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Abstract
 
Heterogeneity in cancer can give rise to rare subpopulations of cells that are unlike the 

bulk average of the cancer cell population, such as metastatic cells which promote the 

formation of secondary tumors at distant sites. These subpopulations of cells can 

dramatically affect the progression of the disease. Recent work suggests that 

heterogeneity in cancer cell populations assessed by clonal analysis cannot fully 

account for differences in single cell behaviors. Nonclonal heterogeneity, such as 

variability due to the cellular microenvironment, can play a key role in promoting cancer 

behaviors. Signaling heterogeneity to downstream kinase effectors is one manifestation 

of nonclonal heterogeneity. Seemingly-identical cancer cells activate heterogeneous 

signaling to extracellular signal-regulated kinase (ERK) and Akt, two kinases implicated 

in cancer growth, survival, proliferation, and metastasis. The mechanistic drivers that 

promote signaling heterogeneity remain unclear and understanding them is crucial in 

effectively treating cancer. Advancements in single-cell experimental techniques and 

computational modeling can elucidate how the spatiotemporal tumor microenvironment 

shapes cancer cell behavior. In this thesis, we construct mechanistic computational 

models coupled to experimental data to understand the major drivers of nonclonal 

heterogeneity in cancer. First, we built a single-cell computational model to explain the 

heterogeneity in cell signaling responses to ERK and Akt that we observed in breast 

cancer cells in experiments. The model predicted that the pre-existing signaling state of 

cancer cells controls signaling responses through chemokine receptor CXCR4, a critical 

receptor in cancer initiation and metastasis, and that these pre-existing states are 

shaped by environmental stimuli. The model also predicted that targeted therapies 

currently under clinical investigation may inadvertently potentiate pro-metastatic 

signaling through CXCR4. Second, we expanded our computational model to test its 

robustness in predicting signaling through another key receptor in cancer proliferation, 

epidermal growth factor receptor (EGFR). Our model predicted single-cell signaling 
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responses in two breast cancer cell lines of various mutational backgrounds to different 

doses of both CXCR4 and EGFR stimuli. The robustness of our model solidified our 

hypothesis that variation in cell signaling stems from extrinsic noise in three key 

pathway components: phosphatidylinositol-3-kinase (PI3K), Ras, and mammalian target 

of rapamycin complex 1 (mTORC1). Third, we built a spatial model of the tumor 

microenvironment to understand the impact of circadian rhythms and heterogeneity in 

the spatial tumor composition in promoting metastasis. We found that the magnitude of 

chemokine gradients, which can act as the molecular highway directing cancer cells 

where to invade and metastasize, varies throughout the course of the day with the 

circadian rhythm such that therapies may be more or less effective based on time of 

administration. Additionally, the spatial arrangement of a tumor with regard to cells 

secreting and scavenging these chemokines, which can vary tumor-to-tumor or within a 

single tumor, has a marked impact on the direction of chemokine gradients. We found 

that specific arrangements of cells in tumors promote chemokine gradients that can 

direct cancer cells to intravasate and metastasize. Overall, this thesis builds on our 

knowledge of heterogeneity in cancer and provides suggestions for clinical 

opportunities.  
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Chapter 1 Introduction
 

1.1 Motivation 

Cancer is a heterogeneous disease. Seemingly identical cells can respond to their 

environment differently than one another. Heterogeneity in the tumor microenvironment 

can impact cellular responses and give rise to aggressive subpopulations of cells that 

can control overall cancer progression. Currently, many cancer therapies, including 

chemotherapy and targeted therapy, often fail to fully contain or kill these 

subpopulations. In order to effectively target aggressive subpopulations, we need an 

understanding of the biological mechanisms that promote their existence and survival. 

In this thesis, I elucidate mechanisms that drive spatiotemporal heterogeneity in cancer 

cell responses and microenvironments with implications for strategic targeted therapies. 

 

1.2 Receptor Biology 

1.2.1 Chemokine receptor CXCR4 and its ligand CXCL12 

Chemokine receptor CXCR4 is a G-protein coupled receptor (GPCR) involved in normal 

development and physiology that is expressed on immune cells and cells in the central 

nervous system (1–5). Chemokine ligand binds to CXCR4 and elicits downstream G-

protein signaling that can drive directed cell migration from low to high concentrations, a 

process called chemotaxis (6,7). Cancers of various types, including brain, breast, and 

prostate, are known to overexpress CXCR4 (8). CXCR4 is implicated in cancer initiation 

and metastasis in more than 20 different malignancies and is correlated with poor 

prognosis. The CXCR4 inhibitor balixafortide has shown favorable results in a Phase I 

clinical trial as an adjuvant therapy for advanced metastatic breast cancer (9), 

reinforcing the need to understand CXCR4 biology. 
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Chemokine CXCL12 is a small, 10-kDa protein that exists in six different isoforms that 

can bind CXCR4 in humans (10,11). The three most abundant isoforms in humans are 

CXCL12-α, CXCL12-β, and CXCL12-γ. These isoforms are formed due to alternative 

splicing and are comprised of the same 89 amino acids on the N-terminus; they differ in 

length and composition on the C-terminus end. All isoforms of CXCL12 contain many 

basic residues and are therefore positively charged (12). The positive charge allows 

CXCL12 isoforms to nonspecifically bind to negatively-charged glycosaminoglycans 

(GAGs) on cell membranes (13–15). There are two major functional differences 

between the isoforms: they have different affinities for GAGs, and they are secreted at 

different rates from fibroblasts, the major producers of CXCL12 (13,14,16–18). In 

Chapter 4, we discuss how these differences can promote gradients of CXCL12 in the 

tumor microenvironment conducive to CXCR4-mediated chemotaxis. 

 

CXCR4 expression and CXCL12 concentrations vary temporally (about 2-3 fold) with 

the circadian rhythm (19–22). The natural blood dynamics of CXCL12 levels indicate 

that CXCL12 gradients between tissue and the vasculature can vary in magnitude 

throughout the day (14). The fact that CXCL12 gradients are time-dependent highlights 

how cancer cells may be more prone to metastasize at specific times of day (20), and 

perhaps therapeutic agents against CXCR4 would be most efficacious at specific times 

of day (23).  

 

1.2.2 CXCR7 biology 

CXCR7, now referred to as ACKR3, is an atypical chemokine receptor that can also 

bind CXCL12 but does not elicit G-protein signaling upon ligand binding (24,25). The 

binding interaction between CXCR7 and CXCL12 has a 10-fold higher affinity than the 

interaction between CXCR4 and CXCL12 (24). CXCR7 acts as a CXCL12 scavenger by 

rapidly binding, internalizing, and degrading CXCL12 (14,16,26–28). CXCR7 is highly 

expressed on tumor vasculature and deeper within tumor tissue in nearly all breast 

tumors, but is not expressed on normal breast epithelia or vasculature (29). The spatial 

composition of tumors with regards to the localization of fibroblasts which secrete 

CXCL12 and CXCR7-positive cells which scavenge the ligand is conducive to micro-
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scale gradients of CXCL12 which may elicit chemotaxis of CXCR4-positive cells. In 

Chapter 4, we discuss how the spatial localization of cells forms CXCL12 gradients in 

the tumor microenvironment. We implicate the spatial arrangement of CXCR7 within the 

tumor as a potential marker for cancer aggressiveness and propensity to create 

conditions conducive for metastasis.  

 

1.2.3 Epidermal growth factor receptor biology 

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell 

growth and proliferation (30,31). Upon binding ligand, one of which is epidermal growth 

factor (EGF), the receptor dimerizes, internalizes, and elicits downstream signaling (31–

33). EGFR is overexpressed in a many solid tumors, including breast, head-and-neck, 

non-small-cell lung, renal, ovarian, and colon cancer (34,35), and is thus a target for 

cancer therapies. In Chapter 2, we integrate a computational model with single-cell 

experimental data to illustrate how signaling through EGFR promotes a cellular memory 

effect in CXCR4 signaling. In Chapter 3, we further test the computational model by 

incorporating receptor-ligand dynamics for EGFR and predicting downstream signaling 

through this receptor. 

 

1.3 Cell signaling pathways 

Cell signaling pathways are the networks that allow cells to interpret information about 

their environments (36). Generally, signaling pathways are activated by a receptor-

ligand interaction at the cell surface. The signal is then transduced downstream to 

intracellular kinases, and activation of these kinases promotes gene expression. Cell 

signaling pathways are vital for proper normal physiological development, but are often 

dysregulated in diseases, including cancer (37). Throughout this thesis, we focus on 

receptor-mediated Akt, ERK, and mTORC1/2 activation, all of which are implicated in 

numerous cancer phenotypes. 
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1.3.1 PI3K/Akt signaling 

Phosphatidylinositol-3-kinase (PI3K)/Akt is a signaling pathway activated by many 

different receptors including both CXCR4 and EGFR (Figure 1.1) (32,38–40). PI3K/Akt 

signaling is implicated in many cellular functions such as cell growth, metabolism, 

division, and survival (41,42). The signaling pathway is initiated by activation of PI3K, 

which phosphorylates the lipid phosphatidylinositol 4,5-biphosphate (PIP2) to form 

phosphatidylinositol 3,4,5-triphosphate (PIP3) (43). PIP3 then catalyzes the activation of 

phosphoinosotide-dependent kinase 1 (PDK1) which phosphorylates the Thr308 site on 

Akt. This only partially activates Akt (44). Full activation of Akt requires activation on the 

Ser473 site, which is done by mechanistic target of rapamycin complex 2 (mTORC2). 

The activation of mTORC2 is poorly defined in literature, but most studies agree it is 

PI3K-dependent (45,46). In Chapters 2 and 3, we build a computational model capable 

of predicting PI3K/Akt signaling in single-cells with implications for targeted 

therapeutics. 

 

 

Figure 1.1 CXCR4 and EGFR signal to ERK and Akt can drive cell migration 
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When CXCR4 and EGFR are liganded with CXCL12 or EGF, respectively, they promote 
ERK and Akt signaling. ERK and Akt signaling are associated with a variety of cancer 
phenotypes, one of which is cell migration. 

 

1.3.2 MAPK/ERK signaling 

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 

(ERK) signaling pathway, also referred to as the Ras/Raf/MEK/ERK signaling pathway, 

is signaling cascade which promotes cell growth, division, and survival (47,48). 

MAPK/ERK signaling is downstream of a variety of families of receptors, including both 

CXCR4 and EGFR (Figure 1.1) (32,38,49,50). The pathway is initiated by the activation 

of Ras, a small GTPase inside cells. Ras activates Raf, which scaffolds with the kinase 

MEK to activate downstream ERK (51,52). In addition, Raf is inhibited by active Akt, 

identifying a crosstalk mechanism by which activation of one pro-survival pathway can 

directly inhibit another (53,54). In Chapters 2 and 3, we build a computational model of 

the MAPK/ERK signaling pathway in conjunction with PI3K/Akt signaling to understand 

the mechanisms driving single-cell responses through these pathways. 

 

1.3.3 mTORC1/2 signaling 

Mechanistic target of rapamycin (mTOR) is a protein kinase subunit downstream of 

many receptors and is involved in cell growth and metabolism (55). mTOR can bind to a 

variety of other intracellular proteins to form two important complexes termed mTOR 

complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (56). mTORC1 controls the 

balance between anabolism, the synthesis of complex molecules from simpler ones, 

and catabolism, the breakdown of complex molecules into simpler ones (55,57). 

mTORC2 is involved in regulating cytoskeletal rearrangement and has been linked to 

cell migration, among other cancer phenotypes (58–60). Unregulated mTORC1/2 

signaling can promote cancer progression (55). 

 

mTORC1 and mTORC2 intersect with the PI3K/Akt and MAPK/ERK pathways (61). 

mTORC1 functions as a major regulator of both PI3K/Akt and MAPK/ERK signaling by 

inhibiting both pathways (Figure 1.1) (62,63). mTORC1 can prevent the formation of 
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mTORC2 by removing a required component of mTORC2, mSIN1 (64,65). Because the 

major role of mTORC2 is to activate Akt on the Ser473 site (60), mTORC1 can inhibit Akt 

signaling. Additionally, mTORC1 negatively regulates the MAPK pathway upstream of 

ERK (62). These inhibitory mechanisms position mTORC1 as a central regulator of Akt 

and ERK signaling. 

 

1.3.4 Targeted inhibition of kinase signaling 

Specific kinases within cell signaling pathways present viable targets for cancer therapy 

due to their roles in oncogenic phenotypes (66). Trametinib is a MEK inhibitor which 

abrogates ERK signaling and was approved for certain patients with metastatic 

melanoma in 2013 (67). Ridaforolimus is an mTOR inhibitor which acutely inhibits 

mTORC1 but only prolonged exposure to the drug decreases mTORC2 activity (56). 

Using the computational model developed in Chapter 2, we predict how these 

pharmacologic inhibitors actually potentiate pro-metastatic signaling in pathways that 

were not the direct target. In Chapter 3, we perform simulations that suggest that a PI3K 

inhibitor may potentiate ERK signaling in subsets of breast cancer cells. Modeling 

coupled to experiments allows us elucidate the mechanistic behavior of dynamic cell 

signaling systems with implications for therapeutic efficacy. 

 

1.4 Heterogeneity in cancer 

1.4.1 Clonal vs. nonclonal heterogeneity 

Biological systems and diseases are inherently heterogeneous, and cancer is no 

exception. Heterogeneity in cancer promotes the formation of small subpopulations of 

cells that are unlike the tumor bulk. These subpopulations can drive cancer progression, 

drug resistance, and recurrence (68–70). Biological heterogeneity generally falls into 

one of two categories: clonal and nonclonal (69). Clonal heterogeneity encompasses 

genomic variability between cells, accounting for differences in mutational backgrounds 

and transient gene expression (71). Clonal heterogeneity is transmitted to daughter 

cells since its source lies in DNA. Nonclonal heterogeneity comprises functional 

plasticity in phenotypes related to cellular environment, such as autocrine and paracrine 
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interactions (68). Clonal heterogeneity is more well-studied than nonclonal 

heterogeneity, but evidence suggests that the two work in tandem to diversify cell 

populations and promote survival in stressful conditions (68,70,72). In this thesis, we 

focus primarily on understanding nonclonal heterogeneity with an emphasis on its 

origins and tunability.  

 

1.4.2 Cell signaling heterogeneity 

One manifestation of nonclonal heterogeneity is signaling heterogeneity. Signaling 

heterogeneity describes how, when stimulated with a ligand, seemingly identical cells 

expressing the target receptor elicit downstream kinase responses along a continuum 

from no to high activation (73–77). The failure of ligand-receptor binding to activate 

downstream kinases in some cells exemplifies how purely genetic analyses cannot be 

fully predictive of tumor behavior or efficacy of targeted therapies. Some studies choose 

to ignore single-cell behaviors and only capture the behavior of the population average 

(74,78,79), or they choose to only analyze the small fraction of cells that respond and 

ignore the rest, whether in regards to signaling or a phenotype driven by signaling (80). 

Signaling heterogeneity may explain heterogeneity in a variety of cellular phenotypes, 

such as migration or responsiveness to cancer therapies. For example, several studies 

show how cells in engineered microenvironments stimulated with gradients of 

chemokines drive chemotaxis in only a subset of cells (16,17,81). Additionally, since cell 

signaling states can affect efficacy of targeted therapies or immunotherapies, cell 

signaling heterogeneity may explain why some cells respond to cancer treatments and 

some do not (68). Studying the mechanisms which drive signaling heterogeneity in the 

context of the tumor microenvironment can unlock new treatment strategies to target 

cell signaling in the subset of cells driving progression of the disease. 

 

1.4.3 Single-cell experimental approaches to detect signaling heterogeneity 

Single-cell experimental approaches have enabled examination of signaling 

heterogeneity without lumping behaviors into bulk population averages. Tsien et. al 

developed a fura-2 calcium probe to examine single-cell calcium dynamics and found 
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that mitosis can promote functional signaling differences between daughter cells (76). 

Kumagai et. al used Förster resonance energy transfer (FRET) reporters to uncover that 

basal ERK activity in single tumor cells was indicative of the ability to form tumors (82). 

Using kinase translocation reporters, Miura et. al uncovered that heterogeneity in p38-

mediated cross-inhibition was the driver behind stochastic cell death following UV stress 

(83). These technologies enable the study of single cell signaling and the phenotypes 

that emerge from specific signaling motifs. However, there is still a gap in our 

understanding of the underlying mechanisms which drive these heterogeneous 

signaling behaviors and how can control them, as well as how to best analyze data 

without discounting the behavior of small subpopulations.  

 

1.4.4 Origins of signaling heterogeneity: intrinsic vs. extrinsic noise 

A major question in understanding the sources of signaling heterogeneity is whether the 

heterogeneity is due to intrinsic or extrinsic noise. Intrinsic noise encompasses the 

inherent stochasticity of biological events and becomes increasingly important as the 

number of molecules involved decreases (84–86). If we posit that signaling 

heterogeneity is due to purely intrinsic noise, we assume that the ability of cells to 

respond or not to a ligand stimulus is due to random fluctuations in chemical kinetics of 

signaling. Extrinsic noise refers to variation in identically-regulated entities between cells 

(73,87,88). If we posit that signaling heterogeneity is due to purely extrinsic noise, we 

assume that the ability of cells to respond or not to a ligand stimulus is due to cell-to-cell 

variability in, for example, active kinase levels. This question regarding the type of noise 

present in cell signaling also asks about our ability to control the heterogeneity. 

Heterogeneity set by intrinsic noise cannot easily be controlled since it is due to 

stochastic fluctuations likely at the molecular scale. Heterogeneity set by extrinsic noise 

may have a higher potential for intervention because we have the ability to inhibit the 

expression of certain kinases or certain aspects of the cellular microenvironment. 
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1.4.5 Incorporating heterogeneity in computational models of cell signaling 

The methods and assumptions used in computational models to generate cell signaling 

heterogeneity are important because they imply where we believe the source of the 

heterogeneity originates. Ordinary differential equation (ODE) models are common for 

studying cell signaling because they can simulate continuous, time-dependent kinetic 

interactions of multiple components in a complex network based on a set of parameters 

(89,90). ODE models generally incorporate heterogeneity by adding intrinsic or extrinsic 

noise to the system, or both.  

 

One approach to incorporate signaling heterogeneity to an ODE model is by adding 

intrinsic noise (stochastic fluctuations). Using a semi-stochastic model, Lee et. al 

recapitulated heterogeneous NFκB signaling dynamics at a variety of stimulus dose 

concentrations of lipopolysaccharide (91). Another common method of incorporating 

intrinsic noise is the Gillespie algorithm (87), which uses a Monte Carlo framework to 

add intrinsic noise (92,93). However, recent work suggests that much signaling 

heterogeneity can be explained using extrinsic noise without the need to invoke 

stochastic origins (73,94,95). 

 

Extrinsic noise in cell signaling networks is appreciated as the major driver of signaling 

heterogeneity in a number of recent studies (77,88,96,97). The theory that extrinsic 

noise is necessary to explain signaling heterogeneity assumes that cells are in different 

pre-existing states, and, when challenged with a ligand stimulus, respond differently 

because of these different pre-existing states (98). Kim et. al used ODE modeling with 

extrinsic noise to simulate ERK and Akt signaling heterogeneity with implications for 

therapy efficacy (73). Wang et. al showed that extrinsic “colored” noise was the major 

driver of variability in p53 oscillations compared to intrinsic “white” noise (95). However, 

current methods of using extrinsic noise in cell signaling networks to explain 

heterogeneous responses fail to provide a structural framework for allowing cells to 

dynamically adjust to new cellular environments. In Chapters 2 and 3, we use extrinsic 

noise in our computational model to predict how cell states are altered due to changes 

in recent environmental stimuli. 
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1.5 Approaches 

1.5.1 Kinase translocation reporters (KTRs) 

In this thesis, we build computational models of cell signaling networks based on single-

cell data gathered using the KTR technology adapted by the Gary and Kathryn Luker 

lab. KTRs function by converting phosphorylation into a nucleocytoplasmic shuttling 

event in single cells. As a kinase is phosphorylated, the reporter shuttles into the 

cytoplasm, and as the kinase is dephosphorylated, the reporter shuttles into the nucleus 

(99,100). The Luker lab multiplexed two existing KTRs, the Akt KTR and the ERK KTR, 

in MDA-MB-231, SUM 159, and Vari068 breast cancer cells (77). These cells 

additionally contain an H2B-Cherry nucleus for image analysis purposes. By imaging a 

cell population in real time, we can gain dynamic signaling outputs for both ERK and Akt 

in single cells responding to a bolus ligand dose. These data can elucidate the range of 

heterogeneous ERK and Akt responses in single cells to calibrate a computational 

model of cell signaling. 

 

1.5.2 Conditional signaling model incorporating extrinsic noise 

In Chapters 2 and 3, we build an ODE model to provide mechanistic causality for the 

range of signaling responses through ERK and Akt in breast cancer cells using extrinsic 

noise. Our model, which we named the Conditional Signaling Model (CSM), simulates 

the cascade of phosphorylation events that occur upon CXCR4 or EGFR stimulation 

and culminates with ERK and Akt activation dynamics. The CSM contains three 

modules: receptor-ligand dynamics, signaling dynamics, and reporter dynamics. We use 

the CSM to develop a signaling landscape, which simulates how pre-existing cell states 

govern responsiveness through ERK and Akt upon ligand stimulation. Importantly, the 

CSM provides a framework for understanding how cells dynamically edit their signaling 

responses in the presence of growth factors or targeted kinase therapies. 
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1.5.3 Spatiotemporal model of CXCL12 gradients in the tumor 
microenvironment  

Chemokine gradients in vivo can promote chemotaxis and metastasis, but are difficult to 

measure because they exist in a dynamic environment and are governed by multiple 

competing mechanisms. In Chapter 4, we build a computational model to simulate 

dynamic CXCL12 gradients in a primary tumor based on a host of known mechanisms. 

We use a 3D square lattice grid structure to place cells in discrete compartments to 

simulate the cellular architecture of a primary tumor environment. We simulate both 

CXCL12-secreting cells (fibroblasts) as well as CXCR7-positive cells. As the simulation 

progresses, fibroblasts secrete CXCL12 into the grid compartment that they occupy at a 

rate dictated by the circadian rhythm, the ligand diffuses by a partial differential equation 

(PDE), and CXCR7-positive cells contain a set of ODEs which allow CXCL12-CXCR7 

binding, internalization, and ligand degradation. Additionally, a blood vessel through the 

center of the grid allows us to simulate how both the blood and local fibroblasts in 

primary tumors supply CXCL12 to the tumor microenvironment and how gradients form 

between deep within tissue and the local vasculature. This model predicts how circadian 

fluctuations edit CXCL12 gradient magnitudes over the course of a day, and how 

heterogeneity in the spatial composition of tumors, such as the ratio of fibroblasts to 

CXCR7-positive cells, can shape CXCL12 gradient direction and magnitude. 

 

1.6 Thesis summary 

In this thesis, we build computational models focusing on the emergence of 

heterogeneity in cancer and its tunability. In Chapter 2, we construct the conditional 

signaling model (CSM) to understand how pre-existing cell states govern 

heterogeneous signaling from CXCR4 to Akt and ERK and how cellular memory tunes 

subsequent signaling responses. In Chapter 3, we assess the capability of the model to 

predict heterogeneous cell states consistent with another receptor system, EGFR, to 

test model robustness. In Chapter 4, we construct a spatial model of a portion of a 

primary tumor to determine how heterogeneity in the makeup of the microenvironment 

influences CXCL12 gradient direction and magnitude. Overall, we uncover mechanisms 
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driving heterogeneity in cancer that can inform new treatment strategies targeting key 

subpopulations of cells controlling disease progression.  
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Chapter 2 Short-term Cellular Memory Tunes the Signaling 
Responses of the Chemokine Receptor CXCR4 

 
This chapter is a published work: 
 
Spinosa PC, Humphries BA, Lewin Mejia D, Buschhaus JM, Linderman JJ, Luker GD, 
et al. Short-term cellular memory tunes the signaling responses of the chemokine 
receptor CXCR4. Sci Signal. 2019;12(589). 
 

2.1 Abstract 

The chemokine receptor CXCR4 regulates fundamental processes in development, 

normal physiology, and diseases including cancer. Small subpopulations of CXCR4-

positive cells drive the local invasion and dissemination of malignant cells during 

metastasis, emphasizing the need to understand the mechanisms controlling responses 

at the single cell level to receptor activation by the chemokine ligand CXCL12. Using 

single cell imaging, we discovered that short-term cellular memory of changes in 

environmental conditions tuned CXCR4 signaling to Akt and ERK, two kinases activated 

by this receptor. Conditioning cells with growth stimuli before CXCL12 exposure 

increased the number of cells that initiated CXCR4 signaling and the amplitude of Akt 

and ERK activation. Data-driven, single-cell computational modeling revealed that 

growth factor conditioning modulated CXCR4-dependent activation of Akt and ERK by 

decreasing extrinsic noise (pre-existing cell-to-cell differences in kinase activity) in PI3K 

and mTORC1. Modeling established mTORC1 as critical for tuning single-cell 

responses to CXCL12-CXCR4 signaling. Our single-cell model predicted how 

combinations of extrinsic noise in PI3K, Ras, and mTORC1 superimposed on different 

driver mutations in the ERK and/or Akt pathways to bias CXCR4 signaling. 

Computational experiments correctly predicted that selected kinase inhibitors used for 

cancer therapy shifted subsets of cells to states that were more permissive to CXCR4 

activation, suggesting that such drugs may inadvertently potentiate pro-metastatic 
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CXCR4 signaling. Our work establishes how changing environmental inputs modulate 

CXCR4 signaling in single cells and provides a framework to optimize the development 

and use of drugs targeting this signaling pathway.  

 

2.2 Introduction 

Pre-existing cellular states, rather than stochasticity, dictate the ability of individual cells 

to signal in response to an input stimulus (1). Because of variations in pre-existing 

states, individual cells within a population exhibit heterogeneous activation of signaling 

pathways, and subsets of cells expressing the target receptor fail to signal at all in 

response to uniform input of a specific ligand (2–8). The fact that extracellular ligand 

may not activate signaling through a target receptor confounds reliability of biomarkers 

based on protein expression instead of function for selection of targeted drugs. 

Additional heterogeneity in signaling outputs arises because cells adapt signaling 

responses based on changes in environmental conditions over time, indicating that 

context shapes plasticity in pre-existing cellular states. Context-dependent flexibility and 

intercellular heterogeneity in signaling allows single cells to survive under stressful 

conditions, hampering the ability to treat cancer and other diseases in which 

subpopulations of cells drive critical steps in pathogenesis. Discovering mechanisms 

that shift cells to states that are more or less responsive to receptor signaling promises 

to improve the ability to control cell behaviors for therapy and optimize responses to 

molecularly-targeted drugs.  

 

We focused on identifying mechanisms underlying responsiveness of cells to signal 

through chemokine receptor CXCR4 and its ligand, CXCL12. CXCL12-CXCR4 binding 

is essential for normal development and also promotes cancer initiation and metastasis 

in more than 20 different malignancies (9–11). We previously observed that only a small 

subset of CXCR4-positive cells migrates toward a uniform gradient of CXCL12 (12), 

making this ligand-receptor pair an ideal model to investigate cellular states controlling 

heterogeneous signaling. The CXCR4 inhibitor balixafortide has shown promising 

results in a Phase I clinical trial as an adjuvant therapy for advanced metastatic breast 



21 
  

cancer (13), reinforcing the need to understand signaling through this receptor to help 

identify patients likely to respond to this therapy and potential causes for treatment 

failure. CXCR4 activates the downstream effector kinases Akt and ERK, which mediate 

cell proliferation, survival, and chemotaxis (14). Akt and ERK are components of the 

most commonly activated oncogenic signaling pathways [phosphatidyl-inositol-3-kinase 

(PI3K)/Akt/mTOR and mitogen activated protein kinase (MAPK)] in cancer (14,15). 

Thus, understanding how cells edit responsiveness to CXCR4 signaling to Akt and ERK 

will advance our understanding of cell signaling and inform clinical applications of 

CXCR4-targeted therapies.  

 

We combined single-cell fluorescent reporters and single-cell computational modeling to 

identify mechanisms through which changes in environmental conditions modulate 

CXCL12-CXCR4 signaling. Recent signaling inputs shift the intracellular state based on 

extrinsic noise in PI3K, Ras, and mTORC1, generating a short-term cellular memory 

that regulates subsequent CXCR4-mediated signaling to Akt and ERK. The 

computational model predicted how intersections among genetic mutations in pathway 

components, growth factor-induced cellular memory, and kinase inhibitors tune the 

ability of cells to signal through CXCR4. These data provide new insights into how cells 

adapt to dynamic changes in environmental conditions and how clinical treatments alter 

cell states and signaling by CXCR4.  

 

2.3 Methods 

2.3.1 Cell Culture 

We cultured the breast cancer cell lines MDA-MB-231, which express constitutively 

active KRAS and BRaf (16), and SUM-159, which express constitutively active PI3K 

and HRAS (16), as described previously (17). Vari-068 cells (a gift from Sofia Merajver, 

University of Michigan) are patient-derived, triple-negative breast cancer cells adapted 

to cell culture. These cells have an inactivating mutation in PTEN. We cultured these 

cells as described previously (18). In the conditioning phase of our experiments, we 
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cultured control cells in low (1%) FBS media to suppress proliferation, thereby reducing 

the effects of cell cycle on signaling heterogeneity. 

 

2.3.2 Fluorescent reporter construction 

We constructed the kinase translocation reporter plasmid, pHAEP, in a PiggyBac 

transposon vector with CAG promoter based in part on plasmid pHGEA (gift of K. Aoki, 

Okazaki Institute for Integrative Bioscience) (19).  To optimize two-photon imaging of 

KTR reporters for Akt and ERK we fused the kinase substrates to fluorescent proteins 

Aquamarine (20) and mCitrine (21), respectively and replaced the histone-2B marker 

with mCherry to improve brightness and photostability. We also replaced the IRES to 

blasticidin resistance marker with a P2A sequence followed by a puromycin resistance 

marker. We assembled the plasmid using HiFi assembly (NEB, Ipswich, MA, USA) with 

synthetic double stranded DNA fragments (GenBlocks, IDT, Coralville, IA, USA) or 

double stranded DNA amplified from pHGEA as illustrated in Figure A1 A. We 

constructed the CXCR4-mTagBFP2 (Evrogen, Moscow, Russia) in lentiviral expression 

vector pLVX-Ef1α (Clontech/Takara, Kusatsu, Shiga, Japan).   

 

2.3.3 Cell engineering 

To generate cells stably expressing the pHAEP construct, we co-transfected each cell 

line with the pHAEP transposon and Super PiggyBac transposase vector (System 

Biosciences, Palo Alto, CA, USA) using FuGene HD (Promega, Milwaukee, WI, USA). 

We selected batch populations of stable cells with 4 µg/ml puromycin. For MDA-MB-231 

and SUM-159 cells, we transduced cells stably expressing the pHAEP reporter with 

lentiviral vector for CXCR4-mTagBFP and sorted BFP-positive cells by flow cytometry.   

 

2.3.4 Time-lapse two photon microscopy and image processing 

To prepare cells for time-lapse microscopy, we seeded cells (1.2 x 105 MDA-MB-231 

cells, 6.5 x 104 SUM159 cells, or 2.0 x 105 Vari-068 cells) in 35 mm dishes with a 20 

mm glass bottom (Cellvis, Mountain View, CA, USA) in 2 ml of imaging base media 

(FluoroBrite DMEM media (A1896701, ThermoFisher Scientific, Waltham, MA USA), 
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1% GlutaMax, 1% PenStrep and 1% sodium pyruvate) supplemented with 10% FBS 

(HyClone). For SUM-159 cells, we also added 0.05% insulin (Sigma I9278) and 0.01% 

hydrocortisone (10mg/ml, 70% ethanol/water). Forty-eight hours after seeding, we 

changed to 1% FBS in imaging base media for all cell types. On the next day, four 

hours before imaging, we conditioned cells by adding 200 µl FBS (final concentration 

10%), EGF (final concentration 1, 10 or 30 ng/ml) (R&D Systems, Minneapolis, MN, 

USA), ridaforolimus (Selleck Chemicals, Houston, TX, USA) (final concentration 10 nM), 

or trametinib (Selleck Chemicals) (final concentration 100 nM) to their existing media. 

For extended conditioning, we added 200 µl FBS seven hours prior to imaging. 

 

We imaged cells with an Olympus FVMPE-RS upright microscope, 25x NIR-corrected 

objective, and four channel detection (blue, cyan, yellow, red) with a live cell imaging 

chamber (Okolab, San Bruno, CA, USA). Laser settings were: mTagBFP2 excitation at 

800 nm, laser power 6%; Aquamarine and mCitrine excitation 920 nm, laser power 6%; 

and mCherry excitation 1040, laser power 11%. We optimized the fluorophores, optical 

filters, and scan protocol to achieve negligible crosstalk between detector channels. We 

acquired four emission channels with pairs of detectors separated by a 552 nm dichroic 

mirror. We collected blue (channel 1) and cyan (channel 2) emissions with the following 

filters and dichroic mirror: channel 1 435/50 nm, channel 2 480/40 nm, and 485 nm 

dichroic mirror). We collected yellow (channel 3) and red (channel 4) emissions (light > 

552 nm) with the following filters and dichroic mirror: channel 3 540/40 nm, channel 4 

641/75 nm, and 596 nm dichroic mirror). The microscope is equipped with tunable IR 

laser and a fixed 1040 nm laser. We acquired initial images of CXCR4-BFP with 

simultaneous excitation at 800 nm (mTagBFP) and 1040 nm (mCherry). We then 

immediately acquired repeated scans using sequential excitation by line at 920 nm 

(aquamarine and mCitrine) and 1040 nm (mCherry). We acquired images as a multi-

area time lapse scanned every two minutes for four images prior to addition of CXCL12 

(10 ng/ml final concentration) and every two minutes thereafter for a total of 1 hour. We 

developed custom MATLAB code to automatically segment cells; calculate the KTR 

cytoplasmic to nuclear ratio in each cell; measure intensity of CXCR4-mTagBFP; and 

track individual cells. The segmentation algorithm identified nuclei with adaptive 
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thresholding followed by watershed segmentation. The extended minima from the 

nuclear watershed were used to seed watershed segmentation of a mask of the 

combined KTR channels, which yielded cytoplasmic segmentation in good agreement 

with the contours of individual cells in confluent monolayers. Nuclei were used for 

tracking individual cells during the time lapse imaging.  For KTR reporters, we 

calculated the ratio of median fluorescence intensities in cytoplasm to the nucleus 

(CNR), expressed as the log2 of the CNR, and output data as pairs of Akt and ERK KTR 

measurements for each cell with a complete time track (generally 300 to 500 cells per 

image). For cells engineered to express CXCR4-mTagBFP, we used only cells with 

detectable blue fluorescence for computational modeling.  We discarded from the 

analysis the small number of cells undergoing mitosis during imaging because we could 

not track identities of these cells throughout the entire time course of an experiment. 

 

2.3.5 Computational model: receptor dynamics 

We constructed a computational conditional signaling model (CSM) of CXCR4-mediated 

Akt and ERK signaling using ordinary differential equations to generate predicted 

signaling outcomes. The CSM contains receptor, signaling, and reporter dynamics. A 

schematic including all connectivity in the CSM is drawn in Figure A3. All equations, 

parameters, and initial conditions can be found in Appendix Tables A1-A5. 

 

Receptor dynamics (CXCR4 trafficking following CXCL12 stimulation) are as described 

previously (22–24). Briefly, CXCL12 in the extracellular space binds to CXCR4. Upon 

receptor phosphorylation and β-arrestin recruitment to the plasma membrane, the 

receptor-ligand complex is internalized, trafficked to endosomes, and destined for 

degradation. Because β-arrestin is an adapter protein ubiquitously involved in 

desensitizing many different GPCRs (25,26), we assume it is in large excess and do not 

model it explicitly. CXCR4 not bound to CXCL12 can be internalized upon 

phosphorylation and β-arrestin recruitment, but the receptor is recycled to the cell 

surface rather than degraded.  

 



25 
  

2.3.6 Computational model: signaling dynamics 

The CXCR4-CXCL12 complex promotes signaling through Akt and ERK in a 

mechanism involving feedback loops and crosstalk that restrain signaling. The model 

includes a cascade of events leading to phosphorylation of ERK and both the Thr308 and 

Ser473 sites in Akt needed for full activation (27–29). The PI3K/Akt pathway is initiated 

when CXCL12-CXCR4 complexes, whether phosphorylated or not, promote G-protein 

activation (30). To account for both ligand-independent and non-CXCL12 induced G-

protein activation, we incorporated a basal rate of G-protein activation. Activated G-

proteins organize subunits of phosphoinositide 3-kinase (PI3K) into their active state 

(31). Activated PI3K phosphorylates the membrane lipid PIP2 to form PIP3 (31,32). PIP3 

has two major roles in Akt signaling. First, it activates PDK1 by binding and forming a 

complex. The active form of PDK1 recruits and phosphorylates Thr308 in Akt, 

phosphorylated or not at Ser473 (32,33). The Ser473 site in Akt is activated by a separate 

kinase, mTORC2. We assumed that phosphorylation of either site in Akt is independent 

of the phosphorylation of the other, consistent with Pezze et al. (33). mTORC2 

activation is generally thought to be PI3K-dependent (34,35). In our model, we 

proposed that mTORC2 is activated and recruited to the plasma membrane by PIP3, the 

second role for this lipid in the model and consistent with the results of Gan et al. (36). 

mTORC1 opposes mTORC2 formation (37). Although many studies have emphasized 

the importance of mTORC1 opposing PI3K formation through IRS-1 and thus halting 

mTORC2 formation (38,39), mTORC1 can more directly inhibit mTORC2 formation. The 

subunit on mTORC2 that promotes docking to PIP3 and thus mTORC2 activation, 

mSIN1, is phosphorylated and inactivated by a target of mTORC1, activated and 

phosphorylated S6K (40,41). This phosphorylation event detaches mSIN1 from 

mTORC2, preventing mTORC2 from attaching to the plasma membrane and becoming 

activated (42). These dynamics closely follow uncompetitive inhibition. Therefore, we 

model the activation of mTORC2 with PIP3 acting as the enzyme, inactive mTORC2 as 

the substrate, and mTORC1 as an uncompetitive inhibitor. Akt phosphorylated at both 

Thr308 and Ser473 and phosphorylated ERK promote mTORC1 activation (43–45). This 

activation involves many species, including TSC1/2 and RHEB, which were not 
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modeled here explicitly for simplicity. Instead, we assumed that Akt phosphorylated at 

both Thr308 and Ser473 and phosphorylated ERK promote activation of mTORC1.  

 

The MAPK signaling pathway is initiated with activation of Ras by active G-proteins 

(46). Because mTORC1 can oppose activation of Ras (47), we incorporated this 

relationship in our model. Without mTORC1 inhibition of Ras activation, the model did 

not accurately recapitulate coordinate regulation of Akt and ERK dynamics. Ras 

promotes activation of the Raf/MEK complex (48). MDA-MB-231 cells also have a Raf 

mutation, for which we accounted with a GPCR-independent Raf activation reaction and 

by setting this parameter to 0 when modeling cells without this mutation. Additionally, 

Raf is inhibited by active Akt (49). Activated Raf/MEK promotes the phosphorylation of 

ERK (50). Other previously reported negative feedback mechanisms, such as feedback 

from ERK to Sos, Raf, and MEK, were lumped into ERK activation rate constants and 

were not included explicitly in the CSM because they were not required to reproduce 

critical behaviors seen in our experiments. 

 

2.3.7 Computational model: reporter dynamics 

To connect active kinase concentrations (Akt phosphorylated at both Thr308 and Ser473 

and phosphorylated ERK) to their respective reporters in the CSM, we use a set of 

published ordinary differential equations (51). Briefly, the reporters exist in two 

locations, the nucleus or cytoplasm, and have two states in both locations, 

phosphorylated or unphosphorylated. The reporters are phosphorylated and 

dephosphorylated according to Michaelis-Menten kinetics and are transported between 

nucleus and cytoplasm by mass action kinetics. To determine the CNR in individual 

cells in our model, we calculated the ratio of each reporter (phosphorylated and 

unphosphorylated) in the cytoplasm to the nucleus, and we expressed this variable in 

log2 format. The single-cell cytoplasmic to nuclear ratio (CNR) of each reporter was the 

output of our model. 
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2.3.8 Computational model: extrinsic noise  

Extrinsic noise is now appreciated as a major driver of cell signaling heterogeneity 

(43,52–54). In the CSM, extrinsic noise encompassed cellular conditions driven by 

mutations, metabolism, mitogenic signals, or any other external force acting on 

signaling components. The model incorporated extrinsic noise in three molecules, PI3K, 

Ras, and mTORC1, to predict the heterogeneous single-cell CXCR4-mediated Akt and 

ERK responses. A first-order rate constant for each of these molecules describes their 

activation independently of CXCR4 signaling. One important assumption of this 

approach is that the extrinsic noise rate parameters were constant over the time frame 

of our experiments. We believed that this assumption was reasonable because CXCR4 

signaling activated PI3K, Ras, and mTORC1 dynamically by the explicit mechanisms in 

the CSM rather than by the extrinsic noise terms, which incorporated signaling not due 

to CXCR4 stimulation. Values for the extrinsic noise rate constants for PI3K, Ras, and 

mTORC1 could not be compared directly because they depended on the inactive states 

of each respective kinase, which existed in different concentrations in the cell. Because 

we modeled the activation of all kinases from their respective inactive states in the ERK 

and Akt signaling cascades, the concentration of each active kinase approached the 

total concentration of each kinase in the cell as the extrinsic noise rate parameter 

increases. 

 

2.3.9 Computational model: solution and calibration  

The CSM was solved using MATLAB function ode15s. At the start of a simulation, the 

model was run in the absence of CXCL12 to calculate the steady-state concentrations 

of all model species. Next, a dose of CXCL12 was given and downstream signaling 

dynamics occurred as described above and by the differential equations in Appendices 

A2-A3. 

 

First-pass model parameters were obtained from literature as documented in Appendix 

Table A4. We performed Latin Hypercube sampling (LHS) (55) as a search strategy for 

efficient parameter selection using the first-pass model parameters and a +/- 50% 

variation to find a suitable baseline parameter set. We used moderate values for 



28 
  

extrinsic noise parameters and performed a least-square fit to calibrate the model to the 

mode cell in the experiment with control conditioned MDA-MB-231 cells treated with 10 

ng/ml CXCL12 to find a baseline parameter set that could span the range of responses 

using only variation in extrinsic noise rate parameters. We then used the same baseline 

parameter set for every cell in all of our simulations, and varied only the three extrinsic 

noise rate parameters to generate signaling heterogeneity. 

 

2.3.10 Determining the conditional signaling state of experimental cells 

By varying the extrinsic noise parameters for PI3K, Ras, and mTORC1, we used the 

CSM to generate over 12,000 possible CXCR4-mediated Akt and ERK responses. To 

determine the conditional state of cells in our experiments, we calculated the residuals 

of each paired Akt and ERK experimental cell response to each of the predicted paired 

Akt and ERK responses from the CSM. We determined the conditional state of each 

experimental cell from the predicted cell to which it shared the minimum squared 

residual. In this manner, each individual experimental cell was now associated with a 

set of extrinsic noise parameters {kPI3K, kRas, kmTORC1} that defined the conditional 

signaling state of that cell predicted by the CSM. Occupancy maps in Figures 2.4-2.6 

and Figure A6 B are an illustration of the probability of experimental cells occupying a 

conditional state in the CSM. For each cell in an experiment, we calculated a fit score 

which was the reciprocal of the sum of the squared residuals for experimental Akt and 

ERK KTRs compared with the simulated Akt and ERK KTR at each conditional state in 

the CSM. We normalized fit scores for each experimental cell to their sum over all CSM 

conditional states. We set a lower bound (0.0005) below which fit scores were set to 0. 

We calculated the probability of occupancy of each CSM conditional state as the sum of 

the fit scores for all cells at that condition, normalized to the sum of fit scores for all cells 

to all CSM conditional states. For illustration purposes, these values were multiplied by 

one million cells.  

 

2.4 Results  

 



29 
  

2.4.1 Growth factor conditioning potentiates subsequent CXCR4 signaling 

CXCL12 signaling through CXCR4 activates the mitogen activated protein kinase 

(MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways (Figure 2.1A). These 

pathways activate ERK and Akt, respectively. To capture CXCR4 signaling to ERK and 

Akt in single cells, we stably expressed fluorescent reporters that measured the 

activities of these kinases (kinase translocation reporters, KTRs) (51,56). KTRs 

reversibly translocate from nucleus to cytoplasm based on the phosphorylation of a 

specific substrate for each kinase. Quantifying the ratios of fluorescence intensities in 

cytoplasm to nucleus provides analog, independent measurements of kinase activity for 

ERK and Akt in single cells. Reporter-expressing breast cancer cells stably expressed 

histone 2B fused to mCherry (H2B-mCherry) to mark the cell nuclei and enable image 

segmentation and analysis and CXCR4 fused to a blue fluorescent protein (CXCR4-

mTagBFP), allowing us to identify levels of tagged CXCR4 in each cell (Figure A1 A).  



30 
  

 

 

Figure 2.1 Conditioning cells with a growth stimulus potentiates subsequent 
CXCR4 signaling 

(A) CXCL12 binds to CXCR4 and elicits downstream Akt and ERK activation. Separate 
kinase translocation reporters (KTRs) for Akt (aquamarine) and ERK (citrine) were 
stably expressed in breast cancer cells. Phosphorylation and dephosphorylation of the 
kinase substrate drives the reporter into the cytoplasm or nucleus, respectively. (B) 
Cells were conditioned for 4 hours with or without growth stimuli or kinase inhibitors. 
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Single-cell, time-lapse imaging was performed for 10 minutes before and 50 minutes 
after addition of 10 ng/ml CXCL12. Single cell time tracks (control conditioning: n=347 
cells, FBS conditioning: n=312 cells) show CXCR4-dependent activation of Akt and 
ERK in MDA-MB-231 breast cancer cells quantified as log2 of cytoplasmic to nuclear 
ratio (C/N) of fluorescence intensities for each KTR in individual cells and displayed on 
a pseudocolor scale. (C) Quantification of Akt and ERK activation in cells conditioned 
with FBS before CXCL12 stimulation (control conditioning: n=347 cells, FBS 
conditioning: n=312 cells). Strong activation was defined by ≥ 1 increase in log2(C/N) 
unit. (D) Quantification of Akt and ERK activation in cells conditioned with FBS for 4 
(n=312 cells) or 7 (n=367 cells) hours compared to control conditioning (n=347 cells) 
before CXCL12 stimulation). (E) Quantification of Akt and ERK activation in cells that 
were conditioned with various concentrations of epidermal growth factor (EGF) for 4 
hours before CXCL12 stimulation (control conditioning: n=347cells, 1ng/ml EGF 
conditioning: 354 cells, 10ng/ml EGF conditioning: 370 cells, 30ng/ml EGF conditioning: 
358 cells).  
 

Using live-cell imaging to quantify the dynamics of Akt and ERK KTRs in single cells, we 

observed heterogeneous CXCR4 signaling in MDA-MB-231 breast cancer cells treated 

with 10 ng/ml CXCL12 as the only stimulus (Figure A1B). Single-cell responses ranged 

from strong activation of both Akt and ERK to undetectable signaling despite expression 

of CXCR4 (Figure 2.1B). MDA-MB-231 cells typically exhibited greater activation of Akt 

than ERK because mutant KRas and BRaf (16) in these cells constitutively drive ERK 

signaling, reducing the dynamic range for activation by CXCR4.  

 

Because cells under normal physiological conditions signal in the context of multiple 

signaling inputs, we hypothesized that treatment of cells with a different growth factor 

would generate a short-term memory (57) that modified subsequent CXCL12-CXCR4 

signaling. To test this hypothesis, we conditioned cells for four hours with fetal bovine 

serum (FBS) before adding CXCL12. FBS conditioning produced a transient increase in 

Akt activity that resolved essentially to baseline within four hours, returning cells to an 

imaging appearance indistinguishable from control (Figure A1C). Single-cell time-tracks 

showed that FBS conditioning increased by four-fold the number of MDA-MB-231 cells 

with strong activation of Akt in response to CXCL12 (Figure 2.1B-D). FBS conditioning 

also reduced the number of non-responding cells by 50%. Conditioning with FBS did not 

substantially alter the activation of ERK by CXCL12-CXCR4 signaling likely because of 

constitutive activation of this kinase in MDA-MB-231 cells (Figure 2.1B-D). Extending 
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FBS conditioning to seven hours before adding CXCL12 produced only a two-fold 

increase in cells with strong activation of Akt and did not change the number of 

nonresponding cells, establishing a time-dependence aspect to the cellular memory of 

prior signaling inputs and identifying seven hours as a near-end point for this form of cell 

signaling memory (Figure 2.1D). We next examined the extent to which conditioning 

with epidermal growth factor (EGF) modified subsequent CXCL12-CXCR4 signaling 

responses.  Similar to FBS, conditioning with various concentrations of EGF transiently 

activated Akt and ERK, but the activities of these kinases returned to baseline within 

four hours. Subsequent addition of CXCL12 increased the number of cells with strong 

CXCR4-mediated activation of Akt, in a manner proportional to the concentrations of 

EGF used for conditioning (Figure 2.1E). Regardless of experimental condition, 

CXCL12 did not activate Akt or ERK signaling in cells lacking CXCR4-BFP (Figure A1D-

E), indicating these cells express little to no endogenous CXCR4 as we reported 

previously (58). The amount of CXCR4-BFP on single cells did not account for 

intercellular heterogeneity in signaling, and conditioning did not alter expression or 

localization of the fluorescent receptor (Figure A1D). These data demonstrate that prior 

growth stimuli tune responses of cells to CXCR4 signaling through a mechanism 

downstream of the receptor. 

 

2.4.2 Computational modeling predicts single-cell signaling dynamics 

The intracellular state of cells downstream of receptors involves a complex network of 

signaling components that is difficult to intuit with experiments alone. We hypothesized 

that conditioning with growth factors changed the intracellular state, thereby altering 

subsequent CXCR4 signaling. To uncover mechanisms that control the responsiveness 

of cells to CXCL12-CXCR4 beyond what experiments could alone provide, we used 

ordinary differential equations to construct a computational single-cell conditional 

signaling model (CSM) of CXCR4-mediated activation of Akt and ERK. Two key 

features of experimental signaling data informed the construction of the CSM. First, the 

lack of correlation between basal activity and CXCL12-mediated activation of either 

kinase in single cells (Figure A2 A-C) indicated that different regulators controlled basal 

kinase activity versus responses of single cells to CXCL12. Second, a trend between 
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activation of Akt and ERK by CXCR4 in single cells (Figure A2 A-C) suggested that a 

component common to both PI3K and MAPK pathways regulated the responsiveness of 

both kinases. We constructed the framework of the CSM based on these experimental 

observations and previously published data (Figure 2.2A, Figure A3).  

 
Figure 2.2 The computational conditional signaling model (CSM) predicts CXCR4-
mediated Akt and ERK signaling responses, establishing a framework for 
understanding the range of heterogeneous signaling data 

(A) The CXCL12-CXCR4 interaction elicits G-protein signaling to activate Akt and ERK 
but can be restrained by negative feedback and crosstalk mechanisms. mTORC1 
functions as a central regulator of signaling because it can inhibit the activation of both 
Akt and ERK. Extrinsic noise in phosphatidylinositol-3-kinase (PI3K), Ras, and 
mTORC1 promotes activation of Akt and/or ERK in the absence of CXCR4-mediated 
signaling. Signaling kinetics cover a range of time scales with thicker arrows and lines 
qualitatively indicating faster reaction rates. A complete list of differential equations, 
initial conditions, and parameters is available in Appendix Tables A1-A5. (B) To 
encompass heterogeneous signaling responses of single cells in both Akt and ERK, we 
varied extrinsic noise parameters for PI3K, Ras, and mTORC1 in the CSM. By running 
combinations of these three parameters, we generated a model library of >12,000 
predicted paired Akt and ERK responses. We performed a least-square fit of 
experimentally-determined Akt and ERK responses from the KTRs to predicted 
responses to derive the PI3K, Ras, and mTORC1 extrinsic noise parameters that best 
describe each single cell in the experiments. 
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In addition to CXCR4 signaling outputs (Figure 2.2A), the CSM included extrinsic noise 

to account for signaling heterogeneity in a cell population (2,5,52,59–61). In this context, 

extrinsic noise refers to pre-existing cell-to-cell differences in kinase activity. We used 

the two observations in the experimental data described above to determine the 

components of the signaling pathways that needed to contain extrinsic noise. PI3K, 

Ras, and mTORC1 constituted the main sources of heterogeneity in CXCR4 signaling 

because our data suggested that basal levels of upstream activators of Akt (PI3K) and 

ERK (Ras), as well as a downstream regulator common to both pathways (mTORC1), 

varied from cell-to-cell. Additionally, PI3K, Ras, and mTORC1 have roles external to 

CXCR4 signaling relating to confluency, metabolism, or local mitogenic signals 

(43,52,53,62). Heterogeneity was mathematically incorporated in the CSM in the form of 

a conditional term on these three pathway components (Figure A4) that set the baseline 

activities of Akt and ERK in each cell in the absence of any stimulation. We used the 

CSM with various combinations of extrinsic noise parameters for PI3K, Ras, and 

mTORC1, referred to as the conditional signaling state, to generate a library of 

predicted Akt and ERK signaling responses to CXCL12 independent of the presence 

and type of conditioning stimulus (Figure 2.2B). We used this library of predicted 

signaling behavior as a framework for understanding the heterogeneous signaling data 

seen in experiments. 

 

2.4.3 Maps of the signaling landscape reveal that conditional signaling 
states control CXCR4 responsiveness 

The CSM captured the paired signaling behavior of Akt and ERK in single cells across 

the range of responses measured experimentally in the population (Figure 2.3A). We 

used the CSM to generate a map of the signaling landscape displaying the conditional 

signaling states that permit CXCR4 activation of Akt and ERK (Figure A5). The signaling 

landscape reflected individual CSM simulations at all combinations of conditional 

signaling states. The Akt and ERK signaling landscape predicted by the CSM contains 

areas in which cells can activate one, both, or neither kinase (Figure 2.3B, Figure A5). 

Generally, the highest CXCR4 activation of Akt occurred in those conditional signaling 

states with low PI3K and mTORC1 activity. By comparison, the conditional signaling 
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states with high PI3K, low Ras, and low mTORC1 activities showed greatest CXCR4 

signaling to ERK (Figure 2.3B). The CSM predicted the cellular states that were 

permissive for CXCR4 signaling. 

 
 
Figure 2.3 The CSM captures heterogeneous single-cell signaling responses seen 
in experiments and reveals the conditional signaling states controlling 
responsiveness to CXCR4 signaling 

(A) Responses from the model library match experimentally determined control and 
FBS conditioned single-cell (control conditioning: n=347 cells, FBS conditioning: n=312 
cells) CXCR4 signaling to Akt and ERK. Greater than 95% of cells fit the matching 
criteria. The gray dashed line identifies when CXCL12 was added (10 min timepoint). 
Images were taken every two minutes for 60 min. (B) Akt or ERK responses through 
CXCR4 as affected by different combinations of extrinsic noise parameters for PI3K 
(orange), Ras (green), and mTORC1 (blue) during simulation. Plots show a 2D plane of 
the entire 3D signaling landscape generated by varying three parameters (kPI3K, kRas, 
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and kmTORC1) combinatorically. Green and orange dotted lines denote the value on the 
third axis.  
 

2.4.4 MDA-MB-231 cells occupy tunable conditional signaling states 

The CSM provides a framework to organize complex signaling behavior and extract 

conditional information from cell populations. We constructed occupancy maps to 

illustrate distributions of experimental cells in the CSM signaling landscape. Under 

control conditioning, MDA-MB-231 cells occupied a region of the signaling landscape 

with moderate PI3K, Ras, and mTORC1 activities (Figure 2.4A). Akt and ERK signaling 

responsiveness from Figure 2.3B is shown as the underlay on the occupancy maps and 

illustrates regions of the signaling landscape containing cells in which CXCR4 activates 

Akt and/or ERK. When conditioned with FBS for four hours before CXCL12 stimulation, 

MDA-MB-231 cells shifted to a region of the signaling landscape with lower PI3K and 

mTORC1 activities, which favored CXCR4-mediated activation of Akt (Figure 2.4B). 

Using the CSM-predicted Akt and ERK signaling behaviors that matched experimental 

data, the percentage of cells activating Akt in response to CXCL12 increased after FBS 

conditioning compared to control (Figure 2.4C). Conditioning with three different 

concentrations of EGF also decreased PI3K and mTORC1 activities in a dose-

dependent manner compared to control (Figure A6 A, B). We conclude that conditioning 

cells with growth factors alters the conditional signaling states consistent with a 

decrease in PI3K and mTORC1 activity. These shifts in conditional signaling state 

provide a mechanism underlying the ability of growth factor conditioning to enhance 

numbers of cells responding to CXCL12 and amplitude of signaling to Akt.  
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Figure 2.4 FBS conditioning shifted the conditional signaling state of MDA-MB-
231 breast cancer cells to a region more permissive to CXCL12-CXCR4 signaling 
to Akt 

(A to C) Occupancy maps (normalized to contain 1 x 106 cells) illustrate combinations of 
extrinsic noise parameters (conditional signaling state) corresponding to regions of 3D 
signaling landscape (CSM output) where experimental cells most frequently match. 
Contour lines display numbers of cells out of 1 x 106. Occupancies were summed in the 
third dimension for purposes of viewing the map in two dimensions. Cyan and yellow 
underlays illustrate regions of responsiveness for Akt and ERK, respectively. Green and 
orange lines illustrate the specific Ras and PI3K planes, respectively, corresponding to 
the responsiveness underlays. Occupancy maps are shown for MDA-MB-231 cells that 
received control conditioning (A) or FBS conditioning (B) before CXCR4 stimulation. (C) 
Quantification of cells with each signaling response. We defined responses in the 
computational model as >5 nM increases in kinase activity for Akt or ERK.   
 

2.4.5 Vari-068 and SUM-159 cells occupy tunable conditional signaling 
states distinct from MDA-MB-231 cells 

In contrast to MDA-MB-231 cells, many breast cancers harbor mutations in upstream 

activators of Akt (63). We tested the CSM on cells with constitutive activation of 

signaling to Akt, which we expected to occupy different conditional states in the 

signaling landscape than MDA-MB-231 cells. In patient-derived Vari-068 cells with 

mutant PTEN, CXCR4 signals primarily through ERK rather than Akt (Figure A6 C), 
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which is distinct from MDA-MB-231 cells. Vari-068 cells occupy a region of the signaling 

landscape with high PI3K and moderate Ras (Figure 2.5A). Because PTEN degrades 

phosphatidylinositol-3,4,5-phosphate (PIP3) and a loss-of-function mutation in PTEN is 

present in Vari-068 cells, the model represented Vari-068 cells as having high PI3K 

activity. When conditioned with FBS for four hours before the addition of CXCL12, Vari-

068 cells shifted to a region of the signaling landscape with lower mTORC1 but similar 

PI3K and Ras activities (Figure 2.5B). Cells in this state showed potentiated ERK 

signaling (Figure 2.5C, Figure A6 C). These results define a signaling paradigm in which 

mTORC1 controls overall cellular permissiveness for CXCR4 signaling, and 

conditioning with growth factors reduces mTORC1-mediated restraint mechanisms on 

ERK and Akt signaling. Conditioning breast cancer cells with growth factors decreases 

PI3K and mTORC1 activity to potentiate subsequent CXCR4-mediated signaling to Akt 

and ERK but cannot overcome activating mutations in upstream components of these 

pathways. Genetic mutations define the subset of conditional signaling states available 

to cells, but conditioning with growth factors further tunes the signaling state of any 

single cell. 
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Figure 2.5 Genetic mutations set the subset of conditional states available to 
cells, but these states can be tuned to further edit signaling behavior 

(A) Occupancy map shown as contour lines is a 3D histogram which (normalized to 
contain 1 x 106 cells) illustrates combinations of extrinsic noise parameters (conditional 
signaling state) corresponding to regions of the 3D signaling landscape (CSM output) 
where experimental cells most frequently match. Cyan and yellow underlays illustrate 
regions of responsiveness for Akt and ERK, respectively. Green and orange lines 
illustrate the specific Ras and PI3K planes, respectively, corresponding to the 
responsiveness underlays. Occupancy map shown for patient-derived Vari-068 cells 
(which have an inactivating mutation in PTEN) that received control conditioning before 
CXCR4 stimulation. (B) Occupancy map shown as contour lines (normalized to contain 
1 x 106 cells) illustrates combinations of extrinsic noise parameters corresponding to 
regions of the 3D signaling landscape where experimental cells most frequently match. 
Cyan and yellow underlays illustrate regions of responsiveness for Akt and ERK, 
respectively. Green and orange lines illustrate the specific Ras and PI3K planes, 
respectively, corresponding to the responsiveness underlays. Occupancy maps are 
shown for patient-derived Vari-068 cells that received FBS conditioning before CXCR4 
stimulation. (C) Quantification of cells with each signaling response. We defined 
responses from the computational model as >5 nM increases in kinase activity for Akt or 
ERK.   
 

We next investigated the extent to which CXCR4 signals to Akt and ERK in cells with 

activating mutations in both PI3K and MAPK pathways. Similar to Vari-068 cells, 

CXCR4 in SUM-159 cells, which have constitutively active HRas (an upstream activator 

of ERK) and PI3K, signals primarily to ERK rather than Akt (Figure 2.6A-B, Figure A6 

C), indicating that the ERK pathway remains inducible in the presence of an upstream 

activating mutation. SUM-159 cells occupy a region of the signaling landscape with high 

PI3K activity due to the activating mutation in this kinase and moderate Ras and 

mTORC1 activities (Figure 2.6A). The CSM revealed that despite activating mutations in 

both MAPK and PI3K pathways, the PI3K/Akt pathway generally dominated and was 

almost uninducible by CXCL12 in these cells. Signaling in breast cancer cells with 

genetic mutations in Akt, ERK, or both is therefore tuned both by these mutations and 

growth factor availability. A summary cartoon illustrates the conditional states of the 

breast cancer cell types we tested, showing how genetic mutations and growth factor 

conditioning stimuli shift cell signaling states to various regions of the signaling 

landscape (Figure 2.6C). Genetic mutations dictate the subset of conditional signaling 
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states available from the set of all possible states predicted from the CSM, and growth 

factor availability further tunes the states within that subset that single cells will occupy.  

 
 
Figure 2.6 SUM-159 cells occupy conditional signaling states with ERK 
responsiveness 

(A) Occupancy map shows where experimental cells most frequently match model 
predictions. Cyan and yellow underlays illustrate regions of responsiveness for Akt and 
ERK, respectively. Green and orange lines illustrate the specific Ras and PI3K planes, 
respectively, corresponding to the responsiveness underlays. Occupancy map is shown 
for SUM-159 cells (which have activating mutations in both ERK and Akt) that received 
control conditioning. (B) Summary of the percentage of cells with each signaling 
response. We defined responses from the computational model as >5 nM increases in 
kinase activity for Akt or ERK.  (C) A summary of how genetic mutations and growth 
factor conditioning interact to tune cellular responsiveness in Akt and ERK by shifting 
the conditional signaling state at the single-cell scale. CA: constitutive activation; lof: 
loss of function. 
 

2.4.6 MEK inhibition potentiates subsequent CXCR4-mediated Akt 
signaling in a subset of cells 

We applied the CSM to predict the responsiveness of cells treated with two therapeutic 

agents relevant to CXCR4 signaling, the MEK inhibitor trametinib and the mTORC1 

inhibitor ridaforolimus. The CSM predicted that conditioning with trametinib would block 
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ERK signaling but potentiate CXCR4 signaling to Akt in a subset of cells (Figure A7 A, 

B). In the CSM, inhibiting MEK decreases ERK-mediated mTORC1 activation and 

releases restraint on mTORC2 to activate Akt. A simulated dose response of trametinib 

conditioning revealed that larger doses of trametinib increased the activation of Akt in 

MDA-MB-231 cells (Figure 2.7A). We experimentally confirmed the CSM predictions, 

demonstrating that conditioning MDA-MB-231 cells with trametinib for four hours 

heterogeneously potentiated CXCR4 signaling to Akt (Figure 2.7B). Difference maps 

illustrate areas of change of peak activation with inhibitor conditioning compared to 

control (Figure 2.7C). The CSM revealed that cells exhibiting enhanced Akt signaling 

after trametinib conditioning were those with low PI3K and mTORC1 activity, which 

corresponded to cells in states predisposed to be highly responsive to CXCL12 with 

control conditioning. By comparison, CXCR4 signaling in other, non-responsive states 

were not affected by trametinib (Figure 2.7C). Notably, trametinib-treated cells occupied 

similar regions of the signaling landscape as cells that received control conditioning, 

confirming that the simulated inhibitor treatment did not shift conditional signaling states 

and only affected responsiveness at each state. 
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Figure 2.7 Computational modeling correctly predicts that trametinib conditioning 
potentiates subsequent CXCR4-mediated Akt signaling in a subset of MDA-MB-
231 cells. 

(A) The CSM predicts Akt (left) and ERK (right) signaling dynamics at simulated 
concentrations of trametinib conditioning that inhibit 50% or 90% of MEK activity relative 
to control prior to CXCR4 stimulation. The predicted signaling dynamics denoted by the 
red and blue dots correspond to different conditional signaling states and correspond to 
the dots in C. (B) The CSM accurately predicts single-cell experimental CXCR4-
mediated Akt and ERK signaling dynamics for trametinib conditioning (N=447 cells) on 
MDA-MB-231 cells (control conditioning, N=429 cells). Trametinib conditioning was 
modeled as a 50% decrease in the rate of MEK-mediated phosphorylation of ERK, 
consistent with noncompetitive inhibition kinetics. (C) Difference maps show the CSM-
predicted change in peak Akt activation between the control conditioned and trametinib 
conditioned cells at each conditional signaling state. Shaded gray surface contours 
show regions in signaling landscape with conditional signaling states that position 
trametinib-conditioned cells for the listed increases in peak Akt activation (nM). Contour 
lines display numbers of cells out of one million occupying conditional signaling states 
after matching experimental trametinib-conditioned cells to the CSM. Green and orange 
lines illustrate the specific Ras and PI3K planes, respectively, of the CSM 
corresponding to the responsiveness underlays. Red dots indicate conditional signaling 
states that were permissive to Akt signaling under control conditioning. Blue dots 
indicate conditional states that were not permissive to Akt signaling under control 
conditioning. The red and blue dots from C correspond with those in A. 
 

2.4.7 mTORC1 inhibition potentiates subsequent CXCR4-mediated Akt and 
ERK signaling 

A simulated dose response of ridaforolimus conditioning potentiated CXCR4 signaling 

to both Akt and ERK in a dose-dependent manner MDA-MB-231 cells (Figure 2.8A, 

Figure A7 C). In the CSM, inhibition of mTORC1 releases restraint on both mTORC2 

and Ras, thereby activating both Akt and ERK. Difference maps indicated enhanced 

CXCR4 signaling to Akt in cells with low PI3K activity, and all cells exhibited enhanced 

ERK signaling (Figure 2.8B). We experimentally confirmed CSM predictions, 

demonstrating that conditioning MDA-MB-231 cells for four hours with ridaforolimus 

potentiated CXCL12-dependent activation of both Akt and ERK (Figure A7 D). Again, 

the conditional signaling states of ridaforolimus-treated cells were similar to those of 

cells that received control conditioning. These data establish that targeted kinase 

inhibitors can potentiate CXCR4 signaling in subpopulations of cells. 
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Figure 2.8 Computational modeling correctly predicts that conditioning with the 
mTORC1 inhibitor ridaforolimus potentiates subsequent CXCR4-mediated Akt 
and ERK signaling in MDA-MB-231 cells 

(A) The CSM predicts Akt (left) and ERK (right) signaling dynamics at simulated 
concentrations of ridaforolimus conditioning that inhibit mTORC1 activity by 50% or 90% 
relative to control prior to CXCR4 stimulation. The predicted signaling dynamics 
denoted by the red and blue dots correspond to cells able to respond and not respond 
in Akt under control conditioning, respectively. (B) Difference maps show the CSM-
predicted change in peak Akt (left) and peak ERK (right) activation between the control 
conditioned and ridaforolimus conditioned cells at each conditional signaling state. 
Shaded gray surface contours show regions in signaling landscape with conditional 
signaling states that position ridaforolimus-conditioned cells for the listed increases in 
peak activation (nM). Contour lines display numbers of cells out of one million 
occupying conditional signaling states after matching experimental ridaforolimus-
conditioned cells to the CSM. Green and orange lines illustrate the specific Ras and 
PI3K planes, respectively, of the CSM corresponding to the responsiveness underlays. 
The red and blue dots from B correspond to those in A. The CSM-predicted signaling 
dynamics are from 50% inhibition of mTORC1. 
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2.5 Discussion  

Rather than representing hard-wired pathways that always generate the same output, 

signaling networks in single cells produce heterogeneous responses shaped by 

changing environmental conditions and signaling inputs. Our work demonstrates that 

although cells adapt signaling based on short-term memories of prior inputs, these 

adaptations are predictable based on a specific set of rules. We used one parameter set 

to simulate single-cell paired Akt and ERK signaling dynamics for entire populations of 

cells and introduced heterogeneity by adding extrinsic noise to only three pathway 

components: PI3K, Ras, and mTORC1. The ability of the CSM to predict heterogeneous 

basal states and responsiveness of single cells in multiple breast cancer cell types with 

only extrinsic noise in three pathway components suggests that the model captures the 

major drivers of CXCR4 signaling to Akt and ERK.  

 

Local intracellular and extracellular conditions tune signaling responses in individual 

cells. As a consequence, gradients of growth factors or kinase inhibitors in vivo may 

drive heterogeneous signaling outcomes. We showed that conditional effects such as 

genetic mutations, growth factors, and kinase inhibitors all collectively tuned 

responsiveness of cells to CXCL12-CXCR4 signaling and activation of Akt and ERK. 

We propose that cells exist on a signaling landscape based on conditional states. The 

signaling landscape, which accounts for CXCR4 signaling dynamics at all possible 

cellular conditional states, defines the output of the CSM. Genetic mutations force cells 

into distinct regions within the signaling landscape. Conditioning cells with growth 

factors allows cells to shift within these regions to potentiate signaling, whereas 

conditioning with kinase inhibitors modifies the cell signaling potential in each state but 

preferentially affects cells already existing in states poised to signal. We showed that 

trametinib potentiated only subsequent CXCR4-mediated Akt signaling in cells with low 

PI3K and mTORC1 activities, which constituted a small fraction of cells in the 

population. As an active enzyme, even modest increases in Akt signaling and function 

in small numbers of cells can drive the pathogenesis of processes critical to cancer 

progression (64), making behaviors of “outlier” single cells relevant for disease and 

therapy.  
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We built the CSM to explore the entire design space (the single-cell signaling 

landscape) potentially occupied by experimental cells. By mapping experimental cells 

onto the signaling landscape, we assigned mechanisms for heterogeneous CXCR4 

signaling responses observed in experiments and discovered how conditioning tuned 

these responses. The CSM predicted that trametinib not only would produce the 

expected outcome of suppressing ERK, but also produce the off-target consequence of 

enhancing CXCR4-mediated activation of Akt. Similarly, we predicted that ridaforolimus 

would potentiate both Akt and ERK signaling, two pathways that promote cancer growth 

and metastasis. These results highlight how targeted cancer therapies may potentiate 

CXCR4 signaling, a driver of tumor growth and metastasis, and how our computational 

model can predict such outcomes.  

 

Cell signaling networks contain central nodes that store integrated information about 

multiple inputs and use this information to regulate responses to new signaling inputs. 

Our data indicate that mTORC1 functions as one of these central nodes, holding 

information about prior signaling to control subsequent activation of Akt and ERK. 

Although negative regulation of ERK by mTORC1 remains poorly characterized in 

literature, our CSM and single-cell imaging experiments demonstrate this as a crucial 

mechanism that drives coordinate regulation of Akt and ERK.  

 

Although robust and predictive, the computational model we present here points to 

additional research opportunities relevant to heterogeneity in single cell signaling. To 

establish heterogeneity among cells, the CSM incorporated extrinsic noise in three 

pathway components: PI3K, Ras, and mTORC1. However, specific molecular 

mechanisms driving noise in these pathway components remain to be identified. The 

cell cycle plays a role in cell signaling variability (19), but other environmental inputs 

likely also shape signaling responsiveness, such as hypoxia, pH, metabolism, energy 

levels, or other signaling stimuli. Mathematically, the source of the noise in our model is 

embedded in a first-order kinetic rate constant. Understanding the causes of extrinsic 

noise in these molecules will highlight potential approaches to tune CXCR4 signaling for 



47 
  

therapy. This work focused only on the tunability of CXCR4 signaling. Because our data 

suggest that signaling heterogeneity can originate downstream of receptors, we posit 

that other signaling pathways can be tuned by a similar mechanism. In integrated 3D 

environments with mixed cellular composition, we predict cells will occupy some 

signaling states in the CSM-predicted signaling landscape that remain unoccupied in 2D 

monocultures. Because the equations in the CSM unrelated to extrinsic noise describe 

kinetic reactions independent of cellular geometry, we expect the model will predict 

behaviors in mixed cell environments and complex tissues. We realize that 

environmental context may alter the initial conditions of some model species, such as 

CXCR4 abundance. Our future studies will advance into 3D environments and mouse 

models of cancer, where heterogeneous CXCR4 signaling responses are critical to 

mechanisms of metastasis and response to targeted therapies.  
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Chapter 3 Pre-existing Cellular States Control Both 
Epidermal Growth Factor Receptor (EGFR) and CXCR4 

Signaling Heterogeneity
 

3.1 Abstract 

Single cells within a population exhibit marked heterogeneity in signaling outcomes 

when stimulated identically. Previous work by our group uncovered that signaling 

heterogeneity following binding to the chemokine receptor CXCR4, a receptor critical in 

normal development and cancer progression, can be mechanistically explained by 

variable pre-existing intracellular states set by extrinsic noise. These pre-existing cell 

states vary from cell-to-cell, but CXCR4 signaling to downstream effectors ERK and Akt 

is deterministic given the cell state. However, a robust test of this hypothesis was 

lacking because we had only explored CXCR4 signaling. Here we show that given the 

pre-existing cell state, signaling through both CXCR4 and epidermal growth factor 

receptor (EGFR), a receptor tyrosine kinase implicated in cancer cell growth and 

proliferation, are predictable at the single-cell scale. Computational modeling of EGFR 

and CXCR4 signaling through ERK and Akt, coupled with time-lapse, dynamic, live cell 

imaging, predicts that the same set of pre-existing cell states explain signaling 

heterogeneity through both EGFR and CXCR4 at multiple doses of ligand and in two 

breast cancer cell lines. We also predict how phosphatidylinositol-3-kinase (PI3K) 

targeted therapies potentiate ERK signaling in certain breast cancer cells, establishing 

clinical utility of the computational model. Our data demonstrate that a conserved 

signaling motif exists for the EGFR and CXCR4 signaling systems with implications for 

more efficient strategies of therapeutic intervention. 

 



53 
  

3.2 Introduction 

The signaling responses of individual cells to identical stimuli are often heterogeneous  

(1,2). Following ligand-receptor binding, cells can activate downstream effectors along a 

continuum from no to high activation. The fact that extracellular ligand binding may not 

activate downstream effectors highlights how genetic variability observed by analysis of 

biomarkers is not the sole driver of heterogeneity in vivo. The diversity of cell signaling 

responses within a population can promote progression of diseases such as cancer, in 

which signaling inputs to subpopulations of cells, such as metastatic cells, dictate 

patient outcome. While signaling heterogeneity is starting to be recognized even in the 

most homogeneous cellular conditions (3–7), a mechanism explaining the source of this 

heterogeneity, especially one consistent with multiple receptor-ligand systems, has yet 

to be proposed. Understanding the major drivers of cell signaling heterogeneity will 

inform new treatment strategies to target subpopulations of cells promoting cancer 

progression. 

 

Recently, we developed the computational  conditional signaling model (CSM) that 

provides a framework for understanding cell signaling heterogeneity following signaling 

through chemokine receptor CXCR4 (6), a G-protein coupled receptor which binds 

chemokine CXCL12 and has been identified as a critical target for cancer therapy (8–

12). We demonstrated that cell signaling heterogeneity to downstream effectors ERK 

and Akt, two kinases implicated in cancer cell survival, proliferation, and metastasis 

(13,14), can be mechanistically explained by variability in pre-existing cell states (6). We 

postulate that these same pre-existing cell states, characterized by identical intracellular 

signaling parameter sets, can also describe signaling heterogeneity through epidermal 

growth factor receptor (EGFR), a receptor tyrosine kinase which binds epidermal growth 

factor (EGF) and is a target for cancer therapies due to the receptor’s role in enhanced 

and uncontrolled cell proliferation (15–17). Additionally, evidence suggests that EGFR 

binding can enhance CXCR4-mediated chemotaxis of cancer cells, emphasizing the 

importance for understanding how heterogeneity in both of these pathways governs 

downstream signaling (18). By providing a framework for cell signaling heterogeneity 
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through two receptors from distinct receptor families, we gain insight into conserved 

signaling motifs and can predict signaling in the presence of targeted therapies. 

 

In this work, we expand our existing computational model to test the hypothesis that 

pre-existing cell states control heterogeneous downstream signaling through both 

EGFR and CXCR4. We combined kinase translocation reporters (KTRs) (19,20) with 

two-photon dynamic live cell microscopy to calibrate the model and confirm model 

predictions. We used two breast cancer cell lines of different mutational backgrounds 

and various doses of both EGF and CXCL12 to test model robustness in various 

conditions. The model predicts how targeted therapeutics against Akt signaling can 

have inadvertent consequences on ERK signaling, highlighting the importance of 

understanding crosstalk and feedback through these pathways. Our data identify a 

conserved motif among EGFR and CXCR4 signaling that gives rise to heterogeneous 

outcomes with implications for the design of more strategic therapeutic interventions. 

 

3.3 Methods 

3.3.1 Cell culture 

Cell culture for both SUM 159 and MDA-MB-231 breast cancer cells was exactly as 

described in Chapter 2 (6). 

 

3.3.2 Fluorescent reporter construction 

We used fluorescent reporters (KTRs) first proposed by Regot et. al (19,20) and 

implemented exactly as described in Chapter 2 (6).  

 

3.3.3 Cell engineering 

Cell engineering was done exactly as described in Chapter 2 (6). 
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3.3.4 Time-lapse two photon microscopy and image processing 

Time-lapse microscopy for SUM 159 and MDA-MB-231 breast cancer cells was exactly 

as reported in Chapter 2 (6).  

 

3.3.5 Computational model mechanisms 

We expanded upon our computational model of heterogeneous CXCR4-mediated Akt 

and ERK signaling from Chapter 2 (6) by incorporating EGFR dynamics to the receptor 

module. The complete model includes three modules which describe the dynamics of 

receptors, signaling, and reporters. All equations, parameters, and initial conditions can 

be found in Appendix Tables B1-B5. 

 

Receptor dynamics for CXCR4 are as described previously (21–23). We adapted a 

simple mechanism of EGFR binding, internalization, and degradation from literature 

data (24). While many models of EGFR dynamics which incorporate mechanisms such 

as receptor dimerization, trafficking to endosomes, and lipid rafts exist in literature (24–

28), we constructed a simple model consistent with the overall behavior of EGFR 

signaling seen in our imaging experiments. Surface EGFR binds EGF in the 

extracellular space to form an EGF-EGFR complex which can be internalized and 

degraded by first order kinetics (24). We note that receptor tyrosine kinases like EGFR 

typically dimerize upon binding EGF (29), but we lump dimerization with the binding 

event for simplicity. Unbound EGFR internalizes and recycles according to first order 

kinetics (24). 

 

Signaling dynamics in the computational model are taken from our previous work (6) 

with minor modifications. The signaling module describes how ligand-induced receptor 

activation promotes downstream ERK and Akt signaling in single cancer cells. Briefly, 

liganded receptor complexes (CXCL12-CXCR4 or EGF-EGFR) activate downstream 

signaling cascades through the ERK and Akt pathways. Since EGFR is a receptor 

tyrosine kinase, the EGF-EGFR complex signals directly to Ras and PI3K, whereas 

CXCR4 is a G-protein coupled receptor and signals to G-proteins. The ERK and Akt 

signaling cascades, which include the activation and deactivation of important signaling 
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molecules downstream of these receptors, are modeled by first order or Michaelis-

Menten enzyme kinetics. In this version of the model, we modified the mechanism 

describing mTOR activation to simulate how mTOR is sequestered into either mTORC1 

or mTORC2. mTOR in our model represents the inactive form of both mTORC1 and 

mTORC2, but also includes mTOR in complex species unaccounted for in our model, 

such as mTORC3 (30). This mTOR mechanism is supported by literature citing how 

rapamycin, a compound which strongly inhibits mTORC1, also inhibits mTORC2 at high 

drug concentrations, implying the existence of shared mTOR between the two 

complexes (31,32). All other kinase signaling kinetics are exactly as previously 

described (6). 

 

Activated ERK and activated Akt promote the phosphorylation and translocation of the 

kinase translocation reporters for each kinase. We used a set of previously published 

ordinary differential equations (19) to describe the mechanism by which these 

processes occur, and these dynamics are incorporated as previously described (6). The 

model accounts for reporter concentrations of each kinase, ERK and Akt. The reporter 

can exist in the phosphorylated or unphosphorylated state in both the cytoplasm and the 

nucleus. The single-cell kinase activity is measured as the log2(C/N), where C 

represents the sum of unphosphorylated and phosphorylated cytoplasmic reporter and 

N represents the sum of unphosphorylated and phosphorylated nuclear reporter. We 

use the log2(C/N) for both ERK and Akt to compare our model predictions with 

experimental observations of single-cells. 

 

3.3.6 Computational model solution 

The solution to the computational model is generated using MATLAB function ode15s. 

Given the parameters, initial conditions, and rate equations described in Appendix 

Tables B1-B5, we run the model to steady-state concentrations of all model species in 

the absence of ligand stimulus. These steady-state concentrations are then used as the 

initial conditions for simulations of ligand-induced (EGF or CXCL12) activation of 

downstream ERK and Akt signaling, which occur according to the ordinary differential 

equations above. 
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3.3.7 Computational model calibration 

The goal of our calibration process was to find a baseline parameter set which best fits 

the most common ERK and Akt responses in our KTR imaging experiment using SUM 

159 cells. We can then use this baseline parameter set to account for heterogeneity 

using extrinsic noise, and account for another cell type (MDA-MB-231 cells) by adding a 

mutation parameter. The mode cell in our experiments was determined by pairing the 

ERK and Akt responses in single cells and performing a least-square error calculation of 

all single cell responses with each other. By assigning a maximum error cutoff between 

the given cell and all other cells in the experiment, we can tally the number of other cells 

in the experiment which have errors smaller than this maximum. The mode cell will be 

the cell with the highest tally, indicating that its paired ERK and Akt responses were 

similar to the most other cells. 

 

The parameters we calibrated to find the baseline parameter set specific for the mode 

cell in this work were those that we have added or adjusted since the previous version 

of the model. These new parameters fall into one of three categories: they were directly 

involved in (i) mTORC1 and mTORC2 activation, (ii) mTORC1-mediated restraint, or (iii) 

EGFR binding and trafficking dynamics. We calibrated the category i and ii parameters 

to experimental KTR imaging data of SUM 159 cells stimulated with 10 ng/mL CXCL12 

(Figure 3.1B), and the category iii parameters to SUM 159 cells stimulated with 1 ng/mL 

EGF (Figure 3.1A).  

 

To calibrate the category i and ii parameters, which describe intracellular downstream 

signaling processes involving mTOR complexes, we used Latin Hypercube Sampling 

(LHS) as a search strategy for efficient sampling of these new parameters with +/- 50% 

variation from literature estimates of baseline values (33,34). We next simulated these 

parameter sets in our computational model, calculated the least-square difference 

between the experimental single-cell ERK and Akt responses of the mode cell and each 

predicted ERK and Akt response from the model, and chose the parameter set with the 

smallest error as our baseline parameter set. In the baseline parameter set, we used 
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the extrinsic noise parameters that described the pre-existing state of the mode SUM 

159 cell from our previous work (6). All other model parameter values for the baseline 

parameter set were taken from our previous work (6). 

 

To calibrate the category iii parameters, which describe EGFR dynamics, we start with 

the baseline parameter set from above, which defines all downstream signaling 

parameters. We perform a second LHS search with +/- 50% variation from literature 

estimates of the category iii parameters. These parameter sets are then simulated in the 

computational model, and the set which best fits the mode cell from the experiment is 

the new baseline parameter set, containing all calibrated parameters which describe the 

behavior of the mode ERK and Akt response in the SUM 159 cell population. 

 

3.3.8 Various cell types in the computational model 

To model MDA-MB-231 cells, we use the same parameter set as the SUM 159 cells but 

add in a parameter for constitutive activation of B-Raf, consistent with the known 

mutation in these cells (35). Additionally, we decrease kf and increase KD of EGF 

binding to EGFR for MDA-MB-231 cells as we noticed this binding interaction was 

weaker in MDA-MB-231 cells. The apparent binding interaction being weaker in MDA-

MB-231 cells is likely due to a smaller number of high-affinity EGFR compared to SUM 

159 cells.  This could arise from different configurations of lipid rafts or HER2 

expression, features not explicitly incorporated into our computational model (36). 

 

3.3.9 Computational model: extrinsic noise 

We incorporated signaling heterogeneity in cell populations with extrinsic noise on the 

single-cell scale. The same method was used as previously reported (6). 

 

3.3.10 Determining the pre-existing state of cells in KTR experiments 

We determined the pre-existing state of cells from KTR experiments by comparing 

single-cell ERK and Akt responses between the experiments and computational model. 

The computational model generates over 12,000 possible ERK and Akt responses to 
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any dose of either EGF or CXCL12. We calculated the residuals of the ERK and Akt 

responses from the experiment to all possible predicted responses from the 

corresponding ligand type and dose from the model. For a given experimental cell, the 

predicted pre-existing state which corresponds to the model responses with the 

minimum residual is classified as the pre-existing state of the given experimental cell. In 

this manner, each experimental cell is coupled to a set of extrinsic noise rate 

parameters which define the pre-existing cell state. Occupancy maps shown in Figures 

3.4D, 3.7C and Figures B1 B, B3 C illustrate the probability density of experimental cells 

in pre-existing states from the computational model. To calculate the probability density, 

we calculate a fit score denoted as the reciprocal of the sum of the squared residuals for 

experimental ERK and Akt KTRs compared with the simulated ERK and Akt KTR at 

each of the over 12,000 pre-existing states in the model. We normalize the fit score for 

each experimental cell to the sum over the fit score to all model pre-existing states. 

Using a lower bound (0.0005), below which fit scores are set to 0, we calculate the 

probability of occupancy at each pre-existing cell state. These probabilities are ranked 

and summed to determine the probability density of experimental cells in pre-existing 

states, shown as projections onto two axes in the contour plots. 

 

3.4 Results 

3.4.1 EGFR and CXCR4 signaling responses to ERK and Akt are 
heterogeneous 

EGFR and CXCR4 elicit both Akt and ERK signaling upon EGF and CXCL12 binding, 

respectively (17,37). To capture EGFR and CXCR4 signaling to ERK and Akt in single 

cells, we use cell constructs reported in Spinosa et. al (6). Briefly, we stably expressed 

fluorescent reporters for activities of these kinases (kinase translocation reporters, 

KTRs) in two breast cancer cell lines, SUM 159 and MDA-MB-231 cells. KTRs 

reversibly undergo a nucleocytoplasmic shuttling event based on the phosphorylation 

for specific substrates of each kinase. The cytoplasmic to nuclear ratio of fluorescence 

intensity of the KTRs in single cells is a measure of kinase activity (19,20). Both cell 
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lines stably express histone 2B fused to mCherry (H2B-mCherry) to mark the nucleus 

for image analysis purposes. 

 

Using live-cell imaging to quantify ERK and Akt KTR dynamics in individual cells, we 

observed heterogeneous EGFR and CXCR4 signaling in SUM 159 breast cancer cells 

stimulated with 1 ng/mL EGF (Figure 3.1A) or 10 ng/mL CXCL12 (Figure 3.1B) after a 

fetal bovine serum (FBS) starve from normal culture conditions. ERK activation was 

more pronounced compared to Akt activation due to the constitutively active 

phosphatidylinositol-3-kinase (PI3K) in these cells. Under either EGF or CXCL12 

stimulation, cells respond along a continuum from no to high activation, consistent with 

previously reported heterogeneous responses (6).  

 
 
Figure 3.1 EGF signaling is heterogeneous in single cells 

(A) Time tracks of Akt (left) and ERK (right) signaling in single SUM 159 cells. Left of the 
gray dotted line represents the basal signaling state of the cells prior to ligand 
stimulation. The gray dotted lines indicate when (A) EGF or (B) CXCL12 was added, 
and the cells were imaged for 40 minutes post-stimulation. The color indicates the 
log2(C/N) of the Akt and ERK KTRs at each image. 
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3.4.2 Computational model describes heterogeneous EGFR and CXCR4 
signaling to ERK and Akt  

Although different classes of receptors, both EGFR and CXCR4 signal to ERK and Akt. 

We hypothesized that because the range of heterogeneous EGFR signaling behaviors 

we observed in Figure 3.1 was similar to that previously observed with CXCR4 signaling 

(6), our existing computational model could be expanded to include EGFR signaling. 

The computational model is founded on the premise that the pre-existing cell state 

deterministically controls ERK and Akt responsiveness. In this model, ligand-receptor 

binding of either EGF-EGFR or CXCL12-CXCR4 is transduced to the single cell pre-

existing state, which varies from cell-to-cell, but the resulting ERK and Akt activity is 

deterministic from each respective state (Figure 3.2). The pre-existing cell state is 

characterized by a set of intracellular downstream signaling parameters in the model 

that we hold identical for EGFR and CXCR4 signaling in single cells.  

 
Figure 3.2 The pre-existing cell state hypothesis encompasses signaling through 
both EGFR and CXCR4 

We hypothesize that receptor-ligand stimulation from both EGF-EGFR and CXCL12-
CXCR4 interactions signals to a pre-existing state in cells. These pre-existing states are 
variable from cell-to-cell, but promote a deterministic output in Akt or ERK signaling, 
thereby generating heterogeneous responses in single cells within a population. 
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To test the hypothesis that variable pre-existing cell states control heterogeneity of ERK 

and Akt responses, we first expanded the CSM of CXCR4 signaling to include EGFR 

binding and intracellular trafficking dynamics (Figure 3.3A). Both the EGF-EGFR and 

CXCL12-CXCR4 complexes elicit downstream ERK and Akt activation through a series 

of crosstalk and feedback mechanisms which include mTOR dynamics (Figure 3.3B). 

mTORC1 acts as a major regulator of signaling as it inhibits upstream activators of the 

ERK and Akt pathways (38,39). Heterogeneity is incorporated in the model by adding 

extrinsic noise rate parameters on three key species: PI3K, Ras, and mTORC1 

(3,4,6,40–43). The extrinsic noise rate parameters account for variable intracellular 

protein concentrations from cell to cell and define the pre-existing cell state. 

Mathematically, the extrinsic noise is a first-order rate parameter which activates PI3K, 

Ras, or mTORC1 in the absence of EGF or CXCL12. This computational model allows 

us to test the hypothesis that variable pre-existing states can explain signaling 

behaviors through both EGFR and CXCR4. 
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Figure 3.3 Computational modeling combines receptor-ligand interactions with 
kinase signaling to downstream effectors 

(A) CXCR4 and EGFR trafficking are described by ordinary differential equations 
detailed in Appendix Tables B1-B5. (B) The computational model is constructed 
according to known mechanisms of EGFR and CXCR4 signaling. Extrinsic noise in 
three pathway components, PI3K, Ras, and mTORC1, sets heterogeneous pre-existing 
states and confers distinct Akt and ERK responses in single cells. A full description of 
the differential equations, parameters, and initial conditions can be found in 
Supplementary Information. 
 

3.4.3 The same set of pre-existing cell states explains heterogeneous 
EGFR- and CXCR4-mediated signaling 

We next compared model predictions to the experimental data to determine whether a 

common set of pre-existing cell states can account for heterogeneity in EGFR and 

CXCR4 signaling. It must necessarily be true that the pre-existing state of cell 

populations under the same experimental conditions is independent of the ligand and 

dose used to stimulate the cells during subsequent dynamic analysis. Additionally, 

different cancer cell types will have different pre-existing states due to varying 

mutational backgrounds. We ran the computational model at various PI3K, Ras, and 

mTORC1 extrinsic noise states (pre-existing states) to generate a library of over 12,000 

predicted EGFR- or CXCR4-mediated ERK and Akt responses (Figure 3.4A). To 

determine the pre-existing state of cells in any KTR imaging experiment, we perform a 

least-square matching process between the paired ERK and Akt responses from every 

single cell from an imaging experiment to all possible predicted ERK and Akt responses 

output from the computational model for a given ligand type (EGF or CXCL12) and 

dose. The predicted single-cell response that most closely matches a given 

experimental single-cell response retains the pre-existing state information, and we can 

assign this state to the given experimental cell.  



65 
  

 
 
Figure 3.4 The computational model combined with KTR imaging experiments 
allows for the determination of the pre-existing states of single cells 

(A) We combine ERK and Akt responses from imaging experiments with computational 
modeling to calculate the pre-existing state of each individual experimental cell. Using 
the model, we generate a library of possible ERK and Akt responses by varying only the 
extrinsic noise parameters. We perform least-square matching to determine which 
predicted model dynamics most closely match the ERK and Akt dynamics observed 
experimentally in single cells. The pre-existing state, defined as the combination of the 
PI3K, Ras, and mTORC1 extrinsic noise parameters, can then be back calculated from 
the model curve which best fit each experimental cell. (B) Akt and ERK experimental 
and model-predicted time tracks in single SUM 159 cells after (B) 1 ng/mL EGF and (C) 
10 ng/mL CXCL12 stimulation. The color indicates the log2(C/N) of the Akt and ERK 
KTRs. (D) Pre-existing state occupancy maps illustrate 2D projections of the extrinsic 
noise states that the experimental cells occupied after least-square matching from (B) 
and (C). Red and black lines correspond to the 10 ng/mL CXCL12 and 1 ng/mL EGF 
experiments, respectively. The outer lines represent the contour holding 90% of the 
experimental cells, and the inner lines represent 50%.  
 

The computational model captures the entire range of paired Akt and ERK responses of 

SUM 159 cells stimulated with 1 ng/mL EGF and 10 ng/mL CXCL12 (experiments 

presented in Figure 3.1A,B) (Figure 3.4B,C). Crucially, our model predicts that the pre-
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existing states of the population of SUM 159 cells in both of these experiments are 

virtually the same, with high population at high PI3K activity, consistent with 

constitutively active PI3K in these cells, and moderate Ras and mTORC1 activity 

(Figure 3.4D). A similar process was performed to determine the pre-existing state of 

MDA-MB-231 cells. These cells have high Akt responsiveness rather than ERK due to 

activating mutations in K-Ras and B-Raf (35), which are upstream of ERK. Paired Akt 

and ERK responses from the model library match MDA-MB-231 cells from the 100 

ng/mL EGF stimulation experiment, and these cells occupy a regime of moderate PI3K, 

Ras, and mTORC1 activity (Figure B1 A,B). Because the model predicts the same set 

of pre-existing cell states in two different SUM 159 cell experiments, we gain confidence 

in the hypothesis that the pre-existing state deterministically controls ERK and Akt 

signaling. 

 

3.4.4 The pre-existing cell state controls ERK and Akt responsiveness 

The computational model demonstrates that responsiveness of ERK and Akt are a 

function of the cellular pre-existing state. For SUM 159 cells stimulated with 1 ng/mL 

EGF, the highest ERK responses were seen at pre-existing states of high PI3K and low 

mTORC1 activity (Figure 3.5A). We also ran our computational model for MDA-MB-231 

cells, which as mentioned above differ from SUM 159 cells in their mutational 

background, and examined Akt responses. When stimulated with 10 ng/mL EGF, these 

cells exhibit highest Akt responses at pre-existing states of low PI3K and low mTORC1 

activity (Figure 3.5B). Notably, at high mTORC1 activity both SUM 159 cells and MDA-

MB-231 cells show pre-existing states in the model with no ERK and Akt 

responsiveness, respectively, identifying an intracellular restraint mechanism that gives 

rise to no observed signaling in particular cells. 
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Figure 3.5 The computational model predicts Akt and ERK responsiveness of 
breast cancer cell lines via EGFR stimulation is a function of pre-existing state 

(A) SUM 159 cells show highest ERK responses at pre-existing states characterized by 
high PI3K and low mTORC1 activity. (B) MDA-MB-231 cells show highest Akt 
responses at pre-existing states characterized by low PI3K and low mTORC1 activity. 
The left and right panels illustrate slices through the Ras and PI3K extrinsic noise 
states, respectively, with the vertical gray dashed line indicating the plane through which 
the complimentary panel is sliced. 
 

3.4.5 Predicted ERK and Akt responses to higher EGF and CXCL12 doses 

After calibrating our computational model and determining the set of pre-existing states 

of SUM 159 cells, we use the model to predict ERK and Akt signaling behavior at higher 

doses of both EGF and CXCL12. To predict new signaling behaviors, we assume the 

same set of pre-existing states as determined in Figure 3.4C, since the pre-existing 

state is necessarily ligand- and dose- independent. The model predicts the single cell 

ERK and Akt responses of SUM 159 cells stimulated with higher ligand doses of 10 

ng/mL EGF and 100 ng/mL CXCL12 (Figure 3.6A). The model predictions capture the 

behaviors of single cells across the entire continuum of ERK and Akt responsiveness 
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(Figure 3.6B). MDA-MB-231 cell Akt responses to EGF or CXCL12 are similarly 

predicted by the model at higher ligand doses (Figure B2 A), and the model captures 

the range of all single-cell responses in this cell type as well (Figure B2 B), 

demonstrating model robustness. 

 
 
Figure 3.6 The computational model predicts SUM 159 cell Akt and ERK 
responses to EGF and CXCL12 at new doses given the calculated pre-existing 
states 

(A) The median, 10th, and 90th percentile of the log2(C/N) of ERK dynamics predicted 
from the model for SUM 159 cells stimulated with 10 ng/mL EGF (left) and 100 ng/mL 
CXCL12 (right) match experimental validation. (B) Single-cell time tracks of the 
predicted (top) and experimental (bottom) Akt and ERK dynamics illustrate that the 
model captures the entire continuum of responses to EGF (left) and CXCL12 (right) 
stimulation seen in experiments.  
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3.4.6 Predicted concentrations of active ERK and Akt in single cells 

After validating model signaling responses to EGFR and CXCR4, we analyzed model 

predictions to study heterogeneity in the concentration of active ERK and Akt in our 

simulations. For SUM 159 cells, model predictions of ERK responses to 10 ng/mL or 1 

ng/mL EGF (Figure 3.7A) and 100 ng/mL or 10 ng/mL CXCL12 (Figure 3.7B) 

demonstrate the heterogeneity in the amount of active ERK in these cells following 

stimulation. These single SUM 159 cells map to regions within the population of SUM 

159 cells (Figure 3.7C), indicating that these pre-existing states are occupied by 

experimental cells. The model also predicts Akt responses of single MDA-MB-231 cells 

at various EGF and CXCL12 doses, and illustrates how pre-existing states among this 

cell population confer heterogeneous signaling responses to both ligands (Figure B3 A-

C). Both breast cancer cell lines contain a wide array of pre-existing cell states which 

control responsiveness in ERK and Akt through EGFR and CXCR4. 

 
 
Figure 3.7 Model predictions of ERK concentrations following doses of EGFR or 
CXCR4 stimulation 

(A) SUM 159 cells stimulated with 1 ng/mL (solid line) or 10 ng/mL (dotted line) EGF 
show heterogeneous predicted ERK responses. Line colors correspond to those in b 
and c. (B) SUM 159 cells stimulated with 10 ng/mL (solid line) or 100 ng/mL (dotted line) 
CXCL12 show heterogeneous predicted ERK responses. Line colors correspond to 
those in A and C. (C). Contour map illustrating the pre-existing states occupied by SUM 
159 cells with colored x’s indicating the pre-existing states shown in a and c. The 
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contours represent the 2D projected occupancy map of the experimental cells after 
being matched in the 3D model library space. The outer and inner contours represent 
90 and 50 percent of experimental cells, respectively. 
 

3.4.7 In silico PI3K inhibition of SUM 159 cells 

Since SUM 159 cells harbor constitutively active PI3K, we next used the model to make 

predictions about the effects of PI3K inhibition on responsiveness of SUM 159 cells. 

Both the basal state, which is the resting ERK and Akt activity prior to ligand stimulation, 

and responsiveness through either kinase are affected by PI3K inhibition. The model 

predicts that PI3K inhibition will increase both the basal state (Figure 3.8A) and 

responsiveness (Figure 3.8B) of ERK in SUM 159 cells, consistent with experimental 

data reported in literature citing how cells bypass PI3K inhibition by activating ERK (44). 

Black contours represent the pre-existing states calculated in Figure 3.4D, and are 

shown here to demonstrate that the SUM 159 cell population exists within a regime 

where ERK activation is affected by PI3K inhibition. In the model, inhibition of PI3K 

decreases Akt activity, but releases restraint from Akt on Raf thereby activating ERK. 

Our model suggests a mechanism by which cells escape PI3K inhibition and upregulate 

another oncogenic signaling pathway, indicating that inhibiting both the ERK and Akt 

pathways simultaneously may be necessary even in cells which are more active in one 

of these pathways (44,45). The ability of the model to predict inadvertent signaling 

effects of PI3K inhibition highlights how the model can aid in determining the best 

strategies for targeted therapeutic intervention. 
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Figure 3.8 PI3K inhibition potentiates EGFR-mediated ERK signaling 

(A) Contour map illustrating the change in the basal signaling level of ERK in SUM 159 
cells under PI3K inhibition versus control at various pre-existing states. Color indicates 
the concentration (nM) difference between the basal state under inhibited conditions 
and control conditions. The plane of the 3D model library shown here is kRas = 0.08 
1/min. The two black contours represent the pre-existing states encompassed by 90% 
(outer) and 50% (inner) of SUM 159 cells. (B) Contour map illustrating the change in the 
ERK responsiveness of SUM 159 cells under PI3K inhibition versus control at various 
pre-existing states after 1 ng/mL EGF stimulation. Color indicates the concentration 
(nM) difference between the responsiveness under inhibited conditions and the 
responsiveness under control conditions. Shown here is a plane of the 3D model library 
located at a value of kRas = 0.08 1/min. The two black contours represent the pre-
existing states encompassed by 90% (outer) and 50% (inner) of SUM 159 cells. 
 

3.5 Discussion 

Cell signaling heterogeneity confounds our ability to understand and treat signaling 

diseases such as cancer that are driven by small subpopulations of cells.  Here, we 

further develop and test our hypothesis that (i) the source of the heterogeneity is 

deterministic, not stochastic; (ii) pre-existing cellular states that vary cell-to-cell are the 

drivers of signaling heterogeneity. We identify a critical test of the CSM model by 

showing that the model framework can explain heterogeneity in ERK and Akt signaling 

over multiple doses of ligand to two receptor systems of different families on two cell 

lines of different mutational backgrounds. Using the model, we confirmed that the ERK 

and Akt signaling restraint mechanism through mTORC1 is conserved in the EGFR and 

CXCR4 receptor systems, highlighting a signaling motif which may have implications for 

targeted therapies of both pathways. We demonstrate the clinical utility of our model by 

predicting signaling outcomes following targeted therapy administration. For example, in 

future works, the CSM could predict signaling outcomes from combinations of inhibitors 

relevant for cancer therapies. 

 

Despite the marked heterogeneity of single-cell Akt and ERK responses to an identical 

input stimulus, we present a computational model capable of predicting the entire range 

of responses of both kinases for both EGFR and CXCR4 signaling by varying only three 
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key parameters. These three key parameters set the activity of PI3K, Ras, and 

mTORC1 prior to ligand stimulation and define the cellular pre-existing state. We vary 

these three parameters not because of uncertainty in their values, which is a common 

approach in computational modeling of biological systems (46,47), but because these 

three kinases represent nodes which respond to biological stimuli outside of EGFR and 

CXCR4 signaling which are unaccounted for explicitly in our model (41,48–50). 

Additionally, we highlight that despite the continuum of possible responses of single 

cells, our model captures the range of signaling behaviors while holding all biophysical 

rate constants the same from cell-to-cell in the population, supporting our claim that 

intrinsic noise in enzyme kinetics is not the primary driver of cell signaling heterogeneity. 

The fact that the pre-existing cell state can predict signaling responses to both EGFR 

and CXCR4 stimuli provides support for the argument that variation in receptor 

expression is not the major driver of heterogeneous signaling responses. This work 

extends beyond the current paradigm of simply recapitulating cell signaling 

heterogeneity and examines the root mechanistic sources of variability in signaling. 

 

Single-cell signaling responses are the outputs of robust dynamical systems that retain 

heterogeneity within cell populations. In the work presented here, we found the 

variability in the pre-existing states of single cells was always present regardless of cell 

type, ligand type, or ligand dose. However, pre-existing states are in constant flux with 

varying environmental cues. Recent work uncovered how we can edit pre-existing cell 

states to have more or less Akt and ERK responsiveness (6). Harnessing the full 

potential of controlling the pre-existing state of cell populations may unveil a host of new 

combination therapy strategies to treat cancer and overcome the inherent heterogeneity 

of cell signaling responses. In future work, our computational model can be linked to 

larger-scale quantitative systems pharmacology models to uncover strategies for 

efficient design of targeted therapeutic regimens. 
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Chapter 4 The CXCL12/CXCR7 Signaling Axis, Isoforms, 
Circadian Rhythms, and Tumor Cellular Composition Dictate 

Gradients in Tissue
 

This chapter is a published work: 

 

Spinosa PC, Luker KE, Luker GD, Linderman JJ. The CXCL12/CXCR7 signaling axis, 

isoforms, circadian rhythms, and tumor cellular composition dictate gradients in tissue. 

PLoS One. 2017;12(11).  

4.1 Abstract 

Chemokine CXCL12 gradients drive chemotaxis in a CXCR4-dependent mechanism 

and have been implicated in cancer metastasis. While CXCL12 gradients are typically 

studied in organized, defined environments, the tumor microenvironment is 

disorganized. In vivo, CXCL12 gradients depend on many factors: the number and 

arrangement of cells secreting and degrading CXCL12, isoform-dependent binding to 

the extracellular matrix, diffusion, and circadian fluctuations. We developed a 

computational model of the tumor microenvironment to simulate CXCL12 gradient 

dynamics in disorganized tissue. There are four major findings from the model. First, 

CXCL12-β and -γ form higher magnitude (steeper) gradients compared to CXCL12-α. 

Second, endothelial CXCR7+ cells regulate CXCL12 gradient direction by controlling 

concentrations near but not far from the vasculature. Third, the magnitude and direction 

of CXCL12 gradients are dependent on the local composition of secreting and 

scavenging cells within the tumor. We theorize that “micro-regions” of cellular 

heterogeneity within the tumor are responsible for forming strong gradients directed into 

the blood. Fourth, CXCL12 circadian fluctuations influence gradient magnitude but not 

direction. Our simulations provide predictions for future experiments in animal models. 
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Understanding the generation of CXCL12 gradients is crucial to inhibiting cancer 

metastasis. 

 

4.2 Introduction 

Chemokine CXCL12, alternatively called stromal cell-derived factor 1 (SDF-1), has been 

implicated in cancer metastasis and is a known driver of chemotaxis via chemokine 

receptor CXCR4 (1–4). Common sites of breast cancer metastasis, including bone, 

liver, and brain, express high levels of CXCL12 (3,5). Staining data demonstrate spatial 

heterogeneity of CXCL12 in tumors (2,6), suggesting that CXCL12 gradients exist in 

vivo. In in vivo models, CXCR4 antagonist AMD3100 (Plerixafor) decreases primary 

tumor size and/or metastatic burden, but metastatic disease is not cured (7–9). One 

theory of the metastatic mechanism is that cancer cells use dynamic chemokine 

gradients in their local environments to travel from primary to secondary tumor sites. 

CXCL12 gradient dynamics remain unclear, and yet understanding these gradients in 

vivo is crucial to grasping the mechanism that drives cancer cells along the metastatic 

cascade. 

 

CXCL12 has two known receptors, CXCR4 and CXCR7, which are involved in 

responding to and forming the CXCL12 gradient, respectively (10–12). Many cell types 

in tumors secrete CXCL12, most notably cancer-associated fibroblasts. When CXCL12 

binds to CXCR4, the receptor is internalized and a cascade of intracellular signaling 

events commences, culminating in a chemotactic response, cell survival, and 

proliferation. However, when CXCL12 binds to CXCR7, the chemokine is rapidly 

internalized and degraded, facilitating gradient formation (12), and a chemotactic 

response does not result (13). CXCR7 is expressed throughout the tumor and is 

substantially upregulated on tumor-associated vasculature (14–17). Endothelial CXCR7 

is a key regulator of systemic CXCL12 blood plasma levels, which is unsurprising due to 

its location (18). However, the role of endothelial CXCR7 with regards to CXCL12 

gradients in tissue is unknown. In fact, it is difficult to fathom how cancer cells use 

chemokine gradients to intravasate into blood vessels if endothelial CXCR7 is present 
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to scavenge CXCL12. Therefore, we asked how, why, and when CXCL12 gradients 

could be directed towards blood vessels. In this work, we study CXCL12 gradients in 

tumor geometries that are likely to exist in vivo while simultaneously examining the role 

of endothelial CXCR7. 

 

Multiple mechanisms govern CXCL12 gradients in vivo. As CXCL12 is secreted in the 

tumor environment, it diffuses away, binds to extracellular matrix (ECM), and is 

degraded by both cellular and extracellular means. Alternative splicing generates six 

isoforms of CXCL12 (19), three of which are found in notable abundance in tumors and 

other sites in the body: CXCL12-α, -β, and -γ (20). The isoforms bind nonspecifically to 

ECM with different affinities based on numbers of positively charged amino acids. 

CXCL12-γ binds to ECM with the highest affinity, followed by CXCL12-β and CXCL12-

α, respectively (21); their secretion rates from fibroblasts follow an opposite trend, with 

CXCL12-α being the highest (22). Binding to ECM increases the local concentration of 

chemokine while also affording protection from both extracellular and cellular 

degradation (23). Protection from degradation creates a slower effective diffusivity, thus 

creating isoform-specific gradients in tissue. Our group has found that CXCR4+ cancer 

cell migration in 2D is CXCL12 isoform-specific (22,24), but isoforms have not been 

examined and compared in 3D settings. In addition, CXCL12 levels in all tissues tend to 

vary according to the circadian rhythm up to 2-fold throughout a 24-h period (25,26), 

implying that tissue-level gradients are also time-dependent on this scale. The effect of 

circadian processes on tumor development, progression, and response to therapy is 

listed as a recent National Cancer Institute Provocative Question (27). Previously, we 

calculated that cancer cells respond to CXCL12 gradients as small as 0.002 nM/μm 

(22); circadian fluctuations might cause gradients to fall above and below this value 

throughout the course of a day. Since CXCR7 rapidly scavenges CXCL12, we 

questioned whether endothelial CXCR7 could modulate the effects of circadian 

fluctuations in the blood due to location between a tissue producing the chemokine and 

the vasculature. These dynamics collectively impact CXCL12 gradients in tissue.  
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We developed a computational model to simulate CXCL12 gradients in a tumor. We 

capture the geometry, cellular environment, and blood dynamics of a small tumor 

section and examine the magnitude, direction, and time variation of CXCL12 gradients. 

By studying CXCL12 gradient dynamics in a relevant, in vivo-like setting 

computationally, we can learn the major drivers of gradient formation, in particular the 

roles that CXCL12 isoforms, endothelial CXCR7, tumor composition, and circadian 

rhythms play. We seek to understand whether these mechanisms can form gradients 

directed into the blood despite the presence of endothelial CXCR7. Finally, we identify 

future experiments that can test our predictions regarding the influence of these drivers 

on cell migration and metastasis.  

 

4.3 Methods 

4.3.1 Model overview 

Our computational model simulates CXCL12 transport in the tumor microenvironment. 

Cells exist in discrete locations within tumors. We use a 3D square lattice grid 

environment to place cells in distinct grid compartments, which allows us to alter the 

tumor cellular composition and distribution. We use two cell types: CXCL12-secreting 

cells and CXCR7+ cells. These cells represent fibroblasts and CXCR7+ tumor cells, 

respectively. CXCR7+ cells are dispersed throughout the tumor or lining the blood 

vessel, which spans the center of the grid. Each grid compartment has a side length of 

10 μm, and can hold at most a single cell. The entire grid is a 200-μm cube. We 

simulate CXCL12 secretion, diffusion, degradation, binding, a blood vessel that can act 

as a source of CXCL12 for the tissue, and circadian fluctuations to depict the tumor 

microenvironment. Model details are given in Appendix Tables C1-C5. 

 

4.3.2 CXCL12 secretion, diffusion, and extracellular degradation 

CXCL12-secreting cells secrete CXCL12 into the grid compartment the cell occupies 

and the chemokine diffuses away. Cells in any given simulation only secrete one 

CXCL12 isoform. Diffusion is solved using an Alternating Direction Explicit method (28). 

We use no flux boundary conditions on the edges of the grid because we assume our 
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model captures the dynamics of a small piece of tumor tissue and is surrounded by 

repeating similar units. Extracellular degradation of chemokine occurs according to first-

order kinetics (29). The timestep for secretion, diffusion, and extracellular degradation is 

0.1 s. 

 

4.3.3 CXCL12 binding to receptors and to ECM 

Receptor-mediated CXCL12 uptake by CXCR7+ cells, i.e. specific binding at the cell 

surface and intracellular trafficking of CXCL12 and CXCR7, is described by a set of 

previously published ordinary differential equations (22,30). CXCR4+ cells, which can 

also take up CXCL12, may additionally influence CXCL12 gradients. However, we 

assume that most CXCL12 degradation in tumors occurs via CXCR7 for three reasons: 

1) the affinity of CXCL12 is approximately two orders of magnitude greater for CXCR7 

than CXCR4 (31,32), 2) CXCR7 is often colocalized with CXCL12 (33), and 3) CXCR7 

and CXCR4 are expressed in approximately the same levels (14).  

 

On every diffusion timestep (0.1 s), CXCL12 binds to ECM in its grid compartment 

according to first-order kinetics and characterized by dissociation constant KD (22). 

Each grid compartment is associated with a free and ECM-bound CXCL12 

concentration. We assume CXCR7+ cells can bind free and ECM-bound CXCL12 with 

the same binding parameters. When calculating CXCL12 gradients, we take the 

difference of the sum of the free and bound concentrations across a distance. 

 

4.3.4 CXCL12 circadian fluctuation and transport across the blood vessel 
wall 

The presence of CXCL12 circadian fluctuations in vivo is attributed to a time-dependent 

secretion rate from cells in the body. However, because we model only a small tumor 

volume (8x10-3 mm3), we assume that any CXCL12 secreted from cells has no 

significant effect on CXCL12 blood concentration. In contrast, blood can deliver 

CXCL12 to the portion of the tumor that we simulate because we cannot neglect the 

influence of CXCL12-secreting cells at sites far from the simulated tumor. We represent 
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the CXCL12 secreted by distant cells by assuming a bulk blood CXCL12 concentration. 

The CXCL12 secretion rate from cells is time-dependent while the blood fluctuation is 

simultaneously impressed on the system. The blood concentration varies temporally but 

not spatially within the vessel. The circadian variation takes the form            

          , which allows us to characterize the amplitude, period, intercept, and time 

offset of the CXCL12 blood dynamics and cellular secretion rate according to: 

 
       

         

 
                             

         

 
  

(1) 

where X is either the secretion rate or CXCL12 blood concentration, Xmax and Xmin are 

maximum and minimum values of X, f is the frequency, and tstart and tmax are the time of 

day to start the simulation and the time at which maximum CXCL12 secretion and blood 

levels are observed (25), respectively. 

CXCL12 transport from blood to tissue occurs according to a mass transfer boundary 

condition as shown by: 

   

  
                  

(2) 

where n is the moles of CXCL12 transported from blood to tissue, p is the vascular 

permeability to CXCL12, A is the surface area of the blood vessel seen by endothelial 

grid compartments, and Cblood and Cendo are the blood concentration and tissue 

concentration just outside the blood vessel wall, respectively.  

 

4.3.5 3D tumor-like geometries 

In order to simulate a tumor microenvironment, we place cells in geometries that are 

likely to occur in vivo (2,6,14–17). A blood vessel is centered on the grid and can deliver 

CXCL12 to the surrounding tissue. CXCL12-secreting cells are placed randomly 

throughout the grid. CXCR7+ cells fall into one of two classes: tissue (non-endothelial) 

CXCR7+ cells, which are scattered randomly throughout the grid, or endothelial 

CXCR7+ cells, which line the blood vessel wall. No cells are seeded inside the blood 

vessel. We use a baseline of 200 cells of each type unless otherwise specified. We 

assume no cell motion since CXCL12-secreting cells and CXCR7+ cells do not exhibit 

chemotactic mobility (17,34). Cells such as macrophages, lymphocytes and T cells that 
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are present in tumors are assumed to occupy any remaining grid compartments; our 

focus here is on cell types that most notably directly impact CXCL12 gradients. Because 

of the randomness in initial cell placement, we average our model outputs over five 

runs. 

 

4.3.6 Model implementation 

We study CXCL12 gradients using the model components described above. We use our 

model in two distinct setups.  

 

In Setup 1 we examine CXCL12 isoform-specific gradients. CXCL12-secreting and 

CXCR7+ cells are placed in clusters 100 μm apart (Figure 4.1A). The clusters are 

confined to a cube region of side length equal to six cell diameters. We vary the number 

of cells and randomize their locations within each cluster while holding the confinement 

volume constant (bounded by black dotted lines in Figure 4.1A). The mechanisms in 

this setup are secretion, diffusion, extracellular degradation, and binding to ECM and 

CXCR7. There is no blood vessel and no circadian rhythm in these simulations; cells 

secrete at the baseline rate S (Appendix Table C4). When the simulation begins, 

CXCL12 gradients form and we track ligand concentrations throughout the grid. The 

outputs are the cell-derived CXCL12 gradient, the total amount of CXCL12 on the grid, 

and the time elapsed before steady state is reached. Steady state in this model setup is 

operationally defined as being reached when the cell-derived gradient changes by less 

than 0.1 nM/μm over 5 min.  
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Figure 4.1 Model setups 

(A) In Setup 1, we capture the cell-derived CXCL12 gradient along the red line formed 
in the presence of clusters of CXCL12-secreting cells and CXCR7+ cells to examine the 
characteristics of isoform-specific gradients. (B) In Setup 2, we simulate a section of a 
tumor and calculate the blood-tissue and endothelial-tissue gradients. All variables 
shown in figure are detailed in Appendix Table C5. (C) A cross-sectional slice of the grid 
used for Setup 2.  
 

In Setup 2 we examine in vivo-like CXCL12 gradients in the disorganized tumor 

microenvironment. We simulate a centralized blood vessel, cells in 3D tumor-like 

geometries, and circadian fluctuations (Figure 4.1B). The blood vessel is modeled as a 
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rectangular prism with a cross-sectional area of 400 μm2. The blood vessel spans the 

entire height of the simulation space. A 2D slice of the grid is shown in Figure 4.1C. 

There are two stages to this simulation. First, we initialize the grid with CXCL12 to 

mimic a snapshot of the tumor environment at a single time point. To do this, we place 

cells and simulate CXCL12 secretion, diffusion, degradation, binding to ECM and 

CXCR7, and transport from blood to tissue until steady state. Circadian fluctuations in 

cell secretion rate and blood levels are not modeled during this initialization stage 

because they occur at the slowest time scale, on the order of hours. Second, we 

introduce circadian fluctuations, both in the secretion rate from cells and the CXCL12 

blood levels. The output using this model setup is the time-dependent magnitude and 

direction of the CXCL12 gradient. We arbitrarily define positive gradients as situations 

where the CXCL12 concentration is higher in the tissue than in the blood, and negative 

gradients as situations where the CXCL12 concentration is higher in the blood than the 

tissue. 

 

The model is coded in C++ and all subsequent analyses are performed using in-house 

MATLAB scripts (The MathWorks, Inc., Natick, MA). All simulations were performed on 

the University of Michigan’s HPC cluster.  

 

4.3.7 CXCL12 measurements in mice 

The University of Michigan IACUC approved all animal procedures. To determine the 

effect of endothelial CXCR7 on CXCL12 circadian rhythms, we measured CXCL12 

levels in plasma, femur, and tibia from C57BL/6 mice (WT) and mice with conditional 

deletion of CXCR7 from vascular endothelium (SCL Cre+) (35). We collected 100 μL 

blood samples into tubes coated with 20mM EDTA. Samples were centrifuged at 

16,100g for 10 minutes at 4°C to collect plasma. For the femur and tibia samples, we 

flushed each bone with 100 L sterile PBS to harvest bone marrow. We centrifuged 

samples at 1,600g for 5 minutes to pellet bone marrow cells and collected the 

supernatant for ELISA. All samples were collected at the times indicated. The mice 

were housed with 12-hour light/dark cycle from 6am to 6pm. All samples were stored at 
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-80°C prior to ELISA for CXCL12 (R&D Systems), performed by the University of 

Michigan Cancer Center Immunology Core. Mice were euthanized with a CO2 overdose. 

 

4.4 Results 

4.4.1 CXCL12-β and -γ are associated with longer gradient formation times, 
higher gradient magnitudes, and higher tissue concentrations than 
CXCL12-α 

CXCL12 isoforms differ in their secretion rates from cells as well as their binding to 

ECM. We investigated how isoforms can differentially modulate gradients in a 3D 

environment. Using Setup 1, we placed a cluster of CXCL12-secreting cells and a 

cluster of CXCR7+ cells in our simulation (Figure 4.1A). We varied the CXCL12 

secretion rate and CXCL12-ECM binding affinity to encompass known values for the α, 

β, and γ isoforms. As the secretion rate or the affinity increased, the cell-derived 

CXCL12 gradient magnitude increased (Figure 4.2A), consistent with published 2D 

simulations of a microfluidic source-sink device (22). In addition, the time to reach 

steady state also increased. CXCL12-γ was able to maintain higher concentrations near 

source cells because of the lower effective diffusivity caused by binding to the ECM 

(Figure 4.2B). For each isoform, greater numbers of scavenging cells decreased the 

total amount of CXCL12 on the grid (Figure 4.2C) but had little effect on the magnitude 

of the gradient between the clusters (Figure 4.2D). Because the binding affinity of 

CXCL12 for CXCR7 is high, just a few CXCR7+ cells can degrade nearly all of the 

nearby CXCL12, so additional CXCR7+ cells have little effect. As the number of 

CXCL12-secreting cells increased, the amount of CXCL12 on the grid and gradient 

magnitudes increased, indicating that the number of source cells can have a substantial 

impact on gradients (Figure 4.2C,D). Taken together, these data imply that cell-derived 

CXCL12-β and -γ within tumor tissue form stronger gradients and create environments 

richer in CXCL12 than cell-derived CXCL12-α.   
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Figure 4.2 Cell-derived CXCL12 gradients are isoform-specific with regards to the 
time to steady state, gradient magnitude, and amount of CXCL12 in the proximate 
environment 

(A) Higher ECM binding affinity and higher secretion rate correspond to a higher 
gradient magnitude, but a longer time to form it. Error bars represent SEM of 5 
simulations. Both clusters contain 100 cells. Cell clusters are placed 100 μm apart. (B) 
CXCL12 gradients and total concentrations in the tissue vary with each isoform. Cell 
numbers were the same as in A. (C) CXCL12-β (center) and -γ (right) create 
microenvironments with higher CXCL12 concentrations than CXCL12-α (left). On each 
plot, the x- and y-axes correspond to the number of cells in each cluster: 25, 50, 75, 
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100, 125, 150, 175, 200. (D) The number of CXCL12-secreting cells in a cluster 
influences gradients, while the effect of the number of CXCR7+ cells is less 
pronounced. The x- and y-axes are the same as in C. For C and D, free and ECM-
bound CXCL12 was summed. For all simulations in this figure, an average over 5 
simulations is reported. 
 

4.4.2 Endothelial CXCR7 decreases CXCL12 levels during circadian 
fluctuations 

Before moving on to tumor microenvironment simulations, we wanted to understand the 

interdependence of circadian fluctuations in CXCL12 concentrations and endothelial 

CXCR7 cells. CXCL12 secreted from cells must bypass endothelial CXCR7 cells to 

enter the blood, and endothelial CXCR7 regulates systemic CXCL12 plasma levels (18). 

We questioned whether endothelial CXCR7 may disrupt circadian fluctuations. We 

measured CXCL12 levels at 5 am (0500) and 8 pm (2000) in WT and SCL Cre+ mice, 

from which we inducibly deleted CXCR7 from vascular endothelium. In the blood, femur, 

and tibia, CXCL12 levels were 2-fold higher at 8 pm compared to 5 am in both WT and 

SCL Cre+ mice, indicating circadian fluctuations are independent of endothelial CXCR7. 

As expected, SCL Cre+ mice showed higher levels of CXCL12 in the blood, femur, and 

tibia compared to WT (Figure 4.3A). Based on these data, we incorporated a 2-fold 

cosinusoidal variation in the CXCL12 blood level over 24-h according to Eq. (1) in our 

model. Our computational model is calibrated to human data rather than mice. We 

consulted literature to determine human CXCL12 levels (36). The amount of each 

CXCL12 isoform in the blood follows the same trend as the cellular secretion rate: 

CXCL12-α > CXCL12-β > CXCL12-γ. We use human time-dependent CXCL12 blood 

levels in our model (Figure 4.3B). Given these data, we are equipped to include 

circadian fluctuations and endothelial CXCR7+ cells in our model of the tumor 

microenvironment. 
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Figure 4.3 CXCL12 circadian fluctuations in CXCL12 concentration occur 
independent of endothelial CXCR7 

(A) Blood (left), femur (center), and tibia (right) CXCL12 levels vary 2-fold between 5 am 
and 8 pm. Error bars represent SEM of 5 repeated measurements per group of mice. 
(B) CXCL12 isoform-specific human blood variations that we use in our model (Eq. (1)). 
CT 24 corresponds to 9 pm while CT 12 corresponds to 9 am. For humans, we offset 
the time at which the maximum and minimum blood levels occur in the mice by 12 hours 
because mice are nocturnal. Mice and humans exhibit CXCL12 blood level maxima at 
night and in the morning, respectively. 
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4.4.3 Endothelial CXCR7 influences CXCL12 gradient direction by 
regulating concentrations near but not far from the vasculature 

Tumor-associated vasculature expresses endothelial CXCR7 that scavenges CXCL12. 

We investigated the ability of endothelial CXCR7 to control the direction of the CXCL12 

gradient. We ran simulations of the tumor microenvironment (Setup 2, Figure 4.1B, C) 

for 24 hours and included two circadian sources of CXCL12: CXCL12 in the blood and 

CXCL12 secreted by cells within the tissue. We ran simulations both with and without 

endothelial CXCR7+ cells present and monitored the maximum endothelial-tissue 

gradient direction. When endothelial CXCR7+ cells were absent, the endothelial-tissue 

gradient was negative, indicating CXCL12 levels were higher near the vasculature than 

deeper in the tissue, and the gradient points towards the vasculature. In contrast, when 

endothelial CXCR7+ cells were present, the endothelial-tissue gradient was positive, 

indicating CXCL12 levels were higher deeper in the tissue than near the vasculature, 

and the gradient points into the tissue (Figure 4.4A). The magnitudes of the gradients 

were isoform-dependent. The isoforms with higher ECM binding affinity (CXCL12-β and 

-γ) maintained higher concentrations in the tissue, as anticipated from the results of 

Figure 4.2. The concentration profile from the vasculature through the tissue 

demonstrates that endothelial CXCR7+ cells regulate CXCL12 levels near the blood 

vessel, but they have a much smaller effect farther (90 μm) away (Figure 4.4B). From 

these data, we conclude that endothelial CXCR7 regulates gradient directions by 

scavenging CXCL12 near but not far from the vasculature. 
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Figure 4.4 Endothelial CXCR7 influences CXCL12 gradient direction by 
controlling CXCL12 concentrations near but not far from the vasculature 

200 endothelial CXCR7 cells (83% coverage of the blood vessel), 200 CXCL12-
secreting cells, and 200 CXCR7+ cells in tissue were placed in the simulation. (A) 
Locally, endothelial CXCR7+ cells scavenge CXCL12 and influence the endothelial-
tissue gradient direction. We arbitrarily define positive gradients as those that point from 
the vasculature to the tissue, and negative gradients point from the tissue to the 
vasculature. Maximum gradients over a 24-hour simulation are shown. (B) CXCL12 
concentration profiles (corresponding to the maximum gradients shown in A) indicate 
endothelial CXCR7 significantly decreases concentrations near the blood vessel and 
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has a much lower effect far away. Curves begin at 10μm because this designates the 
first grid compartment next to the vasculature (Setup 2, Figure 4.1B,C). 
 

4.4.4 Local tumor cellular composition influences both CXCL12 gradient 
magnitude and direction, while circadian fluctuations only influence gradient 
magnitude 

Because endothelial CXCR7 influences CXCL12 gradients in tumors, we also 

questioned how CXCR7+ cells deeper within tissue influence gradient magnitude and 

direction. Using Setup 2 (Figure 4.1B,C), we varied the number of CXCL12-secreting 

and -scavenging cells (non-endothelial CXCR7+ cells) in the tumor simulation. In all 

cases, endothelial CXCR7+ cells were also present. Predicted CXCL12 blood-tissue 

gradients over a 24 hour period, both magnitude and direction, are shown in Figure 4.5. 

The maximum blood-tissue gradient observed over this time interval is depicted in 

Figure 4.5A. CXCL12-α gradients were mostly directed into the blood, except at high 

CXCL12-secreting and low CXCR7+ cell numbers (Figure 4.5A, left). CXCL12-γ 

gradients are somewhat more likely to be directed into the tissue (Figure 4.5A, right). 

CXCL12-β blood-tissue gradients lie between CXCL12-α and -γ (Figure 4.5A, center). 

Isoforms with higher ECM binding affinity can more easily form gradients directed into 

the tissue. Overall, these results demonstrate that the CXCL12 gradient direction and 

magnitude depend on the numbers of CXCL12-secreting and non-endothelial 

scavenging cells present as well as the CXCL12 isoform.  



93 
  

 
Figure 4.5 CXCL12-secreting and -scavenging cell numbers in the tumor 
microenvironment influence gradient direction and magnitude 

(A) Maximum CXCL12-α (left), -β (center), and -γ (right) gradients over a 24-h period 
illustrate that gradients are dependent upon cellular makeup. The * and ~ show the 
strongest gradients into the blood and into the tissue, respectively, and correspond to 
the same symbols in B. Gradient magnitudes were averaged over 5 runs to account for 
potential variation in the randomization of cell placement in the model. In all simulations, 
200 endothelial CXCR7+ cells were present. White squares designate a gradient of 
exactly 0. (B) Time-series of CXCL12 gradients demonstrate that gradients fluctuate 
according to circadian rhythm. Dotted lines represent the minimum gradient (0.002 
nM/μm) that we determined to be necessary to trigger significant cell migration in a 
previous work (21). CT 24 corresponds to 9 pm while CT 12 corresponds to 9 am. 
Positive gradients correspond to higher CXCL12 tissue concentrations while negative 
gradients correspond to higher CXCL12 concentrations in the blood. C, Circadian 
fluctuations of all combinations of CXCL12-secreting and -scavenging cells shown in A. 
 

To examine whether circadian fluctuations influence CXCL12 gradient magnitude and 

direction, we plot the 24-h time course (Figure 4.5B) of the simulations showing the 



94 
  

largest gradients (denoted by * and ~ in Figure 4.5A). We compare these gradients to 

those calculated in earlier work as likely to generate cell migration (22). At high 

CXCL12-secreting cell and low CXCR7+ cell numbers (denoted by ~), CXCL12-β and -γ 

force strong gradients away from the vasculature and into the tissue at all times of day. 

Substantial CXCL12-α gradients never form with the same tumor cellular composition. 

These results are in agreement with the data presented in Figure 4.2, which suggest 

that isoforms with higher ECM binding affinity form stronger cell-derived gradients. In 

contrast, when the CXCL12-secreting cell numbers are low and the CXCR7+ cell 

numbers are high (denoted by *), both CXCL12-α and -β gradients toward vasculature 

are predicted to be strong enough to elicit cell migration between about 3am and 3pm. 

CXCL12-γ gradients are minimal with this tumor cellular composition. Circadian 

fluctuations influenced gradient magnitudes but could not reverse the direction of the 

gradient, as shown by the lack of intersection of the curves with the x-axis. Additional 

simulations of combinations of secreting and scavenging cell numbers shown in Figure 

4.5A similarly demonstrate that the circadian rhythm impacts gradient magnitude but not 

direction (Figure 4.5C). The amplitude of curves shown in Figure 4.5C decreases as the 

gradient magnitudes approaches 0, implying that weaker gradients vary less throughout 

the day than stronger ones (Figure C1). Although the circadian rhythm was unable to 

affect gradient direction, it is a critical regulator of the time-dependent gradient 

magnitude. 

 

4.5 Discussion 

Chemokine gradients may facilitate the migration of cancer cells from a primary tumor, a 

critical step in metastasis. In previous computational and experimental studies, we 

found that a CXCL12 gradient on the order of 0.002 nM/μm, which corresponds to a 

difference of 10-20 molecules across the cell diameter, may be large enough to drive 

cancer cell migration (37). Thus, a critical question is whether such gradients are likely 

to develop in tumors, and whether gradients point toward or away from the vasculature. 

Tumor spatial heterogeneity in the location and number of CXCR7+ cells as well as 

differences among CXCL12-α, -β, and -γ secretion rates and ECM binding may affect 
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the gradients. Here, we use a computational model to understand the generation of 

CXCL12 gradients and calculate both the magnitude and direction of those gradients in 

a tumor microenvironment over time.  

 

We wondered whether circadian oscillations in CXCL12 levels, driven by periodic 

alterations in cellular secretion rates throughout the body and affecting blood 

concentrations, would generate gradients in tumor tissue. We hypothesized that 

perhaps the oscillations could even reverse the gradient direction in the tumor tissue, so 

the gradient could dynamically switch between being directed into the bulk tissue and 

directed into the vasculature over the course of 24 hours. However, we found that for a 

given tumor cellular composition, the gradient is unable to switch directions because the 

two competing sources of CXCL12, the blood and the secretion rate from cells in the 

tumor, vary in unison. As the blood level increases, the secretion rate in the tumor also 

increases, and the gradient does not reverse because both the blood and tissue are 

gaining CXCL12 simultaneously. Nevertheless, circadian fluctuations affect gradient 

magnitudes and are hence still important in vivo. In fact, circadian fluctuations may 

influence the dosing schedule of cancer therapeutics (38,39), especially those that 

target the CXCL12 gradient or signaling axis. 

 

It is difficult to fathom how CXCL12 gradients can cause cancer cell migration into blood 

vessels because of the presence of endothelial CXCR7 on most tumor vasculature. 

Indeed, our simulations suggest that endothelial CXCR7 encourages the formation of 

gradients pointed into the tissue (Figure 4.4A,B). Yet, our work also predicts that tumor 

regions with low numbers of CXCL12-secreting cells and high numbers of CXCR7+ 

cells in the bulk tumor tissue, even in the presence of endothelial CXCR7+ cells, can 

allow the formation of gradients pointing into the vasculature. In these cases, a 

dominant source of chemokine is CXCL12 originating from distant sites in the body that 

is delivered to the tumor via the blood circulation. The notion that cancer cells within the 

tumor respond to gradients formed from chemokine delivered from outside the tumor as 

well as chemokine generated within the tumor has not been well studied. This potential 

mechanism for the formation of gradients directed into the vasculature is supported by a 
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statistical bioinformatics study of The Cancer Genome Atlas, which concluded that low 

CXCL12 levels in breast tumors correlated with more aggressive disease (20). Other 

recent work has shown that sustained CXCL12 expression in the primary tumor inhibits 

metastasis, and that elevated CXCR7 levels and lower CXCL12 expression were 

related to poor survival (40). Our data combined with these observations suggest that 

inhibiting CXCR7 may be crucial to preventing metastasis. 

 

Our simulations show that endothelial and non-endothelial CXCR7+ cells both scavenge 

CXCL12 and thus regulate concentrations near and far from the blood vessel, 

respectively. In particular, endothelial CXCR7 is predicted to assist in maintaining 

CXCL12 gradients directed into the tissue (Figure 4.4). This is consistent with Stacer et 

al., who determined that endothelial CXCR7 is protective against metastasis (35). At the 

same time, our simulations suggest that non-endothelial CXCR7 levels also play an 

important role in gradient generation; as described earlier, high levels can result in 

gradients directed toward the vasculature. Additionally, CXCR7 plays a role in neo-

angiogenesis (17,33,41). The multiple roles for CXCR7 should be considered when 

designing and administering inhibitors for this receptor.  

 

Tumors are notoriously heterogeneous (42–44). There may exist “micro-regions” within 

a primary tumor that have a cellular composition that facilitates generation of strong 

gradients and therefore cell migration (Figure 4.6). Other areas of the same tumor 

without such conducive gradients would exhibit less cell migration (45). As depicted in 

Figure 4.5, CXCL12 gradients in the tumor microenvironment are isoform dependent; 

isoforms with higher ECM binding affinity more easily form gradients directed into the 

tissue, whereas isoforms with lower ECM binding affinity more easily form gradients 

directed toward the vasculature. We thus predict that cells located in the permissive 

“micro-regions” account for the most migratory cells in the tumor and should be targeted 

to reduce metastatic burden.   
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Figure 4.6 Cancer cells within “micro-regions” of the tumor containing either high 
or low ratios of CXCL12-secreting to non-endothelial CXCR7+ cells are more 
migratory than the tumor bulk 

We assume tumors are mostly composed of immobile or weakly mobile cells due to a 
balance of CXCL12-secreting and CXCR7+ cells and a weak CXCL12 gradient. We 
predict that cancer cells located in environments containing a high number of CXCR7+ 
cells and few CXCL12-secreting cells will likely migrate towards vasculature, whereas 
cancer cells in environments with high secreting cell numbers and few CXCR7+ cells 
will likely migrate deeper into the tissue.  
 

Although we and others have shown that cell-derived CXCL12-γ forms gradients of 

higher magnitude in vitro than the -α isoform due to its lower effective diffusivity (Figure 

4.2D) (21,22,24), here we predict that CXCL12-α can form stronger gradients directed 
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toward the vasculature than the other isoforms in vivo. To explain this, consider a tumor 

region of high CXCR7+ cell and low CXCL12-secreting cell numbers. In this case, the 

blood is the dominant source of CXCL12, not cells in the tumor tissue. The blood 

concentration of CXCL12-α is noticeably higher than CXCL12-γ (Figure 4.3B). The high 

number of CXCR7+ cells in the tissue rapidly deplete CXCL12 regardless of isoform. 

Because the blood concentration of CXCL12-α is higher than CXCL12-γ and their tissue 

concentrations are nearly identical, the gradient directed into the vasculature is larger 

for CXCL12-α than -γ. This phenomenon is not seen in most in vitro chemotaxis studies 

because the specific in vivo setting, including the high ratio of scavenging to secreting 

cells, the large quantities of CXCL12 delivered from a separate source, and the relevant 

length scales, are necessary.  

 

The predictions of our computational model suggest new in vivo experiments to study 

cancer cell migration and metastasis. We predict that mouse models containing tumors 

with CXCR4+ and CXCR7+ cells will cause more metastases than tumors containing 

only CXCR4+ cells (via analogy with Figure 4.6). As explained above, we also predict 

that CXCL12-α originating at distant sites far from the primary tumor will be better at 

forming gradients directed toward the vasculature than CXCL12-γ because of its higher 

blood concentration. By using our computational model to predict new experiments (46), 

we allow experimentalists to focus on studies with a high likelihood of revealing 

mechanisms of cancer cell migration and metastasis in vivo. 

 

Our model predicts CXCL12 gradients in vivo, but has limitations. CXCL12 isoforms 

differ in their amino acid chain composition and length and therefore are likely 

differentially regulated by proteolytic degradation.  When more quantitative information 

about the kinetics of these processes is available, the model can be used to assess any 

additional impact on CXCL12 gradients. In addition, CXCR4+ cells can influence the 

CXCL12 gradient, although minimally, and also signal differently through each isoform. 

Connell et. al found that CXCL12-γ binds sulfated tyrosine in N-terminus of CXCR4, 

which prevented CXCR4 activation (50). Isoform-specific signaling through CXCR4 

likely has implications for cell migration, and should be incorporated in models which 
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include cell migration due to CXCL12 gradients.  

 

As we learn more about the molecular-, cellular-, and tissue-scale mechanisms that 

drive the formation of CXCL12 gradients and presumably cancer metastasis, we will be 

more equipped to disrupt the process. The results of this study provide motivation that 

CXCL12 isoforms, the cellular composition of a tumor, and circadian rhythm fluctuations 

dynamically influence CXCL12 gradients. By providing an approach to define and 

analyze spatial and temporal dynamics of CXCL12 in tumors, we anticipate this 

research will help successfully advance CXCR7-targeted therapies into clinical 

oncology. 
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Chapter 5 Conclusions
 

5.1 Summary of research findings 

Cancer heterogeneity is arguably the major reason for the failure of cancer treatment 

today (1,2). The failure of both chemotherapeutic agents and targeted therapies is due 

to subpopulations of cells that are functionally distinct from the bulk of the tumor and 

drive progression of the disease. A better understanding of the mechanisms that drive 

cells to behave differently can inform the design of therapies which effectively target 

these subpopulations.  

 

5.1.1 Cellular environment informs heterogeneous cell signaling outcomes 

We hypothesize that signaling heterogeneity is generated from variable pre-existing cell 

states, described by extrinsic noise in key signaling molecules, and these signaling 

states are in constant flux in response to the intracellular and extracellular environment. 

We postulate this because cells must survive in spatiotemporally varying environments 

and are constantly being exposed to new stimuli (3). Cells in vivo can be subjected to 

various environmental or intracellular conditions such as pH, oxygen, growth factors, 

attachment stimuli, mutations, cell cycle cues, or energy levels (4–6). These stimuli 

have implications for downstream signaling to inform the cell when the timing is right to 

perform a task, such as migrate, divide, die, or become senescent. Our goal was to 

build a computational model that allows these environmental conditions to shape cell 

signaling through extrinsic noise in key signaling molecules. 

 

We used the ERK and Akt signaling pathways in breast cancer cells to couple KTR 

experiments with a computational framework for understanding cell signaling 

heterogeneity. Not all seemingly-fit cells will respond to a ligand stimulus even in the 

most apt signaling conditions. We postulate that inhibitory mechanisms downstream of 
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the receptor-ligand interaction can restrain or completely prevent signaling, and the 

restraint mechanism is stronger in some cells than others due to their pre-existing state. 

ERK and Akt are activated downstream of both CXCR4, a G-protein coupled receptor 

implicated in cancer growth and metastasis (7,8), and epidermal growth factor receptor 

(EGFR), a receptor tyrosine kinase implicated in overactive cell proliferation (9,10). Our 

model predicted the paired ERK and Akt signaling behavior at various doses of the 

ligands for CXCR4 and EGFR (CXCL12 and EGF, respectively) in various breast 

cancer cell types. Our approach allows the interpretation of a continuum of cell signaling 

responses with the origin of heterogeneity stemming from not only mathematical 

inference, but also biological insights. 

 

5.1.2 Method for explaining signaling heterogeneity  

Our approach to understanding signaling heterogeneity is distinct from the common 

approach. The common approach involves estimating baseline parameters from data or 

literature, varying these parameters +/- a certain percentage of their baseline value, 

running the model for each parameter set, and analyzing the model outputs, such as 

dynamic signaling behaviors. For example, many studies incorporate extrinsic noise in 

their computational models by varying some or all parameters by a log-normal 

distribution, which allows a wide range of parameters to be sampled (11–13). This 

approach is useful in that it can enable the prediction of single-cell and population-scale 

signaling behaviors. However, how do these extrinsic noise parameters change as the 

environment of cells changes, as is the case in the tumor microenvironment? Our 

approach provides a framework for allowing single cells to adapt to changes in 

environment and thus subsequently edit signaling behaviors.  

 

Our method, similar to the common approach, begins by using a baseline parameter set 

to describe the cell population. This parameter set accurately describes the behavior of 

the most common single-cell response within a population. However, to generate 

heterogeneity, we vary only specific parameters which set the pre-existing cell state. 

After running the model with all of these pre-existing cell state parameter sets and 

simulating a ligand dose, we compare model-predicted signaling behaviors with 
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experimental signaling behaviors to determine the pre-existing cell states of individual 

cells in experiments. Because the pre-existing state is necessarily independent of ligand 

and dose used to stimulate the cells, we can use the pre-existing state to predict 

responses in new contexts, such as different ligand doses. 

 

5.1.3 Generating a heterogeneous signaling landscape 

In our computational model, not only is it necessary to capture the heterogeneity seen in 

experiments based on pre-existing cell states, but the model must provide a framework 

which allows for editing of these states based on environmental cues. There is a rich 

ERK and Akt signaling literature, such that we were able to compile a reasonable 

mechanistic reaction scheme of both pathways (14–19). We built a system of ODEs 

connecting receptor-ligand interactions (both CXCR4-CXCL12 and EGFR-EGF) to 

downstream signaling effectors ERK and Akt, and then connected these activities to the 

kinetics of the ERK and Akt KTRs, such that our model predicts the exact same quantity 

as our experiments: the cytoplasmic to nuclear ratio of intensities of the KTRs. Our KTR 

experimental data indicated that in a population of MDA-MB-231 breast cancer cells, the 

entire range of ERK and Akt signaling possibilities could be explained by variation in 

three key signaling molecules: phosphatidylinositol-3-kinase (PI3K), Ras, and 

mammalian target of rapamycin complex 1 (mTORC1). PI3K and Ras are upstream 

activators of Akt and ERK, respectively. mTORC1 is a downstream negative regulator of 

both pathways. We chose to add extrinsic noise to these three components specifically 

because they are known to vary from cell-to-cell with environmental cues such as 

available mitogens, confluency, and metabolism. We employed extrinsic noise on these 

components in the signaling pathway by adding a first-order rate constant which 

converts the inactive form to the active form of these three signaling molecules in the 

absence of stimulating ligand (CXCL12 or EGF). These extrinsic noise parameters set 

the pre-existing cell state, which varies from cell-to-cell, and the pre-existing state 

deterministically controls ERK and Akt signaling.  

 

In order for our model to capture both the signaling heterogeneity as well as the 

potential for editing of the pre-existing state, we simulate a library of possible responses 
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to a ligand stimulus by varying the PI3K, Ras, and mTORC1 extrinsic noise parameters 

combinatorically. For each of these three parameters, we vary the values from low to 

high, such that the active form of the given species prior to ligand stimulation covers the 

range of values from near zero to the maximum active concentration. The maximum 

active concentration is set by the initial condition for that species in the model, which 

would indicate that it exists entirely in the active form. By running the computational 

model at all combinations of these three extrinsic noise parameters, while holding the 

other rate parameters constant, we generate over 12,000 simulated ERK and Akt 

responses to a ligand stimulus as a function of the pre-existing cell state. We refer to 

the collection of the 12,000 simulated responses as the model library. The model library, 

when organized into a three-dimensional map by the pre-existing state which generates 

each single-cell output, is called the signaling landscape.  

 

5.1.4 Modeling predicts the pre-existing state of cells in experiments 

The model-predicted signaling landscape can be compared to single-cell KTR data to 

bin cells into pre-existing states that most closely match their signaling behaviors. We 

combined the predicted signaling landscape with single-cell KTR experimental data in 

breast cancer cells for ERK and Akt activity following CXCR4 or EGFR stimuli. Each 

KTR experiment and subsequent image analysis provides us with ~ 300-500 

experimental cells, each containing a time-lapse of ERK and Akt activity following a 

ligand stimulus. We perform a least-square match between the ERK and Akt responses 

of each experimental cell and the responses of all predicted cells and organize these 

fitness scores into a fitness matrix. The fitness matrix shows how well each 

experimental cell response matched predicted cell responses. The pre-existing state of 

any given experimental cell is the pre-existing state of the predicted cell response from 

the signaling landscape to which the fitness score is the smallest. Once we have 

assigned the pre-existing state to cells, we can ask questions about the mechanisms 

that drive them to occupy that particular state and how we can control heterogeneity. 
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5.1.5 Cellular memory tunes CXCR4 signaling responses 

In Chapter 2, we built a computational model of heterogeneous CXCR4-mediated 

signaling to Akt and ERK based on variable pre-existing cell states. Compared to 

control, when cells were stimulated with either fetal bovine serum (FBS) or epidermal 

growth factor (EGF) 4 hours before CXCL12, they demonstrated increased 

responsiveness to the CXCL12 stimulation. The model depicted that this increased 

responsiveness was due to a shift in cell states following FBS or EGF stimulation that 

shaped subsequent CXCR4-mediated signaling. The model was able to predict CXCR4 

signaling responses in three breast cancer cell lines which contained activating 

mutations in the ERK pathway, Akt pathway, or both. The model also correctly predicted 

that clinically relevant kinase inhibitors trametinib, a MEK inhibitor, and ridaforolimus, an 

mTORC1 inhibitor, would potentiate pro-metastatic signaling in subsets of cells. This 

work demonstrated that cells hold a memory of previous signaling inputs and adapt to 

dynamic changes in environmental conditions by modifying subsequent signaling 

responses. 

 

5.1.6 Pre-existing cell states explain heterogeneous signaling through 
EGFR and CXCR4 

In Chapter 3, we expand upon the computational model from Chapter 2 by incorporating 

EGFR dynamics to test our model hypothesis on a new receptor system relevant to 

cancer. Our hypothesis that the entire range of signaling behaviors in Akt and ERK 

could be explained by variable pre-existing cell states, set by extrinsic noise in three 

pathway components, held true for EGFR as well as CXCR4 signaling. We tested the 

model on a range of doses of both EGF and CXCL12 in multiple breast cancer cell 

types, and model predictions matched experimental data. We used the model to predict 

that therapies targeting phosphatidylinositol-3-kinase (PI3K) would inadvertently 

increase the basal signaling level as well as responsiveness of ERK signaling to EGFR 

stimulation in a subset of SUM 159 breast cancer cells. By testing our core hypothesis 

on another receptor system, we add strength to the argument that signaling 

heterogeneity arises from deterministic, not stochastic, noise. 
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5.1.7 Isoforms, circadian rhythms, and tumor cellular composition control 
CXCL12 gradient direction and magnitude 

In Chapter 4, we build a cellular-scale computational model to simulate the magnitude 

and direction of CXCL12 gradients in a primary tumor environment based on multiple 

known mechanisms of CXCL12 transport. The isoform-specific properties, such as the 

extracellular matrix (ECM) binding affinity and secretion rates from cells, edit the shape 

of CXCL12 gradients in vivo. Our findings indicate that CXCL12-β and CXCL12-γ form 

stronger gradients and confer larger overall CXCL12 concentrations despite being 

secreted slower than CXCL12-α. The circadian regulation of CXCL12 alters the 

magnitude of gradients formed by CXCL12 between the tissue and the vasculature. 

However, the direction of the gradient cannot easily flip because the time scale of 

diffusion is rapid with respect to the time scale of the circadian clock, forcing the 

gradient direction to remain steady in a given tumor cellular composition. However, 

heterogeneity in the spatial composition of the tumor can influence both gradient 

direction and magnitude. Primary tumors with high numbers of CXCR7-positive cells 

and very few CXCL12-secreting cells form environments with low levels of CXCL12 

deep within tissue which can be supplied CXCL12 by diffusion from the blood. This 

scenario generates a region of a tumor conducive for CXCR4-positive cells to 

directionally migrate toward a blood vessel and metastasize. This work highlights how 

possibly a majority of the primary tumor is not prone to initiate metastasis, and just small 

regions of primary tumors, which are comprised of specific ratios of fibroblasts to 

CXCR7-positive cells, can act as sinks for cancer cells to metastasize. We postulate 

that CXCR7 may be an optimal target for prevention of cancer metastasis. 

 

5.2 Future directions 

5.2.1 Exact sources of signaling heterogeneity remain unclear 

While our computational model in Chapters 2 and 3 captures the range of signaling 

behaviors in the population of breast cancer cells, we lump the many physiological 

sources of the heterogeneity into three extrinsic noise parameters that describe the pre-

existing cell state. These physiological sources may include pH, confluency, 
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metabolism, or availability of mitogens, among others. The next step to uncovering how 

the environment shapes signaling responses is to tease apart the contributions from all 

of these potential sources to examine how they affect signaling individually. For 

example, we can couple information from metabolic imaging (20), that indicates the 

extent to which single cells are undergoing glycolysis versus oxidative phosphorylation, 

with KTR data to understand how the metabolic state regulates cell signaling. 

Deciphering how cells shape signaling behavior based on environmental stimuli can 

expose new treatment opportunities to abrogate oncogenic signaling in cancer cells. 

 

5.2.2 Integration of ERK and Akt with other signaling networks 

ERK and Akt are two well-studied kinases known to promote cancer phenotypes. Both 

the ERK and Akt signaling networks are known to communicate with a variety of other 

networks as well. For example, studies suggest that p38, a kinase implicated in the cell 

stress response, is negatively regulated by ERK (21). Evidence suggests that Akt 

contains crosstalk regulation with the NOTCH signaling pathway (22). The ability of 

intracellular kinases to be phosphorylated on multiple sites, and have differing roles 

based on which sites are phosphorylated, dramatically increases the functionality of a 

single kinase (23) and highlights how crosstalk mechanisms can add dimensionality to 

cell signaling responses. 

 

5.2.3 Cell signaling is flexible, not hard-wired 

Cell signaling diagrams are often depicted as arrows pointing from one kinase to the 

next to illustrate the cascade of phosphorylation reactions that activate downstream 

effectors. These diagrams may underplay the complexity of cell signaling by incorrectly 

implying that all cells within a population will respond to a stimulus by a hard-wired 

pathway. Just because a cell responded in one way to a stimulus does not mean it 

would always respond that way. We show how cell signaling networks retain 

connectivity from cell to cell, but heterogeneous signaling responses to a stimulus exist 

even in the most ideal, homogeneous conditions. We posit that cell signaling is a 

plastic, flexible, tunable process, and cell responses are dictated by the pre-existing 
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state which is constantly shifting to encode new information about the dynamic 

microenvironment. Future work should include experiments that more closely examine 

the mechanisms by which certain environmental conditions promote or inhibit signaling 

responses. For example, how do single cell signaling responses change when moving 

from 2D to 3D settings, such as in a spheroid or in vivo in a tumor? How does the 

availability of other nutrients, besides the growth factors we used in this thesis (fetal 

bovine serum and epidermal growth factor), affect signaling? By further examining how 

cell signaling processes are tunable rather than hard-wired, we learn how to better 

design targeted therapies in the context of cellular environment. 

 

5.2.4 Cell signaling heterogeneity is extraordinarily robust 

In our experiments, we found that signaling heterogeneity was robust because it existed 

in every experiment. The variability in pre-existing states in a given cell population was 

similarly robust, and we find the same pre-existing states by matching experimental 

data to predicted responses under various ligand and dosing conditions. We found no 

treatments on any breast cancer cell population that erased the heterogeneity of their 

pre-existing states. The robustness of the heterogeneity of cell signaling within a 

population suggests that cells work to actively maintain this heterogeneity, perhaps by 

communicating with extracellular vesicles (24). However, we are still left with the 

question: why does signaling heterogeneity exist? One interpretation of signaling 

heterogeneity is that it provides single cells with the ability to “hedge bets.” In this 

context, heterogeneity positions cells to respond differently to reduce risk of a bulk 

response to a noisy signal (12). Or, perhaps signaling heterogeneity provides diversity 

as a fitness advantage to the entire cell population such that the likelihood of some cells 

persevering through stressful conditions is higher (25). As we learn why cell signaling 

heterogeneity exists, we can begin to make better hypotheses about its true origins and 

exploit its tunability. 
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5.2.5 Leveraging cellular memory to tune signaling responses 

We found that cell signaling responses are influenced by previous environmental cues, 

and this information is stored as memory inside the cell. While we showed that signaling 

is tunable because of this memory, further efforts to explore how we can minimize or 

erase signaling heterogeneity are warranted. For example, is there a treatment we can 

give cells a priori, be it a specific ligand or drug, which would predispose cells to die in 

the presence of a subsequent drug? Can we exploit the ability of cells to edit their states 

by administering treatments that decrease heterogeneity to prevent the emergence of 

Darwinian drug resistance? Recent work has uncovered how we can sync cell signaling 

patterns by providing pulsatile inputs, and cell responses were shaped by the rest 

period, frequency, and duration of the pulses. What if we could administer pulsatile 

inputs (26,27) to a tumor in vivo to sync up tumor cell signaling patterns, thereby shifting 

cell states to those in which a drug has maximal effect? This approach may diminish or 

erase signaling heterogeneity and decrease the probability of resistance to a drug. 

Once we have a fundamental understanding of how we can edit cell states to tune 

signaling responses, we can manipulate cell states such that targeted therapies have 

higher efficacy. 
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Figure A1 KTRs report concentration- and time-dependent CXCR4 signaling in 
response to FBS 

 
(A) Reporter constructs for KTRs and histone 2B-mCherry nuclear marker in transposon 
vector and lentiviral vector with CXCR4-mTag blue fluorescent protein (BFP). Images 
show fluorescence channels in unstimulated MDA-MB-231 cells and representative 
watershed segmentation of cells. (B) CXCR4 signaling to Akt represented as probability 
density functions (pdf) of the distribution of Akt KTR values in CXCR4+ MDA-MB-231 
cells after treatment for 30 minutes. All experiments included 300-500 cells for each 
group. No further increase in activation was seen above 10 ng/ml CXCL12. (C) Graph 
shows pdf of Akt KTR values for 300-500 cells for each group at the specified times in 
minutes after FBS treatment. (D) Scatter plots show distribution of Akt KTR values 
compared to CXCR4-BFP fluorescence intensity for single-cells under control 
conditioning and after incubation for 30 minutes with 10% FBS or 10 ng/ml CXCL12. (E) 
Akt or ERK signaling in MDA-MB-231 cells (N=631 cells) lacking CXCR4-mTagBFP and 
stimulated with CXCL12 at the 10 min timepoint.  
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Figure A2 There is a trend between Akt responsiveness and ERK responsiveness, 
but initial Akt and ERK activity is poorly correlated with responsiveness in each 
respective kinase 

 
(A) Akt and ERK responses to CXCR4 signaling with control conditioning (left panels). 
Initial levels of Akt (middle panels) and ERK (right panels) activities are also shown. (B) 
Akt and ERK responses to CXCR4 signaling with prior conditioning with FBS (right 
panels). Akt (middle panels) and ERK (right panels) activities are also shown. (C) Table 
relating observations from single-cell data to the computational model. 
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Figure A3 CSM for CXCR4 signaling to ERK and Akt. The ordinary differential 
equation model consists of three modules that connect receptor, signaling, and 
reporter dynamics 

 
Species outlined in purple link two modules. CXCR4 at the cell surface exists as 
unphosphorylated, phosphorylated, or phosphorylated and bound to β-arrestin. These 
three species can bind CXCL12. After binding CXCL12, these complexes internalize 
and are degraded, leading to a net decrease in available CXCR4 over time. The two 
complexes of CXCL12-CXCR4 not bound by β-arrestin can signal to G-proteins. G-
proteins have a rate of basal activation in the absence of CXCR4 activation. G-proteins 
stimulate Ras and PI3K, which function as upstream activators of ERK and Akt, 
respectively. Ras promotes Raf/MEK scaffolding to activate ERK. PI3K converts 
phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate 
(PIP3) at the cell surface. PIP3 drives activation of PDK1 and mTORC2, which 
subsequently activate Akt by phosphorylating Thr308 and Ser473, respectively. A 
crosstalk mechanism allows Akt to deactivate the Raf/MEK complex. Activated ERK and 
Akt both promote the activation of mTORC1. mTORC1 acts as a restraint mechanism 
by inhibiting the activation of Ras and mTORC2. PI3K, Ras, and mTORC1 all have 
extrinsic noise that controls their activation in the absence of CXCR4-mediated 
signaling. KTRs for ERK and Akt follow the same mechanism and act independently. 
Without phosphorylation of a consensus motif, the reporter predominantly localizes to 
the nucleus. Activated kinase phosphorylates the reporter, causing translocation to the 
cytoplasm. KTRs provide a graded measure of kinase activity based on ratios of 
fluorescence in nucleus versus cytoplasm of individual cells.  
  



 121 

 
Figure A4 Differential equations for the three species containing extrinsic noise 
terms in the computational model 

 
In the CSM, PI3K, Ras, and mTORC1 contain terms driven by condition (conditional 
terms). Condition encompasses any driving force outside the scope of CXCR4 
signaling, such as activation by mutation, metabolic state, confluency of cells, or other 
unknown forces. The conditional term carries the same form in all three species: a rate 
constant multiplied by the concentration of inactive species. 
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Figure A5 Extrinsic noise parameters for PI3K, Ras, and mTORC1 produce a 
highly differentiated signaling landscape of basal activity and CXCR4 
responsiveness to ERK and Akt 

 
Detail of 2D slices of the CSM for MDA-MB-231 cells shows the concentration (nM) of 
active Akt (pAkt) and active ERK (pERK). Time 0 (upper panels) shows basal 
equilibrium state of cells, whereas lower panels display the peak responsiveness 
through CXCR4 (either positive or negative change) upon CXCL12 stimulation. 
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Figure A6 Conditional states of cells shift in the context of different conditioning 
times, stimuli, and genetic mutations 

 
(A) Akt and ERK KTR responses in MDA-MB-231 CXCR4-mTagBFP cells conditioned 
with 7 hours of 10% FBS, 4 hours of listed concentrations of EGF, or control before 
imaging responses to 10 ng/ml CXCL12. Cells were imaged every 2 minutes for an hour 
with 4 images acquired before addition of 10 ng/ml CXCL12 (demarked by grey dashed 
line). The number of cells in each experiment is listed along the y-axes. (B) Occupancy 
maps, which illustrate probability of existing in conditional signaling states output from 
the CSM, for MDA-MB-231 cells shown in (A). (C) Akt and ERK KTR responses in 
control conditioned SUM-159 cells, control conditioned patient-derived Vari-068 cells, 
and Vari-068 cells conditioned with 10% FBS. The number of cells in each experiment 
is listed along the y-axes. 
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Figure A7 Computational modeling of responses to the MEK inhibitor trametinib 
and the mTORC1 inhibitor ridaforolimus shows concentration-dependent, 
context-specific effects on the activation of Akt and ERK by CXCR4 in MDA-MB-
231 cells 

 
(A) Effect of the dose of simulated trametinib conditioning on distribution of active ERK 
at basal equilibrium in cells corresponding to the conditional signaling states when 
unconditioned. (B) CSM-predicted concentrations of active Akt and ERK upon CXCR4 
stimulation in cells conditioned with trametinib doses that inhibit MEK activation of ERK 
by 0%, 50%, and 90%. The number of cells in each experiment is listed along the y-
axes. (C) CSM-predicted concentrations of active Akt and ERK upon CXCR4 
stimulation after conditioning with ridaforolimus when mTORC1 is 0%, 50%, and 90% 
inhibited. The number of cells in each experiment is listed along the y-axes. (D) Akt and 
ERK activity in MDA-MB-231 cells that received ridaforolimus for 4 hours before 
stimulation with CXCL12. Cells were imaged once before adding CXCL12, 2 minutes 
after adding CXCL12, and then every 8 minutes for an hour. The number of cells in 
each experiment is listed along the y-axes. 
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Table A1 CSM species descriptions and initial conditions 
 

Species Description Initial Condition 
(nM) 

Ref. 

R4 Surface CXCR4 850 (1) 

L12 Extracellular CXCL12  0 -- 

C4 Surface CXCL12-CXCR4 complex  0 -- 

R4p Phosphorylated surface CXCR4 0 -- 

C4p Phosphorylated surface CXCL12-CXCR4 
complex 

0 -- 

R4pB Phosphorylated surface CXCR4 bound to β-
arrestin 

0 -- 

C4pB Phosphorylated surface CXCL12-CXCR4 
complex bound to β -arrestin 

0 -- 

R4i Internalized CXCR4 0 -- 

C4Bi Internalized CXCL12-CXCR4 complex bound to 
B-arrestin 

0 -- 

C4Bii Internalized CXCL12-CXCR4 complex 0 -- 

GDP Inactive G-protein 170 (2) 

GTP Active G-protein 0 -- 

iPI3K Inactive PI3K 200 (3) 

PI3K Active PI3K 0 -- 

PIP2 Phosphatidylinositol biphosphate (inactive) 1000 (4) 

PIP3 Phosphatidylinositol triphosphate (active) 0 -- 

iPDK1 Inactive PDK1 500 (5) 

PDK1 Active PDK1 0 -- 

Akt Inactive Akt 1000 (5) 

pAktThr
308 Akt phosphorylated only at the Threonine 308 site 

(kinase domain) 
0 -- 

pAktSer
473 Akt phosphorylated only at the Serine 473 site 

(regulatory domain) 
0 -- 

ppAkt Fully activated Akt phosphorylated at both the 
Thr308 and Ser473 site 

0 -- 

imTORC1 Inactive mTORC1 800 (6) 

mTORC1 Active mTORC1 0 -- 

imTORC2 Inactive mTORC2 800 (6) 

mTORC2 Active mTORC2 0 -- 

iRas Inactive Ras 3000 (5) 

Ras Active Ras 0 -- 

iRaf Inactive Raf 1000 (5) 

Raf Active Raf 0 -- 

ERK Inactive ERK 850 (7) 

pERK Active ERK 0 -- 

rcu,Akt Cytoplasmic unphosphorylated Akt KTR 0 (8) 

rnu,Akt Nuclear unphosphorylated Akt KTR 200 (8) 
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rcp,Akt Cytoplasmic phosphorylated Akt KTR 200 (8) 

rnp,Akt Nuclear phosphorylated Akt KTR 0 (8) 

rcu,ERK Cytoplasmic unphosphorylated ERK KTR 0 (8) 

rnu,ERK Nuclear unphosphorylated ERK KTR 200 (8) 

rcp,ERK Cytoplasmic phosphorylated ERK KTR 200 (8) 

rnp,ERK Nuclear phosphorylated ERK KTR 0 (8) 
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Table A2 CSM rate equations 
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Table A3 CSM differential equations 
 

R
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dR4/dt  
dC4/dt  

dR4p/dt  
dC4p/dt  
dL12/dt  

dR4pB/dt  
dC4pB/dt  

dR4i/dt  
dC4Bi/dt  
dC4Bii/dt  

= -vbLR4 – vR4,phos + vrecy,R4Bi 
= vbLR4 – vC4,phos 
= vR4,phos – vbLR4ph – vbBR4ph 
= vC4,phos + vbLR4ph – vbBC4ph 

= (-vbLR4 – vbLR4pB – vbLR4ph – vbLR4B) * NC/(Vcell/Vmedia) 
= -vbLR4pB + vbBR4ph – viR4pB 
= vbLR4pB + vbBC4ph – vi,C4pB 

= viR4pB – vrecy,R4Bi 
= viC4pB – voff,C4Bi 
= voff,C4Bi – vdeg,C4Bii 

S
ig

n
a
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g

 d
y
n

a
m
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dGTP/dt  = vactGC4 + vactGC4p – vdeactG   

dPI3K/dt  = vactPI3K + vbasalActPI3K – vdeactPI3K   

dPIP3/dt = vactPIP3 – vdeactPIP3 – vactPDK1 + vdeactPDK1   

dPDK1/dt = vactPDK1 – vdeactPDK1   

dmTORC1/dt = vactmTORC1,Akt + vactmTORC1,ERK – 
vdeactmTORC1 

  

dmTORC2/dt = vactmTORC2 – vdeactmTORC2   

dRas/dt = vactRas + vconstActRas – vinhibRas – vdeactRas   

dRaf/dt = vactRaf + vconstActRaf – vinhibRaf – vdeactRaf   

dpERK/dt = vactERK – vdeactERK   

dAkt/dt = -vAkt


pAktThr
308

 – vAkt


pAktSer
473 + vpAktThr

308


Akt + vpAktSer

473


Akt 

dpAktThr
308/dt = vAkt


pAktThr

308 – vpAktThr
308


Akt – vpAktThr

308


ppAkt + vppAkt


pAktThr

308 

dpAktSer
473/dt = -vpAktSer

473


ppAkt + vAkt


pAktSer

473 + vppAkt


pAktSer
473 – vpAktSer

473


Akt 

dppAkt/dt = vpAktSer
473


ppAkt + vpAktThr

308


ppAkt – vppAkt


pAktSer

473 – 
vppAkt


pAktThr

308 

R
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p

o
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d
y
n
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 drcu,Akt/dt = -vphos,cyto,Akt + vdephos,cyto,Akt – vunphos,import,Akt + vunphos,export,Akt 

drnu,Akt/dt = -vphos,nuc,Akt + vdephos,nuc,Akt + kv*(vunphos,import,Akt – vunphos,export,Akt) 

drcp,Akt/dt = vphos,cyto,Akt – vdephos,cyto,Akt – vphos,import,Akt + vphos,export,Akt 

drnp,Akt/dt = vphos,nuc,Akt – vdephos,nuc,Akt + kv*(vphos,import,Akt – vphos,export,Akt) 

drcu,ERK/dt = -vphos,cyto,ERK + vdephos,cyto,ERK – vunphos,import,ERK + vunphos,export,ERK 

drnu,ERK/dt = -vphos,nuc,ERK + vdephos,nuc,ERK + kv*(vunphos,import,ERK – 
vunphos,export,ERK) 

drcp,ERK/dt = vphos,cyto,ERK – vdephos,cyto,ERK – vphos,import,ERK + vphos,export,ERK 

drnp,ERK/dt = vphos,nuc,ERK – vdephos,nuc,ERK + kv*(vphos,import,ERK – vphos,export,ERK) 

 
 
We assumed conservation of mass for all signaling reactions. The differential equation 
for the inactive form of each species in the signaling dynamics module is equal and 
opposite of the differential equation for the active form, ex: diPI3K/dt = -dPI3K/dt. 
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Table A4 CSM parameter values 
 

Name Description of event Value Unit Ref 
 

kf,B,R4 β-arrestin binding to R4 2.04 nM-1 min-1 (1,9,10) 

KD,B,R4 
Dissociation of β-arrestin from 
R4 

13.3 nM (1,9,10) 

KD,B,C4 
Dissociation of β-arrestin from 
C4 

6.49 x 10-2 nM (1,9,10) 

kf,L12,R4 L12-R4 binding 8.79 x 10-2 nM-1 min-1 (1,9,10) 

KD,L12,R4 Dissociation of L12-R4 42.9 nM (1,9,10) 

ke,R4pB 
Endocytosis of phosphorylated 
R4 

8.07 x 10-2 min-1 (1,9,10) 

ke,C4pB 
Endocytosis of phosphorylated 
C4 

0.169 min-1 (1,9,10) 

koff,B,R4 β-arrestin removal from C4Bi 4.21 x 10-2 min-1 (1,9,10) 

krecy,R4Bi Recycling of R4Bi to cell surface  3.64 x 10-3 min-1 (1,9,10) 

kdeg,C4Bii 
Degradation of internalized L12-
C4 complex 

9.15 x 10-3 min-1 (1,9,10) 

kf,C4phos C4 phosphorylation  0.409 min-1 (11) 

kf,R4phos R4 phosphorylation  6.09 x 10-2 min-1 (11) 

kr,C4phos C4 dephosphorylation  5.85 x 10-3 min-1 (11) 

kr,R4phos R4 dephosphorylation  8.09 x 10-4 min-1 (11) 

kC4actG GTP activation 0.200 nM-1 min-1 (11) 

kbasalActG Basal GTP activation 0.200 min-1 (11) 

kdeactG GTP deactivation 4.67 min-1 (11) 

kactPI3K PI3K activation 5.00 min-1 (12,13) 

KM,actPI3K 
PI3K activation (Michaelis 
constant) 

20.00 nM (13) 

kdeactPI3K PI3K deactivation  6.00 min-1 (3,14) 

kPI3K 
PI3K activity external to CXCR4 
signaling 

0.30 – 5.30 min-1 -- 

kactPIP3 
PIP3 activation 2.00 x 102 min-1 (4,12,1

3) 

KM,actPIP3 
PIP3 activation (Michaelis 
constant) 

1.00 x 102 nM (13) 

kdeactPIP3 PIP3 deactivation 10.0 min-1 (13) 

kactPDK1 PDK1 activation 50.0 min-1 (13) 

KM,actPDK1 
PDK1 activation (Michaelis 
constant) 

2.00 x 102 nM ^ 

kdeactPDK1 PDK1 deactivation 53.3 min-1 (13) 

kactAktThr
308 

Akt Thr308 activation (kinase 
domain) 

2.00 min-1 (13) 

KM,actAktThr
308 Akt Thr308 (Michaelis constant) 2.00 x 102 nM (6) 

kactAktSer
473 Akt Ser473 activation (regulatory 2.00 min-1 (13,15) 
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domain) 

KM,actAktSer
473 Akt Ser473 (Michaelis constant) 2.00 x 102 nM (6) 

kdeactAktThr
308 Akt Thr308 deactivation 1.61 min-1 (16,17) 

kdeactAktSer
473 Akt Ser473 deactivation 3.00 min-1 (16,17) 

kactmTORC1,ER

K 
mTORC1 activation by ERK 15.0 min-1 (18) 

KM,actmTORC1,

ERK 
mTORC1 activation by ERK 
(Michaelis constant) 

30.0 nM (6) 

kactmTORC1,Akt mTORC1 activation by Akt 5.00 min-1 (6) 

KM,actmTORC1,

Akt 
mTORC1 activation by Akt 
(Michaelis constant) 

30.0 nM (6) 

kdeactmTORC1 mTORC1 deactivation 22.5 min-1 (19) 

kmTORC1 

mTORC1 activity external to 
CXCR4 signaling 

0 – 10.0 min-1 -- 

kactmTORC2 mTORC2 activation 0.100 min-1 (15) 

KM,actmTORC2 
mTORC2 activation (Michaelis 
constant) 

10.0 nM ^ 

KI,inhibmTORC2 mTORC2 inhibitory constant 50.0 nM ^ 

kdeactmTORC2 mTORC2 deactivation 0.197 min-1 (15) 

kactRas Ras activation 5.00 min-1 (20) 

KM,actRas 
Ras activation (Michaelis 
constant) 

2.00 x 102 nM (4) 

kRas 
Ras activity external to CXCR4 
signaling 

0 – 0.300 min-1 -- 

kdeactRas Ras deactivation  8.49 min-1 (4) 

KI,inhibRas Ras inhibitory constant 30.0 nM ^ 

kactRaf Raf activation 2.00 min-1 (13) 

KM,actRaf 
Raf activation (Michaelis 
constant) 

1.00 x 103 nM (4) 

kconstActRaf 
Raf constitutive activation due to 
mutation* 

0.005 min-1 ^ 

kinhibRaf Raf inhibition 0.1 min-1 (12) 

KM,inhibRaf 
Raf inhibition (Michaelis 
constant) 

50.0 nM (12) 

kactERK ERK activation 4.00 min-1 (13) 

KM,actERK 
ERK activation (Michaelis 
constant) 

24.6 nM (4) 

kdeactERK ERK deactivation 3.20 min-1 (4) 

kcat Reporter phosphorylation  20.0 min-1 (8) 

Km 
Reporter phosphorylation 
(Michaelis constant) 

3.00 x 103 nM (8) 

kdc 
Reporter maximum 
dephosphorylation in cytoplasm 

30.0 nM min-1 (8) 

Kmd 
Reporter dephosphorylation 
(Michaelis constant) 

1.00 x 102 nM (8) 
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kiu 
Unphosphorylated reporter 
import  

0.3 min-1 (8) 

keu 
Unphosphorylated reporter 
export  

5.00 x 10-2 min-1 (8) 

kdn 
Reporter maximum 
dephosphorylation in nucleus 

30.0 nM min-1 (8) 

kip Phosphorylated reporter import  5 x 10-2 min-1 (8) 

kep Phosphorylated reporter export  0.500 min-1 (8) 

kv 
Ratio of cytosolic volume to 
nuclear volume 

4 unitless (8) 

NC 
Number of cells per imaging 
experiment 

2x105 unitless --  

* For MDA-MB-231 cells. For SUM-159 and Vari-068 cells, this parameter is 0. 
^ Estimated 
We assumed that all biochemical reactions inside cells are governed by biophysical rate 
constants and do not vary from cell-to-cell, or from cell line to cell line. The only sources 
of variability in the CSM are the three external activation parameters for PI3K, Ras, and 
mTORC1, highlighted below. Parameters include rate constants, equilibrium 
dissociation constants, and Michaelis constants. 
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Table A5 CSM parameters for modeling kinase inhibition 
 

Conditioning 
treatment 

Altered 
Parameter(s) 

Baseline Inhibition value 

trametinib 
(MEK inhibitor) 

kactERK 4.00 min-1 2.00 min-1 

 

ridaforolimus 
(mTORC1 inhibitor) 

KI,inhibmTORC2 

KI,inhibRas 
50 nM 
30 nM 

100 nM 
60 nM 
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Appendix B Supporting Information for Chapter 3

 

 
 
Figure B1 The computational model combined with KTR imaging experiments 
allows us to calculate the pre-existing states in MDA-MB-231 cells 

 
(A) MDA-MB-231 cells from the KTR imaging experiments stimulated with 100 ng/mL 
EGF match model-predicted paired Akt and ERK dynamics. (B) These cells match in a 
region of the model with moderate PI3K, Ras, and mTORC1 extrinsic noise values, 
distinguishing them from the pre-existing states of SUM 159 cells. 
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Figure B2 The CSM predicts MDA-MB-231 cell Akt and ERK responses to EGF and 
CXCL12 at new doses given the calculated pre-existing states of these cells 

 
(A) The median, 10th, and 90th percentile of the log2(C/N) of Akt dynamics predicted 
from the model for these cells stimulated with 300 ng/mL EGF (left) and 30 ng/mL 
CXCL12 (right) match experimental validation. (B) Single-cell time tracks of the 
predicted (top) and experimental (bottom) Akt and ERK dynamics illustrate that the 
model captures the entire continuum of responses to EGF (left) and CXCL12 (right) 
stimulation seen in experiments.  
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Figure B3 The model predicts Akt concentrations following doses of EGFR or 
CXCR4 stimulation 

 
(A) MDA-MB-231 cells stimulated with 100 ng/mL (solid line) or 300 ng/mL (dotted line) 
EGF show heterogeneous predicted Akt responses. Line colors correspond to those in 
B and C. (B) MDA-MB-231 cells stimulated with 10 ng/mL (solid line) or 100 ng/mL 
(dotted line) CXCL12 show heterogeneous predicted Akt responses. Line colors 
correspond to those in A and C. (C). Contour map illustrating the pre-existing states 
occupied by MDA-MB-231 cells with colored x’s indicating the pre-existing states shown 
in A and B. The contours represent the 2D projected occupancy map of the 
experimental cells after being matched in the 3D model library space. The outer and 
inner contours represent 90 and 50 percent of experimental cells, respectively. 
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Table B1 CSM species descriptions and initial conditions 
 
Species Description Initial 

Condition 
(nM) 

Ref. 

R4 Surface CXCR4 850 (1) 
L12 Extracellular CXCL12  0 -- 
C4 Surface CXCL12-CXCR4 complex  0 -- 
R4p Phosphorylated surface CXCR4 0 -- 
C4p Phosphorylated surface CXCL12-CXCR4 

complex 
0 -- 

R4pB Phosphorylated surface CXCR4 bound to β-
arrestin 

0 -- 

C4pB Phosphorylated surface CXCL12-CXCR4 
complex bound to β -arrestin 

0 -- 

R4i Internalized CXCR4 0 -- 
C4Bi Internalized CXCL12-CXCR4 complex bound to 

B-arrestin 
0 -- 

C4Bii Internalized CXCL12-CXCR4 complex 0 -- 
EGFR Surface EGFR 1x104 (2) 
EGF Extracellular EGF 0 -- 
EGF-EGFR Surface EGF-EGFR complex 0 -- 
EGF-EGFRi Internalized EGF-EGFRi complex 0 -- 
EGFRi Internalized EGFR 0 -- 
GDP Inactive G-protein 170 (3) 
GTP Active G-protein 0 -- 
iPI3K Inactive PI3K 200 (4) 
PI3K Active PI3K 0 -- 
PIP2 Phosphatidylinositol biphosphate (inactive) 1000 (5) 
PIP3 Phosphatidylinositol triphosphate (active) 0 -- 
iPDK1 Inactive PDK1 500 (6) 
PDK1 Active PDK1 0 -- 
Akt Inactive Akt 1000 (6) 
pAktT308 Akt phosphorylated only at the Threonine 308 

site (kinase domain) 
0 -- 

pAktS473 Akt phosphorylated only at the Serine 473 site 
(regulatory domain) 

0 -- 

ppAkt Fully activated Akt phosphorylated at both the 
T308 and S473 site 

0 -- 

mTOR Uncomplexed mTOR 800 (7) 
mTORC1 Active mTORC1 0 -- 
mTORC2 Active mTORC2 0 -- 
iRas Inactive Ras 3000 (6) 
Ras Active Ras 0 -- 
iRaf Inactive Raf 1000 (6) 
Raf Active Raf 0 -- 
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ERK Inactive ERK 850 (8) 
pERK Active ERK 0 -- 
rcu,Akt Cytoplasmic unphosphorylated Akt KTR 0 (9) 
rnu,Akt Nuclear unphosphorylated Akt KTR 200 (9) 
rcp,Akt Cytoplasmic phosphorylated Akt KTR 200 (9) 
rnp,Akt Nuclear phosphorylated Akt KTR 0 (9) 
rcu,ERK Cytoplasmic unphosphorylated ERK KTR 0 (9) 
rnu,ERK Nuclear unphosphorylated ERK KTR 200 (9) 
rcp,ERK Cytoplasmic phosphorylated ERK KTR 200 (9) 
rnp,ERK Nuclear phosphorylated ERK KTR 0 (9) 
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Table B2 CSM rate equations 
  
Equati
on No. 
 

Reaction 
reactant  product; modifiers 

Reaction Rate 
 
 

(1) R4 L12 C4 vbLR4=kf,L12,R4  R4 L12 KD,L12,R4 C4  

 
(2) R4pB L12 C4pB vbLR4pB= kf,L12,R4  R4pB L12 KD,L12,R4pB C4pB  

 
(3) R4p L12 C4p vbLR4ph=kf,L12,R4  R4p L12 KD,L12,R4pB C4p  

 
(4) R4 R4p vR4,phos=kf,R4phos R4 kr,R4phos R4p 

 
(5) C4 C4p vC4phos=kf,C4phos C4 kr,C4phos C4p 

 
(6) R4p R4pB vbBR4ph=kf,B,R4 (R4p KD,B,R4 R4pB) 

 
(7) C4p C4pB vbBC4ph=kf,B,R4  C4p KD,B,C4 C4pB  

 
(8) C4pB C4Bi viC4pB=keC4pB C4pB 

 
(9) C4Bi C4Bii voff,C4Bi=koff,B,R4 C4Bi 

 
(10) C4Bii   vdeg,C4Bii=kdeg,C4Bii C4Bii 

 
(11) R4pB R4i viR4pB=keR4pB R4pB 

 
(12) R4i R4 vrecy,R4Bi=krec,R4Bi R4Bi 

 
(13) GDP GTP vactGC  kC actG C  GDP 
(14) GDP GTP vactGC p kC actG C p GDP 

 
(15) GDP GTP vactGC p kbasalActG GDP 

(16) GTP GDP vdeactG kdeactGβγ GTP 

 
(17) iPI3  PI3 ; GTP 

vactPI3  kactPI3  Gβγ  
iPI3 

 M,actPI3  iPI3 
 

 
(18) iPI3  PI3  vextActPI3  kPI3  iPI3  

 
(19) PI3  iPI3  vdeactPI3  kdeactPI3  PI3  

 
(20) PIP2 PIP3; PI3K 

vactPIP3 kactPIP3 PI3   
PIP2

 M,actPIP3 PIP2
 



 146 

 
(21) PIP3 PIP2 vdeactPIP3 kdeactPIP3 PIP3 

 
(22) iPD 1 PD 1; PIP3 

vactPD 1 kactPD 1 PIP3 
iPD 1

 M,actPD 1 iPD 1
 

 
(23) PD 1 iPD 1 vdeactPD 1 kdeactPD 1 PD 1 

 
(24) Akt pAktT308; PDK1 

vAkt pAktT308 kactAktT308 PD 1 
Akt

 M,actAktT308 Akt
 

 
(25) pAktS 73 ppAkt; PDK1 

vpAktS 73 ppAkt kactAktT308 PD 1 
pAktS 73

 M,actAktT308 pAktS 73
 

 
(26) Akt pAktS 73; mTORC2 

vAkt pAktS 73 kactAktS 73 mT RC2 
Akt

 M,actAktS 73 Akt
 

 
(27) pAktT308 ppAkt; 

mTORC2 
vpAktT308 ppAkt kactAk S 73 mT RC2  

pAktT308

 M,actAktS 73 pAktT308
 

 
(28) pAktT308 Akt vpAktT308 Akt kdeactAktT308 pAktT308  

 
(29) pAktS 73 Akt vpAktS 73 Akt kdeactAktS 73 pAktS 73 

 
(30) ppAkt pAktT308 vppAkt pAktT308 kdeactAktS 73 ppAkt 

 
(31) ppAkt pAktS 73 vppAkt pAktS 73 kdeactAktT308 ppAkt 

 
(32) mT R mT RC2; 

PIP3,mTORC1 
vactmT RC2 kactmT RC2 PIP3  

mT R

 M,actmT RC2 mT R  1 
mT RC1
 I,inhibmT RC2

 
 

 
(33) mTORC2 mTOR vdeactmTORC2=kdeactmTORC2*mTORC2 

 
(34) mT R mT RC1 vextActmT RC1 kmT RC1 mT R 

 
(35) mT R mT RC1; ppAkt 

vactmT RC1,Akt kactmT RC1,Akt ppAkt  
mT R

 M,actmT RC1,Akt mT R
 

 
(36) mT R mT RC1; 

pERK 
vactmT RC1,ER  kactmT RC1,ER  pER   

mT R

 M,actmT RC1,ER  mT R
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(37) mT RC1 mT R vdeactmT RC1 kdeactmT RC1 mT RC1 
 

(38) iRas Ras; 
GTP, mT RC1 

vactRas kactRas GTP 
iRas

 M,actRas iRas  1 
mT RC1
 I,inhib,Ras

 
 

 
(39) iRas Ras vextActRas kRas iRas 

 
(40) Ras iRas vdeactRas kdeactRas Ras 

 
(41) iRaf Raf; Ras 

vactRaf kactRaf Ras  
iRaf

 M,actRaf iRaf
 

(42) iRaf Raf vconstActRaf kconstActRaf*iRaf 
 

(43) Raf iRaf; ppAkt 
vinhibRaf kinhibRaf ppAkt  

Raf

 M,inhibRaf Raf
 

(44) Raf iRaf vdeactRaf kdeactRaf Raf 
 

(45) ER  pER ; Raf 
vactER  kactER  Raf  

ER 

 M,actER  ER 
 

(46) pER  ER  vdeactER  kdeactER  pER  
 

(47) rcu,Akt rcp,Akt; ppAkt 
vphos,cyto,AktKTR=ppAkt kcat 

rcu,Akt

rcu,Akt Km
 

 
(48) rnu,Akt rnp,Akt; ppAkt 

vphos,nuc,AktKTR=ppAkt kcat 
rnu,Akt

rnu,Akt Km
 

 
(49) rcu,ER  rcp,ER ; pERK 

vphos,cyto,ERKKTR=pERK kcat 
rcu,ERK

rcu,ERK Km
 

 
(50) rnu,ER  rnp,ER ; pERK 

vphos,nuc,ERKKTR=pERK kcat 
rnu,ERK

rnu,ERK Km
 

 
(51) rcp,Akt rcu,Akt vdephos,cyto,AktKTR=kdc 

rcp,Akt

rcp,Akt Kmd
 

 
(52) 
 

rnp,Akt rnu,Akt vdephos,nuc,AktKTR=kdn 
rnp,Akt

rnp,Akt Kmd
 

 
(53) rcp,ER  rcu,ER  

vdephos,cyto,ERKKTR=kdc 
rcp,ERK

rcp,ERK Kmd
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(54) rnp,ER  rnu,ER  
vdephos,nuc,ERKKTR=kdn 

rnp,ERK

rnp,ERK Kmd
 

 
(55) rcp,Akt rnp,Akt vphos,import,AktKTR=kip rcp,Akt 

(56) rcu,Akt rnu,Akt vunphos,import,AktKTR=kiu rcu,Akt 

 
(57) rnp,Akt rcp,Akt vphos,export,AktKTR=kep rnp,Akt 

 
(58) rnu,Akt rcu,Akt vunphos,export,AktKTR=keu rnu,Akt 

 
(59) rcp,ER  rnp,ER  vphos,import,ERKKTR=kip rcp,ERK 

 
(60) rcu,ER  rnu,ER  vunphos,import,ERKKTR=kiu rcu,ERK 

 
(61) rnp,ER  rcp,ER  vphos,export,ERKKTR=kep rnp,ERK 

 
(62) rnu,ER  rcu,ER  vunphos,export,ERKKTR=keu rnu,ERK 

 
(63) EGF EGFR EGF EGFR vb,EGF,EGFR=kf,EGF,EGFR*(EGF * EGFR – 

KD,EGF,EGFR * EGF-EGFR) 
(64) EGFR EGFRi vi,EGFR=ke,EGFR*EGFR 
(65) EGFRi EGFR vrecy,EGFRi=krec,EGFR*EGFRi 
(66) EGF EGFR EGF EGFRi vi,EGF-EGFR=ke,EGF-EGFR*EGF-EGFR 

(67) EGF EGFRi EGF EGFR vrecy,EGF-EGFRi=krec,EGF-EGFRi*EGF-EGFRi 
(68) EGF EGFRi   vdeg,EGF-EGFRi=kdeg,EGF-EGFRi*EGF-EGFRi 
(69) iPI3  PI3 ; EGF EGFR,EGF EGFRi vactPI3K,EGF=kactPI3K,EGF*(EGF-EGFR+EGF-

EGFRi)*PI3K 
(70) iRas Ras; EGF EGFR,EGF EGFRi vactRas,EGF kactRas,EGF (EGF EGFR EGF EGFRi)  

iRas

 M,actRas,EGF iRas  1 
mT RC1

 I,inhibRas,EGFR
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Table B3 CSM differential equations 
 

R
e
c
e

p
to

r 
d
y
n
a

m
ic

s
 

dR4/dt  
dC4/dt  

dR4p/dt  
dC4p/dt  
dL12/dt  

dR4pB/dt  
dC4pB/dt  

dR4i/dt  
dC4Bi/dt  
dC4Bii/dt  

= -vbLR4 – vR4,phos + vrecy,R4Bi 
= vbLR4 – vC4,phos 
= vR4,phos – vbLR4ph – vbBR4ph 
= vC4,phos + vbLR4ph – vbBC4ph 

= (-vbLR4 – vbLR4pB – vbLR4ph – vbLR4B) * NC/(Vcell/Vmedia) 
= -vbLR4pB + vbBR4ph – viR4pB 
= vbLR4pB + vbBC4ph – vi,C4pB 

= viR4pB – vrecy,R4Bi 
= viC4pB – voff,C4Bi 
= voff,C4Bi – vdeg,C4Bii 

dEGFR/dt = -vb,EGF-EGFR – vi,EGFR + vrecy,EGFRi 
dEGF-

EGFR/dt 
= vb,EGF-EGFR – vi,EGF-EGFR + vrecy,EGF-EGFRi 

dEGF/dt = -vb,EGF-EGFR * NC/(Vcell/Vmedia) 
dEGFRi/dt = vi,EGFR – vrecy,EGFRi 

dEGF-
EGFRi/dt 

= vi,EGF-EGFR – vrecy,EGF-EGFRi – vdeg,EGF-EGFRi 

S
ig

n
a

lin
g

 d
y
n

a
m

ic
s
 

dGTP/dt  = vactGC4 + vactGC4p – vdeactG   
dPI3K/dt  = vactPI3K + vbasalActPI3K – vdeactPI3K – 

vactPI3K,EGF 
  

dPIP3/dt = vactPIP3 – vdeactPIP3 – vactPDK1 + vdeactPDK1   
dPDK1/dt = vactPDK1 – vdeactPDK1   

dmTORC1/dt = vactmT RC1,Akt + vactmT RC1,ER  – 

vdeactmTORC1 

  

dmTORC2/dt = vactmTORC2 – vdeactmTORC2   
dRas/dt = vactRas + vconstActRas – vinhibRas – vdeactRas – vactRas,EGF 
dRaf/dt = vactRaf + vconstActRaf – vinhibRaf – vdeactRaf   

dpERK/dt = vactERK – vdeactERK   
dAkt/dt = -vAkt pAktT308- vAkt pAktS 73+ vpAktT308 Akt + vpAktS 73 Akt 

dpAktT308/dt = vAkt pAktT308- vpAktT308 Akt - vpAktT308 ppAkt + vppAkt pAktT308 

dpAktS473/dt = -vpAktS 73 ppAkt + vAkt pAktS 73+ vppAkt pAktS 73  - vpAktS 73 Akt 

dppAkt/dt = vpAktS 73 ppAkt + vpAktT308 ppAkt - vppAkt pAktS 73  - vppAkt pAktT308 

R
e
p

o
rt

e
r 

d
y
n

a
m

ic
s
 drcu,Akt/dt = -vphos,cyto,Akt + vdephos,cyto,Akt – vunphos,import,Akt + vunphos,export,Akt 

drnu,Akt/dt = -vphos,nuc,Akt + vdephos,nuc,Akt + kv*(vunphos,import,Akt – vunphos,export,Akt) 
drcp,Akt/dt = vphos,cyto,Akt – vdephos,cyto,Akt – vphos,import,Akt + vphos,export,Akt 
drnp,Akt/dt = vphos,nuc,Akt – vdephos,nuc,Akt + kv*(vphos,import,Akt – vphos,export,Akt) 

drcu,ERK/dt = -vphos,cyto,ERK + vdephos,cyto,ERK – vunphos,import,ERK + vunphos,export,ERK 

drnu,ERK/dt = -vphos,nuc,ERK + vdephos,nuc,ERK + kv*(vunphos,import,ERK – 
vunphos,export,ERK) 

drcp,ERK/dt = vphos,cyto,ERK – vdephos,cyto,ERK – vphos,import,ERK + vphos,export,ERK 
drnp,ERK/dt = vphos,nuc,ERK – vdephos,nuc,ERK + kv*(vphos,import,ERK – vphos,export,ERK) 

 
We assumed conservation of mass for all signaling reactions. The differential equation 
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for the inactive form of each species in the signaling dynamics module is equal and 
opposite of the differential equation for the active form, ex: diPI3K/dt = -dPI3K/dt. 
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Table B4 CSM parameter values 
 
 
Name Description of event Value Unit Ref 

kf,B,R4 β-arrestin binding to R4 2.04 nM-1 min-1 (1,10,11) 

KD,B,R4 Dissociation of β-arrestin from R4 13.3 nM (1,10,11) 

KD,B,C4 Dissociation of β-arrestin from C4 6.49 x 10-2 nM (1,10,11) 

kf,L12,R4 L12-R4 binding 8.79 x 10-2 nM-1 min-1 (1,10,11) 

KD,L12,R4 Dissociation of L12-R4 42.9 nM (1,10,11) 

ke,R4pB Endocytosis of phosphorylated R4 8.07 x 10-2 min-1 (1,10,11) 

ke,C4pB Endocytosis of phosphorylated C4 0.169 min-1 (1,10,11) 

koff,B,R4 β-arrestin removal from C4Bi 4.21 x 10-2 min-1 (1,10,11) 

krecy,R4Bi Recycling of R4Bi to cell surface  3.64 x 10-3 min-1 (1,10,11) 

kdeg,C4Bii 
Degradation of internalized L12-C4 
complex 

9.15 x 10-3 min-1 (1,10,11) 

kf,C4phos C4 phosphorylation  0.409 min-1 (12) 

kf,R4phos R4 phosphorylation  6.09 x 10-2 min-1 (12) 

kr,C4phos C4 dephosphorylation  5.85 x 10-3 min-1 (12) 

kr,R4phos R4 dephosphorylation  8.09 x 10-4 min-1 (12) 

kf,EGF,EGFR EGF binding to EGFR** 2.05 
nM-1 

min-1 (2) 

KD,EGF,EGFR Dissociation of EGF from EGFR*** 0.01 nM (2) 

ke,EGFR Endocytosis of EGFR 6.6 x 10-2 min-1 (2) 

krec,EGFRi Recycling of EGFRi to cell surface 3.23 x 10-3 min-1 (2) 

ke,EGF-EGFRi Endocytosis of EGF-EGFR complex 0.134 min-1 (2) 

krec,EGF-EGFRi 
Recycling of EGF-EGFRi to cell 
surface 

1.48 x 10-2 min-1 (2) 

kdeg,EGF-EGFRi 
Degradation of internalized EGF-
EGFR complex 

0.213 min-1 (2) 

kC4actG GTP activation 0.200 nM-1 min-1 (12) 

kbasalActG Basal GTP activation 0.200 min-1 (12) 

kdeactG GTP deactivation 4.67 min-1 (12) 

kactPI3K PI3K activation 5.00 min-1 (13,14) 

KM,actPI3K PI3K activation (Michaelis constant) 20.00 nM (14) 

kactPI3K,EGF PI3K activation by EGF 6.89 x 10-3 nM-1 min-1 ^ 

kdeactPI3K PI3K deactivation  6.00 min-1 (4,15) 

kPI3K 
PI3K activity external to CXCR4 
signaling 

0.30 – 5.30 min-1 -- 

kactPIP3 PIP3 activation 2.00 x 102 min-1 (5,13,14) 

KM,actPIP3 PIP3 activation (Michaelis constant) 1.00 x 102 nM (14) 

kdeactPIP3 PIP3 deactivation 10.0 min-1 (14) 

kactPDK1 PDK1 activation 50.0 min-1 (14) 

KM,actPDK1 PDK1 activation (Michaelis constant) 2.00 x 102 nM ^ 

kdeactPDK1 PDK1 deactivation 53.3 min-1 (14) 

kactAktT308 Akt T308 activation (kinase domain) 2.00 min-1 (14) 

KM,actAktT308 Akt T308 (Michaelis constant) 2.00 x 102 nM (7) 

kactAktS473 
Akt S473 activation (regulatory 
domain) 

2.00 min-1 (14,16) 

KM,actAktS473 Akt S473 (Michaelis constant) 2.00 x 102 nM (7) 
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kdeactAktT308 Akt T308 deactivation 1.61 min-1 (17,18) 

kdeactAktS473 Akt S473 deactivation 3.00 min-1 (17,18) 

kactmTORC1,ERK mTORC1 activation by ERK 1.22 min-1 ^ 

KM,actmTORC1,ERK 
mTORC1 activation by ERK 
(Michaelis constant) 

27.7 nM ^ 

kactmTORC1,Akt mTORC1 activation by Akt 3.39 min-1 ^ 

KM,actmTORC1,Akt 
mTORC1 activation by Akt (Michaelis 
constant) 

23.4 nM ^ 

kdeactmTORC1 mTORC1 deactivation 41.6 min-1 (19) 

kmTORC1 

mTORC1 activity external to CXCR4 
signaling 

0 – 10.0 min-1 -- 

kactmTORC2 mTORC2 activation 0.60 min-1 (16) 

KM,actmTORC2 
mTORC2 activation (Michaelis 
constant) 

26.2 nM ^ 

KI,inhibmTORC2 mTORC2 inhibitory constant 20.3 nM ^ 

kdeactmTORC2 mTORC2 deactivation 1.13 min-1 (16) 

kactRas Ras activation 5.00 min-1 (20) 

KM,actRas Ras activation (Michaelis constant) 2.00 x 102 nM (5) 

kactRas,EGF Ras activation by EGF 1.44 x 103 min-1 ^ 

KM,actRas,EGF 

Ras activation by EGF (Michaelis 
constant) 

443 nM ^ 

kRas 
Ras activity external to CXCR4 
signaling 

0 – 0.300 min-1 -- 

kdeactRas Ras deactivation  8.49 min-1 (5) 

KI,inhibRas Ras inhibitory constant 14 nM ^ 

KI,inhibRas,EGF Ras inhibitory constant for EGF 0.011 nM ^ 

kactRaf Raf activation 2.00 min-1 (14) 

KM,actRaf Raf activation (Michaelis constant) 1.00 x 103 nM (5) 

kconstActRaf 
Raf constitutive activation due to 
mutation* 

0.005 min-1 ^ 

kinhibRaf Raf inhibition 0.1 min-1 (13) 

KM,inhibRaf Raf inhibition (Michaelis constant) 50.0 nM (13) 

kactERK ERK activation 4.00 min-1 (14) 

KM,actERK ERK activation (Michaelis constant) 24.6 nM (5) 

kdeactERK ERK deactivation 3.20 min-1 (5) 

kcat Reporter phosphorylation  20.0 min-1 (9) 

Km 
Reporter phosphorylation (Michaelis 
constant) 

3.00 x 103 nM (9) 

kdc 
Reporter maximum dephosphorylation 
in cytoplasm 

30.0 nM min-1 (9) 

Kmd 
Reporter dephosphorylation 
(Michaelis constant) 

1.00 x 102 nM (9) 

kiu Unphosphorylated reporter import  0.3 min-1 (9) 

keu Unphosphorylated reporter export  5.00 x 10-2 min-1 (9) 

kdn 
Reporter maximum dephosphorylation 
in nucleus 

30.0 nM min-1 (9) 

kip Phosphorylated reporter import  5 x 10-2 min-1 (9) 

kep Phosphorylated reporter export  0.500 min-1 (9) 

kv Ratio of cytosolic volume to nuclear 4 unitless (9) 
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volume 

NC 
Number of cells per imaging 
experiment 

2x105 unitless --  

We assumed that all biochemical reactions inside cells are governed by biophysical rate 
constants and do not vary from cell-to-cell, nor from cell line to cell line. The only 
sources of variability in the CSM are the three external activation parameters for PI3K, 
Ras, and mTORC1, highlighted below. Parameters include rate constants, equilibrium 
dissociation constants, and Michaelis constants. 
 
* For MDA-MB-231 cells. For SUM-159 and Vari-068 cells, this parameter is 0. 
** For SUM 159 cells. For MDA-MB-231 cells, this parameter is 6.3 x 10-2. 
*** For SUM 159 cells. For MDA-MB-231 cells, this parameter is 50. 
^ Estimated 
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Table B5 CSM parameters for modeling kinase inhibition 
 

Conditioning 
treatment 

Altered 
Parameter(s) 

Baseline Inhibition value 

PI3K inhibitor 
 

kactPIP3 200 min-1 20 min-1 
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Appendix C Supporting Information for Chapter 4

 

 

 
 
Figure C1 Correlation between the amplitude of the time-dependent blood-tissue 
gradient and the maximum observed gradient 

 
We ran our computational model of the tumor microenvironment and varied the number 
of CXCL12-secreting and CXCR7+ cells in tissue using the same values as in Figure 
4.5A. We found that the amplitude of the blood-tissue gradient curve over 24 hours 
correlated with the maximum gradient in a linear trend for all isoforms. 
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Table C1 Molecular species involved in CXCR7-CXCL12 binding and trafficking 
events 

 

 

  

CXCR7 Species Description 

R7 (#/cell) Free cell-surface CXCR7 
 

L12 (nM) Free extracellular CXCL12 
 

Be (#/cell) Free endogenous  β-arrestin 2 
 

R7Be (#/cell) R7 bound to Be 

 
C7 (#/cell) R7  bound to L12 

 
C7Be (#/cell) R7Be bound to L12 

 
R7Bei (#/cell) Intracellular R7Be  

 
C7Bei (#/cell) Intracellular C7Be  

 
R7Beii (#/cell) R7Bei  after Be dissociation 

 
C7Beii  (#/cell) C7Bei  after trafficking to late endosomes 

 
C7Bpii  (#/cell) C7Bpi  after trafficking to late endosomes 

 
L12i (#/cell) Intracellular L12 
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Table C2 Parameters describing CXCR7-CXCL12 binding and trafficking events 

 
Parameter Description Value 
kf,L12,7  (nM-1s-1) Forward rate constant of L12 binding R7 

/R7Be  
1.4 x10-3 

   
kf,B,7 ((#/cell)-1s-1) Forward rate constant of Be binding R7 /C7 1.4 x10-8  

   
KD,R7,L12 (nM) Equilibrium dissociation constant of L12 

binding R7  
0.84 

   
KD,R7,B   (#/cell) Equilibrium dissociation constant of Be 

from R7  
2.3 x106 

   

KD,C7,B  (#/cell) Equilibrium dissociation constant of Be 

from C7 
6.5 x105  

   

ke,R7B  (s-1) R7Be internalization rate constant 3.9 x10-3 
   
ke,C7B  (s-1) C7Be internalization rate constant 2.1 x10-3 
   
koff,B,7 (s

-1)
 

Dissociation rate constant of Be from R7Bei  2.5 x10-3 

   

ke,C7Bi (s
-1)

 
Rate constant of trafficking of   C7Bei to 
late endosomes 

5.5 x10-4 

   
krec,R7Bii  (s

-1) R7Beii recycling rate constant 1.1 x10-3 

   

krec,C7Bii (s
-1) C7Beii recycling rate constant 2.8 x10-4 

   

kdeg,L12i   (s
-1) L12i degradation rate constant 1.0 x10-4 
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Table C3 Ordinary differential equations which govern CXCR7-CXCL12 binding 
and trafficking events. 

Ligand binding to free receptors                                 
      

Ligand binding to receptor-β-arrestin 
complexes 

                  
                 

     
   

β-arrestin binding to free receptors                                 
   

β-arrestin binding to ligand-bound 
receptors 

                                 
   

Internalization of cell surface receptor-β-
arrestin complexes 

           
     

  

            
     

  

Dissociation of 
β-arrestin from internalized receptor-β-
arrestin complexes 

                     

 
Trafficking of internalized receptor-β-
arrestin complexes to late endosomes 

            
        

Recycling of internalized receptors 

 
               

         

                
         

Degradation of                   
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~ Units are nM/s 
Vcell = volume of a cell, 1x10-12 L 
NAV = Avogadro’s Number, 6.022x1023 mlcl / mol 
 

Nomenclature, parameters, and equations shown in S1 Tables 3, 4, and 5 are taken 
from: 
 
Chang SL, Cavnar SP, Takayama S, Luker GD, Linderman JJ. Cell, Isoform, and 
Environment Factors Shape Gradients and Modulate Chemotaxis. PLoS One. 
2015;10(4):e0123450. doi:10.1371/journal.pone.0123450 
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Table C4 Model Parameters 

 
Category Symbol Description Value Units Ref. 

Blood p CXCL12 
permeability 
through blood 
vessel wall 

4.08x10-5 cm s-1 (1) 

 A surface area of 
blood vessel 
bordering each 
endothelial 
compartment 

100 μm2  

 tmax time of day of 
maximum 
CXCL12 blood 
concentration 

9am, converted 
to military time 

 (2), this 
work 

 tstart time of day to 
start the 
simulation 

arbitrary   

 CCXCL12,max maximum 
CXCL12 
concentration 
in blood during 
circadian 
fluctuation 

0.30 (CXCL12-α) 
0.28 (CXCL12-β) 
0.20 (CXCL12-γ) 

nM (3) 

 CCXCL12,min minimum 
CXCL12 
concentration 
in blood during 
circadian 
fluctuation 

0.15 (CXCL12-α) 
0.14 (CXCL12-β) 
0.10 (CXCL12-γ) 

nM (2) 

 f frequency of 
circadian 
rhythm 

24 h-1  

Initialization 
thresholds 

BTISthreshold blood-tissue 
interface 
stability 
threshold 

1x10-5   

 GSthreshold gradient 
stability 
threshold 

1x10-5   

Isoform-
specific 
parameters 

KD binding affinity 
of CXCL12 for 
ECM 

100 (CXCL12-α) 
20 (CXCL12-β) 
5 (CXCL12-γ) 

nM (4) 

 S baseline 20 (CXCL12-α) # (cell (4) 
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CXCL12 
secretion rate 
from cells 
(Setup 1) 

15 (CXCL12-β) 
5 (CXCL12-γ) 

s)-1 

 Smax maximum 
CXCL12 
secretion rate 
from cells 
during 
circadian 
fluctuation 
(Setup 2) 

20 (CXCL12-α) 
15 (CXCL12-β) 
5 (CXCL12-γ) 

# (cell 
s)-1 

(4) 

 Smin minimum 
CXCL12 
secretion rate 
from cells 
during 
circadian 
fluctuation 
(Setup 2) 

10 (CXCL12-α) 
7.5 (CXCL12-β) 
2.5 (CXCL12-γ) 

# (cell 
s)-1 

(2) 

Timesteps td timestep for 
diffusion 

0.1 s (4) 

 tm timestep for 
receptor-ligand 
dynamics 

0.01 s (4) 

Other Φ number of 
CXCL12 
binding sites on 
ECM 

6.63x104 # 
compart
ment-1  

(4) 

 kdeg Extracellular 
CXCL12 
degradation 
rate 

2.05x10-5 s-1 (4) 

 D CXCL12 
diffusivity 

1.5x10-6 cm2 s-1 (5,6) 

 kon on-rate of 
CXCL12 to 
ECM 

0.001 s-1 (4,7) 
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Table C5 Model Equations 
 

 
 
 
 
  

Name Equation Symbols 
 

Cell-derived 
CXCL12 gradient 
(GC) 

   
          

  
 

- Chigh and Clow shown in Fig 1 
- dc = distance between clusters 
(100 μm) 
 

Endothelial-tissue 
CXCL12 gradient 
(GE-T) 

     
             

    
 

- Ctissue and Cendo shown in Fig 1 
- dE-T = horizontal distance from 
endothelium to edge of 
simulation space (80 μm) 
 

Blood-tissue 
CXCL12 gradient 
(GB-T) 
 

     
              

    
 

- Ctissue and Cblood shown in Fig 1 
- dB-T = horizontal distance from 
blood to edge of simulation 
space (90 μm) 
 

Nonspecific 
CXCL12 binding to 
ECM 

  

  
                        

- B = CXCL12 bound to ECM 
- kon = on-rate of CXCL12 to 
ECM 
- KD = binding affinity of CXCL12 
for ECM 
- Φ = empty sites on ECM 
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