, we
empirically show that this distance metric also satisfies criterion (a) quite well. Finally, even though
VW is exponential in the number of columns n, it is merely a conceptual model; since VW is an
extremely sparse matrix, most of the computation in (3.7) can be avoided. In fact, δeuclidean can be
computed in O(T 2 ·n) time and memory complexity, where T is the number of input queries (e.g.,
in a given query log).

Limitations— δeuclidean has a few limitations. First, it does not factor in the clause in which a
column appears. For instance, for fast filtering, it is more important for a materialized view to
cover a column appearing in the where clause than one appearing only in the select clause. This
limitation, however, can be easily resolved by representing each query as a 4-tuple 〈v1, v2, v3, v4〉
where v1 is the set of columns in the select clause and so on. We refer to this distance as δseparate,
as we keep columns appearing in different clauses separate. δseparate differs from δeuclidean only in
that it creates 4-tuple vectors, but it is still computed using Equation (3.7).

The second (and more important) limitation is that δeuclidean may ignore important aspects of
the SQL expression if they do not change the column sets. For example, presence of a join

operator or using a different query plan can heavily impact the execution time, but are not captured
by δeuclidean. In fact, as a stricter version of requirement (3.6), a better distance metric will be one
that for all workloads W1,W2,W3 and arbitrary design D satisfies:

δ(W1,W2) ≤ δ(W1,W3) ⇒ (3.8)

|f(W2, D)− f(W1, D)| ≤ |f(W3, D)− f(W1, D)|

In other words, the distance functions should directly match the performance characteristics of
the workloads (the lower their distance, the more similar their performance).

First, requirement (3.9) is unnecessary for our purposes. CliffGuard only relies on this distance
metric during the neighborhood exploration and feeds actual SQL queries (and not just their col-
umn sets) into the existing designer. Internally, the existing designer compares the actual latency
of different SQL queries, accounting for their different plans, joins, and all other details of every
input query. For example, the designer ignores the less expensive queries to spend its budget on
the more expensive ones.

Second, we must be able to efficiently sample the Γ-neighborhood of a given workload (see
Algorithm 3, Line 2), which we can do when our cost function is δeuclidean. The sampling algorithm
becomes computationally prohibitive when our distance metric involves computing the latency of
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different queries. In Section 3.6, we thoroughly evaluate our CliffGuard algorithm overall, and
our distance function in particular.

Inputs: W0: an initial workload,
{W̃1, · · · , W̃m}: workloads to merge with W0,
f : the cost function (or its estimate),
D: a given design,
α: a scaling factor for the weight (α > 0)

Output: Wmoved: a new (merged) workload which is closer to {W̃1, · · · , W̃N} than W0, i.e.,
Σiδ(W̃i,Wmoved) < Σiδ(W̃i,W0)

Subroutine MoveWorkload (W0, {W̃1, · · · , W̃m}, f,D, α)

2 Wmoved ← {}
3 Q← the set of all queries in W0 and W̃1, · · · , W̃m workloads
4 foreach query q ∈ Q do
5 fq ← f({q}, D) // the cost of query q using design D
6 ωq ← (fq ·

∑m
i=1 weight(q, W̃i))

α + weight(q,W0)
7 Wmoved ← Wmoved ∪ {(q, ωq)}
8 return Wmoved

Algorithm 4: The subroutine for moving a workload.

The third, and final, reason is that the sole goal of our distance metric is to provide users a
means to express and receive their desired degree of robustness. We show that despite its simplistic
nature, δeuclidean is still quite effective in satisfying (3.6) (see Section 3.6.3), and most importantly
in enabling CliffGuard to achieve decisive superiority over existing designers (see Section 3.6.4).

3.6 Empirical Studies

In this section, we study CliffGuard empirically with an extensive set of experiments. The pur-
pose of our experiments in this section is to demonstrate that (i) real world workloads can vary
over time and be subject to a great deal of uncertainty (Section 3.6.2), (ii) despite its simplicity,
our distance metric δeuclidean can reasonably capture the performance implications of a changing
workload (Section 3.6.3), and most importantly (iii) our robust design formulation and algorithm
improve the performance of the state-of-the-art industrial designers by up to an order of magnitude,
without having to modify the internal implementations of these commercial tools (Section 3.6.4).
We also study different degrees of robustness (Section 3.6.5).
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3.6.1 Experimental Setup

We have implemented CliffGuard in Java. We tested our algorithm against Vertica’s database
designer (called DBD [234]) and DBMS-X’s designer as two of the most heavily-used state-of-
the-art commercial designers, as well as two other baseline algorithms (introduced later in this
section). For Vertica experiments, we used its community edition and invoked its DBD and query
optimizer via a JDBC driver. Similarly, we used DBMS-X’s latest API. We ran each experiment on
two machines: a server and a client. The server ran a copy of the database and was used for testing
different designs. The client was used for invoking the designer and sending queries to the server.
We ran the Vertica experiments on two Dell machines running Red Hat Enterprise Linux 6.5, each
with two quad-core Intel Xeon 2.10GHz processors. One of the machines had 128GB memory and
8 × 4TB 7.2K RPM disks (used as server) and the other had 64GB memory and 4 × 4TB 7.2K
RPM disks. For DBMS-X experiments, we used two Azure Standard Tier A3 instances, each with
a quad-core AMD Opteron 4171 HE 2.10GHz processor, 7GB memory, and 126GB virtual disks.
In this section, when not specified, we refer to our Vertica experiments.

Workloads8— We conducted our experiments on a real-world (R1) workload and two synthetic
ones (S1 and S2). R1 belongs to one of the largest customers of the Vertica database, composed
of 310 tables and 430+K time-stamped queries issued between March 2011 and April 2012 out of
which 15.5K queries conform to their latest schema (i.e., can be parsed). We did not have access
to their original dataset but we did have access to their data distribution, which we used to generate
a 151GB dataset for our Vertica experiments. Since we did not have access to any real workloads
from DBMS-X’s customers, we used the same query log but on a smaller dataset (20GB) given the
smaller memory capacity of our Azure instances (compared to our Dell servers). We also created
two synthetic workloads, called S1 and S2, as follows. We used the same schema and dataset as
R1, but chose different subsets and relative ordering of R1 queries to artificially cause different
degrees of workload change. Table 3.1 reports basic statistics on the amount workload changes
(in terms of δeuclidean) between consecutive windows of queries where each window was 28 days
(different window sizes are studied in Section 3.6.2). S1 queries were chosen to mimic a workload
with minimal change over time (between 0.1m and m, where m is the minimum change observed
in R1). S2 queries were chosen to exhibit the same range of δeuclidean as R1 but more uniformly.
More detailed analysis of these workloads will be presented in the subsequent sections.

Algorithms Compared— We divided the queries according to their timestamps into 4-week win-
dows, W0,W1, · · · . We re-designed the database at the end of each month to simulate a tuning
frequency of a month (a common practice, based on our oral conversations). In other words, we

8Common benchmarks (e.g., TPC-H) are not applicable here as they only contain a few queries, and do not change
over time.
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Workload Min
δ(Wi,Wi+1)

Max
δ(Wi,Wi+1)

Avg
δ(Wi,Wi+1)

Std
δ(Wi,Wi+1)

R1 m=0.00016 M=0.00311 0.00120 0.00122
S1 0.1m m 0.00006 0.00003
S2 m M 0.00178 0.00063

Table 3.1: Summary of our real-world and synthetic workloads.

fed Wi queries into each of the following designers and used the produced design to process Wi+1

(except for FutureKnowingDesigner; see below).

1. NoDesign: A dummy designer that returns an empty design (i.e., no projections). Using NoDesign

all queries simply scan the default super-projections (which contain all the columns), providing an
upper limit on each query’s latency.

2. ExistingDesigner: The nominal designer shipped with commercial databases. For instance,
Vertica’s DBD [234] recommends a set of projections while DBMS-X’s designer finds various
types of indices and materialized views. We used these state-of-the-art designers as our main
baselines.

3. FutureKnowingDesigner: The same designer as ExistingDesigner, except that instead of feeding
queries from Wi and testing on Wi+1, we both feed and test it on Wi+1. This designer signifies
the best performance achievable where the designer knows exactly which queries to expect in the
future and optimize for.

4. MajorityVoteDesigner: A designer that uses sensitivity analysis to identify elements of the
nominal design that are brittle against changes of workload. This designer uses the same tech-
nique as CliffGuard to explore the local neighborhood of the current Wi, and generate a set of
perturbed workloads W 1

i , · · · ,W n
i . Then, it invokes the ExistingDesigner to suggest an opti-

mal design for each W j
i . Finally, for each structure (e.g., index, materialized view, projection) s,

MajorityVoteDesigner counts the number of times that s has appeared in the nominal design of
the neighbors, and selects those structures that have appeared in different designs most frequently.
The idea behind this heuristic is that structures that appear in the optimal design of fewer neighbors
(have fewer votes) are less likely to remain beneficial when the future workload changes.

5. OptimalLocalSearchDesigner: Similar to MajorityVoteDesigner, this designer starts by search-
ing the local neighborhood of the given workload and generating perturbed workloads. However,
instead of selecting structures that have been voted for by the most number of neighbors, this
designer takes the union of the queries in the neighboring workloads as the expectation (i.e., rep-
resentative) of the future workload, say W̄ . This algorithm then solves an Integer Linear Program
to find an optimal set of structures that fit in the budget and minimize the cost of W̄ .9

9A greedy version of this algorithm and a detailed description of the other baselines can be found in our technical

64



0%#

10%#

20%#

30%#

40%#

50%#

0# 5# 10# 15# 20#Fr
ac

tio
n 

of
 Q

ue
rie

s 
be

lo
ng

in
g 

to
 

Sh
ar

ed
 T

em
pl

at
es

 b
et

w
ee

n 
Tw

o 
W

in
do

w
s 

(%
) 

Lag (# of Windows) Between Two Windows 

Win#Size=7#days#
Win#Size=14#days#
Win#Size=21#days#
Win#Size=28#days#

Figure 3.5: Many workloads drift over time (15.5K queries, 6 months).

7. CliffGuard: Our robust database designer from Section 3.4.

Note that DBD and DBMS-X’s designer (ExistingDesigner) are our goal standards as the
state-of-the-art designers currently used in the industry. However, we also aim to answer the
following question. How much of CliffGuard’s overall improvement over nominal designers is
due to its exploration of the initial workload’s local neighborhood, and how much is due to its
carefully selected descent direction and step sizes in moving away from the worst neighbors?
Since MajorityVoteDesigner and OptimalLocalSearchDesigner use the same neighborhood sam-
pling strategy as CliffGuard but employ greedy and local search heuristics, we will be able to
break down the contribution of CliffGuard’s various components to its overall performance.

Since Vertica automatically decides on the storage budget (50GB in our case), we used the same
budget for the other algorithms too. For DBMS-X experiments, we used a maximum budget of
10GB (since the dataset was smaller). Also, unless otherwise specified, we used n=20 samples in
all algorithms involving sampling, and 5 iterations, λsuccess = 5, and λsuccess = 0.5 in CliffGuard.

3.6.2 Workloads Change Over Time

First, we studied if and how much our real workload has changed over time. While OLTP and
reporting queries tend to be more repetitive (often instantiated from a few templates with different
parameters), analytical and exploratory workloads tend to be less predictable (e.g., Hive queries
at Facebook are reported to access over 200–450 different subsets of columns [31]). Likewise, in

report [189].
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Figure 3.6: Performance decay of a window W on a design made for another window W0 is highly corre-
lated with their distance.

our analytical workload R1, we observed that queries issued by users have constantly drifted over
time, perhaps due to the changing nature of their company’s business needs.

Figure 3.5 shows the percentage of queries that belonged to templates that were shared among
each pair of windows as the time lag grew between the two windows. Here, we have defined
templates by stripping away the query details except for the sets of columns used in the select,
where, group by, and order by clauses. This is an overly optimistic analysis assuming that
queries with the same column sets in their respective clauses will exhibit a similar performance.
However, even with this optimistic assumption, we observed that for a window size of one week,
on average only 51% of the queries had a similar counterpart between consecutive weeks. This
percentage was only 35% when our window was 4 weeks. Regardless of the window size, this
commonality drops quickly as the time lag increases, e.g., after 2.5 months less than 10% of the
queries had similar templates appearing in the past. The unpredictability of analytical workloads
underlines the important role of a robust designer. We show in Section 3.6.4 that failing to take into
account this potential change (i.e., uncertainty) in our target workload has a severe impact on the
performance of existing physical designers — one that we aim to overcome via our robust designs.

3.6.3 Our Distance Metric Is Sound

In Section 3.5, we introduced our distance metric δeuclidean to concisely quantify the dissimilarity
of two SQL workloads. While we do not claim that δeuclidean is an ideal one (see Section 3.5), here
we show that it is sound. That is, in general:

δ(W0,W ) ≤ δ(W0,W
′)⇒ f(W,D(W0)) ≤ f(W ′,D(W0))

which means that a design made for W0 is more suitable for W than it is for W ′, i.e., W will
experience a lower latency than W ′. Figure 3.6 reports an experiment where we chose 10 different
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starting windows as our W0 and created a number of windows with different distances from W0.
The curve (error bar) shows the average (range) of the latencies of these different windows for each
distance. This plot indicates a strong correlation and monotonic relationship between performance
decay and δeuclidean. Later, in Section 3.6.4, we show that even with this simplistic distance metric,
our CliffGuard algorithm can consistently improve on Vertica’s latest designer by severalfold.
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(a) Real-world workload R1 on Vertica.
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(b) Synthetic static workload S1 on Vertica.
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(c) Synthetic static workload S2 on Vertica.

Figure 3.7: Average and worst-case performances of designers for Vertica, averaged over all win-
dows, for workloads R1, S1, and S2.

3.6.4 Quality of Robust vs. Nominal Designs

In this section, we turn to the most important questions of this chapter: is our robust designer
superior to state-of-the-art designers? And, if so, by what measure? We compared these designers
using all 3 workloads. In R1, out of the 15.5K queries, only 515 could benefit from a physical
design, i.e., the remaining queries were either trivial (e.g., select version()) or returned an
entire table (e.g., ‘select * from T’ queries with no filtering used for backup purposes) in which
case they always took the same time as they only used the super-projections in Vertica and table-
scans in DBMS-X. Thus, we only considered queries for which there existed an ideal design (no
matter how expensive) that could improve on their bare table-scan latency by at least a factor of
3×.
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Figure 3.8: Different degrees of robustness for Workload R1.
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Figure 3.9: Different degrees of robustness for Workload S2.

Figure 3.7 summarizes the results of our performance comparison on Vertica, showing the aver-
age and maximum latencies (both averaged over all windows) for all three workloads. On average,
MajorityVoteDesigner improved on the existing designer by 13%, while OptimalLocalSearch-
Designer’s performance was slightly worse than Vertica’s DBD. However, CliffGuard was su-
perior to the existing designer by an astonishing margin: on average, it cut down the maximum
latency of each window by 39.7× and 13.7× for R1 and S2, respectively. Interestingly, for
these workloads, even CliffGuard’s average-case performance was 14.3× and 5.3× faster than
ExistingDesigner. The last result is surprising because our CliffGuard is designed to protect
against worst-case scenarios and ensure a predictable performance. However, improvement even
on the average case indicates that the design space of a database is highly non-convex — and as
such can easily delude a designer into a local optimum. Thus, by avoiding the proximity of bad
neighbors, CliffGuard seems to find designs that are also more globally optimal. In fact, for S2,
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Figure 3.10: Performance of different designers for DBMS-X on workload R1.

Figure 3.7c shows that CliffGuard is only 30% worse than a hypothetical, ideal world where fu-
ture queries are precisely known in advance (i.e., the FutureKnowingDesigner). For S1, however,
CliffGuard’s improvement over ExistingDesigner is more modest: 1.5× improvement for worst-
case latency and 1.2× for average latency. This is completely expected since S1 is designed to
exhibit no or little change between different windows (refer to Table 3.1). This is the ideal case for
a nominal designer since the amount of uncertainty across workloads is so negligible that even our
hypothetical FutureKnowingDesigner cannot improve much on the nominal designer. Thus, aver-
aging over all three workloads, compared to ExistingDesigner, CliffGuard improves the average
and worst-case latencies by 6.9× and 18.3×, respectively.

Figure 3.10 reports a similar experiment for workload R1 but for DBMS-X. Even though
DBMS-X’s designer has been fine-tuned and optimized over the years, CliffGuard still improves
its worst-case and average-case performances by 2.5–5.2× and 2–3.2×, respectively. This is
quite encouraging given that CliffGuard is still in its infancy stage of development and treats
the database as a black-box. While still significant, the improvements here are smaller than those
observed with Vertica. This is due to several heuristics used in DBMS-X’s designer (such as omit-
ting workload details) that prevent it from overfitting its input workload. However, this also shows
that dealing with such uncertainties in a principled framework can be much more effective.

These experiments confirm our hypothesis that failing to account for workload uncertainty can
have significant consequences. For example, for R1 on Vertica, ExistingDesigner is on average
only 25% better than NoDesign (with no advantage for the worst-case). Note that here the database
was re-designed every month, which means even this slight advantage of ExistingDesigner over
NoDesign would quickly fade away if the database were to be re-designed less frequently (as the
distance between windows often increases with time; see Figure 3.5). These experiments show the
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ample importance of re-thinking and re-architecting the existing designers currently shipped and
used in our database systems.

3.6.5 Effect of Robustness Knob on Performance

To study the effect of different levels of robustness, we varied the Γ parameter in our algorithm
and measured the average and worst-case performances in each case. The results of this exper-
iment for workloads R1 and S2 are shown in Figures 3.8 and 3.9, respectively. (As reported
in Section 3.6.4, workload S1 contains minimal uncertainty and thus is ruled out from this ex-
periment, i.e., the performance difference between ExistingDesigner and CliffGuard remains
small for S1). Here, experiments on both workloads confirm that requesting a large level of
robustness will force CliffGuard to be overly conservative, eliminating its margin of improve-
ment over ExistingDesigner. Note that in either case CliffGuard still performs no worse than
ExistingDesigner, which is due to two reasons. First, ExistingDesigner is only marginally better
than NoDesign (refer to Section 3.6.4) and as Γ increases, its relevance for the actual workload
(which has a much lower δeuclidean) degrades. As a result, both designers approach NoDesign’s
performance, which serves an upper bound on latency (i.e., unlike theory, latencies are always
bounded in practice, due to the finite cost of the worst query plan). The second reason is that,
during each iteration of CliffGuard (unlike BNT), our new workload always contains the origi-
nal workload which ensures that even when Γ is large, the designer will not completely ignore
the original workload (see Algorithm 4). Also, as expected, as Γ approaches zero, CliffGuard’s
performance again approaches that of a nominal designer.

3.7 Related Work

There has been much research on physical database design problems, such as the automatic se-
lection of materialized views [140, 174, 217, 250], indices [74, 179, 197, 231], or both [36, 91, 159,
259]. Also, most modern databases come with designer tools, e.g., Tuning Wizard in Microsoft
SQL Server [36], IBM DB2’s Design Advisor [259], Teradata’s Index Wizard [59], and Oracle’s
SQL Tuning Adviser [91]. Other types of design problems include project selection in columnar
databases [100,163,234], stratified sample selection in approximate databases [26,31,42,66], and
optimizing different replicas for different workloads in a replicated databases [229]. All these
designers are nominal and assume that their target workload is precisely known. Since future
queries are often not known in advance, these tools optimize for past queries as approximations
of future ones. By failing to take into account the fact that a portion of those queries will be dif-
ferent in the future, they produce designs that are sub-optimal and brittle in practice. To mitigate
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some of these problems, a few heuristics [76] have been proposed to compress and summarize
the workload [69, 158] or modify the query optimizer to produce richer statistics [113]. However,
these approaches are not principled and thus, do not necessarily guarantee robustness. In con-
tract, CliffGuard takes the possible changes of workload into account in a principled manner, and
directly maximizes the robustness of the physical design.

To avoid these limitations, adaptive indexing schemes [119, 120, 128, 143, 215]) take the other
extreme by avoiding the offline physical design, and instead, creating and adjusting indices in-
crementally, on demand. Despite their many merits, these schemes do not have a mechanism to
incorporate prior knowledge under a bounded amount of uncertainty. Also, one still needs to de-
cide which subsets of columns to build an adaptive index on. For these reasons, most commercial
databases still rely on their offline designers. In contrast, CliffGuard uses RO theory to directly
minimize the effect of uncertainty on optimality, and guarantee robustness.

The effect of uncertainty (caused by cost and cardinality estimates) has also been studied in the
context of query optimization [41, 70, 82, 103, 181, 206] and choosing query plans with a bounded
worst-case [39]. None of these studies have addressed uncertainties caused by workload changes,
or their impact on physical designs. Also, while these approaches produce plans that are more
predictable, they are not principled in that they do not directly maximize robustness, i.e., they do
not guarantee robustness even in the context of query optimization. Finally, most of these heuristics
are specific to a particular problem and do not generalize to others.

Theory of robust optimization has taken many strides in recent years [51, 52, 53, 78, 102, 166,
255] and has been applied to many other disciplines, e.g., supply chain management [51], circuit
[199] and antenna [175] design, power control [136], control theory [50], thin-film manufacturing
[55], and microchip architecture [195].

3.8 Summary

In this chapter, we empirically validated the effectiveness of a robust designer, CliffGuard. Ro-
bust designs enable databases to be more resilient against changes of the workload and their noisy
environments. Thus, they do not need to be re-tuned or re-designed at the same frequency as other
databases that use nominal design. This can dramatically reduce the operational cost of database
administration, which both frees up critical personnel to work on novel computational tasks, and
saves the resources of vendors and organizations alike. In addition, since robust designs ensure
that databases deliver a highly consistent performance, they also enable new mission-critical appli-
cations that require a predictable and reliable service, across commerce, science, and government.
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CHAPTER 4

Joins on Samples: A Hybrid Sampling Scheme with
Optimal Sampling Strategy

4.1 Motivation

Approximate query processing (AQP) has regained significant attention in recent years due to ma-
jor trends in the industry. Larger datasets and the rise of shared and hosted infrastructure have made
it more expensive to achieve interactive-speed analytics. AQP presents itself as a viable alterna-
tive in scenarios where perfect decisions can be made with imperfect answers [31]. AQP is most
appealing when negligible loss of accuracy can be traded for a significant gain in speedup or com-
putational resources. Adhoc analytics [223], visualization [90, 156, 204, 219, 258], IoT [10], A/B
testing [30], email marketing and customer segmentation [118], and real-time threat detection [9]
are examples of such usecases.

Sampling and Joins— Sampling is one of the most widely-used techniques for general-purpose
AQP [87]. The high level idea is to execute the query on a small sample of the original table(s)
in order to provide a fast, but approximate, answer. While effective for simple aggregates, using
samples for join queries has long remained an open problem [28]. There are two main approaches
to AQP: offline or online. Offline approaches [27,29, 32,67, 110,198] build samples (or other syn-
opses) prior to query arrival. At run time, they simply choose appropriate samples that can yield
the best accuracy/performance for each incoming query. Online approaches, on the other hand,
perform much of their sampling at run time based on the query at hand [43,85,133,152,196,243].
Naturally, offline sampling leads to significantly higher speedup, while online techniques can sup-
port a much wider class of queries [152]. The same taxonomy applies to join approximation:
offline techniques perform joins on previously-prepared samples [29, 71, 79, 198, 256], while on-
line approaches seek to produce a sample of the output of the join at run time [125, 146, 169, 176].
As mentioned, the latter often means more modest speedups (e.g., 2× [152]) which may not be
sufficient to justify approximation, or additional requirements (e.g., an index for each join col-
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umn [169]) which may not be acceptable to many applications. Thus, our focus in this chapter—
and what is considered an open-problem—is the offline approach: joins on samples, not sampling
the join’s output.

Joins on Samples— The simplest strategy is as follows. Given two large tables T1 and T2, create a
uniform random sample of each, say S1 and S2 respectively, and then use S1 ./ S2 to approximate
aggregate statistics of T1 ./ T2. This will lead to significant speedup if samples are much smaller
than original tables, i.e., |Ti| >> |Si|.

One of the earliest results in this area shows that this simple strategy is futile for two rea-
sons [115]. First, joining two uniform samples leads to quadratically fewer output tuples, i.e.,
joining two uniform samples that are each p fraction (0 ≤ p < 1) of the original tables will only
produce p2 of the output tuples of the original join (see Figure 4.1). Second, joining uniform sam-
ples of two tables does not yield an independent sample of the join of those tables (see Section 4.2.1
for details).1 The dependence of the output tuples can drastically lower the approximation accu-
racy [71, 115].

A B
a 1
b 2

T1 C D
a 3
a 4
b 5
b 6

T2

A B C D
a 1 a 3
a 1 a 4
b 2 b 5
b 2 b 6

T1 ⨝ T2

A B C D
a 1 a 3
b 2 b 5

S(T1 ⨝ T2)A B
a 1

S1
C D
a 3
b 5

S2

A B C D
a 1 a 3

S1 ⨝ S2

50% Uniform 
Sample

50% Uniform 
Sample

⨝
A=C

50% Uniform 
Sample

Figure 4.1: A toy example of joining two uniform samples (left) versus a uniform sample of the
join (right).

1Prior work has stated this, as joining uniform samples is not a uniform sample of the join [29]. We avoid this
terminology because uniform means equal probability of inclusion, and in this case each tuple does appear in the join
of the uniform samples with equal probability, but not independently. In other words, joining two i.i.d. samples is an
identical, but not independent, sample of the join tuples.
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Prior Work— Universe sampling [127, 152, 198] addresses the first drawback of uniform sam-
pling. Although universe sampling avoids quadratic reduction of output, its creates even more
correlation in its output, leading to much lower accuracy (see Section 4.3.1).

Atserias et al. show that computing exact joins with a small memory or time budget is hard [40],
by providing a worst case lower bound for any query involving equi-joins on multiple relations. For
instance, the maximum possible join size for any cyclic join on three n-tuple relations is Θ(n1.5).
Thus, a natural question is whether approximating joins is also hard with small memory or time.

Our Goal— In this chapter, we specifically focus on understanding the limitation of using offline
samples in approximating join queries. Given a sampling budget, how well can we approximate
the join of two tables using their offline samples? To answer this question, we must first define
what constitutes a “good” approximation of a join. We consider two metrics: (1) output cardinality
and (2) aggregation accuracy. The former is the number of tuples of the original join that also
appear in the join of the samples, whereas the latter is the error of the aggregates estimated from
the sample-based join with respect to their true values, if computed on the original join. Because
in this chapter we only consider unbiased estimators, we measure approximation error in terms of
the variance of our estimators.

For the first metric, we provide a simple proof showing that universe sampling is optimal
from [137], i.e. no sampling scheme with the same sampling rate can outperform universe sam-
pling in terms of the (expected) output cardinality. However, as we describe in Section 4.3.1,
retaining a large number of join tuples does not imply accurate aggregates. It is therefore natural
to also ask about the lowest variance that can be achieved given a sampling rate. We summarize an
information-theoretical lower bound to this question, derived in [137]. We also introduce a hybrid
sampling scheme that matches this lower bound within a constant factor. This scheme involves
a centralized computation, which can become prohibitive for large tables due to large amounts of
statistics that need to be shuffled across the network. Thus, a decentralized variant is also proposed.
This only shuffles a minimal amount of information across the nodes—such as the table size and
maximum frequency—but still achieves the same worst case guarantees. Finally, we generalize
our sampling scheme to accommodate a priori information about filters (i.e., WHERE clause).

In this chapter, we make the following contributions:

1. We discuss two metrics—output size and estimator’s variance —for measuring the quality of
join approximation, and show that universe sampling is optimal for output size and there is an
information-theoretical lower bound for variance (Section 4.3).

2. We summarize a hybrid sampling scheme [137], called Stratified-Universe-Bernoulli Sampling
(SUBS), which allows for different combinations of stratified, universe, and Bernoulli sampling.
We describe optimal sampling parameters within this scheme, which achieve the theoretical
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lower bound of variance within a constant factor (Section 4.4–4.5.3). We also describe its exten-
sion to accommodate additional information regarding the WHERE clause (Section 4.6).

3. Through extensive experiments, we empirically show that SUBS with the optimal sampling pa-
rameters achieve lower error than existing sampling schemes in both centralized and decentral-
ized scenarios (Section 4.7).

4.2 Background

In this section, we provide the necessary background on sampling-based join approximation. We
describe the problem setting and assumptions in [137].

4.2.1 Sampling in Databases

The following are the three main popular sampling strategies (operators) used in AQP engines and
database systems.

1. Uniform/Bernoulli Sampling. Any strategy that samples all tuples with the same probability
is considered a uniform (random) sample. Since enforcing fixed-size sampling without replace-
ment is expensive in distributed systems, Bernoulli sampling is considered a more efficient strat-
egy [152]. In Bernoulli sampling, each tuple is included in the sample independently, with a fixed
sampling probability p. In this chapter, for simplicity, we use “uniform” and “Bernoulli” inter-
changeably. As mentioned in Section 4.1, joining two uniform samples leads to quadratically
fewer output tuples. Further, it does not guarantee an i.i.d. sample of the original join [29]: the
output is a uniform sample of the join but not an independent one. Consider an arbitrary tuple of
the join, say (t1, t2) where t1 is from the first table and t2 is from the second one. The probability
of this tuple appearing in the join of the samples is always the same value, i.e., p2. The output
is therefore a uniform sample. However, the tuples are not independent: consider another tuple
of the join, say (t1, t

′
2) where t′2 is another tuple from the second table joining with t1. If (t1, t2)

appears in the output, the probability of (t1, t
′
2) also appearing becomes p instead of p2, which

would be the probability if they were independent.

2. Universe Sampling. Given a column2 J , a (perfect) hash function h : J 7→ [0, 1], and a sampling
rate p, this strategy includes a tuple t in the table if h(t.J) ≤ p. This strategy is often used for
equi-joins, in which case the same p value and hash function h are applied to the join columns in
both tables. This ensures that when a tuple t1 is sampled from one table, any matching tuple t2
from the other table is also sampled, simply because t1.J = t2.J ⇔ h(t1.J) = h(t2.J). This is

2J can also be a set of multiple columns.
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why joining two universe samples with a sampling rate of p produces p fraction of the original
join output in expectation. The output is a uniform sample of the original join, as each join
tuple appears with the same probability p. However, there is more dependence among the output
tuples. Consider two join tuples (t1, t2) and (t′1, t

′
2) where t1, t′1, t2, t

′
2 all share the same join key.

Then, if (t1, t2) appears, the probability of (t′1, t
′
2) also appearing will be 1. Likewise, if (t1, t2)

does not appear, the probability of (t′1, t
′
2) appearing will be 0. Higher dependence means lower

accuracy (see Section 4.3.1).

3. Stratified Sampling. There are different variants of stratified sampling. The key idea is to ensure
sample representation for each distinct value of a set of columns C, called stratified columns.
Given the stratified columns C and a target frequency kkey, one simple strategy is to choose t
tuples uniformly at random from each group of tuples with the same value of C [31]. When a
group has fewer than kkey tuples, all of them are retained.

4.2.2 Quality Metrics

Different metrics can be used to assess the quality of a join approximation. In this chapter, we
focus on the following two, which are used by most AQP systems.

Output Size/Cardinality— This metric is the number of tuples of the original join that also appear
in the join of the samples. This metric is mostly relevant for exploratory usecases, where users
visualize or examine a subset of the output. In other cases, where an aggregate is computed from
the join output, retaining a large number of output tuples does not guarantee accurate answers (we
show this in Section 4.3.1).

Variance— In scenarios where an aggregate function needs to be calculated from the join output,
the error of the aggregate approximation is more relevant than the number of intermediate tuples
generated. For most non-extreme statistics, there are readily available unbiased estimators, e.g.,
Horvitz-Thompson estimator [135]. Thus, a popular indicator of accuracy is the variance of the
estimator [31], which determines the size of the confidence interval given a sample size.

4.2.3 Problem Statement

In this section, we formally state the problem of sample-based join approximation. The notations
used throughout the chapter are listed in Table 4.1.

Query Estimator— Let S1 and S2 be two samples generated offline from tables T1 and T2, re-
spectively, and qagg be a query that computes an aggregate function agg on the join of T1 and T2. A
query estimator Ĵagg(S1, S2) is a function that estimates the value of agg using two samples rather
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Notation Definition
T1, T2 Two tables for the join
Si A sample generated from table Ti
J Column(s) used for the join between T1 and T2

W Column being aggregated (e.g., SUM, AVG)
C Column(s) used for filters (i.e., WHERE clause)
U Set of all possible values of J
a, b Frequency vectors for T1 and T2 w.r.t.

its join column resp.
av, bv Number of tuples with join value v in

T1 and T2, resp.
Ĵagg Estimator for a join query with

aggregate function agg
ε Sampling budget w.r.t. the original table size

n1, n2 Number of tuples in T1 and T2, resp.
h A (perfect) hash function

ktuple minimum number of tuples to be kept per group
in stratified sampling

kkey minimum number of join keys per group to apply
universe sampling

p Sampling rate of universe sampling
q Sampling rate of uniform sampling

Table 4.1: Notations.

than the original tables.

Join Sampling Problem— Given a query estimator Ĵagg and a sampling budget ε ∈ (0, 1], our
goal is to create an optimal pair of samples S1 and S2—from tables T1 and T2, respectively— that
are optimal in terms of a given success metric, while respecting a given storage budget epsilon on
average. Specifically, we seek S1 and S2 that minimize Ĵagg’s variance or maximize its output size
such that E[|S1|+ |S2|] ≤ ε× (|T1|+ |T2|).

Note that we define the sampling budget in terms of an expected size (rather than a strict one),
since most sampling schemes are probabilistic in nature and may slightly over- or under-use a
given budget.

To formally study this problem, we first need to define a class of reasonable sampling strategies.
In Section 4.4, we define a hybrid scheme that can capture different combinations of stratified,
universe, and uniform sampling.

4.2.4 Scope and Limitations

To simplify our analysis, we limit our scope in this chapter.
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Flat Equi-joins— We focus on equi (inner) joins as the most common form of joins in practice.
We also support both WHERE and GROUPBY clauses. Because our focus is on the join itself, we
ignore nested queries and only consider flat (or flattened) queries. We primarily focus on two-way
joins. However, our results extend to multi-way joins with the same join column(s).

Aggregate Functions— Most AQP systems do not support extreme statistics, such as Min or
Max [190]. Likewise, we only consider non-extreme aggregates, and primarily focus on the three
basic functions, COUNT, SUM, and AVG. However, we expect our techniques to easily extend to
other mean-like statistics as well, such as VAR, STDEV, and PERCENTILE.

4.3 Hardness

In this section, we explain why providing a large output size is insufficient for approximating joins,
and show the hardness of approximating common aggregates based on the theory of communica-
tion complexity from [137].

4.3.1 Output Size

Uniform sampling leads to small output size. If we sample at a rate q from both table T1 and table
T2, the join of samples contains only q2 fraction of T1 ./ T2 in expectation. Moreover, the join of
two independent samples of the original tables is in general not an independent sample of T1 ./ T2,
which hurts the sample quality. In contrast, universe sampling [127,152] with sample rate p can in
expectation sample a p fraction of T1 ./ T2. We prove that this is optimal (all omitted proofs are
deferred to [137]).

Theorem 1. Any sampling scheme with sample rate α can sample, at most, α fraction of T1 ./ T2

in expectation in the worst case input.

However, a large number of tuples retained in the join does not imply that the original join
query can be accurately approximated. As pointed out in [79], universe sampling shows poor
performance in approximating queries when the frequencies of keys are concentrated on a few
elements. Consider the following extreme example with tables T1 and T2, each comprised of n
tuples with a single value 1 in their join key. In this example, universe sampling with the sampling
rate p produces an estimator of variance n4/p, while uniform sampling with rate q has a variance
of n2/q2, which is much lower when p = q and n is large. Thus, a larger output size does not
necessarily lead to a better approximation of the query.
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4.3.2 Approximating Aggregate Queries

In this section, we focus on the core question: why is approximating common aggregates (e.g.,
COUNT, SUM and AVG) hard when using a small sample (or more generally, a small summary)?
We address this question using the theory of communication complexity. Specifically, to show that
computing COUNT on a join is hard, we reduce it to set intersection, a canonically hard problem
in communication complexity. Assume that both Alice and Bob each hold a set of size k, say A
and B, respectively. They aim to estimate the size of t = |A ∩ B|. Pagh et. al [194] show that if
Alice only sends a small summary to Bob, any unbiased estimator that Bob uses will have a large
variance.

Theorem 2 (See [194]). Any one-way communication protocol that estimates t within relative

error δ with probability at least 2/3 must send at least Ω(k/(tδ2))n bits.

Corollary 3. Any estimator to |A ∩ B| produced by Bob that is based on an s-bits summary by

Alice must have a variance of at least Ω(kt/s).

Any sample of size s can be encoded using O(log
(
k
s

)
) bits, implying that any estimator to

COUNT that is based on a sample of size s from one of the tables must have a variance of at least
Ω(kt/s).

Estimating SUM queries is at least as hard as estimating COUNT queries, since any COUNT can
be reduced to a SUM by setting all entries in the SUM column to 1.

From the hard instance of set intersection, we can also derive a hard instance for AVG queries.
Based on Theorem 2, any summary of T1 that can distinguish between intersection size t(1 + δ)

and t(1− δ) must be at least of size Ω(k/(tδ2)) bits. Now we reduce this problem to estimating an
AVG query.

Here, the two tables consist of k +
√
t tuples each. The first k tuples of T1 and T2 are from the

hard instance of set intersection, and the values of their AVG column are set to 2r. The join column
of the last

√
t tuples is set to some common key v′ that is in the first k tuples, and their AVG column

is set to 0. Therefore, the intersection size from the first k tuples is at least t(1 + δ) (or at most
(t(1− δ))) if and only if the result of the AVG query is at least 2rt(1+δ)

t(2+δ)
= (1 + O(δ))r (or at most

2rt(1+δ)
t(2+δ)

= (1−O(δ)r)). By re-scaling δ by a constant factor, we can get the following theorem:

Theorem 4. Any summary of T1 that can estimate an AVG query with precision δ with probability

at least 2/3 must have a size of at least Ω(n/(tδ2)).
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4.4 Generic Sampling Scheme

To formally argue about the optimality of a sampling strategy, a class of sampling schemes must
be defined first. As discussed in Section 4.2.1, there are three well-known sampling operators:
stratified, universe, and Bernoulli (uniform). However, these atomic operators can themselves be
combined. For example, one can apply universe sampling of rate 0.1 and then Bernoulli sampling
of rate 0.2 for an overall effective sampling rate of 0.02.3 To account for such hybrid schemes,
[137] define a generic scheme that combines universe and Bernoulli sampling, called UBS. A
more generic scheme is also defined that combines all three of stratified, universe and Bernoulli
sampling, called SUBS. It is easy to show that the basic sampling operators are a special case of
SUBS. First, we define the effective sample rate.

Definition 5 (Effective sampling rate). We define the effective sampling rate of a sampling scheme

as the expected ratio of the size of the resulting sample to that of the original table.

Definition 6 (Universe-Bernoulli Sampling (UBS) Scheme). Given a table T and a column (or

set of columns) J in T , a UBS scheme is defined by a pair (p, q), where 0 < p ≤ 1 is a universe

sampling rate and 0 < q ≤ 1 is a Bernoulli (or uniform) sampling rate. Let h : U 7→ [0, 1]

be a perfect hash function. Then, a sample of T produced by this scheme, S = UBSp,q(T, J), is

produced as follows:

function UBSp,q(T, J)
Initialize S ← ∅ for all tuples t in T do

if h(t.J) < p then
Include t in S independently with probability q

return S

It is easy to see that the effective sampling rate of a UBS scheme (p, q) is p · q. Thus, the
effective sampling rate of is independent of the actual distribution of the values in the table (and
column(s) J).

The goal of this sampling paradigm is to optimize the trade-off between universe sampling and
Bernoulli sampling in different instances. At one extreme, when each join value appears exactly
once in both table, universe sampling leads to lower variance than Bernoulli sampling. This is
because independent Bernoulli sampling has trouble matching tuples with the same join value,
while universe sampling guarantees that when a tuple is sampled, all matching tuples in other table
are also sampled. At the other extreme, if all tuples have the same join value in both tables (i.e.,

3Note that applying Bernoulli sampling before universe sampling defeats the purpose of the latter. This is because
universe sampling aims to keep as many tuples with the same join key as possible, while with Bernoulli sampling will
eliminate the majority of such tuples.
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the join becomes a Cartesian product of the two tables), universe sampling will either sample the
entire join, or sample nothing at all, while uniform sampling will have a sample size concentrated
around qN , thus giving an estimator of much lower variance. In section 4.5.1 to 4.5.3, we give a
comprehensive discussion on how to optimize p and q for different tables and different queries.

The Stratified-Universe-Bernoulli Sampling Scheme applies to a table T that is divided into K
groups (i.e., strata), denoted as G1, G2, ... , Gk.

Definition 7 (Stratified-Universe-Bernoulli Sampling (SUBS) Scheme). Given a table T of N

rows and a column (or set of columns) J in T , a SUBS scheme is defined by a tuple (p1, p2, ... , pK ,

q1, q2, ... , qK), where 0 < pi, qi ≤ 1 are the universe sampling rate and Bernoulli sampling rate.

Let h : U 7→ [0, 1] be a perfect hash function. Then, a sample of T produced by this scheme,

S = UBSp,q(T, J), is produced as follows:

function SUBSp,q1,...,qK (T, J, G)

Initialize S ← ∅ for each group Gi do
for all tuples t in Gi do

if h(t.J) < pi then
Include t in S independently w/ prob. qi

return S

Let |Gi| denote the number of tuples in group Gi. Then the effective sampling rate of a SUBS
scheme is

∑
i pi · qi · |Gi|/N . We call εi = p · qi the effective sampling rate for group Gi.

In both UBS and SUBS schemes, the user specifies ε as his/her desired sampling budget, given
which our goal is to determine optimal sampling parameters p and q (or pi and qi values) such that
the variance of our join estimator is minimized. In Section 4.5, we derive the optimal p and q for
UBS. For SUBS, in addition to ε, the user also provides two additional parameters kkey and ktuple
(explained below). Next, we show how to determine the effective sampling rate εi for each group
Gi based on these parameters in SUBS. Given εi for each group, the problem is then reduced to
finding the optimal parameters for UBS for that group (i.e., pi and qi). Moreover, as we will show
in Sections 4.5.1–4.5.3, particularly in Lemma 10, the universe sampling rate for every group must
be the same, and must be the same as the universe sampling rate of the other table in two-way
joins. Hence, we use a single universe sampling rate p = p1 = ... = pk across all groups.

As mentioned in Section 4.2.1, ktuple is a user-specified lower bound on the minimum number
of tuples4 in each group the sample must retain. kkey is an additional user-specified parameter
required for the SUBS scheme. It specifies a threshold as when to activate the universe sampler.
In particular, if a group contains too few (i.e., less than kkey) join keys, we do not perform any
universe sampling as it will have a high chance of filtering out all tuples. Hence, we apply universe

4The lower bound holds only on average, due to the probabilistic nature of sampling.
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sampling only to those groups with ≥ kkey join keys. For groups with fewer than kkey join keys,
we will only apply Bernoulli sampling with rate εi.

We call a group large if it contains at least s join keys, otherwise, we call it a small group. We
useNb to denote the total number of tuples in all large groups, andNs to denote the total number of
tuples in all small groups. Similarly, let Mb and Ms denote the number of large and small groups,
respectively. Then, we decide the sampling budget εi for each group Gi as follows:

1. If Mbt > εNs or Mbt > εNb, we notify the user that creating a sample given their parameters is
infeasible.

2. Otherwise,
• Let ε′s = Ks · t/Ns and let ε′′s = ε− ε′s. Then for each smallgroup Gi, the sampling budget

is εi = t/|Gi|+ ε′′s .

• Let ε′b = Kb · t/Nb and let ε′′b = ε− ε′b. Then for each large group Gi, the sampling budget
is εi = t/|Gi|+ ε′′b .

One εi is determined for each group, the problem of deciding optimal SUBS parameters is
reduced to deciding the optimal SUBS parameters for K separate groups. This effective sampling
rate εi guarantees that each large group will have at least t tuples in the sample on average, and the
remaining budget is divided evenly. Thus, the corresponding uniform sampling rate for each large
group is qi = εi/p. Moreover, we pose the constraint that the universe sampling rate p should be at
least 1/s to guarantee that, on average, there is at least one join key passing through the universe
sampler.

For small groups, we simply perform a uniform sampling of rate εi. Conceptually, this is
equivalent to setting p = 1 for these groups.

Overall, this strategy provides the following guarantees:
1. Each group will have at least t tuples in the sample, on average.
2. The probability of each group being missed is at most (1 − 1/s)s < 0.367. In general, if we set
p>c/s for some constant c>1, this probability will become 0.367c.

3. The approximation of the original query will be optimal in terms of its variance (see Sec-
tions 4.5.1–4.5.3).

4.5 Optimal Sampling

In this section, we summarize the derivation of optimal parameters for SUBS in [137]. As shown
in Section 4.4, finding the optimal sampling parameters within the SUBS scheme can be reduced
to that within the UBS scheme. Thus, in this section, we focus on providing a summary of deriving
the UBS parameters that minimize error for each aggregation type (COUNT, SUM, and AVG). Initially,
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we also assume there is no WHERE clause. Later, in Section 4.6, we show how to handle WHERE

conditions and how to create a single sample instead of creating one per each aggregation type and
WHERE condition.

Centralized vs. Decentralized— For each aggregation type, we analyze two scenarios: central-
ized and decentralized. Centralized setting is when the frequencies of the join keys in both tables
are known. This represents situations where both tables are stored on the same server, or each
server communicates its frequency statistics to other parties. Decentralized setting represents a
scenario where the two tables are each stored on a separate server, and transmitting full frequency
statistics across the network is costly.5 In other words, each server only has access to full statistics
of its own table (e.g., frequencies, join column distribution). However, as a minimal information,
we assume the servers know each other’s sampling budgets (ε1 and ε2).

4.5.1 Join Size Estimation: Count on Joins

We start by considering the following simplified query:

select count(*)

from T1 join T2 on J

where T1 and T2 are two tables joined on column(s) J . Consider two samples, S1 = UBS(p1,q1)(T1, J)

and S2 = UBS(p2,q2)(T2, J). Then, we can define an unbiased estimator for the above query,
Ecount = |T1 ./J T2|, using S1 and S2 as follows. Observe that given any pair of tuples t1 ∈ T1

and t2 ∈ T2, where t1.J = t2.J , the probability that (t1, t2) enters S1./S2 is pminq1q2, where
pmin=min{p1, p2}. Hence, the following is an unbiased estimator for Ecount.

Ĵcount(p1, q1, p2, q2, S1, S2) =
1

pminq1q2

|S1 ./ S2|. (4.1)

When the arguments p1, q1, p2, q2, S1, S2 are clear from the context, we omit these arguments and
simply write Ĵcount.

Definition 8 (Join Size Estimation Problem). Consider a perfect hash function h. Then, given

sampling budgets ε1, ε2, our goal is to find parameters (p1, q1) and (p2, q2) that minimize the vari-

ance of Ĵcount subject to p1q1 = ε1 and p2q2 = ε2. We call (p1, q1) and (p2, q2) the optimal UBS

sampling parameters for count.

The next theorem provides the variance of Ĵcount.

5We focus on two servers, but the math can easily be generalized to decentralized networks of multiple servers.
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Theorem 9. Let S1 = UBSp1,q1(T1, J) and

S2 = UBSp2,q2(T2, J). The variance of Ĵcount is as follows:

Var(Ĵcount) =
1− p
p

∑
v

a2
vb

2
v +

1− q2

pq2

∑
v

a2
vbv

+
1− q1

pq1

∑
v

avb
2
v +

(1− q1)(1− q2)

pq1q2

∑
v

avbv.

To minimize Var(Ĵcount) under a fixed sampling budget, the two tables should always use the
same universe sampling rate. If p1 > p2, the effective universe sampling rate is only p2, i.e., only
p2 fraction of the join keys inside T1 end up in the join of the sample, and the remaining p1 − p2

fraction is simply wasted. Then, we can change the universe sampling rate of T1 to p2 and increase
the corresponding uniform sampling rate to obtain a better bound on variance.

Lemma 10. Given tables T1, T2 joined on column(s) J , a fixed sampling parameter (p1, q1) for T1,

and a fixed effective sampling rate ε2 for T2, the variance of Ĵcount is minimized when T2 uses p1

as its universe sampling rate and correspondingly ε2/p1 as its uniform sampling rate.

Note that Lemma 10 applies to both centralized and decentralized settings, i.e., it applies to
any feasible sampling parameter (p1, q1) and (p2, q2), regardless of how the sampling parameter
is decided. Given the above results, we can obtain the optimal sampling parameters for COUNT
in centralized and decentralized settings with the following theorems (refer to [137] for detailed
proofs and derivations).

Theorem 11. Let T1 and T2 be two tables joined on column(s) J . Let av and bv be the frequency

of value v in column(s) J of tables T1 and T2, respectively. Given their effective sampling rates ε1
and ε2, the optimal UBS sampling parameters (p1, q1) and (p2, q2) are given by:

p1 = p2 = min{1,max{ε1, ε2,
√
ε1ε2

∑
v(a

2
vb

2
v−a2vbv−avb2v+avbv)∑

v avbv
}} and q1 = ε1/p, q2 = ε2/p.

Substituting this into Theorem 9, the resulting variance is only a constant factor of Theorem 2’s
theoretical limit.

Theorem 12. Given ε1 and ε2, the optimal UBS parameter (p, q1) and (p, q2) for COUNT in the

decentralized setting are given by

p = min{1,max{ε1, ε2,
√
ε1ε2(FaFb − Fa − Fb + 1)}}

and q1 = ε1/p, q2 = ε2/p, Fa = maxv av, and Fb = maxv bv.
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4.5.2 Sum on Joins

Let Esum be the output of the following simplified query:

select sum(T1.W)

from T1 join T2 on J

Let F be the sum of column W in the joined samples S1 ./ S2. Then, the following is an unbiased
estimator for Esum:

Ĵsum =
1

pminq1q2

F (4.2)

where pmin = min{p1, p2}.
Now, we can obtain the optimal sampling parameters for SUM in centralized and decentralized

settings with the following theorem and algorithm (refer to [137] for detailed proofs and deriva-
tions).

Theorem 13 (Optimal Sampling for Centralized Sum). Given effective sampling rates ε1, ε2, the

optimal sampling parameters for SUM in a centralized setting are given by

p = min{1,max{ε1, ε2,

(ε1ε2(
∑
v

(a2
vµ

2
vb

2
v − a2

vµ
2
vbv − av(µ2

v + σ2
v)b

2
v

+ av(µ
2
v + σ2

v)bv))/(
∑
v

av(µ
2
v + σ2

v)bv))
1/2}}.

and qi = εi/p for i = 1, 2.

The algorithm that determines the universe sampling rate p for a decentralized setting for SUM
query is as follows:

1. v1 = arg maxv a
2
vµ

2 amd v2 = arg maxv av(µ
2
v + σ2

v)

2. If v1 = v2, return

p = min{1,max{ε1, ε2,

(ε1ε2(a2
v1
µ2
v1
n2
b

− a2
v1
µ2
v1
nb − av1(µ2

v1
+ σ2

v1
)n2

b

+ av1(µ
2
v1

+ σ2
v1

)nb)/(av1(µ
2
v1

+ σ2
v1

)nb))
1/2}}.
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3. Otherwise, for i = 1, 2, let

hi(p)

= (
1

ε2
− 1

p
)a2
vi
µ2
vi
nb + (

1

ε1
− 1

p
)avi(µ

2
vi

+ σ2
vi

)n2
b

+ (
p

ε1ε2
− 1

ε1
− 1

ε2
+

1

p
)avi(µ

2
vi

+ σ2
vi

)nb

+ (
1

p
− 1)a2

vi
µ2
vi
n2
b .

4. Find the roots p∗ of h1(p) = h2(p), this can be reduced to solving a quadratic equation since
hi(p) are in the form Aip+Bi/p+ Ci. Let p1, p2 be the roots.

5. Let p3 and p4 be the minimizer of h1 and h2, given by:

p3 = min{1,max{ε1, ε2,

(ε1ε2(a2
v1
µ2
v1
n2
b

− a2
v1
µ2
v1
nb − av1(µ2

v1
+ σ2

v1
)n2

b

+ av1(µ
2
v1

+ σ2
v1

)nb)/(av1(µ
2
v1

+ σ2
v1

)nb))
1/2}}.

And similarly for p4 where we replace v1 by v2.

6. Let p5 = max{ε1, ε2}.

7. Compute j = arg mini:ε1,ε2≤pi≤1{max{h1(pi), h2(pi)}}.

8. Return p = pj .

4.5.3 Average on Joins

Let Eavg be the output of the following simplified query:

select avg(T1.W)

from T1 join T2 on J

In general, producing an unbiased estimator for AVG is hard.6 Instead, we define and analyze the
following estimator. Let S and C be the SUM and COUNT of column W in S1 ./ S2. We define
our estimator as Ĵavg = S/C. There are two advantages over using separate samples to evaluate
SUM and COUNT: (1) we can use a larger sample to estimate both queries, and (2) since SUM and
COUNT will be positively correlated, the variance of their ratio will be lower. Due to the lack of

6The denominator, i.e., the size of the sampled join, can even be zero. Also, the expectation of a random variable’s
reciprocal is not equal to the reciprocal of its expectation.

86



a close form expression for the variance of the ratio of two random variables, we use a first order
bivariate Taylor expansion to approximate the ratio. We have the following result.

Theorem 14. Let S and C be random variables denoting the sum and cardinality of the join of

two samples produced by applying UBS sampling parameters (p1, q1) to T1 and (p2, q2) to T2. Let

pmin = min{p1, p2}. We have:

Var[S/C] ≈ (
E[S]2

E[C]2
)(

Var[S]

E[S]2
− 2Cov[S,C]

E[S]E[C]
+

Var[C]

E[C]2
) (4.3)

where

E[S] =pminq1q2

∑
v

µvavbv

E[C] =pminq1q2

∑
v

avbv

Var[S] =pminq1q2(1− q2)[q1

∑
v

a2
vµ

2
vbv + q2

∑
v

av(µ
2
v + σ2

v)b
2
v

+(1−q1)
∑
v

av(µ
2
v+σ

2
v)bv] +pmin(1−pmin)q

2
1q

2
2a

2
vµ

2
vb

2
v

Var[C] =pminq1q2[(1− q2)
∑
v

a2
vbv + (1− q1)q2

∑
v

avb
2
v

+ (1− q1)(1− q2)
∑
v

avbv + (1− pmin)q1q2

∑
v

a2
vb

2
v]

Cov[S,C] =pminq1q2[(1− q2)q1

∑
v

a2
vµvbv + (1− q1)q2

∑
v

avµvb
2
v

+ (1−q1)(1−q2)
∑
v

avµvbv+(1−pmin)q1q2

∑
v

a2
vµvb

2
v]

In the centralized setting, where av, bv, µv and σv values are given for all v, every term in the
expression E[S]2

E[C]2
(Var[S]
E[S]2

− 2 Cov[S,C]
E[S]E[C]

+ Var[C]
E[C]2

that depends on p is proportional to either p or 1/p
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(E[S]/E[C] is independent of p). The terms proportional to 1
p

are 1
p
(A− 2B + C) where

A =

∑
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v)bv
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v avµvbv)
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The term proportional to p is pD where:

D =
1

ε2ε2
(

∑
v av(µ

2
v + σ2
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+
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We can find a p that minimizes 1
p
(A−2B+C)+pD as follows.

Theorem 15. In the centralized setting, set p− = max{ε1, ε2}, p+ = 1 and p∗ = min{1,
max{ε1, ε2,

√
A−2B+C

D
}}. Then the optimal sampling parameter is given by:

p =



p− if A− 2B + C ≤ 0 and D > 0

p+ if A− 2B + C > 0 and D ≤ 0

p∗ if both A− 2B + C and D > 0

arg minp∈{p−,p+}
1
p
(A− 2B + C) + pD. otherwise

Minimizing the worst case variance for AVG (for the decentralized setting) is much more in-
volved than the average case. In most cases, the objective function (variance) is neither convex
nor concave in T2’s frequencies. However, note that every term in Theorem 15 is an inner product
〈x, y〉, where x and y are two vectors stored on party1 and party2, respectively. Fortunately,
inner products can be approximated with transferring a very small amount of information using the
AMS sketch [38, 101]. With such a sketch, we can derive an approximate sampling rate without
communicating the full frequency statistics.
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4.6 Multiple Queries and Filters

Creating a separate sample for each combination of aggregation function, join and aggregation
columns, and WHERE clause is clearly impractical. In this section, we show how to create a single
sample to support multiple queries at the cost of some possible loss of approximation quality. First,
we ignore the WHERE clause and then show how it can be handled too.

Multiple Queries— Consider k queries, where the i-th query Qi is defined by an aggregate func-
tion aggi, an aggregate column Wi and a join column Ji. The variance of the estimator ĴQi can
always be written as ĴQi = Aip + Bi/p + Ci for some Ai, Bi, and Ci that depend on aggi, Wi

and Ji. To find a single sampling parameter p for all k queries,7 we need to solve an optimization
problem that minimizes a weighted average of the variance functions. Specifically, given the user
specified weights ω1, · · · , ωk,

p∗ = arg min
p

∑
i

ωiVar[ĴQi ] =
∑
i

ωi(Aip+Bi/p+ Ci) (4.4)

where the optimum value p∗ can be calculated as:

p∗ = min{1,max{, ε1, ε2,
√

(
∑
i

ωiBi)/(
∑
i

ωiAi)}} (4.5)

The choice of ωi values is up to the user. For example, they can be all set to 1, or toQi’s relative
frequency, importance, or probability of appearance (e.g., based on past workloads).

Known Filters— To incorporate WHERE clauses, we can simply regard a query with a filter c on
T1 ./ T2 as a query without a filter but on a sub-table that satisfies the filter, namely T ′ = σc(T1 ./

T2).

Unknown Filters with Distributional Information— When the set of columns appearing in the
WHERE clause can be predicted but the exact constants are unknown, a similar technique can be
applied. For example, if an equality constraint C > x is anticipated but xmay take on 100 different
values, we can conceptually treat it as 100 separate queries each with a different value of x in its
WHERE clause. This reduces our problem to that of sampling for multiple queries without a WHERE
clause, which we know how to handle using equation (4.5).8 Here, the weight ωi can be used to
exploit any distributional information that might be available. In general, ωi should be set to reflect
the probability of each possible WHERE clause appearing in the future. For example, if there R

7Note that q is always ε/p.
8Note that, even though each query in this case is on a different table, they are all sub-tables of the same original

table, and hence their sampling rate p is the same.
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possible WHERE clauses and are equally likely, we can set ωi = 1/R, but if popular values in a
column are more likely to appear in the filters, we can use the column’s histogram to assign ωi.

Unknown Filters— When there is no information about the columns (or their values) in future
filters, we can take a different approach. Since the estimator variance is a monotone function in the
frequencies of each join key [137],the larger the frequencies, the larger the variance. This means
the worst case variance always happens when the WHERE clause selects all tuples from the original
table. Hence, in the absence of any distributional information regarding future WHERE clauses, we
can simply focus on the original query without any filters to minimize our worst case variance.

4.7 Empirical Studies

In this section, we empirically study UBS and SUBS in various scenarios. Our experiments aim to
answer the following questions:

(i) How does our optimal sampling compare to other baselines in centralized and decentralized
settings? (§4.7.2, §4.7.3)

(ii) How well does our optimal UBS sampling handle join queries with filters? (§4.7.4)

(iii) How does our optimal UBS sampling perform when using a single sample for multiple
queries? (§4.7.5)

(iv) How does our optimal SUBS sampling compare to existing stratified sampling strategies?
(§4.7.6, §4.7.7)

(v) How much does a decentralized setting reduce the resource consumption and sample creation
overhead? (§4.7.8)

4.7.1 Experiment Setup

Hardware and Software— We borrowed a cluster of 18 c220g5 nodes from CloudLab [24]. Each
node was equipped with an Intel Xeon Silver 4114 processor with 10 cores (2.2Ghz each) and
192GB of RAM. We used Impala 2.12.0 as our backend database to store data and execute queries.

Datasets— We used several real-life and synthetic datasets:

1. Instacart [5]. This is a real-world dataset from an online grocery. We used their orders and
order products tables (3M and 32M tuples, resp.), joined on order id.

2. Movielens [131]. This is a real-world movie rating dataset. We used their ratings and movies

tables (27M and 58K tuples, resp.), joined on movieid.
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B1 B2 B3 B4 B5 B6

p 0.010 0.015 0.030 0.333 0.667 1.000
q 1.000 0.667 0.333 0.030 0.015 0.010

Table 4.2: Six UBS baselines, each with different p and q .

3. TPC-H [13]. We used a scale factor of 100, and joined the fact and largest dimension tables.
Specifically, we joined l orderkey of the lineitem table with o orderkey of the orders table (600M
and 150M tuples, resp.).

4. Synthetic. To better control the join key distribution, we also generated several synthetic
datasets, where tables T1 and T2 each had 100 million tuples and a join column J . T1 had
an additional column W for aggregation, drawn from a power law distribution with range [1,
1000]. We varied the distribution of the join key in each table to be one of uniform, normal, or
power law, creating 9 different datasets. The values of column J were integers randomly drawn
from [1, 10M] according to the chosen distribution. For normal distribution, we used a truncated
distribution with σ=10M/5. For power law, we used α=1.5 for both J and W . We refer to
these datasets by their tables’ distributions, namely S{distribution of T1,distribution of T2} (e.g.,
S{uniform,uniform}).

Baselines— We compared our optimal UBS parameters (referred to as OPT) against six baselines.
The UBS parameters of these baselines, B1, ... , B6, are listed in Table 4.2. B1 and B6 are simply
universe and uniform sampling, respectively. B2, ... , B5 represent different hybrid variants of these
sampling schemes. Sampling budgets were ε1 = ε2 = 0.01 unless otherwise specified.

Implementation— We implemented our optimal parameter calculations in Python application.
Our sample generation logic read required information, such as table size and join key frequencies,
from the database, and then constructed SQL statements to build appropriate samples in the target
database. We used Python to compute approximate answers from sample-based queries.

Variance Calculations— We generated β=500 pairs of samples for each experiment, and re-ran
the queries on each pair, to calculate the variance of our approximations.

4.7.2 Join Approximation: Centralized Setting

Table 4.3 shows the sampling rates used by OPT for different datasets and aggregate functions in
the centralized setting. For Synthetic, the optimal parameters were some mixture of uniform
and universe sampling when both tables were only moderately skewed (i.e., uniform or normal
distributions) for COUNT and SUM, whereas it reduced to a simple uniform sampling for power
law distribution. This is due to the higher probability of missing extremely popular join keys with
universe sampling. To the contrary, for AVG, OPT reduced to a simple universe sampling. This
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Figure 4.2: OPT’s improvement in terms of the estimator’s variance for COUNT over six baselines
with synthetic dataset.
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Figure 4.3: OPT’s improvement in terms of the estimator’s variance for SUM over six baselines
with Synthetic dataset.

is because maximizing the output size in this case was the best way to reduce variance. For the
other datasets (Instacart, Movielens, and TPC-H), the optimal parameters led to universe
sampling, regardless of aggregate type, because the joins in those datasets were PK-FK joins,
making uniform sampling less useful for the table with primary keys.

Figure 4.2 shows OPT’s improvement over the baselines in terms of variance for COUNT
queries. OPT outperformed all baselines in most cases, achieving over 10x lower variance than
the worst baseline in several scenarios. Figures 4.3 and 4.4 show the same experiment for SUM
and AVG. In both cases, OPT achieved the minimum variance across all sampling strategies, ex-
cept for AVG when T1 was a power law distribution. This is because OPT for AVG was calculated
from an approximation, rather than a closed-form solution, unlike COUNT or SUM, as discussed in
Section 4.5.3. Furthermore, we deliberately randomized both the join key and aggregate columns
in Synthetic to create a challenging setting. This, combined with the power law distribution,
made it difficult to correctly estimate variances from generated samples. However, UBS with
OPT still achieved lowest variance for all aggregates on the real-world datasets Instacart and
Movielens, as shown in Figure 4.5. For the selected join key, OPT determined that a full universe
sampling was the best sampling scheme, achieving the minimum variance among the baselines.

In summary, this experiment highlights OPT’s ability in outperforming simple uniform or uni-
verse sampling—or choosing one of them, when optimal—for aggregates on joins.
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Figure 4.4: OPT’s improvement in terms of the estimator’s variance for AVG over six baselines
with Synthetic dataset.
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(c) TPC-H

Figure 4.5: OPT’s improvement in terms of the estimator’s variance over six baselines with
Instacart, Movielens and TPC-H datasets.

4.7.3 Join Approximation: Decentralized

We evaluated both OPT and other baselines under a decentralized setting using Instacart and
Synthetic datasets. Here, we constructed a possible worst case distribution for T2 that was
still somewhat realistic, given the distribution of T1 and minimal information about T2 (i..e, T2’s
cardinality). To do this, we used the following steps: 1) let JMAX(T1) be the most frequent join key
value in T1; 2) assign 75% of join key values of T2 to have the value of JMAX(T1) and draw the rest
of join key values from a uniform distribution.

Figure 4.6 shows the results. For Synthetic, the OPT was the same under both settings
whenever there was a power law distribution or the aggregate was AVG. This is because our as-
sumption of the worst case distribution for T2 was close to a power law distribution. For COUNT
and SUM with Synthetic dataset, OPT in the decentralized setting had a much higher variance
than OPT in the centralized setting when there was no power law distribution. With Instacart,
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Dataset COUNT SUM AVG
p q p q p q

S{uniform,uniform} 0.10 0.10 0.10 0.10 0.01 1.00
S{uniform,normal} 0.12 0.08 0.11 0.09 0.01 1.00

S{uniform,power law} 1.00 0.01 1.00 0.01 0.01 1.00
S{normal,uniform} 0.12 0.08 0.10 0.10 0.01 1.00
S{normal,normal} 0.15 0.07 0.13 0.08 0.01 1.00

S{normal,power law} 1.00 0.01 1.00 0.01 0.01 1.00
S{power law,uniform} 1.00 0.01 1.00 0.01 0.01 1.00
S{power law,normal} 1.00 0.01 1.00 0.01 0.01 1.00

S{power law,power law} 1.00 0.01 1.00 0.01 0.01 1.00
Instacart 0.01 1.00 0.01 1.00 0.01 1.00
Movielens 0.01 1.00 0.01 1.00 0.01 1.00

TPC-H 0.01 1.00 0.01 1.00 0.01 1.00

Table 4.3: Optimal sampling parameters (p and q) in centralized setting with sampling budget
ε = 0.01.

Dist. of C COUNT SUM AVG
p q p q p q

Uniform 0.010 1.000 0.010 1.000 0.010 1.000
Normal 0.018 0.555 0.015 0.648 0.010 1.000

Power law 0.051 0.195 0.050 0.201 0.010 1.000

Table 4.4: Optimal sampling parameters (p and q) for S{uniform,uniform} for different distribu-
tions of the filtered column C

OPT in the decentralized setting was same as OPT in the centralized setting, which had the min-
imum variance among the baselines. This illustrates that OPT in the decentralized setting can
perform well with real-world data where the joins are mostly PK-FK. This also shows that if a
reasonable assumption is possible on the distribution of T2, OPT can be as effective in the decen-
tralized setting as it is in a centralized one, while requiring significantly less communication.

4.7.4 Join Approximation with Filters

To study OPT’s effectiveness in the presence of filters, we used S{uniform,uniform} and Instacart
datasets. We added an extra column C to T1 in S{uniform,uniform}, with integers values in
[1, 100], and tried three distributions (uniform, normal, power law). For Instacart, we used
the order hour of day column for filtering, which had an almost normal distribution. We used an
equality operator (=) and chose the comparison value x uniformly at random. We calculated the
average variance over all possible values of c.

Table 4.4 shows the sampling rates chosen by OPT, while Figure 4.7 shows OPT’s improvement
over baselines in terms of average variance. Again, OPT successfully achieved the lowest average
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Figure 4.6: Variances of the query estimators for OPT in the centralized and decentralized settings.

Scheme COUNT SUM AVG
p q p q p q

OPT (individual) 0.145 0.069 0.125 0.080 0.010 1.000
OPT (combined) 0.133 0.075 0.133 0.075 0.133 0.075

Table 4.5: Sampling parameters (p and q) of OPT using individual samples for different aggregates
versus a combined sample (S{normal,normal} dataset).

variance among all baselines in all cases, up to 10x improvement compared to the worst baseline.
This experiment confirms that UBS with OPT is highly effective for join approximation, even in
the presence of filters.

4.7.5 Combining Samples

We evaluated the idea of using a single sample for multiple queries instead of generating individual
samples for each query, as discussed in Section 4.6. Here, we use OPT (individual) and OPT

(combined) to to denote the use of one-sample-per-query and one-sample-for-multiple-queries,
respectively. For OPT (combined), we considered a scenario where each of COUNT, SUM, and AVG
is equally likely to appear. Table 4.5 reports the sampling rates chosen in each case. As shown in
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(c) AVG
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(d) Instacart

Figure 4.7: OPT’s improvement in terms of the estimator’s variance over six baselines in the pres-
ence of filters.

Figure 4.8, without having to generate an individual sample for each query, the variances of OPT
(combined) were only slightly higher than those of OPT (individual). This experiment shows that
it is possible to create a single sample for multiple queries without sacrificing too much optimality.

4.7.6 Stratified Sampling

We also evaluated SUBS for join queries with group-by. Here, we used the S{normal,normal}
dataset, and added an extra group column G to T1 with integers from 0 to 9 drawn from a power
law distribution with α = 1.5. This time we did not randomize the groups, i.e., G=0 had the
most tuples and G=9 had the fewest. This was to study SUBS performance with respect to the
different group sizes. As a baseline, we generated stratified samples for T1 on G with kkey =

100, 000. and uniform samples for T2 with a 0.01 sampling budget. We denote this baseline
as SS UF. For SUBS, we used parameters that matched the sample size of SS UF, i.e., kkey =

100, ktuple = 100, 000. Figure 4.9 shows the variance of query estimators for each of the 10
groups for different aggregations. As expected, SUBS with OPT achieved lower variances than
SS UF across all aggregates and groups with different sizes.
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Figure 4.8: Variance of the query estimators for OPT (individual) and OPT (combined) for the
S{normal,normal} dataset.
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Figure 4.9: Query estimator variance per group for for a group-by join aggregate using SUBS
versus SS UF.

4.7.7 Optimal Parameters for Stratified Sampling

We empirically studied the effect of different values for two parameters (i.e., kkey and ktuple) in
SUBS. Similar to Section 4.7.6, we used the S{normal,normal} dataset, and added an extra group
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column G to T1 with integers from 0 to 99 drawn from a power law distribution with α = 2.5.
Larger number of groups and α were used to better observe SUBS’s performance with respect
to different group sizes and different kkey and ktuple values. Again, we did not randomize the
groups, i.e., G=0 had the most tuples and G=99 had the fewest. We tried four different values for
kkey ∈ {1000, 10000, 100000, 1000000}, and ktuple had two possible values: {10, 100}. We used
epsilon1 = 0.03 and epsilon2 = 0.01. We gave a larger budget for T1 than previous experiments
to make all the combinations we tried feasible. We had the total of 8 different combinations of
kkey and ktuple.

Figure 4.10 shows the variance of query estimators for each of 100 groups with different combi-
nations of kkey and ktuple for different aggregations. SUBS achieved the lowest variance overall
when kkey = 1000. As expected, this was when SUBS was able to categorize every group as
large and perform full UBS on every group. The variance of the query estimators for a group
was increased significantly when the group is categorized as small and SUBS was only able to
perform uniform sampling on the group. This was evident especially with the combinations that
have kkey = 10000 as there was a spike in variance when G=47, which was the first small group
categorized by SUBS with kkey = 10000. Unlike kkey, ktuple did not have much effect on the
variance of query estimators as long as the value was small enough to make the sampling feasi-
ble. This experiment shows that SUBS can achieve the lowest variance for all groups when it can
categorize every group as large and perform full UBS for each group.

4.7.8 Overhead: Centralized vs. Decentralized

We compared the overhead of OPT in centralized versus decentralized settings, in terms of the
sample creation time and resources, such as network and disk. OPT should have a much higher
overhead in the centralized setting, as it requires full frequency information of every join key
value in both tables. To quantify their overhead difference, we used Instacart and TPC-H,
and created a pair of samples for SUM in each case. Here, the aggregation type did not matter as
the time spent calculating p and q was negligible compared to the time taken by transmitting the
frequency vectors.

As shown in Figure 4.11, we measured the time for statistics acquisition, sampling rate cal-
culation, and sample table creation. Here, the time taken by collecting the frequencies was the
dominant factor. For Instacart, it took 65.16 secs from start to finish in the decentralized
setting, compared to 99.98 secs in the centralized setting, showing 1.53x improvement in time.
For TPC-H, it took 59.5 min in decentralized setting, compared to 91.7 mins of the centralized,
showing a speedup of 1.54x.

We also measured the total network and disk I/O usage across the entire cluster, as shown
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Figure 4.10: Query estimator variance per group for for a group-by join aggregate using SUBS
with different values of kkey and ktuple.

in Figure 4.12. For Instacart, compared to the decentralized setting, the centralized one used
3.66x (0.9→ 3.29 MB) more network and 2.22x (7.59→ 16.9 MB) more disk bandwidth. Overall,
the overhead was less for TPC-H. The centralized in this case used 1.38x (243.39→ 337.04 MB)
more network and 1.49x (519.03 → 776.58 MB) more disk bandwidth than the decentralized
setting.
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Figure 4.11: Time taken to generate samples for Instacart and TPC-H in centralized vs. de-
centralized setting.
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Figure 4.12: Total network and disk bandwidth used to generate samples for Instacart and
TPC-H in centralized vs. decentralized setting.

This experiment shows the graceful tradeoff between the optimality of sampling and its over-
head, making the decentralized variant an attractive choice for large datasets and distributed sys-
tems.

4.8 Related Work

Online Sample-based Join Approximation— Ripple Join [125] is an online join algorithm that
operates under the assumption that the tuples of the original tables are processed in a random order.
Each time, it retrieves a random tuple (or a set of random tuples) from the tables, and then joins
the new tuples with the previously read tuples and with each other. A parallel version of Ripple
Join [176] is also proposed. SMS join [147] overcomes the problem of the hashed version of Ripple
join, which is slow when hash tables exceed memory, using a disk-based sort-merge join. Wander
Join [169] tackles the problem of k-way chain join and eliminates the random order requirement
of Ripple Join. However, it requires an index on every join column in each of the tables. Using
indexes, Wander Join performs a set of random walks and obtains a non-uniform but independent
sample of the join. Maintaining an approximation of the size of all partial joins can help overcome
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the non-uniformity problem [170, 257].

Offline Sample-based Join Approximation— AQUA [115] acknowledges the quadratic reduc-
tion and the non-uniformity of the output when joining two uniform random samples. The same
authors propose Join Synopsis [29], which computes a sample of one of the tables and joins it
with the other tables as a sample of the actual join. Chaudhuri et al. [71] also point out that a
join of independent samples from two relations does not yield an independent sample of their join,
and propose various sampling strategies using precomputed statistics to overcome this problem,
but their solution of collecting full frequency information of the relation can be quite expensive.
Zhao et al. [257] provide a better trade-off between sampling efficiency and the join size upper
bound. Hashed sampling [127] is proposed in the context of selectivity estimation for set similar-
ity queries, now known as universe sampling. Block-level uniform sampling [68] is less accurate
but more efficient than tuple-level sampling. Bi-level sampling [81, 126] performs Bernoulli sam-
pling at both the block- and tuple-level, as a trade-off between accuracy and I/O cost of sample
generation.

AQP Systems on Join— Most AQP systems rely on sampling and support certain types of joins [27,
32, 67, 111, 152, 170, 198, 203]. STRAT [67] discusses the use of uniform and stratified sampling,
and how those can support certain types of join queries. More specifically, STRAT only supports
PK-FK joins between a fact table and one or more dimension table(s). BlinkDB [32] extends
STRAT and considers multiple stratified samples instead of a single one.As previously mentioned,
AQUA [27] supports foreign key joins using join synopses. Icicles [111] is a new class of samples
that includes tuples that are more likely to be required by future queries based on past workloads.
These samples, similar to AQUA, only support foreign key joins. PF-OLA [203] is a framework
for parallel online aggregation. It studies parallel joins with group-bys, when partitions of the two
tables fit in memory. XDB [170] integrates Wander Join in PostgreSQL. Quickr [152] does not
create offline samples. Instead, it uses universe sampling to support equi-joins, where the group-
by columns and the value of aggregates are not correlated with the join keys. VerdictDB [198] is
a universal AQP framework that supports all three types of samples (uniform, universe, and strati-
fied). VerdictDB utilizes a technique called variational subsampling, which creates subsamples of
the sample such that it only requires a single join—instead of repeatedly joining the subsamples
multiple times—to produce accurate aggregate approximations.

Join Cardinality Estimation— There is extensive work on join cardinality estimation (i.e., COUNT)
in the database community [37, 107, 157, 167, 202, 224, 235, 244] as an important step of the query
optimization process for joins. Two-level sampling [79] first samples a set of join values using
universe sampling, and then, for each join value sampled, it performs Bernoulli sampling at a rate
specific to that value. It differs from the bi-level sampling scheme [126] as it applies two different
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sampling methods, whereas bi-level sampling uses only Bernoulli sampling but at different gran-
ularity levels. End-biased sampling [107] samples each tuple with a probability proportional to
the frequency of its join key value. Index-based sampling is shown to improve cardinality esti-
mation for main-memory databases [167]. Recently, deep learning is utilized to learn inter-table
correlations and improve cardinality estimates [157].

Theoretical Studies— The question about the limitation of sample-based approximation of joins,
to the best of our knowledge, has not been asked in the theory community. However, the past work
in communication complexity on set intersection and inner product estimation has implications for
join approximation. In this problem, two parties possess two dimensional vectors x and y and they
wish to compute their inner product t = 〈x, y〉with as little information exchange as possible. and
sends it to Bob, who will in turn estimates 〈x, y〉 using y and β(x). For this problem, [194] shows
that any estimator produced by s bits of communication has variance at least Ω(dt/s). Estimating
inner product for 0, 1 vectors is directly related to estimating SUM and COUNT for an PK-FK join.
A natural question is whether join is still hard even if frequencies are all larger than 1. Further, the
question of whether estimating AVG is also hard is not answered by prior work.

4.9 Summary

The goal of studying SUBS with its optimal parameters is to improve our understanding of join
approximation using offline samples, and formally address some of the key open questions faced
by practitioners using and building AQP engines. We discussed generic sampling schemes that
cover the most commonly used sampling strategies, as well as as their combinations. Within these
schemes, we (1) provided an informational-theoretical lower bound on the lowest error achievable
by any offline sampling scheme, (2) derived optimal strategies that match this lower bound within
a constant factor, and (3) offered a decentralized variant that requires minimal communication of
statistics across the network. Finally, we empirically validated our findings—and the optimality of
this sampling scheme—through extensive experiments on multiple datasets.
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CHAPTER 5

Distributed Lock Management with RDMA:
Decentralization without Starvation

5.1 Motivation

With the advent of high-speed RDMA networks and affordable memory prices, distributed in-
memory systems have become increasingly more common [171, 222, 251]. The reason for this
rising popularity is simple: many of today’s workloads can fit within the memory of a handful of
machines, and they can be processed and served over RDMA-enabled networks at a significantly
faster rate than with traditional architectures.

A primary challenge in distributed computing is lock management, which forms the backbone
of many distributed systems accessing shared resources over the network. Examples include OLTP
databases [210,228], distributed file systems [114,218], in-memory storage systems [171,208], and
any system that requires synchronization, consensus, or leader election [63, 141, 165]. In a trans-
actional setting, the key responsibility of a lock manager (LM) is ensuring both serializability—or
other forms of isolation—and starvation-free behavior of competing transactions [205].

Centralized Lock Managers (CLM)— In traditional distributed databases, each node is in charge
of managing the locks for its own objects (i.e., tuples hosted on that node) [17, 22, 132, 160]. In
other words, before remote nodes or transactions can read or update a particular object, they must
communicate with the LM daemon running on the node hosting that object. Only after the local LM
grants the lock can the remote node or transaction proceed to read or modify the object. Although
distributed, these LMs are still centralized, as each LM instance represents a central point of
decision for granting locks on the set of objects assigned to it.

Because each CLM instance has global knowledge and full visibility into the operations per-
formed on its objects, it can guarantee many strong and desirable properties. For example, it can
queue all lock requests and take holistic actions [237, 245], prevent starvation [132, 148, 160], and
even employ sophisticated scheduling of incoming requests to bound tail latencies [138, 153, 173,
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254].
Unfortunately, the operational simplicity of having global knowledge is not free [117], even

with low-latency RDMA networks. First, the CLM itself—specifically, its CPU—becomes a per-
formance bottleneck for applications that require high-throughput locking and unlocking opera-
tions and as transactional workloads scale up or out. Second, the CLM becomes a single point
of failure [117]. Consequently, many modern distributed systems do not use CLMs in practice;
instead, they rely on decentralized lock managers, which offer better scalability and reliability by
avoiding a single point of contention and failure [117].

Decentralized Lock Managers (DLM)— To avoid the drawbacks of centralization and to exploit
fast RDMA networks, decentralized lock managers are becoming more popular [83, 97, 192, 240].
This is because RDMA operations enable transactions to acquire and release locks on remote
machines at extremely low latencies, without involving any remote CPUs. In contrast to CLMs,
RDMA-based decentralized approaches offer better CPU usage, scalability, and fault tolerance.

Unfortunately, existing RDMA-based DLMs take an extremist approach, where they either
completely forgo the benefits of maintaining global knowledge and rely on blind fail-and-retry
strategies to achieve higher throughput [83, 240], or they emulate global knowledge using dis-
tributed queues and additional network round-trips [192]. The former can cause starvation and
thereby higher tail latencies, while the latter significantly lowers throughput, undermining the per-
formance benefits of decentralization.

Challenges— There are two key challenges in designing an efficient DLM. First, to avoid data
races, RDMA-based DLMs [83, 240] must only rely on RDMA atomic operations: fetch-and-add
(FA) and compare-and-swap (CAS). FA atomically adds a constant to a remote variable and returns
the previous value of the variable. CAS atomically compares a constant to the remote variable and
updates the variable only if the constant matches the previous value. Although CAS does not always
guarantee successful completion, it is easy to reason about, which is why all previous RDMA-
based DLMs have relied on CAS for implementing exclusive locks [83,97,192,240]. Consequently,
when there is high contention in the system, protocols relying on CAS require multiple retries to
acquire a lock. These blind and unbounded retries cause starvation, which increases tail latency.
Second, the lack of global knowledge complicates other run-time issues, such as deadlock detection
and mitigation.

Our Approach— In this chapter, we propose a fully Decentralized and Starvation-free Lock man-
agement (DSLR) algorithm to mitigate the aforementioned challenges. Our key insight is the fol-
lowing: a distributed lock manager can be fully decentralized and yet exchange the partial knowl-
edge necessary for avoiding blind retries, preventing starvation and thereby reducing tail latencies.
Specifically, DSLR adapts Lamport’s bakery algorithm [164] to a decentralized setting with RDMA
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capabilities, which itself poses a new set of interesting challenges:

1. The original bakery algorithm assumes two unbounded counters per object. However, the
current RDMA atomic operations are limited to 64-bit words, which must accommodate two
counters—for shared and exclusive locks—in order to implement the bakery algorithm, leaving
only 16 bits per counter. Because one is forced to use either RDMA CAS or FA, it is difficult
to directly and efficiently apply bounded variants of bakery algorithms [145,227] in an RDMA
context.1

2. To compete with existing RDMA-based DLMs, our algorithm must be able to acquire locks
on uncontented objects using a single RDMA atomic operation. However, the original bakery
algorithm requires setting a semaphore, reading the existing tickets, and assigning the requester
the maximum ticket value.

DSLR overcomes all of these challenges (see §5.4) and, to the best of our knowledge, is the first
DLM to extend Lamport’s bakery algorithm to an RDMA context.

Contributions— We make the following contributions:

1. We propose a fully decentralized and distributed locking algorithm, DSLR, that extends Lam-
port’s bakery algorithm and combines it with novel RDMA protocols. Not only does DSLR

prevent lock starvation, but it also delivers higher throughput and significantly lower tail laten-
cies than previous proposals.

2. DSLR provides fault tolerance for transactions that fail to release their acquired locks or fall into
a deadlock. DSLR achieves this goal by utilizing leases and determining lease expirations using
a locally calculated elapsed time.

3. Through extensive experiments on TPC-C and micro-benchmarks, we show that DSLR out-
performs existing RDMA-based LMs; on average, it delivers 1.8× (and up to 2.8×) higher
throughput, and 2.0× and 18.3× (and up to 2.5× and 47×) lower average and 99.9% percentile
latencies, respectively.

The rest of this chapter is organized as follows. Section 5.2 provides background material and
the motivation behind DSLR. Section 5.3 discusses the design challenges involved in distributed and
decentralized locking. Section 5.4 explains DSLR’s algorithm and design decisions for overcoming
these challenges. Section 5.5 describes how DSLR offers additional features often used by modern
database systems. Section 5.7 presents our experimental results, and Section 5.8 discusses related

1Existing bounded bakery algorithms only support exclusive locks. Also, they either need additional memory and
extra operations [227] or rely on complex arithmetics (e.g., modulo [145]) beyond the simple addition offered by FA.
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work.

5.2 Background on RDMA

This section provides the necessary background on modern high-speed networks, particularly
RDMA operations, followed by an overview of existing RDMA-based approaches to distributed
lock management. Familiar readers can skip Section 5.2.1 and continue reading from Section 5.2.2.

5.2.1 RDMA-Enabled Networks

Remote Direct Memory Access (RDMA) is a networking protocol that provides direct memory
access from a host node to the memory of remote nodes, and vice versa. RDMA achieves its
high bandwidth and low latency with no CPU overhead by using zero-copy transfer and kernel

bypass [209]. There are several RDMA implementations, including InfiniBand [19], RDMA over
Converged Ethernet (RoCE) [15], and iWARP [21].

5.2.1.1 RDMA Verbs and Transport Types

Most RDMA implementations support several operations (verbs) that can broadly be divided into
two categories:

1. Two-Sided Verbs (Verbs with Channel Semantics). SEND and RECV verbs have channel se-
mantics, meaning a receiver must publish a RECV verb (using RDMA API) prior to a sender
sending data via a SEND verb. These two verbs are called two-sided as they must be matched by
both sender and receiver. These verbs use the remote node’s CPU, and thus have higher latency
and lower throughput than one-sided verbs [183].

2. One-Sided Verbs (Verbs with Memory Semantics). Unlike the two-sided verbs, READ, WRITE,
and atomic verbs (CAS and FA) have memory semantics, meaning they specify a remote address
on which to perform data operations. These verbs are one-sided, as the remote node’s CPU is
not aware of the operation. Due to their lack of CPU overhead, one-sided verbs are usually
preferred over two-sided verbs [149, 183]. However, the best choice, in terms of which verb to
use, always depends on the specific application.

RDMA operations take place over RDMA connections, which are of three transport types:
Reliable Connection (RC), Unreliable Connection (UC), and Unreliable Datagram (UD). With
RC and UC, two queue pairs need to be connected and explicitly communicating with each other.
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In this chapter, we focus our scope on Reliable Connection (RC), as it is the only transport
type that supports atomic verbs, which we use extensively to achieve fully decentralized lock
management in Section 5.4. Next, we focus on atomic verbs in more detail.

5.2.1.2 Atomic Verbs

RDMA provides two types of atomic verbs, compare-and-swap (CAS) and fetch-and-add (FA).
These verbs are performed on 64-bit values. For CAS, a requesting process specifies a 64-bit new

value and a 64-bit compare value along with a remote address. The value (i.e., original value) at
the remote address is compared with the compare value; if they are equal, the value at the remote
address is swapped with the new value. The original value is returned to the requesting process.
For FA, a requesting process specifies a value to be added (i.e., increment) to a remote address. The
increment is added to the 64-bit original value at the remote address. Similar to CAS, the original

value is returned to the requesting process.
Atomic verbs have two important characteristics that dictate their usage and system-level de-

sign decisions:

• Atomic verbs are guaranteed to never experience data races with other atomic verbs.

• The guarantee does not hold between atomic and non-atomic operations. For example, a
data race can still occur between CAS and WRITE operations [18].

These characteristics effectively restrict how one can mix and match these verbs in their design,
which is evident in existing RDMA-based lock management solutions—they all rely heavily on
CAS [83, 97, 192, 240]. A CAS operation will only succeed if its condition is satisfied (i.e., the
compare value equals the previous value). This characteristic can lead to unbounded and blind
retries, which can severely impact performance and cause starvation. For this reason, our approach
avoids the use of CAS as much as possible; rather, we primarily rely on FA which, unlike CAS, is
guaranteed to succeed. This also solves the issue of lock starvation, as we explain in Section 5.3.1.

5.2.2 Distributed Lock Managers

5.2.2.1 Traditional Distributed Lock Managers

Before discussing RDMA-based distributed lock managers, we briefly review the architecture of
a traditional distributed lock manager [132, 160]. Typically, each node runs a lock manager (LM)
instance (or daemon), in charge of managing a lock table for the objects stored on that node. Each
object (e.g., a tuple in the database) is associated with a lock object in the lock table of the node
that it is stored on.2 Before reading or modifying a tuple, a transaction must request a (shared or

2For simplicity of presentation, here we assume a single primary copy for each tuple.
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exclusive) lock on it. The LM instance running on the local node communicates the transaction’s
lock request to the LM instance running on the remote node hosting the object [132, 160]. The
transaction can proceed only after the corresponding (i.e., remote) LM has granted the lock. The
locks are released upon commit/abort in a similar fashion, by going through the remote LM. As
discussed in Section 5.1, these traditional LMs are distributed but centralized, in the sense that each
LM represents a single point of decision for granting the locks on its associated objects. Next, we
discuss distributed and decentralized LMs.

5.2.2.2 RDMA-Based Distributed & Decentralized Lock Managers

Unlike traditional distributed lock managers, in RDMA-based DLMs,3 a local LM (acting on be-
half of a transaction) can directly access lock tables in remote nodes instead of going through
the remote DLM instance.4 While this improves performance in most cases, it also requires new
RDMA-aware protocols for lock management [83, 97, 192, 240].

To the best of our knowledge, almost all RDMA-based DLMs use atomic verbs (instead of
SEND/RECV) for two main reasons. First, the SEND/RECV verbs are avoided due to their channel
semantics; the solution would be no different than traditional client/server-based solutions with
CPU involvement. Second, the READ/WRITE verbs cannot be used alone due to their vulnerability
to data races, which can jeopardize the consistency of the lock objects themselves. Consequently,
previous proposals have all used CAS [97, 240], or combined CAS with FA atomic verbs [83, 192],
depending on the data structure used for modeling their lock objects.

Lock Representation and Acquisition— Since RDMA atomic verbs operate on 64-bit values, all
RDMA-based DLMs use 64-bit values to represent their lock objects, but with slight variations. For
example, Devulapalli et al. [97] implement only exclusive locks and use the entire 64-bit value of a
lock object to identify its owner (i.e., the transaction currently holding the lock). Others [83, 192]
implement both shared and exclusive locks by dividing the 64-bit into two 32-bit regions (Figure
5.1). In these cases, the upper 32-bit region represents the state of an exclusive lock, and DLMs
use CAS to change this value to record the current [83,97] or last [192] exclusive lock owner of the
object; the lower 32-bit region represents the state of shared locks, and DLMs use FA to manipulate
this value to count the current number of shared lock owners.

Advisory Locking— Note that RDMA-based DLMs typically use advisory locking, meaning par-
ticipants cooperate and follow/obey a locking protocol without the lock manager enforcing it (i.e.,

3Note that we use DLM as an acronym for a Decentralized Lock Manager, rather than a Distributed Lock Manager.
4Some combine both architectures by using one-sided RDMA for lock acquisition but relying on additional mes-

sages (similar to traditional models) to address lock conflicts [192]. These protocols, however, suffer under contended
workloads (see §5.7.2).
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Exclusive (32-bit) Shared (32-bit)L
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Figure 5.1: The 64-bit representation of a lock object L used by previous RDMA protocols [83,
192].

mandatory locking). This is because one-sided atomic verbs interact with lock tables without in-
volving local DLM instances.

Handling Lock Conflicts— Perhaps the most important aspect of any lock manager is how it
handles lock conflicts. There are three possible scenarios of a lock conflict:

(a) Shared→ Exclusive

(b) Exclusive→ Shared

(c) Exclusive→ Exclusive

For example, (a) occurs when a transaction attempts to acquire an exclusive lock on an object
that others already have a shared lock on. To handle lock conflicts, DLMs typically use one or a
combination of the following mechanisms:

1. Fail/retry: a transaction simply fails on conflict and continues trying until the acquisition
succeeds [83, 240].

2. Queue/notify: lock requests with conflict are enqueued. Once the lock becomes available, a
DLM instance or the current lock owner notifies the requester to proceed [97, 192].

Which of these mechanisms is used has important ramifications on the design and performance
of a DLM, as discussed next.

5.3 Design Challenges

Since they lack a centralized queue, DLMs face several challenges:

(C1) Lock starvation caused by lack of global knowledge.

(C2) Fault tolerance in case of transaction failures.
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(C3) Deadlocks due to high concurrency.

We discuss each of these challenges in the following section.

5.3.1 Lock Starvation

Without a central coordinator, DLMs must rely on their partial knowledge for lock acquisition
and handling lock conflicts. Due to their lack of global knowledge, existing RDMA-based DLMs
utilize CAS and FA with blind retries for lock acquisition, which makes them vulnerable to lock
starvation.

Lock starvation occurs when a protocol allows newer requests to proceed before the earlier
ones, causing the latter to wait indefinitely. The starved transactions might themselves hold locks
on other tuples, thus causing other transactions to starve for those locks. Through this cascading
lock-wait, lock starvation can cause severe performance degradation and significantly increase tail
latencies. Existing DLMs allow for at least one or both of the following types of lock starvation :

(i) Reader-Writer Starvation: multiple readers holding shared locks starve a writer from ac-
quiring an exclusive lock.

(ii) Fast-Slow Starvation: faster nodes starve slower nodes from acquiring a lock.

5.3.2 Fault Tolerance

DLMs must be able to handle transaction failures (e.g., due to application bugs/crashes, network
loss, or node failures), whereby a transaction fails without releasing its acquired locks. As men-
tioned earlier, RDMA-based DLMs utilize one-sided atomic verbs that do not involve local DLM
instances. This makes it difficult for the local DLM to detect and release the unreleased locks
on behalf of the failed (remote) transaction. Under advisory locking, other transactions will wait
indefinitely until the situation is somehow resolved. In several previous RDMA locking proto-
cols [83, 97, 192], a local DLM does not have enough information on its lock table to handle
transaction failures. Wei et al. [240] use a lease [121] as a fault tolerance mechanism that allows
failed transactions to simply expire, allowing subsequent transactions to acquire their locks. How-
ever, their approach uses a lease only for shared locks, and cannot handle transactions that fail to
release their exclusive locks.

5.3.3 Deadlocks

Deadlocks can happen between different nodes (and their transactions) in any distributed context.
However, deadlock detection and resolution can become more difficult without global knowledge
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as the number of nodes increases. Furthermore, in some cases, the negative impact of deadlocks
on performance can be more severe with faster RDMA networks. This is because one can process
many more requests as network throughput increases using RDMA, and assuming a deadlock reso-
lution takes a similar amount of time regardless of network speed, deadlocks can incur a relatively
larger penalty on transaction throughput with faster networks.

In the next section, we present our algorithm that overcomes the three aforementioned chal-
lenges.

5.4 Our Algorithm

In this section, we present DSLR, a fully decentralized algorithm for distributed lock management
using fast RDMA networks. The high-level overview of how DSLR works is shown in Figure
5.2. Based on the challenges outlined in Section 5.3, we start by highlighting the primary design
goals of our solution. Next, we describe DSLR in detail, including how it represents locks, handles
locking/unlocking operations, and resolves lock conflicts.

5.4.1 Assumptions

In the following discussion, we rely on two assumptions. First, the system clock in each node
is well-behaved, meaning none of them advance too quickly or too slowly, and the resolution of
system clock in each node is at least ε, which is smaller than the maximum lease time that DSLR uses
(i.e., 10 ms). This is similar to the assumption in [121], except that we do not require the clocks to
be synchronized. Second, the lock manager on each node has prior knowledge of the location of
data resources (and their corresponding lock objects) in the cluster. This can be achieved either by
using an off-the-shelf directory service for the resources in the cluster (e.g., name server) [92,109]
or by peer-to-peer communications between the lock managers on-the-fly.

5.4.2 Design Criteria

As discussed earlier in Section 5.3, a decentralized DLM faces several challenges, including lock
starvation (C1), faults caused by transaction failures (C2), and deadlocks (C3). Next, we explain
how our design decisions differ from those of previous DLMs and how they enable us to overcome
the aforementioned challenges.
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5.4.2.1 Representation of a Lock Object

As mentioned in Section 5.2.2.2, most RDMA-based DLMs split a 64-bit word into two 32-bit
regions to represent shared and exclusive locks on an object. Unfortunately, algorithms using this
representation rely on the use of CAS, which makes them vulnerable to lock starvation (C1). To
solve this problem, we develop a new representation using four 16-bit regions instead of two 32-
bit regions as part of our RDMA-based implementation of Lamport’s bakery algorithm. We explain
the details of our lock object representation in Section 5.4.4.

5.4.2.2 RDMA Verbs

Previous RDMA-based DLMs rely heavily on CAS to change the value of a lock object as they ac-
quire or release a lock. This causes lock starvation (C1) because, as demonstrated in Section 5.3.1,
if the value of a lock object keeps changing, a DLM blindly retrying with CAS will continuously
fail. Instead of using CAS, DSLR uses FA—which, unlike CAS, is guaranteed to succeed—to acquire
and release locks with a single RDMA operation. We describe how we use FA and READ for lock
acquisition and handling of lock conflicts in Section 5.4.5 and 5.4.6.

5.4.2.3 Handling Transaction Failures and Deadlocks

To the best of our knowledge, existing RDMA-based DLMs have largely overlooked the issue of
transaction failures (C2) and deadlocks (C3). To handle transaction failures, we propose the use of
a lease [121]. (Note that DrTM [240] also uses a lease for shared locks, but DSLR utilizes it specifi-
cally for determining transaction failures. Also, the lease expiration in DSLR is determined locally
without the need for synchronized clocks.) We also employ a timeout-based approach to handle
deadlocks, utilizing our lease implementation. In addition, we adopt a well-known technique from
networking literature, called random backoffs, in our bakery algorithm

5.4.3 Lamport’s Bakery Algorithm

Before introducing DSLR, we provide a brief background on Lamport’s bakery algorithm [164].
Lamport’s bakery algorithm is a mutual exclusion algorithm, designed to prevent multiple threads
from concurrently accessing a shared resource. In his algorithm, Lamport essentially models a
bakery, where each customer entering the bakery receives a ticket with a number that is monoton-
ically increasing. This number is incremented each time a customer enters the bakery. In addition
to the ticket numbers, there is also a global counter in the bakery, showing the ticket number of
the current customer being served, and once the customer is done, this global counter is incre-
mented by 1. The next customer who will be served by the bakery will be the one whose ticket
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Figure 5.2: A high-level overview of lock acquisition and release in DSLR.
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Figure 5.3: DSLR’s 64-bit representation of a lock object L.

number matches the current value of the global counter, and so on. In the subsequent sections, we
describe how DSLR modifies this original bakery algorithm in an RDMA context with both shared
and mutual (i.e., exclusive) locks.

5.4.4 Lock Object Representation

Figure 5.3 shows a 64-bit representation of a lock object that DSLR uses in its RDMA-specific
variant of the bakery algorithm, which takes the form of {nX, nS, maxX, maxS}. Using the bakery
analogy from Lamport’s original algorithm, the upper 32 bits, nX and nS, are equivalent to global
counters, showing the largest ticket numbers of customers (in our case, transactions) that are cur-
rently being served for exclusive and shared locks, respectively. The lower 32 bits, maxX and maxS,
are equivalent to the next ticket numbers that an incoming customer will receive for exclusive and
shared locks, respectively. By simply incrementing maxX or maxS using FA and getting its original
value, a transaction obtains a ticket with the current max numbers; then it only needs to wait until
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the corresponding counter value (i.e., nX or nS) becomes equal to the number on its obtained ticket.
Note that the original bakery algorithm assumes unbounded counters. However, we are re-

stricted to a 16-bit space (i.e., a maximum of 65,535) to store the value of each counter. The
challenge here—if we keep incrementing the values—is an overflow, making the state of in-flight
transactions invalid. DSLR circumvents this problem by periodically resetting these counters before
one can overflow (see §5.4.9). While doing so, it ensures that all other transactions will wait until
the reset is properly done, abiding by the advisory locking rules of DSLR. We will explain how this
process works in more detail in subsequent sections.
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function ACQUIRELOCK(tid, L, mode)
Inputs: tid: the id of the requesting transaction

L: the requested lock object
mode: lock mode (shared, exclusive)

Global : ResetFrom[tid, L]: the value of L that tid needs to use for resetting L

(accessible by all transactions in the local node)
Consts : COUNT MAX = 32,768
Output: Success or Failure

1 ResetFrom[tid, L]← 0
2 if mode = shared then

3 prev← FA (L, maxS, 1)
4 if prev(maxS) ≥ COUNT MAX OR prev(maxX) ≥ COUNT MAX then
5 FA (L, maxS, -1)
6 Performs RandomBackoff
7 if prev(nS) or prev(nX) has not changed for longer than twice

the lease time since last failure then
8 Reset L // Refer to Lines 11–19 in HandleConflict
9 return Failure

10 else if prev(maxS) = COUNT MAX-1 then
11 ResetFrom[tid, L] = {prev(maxX), COUNT MAX, prev(maxX), COUNT MAX}
12 if prev(nX) = prev(maxX) then
13 return Success

14 else
15 return HandleConflict(tid, L, prev, mode)

16 else if mode = exclusive then
17 prev← FA (L, maxX, 1)
18 if prev(maxS) ≥ COUNT MAX OR prev(maxX) ≥ COUNT MAX then
19 FA (L, maxX, -1)
20 Performs RandomBackoff
21 if prev(nS) or prev(nX) have not changed for longer than twice

the lease time since last failure then
22 Reset L // Refer to Lines 11–19 in HandleConflict
23 return Failure

24 else if prev(maxX) = COUNT MAX-1 then
25 ResetFrom[tid, L] = {COUNT MAX, prev(maxS),

COUNT MAX, prev(maxS)}
26 if prev(nX) = prev(maxX) AND prev(nS) = prev(maxS) then
27 return Success

28 else
29 return HandleConflict(tid, L, prev, mode)

Algorithm 5: The pseudocode for the AcquireLock function (see Table 5.1 for procedure defini-
tions).
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Waits for nX = 1 
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(a) (b)
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Figure 5.4: An example of a transaction T3 acquiring an exclusive lock with DSLR on a lock object
L.

5.4.5 Lock Acquisition

Our algorithm uses a single FA operation to acquire a lock, or simply queue up for it by adding 1 to
maxX or maxS without having to directly communicate with other nodes in the cluster. Algorithm 5
presents the corresponding pseudocode. Figure 5.4 demonstrates an example, where a transaction
with tid = 3 (i.e., T3) wants to acquire an exclusive lock on a lock object L, and L at the time has
the value of {1, 1, 1, 4}. Then, T3 needs to increment maxX of L by 1 to get a ticket with the next
maximum number. This, (a) in Figure 5.4, will set L = {1, 1, 2, 4} and T3 will have the ticket, (b)
in Figure 5.4. For exclusive locks, T3 needs to wait for both shared and exclusive locks preceding
it on L. By comparing the values on its ticket and the current nX and nS on L, T3 knows that there
are currently maxS − nS = 3 transactions waiting or holding shared locks on L; thus, T3 will wait
for them, (c) in Figure 5.4. Here, the HandleConflict function is called subsequently (explained in
the next section). Similarly, if T3 wants to acquire a shared lock on L, it needs to increment maxS
and wait until prev(maxX) = nX.

DSLR has an additional logic in place to reset segments of a lock object before they overflow,
and to ensure that other transactions take their hands off while one is resetting the value (Lines

4–9 and Lines 18–23 in Algorithm 5 for shared and exclusive locks, respectively). This logic
enables incoming transactions to reset the counters if necessary, hence preventing situations where
they would wait indefinitely for other failed transactions to reset the counters. We describe this
resetting procedure in Section 5.4.9.

5.4.6 Handling Lock Conflicts

In our algorithm, a lock conflict occurs when a transaction finds that the current counters of L are
less than the unique numbers on its assigned ticket, meaning there are other preceding transactions
either holding or awaiting locks on the lock object L. DSLR determines this by examining the
return value of FA (i.e., prev) and calling HandleConflict if there is a lock conflict. Algorithm 6
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Function Description
val(segment) represents the value of segment in the 64-bit value val. A

segment is one of nX, nS, maxX, or maxS.
prev← CAS (L, current, new) runs CAS on L, changing it from current to new only if the

value of L is current. The returned value, prev, contains
the original value of L before CAS.

prev← FA (L, segment, val) runs FA on L, adding val to segment of L. The returned
value, prev, contains the original value of L before FA. For
example, FA (L, maxX, 1) adds 1 to maxX of L.

val←READ (L) runs RDMA READ on L and returns its value.

Table 5.1: List of notations and procedures used by DSLR.

L
nX nS maxX maxS

1 1 1 4

1 1 2 4

2 4 2 4

Action Ticket

FA(L, maxX, 1) {1,1,1,4}

Reset(L)

T3

Ti
m
e

Figure 5.5: An example of a transaction T3 resetting a lock object L to resolve a deadlock.

is the pseudocode for the HandleConflict function. Remember that prev is the value of L right
before the execution of FA. Here, the algorithm continues polling the value of L until it is tid’s
turn to proceed with L by comparing the current counters of L with the numbers of its own ticket
(Lines 5–7 for shared, Lines 8–10 for exclusive locks in Algorithm 6). DSLR detects transaction
failures and deadlocks when it still reads the same counter values even after twice the length of
the proposed lease time has elapsed (Lines 11–19). This is determined locally by calculating the
time elapsed since the last read from the same counter values. This function returns Failure only
when transaction failures or deadlocks are detected by DSLR and the counters are already reset. In
such a case, the transaction can retry by calling the AcquireLock function again. DSLR also avoids
busy polling by waiting a certain amount of time proportional to the number of preceding tickets.
Specifically, DSLR calculates the sum of the number of preceding exclusive and shared tickets (i.e.,
wait count in Line 20). Then, it waits for this sum multiplied by a default wait time ω, which
can be tuned based on the average RDMA latency of the target infrastructure (5 µs in our cluster).
This technique is similar to the dynamic interval polling idea used in [216], which reduces network
traffic by preventing unnecessary polling Next, we explain how DSLR handles such failures and
deadlocks in the HandleConflict function.
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function HANDLECONFLICT(tid, L, prev, mode)
Inputs: tid: ID of the requesting transaction

L: the requested lock object
prev: the value of the lock object at time of FA
mode: lock mode (shared, exclusive)

Output: Success or Failure

1 while true do
2 val← READ (L)
3 if prev(maxX) < val(nX) or

prev(maxS) < val(nS) then
4 return Failure

5 if mode = shared then
6 if prev(maxX) = val(nX) then
7 return Success

8 else if mode = exclusive then
9 if prev(maxX) = val(nX) and

prev(maxS) = val(nS) then
10 return Success

11 if val(nX) or val(nS) have not changed
for longer than twice the lease time then

12 if mode = shared then
13 reset val← {prev(maxX),

prev(maxS) + 1, val(maxX), val(maxS)}
14 else if mode = exclusive then
15 reset val← {prev(maxX) + 1,

prev(maxS), val(maxX), val(maxS)}
16 if CAS(L, val, reset val) succeeds then
17 if reset val(maxX) ≥ COUNT MAX OR

reset val(maxS) ≥ COUNT MAX then
18 Reset L to zero // Refer to Lines 6–7 in

// Algorithm 7
19 return Failure

20 wait count← (prev(maxX)− val(nX)) +
(prev(maxS)− val(nS))

Wait for (wait count × ω) µs
Algorithm 6: Pseudocode of the HandleConflict function (see Table 5.1 for procedure defini-
tions).

5.4.7 Handling Failures and Deadlocks

When DSLR detects transaction failures or deadlocks by checking counter values for the duration
of the proposed lease time, it calls the HandleConflict function to reset the counter values of L on
behalf of tid (Line 16).

Note that, where there is a risk of an overflow (i.e., counter reaching COUNT MAX), tid will also
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function RELEASELOCK(tid, L, elapsed, mode)
Inputs: tid: ID of the requesting transaction

L: the requested lock object
elapsed: the time elapsed since the lock acquisition

of L
mode: lock mode (shared, exclusive)

Global : ResetFrom[tid, L]: the value of L that tid needs
to use for resetting L

(accessible by all transactions in the local node)
Output: Success

1 if (elapsed is less than the lease time) or
(ResetFrom[tid, L] > 0) then

2 if mode = shared then
3 val← FA (L, nS, 1)
4 else if mode = exclusive then
5 val← FA (L, nX, 1)
6 if ResetFrom[tid, L] ¿ 0 then
7 Repeat CAS(L, ResetFrom[tid, L], 0) until it

succeeds
ResetFrom[tid, L]← 0

8 return Success

Algorithm 7: Pseudocode of the ReleaseLock function (see Table 5.1 for procedure definitions).

be responsible for resetting. After the reset, tid fails with the lock acquisition. It releases all locks
acquired thus far and retries from the beginning. For example, suppose T3 detects a deadlock and
wants to reset L, as shown in Figure 5.5. T3 basically resets L with CAS such that the next transaction
can acquire a lock on L, and this resolves the deadlock. T3 and other transactions that were waiting
on L must retry after the reset. The beauty of this mechanism is that a deadlock will be resolved
as long as any waiting transactions (say TW) reset the counter of L, where transactions before TW

can simply retry while transactions after TW can continue with acquiring locks on L. Note that
DSLR detects and handles other types of failures, such as transaction aborts and node failures, using
a different mechanism. Specifically, transaction aborts are handled in the same fashion as normal
transactions; when a transaction is aborted, DSLR simply releases all its acquired locks. However, to
detect node failures (which are less common) or a loss of RDMA connections between the nodes,
DSLR relies on sending heartbeat messages regularly (10 seconds by default) between the nodes
in the cluster and checking the event status of the message from the RDMA completion queues
(CQs). We describe the details of the ReleaseLock function in the next section.
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Figure 5.6: An example of a transaction T3 resetting a lock object L to avoid overflow of counters.

5.4.8 Lock Release

Releasing a lock object L with DSLR is as simple as incrementing nX or nS with FA, unless the
lease has already expired. Algorithm 7 is the pseudocode for the ReleaseLock function. An extra
procedure is only needed if the transaction unlocking the lock object happens to also be responsible
for resetting the value of L in order to prevent overflows. This is determined by inspecting the
value of ResetFrom[tid, L], which would have been set during AcquireLock, if tid is required to
perform the resetting of L. In that case, tid will increment counter, even if the lease has expired,
since it has to reset the value of L. Next, we explain how DSLR resets counters of a lock object to
prevent overflows.

5.4.9 Resetting Counters

In DSLR, we have a hard limit of COUNT MAX, which is 215 = 32, 768, for each 16-bit segment of
a lock object L. In other words, DSLR only allows counters to increase until halfway through their
available 16-bit space. This is identical to the commonly-used buffer overflow protection technique
with a canary value to detect overflows [89]. In our case, DSLR uses the 16th most significant bit as
a canary bit to reset the value before it actually overflows.

For example, suppose T3 wants to acquire an shared lock on L, as shown in Figure 5.6. Af-
ter performing FA on L, T3 receives prev = {29998, 32765, 30000, 32767}. Now, maxS of
prev is 32,767, which is COUNT MAX-1, meaning (maxS) of the object L has reached the limit
COUNT MAX. At this point, DSLR waits until T3 and all preceding transactions are complete by set-
ting ResetFrom[3, L] to {30000, 32768, 30000, 32768}. When T3 releases its lock on L, DSLR re-
sets the value of L to 0 from ResetFrom[3, L] with CAS. Note that once either maxX or maxS reaches
COUNT MAX, no other transactions can acquire the lock until it is reset. If a transaction detects such
a case (i.e., Line 3 and 17 in Algorithm 5), it reverses the previous FA by decrementing either
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maxX or maxS and performs a random backoff to help the resetting process. Our use of a random
backoff ensures that the repeating CAS will eventually avoid other FAs and reset the counter without
falling into an infinite loop. In fact, previous work [161] has formally shown that a network packet
can avoid collisions with other packets (and be successfully transmitted over the network) with a
bounded number of retries using a random backoff, assuming there is a finite number of nodes in
the cluster. Similarly, the expected number of CAS retries to avoid other FAs, and successfully reset
the counter, will also be bounded.

Note that the use of a 16-bit space means that, at least in theory, the value of a lock object L
can still overflow if there are more than 32,767 transactions trying to acquire a lock on the same
object at the same time. However, this situation is highly unlikely in practice with real-world
applications. Nonetheless, we only utilize CAS for resetting counters and avoid redundant CAS
calls, unlike previous approaches, since our first FA simultaneously acquires the lock successfully
or enqueues for the lock in case of conflicts.

5.5 Supporting Additional Capabilities

In this section, we explain how DSLR supports some additional features that are often needed by
modern database systems.

5.5.1 Support for Long-Running Transactions

Mixed workloads are increasingly common [191,207], also known as hybrid transactional/analytical
processing (HTAP). The use of a fixed lease time can lead to penalizing long-running queries or
transactions. To allow such transactions to complete before their lease expires, we use a multi-slot

leasing mechanism to support varying lease times. Specifically, to request a longer lease, a transac-
tion can add a number larger than 1 (say k) to the next ticket number (i.e., maxX or maxS). Here, Line

3 of Algorithm 5 changes from FA (L, maxS, 1) to FA (L, maxS, k) for shared locks. Line 17 changes
similarly for exclusive locks. Our lease expiration logic is also changed accordingly, whereby each
transaction determines its own expiration time based on its own ticket numbers rather than a fixed
lease duration for all transactions. In other words, the lease expiration will be proportional to δ,
where δ is the difference between the current and the next ticket numbers (i.e., δ = (prev(maxX) −
prev(nX)) + (prev(maxS) − prev(nS))). Similarly, the transaction releases its acquired lock by
adding k instead of 1 to nS or nX (i.e., Lines 3 and 5 of Algorithm 7). Note that DSLR can prevent
unfairly long durations by imposing the maximum value of k that can be used by any transaction.

With this multi-slot leasing, a long-running transaction is effectively obtaining multiple tickets
with consecutive numbers, while other transactions infer its lease expiration time based on the
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Waits for nS = 2 for exclusive

T3
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e (a) (b)

(c)

(d)

Figure 5.7: An example of a transaction T3 acquiring an update lock on a lock object L.

number of outstanding tickets shown on their own tickets. The maximum lease time possible will
be φ × ω, where φ is the remaining ticket numbers in L and ω is the default wait time. This means
we can always tune ω to accommodate longer transactions, even when φ is small (i.e., there are
few remaining tickets). Therefore, multi-slot leasing practically eliminates a hard limit on how
long a transaction can remain in the system, thereby allowing long-running transactions to run
successfully. We study the effectiveness of this technique in Section 5.7.5.

5.5.2 Lock Upgrades

Many modern databases support lock upgrades. For example, a SQL statement “SELECT ...

FOR UPDATE” would acquire shared locks on its target rows to read them first, and then later
upgrade those shared locks to exclusive ones after draining the existing shared locks (held by other
transactions) so that it can update those rows.

DSLR supports lock upgrades by implementing a third type of locks, i.e., update locks. An
update lock is similar to an exclusive lock, except that a transaction can acquire an update lock
even when other transactions already have shared locks on that object. In the presence of those
shared locks, the transaction with the update lock (say TU ) can only read the object. Once all other
shared locks on that object are released, TU is finally allowed to write to the object. Other shared
and exclusive lock requests that arrive after an update lock has been granted must wait for the
update lock to be released.

To implement update locks, we simply introduce two new ticket counters, nU and maxU. This
means we must divide our 64-bit lock object L between six counters (rather than four). For ex-
ample, suppose the transaction T3 wants to acquire an update lock on a lock object L, as shown
in Figure 5.7. Following the same lock acquisition procedure in Section 5.4.5, T3 takes its ticket
by adding 1 to maxU ((a) in Figure 5.7). Even though there are already two other transactions with
shared locks on L ((b) in Figure 5.7), T3 is still granted a shared lock ((c) in Figure 5.7). Once the
other two transactions release their shared locks, T3 is granted an exclusive lock on L ((d) in Figure
5.7).

122



5.6 Optimization

In this section, we present a number of optimizations to maximize the performance of our dis-
tributed locking algorithm. These optimizations include exponential random backoff and tuning
the threshold of our timeout approach.

5.6.1 Exponential Random Backoff

Exponential random backoff is a widely used technique in networking literature (e.g., they are
used in the IEEE 802.11 protocol [58]) to resolve network collisions. The idea is to progressively
wait longer between retransmission of data in case of a network collision. We found that the
performance of DLMs with RDMA degrades significantly when multiple nodes repeatedly conflict
on highly contested lock objects and resort to reties/polling. We discovered that adopting the
exponential random backoff idea in our distributed locking algorithm can be quite effective at
mitigating such scenarios.

In particular, we utilize a binary exponential random backoff. When our algorithm detects a
deadlock/timeout by reaching its limit on the maximum number of polls, the lock manager waits
W microseconds before retrying the lock request, where W is drawn uniformly at random from
the following interval:

[0,max(R× 2c−1, L)]

where R is a default backoff time (100 microseconds in our experiments) and c is the number
of consecutive deadlocks/timeouts for the current lock object. To prevent an unlucky node from
waiting too long, we also impose a maximum value L so that a node never has to wait too long
even when c is large (L=10000 by default).

5.6.2 Tuning the Timeout Threshold

As discussed in Section 5.4.6, our algorithm uses a limit on the maximum number of polls for a
lock object (i.e., max poll in Algorithm 5 and 6) as a measure of detecting timeouts and deadlocks.
We refer to this parameter as the timeout threshold in the rest of the chapter. Considering the
fast latency of RDMA READ verbs in InfiniBand (i.e., ≈ 8 µs in our experiment setup), one may
expect that a large number should be used for this threshold (e.g., 10 or 20 retries) in order to
prevent premature timeouts. However, surprisingly, we found that high threshold values perform
worse than smaller ones that only allow a handful number of polls. The insight here is that it is
significantly more network-efficient for a lock manager to ‘fail fast’ (and release all its currently
held locks in a transactional setting) and try again than to wait longer in hopes that the lock object
will eventually become available when in fact there is a deadlock situation. When there is high
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contention on popular lock objects in the cluster, the situation quickly exacerbates as there is a
cascading effect of every node waiting for a lock object while holding locks on others.

5.7 Evaluation

In this section, we empirically evaluate our proposed algorithm, DSLR, and compare it with other
RDMA-based approaches to distributed locking. Our experiments aim to answer several questions:

(i) How does DSLR’s performance compare against that of existing algorithms? (§5.7.2)

(ii) How does DSLR scale as the number of lock managers increases? (§5.7.3)

(iii) How does DSLR’s performance compare against that of queue-based locking in the presence
of long-running reads? (§5.7.4)

(iv) How does DSLR support long-running reads effectively with its multi-slot leasing mecha-
nism? (§5.7.5)
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Figure 5.8: Performance comparison of different distributed lock managers under TPC-C (low and
high contention).
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5.7.1 Experiment Setup

Hardware— For our experiments, we borrowed a cluster of 32 r320 nodes from the Apt cluster
(part of NSF CloudLab infrastructure for scientific research [16]), each equipped with an Intel
Xeon E5-2450 processor with 8 (2.1Ghz) cores, 16GB of Registered DIMMs running at 1600Mhz,
and running Ubuntu 16.04 with Mellanox OFED driver 4.1-1.0.2.0. The nodes were connected
with ConnectX-3 (1x 56 Gbps InfiniBand ports) via Mellanox MX354A FDR CX3 adapters. The
network consisted of two core and seven edge switches (Mellanox SX6036G), where each edge
switch was connected with 28 nodes and connected to both core switches with a 3.5:1 blocking
factor.

Baselines— For a comparative study of DSLR, we implemented the following previous RDMA-
based, distributed locking protocols:

1. Traditional is traditional distributed locking, whereby each node is in charge of managing
the locks for its own objects [132,160]. Although distributed, this approach is still centralized,
since each LM instance is a central point of decision for granting locks on the set of objects
assigned to it. That is, to acquire a lock on an object, a transaction must communicate with the
LM instance in charge of that node. This mechanism uses two-sided RDMA SEND/RECV verbs
with queues.

2. DrTM [240] is a decentralized algorithm, which uses CAS for acquiring both exclusive and shared
locks. This protocol implements a lease for shared locks, providing a time period for a node to
hold the lock. In case of lock conflicts, exclusive locks are retried with CAS, and shared locks
are retried if the lease has expired. In our experiment, we follow the guidelines provided in
their paper for specifying the lease duration.

3. Retry-on-Fail [83] is another decentralized algorithm, which uses CAS for exclusive and FA

for shared lock acquisition. Their protocol simply retries in all cases of lock conflicts. Although
this work is not published, their approach represents an important design choice (i.e., always
retry), which merits an empirical evaluation in our experiments. (We refer to this protocol as
Retry-on-Fail, as it was not named in their report.)

4. N-CoSED [192] uses CAS for exclusive and FA for shared lock acquisition. While decentral-
ized, it still tries to obtain global knowledge by relying on distributed queues and extra ‘lock
request/grant’ messages between the DLMs upon lock conflicts.

Implementation— We implemented all baselines in C/C++ (none of them had a readily avail-
able implementation). For RDMA, we used libibverbs and librdmacm libraries with OpenMPI
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1.10.2 [20]. Since none of the baselines had a mechanism to handle deadlocks, we also imple-
mented DSLR’s timeout-based approach for all of them. For each experiment, we varied the timeout
parameter (i.e., maximum number of retries) for each baseline, and only reported their best results.

Servers & Clients— In each experiment, we used one set of machines to serve as LMs and a
separate set as clients. Each client machine relied on four worker threads to continuously generate
transactions by calling stored procedures on one of the nodes. The LM on that node would then
acquire the locks on behalf of the transaction, either locally or on remote nodes. For remote locks,
a CLM would contact other CLMs in the cluster, whereas a DLM would acquire remote locks
directly. Once all the locks requested by a transaction were acquired, the transaction committed
after a think time of γ and released all its locks. Unless specified otherwise, we used γ = 0. The
data on each node was entirely cached in memory, while the redo logs were written to disk. Each
experiment ran for 5 minutes, which was sufficiently large to observe the steady-state performance
of our in-memory prototype.

Workloads— We experimented with two workloads, the well-known TPC-C benchmark and our
own microbenchmark For TPC-C, we used two settings: a low-contention setting with 10 ware-
houses per node, and a high-contention setting, with one warehouse per node. Each LM instance
had a lock table with a lock object for every tuple of its local warehouse(s). Each transaction re-
quested a number of shared or exclusive locks, depending on its type. We used the same proportion
of different transaction types as the original TPC-C specification.

5.7.2 Locking Performance For TPC-C

We evaluated the performance of DSLR and all the other baselines by running TPC-C in both low (10
warehouses per node) and high (1 warehouse per node) contention settings. We used a cluster of 16
nodes, each with an LM instance, and we used the remaining 16 machines to generate transactions
(see Section 5.7.1). We measured the throughput, average latency, and tail (i.e., 99.9%) latency
of the TPC-C transactions under each locking algorithm. As shown in Figure 5.8a, under high
contention, our algorithm achieved 1.8–2.5x higher throughput than all other baselines. Under
low contention, however, DSLR’s throughput was still 2.8x higher than Traditional, but was only
1.1–1.3x higher than the other DLMs. This was expected, as all algorithms essentially perform
the same operation to acquire an uncontended lock: they all use a single RDMA atomic operation
(except for Traditional, which still has to use two SEND/RECV operations). Note that SEND/RECV
and atomic operations have similar latencies, and the slower performance of Traditional is due
to its use of two RDMA operations instead of one.

For the same reason, average latencies were also similar for all DLMs under low contention,
but were much lower than Traditional’s average latency (again, due to the latter’s use of two
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Figure 5.9: Scalability of different distributed locking algorithms with increasing number of nodes.

SEND/RECV verbs instead of a single operation). Figure 5.8b reports the ratio of each baseline’s
average transaction latency to that of DSLR (i.e., DSLR’s speedup). Here, under low contention,
DSLR’s average latency was 1.2–1.5x lower than other DLMs but 2.8x lower than Traditional.
For high contention, however, DSLR’s average latency was nearly half of the other techniques, i.e.,
1.9–2.5x. This was mainly due to DSLR’s utilization of one-sided READ, which is much faster than
CAS operations (and blind retries) used by other DLMs in case of lock conflicts.

DSLR’s most dramatic improvement was reflected in its tail latencies. As shown in Figure 5.8c,
the 99.9 percentile transaction latencies were significantly lower under DSLR than all other base-
lines: 2.4–4.9x under low contention and up to 46.7x under high contention. This considerable dif-
ference underscores the important role of starvation and lack of fairness in causing extremely poor
tail performance. Here, Traditional, despite its lower throughput and higher average latency, be-
haved more gracefully in terms of tail latencies, compared to the other baselines. This was due to
Traditional’s global knowledge, allowing it to successfully prevent starvation and ensure fairness
even in the face of high-contention scenarios. DSLR, on the other hand, achieved the best of both
worlds: its decentralized nature allowed for higher throughput, while maintaining sufficient global
knowledge allowed it to prevent starvation (and thereby higher tail latencies). The other DLMs that
lacked any global knowledge–thus, any mechanism for preventing starvation—skyrocketed in their
tail latencies. When compared with Traditional that did not have the issue of lock starvation,
the tail latency of DSLR was still about 2x lower. This was because Traditional, as a queue-based
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lock manager, still had to use two pairs of SEND/RECV’s for each lock/unlock request, one for send-
ing lock/unlock request and another for receiving the response of the lock/unlock request, whereas
DSLR only needed a single RDMA operation (i.e., FA) for both locking and unlocking. Overall, the
results demonstrate that DSLR is quite robust against lock starvation scenarios and performs better
than other baselines in general.

5.7.3 Scalability of DSLR

We studied the scalability of DSLR compared to other distributed lock managers. We repeated the
experiment with increasing numbers of machines, from 2 to 32. For N machines, N/2 were server
nodes (and hence lock managers) and the remaining N/2 machines generated client transactions.
We used the low-contention TPC-C setting (10 warehouses per node).

As shown in Figure 5.9, the throughput of all distributed LMs scaled almost linearly (e.g., DSLR
achieving 14.5x scalability with 16x additional nodes) as the ratio of the number of server nodes
to that of worker threads were constant. N-CoSED and Traditional, which share common char-
acteristics of using queues and SEND/RECV verbs, scaled worse than others in terms of throughput,
due to the network congestion caused by their extra messaging. Retry-on-Fail and DrTM scaled
better than these queue-based algorithms, as they did not experience as much lock starvation under
low-contention. However, DrTM showed the worst performance in terms of its tail latency. This
was due to its use of lease, as exclusive locks were forced to wait on shared locks until their lease
time expired. Overall, DSLR demonstrated a better throughput than other baselines. For average
and 99.9% tail latencies, the performance of DSLR remained consistent and was more robust than
other baselines even as the number of nodes increased, again thanks to its starvation-free behavior.

5.7.4 Performance with Long-Running Reads

The main advantages of a first-come-first-serve (FCFS) policy are its simplicity, fairness, and
starvation-free behavior. However, this also means that an FCFS policy cannot reorder the re-
quests. This can be a drawback in situations where reordering the transactions might improve
performance [177], e.g., when there are long-running reads in the system.

To consider such scenarios, we implemented an additional baseline, called Traditional RO,
which is similar to Traditional (i.e., queue-based) except that it supports transaction reordering.
Specifically, Traditional RO allows readers ahead of the writers, as long as there is already a
shared lock held on the object. To avoid starvation of the writes, we also limited the maximum
number of shared locks that can bypass an exclusive lock to 10. This is similar to the strategy
proposed in [177], except that we used the number of locks instead of their timestamp to ensure
better performance for Traditional RO. Here, we modified the high-contention TPC-C setting de-
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Figure 5.10: Performance comparison between DSLR and queue-based (i.e., two-sided) lock man-
agers with/without transaction reordering, under a modified TPC-C with long-running reads.

scribed in Section 5.7.2, as follows: we submitted a long-running read transaction with probability
γ and a transaction from the original TPC-C workload with probability 1 − γ. We varied γ ex-
ponentially between 0.001% to 1%. Long-running read transactions required a table-level shared
lock on Customer table in order to perform a table scan.

Figure 5.10 reports the results for DSLR versus Traditional and Traditional RO. As ex-
pected, the throughput dropped significantly for all lock managers, as soon as long-running reads
were introduced, even at 0.001%. The performance of DSLR and Traditional RO became sim-
ilar at the ratio of 0.01%, with Traditional RO starting to perform better at the 0.1% ratio.
Traditional RO’s performance was about 1.2–1.4x better than that of DSLR between the ratio
of 0.1% and 1%. This is because it began to leverage transaction reordering with enough long-
running read transactions. By allowing other table scans and also short reads from NewOrder

and OrderStatus transactions ahead of other writes (i.e., Payment and Delivery transactions),
Traditional RO achieved a better performance overall. However, at 1%, the entire system was
brought to a halt (only around 1,400 transactions per second for Traditional RO), compared to
when there were no long-running reads (around 110,000 transactions per second for DSLR). This
was due to the extreme degree of contention caused by the long-running reads. The experiment
demonstrated that queue-based lock managers can benefit from transaction reordering in the pres-
ence of long-running reads. However, long-running reads by nature hurt the performance of trans-
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actional databases significantly, and there must be a large portion of such long-running reads in
the overall workload for transaction reordering to achieve a better performance than DSLR. More
importantly, when a shared lock is granted, the lock manager typically does not know when the
requesting transaction will release its locks. In other words, the remaining runtime of transaction is
not known to the database in general, e.g., the currently held shared lock might be short-lived while
the newly arrived one might be long-running. This is perhaps why, to the best of our knowledge,
most major databases do not use transaction reordering.

5.7.5 Effectiveness of Our Multi-Slot Leasing

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

0.
05 0.

1
0.

15 0.
2

0.
25 0.

3
0.

35 0.
4

0.
45 0.

5 Ra
tio

 o
f a

bo
rt

ed
 tr

an
sa

ct
io

ns
 

w
ith

 fi
xe

d 
le

as
e

# 
tr

an
sa

ct
io

ns
 p

er
 se

co
nd

Ratio of long-running read transactions

Multi-slot Lease Fixed Lease

Figure 5.11: Throughput with fixed vs. multi-slot leasing under the modified TPC-C workload.

We studied the effectiveness of our multi-slot leasing mechanism (Section 5.5.1), a technique
designed for accommodating long-running transactions. We used the modified TPC-C workload
described in Section 5.7.4. For this experiment, we varied the ratio of long-running read trans-
actions from 0.05 to 0.5. We ran DSLR, once with a fixed lease time (i.e., 10 ms) and once with
multi-slot leasing. As shown in Figure 5.11, multi-slot leasing led to a better throughput with zero
transaction aborts, implying successful execution of the long-running transactions. On the other
hand, under DSLR with a fixed lease time, more than half of the transactions aborted. This was
caused not only by those long-running transactions that were aborted, but also by other transac-
tions that were blocked by such transactions and eventually timed out and were aborted as well.
This confirms that long-running transactions can cause cascading aborts under a fixed lease setting.
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The experiment therefore shows the effectiveness of our multi-slot leasing mechanism.

5.8 Related Work

The rise of fast networks has motivated the redesign of distributed systems in general, and databases
in particular. While there has been much work on using RDMA for analytics or general data
processing [46, 104, 193, 211], here we focus on more relevant lines of work, namely those on
distributed lock management and transaction processing. We also discuss other techniques for re-
ducing tail latencies as well the distinction between coordination-free and decentralized protocols.

Distributed Lock Management— Devulapalli et al. [97] propose a distributed queue-based lock-
ing using RDMA operations. In their design, each client has its own FIFO (first-in-first-out) queue
of waiting clients, to which it will pass the ownership of the current lock. Unlike our algorithm,
it requires extra communications using CAS among clients in order to enqueue for, and pass the
ownership of, a lock. Furthermore, they only support exclusive locks. N-CoSED [192] is another
RDMA-based distributed locking, where every node uses CAS to directly place a lock onto the lock
server and exchanges extra “lock request/grant” messages in case of lock conflicts. N-CoSED is
similar to [97], as each node maintains the list (i.e., a queue) of other nodes waiting for each lock.
Chung et al. [83] discuss an alternate and simpler approach by retrying CAS repeatedly until the
operation is successful for exclusive locks, and continuously checking the exclusive portion of a
lock object until it becomes zero for shared locks (i.e., Retry-on-Fail in §5.7). Their mechanism
is simple and decentralized, yet faces the starvation problem when obtaining exclusive locks on
popular objects that have many repeated, continuous reads. In other words, readers starve writers
in their model.

RDMA-based Transaction Processing— NAM-DB uses one-sided RDMA read/write and atomic
operations to reduce extra communications required by a traditional two-phase commit [54]. How-
ever, they only provide snapshot isolation, whereas our proposed distributed lock manager guar-
antees serializability. Wei et al. design an in-memory transaction processing system, called DrTM,
that exploits advanced hardware features such as RDMA and Hardware Transactional Memory
(HTM) [240]. DrTM uses CAS to acquire exclusive locks and simply aborts and retries in the case of
lock conflicts. FaSST [150] is another system, which utilizes remote procedure calls (RPCs) with
two-sided RDMA datagrams to process distributed in-memory transactions. In FaSST, locking is
done with CAS, relying on aborts and retries upon failure (very similar to [240]). Li et al. propose
an abstraction of remote memory as a lightweight file API using RDMA [168], while Dragojević
et al. propose distributed platform with strict serializability by leveraging RDMA and non-volatile
DRAM [104]. HERD [149] is a key-value store that makes an unconventional decision to use
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RDMA writes coupled with polling for communication rather than RDMA reads. They achieve
higher throughput by using Unreliable Connection (UC), which unlike Reliable Connection (RC),
does not send acknowledgement (ACK/NAK) packets. Their approach is, however, inapplicable
to our setting, as all RDMA-based DLMs (including ours) rely heavily on atomic verbs to avoid
data races, and RDMA atomic verbs are only available with RC. (Data races can happen with other
RDMA verbs.)

Reducing Tail Latencies— A key advantage of DSLR is drastically reducing tail latencies by elim-
inating starvation. There are other approaches for reducing tail latencies, such as variance-aware
transaction scheduling [138, 139], automated explanation [248] or diagnosis [185, 186] of lock-
contention problems, redundant computations [112, 236], and choosing indices that are robust
against workload changes [188]. All of these approaches are orthogonal to DSLR.

Coordination-free Systems— Bailis et al. [45] show that preserving consistency without coordi-
nation is possible when concurrent transactions satisfy a property called invariant confluence. Our
decentralized algorithm improves the concurrency of distributed systems by allowing a faster coor-
dination in lock management without imposing any extra conditions. In other words, our approach
is much more general and does not require that the transactions satisfy invariant confluence.

5.9 Summary

In this chapter, we presented DSLR, an RDMA-based, fully decentralized distributed lock manager
that provides a fast and efficient locking mechanism. While existing RDMA-based distributed lock
managers abandon the benefits of global knowledge altogether for decentralization, DSLR takes a
different approach by adapting Lamport’s bakery algorithm and leveraging the characteristics of
FA verbs to sidestep the performance drawbacks of the previous CAS-based protocols that suffered
from lock starvation and blind retries. DSLR also utilizes the notion of a lease to detect deadlocks
and resolve them via its advisory locking rules. Our experiments demonstrate that DSLR results in
higher throughput and dramatically lower tail latencies than any existing RDMA-based DLM.
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CHAPTER 6

Conclusion

Autonomous databases are not an entirely new concept within the database community, but have
recently been in a greater spotlight due to the proliferation of cloud databases. Autonomous
databases can significantly reduce database operating costs and free DBAs from less productive
tasks like, monitoring and tuning, enabling them to work on more valuable tasks that still require
human experts’ insights, such as data modeling. In this dissertation, we examined two different
aspects of database autonomy—autonomy from human supervision and autonomy among database

components—and proposed new algorithms and frameworks in the three specific areas of database
research—automated tuning, performance diagnosis, and resource decentralization—that push
boundaries in these two aspects of database autonomy.

Autonomy from human supervision— Ideally, all database management tasks would be fully
autonomous, reducing operating costs and improving performance. In reality, however, only a few
simple tasks (such as backups and monitoring) are currently considered fully autonomous. More
complex tasks still require human supervision, to some degree.

In the context of autonomous databases, there has been much focus on automating database
parameter tuning and index creation for optimal database performance. Recent works have shown
high levels of autonomy (i.e., between levels of conditional and high) can be achieved in these ar-
eas, but there is still much room for improvement in other areas that have received less attention. In
this dissertation, we have concentrated on database management tasks that are mostly overlooked
in the context of autonomous databases.

First, we studied a robust physical designer, CliffGuard, which is more resilient against work-
load changes and noisy environments than existing nominal physical designers. CliffGuard applies
robust optimization (RO) theory in solving physical design problems. Physical designs created by
CliffGuard do not need to be re-tuned or re-designed as often as other existing designers, while
reducing the average latency of queries up to 14x compared to a state-of-the-art commercial de-
signer. CliffGuard can significantly reduce the operating costs incurred from regenerating physical
designs, while ensuring highly consistent performance.
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Second, we tackled the problem of joins on samples in the context of approximate query pro-
cessing (AQP), which are considered challenging to solve due to limitations with existing sampling
techniques. We proposed a hybrid sampling scheme, called UBS, and derived formulas to calculate
its optimal sampling parameters (i.e., OPT). UBS with OPT has been empirically studied through
an extensive set of experiments. We showed that it can provide a more accurate query approxima-
tion than existing sampling schemes (i.e., uniform or universe sampling) in various scenarios.

Last, we have proposed a new performance explanation framework called DBSherlock for per-
formance diagnosis. Surprisingly, database performance diagnosis is still primarily done manually
by DBAs. DBSherlock utilizes techniques from outlier detection and causality analysis to automate
this tedious process of performance diagnosis. We have demonstrated that exploratory predicates
generated by DBSherlock achieve up to 55% higher F1-measures than those generated by previous
techniques.

Overall, we have different database management tasks surrounding automated tuning and per-
formance diagnosis. We believe that each of these works can help to elevate the level of autonomy
from human supervision in database systems.

Autonomy among database components— For a fully autonomous database system, we want
its components to operate independently of others. Such autonomy among database components
is achievable via resource decentralization, but unfortunately, lock management has been difficult
to decentralize. This is because lock management operates at the record-level rather than the
application-level, unlike other resources, such as compute and storage. Because of this, we have
focused on decentralizing lock managers in this dissertation.

We have proposed a fully decentralized and distributed lock manager, called DSLR, that utilizes
RDMA (i.e., remote direct memory access) networks. Existing RDMA-based decentralized lock
managers all suffer from the problem of starvation, which causes a high tail latency. DSLR solves
this problem by adapting traditional Lamport’s bakery algorithm, and achieves up to 2.5x higher
throughput and up to 46.7x lower tail latency than any other existing RDMA-based decentralized
lock managers. We believe DSLR can drastically improve autonomy among database components
by fully decentralizing lock management in distributed database systems.

Future work— In this dissertation, we investigated different database management tasks for build-
ing a more autonomous database. However, our contributions are independent from one another.
these works have been done separately from each other. As we discussed previously, our ulti-
mate goal is to have all database management tasks fully autonomous. Now, it is necessary to
merge and integrate them into a single system in order to build a fully autonomous database. It
would be fascinating to build such a system that aims to include fully autonomous components
only. We anticipate that a completely new database system design may need to be invented first
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as a platform for building a fully autonomous database. We also expect this system to be highly
modular and easy to expand as non-autonomous components should be easily exchangeable with
their autonomous counterparts.
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