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tive variance, cov(e(x), e(x)), at t = 60. . . . . . . . . . . . . . . . . 40

2.8 CCRS boundaries (gray dashed lines at t = 0, dotted lines at t = 60),
Rβ(b, b) for β = 0.01, 0.50, 0.99. The true reachable set (black line)
from the recharging base (black dot). The boundaries are shown at
(a) t = 0, when no data has been collected, and (b) t = 60, when
data has been collected corresponding to the predicted maps in Fig.
2.7. The expansion of the β = 0.99 set from t = 0 to t = 60 is shown
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Comparison of simulation results for our CCRS method and a naive
method that assumes constant energy cost per unit distance, c. Re-
sults averaged over 50 runs in randomly generated discontinuous en-
vironments. Behavior is similar to the smooth environment case. . . 42

viii



3.1 (a) Image of experiment environment (2 of 4 Pozyx anchors used for
robot positioning are shown). (b) Grayscale top-down satellite image
of the experiment environment used to define the GP input s. Twenty
paths traversed by the robot are overlaid as orange lines. The initial
location of each path and the path number is indicated in red. The
white portion at the top of (b) corresponds with the concrete walk
in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Large (10 inch wheels and 15.15kg mass) and small robots (6 inch
wheels and 7.25kg mass) used for experiments. . . . . . . . . . . . . 61

3.3 The mean prediction f̄(X∗) for GPR is shown in (a) and (b), and the
uncertainty cov(f(X∗), f(X∗))+σ2

ηI is in (c) and (d). The predictions
are made using the data (black dots) collected from 20 paths and with
the following models: (a),(c) LVM with GP inputs x, y, ψ, s. (b),(d)
DPM with GP inputs x, y, ψ, s. . . . . . . . . . . . . . . . . . . . . 62

3.4 Path energy costs: (blue/green) predicted cost Ē with ±2
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ABSTRACT

For robotic applications, energy is a key resource that can both enable and limit

the tasks that a robot can perform in an environment. In off-road environments,

ground robots may traverse numerous different terrains with significantly and spa-

tially varying energy costs. The cost of a particular robot moving through such an

environment is likely to be uncertain, making mission planning and decision-making

challenging. In this dissertation, we develop methods that use information on terrain

traversal energy costs, collected during robot operation, so that future energy costs

for the robot can be more accurately and confidently predicted. The foundation of

these methods is to build a spatial map of the energy costs in an environment, while

characterizing the uncertainty in those costs, using a technique known as Gaussian

process regression (GPR). This map can be used to improve performance in important

robotic applications, including path and mission planning.

First, we present a 2-dimensional energy mapping formulation, based on GPR,

that properly considers the correlation in path energy costs for computing the un-

certainty in the predicted energy cost of a path through the environment. With this

formulation, we define a robot’s chance constrained reachability as the set of locations

that the robot can reach, under a user-defined confidence level, without depleting its

energy budget. Simulation results show that as a robot collects more data on the en-

vironment, the reachable set becomes more accurately known, making it a useful tool

for mission planning applications. Next, we extend the spatial mapping formulation

to 3-dimensional environments by considering both data-driven and vehicle model-

ing strategies. Experimental testing is performed on ground robot platforms in an

xiii



environment with varied terrains. The results show that the predictive accuracy of

the spatial mapping methodology is significantly improved over baseline approaches.

Finally, we explore information sharing between heterogeneous robot platforms. Two

different robots are likely to have different spatial maps, however, useful information

may still be shared between the robots. We present a framework, based multi-task

Gaussian process regression (MTGP), for learning the scaling and correlation in costs

between different robots, and provide simulation and experimental results demon-

strating its effectiveness. Using the framework, robot heterogeneity can be leveraged

to improve performance in planning applications.

xiv



CHAPTER I

Introduction

1.1 Background

Ground robots face numerous challenges in off-road environments due to rough

terrain and topography. Importantly, it is hard to predict energy costs through an

environment with varying terrains. Energy constrains the range and effectiveness of

ground robots across autonomous, manned, and tele-operation applications. Typi-

cally, only limited knowledge of future energy costs is available in off-road environ-

ments, making robot range difficult to quantify. The uncertainty in predicted energy

costs makes mission planning for ground robots difficult, resulting in overly conserva-

tive decisions or risking energy depletion. Informed methods of predicting costs

throughout off-road environments are necessary for robust operation of

ground robots. Such methods can be used to plan energy-efficient paths, extend

robot range, and inform robust mission planning.

Energy limitations play a significant role in off-road ground robot applications,

particularly in the field of autonomous systems. Such limitations exist in large vehi-

cles, but are especially prevalent in small ground robots as well. Ground robots are

being used for numerous applications, such as: taking soil measurements for preci-

sion agriculture [105] and environmental health monitoring [23, 86], gas distribution

modeling [99], radiation detection [44, 20], and planetary exploration [41, 69], among

1



many others. See [29] for an extensive review of robotic environmental monitoring

applications. In addition, numerous military applications of ground robots exist for

reconnaissance/surveillance tasks [90]. These applications often take place in uncer-

tain off-road environments with a complex set of terrains and are limited in range

and reliability by energy considerations.

Internal factors play a major role in energy for ground robots, and there are the

subject of significant, on-going research efforts. Batteries are the primary means

of energy storage for small robotic vehicles. Research to improve battery technol-

ogy continues on many fronts, including for materials discovery [55], modeling, and

health monitoring [48]. For the forseeable future, however, batteries remain a lim-

iting factor in the duration of missions for robotic vehicles [87]. For larger vehicles,

many other energy storage and power generation options can also be considered, in-

cluding: traditional internal combustion engines, hybrid vehicles, hydrogen fuel cells

[113], solar powered vehicles [74], etc. Further sources of energy consumption on-

board the robot come from increasingly sophisticated sensor suites, along with the

computational power needed to process sensor data. It is important for an energy

management system to consider these factors.

Environmental factors also have a significant impact on energy usage. For exam-

ple, paths or roads crowded with humans or other traffic are more costly to traverse

[8]. In off-road environments, the robot may traverse terrain that causes higher en-

ergy costs than pavement [87, 66], as seen in Figure 1.1. Increased costs are due

to the wheel-terrain interaction that resists motion, called rolling resistance [82]. 3-

dimensional topography (hills/changes in elevation) also affect energy usage, with

much research devoted to planning in such environments [26, 116]. Travelling uphill

clearly increases costs, while downhill costs are reduced (energy may even be gained

if regenerative breaking is considered).

Predicting the cost of future paths must take environmental factors into account.

2
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Figure 1.1: Current draw measurements from a small ground robot traversing three
types of terrain (and two different types of grass) at a constant velocity.

However, there may be little prior information on the energy costs in an environment.

Spatial soil maps and remote sensing may provide a good indication on some terrain

properties, or to segment terrain into different regions [61]. The energy cost of traver-

sal, however, is robot dependent and can only be accurately measured during robot

operation in the environment. Camera and LiDAR data can also be used for segmen-

tation and classification of terrains in off-road environments [59]. However, visually

similar terrains may have varying energy costs (e.g. dry grass versus thick grass, as

seen in Figure 1.1). Crude segmentation and classification based on exteroceptive

data may give little indication of these differing costs.

On-board measurements of a robot’s energy consumption is the most accurate

way to estimate the energy costs of traversing a particular terrain. In some scenarios,

a robot may repeatedly explore the same environment, collecting data on the terrain

to improve performance in the future. There may even be multiple ground robots in

the environment, with the ability to communicate information on the terrain between

them to inform energy predictions. For many applications, however, robots may have

traversed some parts of an off-road environment, but may not have explored the entire
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Figure 1.2: A robot traverses through an off-road environment, collecting data on
the costs of the terrains. The data is used to produce spatial energy and uncertainty
maps. Here, the robot has already traversed from a recharging base (green box) along
the blue dotted line, and looks to predict the cost of the future path (solid red line).
Lower and higher cost areas on the energy map are shaded blue and red, respectively.
Lower and higher uncertainty areas are shaded white and black, respectively. Regions
which have not been visited have more uncertainty in their energy costs.

area. Data on the energy costs of the environment are then sparse, implying that

uncertainty should be taken into account when making predictions. The predicted

cost of a future path should consider both data collected in previously traversed areas

and uncertainty in areas not yet traversed by the robot.

This dissertation focuses on the development of methodologies for enabling in-

formed energy predictions in off-road environments, based on data collected during

robot operation, for use in robotic applications such as mission planning and path

planning. The methodologies developed focus on using energy cost data to inform a

spatial map of an environment. An illustration of the strategy for energy prediction

is shown in Figure 1.2. To summarize, a spatial map of energy costs (or a metric

related to energy), along with a corresponding uncertainty map, of the environment
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is built based on data collected during robot operation. The map informs the energy

costs associated with a location in the environment, along with the uncertainty of

those costs.

Energy predictions can be used to inform ground robotics applications through

both mission planning and path planning in uncertain, off-road environments. Mis-

sion planning for single or multiple robots requires an understanding of the range of

the robots in an environment, to ensure the robots have sufficient energy resources.

One question we approach is: where can a robot safely traverse to, or reach, in an

environment without depleting its energy? As more energy data is collected by the

robot on the environment, a more accurate computation of the robot’s reachable set

will be available. Data on the energy costs of the environment also enables energy-

efficient path planning. In both mission planning and path planning applications,

uncertainty adds a complicating factor, so precautions must be taken in order to en-

sure robustness. Applied to mission planning, uncertainty may mean choosing the

less risky path back to a recharging base over a more risky, yet informative path.

One challenge in using spatial mapping for energy prediction is that, due to the

complex physics underlying robot-terrain interaction, energy costs due to the terrain

will vary for different robots. Moreover, the same robot under a different operating

condition (higher speed, heavier load, different weight distribution, etc.) can see a

change in the rolling resistance coefficient in ways that are difficult to model physically.

For robots of a similar type (for example, two ground robots with different wheel radii

and weights), however, we expect the costs to be positively correlated. In other words,

a terrain that is more costly for one robot is also likely to be more costly for another

robot. Under this assumption, information may effectively be shared between robots,

and the spatial terrain map from one robot can be informative to another robot.
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1.2 Background on Off-Road Energy Prediction for Ground

Robots

By definition, off-road environments lack predefined roads/routes that constrain

vehicles, yet provide better known energy prediction and clearly defined path planning

problems. Instead, a robot travelling in an off-road environment may traverse a highly

unstructured area with spatial changes in terrain characteristics and topography. The

energy consumption of a robot is then highly dependent on both its location and its

heading. One way to represent spatially varying quantities (such as terrain) is through

spatial modeling techniques [22]. A common tool for spatial modeling and machine

learning is Gaussian process regression (GPR), also known as Kriging [84]. GPR

is a non-parametric, kernel-based method for interpolation that computes both a

mean prediction and an uncertainty of that prediction based on collected data. This

is especially useful for making predictions in regions of the environment in which

data is sparse. In particular, regions with little information have higher uncertainty.

Properly accounting for this uncertainty can lead to more robust planning.

Recent work in ground robotics has looked at applying GPR for spatial mapping

of energy costs in an environment. For example, a ground robot was used to spatially

map the solar energy distribution over an environment with GPR [74]. The map

was then used for energy-efficient path planning. Martin and Corke [56] use a robot

to construct an energy map of the environment based on the terrain, and find an

energy-minimal tour of the environment. These works do not, however, predict the

uncertainty of the cost of a path, and rely on the mean prediction for planning.

Oliveira et al. [67] predict the mean and uncertainty of the energy cost of a path

through an environment represented by GPR. However, the predictions ignore spatial

correlations inherent in such models, leading to overconfidence in those predictions.

Energy prediction and characterization for ground robots is a focus of research
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beyond spatial mapping as well. Such work considers vehicle models and takes into

account a number of factors such as slope, speed, weight, terrain, driving style, etc.

[87, 14, 27, 60, 104]. Longitudinal vehicle models consider the rolling resistance due

to the wheel-terrain interaction that resists motion [82, 87]. To predict future costs,

the rolling resistance is typically assumed to be known [87].

It is unlikely that rolling resistances are known throughout an off-road environ-

ment prior to a mission. However, vehicle models can still serve as a useful tool for

estimating the rolling resistance and characterizing the terrain [27]. Other methods

attempt to classify terrain using proprioceptive sensing [66, 109]. Classification tools

can be useful, but do not directly provide mapping or prediction of energy costs.

1.3 Applications of Energy Prediction: Path Planning and

Mission Planning

In this section, a brief overview of some of the applications of energy prediction

is provided. The focus here is path planning and mission planning, with additional

discussion on how uncertainty affects these applications.

Energy and the prediction of thereof is a staple of efficient planning to extend

operation time in robotics. For ground robots, it has been applied to the topics of

coverage path planning [15, 26, 116] and energy-minimal path planning [104, 62], as a

more effective use of resources than an approach based purely on minimum distance

travelled. This problem extend beyond ground robotics to, for example, unmanned

aerial vehicles and autonomous underwater vehicles, in which wind fields [31] and

ocean currents [40, 101, 102], respectively, have been considered for their effect on

energy usage and path planning. For all of these applications, there is significant

uncertainty in energy costs, particularly with respect to environmental factors and

disturbances.
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Beyond traditional path planning are higher level robotic mission planning algo-

rithms. Generally speaking, there is no formal mission planning definition in robotics.

We refer to robotic mission planning, however, as the problem space in which a robot

or robots must complete a set of tasks in an environment, typically constrained by

limited resources (energy, time, etc.). A number of inter-related research areas fall un-

der this umbrella, including orienteering problems [119, 107], vehicle routing problems

[16, 121], and informative path planning (IPP) [10, 119, 105]. While this dissertation

does not focus on the mission planning problem space, we note that it is often neces-

sary to consider a robot’s range (or reachability) in an environment in order to safely

plan. Furthermore, in real world applications, the usage of resources such as energy

or time is uncertain due to the environment.

For both path planning and mission planning, it is common to discretize the

environment space and represent it as a graph with deterministic edge costs. A

minimum cost path is then found with an algorithm such as Dijkstra’s algorithm or

A*. For many environments, however, the energy costs are unknown rather than

deterministic. One way of handling this uncertainty is to represent edge costs with

random variables [24, 21]. The costs in many environments have an additional, less

studied factor: spatial correlation. These correlations imply that if a location is high

cost, then nearby locations are also more likely to be high cost.

When faced with uncertainty, common approaches to minimum cost path planning

are to follow the path with the minimum expected value [74, 64], though ignoring

uncertainty could result in overly aggressive planning, risking energy depletion. To

address this, some strategies take the approach of generating many random samples

of the costs in an environment and observing the result of path planning over these

samples [63, 24]. Additional methods focus on path reliability, and attempt to find

a path that maximize the probability of achieving the objective (such as minimum

time or energy) [93, 73]. However, correlation of uncertain costs (including spatially
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correlated costs) result in shortest path problems without optimal substructure [93].

This means that the prior path matters when determining the optimal future path.

As a consequence, dynamic programming algorithms are not guaranteed to provide

optimal solutions.

There is significant research in robotics for handling many types of uncertainty,

including state, sensor, process, and environment uncertainty. For example, methods

related to stochastic reachability seek to determine a probabilistic safe set within

which a robot can operate [1, 19, 38]. Partially observable Markov decision processes

(POMDPs) are a common way of representing agent decision-making in an uncer-

tain environment. Unfortunately, POMDPs are often computationally intractable to

solve. Randomized sampling-based planners such as rapidly exploring random trees

(RRTs) [42] and probabilistic roadmaps (PRMs) [42, 43] are also popular choices for

robotic motion planning problems, including in off-road terrains [46, 103]. Variants of

these algorithms, like RRT*, provide asymptotic optimality guarantees under certain

conditions. Recent RRT variants have considered uncertainty in planning, such as

obstacle location and plant uncertainty [50, 51, 5]. These algorithms seek to guar-

antee safety in terms of probabilistic chance-constraints. To our knowledge, little

work has focused directly applying these methods to path planning problems with

spatially correlated and uncertain costs. In general, further research is needed to de-

velop computationally efficient and effective methods for both modeling uncertainty

and planning under uncertainty.

1.4 Contributions and Dissertation Overview

In this dissertation, we primarily address the following research questions:

1. How can energy costs be accurately predicted in uncertain and complex off-road

environments in which costs vary spatially depending on the terrain? (Chapters
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II, III, and IV)

2. How can the reachability of a robot with a limited energy budget be determined

when energy costs in an environment are uncertain? Furthermore, can reacha-

bility predictions be improved by incorporating new data on the environment?

(Chapter II)

3. Can information on spatially varying energy costs be effectively shared between

heterogeneous robots of a similar type? (Chapter IV)

These questions are addressed in this dissertation through original research pre-

sented in Chapters II-IV.

Chapter II provides a new method for computing a robot’s energy constrained

reachability in an environment with spatially varying energy costs. The method

includes a formulation for path energy cost prediction in 2-d environments, with

proper characterization of uncertainty through considering spatial correlation in costs.

Chance constrained reachable sets (CCRS) are based on the probability that a robot

can reach a given location on a graph, given the robot’s energy budget, the predicted

energy cost, and a user-defined confidence level. A method is provided for computing

an under-approximation of the CCRS. Simulations demonstrate that as a robot col-

lects more data on the environment, the True Positive Rate increases and the False

Positive Rate decreases, providing a significant performance improvement over the

commonly used distance-based energy cost assumption. The work in this Chapter is

based on [79, 81].

Chapter III presents an extension of terrain mapping and energy prediction to a 3-

d environment, accompanied by extensive experimental results on robotic platforms.

The methodology considers spatial mapping, as well as additional factors, including

vehicle modeling and satellite imagery, to predict energy costs along a path, and

the uncertainty in those costs. To evaluate the methodology, experimental testing is
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performed in an outdoor environment with varying terrains. The results demonstrated

significantly improved path energy prediction accuracy and uncertainty quantification

for both data-driven and vehicle modeling approaches, as compared to a baseline

approach. In addition, we observed the results of predictions in which the robot has

little data on the environment, and there is high predictive uncertainty. In general, the

uncertainty quantification in such a case is good, however, the existence of outliers in

the data can still result in overconfident predictions. The results presented in Chapter

III are based on work in [80, 77].

Chapter IV provides a framework for sharing spatial terrain energy cost infor-

mation between multiple heterogeneous robots. The framework, based on multi-task

Gaussian process regression (MTGP) [12], learns the scaling and correlation between

heterogeneous robot power consumptions. Further, it applies strategies for computa-

tionally efficient predictions and for multi-task hyperparameter optimization in ways

that are effective for the problem of multi-robot power prediction. Simulations with

several robots show the scalability of this framework. Furthermore, experimental re-

sults with a small and a large robot platform demonstrate the effectiveness of MTGP

predictions for improving the accuracy of power predictions, even when the robots

are quite different in size. The results presented in Chapter IV are based on work in

[78].

In Chapter V we conclude the dissertation and provide several directions for future

work based on the research presented here. Additionally, further experimental results

related to Chapter III are provided in Appendices A and B, and a derivation related

to Chapter IV is shown in Appendix C.

To summarize, the main contributions of this dissertation are:

1. A method for computing a robot’s energy constrained reachable set in an envi-

ronment with uncertain and spatially varying costs.

2. A spatial mapping strategy for predicting path energy costs in 3-D off-road
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environments, with computation of the uncertainty in those predictions through

correlated costs.

3. An extension to the spatial mapping and prediction strategy for the case of

multiple heterogeneous ground robots.

Furthermore, this research has resulted in 2 conference papers, [79, 80], a journal

paper published in Robotics and Autonomous Systems [81], as well as a submitted

journal paper [77], and a journal paper in preparation [78].
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CHAPTER II

Chance Constrained Reachability in Environments

with Spatially Varying Energy Costs

This chapter presents the initial 2-d spatial mapping and energy prediction for-

mulation and applies it to the problem of determining a robot’s chance constrained

reachable set (CCRS). Spatial correlation in costs is emphasized as an important

component in predicting energy costs with uncertainty. The work presented in this

chapter was originally published in [81], building off preliminary work presented in

[79].

As first discussed in the Introduction of this dissertation, the range of an au-

tonomous robot in an environment is constrained by both internal factors (energy

capacity, speed, etc.) and energy costs due to the environment. One important prob-

lem for robust mission planning is to determine where in the environment a robot

can reach, given its energy budget. In an environment with varying energy costs,

the spatial distribution of such costs is critical for computing reachability. The main

challenge is that energy costs are often uncertain, with camera data, satellite im-

agery, and soil maps providing only some indication of costs. However, in situ energy

measurements can be used to more accurately model spatially varying energy costs.

This chapter presents a method for computing a CCRS by spatially mapping energy

costs. The CCRS defines a set of locations that meet (within a desired probability)
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the design constraint of returning back to a base within the energy budget of the

robot.

Reachability is important in a variety of contexts, including: energy-limited infor-

mative or coverage path planning [10, 96], computing the set of reachable locations for

a hot-air balloon in wind fields [33, 45], and dynamic obstacle avoidance [53]. Figure

2.1 visually depicts a reachability scenario for an energy constained robot. Reacha-

bility can be used to define an allowable search space for informative path planning

algorithms [10, 9], or to quantify trade-offs between energy storage capacity and other

relevant factors (speed, sensing capabilities, etc.). Typically, costs are assumed to be

known [10, 96, 33, 45], allowing reachability to be computed using standard path

planning methods, such as Dijkstra’s algorithm [25]. In realistic scenarios, however,

the mapping between the environment and the energy costs for a particular robot is

uncertain.

To predict energy costs and characterize uncertainty, we leverage a strategy for

energy cost prediction presented in our recent work [79, 80]. A spatial mapping from

position to energy, referred to as an energy map, is built with measured data using

Gaussian process regression (GPR) [84]. The mapping is used to compute the mean

and variance of the energy cost of a particular path through the environment.

To determine a CCRS, paths for a robot to traverse between locations, along with

the feasibility of those paths as a function of the predicted energy cost versus the

remaining energy of the robot, must be identified. Energy costs of paths through the

environment are spatially correlated under the strategy in [79, 80]. Spatial correla-

tion of costs are key to characterizing uncertainty and therefore reachability within

an environment. While there are several examples of path planning methods in the

literature that incorporate uncertainty and correlated costs [24, 47, 65, 93, 120], these

current methods are computationally intensive, making them impractical for deter-

mining reachability. In our approach, we identify the minimum expected cost path,
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which is readily computed with Dijkstra’s algorithm. Uncertainty and spatially cor-

related costs are considered through checking the feasibility of a chance constraint on

the energy cost of the minimum expected cost path.

One significant challenge in predicting energy costs is that the accuracy of pre-

dictions and the quantification of uncertainty depend on the structure of the envi-

ronment. There are key questions that must be addressed, such as: (1) What is

the distribution of energy costs for a robot in a given environment? (2) How do en-

ergy costs vary spatially (e.g. smoothly or discontinuously) and subsequently impact

reachability? Through the use of GPR, the impact of changes in the environment and

uncertainty in predictions can be captured by selection of the kernel and the prior

mean [63].

To demonstrate our method, an information gathering scenario is considered in

simulation. A robot, constrained by its limited energy capacity to return to a recharg-

ing base, measures energy costs in the environment and uses that information to

compute the CCRS. We show the flexibility of our CCRS method through results on

two different types of example environments: one with smoothly varying energy costs

and one with discontinuous changes in the environment that lead to abrupt changes

in the energy costs.

2.0.1 Contributions

The main contributions in this chapter include:

1. A method for computing a CCRS in environments with uncertain and spatially

correlated energy costs.

2. A demonstration of the improved prediction of a CCRS over time as a robot

collects information to build the energy map. Simulation results show that the

method achieves significantly higher true-positive rates while maintaining low

false-positive rates for reachable locations.
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Figure 2.1: A scenario in a which a ground robot explores an off-road environment
with terrains of varying energy cost. The robot (blue diamond) must determine
whether the location of interest (red star) is reachable and return to the recharging
base (green circle) without depleting its energy resources. Previously traversed paths
(solid blue line) provide sparse information on the energy cost of traversing the terrain
that can be used to predict the energy cost of future paths (red dotted/dashed lines).

3. An exploration of how varying kernel hyperparameters affects the predicted

chance constrained reachability.

This research builds on the authors’ previous work in energy mapping and proba-

bilistic energy cost prediction presented in [79, 80] with the important advancement

of developing of a new method for computing a chance constrained reachable set

based on data collected during a mission, along with a demonstration of building the

reachable sets through two simulation case studies.

The remainder of the chapter proceeds as follows: Section 2.1 overviews related

work. Section 2.2 provides the strategy for predicting energy costs based on collected

data using GPR. Section 2.3 defines the CCRS and describes our method for com-

puting it. Section 2.4 presents simulation results for a robot information-gathering

scenario in two types of environments. Section 2.5 gives concluding remarks and

future directions.
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2.1 Related Work

Reachability is considered in the context of mission planning when robotic systems

have constraints on resources such as energy or time. For example, Kuwata et al.

determine the set of reachable locations for a hot air balloon in a time-varying wind

field, as well as how long it would take to reach such locations [33, 45]. One important

application of reachability is Informative Path Planning (IPP) [10, 9, 11, 37, 95, 119].

The objective of IPP is for a robot to maximize information gain on an environment,

subject to an energy/cost constraint (typically in terms of distance travelled by the

robot). Unfortunately, many IPP algorithms are computationally costly, especially

as the search space of potential locations increases. Binney et al. [10] and Best et

al. [9] use reachability to provide cost-constrained upper bounds on the search space,

reducing computation time. These works assume edge costs on a graph are known,

though in many applications, the costs are uncertain.

The concept of reachability has appeared frequently in control systems and robotics

research, often with the objective of providing safety guarantees against disturbances

and uncertainties [106]. For example, Akametalu et al. [3] learn system dynamics

with a Gaussian process and perform reachability analysis to determine safe sets.

Senarathne and Wang [92] find reachable frontiers on occupancy grids for use in

robot exploration. A related area that considers uncertainty is stochastic reachabil-

ity. Malone et al. [53] use stochastic reachable sets for obstacle avoidance when the

future location of the obstacle is uncertain. Stochastic reachability typically relies on

dynamic programming methods which become infeasible with an increasing number

of states [32]. Subramani et al. [101] performed energy-optimal path planning in

known flow fields through time-optimal reachability fronts, and furthermore consid-

ered uncertain flow fields [102]. The work on time-optimal reachability and stochastic

reachability is often defined with respect to the dynamics of the underlying system.

While our use of reachability has conceptual similarities, we do not explicitly con-
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sider robot dynamics and instead define a graph-based reachability with respect to

the robot’s energy budget, similar to Binney et al. [10].

When computing reachability, it is important to predict future energy costs for the

robot. For ground robots, Sadrpour et al. [87] use a vehicle model and information on

terrain rolling resistance, road grade (slope), and tele-operative user aggressiveness

to predict future energy usage with a Bayesian method. Dogru and Marques [27] use

power consumption data from skid-steered ground robot data for low power coverage

path planning. Pentzer et al. [70] considered energy minimal path planning for a

ground robot in varying terrains. These works focus on energy usage factors particular

to the robot and assume the energy costs due to the environment (i.e. the terrain) are

known. We instead focus on determining the effects of environment energy factors

through spatial mapping.

Ground robots have been used for spatial mapping of energy and traversability

with respect to terrain information [56] and solar radiation maps [74]. Plonski et al.

[74] use a solar powered robot to build a solar map with GPR, which is then used

for energy-efficient path planning with dynamic programming. Martin and Corke

[56] use a robot to construct an energy map of the environment with GPR, and find

an energy-minimal tour of the environment. References [56] and [74] only use the

predictive mean of GPR and not the variance, leading to overconfidence in predictions

for areas of the environment for which there is little information. Murphy et al. [63]

use a robot to build terrain traversibility maps and perform path planning with

probabilistic costmaps. While spatial energy maps have been successfully used for

energy minimal path planning, further research is necessary to fully make use of the

uncertainty characterization provided by GPR.

Path planning is important for determining energy constrained reachability on

graphs. For deterministic edge costs, standard shortest path algorithms such as Di-

jkstra’s algorithm [25] may be used. Planning under uncertainty is more challenging,
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with interesting cases such as finding the shortest expected path when there is a prob-

ability that edges are not traversable [108, 64]. We consider the case in which edges

are known to be traversable, however, the edge costs are uncertain. For example,

Chung et al. [21] provide a graph search algorithm for risk-aware planning in which

edge costs are represented by normal distributions. The algorithm finds paths with a

high probability of low cost. Interestingly, even a naive approach of considering only

the mean path cost has demonstrated reasonable performance in the risk based envi-

ronment, as well as low computation time [21]. However, these works did not consider

spatial correlation in the cost of paths; an important consideration for characteriz-

ing uncertainty. Partially-observable Markov decision processes (POMDPs) have also

been used as frameworks for planning because of their expressive accounting of un-

certainty. POMDPs tend to suffer computationally from exponential growth, though

recent work has been addressing this problem [7, 2].

2.2 Spatial Energy Prediction

This section provides a background on GPR as it is used in this work for spatial

energy mapping of an environment based on collected data. The energy cost of a path

through the environment is then computed probabilistically by integrating along the

path.

2.2.1 Spatial Energy Mapping

The following assumptions are made for modeling the spatial energy cost distri-

bution of the environment:

Assumption II.1. The environment is flat and static.

Assumption II.2. Only energy costs associated with traversing the environment are

considered.
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x Location in R2

y Measurement of energy density
D Data set, {(yi,xi)}ni=1 of n points
e Spatial energy distribution function modelled by data D

using GPR
k(xi,xj) Kernel used to define the covariance matrix for GPR
G = (V , E) Graph with vertex set V and edge set E
vs ∈ V Starting vertex of the robot
b ∈ V Recharging base vertex
P(vs, v, b) Path on G from vertices vs to v to b

EP ∼ N (µP , σ
2
P) Gaussian random variable associated with the energy

cost of path P with mean µP and variance σ2
P

a Robot’s remaining energy budget
β User-defined confidence level

Rβ(vs, b) CCRS with starting vertex vs and recharging base b at
confidence level β

w(εi) Edge weight for the energy cost of traversing edge εi ∈ E
Rw(vs, b) Deterministic reachable set under edge weight function

w

Table 2.1: Frequently Used Notation

These assumptions are made so that the initial focus of this research is on the

mathematical development of energy predictions and reachability analysis. The work

presented in Chapter III relaxes the assumption of the flatness of the environment.

The spatial energy distribution of the environment is predicted based on energy

usage measurements from robots in terms of energy per unit distance. To model and

predict energy usage, the strategy used here is adapted from [79], which spatially

modelled the energy usage of the environment with Gaussian process regression using

point data collected by robots.

Consider an environment Q ⊂ R2 where a robot takes measurements of energy

per distance travelled y ∈ R at location x ∈ Q. For example, y could be based on

the robot’s speed and current draw from the batteries at a location x. The data is

collected as D = {(yi,xi)}ni=1 and denoted y ∈ Rn and X ∈ R2×n for the collected yi

and xi, respectively.

The spatial energy distribution of the environment is given by an unknown ground

20



truth function etrue : Q → R. The function etrue is an isotropic energy density

and describes the energy cost per distance travelled at a given location. The true

energy function is modelled based on data D using a Gaussian process (GP), denoted

e ∼ GP(m, k). The GP is characterized by a prior mean function m : Q → R and a

kernel k : Q× Q → R, which is a symmetric function that computes the correlation

between two points in Q. A positive definite covariance matrix is defined by the

kernel: [K]ij = k(xi,xj). The noisy model for regression is then given by:

y = e(x) + η

η ∼ N (0, σ2
η)

e ∼ GP(m, k)

(2.1)

where σ2
η > 0 is known.

GPR defines an n-variate normal distribution based on m and k (see [84] for

further information on GPR). The posterior predictive distribution computes the

distribution of e(x∗) at a target point, x∗ ∈ Q based on the data. The probability

density function for e(x∗)|D is known to be [84]:

p(e(x∗)|D) =

∫
p(e(x∗)|e)p(e|D)de

= N
(
ē(x∗), cov(e(x∗), e(x∗))

) (2.2)

where

ē(x∗) = m(x∗) +K(x∗, X)[K(X,X) + σ2
nI]−1(y−m(X)) (2.3)

is the posterior (or predictive) mean at x∗ and

cov(e(x∗), e(x
′
∗)) = K(x∗,x

′
∗)

−K(x∗, X)
[
K(X,X) + σ2

nI
]−1

K(X,x′∗)

(2.4)
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is the covariance where cov(e(x∗), e(x∗)) is the predictive variance at x∗.

2.2.2 Energy Prediction Along a Path

The goal of this section is to predict the energy cost for a robot moving on a

straight line at a constant velocity between two points. The strategy used is adapted

from [79], though it is extended here through a more thorough mathematical formu-

lation presented in Proposition II.3. To predict the energy cost, we integrate along

a path parameterized by the piecewise linear curve Γ ⊂ Q over the Gaussian pro-

cess (this is sometimes called Bayesian Quadrature [35]). The integration produces a

Gaussian random variable that describes energy cost of the path. Integrating along

Γ, with commonly used notation for line integrals:

E =

∫
Γ

e(xp)ds (2.5)

where xp : [a, b] → Γ, a < b, is the parameterization of a piecewise linear curve

with endpoints xp(a) and xp(b). While other curves are allowable in this formulation,

linear paths are considered in this dissertation to define edges on a graph.

Computing the mean, denoted µ, and variance, σ2, of the path energy cost E is

performed by averaging over the GP, as shown in Eqns. (2.8) and (2.9).

Proposition II.3. The energy cost of a path has the probability density p(E|D) =

N (µ, σ2) where:

µ = M +Ksx(Kxx + σ2
ηI)−1(y−m(X)) (2.6)

σ2 = Kss −Ksx(Kxx + σ2
ηI)Kxs (2.7)

where M =
∫

Γ
m(xp)ds, Kxx = k(X,X), Kxs =

∫
Γ
k(X,x′p)ds

′, Ksx =
∫

Γ
k(xp, X)ds,

and Kss =
∫

Γ

∫
Γ′
k(xp,x

′
p)dsds

′.

Proof. The generalized proof of this result is shown in [13]. We show the case of
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integrating along a path over a Gaussian process prior. The notation µ := Ee|D[E]

indicates that the expected value is computed by averaging over the distribution of e

given the data D. Then by substitution and Fubini’s Theorem:

Ee|D[E] = Ee|D[

∫
Γ

e(xp)ds]

=

∫ ∫
Γ

e(xp)p(e|D)dsde

=

∫
Γ

(∫
e(xp)p(e|D)de

)
ds

=

∫
Γ

ē(xp)ds

(2.8)

The result follows from substituting for ē(xp) in Eqn. (2.3). The variance, σ2 :=

cove|D[E,E], is calculated similarly by considering the covariance between two paths,

E and E ′:

cove|D[E,E ′] = Ee|D[(E − Ee|D[E])(E ′ − Ee|D[E ′])]

=

∫
(E − Ee|D[E])

(E ′ − Ee|D[E ′])p(e|D)de

=

∫
Γ

∫
Γ′

cov(e(xp), e(x
′
p))dsds

′

(2.9)

The result follows from substitution with Eqn. (2.4).

The strategy presented here takes point data over the spatial energy distribution

and predicts the energy cost of a path. The formulation is easily extensible to pre-

dicting the cost of a path based on previously measured costs of alternative paths.

Path-to-path prediction would be useful in scenarios in which direct measurements of

power consumption are unavailable, but the change in fuel is an accessible quantity.
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2.3 Energy-Constrained Reachability

In this section, we consider how to compute the locations in the environment that

can be reached, based predicted energy costs, the location of a recharging base in the

environment, and the energy capacity of the robot. Two types of reachable sets are

defined: deterministic and chance constrained.

2.3.1 Graph Formulation

Let G = (V , E) be a connected, undirected graph with vertex set, V , and edge set,

E . Each v ∈ V corresponds to a location x ∈ Q. Let P ⊂ E be a path through G.

For computing the reachable sets, we associate both an edge weight function,

w(εi), and a random variable, Eεi , with every edge εi ∈ E . Let w : E → R≥0 be the

edge weight function representing a deterministic energy cost of traversing an edge.

The cost of a path under edge weight function w is defined as Cw(P) :=
∑

εi∈P w(εi).

Let Eεi ∼ N (µεi , σ
2
εi

) be the random variable associated with the predicted en-

ergy cost of traversing edge εi. The mean, µεi , and variance, σ2
εi

, are computed with

Eqns. (2.6) and (2.7), respectively. GPR and the subsequent path predictions are

normal distributions with infinite support, making negative energy predictions possi-

ble. While such values may lack physical meaning, normal distributions are often used

in stochastic planning problems [120, 21] because of their analytical advantages and

utility as a reasonable approximation of real-world data [47]. We do not assume that

the predicted edge costs are independent and instead treat them as correlated. The

predicted energy cost of the robot’s path, denoted EP , is computed as the summation

of Gaussian random variables associated with the l edges of a path:

EP :=
l∑

i=1

Eεi (2.10)
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where, by the summation of Gaussians, EP ∼ N (µP , σ
2
P), such that

µP =
l∑

i=1

µεi , (2.11)

σ2
P =

l∑
i=1

σ2
εi

+ 2
∑

1≤i<j≤l

cove|D[Eεi , Eεj ]. (2.12)

The covariance is computed as derived in Eqn. (2.9). The computation of the path

variance involves finding the covariance between every edge in the path, reflecting the

fact that edge energy costs are correlated. Ignoring the correlation in costs between

paths would result in significant overconfidence in the prediction.

2.3.2 Reachable Set Definitions

We define both deterministic and chance constrained reachable sets based on

whether a robot starting at vs ∈ V can reach a node, v ∈ V , and return back to

a recharging base, b ∈ V , within the robot’s remaining energy budget, a ≥ 0. Paths

from vs to v and v to b are denoted P(vs, v) and P(v, b) respectively. For conciseness,

let P(vs, v, b) denote the concatenation of the paths P(vs, v) and P(v, b).

First, let the deterministic reachable set, Rw(vs, b) ⊂ V , be the set of vertices

v ∈ V for which there exists the path P(vs, v, b) on G satisfying

Cw(P(vs, v, b)) ≤ a. (2.13)

Given the edge weights, computing this set is the simple matter of using Dijkstra’s

shortest path algorithm to determine the optimal paths P(vs, v) and P(v, b).

Clearly, Rw(vs, b) depends on the edge weights, which we define in three ways:

1. If the true energy distribution, etrue, is known, then wtrue(εi) :=
∫

Γ
etrue(xp)ds,

where Γ and xp are defined in Eqn. (2.5).
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2. Assuming a constant energy cost per unit distance, c > 0, then wd := cdεi ,

where dεi is the length of a given edge εi.

3. The mean predicted energy cost of a path due to the energy mapping is given

as wexp(εi) := µεi .

Second, the chance constrained reachable set (CCRS), Rβ(vs, b), is defined based

on the probability of running out of energy. Let Rβ(vs, b) ⊂ V be the set of vertices

v ∈ V for which there exists a path P(vs, v, b) on G satisfying

Prob(EP(vs,v,b) ≤ a|D) ≥ β (2.14)

where 0 ≤ β ≤ 1 is a user-defined confidence level. EP(vs,v,b) ∼ N (µP(vs,v,b), σ
2
P(vs,v,b)

)

is a normally distributed random variable with mean path cost and variance that are

computed with Eqns. (2.11) and (2.12). Then

Prob(EP(vs,v,b) ≤ a|D) = Φ
(a− µP(vs,v,b)

σP(vs,v,b)

)
(2.15)

where Φ is the cumulative distribution function for a normal distribution. The chance

constraint is equivalent to the following deterministic constraint:

Φ
(a− µP(vs,v,b)

σP(vs,v,b)

)
=

1

2

[
1 + erf

(a− µP(vs,v,b)√
2σP(vs,v,b)

)]
≥ β (2.16)

where erf is the error function. Equation (2.16) can be used to easily check the

feasibility of a path at the desired confidence level. While chance constraints are

often defined in the context of an optimization problem, chance constraints have

also been employed in robotics for other purposes, such as collision checking under

uncertainty [28]. We use the chance constraint in Eqn. (2.14) to check whether a

path is feasible, given the predicted energy cost, the remaining energy, and the desired

confidence level.

26



2.3.3 Reachable Set Computation

The method for computing the CCRS is illustrated in Algorithm 1. To summarize:

1. Edge weights, wexp(εi) = µεi , are updated based on collected data.

2. The minimum expected cost path,

P(vs, v, b) := argmin
P(vs,v,b)

µP(vs,v,b), (2.17)

is found for every v by building two shortest path trees using Dijkstra’s algo-

rithm [25]. The trees originate from vs and b and connect to every v. P(vs, v, b)

is the concatenation of the paths, P(vs, v) and P(v, b), from each tree.

3. The feasibility of P(vs, v, b) is checked with Eqn. (2.16) for each v.

To use Dijkstra’s algorithm, it must be true that wexp(εi) ≥ 0 and therefore µεi ≥

0. In practice, non-negativity can be enforced with µεi ← max(µεi , 0). Minimum

expected cost paths are computed efficiently by Dijkstra’s algorithm, and are good

paths to check for feasibility. However, these paths are planned without information

on uncertainty. The computed uncertainty, including spatial correlations, is taken

into account by checking the feasibility of the constraint in Eqn. (2.16).

Path planning that considers uncertainty could, for example, maximize the prob-

ability that the predicted energy cost is less than the robot’s remaining energy. Max-

imum probability and related problems of path planning under uncertainty are the

subject of ongoing research [47, 65]. Our case, in which edge costs are correlated,

is particularly challenging because edge costs are non-linear and non-additive. As a

consequence, the problem lacks the sub-path optimality property, meaning that both

dynamic programming and Dijkstra’s algorithm do not provide a solution. Various

methods have been developed for this problem, see [24, 93, 120], and could be used in-

stead of minimum expected cost paths, though at significantly greater computational
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Algorithm 1: CCRS Computation

Input : G = (V , E): graph of locations
D: collected data
β: confidence level
a: remaining energy budget

Output: Rβ(vs, b): CCRS for a given β
for εi ∈ E do

wexp(εi) = µεi % update edge weights with the mean predicted energy cost
with data D

% Compute trees of shortest paths from b and vs with Dijkstra’s algorithm
Tvs ← ShortestPathTree (G, wexp, vs)
Tb ← ShortestPathTree (G, wexp, b)
for v ∈ V do

% Get branches from vs to v and v to b
P(vs, v)← Branch (Tvs , v)
P(v, b)← Branch (Tb, v)
P(vs, v, b) = Concatenate(P(vs, v),P(v, b))
Compute µP(vs,v,b)

and σ2
P(vs,v,b)

with Eqns. (2.11) and (2.12).

if CheckFeasibility (µP(vs,v,b)
, σ2
P(vs,v,b)

, a, β) then

Rβ(vs, b)← Rβ(vs, b) ∪ v % Include vertex in Rβ(vs, b) if Eqn. (2.16) is
satisfied.

return Rβ(vs, b)

cost.

We now note relevant facts on the use of minimum expected cost paths over

maximum probability paths. The minimum expected cost path is defined by Eqn.

(2.17). Let the maximum probability path be defined as

P∗(vs, v, b) := argmax
P(vs,v,b)

Prob(EP(vs,v,b) ≤ a|D) (2.18)

Note that the costs of both paths are normal distributions with EP∗(vs,v,b) ∼ N (µP∗ , σ
2
P∗)

and EP(vs,v,b)
∼ N (µP , σ

2
P), where the means and variances can be computed with

Eqns. (2.11) and (2.12).

Lemma II.4. Let Rβ(vs, b) and R∗β(vs, b) be computed with minimum expected cost

and maximum probability paths, respectively. Then Rβ(vs, b) ⊆ R∗β(vs, b).
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Proof. By contradiction: Let Rβ(vs, b) 6⊆ R∗β(vs, b). Then there exists a v such

that v ∈ Rβ(vs, b) but v 6∈ R∗β(vs, b), implying that Prob(EP∗(vs,v,b) ≤ a|D) < β ≤

Prob(EP(vs,v,b)
≤ a|D). This is a contradiction since, by definition, Prob(EP∗(vs,v,b) ≤

a|D) ≥ Prob(EP(vs,v,b)
≤ a|D).

Lemma II.4 states, in other words, that the CCRS computed with minimum ex-

pected cost paths, as in Algorithm 1 is an under-approximation.

When comparing the minimum expected cost and maximum probability paths,

interesting properties arise:

Lemma II.5. If µP < a then 0 ≤ σ2
P∗ ≤ σ2

P .

Lemma II.6. If µP > a then σ2
P ≤ σ2

P∗.

These follow directly from the fact that since P is the minimum expected cost

path, then µP ≤ µP∗ . Similar results are shown in [18, 120]. Lemma II.6 indicates

that if the mean of the minimum expected cost path is higher than the energy budget,

then only a path with higher uncertainty could increase the probability of being within

the energy budget. These results are useful in that if bounds can be found on the

variance of the optimal path, then the under-approximation by the minimum expected

reachable set is also bounded.

2.3.4 Complexity

For Algorithm 1, the sources of increasing computational complexity are from

shortest path planning, updating the edge weights of the graph, and checking the

feasibility of the energy constraint. For computing the shortest path tree, an efficient

variant of Dijkstra’s algorithm has a worst case time complexity of O(|E|+|V| log |V|).

Recalculating the edge weights for energy predictions scales with the number of data

points, n, and edges by O(n3|E|). Checking the feasibility of the chance constraint

has a time complexity of O(n3|V|). A major source of the computational burden
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comes from the energy prediction using GPR, which involves integration and matrix

inversion that grows with the number of data points (resulting in the n3 from the

previous statements). Significant research into managing the complexity of GPR

has been performed and numerous strategies exist for dealing with increasing data,

including: truncating or placing data into bins [56, 118], sparse GPs [97], or using an

informative subset of the data [36]. For simulations, we use a simple strategy of only

updating edges which are well correlated with new data.

2.4 Simulation Demonstration

In this section, the CCRS method is evaluated through simulation results of a

robot information gathering scenario. The robot, which is constrained by its energy

budget to return to a recharging base, collects data on the spatially varying energy

costs of simulated environments. The collected data is used to update the reachable

set of locations from the recharging base. Two types of environments are considered:

one with smoothly varying energy costs, as seen in Section 2.4.2, and an environment

with obstacles and discontinuous cost changes, provided in Section 2.4.3.

The reachability plots (e.g. Fig. 2.2) show the results of computing the set of

locations that can be traversed to (using the base as the initial location of the robot),

while returning to the base within the energy budget with a confidence level of at

least β. Consider the case where we want to identify the set of locations that are

reachable within a 99% confidence level (β = 0.99). The grey dotted or dashed

lines labelled 0.99 indicate a boundary that captures this set of locations (in our

nomenclature, this set is the CCRS Rβ(b, b) for β = 0.99). As the confidence level

is relaxed (β = 0.5, 0.01), the boundary lines that denote these regions are pushed

further away from the initial location.

The boundary for the true reachable set Rwtrue(b, b) is expected to lie within the

grey lines representing the CCRS boundaries for β = 0.01 and β = 0.99. Outside of
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Figure 2.2: CCRS boundaries, Rβ(b, b) for β = 0.01, 0.50, 0.99. The true reachable
set, Rwtrue(b, b), from the recharging base (black dot) lies within the black line. Note:
the octonogonal shape of the sets is due to the discretization of the environment into
an 8-connected grid.

the β = 0.01 boundary, there is a probability < 0.01 that the locations are reachable,

whereas inside the β = 0.99 boundary, there is a probability ≥ 0.99 that locations

are reachable. As more data is collected, the grey lines representing the boundaries

of Rβ(b, b) for β = 0.01 and β = 0.99 converge to a closer proximity around the

boundary for the true reachable set Rwtrue(b, b). The closer proximity indicates that

there is more certainty about where the boundary for Rwtrue(b, b) lies.

The simulation results are evaluated using the True Reachable Rate (TRR) and

Failure Rate (FR), as defined below. If Rpred is the predicted reachable set (such as

the CCRS Rβ) and Rwtrue is the true reachable set then

TRR =
|Rpred ∩Rwtrue |
|Rwtrue |
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and

FR =
|Rpred ∩Rwtrue |
|Rwtrue |

where | · | and · are set cardinality and complement, respectively. TRR is the rate of

reachable locations in the true set that are predicted to be reachable, and is equivalent

to a True Positive Rate. A TRR closer to 1 is better because it indicates that more

locations have been correctly identified as reachable. FR is the rate of the unreachable

locations that have falsely been identified as reachable, and is equivalent to a False

Positive Rate. An FR close to 0 is preferred as it would indicate there are few failures.

A failure would indicate that the robot would run out of energy prior to returning to

the base.

2.4.1 Simulation Setup

For each simulation, the environment is discretized into a 41 × 41 8-connected

grid with dimensions 200m× 200m, from which 1681 nodes and 6480 edges of graph

G are defined. Each simulation consists of a robot with maximum energy capacity

a = 1.8kJ and a recharging base at b = [100m, 100m]. The robot is initialized at the

recharging base at its maximum energy capacity with no data on the environment.

When the robot moves to a new vertex, it collects a point measurement on the energy

cost at the new location, (yi,xi), and appends it to the collected data set D.

The energy map is built from D with GPR, defined previously as e ∼ GP(m, k).

The prior mean m and kernel k have a significant effect on predictions. A constant

prior mean, m(x) = 12.0 J
m

, was used for all simulations. In addition, the noise

variance is assumed to be known as σ2
η = 0.04. A higher measurement noise tends

to result in a slower convergence around the true reachable set, as the robot must

collect more data points to reduce uncertainty. The kernels k used in the simulations

depend on the environment type and are described in the following sections.

The robot explores the environment with the following strategy: starting from
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the base, the robot traverses a minimum expected cost path to a location near the

boundary of the CCRS. A high GPR predictive variance location is chosen from

among the locations near the boundary. Once the location is reached, a new minimum

expected cost path is planned back to base, given the data collected (this is sometimes

the same path taken to reach the location). For the following simulations, the strategy

uses the CCRS with β = 0.99 so that there is high confidence that the robot will not

run out of energy.

The strategy has the goal of exploring the edges of the CCRS, though further

methods could be developed with a focus on other factors such as convergence rate.

We note that there are numerous approaches in the literature for optimizing decision-

making and control in robotic information gathering missions (see [11, 37, 95], etc.),

but that such strategies are not the focus of this research.

2.4.2 Example 1 Results and Discussion: Smoothly Varying Environment

First, an environment with energy costs that vary smoothly over space is consid-

ered. Such an environment would consist of, for example, gradual transitions between

terrains such as grass and sand. For this environment type, a Squared Exponential

(SE) kernel is used to build the energy map. The SE kernel is chosen because samples

drawn from a GP with an SE kernel are infinitely differentiable, making it a good fit

for modeling a smooth environment. The kernel is defined as:

kSE(x,x′) = σ2
s exp(− 1

2l2
||x− x′||22

)
(2.19)

where l = 20.0 is the length-scale hyperparameter and σ2
s = 4.0 is the signal variance.

A true energy map with smoothly varying costs is randomly generated (sampled)

from a Gaussian process defined by a constant prior mean m(x) = 12.0 J
m

and the

same SE kernel hyperparameters. The resulting ground truth energy map is seen in
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Fig. 2.3a, as well as the true reachable set, Rwtrue(b, b). For the plots in Figs. 2.3 and

2.4, the hyperparameters of the SE kernel are assumed to be known. In practice, the

hyperparameters can be chosen based on expert knowledge or learned from collected

data by optimizing the marginal likelihood [84]. Further strategies consider on-line

learning of hyperparameters, along with computation of the mean and variance, as

data is collected [39].

The results after 60 time steps of data collection using the previously described

strategy are shown in Fig. 2.3. The robot has traversed some parts of the environment

and has begun to construct the energy map. There is still significant uncertainty in

the map. The predicted energy cost of unexplored areas tend toward the prior mean.

The CCRS boundaries for specified βs are provided in Fig. 2.4 at t = 0 and

t = 60. Initially the boundaries are spread apart from each other, implying significant

uncertainty in where the true reachable set boundary lies. At t = 60, however, data

on the environment has been collected and the boundaries are converging around

the true reachable set, especially near areas where the robot has visited. In those

areas, there is high confidence as to where the true reachable set boundaries lie. The

robot has not visited the bottom right portion of the environment, resulting in more

uncertainty about the reachable set in that area.

Simulations were performed on 50 smooth environments, generated randomly in

the same way as Fig. 2.3a, and the reachable sets were observed over 150 time steps

in simulation. The CCRS method was compared against the commonly used naive

approach of assuming constant energy costs over the environment. The reachable set

for the naive case was defined as Rwd
(b, b) with wd = cdεi , where c is the energy cost

per unit distance and dεi is the length of a given edge εi.

The results for the comparison between the CCRS and naive cases are provided

in Fig. 2.5. In both cases, there is a clear trade-off between performance, given by a

high TRR, and robustness against failure, with a low FR. For example, the naive case
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Figure 2.3: A robot (blue diamond), starting at at the recharging base (green circle),
explores the environment, collecting measurements on the energy map and returning
to the base for recharging. Plotted results are after 60 time steps, in which the robot
moves to a new node on graph G at each time step. (a) True energy map, etrue(x).
The true reachable set, Rwtrue(b, b), lies within the green outline. (b) GPR predictive
mean, ē(x), at t = 60. (c) GPR predictive variance, cov(e(x), e(x)), at t = 60.

of c = 10.0 assumes that the energy costs in the environment are low, so the reachable

set is large. Unfortunately, this results in many locations being falsely identified as

reachable. The naive case of c = 12.0 matches the average energy of the randomly
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(c) t = 0 and t = 60 for β = 0.90

Figure 2.4: CCRS boundaries (gray dashed lines at t = 0, dotted lines at t = 60),
Rβ(b, b) for β = 0.01, 0.50, 0.99. The true reachable set, Rwtrue(b, b), from the recharg-
ing base (black dot) lies within the black line. The boundaries are shown at (a) t = 0,
when no data has been collected, and (b) t = 60, when data has been collected cor-
responding to the predicted maps in Fig. 2.3. (c) The expansion of the β = 0.99 set
from t = 0 to t = 60 is shown.

generated energy maps, giving a moderately high TRR and a moderately low FR.

The CCRS cases are shown for varying levels of confidence: β = 0.1, 0.5, 0.9. By

building a spatial map of energy costs, the results show the best of both worlds. For
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Figure 2.5: Comparison of simulation results for our CCRS method and a naive
method that assumes constant energy cost per unit distance, c. Results averaged
over 50 runs in randomly generated smooth environments. A higher user-defined
confidence level, β = 0.9, results in a more conservative CCRS with low TRR and
very low FR, though the TRR improves over time as data is collected. The robot
moves to a new node on graph G at each time step. For the naive case, a higher
assumed constant energy cost, c = 14.0, also results in a conservative reachable set
with low TRR and FR, however, it does not use data to improve performance.

all betas, the TRR improves and the FR decreases (except for β = 0.9, which already

has an FR near 0). For β = 0.5, the CCRS method achieves a significantly higher

TRR while at the same time cutting the FR in half. Additionally, when there is

no data at t = 0, the performance of both the Naive and CCRS methods are quite

similar.

2.4.2.1 Hyperparameter Exploration

While the hyperparameters for making predictions were assumed to be known

in these case studies, in general hyperparameters are unknown at the beginning of

exploration. They instead must be chosen using a reasonable guess, until enough data

has been collected on which the hyperparameters can be optimized. A reasonable

guess should be conservative against running out of energy. This motivates a brief

exploration of the effects of kernel hyperparameters on the CCRS.

To provide justification for the selection of hyperparameters, the effect of varying
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the length scale, l, and signal variance, σ2
s , of the SE kernel is observed in Fig. 2.6

with no data at t = 0. Increasing σ2
s or l results in a smaller CCRS for β = 0.99,

implying more certainty in where the true reachable set boundary lies. There is

no change in the β = 0.50 CCRS boundary when σ2
s or l are varied (this is not

shown in the figure). For σ2
s , the explanation is that the energy costs vary over a

larger range. For l, the explanation is more nuanced: a larger l implies less frequent

spatial variations in energy cost. The result is higher spatial correlations between

spatial input points that are some distance away from each other. With no data, this

results in more uncertainty in the CCRS; when data is added there is less uncertainty

with increasing l due to the higher correlation. The prior mean and energy budget

parameters also have the effect of scaling the size of the reachable sets. The results

of doing so are not shown here, but clearly a higher prior mean or a smaller energy

budget both imply a smaller reachable set.
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(a) Varying length scale, l.
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Figure 2.6: The effect on CCRS boundaries, Rβ(b, b), when varying hyperparameters
(green, blue, and red lines) is shown for β = 0.01, 0.99. The true reachable set,
Rwtrue(b, b), (black line) was computed using a environment randomly drawn from a
GP with SE kernel hyperparameters l = 20.0, σ2

s = 4.0. For (a), σ2
s was held constant

at 4.0 and for (b), l was held constant at 20.0.
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The results suggest design considerations for hyperparameters when data is not

yet available. If the hyperparameters are unknown initially, the conservative recom-

mendation is to set a high signal variance and high prior mean, as well as a smaller

length-scale, then to optimize once sufficient data is available.

2.4.3 Example 2 Results and Discussion: Discontinuously Varying Envi-

ronment

In general, operating environments may have discontinuities between terrains with

different energy costs (for example, a transition from grass onto pavement). In this

simulation example, the energy map is randomly generated as a set of regions with

constant energy costs, as seen in Fig. 2.7a. The energy costs are drawn randomly

from a uniform distribution between 8.0 J
m

and 16.0 J
m

. Obstacles, which are also

randomly generated and assumed to be known, are included in the simulation by

removing nodes and edges that produce collisions. The obstacles do not change the

computation of the reachable set except to reduce the number of edges that must be

considered.

A Matern kernel with ν = 1
2

is used for GPR. A key feature of the kernel is that

its smoothness can be scaled by varying the ν parameter (see [84]). A GP defined

by a Matern kernel with ν = 1
2

is non-differentiable and provides more flexibility in

handling rough transitions between energy costs. It is, however, continuous, resulting

in an imperfect fit for a truly discontinuous function. The Matern kernel is defined

as:

kMatern(x,x′) = σ2
s exp(−1

l
||x− x′||2

)
(2.20)

where l = 40.0 is the length-scale hyperparameter and σ2
s = 4.0 is the signal variance.

We omit an exploration of the hyperparameters of the Matern kernel as the results

would not differ significantly from the SE kernel.

The results of robot exploration of the environment after 60 time steps can be seen
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(b) GPR predictive mean at t = 60
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(c) GPR predictive variance at t = 60

Figure 2.7: A robot (blue diamond), starting at at the recharging base (green circle),
explores an environment with discontinuously varying energy costs. Plotted results
are after 60 time steps. (a) True energy map, etrue(x). The true reachable set,
Rwtrue(b, b), lies within the green outline. (b) GPR predictive mean, ē(x), at t = 60.
(c) GPR predictive variance, cov(e(x), e(x)), at t = 60.

in Fig. 2.7. Though broad regions are successfully discovered by t = 60, additional

data would need to be collected to characterize the outlines of the different regions.

Despite this, Fig. 2.8 reveals that even with limited characterization of the energy
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(c) t = 0 and t = 60 for β = 0.99

Figure 2.8: CCRS boundaries (gray dashed lines at t = 0, dotted lines at t = 60),
Rβ(b, b) for β = 0.01, 0.50, 0.99. The true reachable set (black line) from the recharg-
ing base (black dot). The boundaries are shown at (a) t = 0, when no data has
been collected, and (b) t = 60, when data has been collected corresponding to the
predicted maps in Fig. 2.7. The expansion of the β = 0.99 set from t = 0 to t = 60
is shown in (c).

map at t = 60, the CCRS (evaluated at different βs) has converged significantly over

t = 0. This implies that modest data collection can still provide significant reduction

in uncertainty for the reachable sets.
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Figure 2.9: Comparison of simulation results for our CCRS method and a naive
method that assumes constant energy cost per unit distance, c. Results averaged
over 50 runs in randomly generated discontinuous environments. Behavior is similar
to the smooth environment case.

Simulations were performed for 50 randomly generated discontinuous environ-

ments. The TRR and FR results, shown in Fig. 2.9 are quite similar to those of the

smooth environment. This shows that by selecting an appropriate kernel, the CCRS

method has the flexibility to be used for different types of complex and interesting

environments. Importantly, model mis-specification (e.g. using the SE kernel in a

discontinuously varying environment) or bad hyperparameter selection, can lead to a

poor fit. If the generalization error shows poor prediction accuracy, one could resort

to conservative, deterministic energy cost predictions.

In summary, the CCRS method allows performance (here in terms of TRR) to

be improved as data is collected, while reducing the likelihood of failure. This com-

plements the fact that a user can set β based on mission specifications as a trade-off

between performance and robustness.

2.4.4 Computation Time

GP prediction was performed using the scikit-learn Python package and inte-

gration to compute expected path energy costs and the corresponding variance was
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performed numerically. Graph-based analysis and shortest path computations were

performed using the NetworkX Python package. The computation of the CCRS for

the smooth environment took 10 seconds at t = 0 with no collected data and 15

seconds at t = 150 with 150 data points. On average, it took 0.05 seconds to verify

the reachability of a node. For the discontinuous environment, the computation took

9 seconds at t = 0 and 13 seconds at t = 150. The shorter computation time is due

to fewer nodes as a result of obstacles. Simulations were performed on a laptop with

a Intel Core i7-2600 processor.

2.5 Conclusions

A method was presented for computing chance constrained reachable sets in envi-

ronments with spatially varying energy costs. The proposed approach builds a spatial

map of the energy cost data, finds minimum cost paths to locations in the environment

based on the predicted costs of paths, and checks the chance constrained feasibility

of paths to those locations. The simulation results show that by spatially mapping

energy cost data, the method can significantly improve the true reachable rate and

reduce the failure rate of the predicted reachable sets as data is collected. The results

also demonstrate that the method can be used in environments with smoothly or

discontinuously varying energy costs.

The methods presented here could be extended beyond scalar fields to vector

fields and non-flat environments with 3-D topography, with energy prediction such

as described in the next chapter. While undirected graphs were considered here,

straightforward extensions to directed graphs are possible. Understanding a robot’s

reachability in an environment can be used to inform future mission planning by

constraining or expanding the known area that a robot can plan to traverse through.

The CCRS method could be applied to risk-aware and informative path planning

problems, as well as methods for optimal data collection for building the reachable
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sets. Furthermore, in Example 2, obstacle locations were assumed to be known.

Future work could consider uncertainty in obstacle location and geometry in the

formulation, for example, as in Axelrod et al. [6].
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CHAPTER III

Off-Road Ground Robot Path Energy Cost

Prediction Through Probabilistic Spatial Mapping

In the previous chapter, a 2-d formulation for terrain mapping and energy pre-

diction was presented and demonstrated in simulation through a reachability appli-

cation. In this chapter, we extend our previous work and provide a methodology for

3-d environments, both through a simple vehicle model and with a fully data-driven

approach. Importantly, the methodology is experimentally tested in an outdoor en-

vironment with varying terrain. Performance, both in terms of error and uncertainty

quantification, is evaluated on two ground robot platforms. The work in this chapter

is primarily based on [77], with preliminary work presented in [80].

As stated in previous chapters, prior work has explored the use of robotic spatial

mapping for predicting power usage and path energy costs on varying terrains [63,

56, 67]. However, there has been little experimental validation that path energy cost

predictions made based on spatial mapping are actually accurate, particularly in 3D

environments. 3D environments are challenging because power consumption is likely

to be different at the same location, depending on the robot’s heading. In addition,

longitudinal vehicle models, which are commonly used for robot energy prediction on

3D terrain [104, 88], often assume that the friction coefficient (or rolling resistance

coefficient) is the same on identical terrain, regardless of slope or direction. Such an
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assumption can result in biases that throw off predictions.

Path energy cost prediction (as opposed to predicting the power at a single loca-

tion) involves the summation (or integration) over power predictions along a path.

One challenge is that the errors in predicted power consumption tend to be correlated

for points along a path. When summed together, existing biases in predictions com-

pound and produce significant errors. Another result of correlated costs is that the

predicted energy cost of a path is at risk of being very overconfident if the correlations

are not taken into account when computing uncertainty [67].

In this chapter, a spatial mapping method for predicting energy costs is presented

and experimentally tested in a 3D environment. The approach uses Gaussian pro-

cess regression (GPR) and vehicle modeling to build a map from inputs (including

position, heading, slope and satellite imagery) to power using collected data. The

predicted energy cost of a path is then computed through a summation of correlated

power predictions. The approach presented in this chapter, while building on previous

strategies for energy prediction through spatial mapping, makes improvements in a

number of ways. First, the formulation for path energy cost prediction considers corre-

lated costs when characterizing uncertainty, addressing the previously stated problem

of overconfident predictions. Second, the energy prediction formulation considers the

impact of prior vehicle modeling on predictions. Third, a decimation scheme based

on a desired sampling length is used to reduce the data and computation time needed

for prediction.

The approach is evaluated experimentally in terms of predictive accuracy through

cross-validation for the case of a small, well-mapped environment with varying ter-

rains. The effects of different Gaussian process inputs and kernels are observed. We

also consider predictions when data on the environment is limited (as in, only some

of the environment has been traversed). When data is limited, predictions are highly

uncertain and are especially dependent on the values of a set of hyperparameters
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used in GPR. Since optimization of hyperparameters with sparse data is not reliable,

the effect of varying different hyperparameters is observed, providing guidance on

hyperparameter selection for future use.

3.0.1 Contributions

The main contributions of this chapter are:

1. An methodology for probabilistic energy cost prediction in 3D off-road environ-

ments through spatial mapping of collected data with GPR.

2. An experimental validation of probabilistic energy predictions, consisting of:

• Evaluating the predictive performance in both well-mapped and sparse

data cases.

• Assessment of other methodological factors, including: kernel choice, hy-

perparameters, computation time, and prior satellite imagery.

The remainder of the chapter proceeds as follows: Section 3.1 describes related

literature in robotic energy consumption, Section 3.2 provides the methodology, Sec-

tion 3.3 reviews the experimental results, and Section 3.4 concludes and describes

future work. Further experimental results are provided in Appendices A and B.

3.1 Related Work

GPR has been used as a tool for spatial mapping of robot energy costs to enable

energy prediction, path energy minimization, and high-level mission planning. The

authors of this paper demonstrated the application of energy prediction to a multi-

robot information gathering problem [79]. Martin and Corke [56, 57] used GPR to

build a spatial map of a flat environment based on robot power consumption and

subsequently find energy minimal tours. Murphy et al. [63, 62] built spatial maps of
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terrain traversability for metrics such as power and slip. These maps were used for

planning on a probabilistic costmap with a sampling-based method.

Experimental validation of the reliability of path energy cost predictions is neces-

sary for planning applications. Oliveira et al. [67] used GPR to model and predict

power consumption and path energy cost based on a robot’s position and heading.

The uncertainty in the predictions was used for energy minimal path optimization.

However, the computed uncertainty was highly overconfident, likely because correla-

tions in costs along a path were not considered. Further work is needed to validate

path energy cost predictions, particularly in 3D environments.

Previous strategies have focused mostly on purely data-driven GPR mappings.

Vehicle or environment modeling in combination with GPR could aid predictions,

especially when data on the environment is sparse. Plonski et al. [74, 75] used a

ground robot equipped with a solar panel to build a spatial solar energy map of

an environment based on shadows. Including further modeling through environment

reconstruction was shown to improve predictive performance over standard GPR,

showing the potential benefits of combining GPR with additional modeling.

Ground robot power prediction has often relied on longitudinal vehicle models,

perhaps due to their simplicity [82, 88]. Sadrpour et al. [88, 87] used a longitudinal

power model to predict mission energy costs for a ground robot, as well as update

those predictions in real-time with collected data. Prior knowledge on factors, includ-

ing terrain friction, slope, and teleoperator aggressiveness, inform the predictions. Sun

and Reif [104] focused on energy minimal path planning using a longitudinal model

as well. Previous work with such models typically assumes that the terrain friction

(or rolling resistance coefficient) is known throughout an environment. A constant

friction assumption is unrealistic in an off-road environment. We build a spatial map

of the terrain with GPR using data collected during robot operation, in order to

account for changes in terrain friction.
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While longitudinal models are quite useful, turning has a significant and non-

trivial impact on power consumption. Dogru and Marques [27] develop a physics-

based model for a skid-steer robot that considers a number of factors, including:

speed, radius of curvature, and temperature. Canfield et al. [17] develop a power

model for a skid steered robot based on the equations of motion. These works provide

useful modeling for a robot’s power usage, but are highly particular to the vehicle

type. We instead focus on the longitudinal dynamics and spatially dependent terrain

energy costs.

3.2 Methodology

In this section, the methodology for predicting the energy cost of a path, based

on spatially mapped data collected by a robot, is described. First, GPR is used to

build a map from input points x (position, heading, etc.) to power usage P with

the aid of vehicle model information. Next, the energy cost of a path is predicted,

in terms of its mean and variance, as the summation of a set of correlated power

predictions produced by GPR. In addition, the inputs to the Gaussian process used

in the chapter are detailed, along with the optimization of hyperparameters. Finally,

a decimation strategy is provided to reduce the dimensionality of the training data.

3.2.1 Vehicle Power Modeling with Gaussian Process Regression

For modeling and prediction, we consider cases in which the robot is traversing

along straight-line paths. The focus is on the longitudinal dynamics of the vehicle

(small turns to keep the robot along the path are assumed to be negligible in terms of

energy cost). Robot energy consumption due to turning is a topic of ongoing research

[17, 27], and is highly specific to the vehicle type (e.g. Ackermann steering vs skid-

steering). Longitudinal dynamics, on the other hand, are similar across many types

of ground vehicles.
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To predict power consumption of a robot operating in an environment, a mapping

is built from d inputs x ∈ Rd to power P ∈ R using GPR.We consider the following

inputs: the position x, y of the robot, the robot’s heading ψ, the slope θ in the

direction of the robot’s heading, and an imagery input of the terrain s(x, y) from the

grayscale pixel intensity at a given location. The power model is assumed to be of

the following form:

P = a(β)[f(x) + η] + b(β) (3.1)

where a(β), b(β) are provided based on known model parameters β. η ∼ N (0, σ2
η)

is independent and identically distributed Gaussian noise with variance σ2
η > 0, and

f : Rd → R is a terrain-dependent function learned through GPR.

The inputs to the GP are assumed to be known, both for training the model and

for future predictions. For example, information regarding the slope throughout an

environment could be determined from digital elevation maps (DEMs) in large-scale

environments, or directly from information collected in real-time such as from LIDAR.

The functions a(β) and b(β) can incorporate prior information that is known about

the power model. Two models are considered in this chapter:

1. The longitudinal vehicle power model (LVM) is a commonly used physics-based

model [87, 104], with

a(β) = uW cos(φ) (3.2)

and

b(β) = u(W sin(θ) +maaccel + CI) + bint. (3.3)

The parameters u,W,m, aaccel are the robot’s speed, weight, mass, and accel-

eration, respectively. φ is the gradient of the terrain face (we assume that φ is

small and let cos(φ) ≈ 1). CI and bint are losses due to internal resistances and

other robot electronics power consumption, respectively.
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2. A direct power model (DPM) assumes no prior model information, with a(β) =

1 and b(β) = 0.

For the LVM, the output of the function f(x) can be interpreted as the rolling re-

sistance or friction coefficients of the terrain. The coefficient depends on the wheel-

terrain interaction and contributes to energy losses through terrain and wheel de-

formation. In contrast, the DPM ignores vehicle model information, and f(x) is a

mapping learned directly from the inputs to power. The benefits and drawbacks of

these models are explored in the experimental portion of this chapter.

To perform GPR and learn the function f(x), a set of training data is collected.

The output data points, zi, are defined based on Eqn. (3.1) as:

zi :=
Pi − b(βi)
a(βi)

(3.4)

where Pi and βi correspond to a power measurement and model input, respec-

tively. The output data, along with the input measurements, xi, are collected as

D = {(zi,xi)}ni=1 and denoted z ∈ Rn and X ∈ Rn×d for the stacked zi and xi,

respectively.

The training data D is modelled using a Gaussian process (GP), denoted f ∼

GP(c, k). The GP is characterized by a prior mean function c : Rd → R and a

kernel k : Rd×Rd → R, which is a symmetric function that computes the correlation

between two points in Rd.

Gaussian process regression (GPR) defines an n-variate normal distribution based

on c and k (see [84] for further information on GPR). The posterior predictive dis-

tribution computes the distribution of f(x∗) at a set of m target points, X∗ ∈ Rm×d

based on the data. The probability density function for f(X∗)|D is known to be [84]:

p(f(X∗)|D) = N
(
f̄(X∗), cov(f(X∗), f(X∗))

)
(3.5)
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where

f̄(X∗) := E[f(X∗)|D, X∗] = c(X∗)

+K(X∗, X)[K(X,X) + σ2
ηI]−1(z− c(X))

(3.6)

are the posterior (or predictive) means for the points in x∗ and

cov(f(X∗),f(X∗)) := K(X∗, X∗)

−K(X∗, X)[K(X,X) + σ2
ηI]−1K(X,X∗)

(3.7)

is the covariance matrix for the target set of points, X∗. The notation K(X,X∗)

defines the n × m covariance matrix of the point-wise comparison of the n input

training points with the m input target points, based on the kernel k. The point-wise

evaluation of the prior mean results in an n× 1 vector for c(X).

To compute the predicted power, the GPR prediction is passed through the lin-

ear power model given in Eqn. (3.1). The following terms are defined to simplify

computation: A := diag(a(β∗,1), . . . , a(β∗,m)) and B :=

[
b(β∗,1) . . . b(β∗,m)

]T
,

P∗ :=

[
P∗,1 . . . P∗,m

]T
, H := 1η. Then,

P∗ = A[f(X∗) +H] +B (3.8)

where P is a multivariate normal distribution that defines the joint power distribution

over the set of target points. The probability density function is then:

p(P∗|D) = N
(
P̄∗, cov(P∗)

)
(3.9)

where the mean can be computed based on the linearity of expectation and by as-
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suming zero mean noise (E[H] = 0):

P̄∗ := E[P∗|D] = Af̄(X∗) +B (3.10)

The covariance matrix is derived by standard manipulations as:

cov(P∗) = A
(
cov(f(X∗), f(X∗)) + σ2

ηI
)
AT . (3.11)

The covariance matrix describes the uncertainty in the predicted power for a given

set of target points along a path, as well as the correlations between those points.

3.2.2 Probabilistic Path Energy Cost Prediction

The energy cost of a path, denoted E, is computed by integrating power usage

over time:

E =

T∫
0

P (t)dt ≈
m∑
j=1

P∗,j∆t (3.12)

where ∆t is time interval of the Riemann sum approximation of the integral and P∗,j

is the jth element of P∗. For path energy prediction, the summation is over a set of

power predictions, P∗,j, that are spaced along the predefined path with inputs x∗,j.

The velocity profile of the vehicle for the predicted path is assumed to be known,

allowing inputs x∗,j to be generated based on known time intervals ∆t.

Since the energy cost of the path is computed as a summation over normally

distributed random variables, then E is normally distributed as well, with E|D ∼

N (Ē, var(E)), where

Ē := E[E|D] =
m∑
j=1

(
Af̄(x∗,j) +B

)
∆t (3.13)
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is computed based on the linearity of expectation and

var(E) = var(
m∑
j=1

P∗,j∆t)

=
m∑
i=1

m∑
j=1

cov(P∗,i, P∗,j)(∆t)
2,

(3.14)

where cov(P∗,i, P∗,j) are the entries of cov(P∗) from Eqn. (3.11). These computations

follow from the standard summation of correlated random variables.

The variance of E includes the correlations between power costs along a path, as

computed by the GP kernel. Such correlations are necessary to properly characterize

uncertainties in predicted energy costs. For example, the power usage for two inputs,

x∗,i and x∗,j, that are close together is likely to be similar. The result is an increase

in uncertainty when the outputs are summed together. Ignoring correlations between

costs has been shown to result in severe overconfidence in predictions [67].

3.2.3 Inputs to the Gaussian Process

The inputs x to the Gaussian process f(x) play an important role in predictions.

The inputs considered in the experimental results are: position x and y, the slope

in the direction of robot motion θ, the robot’s heading ψ, and satellite imagery s.

The purpose of the x and y inputs is to identify the spatial changes in energy costs

due to the terrain that the robot is traversing. The ψ and θ inputs serve to capture

power model behaviors that are otherwise unknown. These inputs are related, how-

ever, the results show that they affect predictive performance in different ways. In

implementation, ψ was projected onto the unit circle as

[
cos(ψ) sin(ψ)

]T
, making

it amenable to kernel computations.

In many scenarios, satellite imagery, soil maps, or other forms of exteroceptive

sensing may be available to the robot. Such information on the environment is useful,

for example, in detecting abrupt terrain changes (such as a sudden transition between
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grass and pavement). In this chapter, a function s(x, y) is constructed based on pixel

intensities of a grayscale satellite image of the experimental environment. Two input

points may be spatially close together, however, if the inputs have very different pixel

intensities, then the inputs will have a small correlation as defined by the kernel. A

similar strategy was employed by Murphy et al. [63], considering pixel chromaticity

values in mapping.

3.2.4 Kernels and Optimization of Hyperparameters

The structure of the kernel k(xi,xj) plays an important role in GPR by defining

the correlation between two inputs. For the experimental results, we consider the

same kernels used in Chapter II: the Matern and the Squared Exponential (SE)

kernels. The kernels are based on the distance between two inputs, xi and xj, defined

as d =
√

(xi − xj)TM−1(xi − xj), where M = diag(l21, . . . , l
2
d). The distance shown

here is anisotropic in that the distance depends on length-scale hyperparameters,

l21, . . . , l
2
d, that vary between the inputs. For this application, we consider the spatial

inputs x and y to have the same length-scale lxy. However, lθ, lψ, and ls are likely to

have different length-scales. For both kernels, as input distance decreases, correlation

increases.

The Matern kernel has a parameter ν that scales the smoothness of the GP. For

example, the Matern kernel with ν = 1
2

(Ma1/2) is defined as:

kMa12(xi,xj) = σ2exp(−d) (3.15)

where σ2 > 0 is the signal variance hyperparameter. The resulting GP is not differ-

entiable. In the experimental results, we also consider the Matern kernel with ν = 3
2

(Ma3/2) and ν = 5
2

(Ma5/2); the GPs of these kernels are once and twice differen-

tiable, respectively. As ν → ∞, the Matern kernel equals the Squared Exponential
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(SE) kernel [84], defined as:

kSE(xi,xj) = σ2exp(−0.5d2). (3.16)

A GP with an SE kernel is infinitely differentiable.

The hyperparameters of the GP, Θ := {σ2, l21, . . . , l
2
d, σ

2
η}, are optimized by maxi-

mizing the log marginal likelihood [84]:

log p(z|X,Θ) = −1

2
zT (K(X,X) + σ2

ηI)z

− 1

2
log |K(X,X) + σ2

ηI| −
n

2
log 2π.

(3.17)

In other words, the probability of the output data given the model assumptions is

maximized. The gradient of the log marginal likelihood can be computed analytically,

leading to reasonably fast convergence. However, the log marginal likelihood can have

local minima and increasing the number of inputs can exacerbate this problem due

to the higher dimensional optimization. If an input is irrevelant or redundant, the

optimization tends to result in the length-scale for that input to become very large,

effectively making the input insignificant in predictions. This process is often referred

to as Automatic Relevance Determination (ARD) [84].

3.2.5 Decimation of Collected Data

A well-known challenge with GPR is that its time complexity scales as O(n3)

with the number of training data points. For the experimental platform used in this

chapter, the sampling time was Ts = 0.1. If the dataset D grows by one training data

point for every Ts, predictions will quickly become infeasible.

We use a filtering and downsampling (also known as decimation) strategy as a

preprocessing step. This step significantly reduces the dimensionality of the problem,

with little impact on performance in practice. An integer factor, M , is determined for
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downsampling the rolling resistance coefficients. M is designed based on the following

heuristic:

M =

⌊
L

uTs

⌋
(3.18)

where L is a specified sampling length and u is the speed of the robot. In other words,

M is the downsampling factor needed in order to produce one data point per specified

sampling length. The actual sampling length based on M (due to the floor function)

is LM = MuTs. A zero-phase low-pass filter is used prior to downsampling. Measured

signals on the robot, including the power, position, and slope are decimated. Satellite

imagery along the path is treated as a signal and is also decimated.

The decimated data is used for GPR and hyperparameter optimization. The

noise variance, σ2
η, also determined during hyperparameter optimization, can express

noise in the measured signal, as well as variability in the terrain. Depending on the

sampling length, σ2
η can capture different processes with varying levels of significance.

In practice, a longer sampling length can provide a better fit of the model described

in this section. Additionally, path energy cost prediction includes σ2
η, so the inputs

x∗,j for the predicted path should be determined based on LM , as should ∆t.

3.3 Experimental Results

We validate the methodology described in the previous section on a dataset col-

lected from an experiment performed with a ground robot in an outdoor environment.

The results are evaluated in several ways. First, spatial maps of the terrain are pro-

duced using the collected data and are qualitatively assessed. The accuracy of path

energy cost predictions is then evaluated through a cross-validation in a well-mapped

environment. Further cross-validation results from a second dataset, collected by a

larger robot in the same environment, are presented in the Appendix.

Next, the case of sparse data on the environment is considered. LVM and DPM
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predictions are compared for varying amounts of data. The method is also evaluated

with respect to: the sensitivity of the predictions to kernel choice and hyperparame-

ters, the effect of including prior satellite imagery, and accuracy versus computation

time for varying sampling length.

The performance of path energy prediction is evaluated in terms of the percent

error between the mean predicted and the measured energy cost:

Percent Error =
Ē − Etrue
Etrue

× 100% (3.19)

where Etrue is the experimentally measured energy cost and Ē is computed as in

Eqn. (3.13). Etrue is computed using the raw experimentally measured power data

(without decimation).

The predictive distribution of the path energy cost E is also evaluated. The

probabilistic log likelihood (PLL) is one common metric [63]:

PLL = −1

2
log var(E)− (Ē − Etrue)2

2var(E)
− 1

2
log2π (3.20)

where var(E) is computed as in Eqn. (3.14). A smaller variance is better, though

a prediction that falls outside a reasonable confidence interval given by var(E) is

heavily penalized. A higher PLL is better.

3.3.1 Experimental Setup

The experiment was performed on a small robot platform (SuperDroid Robots,

IG32-DM4, 4WD), pictured in Fig. 3.2. Further results on a large platform are

also provided in Appendix B. Current draw from the robot’s batteries (two 11.1V

batteries wired in series) was measured with a current sensor (INA169 Analog DC)

and used to compute power, P = IV .

The environment, shown in Fig. 3.1a, was chosen for the significantly varying
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resistances associated with the terrains, which include: concrete, thick grass, and

compact dirt. The environment itself is on a slope that varies between 2 and 6 degrees.

The position of the robot was obtained using an absolute localization system (Pozyx

NV, Ghent, Belgium). The system uses ultra-wideband technology to determine the

position of a tag (placed on the robot) based on a set of anchors in the environment.

The tag includes an inertial measurement unit for measuring attitude angle (roll,

pitch and yaw). For energy prediction computations we only used pitch θ.

The robot was operated remotely by a user to traverse a set of 20 straight-line

paths (∼ 6 to 9 meters in length) through the environment at a constant velocity.

Slight turns were made to keep the robot along the desired path. Velocity was main-

tained through onboard encoders and PID control. Position measurements showed

that the set velocity was maintained to within a reasonable error on all terrains in this

environment. To minimize operator error as a factor in results, the initial and final

positions of each path, shown in Fig. 3.1b, are defined based on positions measured

by the Pozyx system. The data set used for mapping and prediction consists of the

portion of the paths in which the robot has reached a steady state velocity. The

data for each path ends exactly when the stop command was given, marking the final

position in the path.

While the robot itself collects data on current and receives motor commands

through a laptop at 10Hz, data from the Pozyx system is collected off-board, with

occasional packet loss. Position and slope data is interpolated in post-processing

and merged with the current sensor data. GPR computations were performed using

the scikit-learn Python package. The grayscale image (satellite imagery that has

been passed through a median filter), shown in Fig. 3.1b, is overlaid with the spatial

map and the function s(x, y) is constructed using the Python-SciPy function interp2d

with pixel intensities normalized between 0 and 1. All results presented are based on

post-processing of the data set collected during the experiment.
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Figure 3.1: (a) Image of experiment environment (2 of 4 Pozyx anchors used for robot
positioning are shown). (b) Grayscale top-down satellite image of the experiment
environment used to define the GP input s. Twenty paths traversed by the robot are
overlaid as orange lines. The initial location of each path and the path number is
indicated in red. The white portion at the top of (b) corresponds with the concrete
walk in (a).
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Figure 3.2: Large (10 inch wheels and 15.15kg mass) and small robots (6 inch wheels
and 7.25kg mass) used for experiments.

3.3.2 Spatial Terrain Mapping

The spatial mapping results based on the 20 traversed paths in the experimental

environment are qualitatively observed in Fig. 3.3. The LVM spatial map is inter-

preted as a map of the rolling resistance coefficient (where ψ = π), whereas the DPM

map is of power usage, with ψ = π. The sampling length is set as L = 0.8[m]. The

hyperparameters of the Ma3/2 kernel were optimized using the log marginal likeli-

hood and the resulting values are provided in Table 3.1. For the optimization, the

prior mean c was fixed to the mean of the training data, and the satellite length-scale

hyperparameter was set at ls = 0.3. The physical parameters for LVM predictions,

determined through off-line calibration, are provided in the Appendix in Table B.1.

Qualitatively, both spatial maps capture the higher “cost” (i.e. rolling resistance

coefficient or power) in the grass area over the concrete path, as well as lower cost

in the compact dirt area. The predictive means in Figs. 3.3a and 3.3b differ more

strongly for predictions further away from the data, due to the different quantities

that the LVM and DPM represent, and that the predictions are shown for the robot

moving uphill (for ψ = π). Away from the data, predictions tend to revert to the

prior mean. In addition, the uncertainty in the maps increases further away from the

data set, as is expected given a Matern or SE kernel.
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Figure 3.3: The mean prediction f̄(X∗) for GPR is shown in (a) and (b), and the
uncertainty cov(f(X∗), f(X∗))+σ2

ηI is in (c) and (d). The predictions are made using
the data (black dots) collected from 20 paths and with the following models: (a),(c)
LVM with GP inputs x, y, ψ, s. (b),(d) DPM with GP inputs x, y, ψ, s.

Hyperparameter LVM DPM

σ 0.0551 2.96
ση 0.0209 0.972
lxy 3.88 6.09
lψ 2.84 2.6
ls 0.3 0.3
c 0.119 8.812

Table 3.1: Optimized Hyperparameters for Kernel Ma3/2

62



The effect of including the satellite imagery as an input to the GP can be seen

by the clearly defined discontinuity between the concrete and the rest of the area.

This is because points on either side of the discontinuity have very different grayscale

intensity values. Thus, two of such points have low correlation as defined by the

kernel.

3.3.3 Path Energy Prediction Error

The accuracy of the spatial mapping methodology is evaluated through a cross-

validation strategy. In this strategy, 1 path is removed from the data set and the

measured cost of that path is compared against the predicted cost using the data from

the other 19 paths. This process is repeated for all paths and the hyperparameters

are optimized each time. Note: The measured energy cost of the path is computed

from the raw measured current sensor data.

For the path to be predicted using the methodology described in Section 3.2, some

knowledge about the path is assumed:

1. The initial and final positions of the path are known.

2. The robot follows a straight-line path between those positions and moves at the

constant commanded velocity.

3. The average slope along the path is known and is considered as the slope for

the entire path.

Predictions from the cross-validation for Path 0 through Path 9 are shown in Fig.

3.4 for the LVM and DPM models. The two plots show the measured energy cost of

each path, the predicted cost based on GPR, and a baseline prediction. The baseline

prediction is made assuming a constant function f(x) = cb for each model, where

cb ∼ N (µb, σ
2
b ) and µb, σ

2
b are chosen to be the mean and variance of the training
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data z, respectively. The baseline prediction is made by averaging over 100 randomly

sampled cb values.

For the LVM with GP inputs x, y, s, shown in Fig. 3.4a energy cost predictions for

Paths 6, 7, 8, and 9 are quite accurate and within the uncertainty bars. On the other

hand, Paths 2, 3, 4, and 5 show more significant errors and overconfidence in the

predictions. Paths 2 and 4 are uphill on the grass terrain, whereas paths 3 and 5 are

downhill along the same lines as 2 and 4, respectively. These inaccuracies are caused

by model errors (due to the LVM model) which result in rolling resistance coefficient

estimates that differ depending on whether the robot is going uphill or downhill on

the same path.

The performance when the GP input includes ψ is also shown in Fig 3.4a. Includ-

ing ψ allows that the effective rolling resistance coefficient experienced by the robot

may depend on the direction that the robot is travelling on the terrain. By fitting

a more expressive GP model from the data, the errors of paths 2, 3, 4, and 5 have

been reduced in comparison to the case with inputs x, y, s. Performance is improved,

however, there is still overconfidence in Path 2.

The DPM model avoids an explicit model entirely by building the power model

simultaneously with the spatial mapping from the training data set. The prediction

results, shown in Fig. 3.4b, are provided for the case of GP inputs x, y, ψ, s and

x, y, ψ, θ, s. The x, y, ψ, s case has the smallest error and least overconfidence with

respect to Path 2.

The results for the cross-validation are collated in terms of percent error and PLL

in Fig. 3.5. In particular, the figure shows the importance that including specific

inputs to the GP has on predictive performance. Further results on the mean absolute

percent error and the mean PLL over all 20 paths are shown for different kernels in

Table 3.2 and Table 3.3.

We draw the following conclusions from these results (and from the results on the
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Figure 3.4: Path energy costs: (blue/green) predicted cost Ē with ±2
√

var(E)) bars,
(black) measured cost, and (red) baseline prediction (±2 std.). The path numbers
corresponded to the numbers in (c). Note that the environment is on a slope, resulting
in different costs between, for example, paths 0 and 1. Models used: (a) LVM, (b)
DPM.
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GP Kernel
Model Inputs Ma1/2 Ma3/2 Ma5/2 SE

DPM Baseline 27.38 27.60 28.52 26.87
x, y, s 28.24 28.30 28.36 28.44
x, y, ψ, s 5.86 4.49 4.44 5.04
x, y, θ, s 7.00 6.98 6.95 8.09
x, y, ψ, θ, s 5.18 4.56 4.62 5.09

LVM Baseline 14.51 15.13 14.69 15.31
x, y, s 7.88 7.68 7.63 7.58

x, y, ψ, s 3.88 3.82 3.80 3.81
x, y, θ, s 6.94 6.25 5.98 6.44
x, y, ψ, θ, s 4.03 3.94 3.90 3.87

Table 3.2: Mean absolute percent error in path energy cost prediction (best perfor-
mance highlighted green).

GP Kernel
Model Inputs Ma1/2 Ma3/2 Ma5/2 SE

DPM Const. -5.29 -5.34 -5.32 -5.25
x, y, s -8.45 -8.58 -8.62 -8.67

x, y, ψ, s -3.76 -3.57 -3.54 -3.64
x, y, θ, s -5.06 -5.71 -5.91 -6.39
x, y, ψ, θ, s -3.98 -4.12 -4.21 -4.31

LVM Const. -4.83 -4.88 -4.82 -4.84
x, y, s -7.65 -7.62 -7.62 -7.59
x, y, ψ, s -4.15 -4.11 -4.11 -4.13
x, y, θ, s -6.57 -6.59 -6.52 -6.59
x, y, ψ, θ, s -4.28 -4.23 -4.22 -4.24

Table 3.3: Mean PLL in path energy cost prediction (best performance highlighted
green).
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Figure 3.5: Percent error for the 20 path cross-validation with different models and
GP inputs. The boxplot show the baseline LVM prediction result (baseline DPM has
much higher error), as well as results when using different inputs to the GP (e.g.
x, y, s, or x, y, θ, ψ, s, etc.).
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additional dataset in the Appendix):

1. The spatial mapping methodology for both LVM and DPM significantly im-

proves path energy prediction accuracy over the baseline approach of using the

LVM and a constant rolling resistance coefficient over the whole environment.

2. The robot’s heading ψ has a greater impact on improving performance than

the slope θ. The slope is clearly a factor in power consumption, and of course,

the slope depends on the heading of the robot. However, the heading may

account for additional factors, including: the robot’s roll, weight distribution,

unequal tire pressures or directional terrain effects (e.g. grass being pointed in a

particular direction). Such factors are particularly evident in the small ground

robot platform in these experiments, but also appear in the results for the larger

robot, seen in the Appendix.

Furthermore, the results show that the spatial mapping methodology can improve

predictive performance in terms of PLL, but important caveats exist. Uncertainty

predictions by GPR are especially dependent on hyperparameter selection. Hyperpa-

rameters here were optimized with respect to the log marginal likelihood. The opti-

mization did not account for correlated errors that occur when the robot is traversing

along a path, leading to overconfidence in some cases. Hyperparameter selection

is addressed further in Section 3.3.5. Related to hyperparameter selection is kernel

choice, in which minor variations were found in accuracy based on kernel smoothness.

In particular, the Ma1/2 had slightly worse prediction accuracy.

3.3.4 Path Energy Prediction with Sparse Data

We next observe predictive performance when data on the environment is sparse.

Path energy cost prediction with sparse data can have significant uncertainty (i.e. a

large variance var(E)). As more data is collected on the environment, that uncertainty
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will be reduced. This fact is demonstrated with an example, shown in Fig. 3.6, in

which the hyperparameters from Table 3.1 were used. The cost of a path is predicted

repeatedly as more data is added to the data set. Initially, there is a large uncertainty,

as given by the dark spatial uncertainty map in Fig. 3.6a and the ±2 standard

deviation bars in Fig. 3.6d. As more data is added from previously traversed paths,

the spatial uncertainty map is reduced (Figs. 3.6b and 3.6c), and the uncertainty

bars in the predicted cost of the path narrow around the measured cost of the path.

The example also highlights the effect of including satellite imagery as a GP input.

In Fig. 3.6b, only data from the concrete path has been included in the data set,

resulting in low uncertainty along the path defined by the satellite image.

The LVM and DPM models were compared in the sparse data case for a series of

individual path predictions. The results of predicting path energy costs for Paths 2, 7,

and 11 are shown in Fig. 3.7, in which data from previously traversed paths is added,

demonstrating a reduction in uncertainty. The variance is significantly greater for

the DPM because the LVM provides basic model structure that is helpful in making

predictions, even without prior data. On the other hand, the DPM is reliant on

the constant prior mean of the GP and must wait for data to inform further model

structure. The predictions for Path 2 were overconfident for both models, implying

that more conservative hyperparameters or robust modeling are necessary to account

for the highly irregular nature of off-road terrain. Further examples are provided in

Fig. A.1 in the Appendix.

A model based on physical parameters, such as the LVM, is especially useful for

informing predictions if a physical parameter (e.g. speed, weight, etc.) changes.

More expressive models could also be extended to include other considerations, such

as turning. However, models like the LVM ignore complex physics. For example,

rolling resistance coefficient estimates tend to change with vehicle speed [27]. One

potential solution is to specify model structure with explicit basis functions [84, 85].
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Figure 3.6: The objective is to predict the energy cost the blue line (Path 11). As data
from more paths is added, from column (a) to column (c), the mean GP prediction is
updated and the uncertainty is reduced. Red arrows point to the start of each path
of added data, and data points themselves are black dots. (d) The predicted energy
cost corresponding to each column (with ±2 std. uncertainty bars) is shown in blue
and the measured cost of Path 11 is provided by the black line.
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Figure 3.7: Predicted path energy costs for LVM (blue) and DPM (red) models as
data from traversed paths is added. The average PLL over the 6 predictions in each
model are (better performance is in bold): (a) Path 7; LVM: -3.86, DPM: -5.22
(b) Path 11; LVM: -4.03, DPM: -4.45 (c) Path 2; LVM: -11.73, DPM: -9.34. (d)
Numbered paths. More examples are shown in the Appendix.
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Figure 3.8: Effect of hyperparameters on the prediction of Path 6 using the LVM
with GP inputs x, y, ψ, s: (a) signal variance σ2, (b) heading length-scale lψ.

Parameters of the model can then found in conjunction with hyperparameters through

log marginal likelihood optimization.

3.3.5 Impact of Hyperparameter Selection

Performing log marginal likelihood optimization with sparse data can lead to

overfitting and poor predictions. If a diverse dataset is unavailable to support reliable

hyperparameter optimization, a user must specify hyperparameters based on previous

experience or knowledge of the system. Fig. 3.8 shows an example of how predictions

from the LVM are affected by varying the signal variance σ2 and heading length-scale

lψ hyperparameters. A larger σ2 directly results in a larger variance because it implies

that there is a larger range over which energy costs in the environment are expected

to vary. In contrast, if lψ is small, then only data that have a similar heading as the

predicted path will significantly reduce variance. If, for example, the robot traverses

the same path multiple times, then the prediction will have high confidence.

Additional hyperparameters, including the prior mean c, noise variance σ2
η, and

spatial length-scale lxy, play a role in predictions as well and are detailed in Fig.

A.2 in the Appendix. Based on these results, we provide the following guidelines for
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tuning hyperparameters:

1. Set a larger signal variance σ2 and smaller heading length-scale lψ for more

conservative (higher variance) predictions.

2. Set a higher than expected prior mean c if robot energy depletion is a concern.

Data will override the prior mean once it has been collected.

When determining hyperparameters under sparse data, it can also be effective to

set informative prior distributions on the hyperparameters and then select values for

the hyperparameters, given the collected data, using maximum a posteriori (MAP)

[117] or Markov chain Monte Carlo (MCMC) methods. [34]. MCMC methods are

computationally expensive, but can be useful for determining hyperparameters off-

line.

3.3.6 Impact of Satellite Imagery

The effect of including a satellite image as an input to the GP was observed in Fig.

3.6. To expand on this, Fig. 3.9 provides a direct comparison of the spatial mapping,

both with and without the imagery input to the GP. Without the satellite imagery,

the discontinuity is not well captured, potentially leading to inaccurate predictions

near the boundary.

Another important consideration is that, to fit the transition between grass and

concrete, the optimized lxy hyperparameter is smaller for the case without satellite

imagery. Including the satellite image enables a larger lxy because the transition is

accounted for through the additional input dimension s. A larger lxy can imply that

less data on the environment is needed to inform predictions. While this experiment

was performed in a small environment, a much larger length-scale would be necessary

for the energy prediction methodology to be effective in a large-scale environment.

Thus, satellite imagery or other spatial maps of the area would be particularly useful
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Figure 3.9: Spatial maps built (a) with the satellite image input (optimized lxy =
3.88[m]) and (b) without the image input (optimized lxy = 2.53[m]).

in helping to increase the length-scale through detection of known transitions between

terrains.

3.3.7 Computation Time

The effectiveness of the decimation strategy described in Section 3.2.5 was evalu-

ated by observing the accuracy of predictions against the computation time involved

in path energy cost prediction as the sampling length LM is reduced. The computa-

tion time shown in Fig. 3.10 is specifically for path energy prediction (but does not

include hyperparameter optimization time). The computation times and errors are

averaged over the cross-validation of the 20 predicted paths.

The results in Fig. 3.10 show that errors remain consistent, with small fluctua-

tions, as LM increases, and computation time decreases significantly. A very small

LM does not necessarily improve performance, but certainly increases computation

time. However, for LM > 1.75 there is a notable increase in the error. The results

demonstrate that decimation can be used to reduce the computational burden in-
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Figure 3.10: Spatial maps generated from data sets using sampling lengths (a) LM =
0.46[m] and (b) LM = 1.69[m]. Data points are given by black dots. (c) GP prediction
time and mean absolute percent error vs. sampling length LM .

volved in GPR with limited effect on predictions. Furthermore, numerous effective

strategies exist for managing the computational cost of GPR, including using local

approximations [110], achieving sparsity through subsampling the dataset [52], or

Hilbert space approximations [98].
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3.4 Conclusions

In this chapter, a GPR-based methodology was presented for using spatial map-

ping to predict energy costs in environments with varying terrain. The method was

demonstrated experimentally to improve the accuracy of predictions over a baseline

approach. Furthermore, the advantage of using vehicle modeling was demonstrated

through reduced uncertainty in predictions in sparse data scenarios. Path energy

cost predictions based on standard log marginal likelihood optimization were over-

confident in some cases, however, we provided guidance for selection of more con-

servative hyperparameters. Additional factors, that could be accounted for through

further modeling, also led to over-confidence in predictions, such as uncertainty in

the path itself. Off-road terrain is often highly unstructured and irregular, leading

to outliers in power consumption data. A discussion of future work for addressing

the ongoing challenges of energy prediction in off-road environments is provided in

Chapter V.
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CHAPTER IV

Power Prediction for Heterogeneous Ground

Robots through Spatial Mapping and Sharing of

Terrain Data

In the previous chapter, experimental results were presented for spatial mapping

and energy prediction in 3-d environments. The results demonstrated that, for a

single robot, spatial mapping can be used to improve predictive accuracy for energy

costs. In this chapter, we extend the applicability of spatial mapping for energy

prediction to multiple heterogeneous ground robots. The research demonstrates how

multi-task Gaussian process (MTGPs) can be used to effectively transfer information

on the terrain between different robots, reducing error in predictions. The work in

this chapter is primarily based on [78].

As discussed in the Introduction to this dissertation, one drawback of these meth-

ods is that the spatial maps are particular to a single robot, and often do not apply

directly to a different robot or to the same robot under different operating conditions

(e.g. tire pressure, weight distribution). However, information collected by one robot

may still be useful for another robot. It is expected that, for robots of a similar

type, a terrain that is higher cost for one robot will also be higher cost for the other.

In other words, the costs are positively correlated. Such correlations can be used to
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inform power predictions for one robot, based on data collected by another robot, as

well as to speed up spatial mapping.

To address the problems of spatial mapping and correlation between multiple

robots’ power consumption, we propose using multi-task Gaussian process regression

(MTGP) [12, 114, 30]. Previous spatial terrain mapping approaches with a single

robot, such as the authors’ previous work [80], are equivalent to single-task Gaussian

process regression (STGP). A MTGP extends the STGP to consider similarities be-

tween tasks (or outputs). MTGPs are a multi-output regression method originating

in the field of geostatistics [111]. A wide variety of applications have used MTGPs,

including learning robot manipulator inverse dynamics with different loads [114] and

modeling correlated physiological signals [30]. For a review of multi-output methods

that use kernels, see [4].

While MTGPs are highly effective at improving performance when there are corre-

lations between multiple tasks, they suffer from computational limitations. The time

complexity of prediction and hyperparameter optimization for MTGP is O(M3N3),

where M is the number of tasks and N is the number of data points for each task.

Furthermore, increasing the number of tasks causes a proliferation in the number of

hyperparameters. Without effective measures to handle these problems, MTGPs will

not be applicable to real-time robotics applications.

To counter computational problems, we develop a framework of efficient hyper-

parameter optimization and prediction for the application of multi-robot power pre-

diction in environments with spatially varying costs. The literature on managing

Gaussian process complexity is rich (see Liu et al. for a review of related methods

[49]). Thus, our framework builds on effective strategies from previous work in ways

that are particular to the application of predicting power consumption along a path.

First, we assume that all robots collect an isotopic training dataset, in which the

robots share the same input data. In practice, this implies that all robots initially
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traverse the same path through the environment as a calibration step. The assump-

tion of isotopic data allows the use of efficient hyperparameter optimization through

eigenvalue decompositions [100, 83].

Isotopic data cannot be assumed beyond calibration, as the robots must be able to

explore different parts of the environment for MTGP to be advantageous. Therefore,

in the heterotopic case, in which different robots have data from different locations in

the environment, we use a Subset of Data approach (SoD) [49] as an approximation

to reduce computation time. The most likely scenario for which power predictions

will be used is in predicting the energy cost of paths (perhaps for path planning or

mission planning). To support planning, we provide a local approximation strategy

that uses a k-dimensional tree (KD tree) to efficiently find a set of nearest neighbor

points in order to predict path costs with little reduction in performance.

4.0.1 Contributions

This chapter builds on Chapter III, which presented a methodology for spatial

mapping and path energy cost prediction using GPR in the single robot case. We

make the following contributions to the case of multiple heterogeneous ground robots:

• A framework, based on multi-task Gaussian process regression, for predicting

ground robot power consumption on spatially varying terrain through shared

terrain information between robots, including:

– Efficient training of hyperparameters through isotopic data collection.

– Efficient prediction of power consumption along paths through nearest

neighbor data selection.

• A simulation study demonstrating the effectiveness of the framework.

• An experimental demonstration of increased power prediction accuracy through

shared information between a large and small ground robot.
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The chapter is organized as follows: In Section 4.1, the methods for power pre-

diction using MTGPs are described. Next, these methods are unified into an efficient

framework in Section 4.2, with a corresponding derivation for the log marginal likeli-

hood in Appendix C. Simulation results for the case of many robots are provided in

Section 4.3. Experimental results demonstrating the feasibility of the approach two

robots are detailed in Section 4.4. Finally, conclusions and future work are discussed

in Section 4.5.

4.1 Methods

In this section, the longitudinal parametric power model is described and the

MTGP formulation is provided. Further, we provide the log likelihood function used

for selecting hyperparameters in the isotopic data case.

4.1.1 Robot Power Model

As in Chapter III, we focus on longitudinal motion and do not consider turning,

though it is important to note that turning can be a large factor in energy costs and

could be accounted for through additional modelling [27]. In a deviation from Chapter

Chapter III, we propose using an explicit basis function data-fit model [84], the form

of which is inspired by physical modeling. The parameters of the model of learned

through marginal likelihood optimization, rather than using physical parameters, as

done in Chapter III.

Let P, θ, η ∈ R denote the power, slope in the direction of the robot’s heading,

and model error, respectively. Let x ∈ Rd be set a set of d inputs. In this chapter,

x, y, s(x, y), and ψ are used as inputs, where x, y is the spatial position, s(x, y) is a

grayscale imagery pixel intensity at a given position, and ψ is the robot’s heading. A

latent terrain function f : Rd → R is a learned map from the inputs to a terrain cost.
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The power model is:

P = f(x) + η + g(θ)Tc (4.1)

where g(θ) is a vector of basis functions (e.g. polynomials) and c is a vector of model

coefficients to be estimated. While the coefficients may be selected based on the

physical parameters of a vehicle model, we choose to treat c as hyperparameters to

be learned from data. Note: the desired quantity for planning is typically energy,

whereas power is energy per unit time. The energy cost of a path must take into

account the speed of the robot. Therefore, implicit in this work is that power is

measured at a known speed.

To learn the latent terrain function f from data, a map is built from input points

xi and slope θi to power Pi. The data for N points is then collected for the inputs

xi as X ∈ RN×d, the slope Θ ∈ RN and for the power P as P ∈ RN . The data set is

denoted D := {X,Θ,P}.

For standard STGPs, let f ∼ GP(0, k(x,x′)), where c(x) is the prior mean

and k(x,x′) is a symmetric, positive semidefinite kernel. The kernel is used to de-

fine the covariance matrix between inputs in a dataset, K(X,X) ∈ RN×N , where

[K(X,X)]i,j = k(xi,xj) and K(X,X) is positive semidefinite. For this chapter,

we consider the Matern class of kernels with an automatic relevance determination

(ARD) parameterization [84]. The ARD parameterization allows a length-scale hyper-

parameter for each input dimension, which we define as l1, . . . , ld > 0. For extensive

details on Gaussian process regression, see Rasmussen [84].

4.1.2 Multitask GPR for Multirobot Spatial Power Prediction

The formulation for the MTGP is provided for the case of M tasks/robots. We

begin with the heterotopic case, in which the input data for each task may be different.

Similar MTGP formulations can be found in [12, 30], however, ours differs slightly in

that we do not assume that two tasks share the same exact inputs (as this is unlikely
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in the spatial mapping applications).

MTGPs center around the definition of a positive semidefinite matrix B ∈ RM×M ,

that we call the task matrix. The task matrix computes the scaling and correlation

between two tasks. There are many ways of defining the task matrix, including

the free-form parameterization [12] and the spherical parameterization [72, 68, 85].

The free-form parameterization uses the Cholesky decomposition, B = LLT where

L ∈ RM×M is a lower triangular matrix. Unfortunately, the number of parameters

increases as M(M + 1)/2, making log likelihood optimization difficult. As suggested

in [12], we use a rank-T approximation, where B̂ = L̂L̂T where L̂ is an M×T matrix.

The subscripts of (1) and (M) are used to identify first andMth tasks, respectively.

The data for tasks 1 to M are collected as D(1), . . . ,D(M), where N(1) and N(M) are

the number of data points for tasks 1 and M respectively.. The full covariance matrix,

considering the data sets from both tasks, is defined as:

KMT :=


[B]1,1K(X(1), X(1)) . . . [B]1,MK(X(1), X(M))

...
. . .

...

[B]M,1K(X(M), X(1)) . . . [B]M,MK(X(M), X(M))

 (4.2)

where K(X(M), X(1)), for example, defines the covariances for the input data of tasks

1 and M . KMT defines the covariances for every input point within and between each

task, as scaled by B. Importantly, if the off-diagonals of B are 0, then the covariances

between each dataset is 0, resulting in no dependence (and no information transfer)

between the datasets for use in predictions.

Based on the KMT , a power prediction for task j ∈ {1, . . . ,M}, denoted P(j),∗,

given a set of inputs X∗ and slopes Θ∗, can be computed similarly to standard GPR

[12]. For the following, IN×N denotes an N by N identity matrix. Let N∗ denote the

number of target points. The noise variances associated with each task are collated
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as Σ := blockdiag(σ2
(1),ηIN1×N1 , . . . , σ

2
(M),ηINM×NM

) and

Z̄ :=

[
P(1) −G(1)(Θ(1))c(1) . . . P(M) −G(M)(Θ(M))c(M)

]
(4.3)

where G(M)(Θ(M)) is the stacked basis functions g for each θi ∈ Θ.

The probability distribution for the power prediction is then:

p(P(j),∗|X∗,Θ∗,D(1), . . . ,D(M)) = N
(
P̄(j),∗, cov(P(j),∗)

)
(4.4)

where the predictive mean is

P̄(j),∗ : = E[P(j),∗|X∗,Θ∗,D(1), . . . ,D(M)]

= G(j)(Θ∗)c(j) + KMT∗
(
KMT + Σ

)−1
vec(Z̄)

(4.5)

where vec(Z̄) is the vertical stacking of the columns of Z̄ and

KMT∗ :=


[B]1,1K(X∗, X(1))

...

[B]1,MK(X∗, X(M))


T

computes the covariance between the target point x∗ and both data sets. The pre-

dictive variance is

cov(P(j),∗) = cov(f(j)(X∗)) + σ2
(j),ηIN∗×N∗ (4.6)

where

cov(f(j)(X∗)) = [B]j,jK(X∗, X∗)−KMT∗
(
KMT + Σ

)−1
KT
MT∗. (4.7)
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4.1.3 Hyperparameter Selection

For hyperparameter optimization, we consider the isotopic data case in which

X̄ := X(1) = · · · = X(M) and N is the number of data points. For the isotopic case,

the full covariance matrix is expressed concisely as

K̄MT := B⊗K(X̄, X̄) (4.8)

where ⊗ is the Kronecker product. Let Σ̄ := diag(σ(1), . . . , σ(M)). A common way to

select hyperparameters is through optimizing the log marginal likelihood [84], which

in the isotopic multi-task case is [83]:

L =− NM

2
ln(2π)− 1

2
ln|K̄MT + Σ̄⊗ IN×N |

− 1

2
vec(Z̄)T (K̄MT + Σ̄⊗ IN×N)−1vec(Z̄).

(4.9)

The inversion of K̄MT has time complexity of O(M3N3), quickly leading to intractable

optimizations. For the case of isotopic data, methods have been developed to reduced

this complexity through eigenvalue decomposition and properties of the Kronecker

product [83]. For completeness, we include a modified version of the result in [83]

that has been simplified for this case. A full derivation is provided in Appendix C.

Let B̃ = Σ̄−
1
2 BΣ̄−

1
2 and let the eigenvalue decompositions be given by B̃ = UB̃SB̃U

T
B̃

and K(X̄, X̄) = UKSKU
T
K . Then

L =− NM

2
ln(2π)− 1

2
ln|SB̃ ⊗ SK + IMN×MN | −

N

2
ln|Σ̄|

− 1

2
vec(UT

KZ̃UB̃)T (SB̃ ⊗ SK + IMN×MN)−1vec(UT
KZ̃UB̃)

(4.10)

where vecZ̃ = vec(Z̄Σ−
1
2 ). The resulting time complexity is significantly reduced,

at O(M3 + N3). Furthermore, gradients of Eqn. (4.10) can be found for efficient

hyperparameter optimization [83].

84



4.2 Multi-Robot Power Prediction Framework

The overall framework for predicting power consumption along paths with data

from multiple heterogeneous robots is now described. The following assumptions are

made:

Assumption IV.1. Perfect communication between all robots.

Assumption IV.2. Input data, including x and slope θ, are known for training and

testing data.

While there is significant research on dealing with poor communication between

robots, such work is not our focus, leading to Assumption IV.1. Assumption IV.2 is

valid with accurate robot position and if the topography of the environment is known,

for example, through LiDAR or Digital Elevation Maps.

There are two major steps in the framework:

1. Optimization of hyperparameters : An isotopic data set is collected, through

all robots traversing the same path in an environment. The power model,

kernel, and task matrix hyperparameters are found through maximizing the log

marginal likelihood, in Eqn. (4.10). The rank-T approximation of the task

matrix is used, B̂ = L̂L̂T , where T is selected on a case-by-case basis to trade

off computation time and performance.

2. MTGP-NN power prediction: A Subset of Data (SoD) approach is used, in

which the nearest neighboring points to a given candidate path are selected,

with heterotopic data from all robots. The points are then used to compute

the MTGP predictive distribution for power consumption along the path of test

points for a given robot, using Eqns. (4.4)-(4.7). The details of this approach,

which we call MTGP-NN, are provided in Algorithm 2.
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Algorithm 2: MTGP-NN (Step 2)

Input : D(1) ∪ · · · ∪ D(M): data from all robots
XP : Set of candidate paths
k: Number of nearest neighbors per test point
l1, . . . , ld: Input length-scales
j ∈ {1, . . . ,M}: Robot for power prediction

Output: P : Set of power predictions for candidate paths
D ← D(1) ∪ · · · ∪ D(M)

P ← {}
T ← KDTree(D, l1, . . . , ld) % Construct KD Tree using standardized euclidean
distance with all data

for X∗ ∈ XP do
Dp ← {}
for xi ∈ X∗ do
D′ ← FindNN(D,xi, k) % Find k nearest neighbors for each test point
D∗ ← D∗ ∪ D′ % Collect unique data points

% Predict power with Eqns. (4.5),(4.7)
P̄(j),∗, cov(P(j),∗)← MTGPPred(D∗, X∗)

P ← P ∪ {P̄(j),∗, cov(P(j),∗)}
return P

Hyperparameter optimization and prediction are typical for Gaussian process appli-

cations; however, the details of how we perform these steps are particular to the

application of multi-robot power prediction along paths.

Step 1 serves as a calibration step for which the hyperparameters needed for

MTGP are determined. To enable efficient optimization, as described in Section

4.1.3, the data collected is assumed to be isotopic. In general, the robots are likely

to traverse different locations in the environment, leading to heterotopic data sets.

However, an initial calibration data set, consisting of isotopic data in which all robots

traverse the same path, is a reasonable condition for effectively and efficiently learning

hyperparameters.

Step 2 addresses the scalability of power prediction along a path when considering

large data sets. In this case, data between robots is heterotopic, so the efficient com-

putations used in [83] are no longer applicable. However, there has been significant

research into handling large data sets when working with GPs [49]. One simple but
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effective approach is to perform a local approximation, aided by a KD tree [110]. A

KD tree is a data structure that partitions points in a space, allowing for efficient

nearest neighbor search [76]. The approach provided in [110] finds the training points

nearest to a testing point and uses that subset of the training data for prediction.

For robotics applications such as path planning, it is often desirable to predict

costs along a path. Algorithm 2 provides a simple extension of the nearest neighbor

local approximation approach for paths. In summary, using a KD tree, a set of k

nearest neighbor training points to each of the m testing points along a candidate

path (including data from all robots) are used to predict the cost of that path. To

determine nearest neighbors, a standardized euclidean distance is used to account for

the possibility of the d inputs in x having different length scales. To perform this,

the input data is normalized based on the previously optimized length scales of the

kernel, l1, . . . , ld.

The resulting time complexity for MTGP prediction in Algorithm 2 is, at worst,

O(k3m3). However, the actual computation time is typically much lower since many

of the training data points found through nearest neighbor search are redundant.

Additionally, the average time complexity for KD tree search is O(d logNM), where

d is the input dimension and NM is the size of the data set from all robots. While

constructing the tree is slower, at O(dNM logNM), it need only be done once before

a path planning step, and then many paths can be tested based on that tree.

Finding nearest neighbors along the entire path, rather than just for individual test

points, is an important step, as it enables the computation of the joint distribution of

power predictions, provided in Eqn. (4.4). The joint distribution describes the strong

correlations between power predictions along a path. Such correlations are necessary

for computing the uncertainty in the total energy cost of the path [81].
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4.3 Simulation Results

The multi-robot power prediction framework is first evaluated in simulation for

the purpose of comparing computation time and performance of predictions between

STGP, MTGP, and the efficient approximation: MTGP-NN.

For this simulation, there are M = 8 robots that traverse a flat environment

(Θ = 0) for which we let G(Θ)c(j) = c(j), where j is the robot number and c(j) is

a randomly selected constant power. The noise level, σ2
(j),η, for each robot is also

selected randomly. The environment is generated from a random sampling of an

MTGP parameterized by a randomly generated task matrix, B, and a Matern 5/2

kernel [84]. The ground truth map for one robot is shown in Fig. 4.1a (the ground

truth maps are different for each robot). The noise hyperparameters are selected

randomly and are different for individual robots. The inputs are x =

[
x y

]T
with

the length scale hyperparameter, lxy = 5.0, which is the same for all robots. These

parameters, including B are all unknown to the robots, and must be estimated from

data.

As described in the framework, all robots initially collect an isotopic data set by

traversing the same path through the environment, shown by the black dots in Fig.

4.1c. Once this data has been collected, B̂ (using a rank-T = 2 approximation) and

the remaining hyperparameters are found using the isotopic data set and optimization

with respect to Eqn. (4.10). The isotopic optimization took 7.64 seconds. In compar-

ison, without the efficient approach used in Eqn. (4.10), the optimization took 26.24

seconds and achieved the same result. Following the isotopic data set collection and

hyperparameter optimization, the robots separate and follow random paths through

the environment, collecting a heterotopic power consumption data set that is used

for predictions.

To evaluate performance in a uniform manner, a set of 13 candidate paths through

the environment is defined, shown in Fig. 4.1a. The power predictions are evaluated
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Figure 4.1: (a) (a) The ground truth map of power consumption for one robot, robot
j, and the set of 13 candidate test paths (black dots and lines) used for evaluating
performance. (b), (c) The predictive uncertainty for the power consumption of robot
j after 50 time steps using (b) STGP with data from just robot j and (c) MTGP
with data from all robots. All robots initially traverse the same path (black dots)
and the collected isotopic data (black dots) is used for hyperparameter optimization.
The robots then move in random directions for further heterotopic data collection.
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Figure 4.2: Simulation results for (a) root mean squared (RMS) power prediction error
and (b) computation time. Results are averaged over 13 predicted paths through the
simulated environment.

for one robot over the same set of candidate paths throughout the heterotopic data

collection phase. The results, shown in Fig. 4.2, are provided for 3 cases:

1. STGP: the robot uses only its own data for power predictions.

2. MTGP: all data from all of the robots is used.

3. MTGP-NN: a subset of data from all the robots, selected with Algorithm 2 and

a setting of k = 10 nearest neighbors, is used.

Both MTGP and MTGP-NN have similarly good performance, with low error seen in

Fig. 4.2a. As expected, the performance improves quickly for both cases, as it takes

little time for 8 robots to explore the environment. For the STGP, the robot only uses

data that it has collected and ignores data from the other robots. Thus, significantly

more time is needed to reduce error. However, once the robot has explored the

environment, similar performance would be achieved.

While the error for MTGP and MTGP-NN are similar, the computation time is

vastly improved for MTGP-NN, as seen in Fig. 4.2b. The computation of MTGP

increases rapidly, due to matrix inversion of a data set that increases in size by MN
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(a)

(b)

Figure 4.3: (a) Experiment environment with small robot. (b) Large (10 inch wheels
and 15.15kg mass) and small robots (6 inch wheels and 7.25kg mass) used for exper-
iments.

at every time step. In contrast, the computation time of MTGP-NN increases slowly,

due to the KD tree build and search times. MTGP-NN uses the data relevant to

candidate path predictions much more efficiently.

4.4 Experimental Results

4.4.1 Experimental Setup and Data Preprocessing

The MTGP-NN strategy was tested on the experimental dataset used in Chapter

III. The make use of the dataset from the small robot shown in Fig. 4.3b, as well

as the dataset from the large robot. To review, the two robots traversed 20 straight-

line paths through the environment seen in Fig. 4.3a. The robots were remotely

controlled by a user to move along the predefined path. The position of the robots

was measured by an absolute localization system (Pozyx NV, Ghent, Belgium) using

4 anchors placed around the environment. A Pozyx tag was placed on the robot,
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allowing for both tracking and measurement of the attitude angle (roll, pitch and

yaw) through an inertial measurement unit.

The sampling frequency of the system was 10Hz, which leads to a rapidly increas-

ing number of data points. To address this problem, the data was decimated (filtered

and downsampled), as described in Chapter III, to a desired ”sampling length,” which

was set to be 0.8[m]. This preprocessing step greatly reduces the dimensionality of

the data, with little loss of useful information.

4.4.2 MTGP Setup and Hyperparameter Optimization

For the MTGP, a Matern 5/2 kernel was used again, and the inputs were x =[
x y cos(ψ) sin(ψ) s(x, y)

]T
where s(x, y) is the pixel intensity of a satellite in-

put at position x, y and ψ is the heading of the robot, which is projected onto the

unit circle. Let lxy, lψ, ls > 0 be the length scales associated with inputs. During

optimization, ls was held at 0.3. For the power model, let g(θ) =

[
1 θ

]T
. Since

there are 2 robots, we let B = LLT with no approximation.

For the results presented here, the hyperparameters are optimized using a separate

data set that was collected similarly to the data set shown in Fig. 4.4a, but on a

different day. The optimization problem was small enough to allow for heterotopic

marginal likelihood optimization.

The optimized hyperparameters are shown in Table 4.1. Interestingly, for the

task matrix B, the optimal correlation between the tasks was found to be very high

(≈ 1.0). However, this is countered by the high noise level for the large robot, which

limits the effect of information transfer between robots.

4.4.3 Spatial Mapping

A qualitative comparison is provided for the spatial maps produced using standard

STGPs with the data collected by both robots. Figure 4.4 depicts the predictive mean
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Hyperparameter Large Small
lxy 1.47 1.47
ls 0.3 0.3
lψ 4.45 4.45

c(j)

[
22.15
83.58

] [
9.10
39.31

]
σ2

(j),η 3.85 0.45

B

[
4.15 3.53
3.53 3.01

]
Table 4.1: Optimized hyperparameters for MTGP

of power over the environment for both robots. Clearly, the concrete section of the

environment is less costly to traverse than the grass and compact dirt areas. Both

Figs. 4.4b and 4.4c have similar trends (i.e. a higher cost terrain for one robot is

likely to be higher cost for the other robot). This fact indicates that the robots

are good candidates for MTGP through their strong correlations. Furthermore, it is

interesting to note that while the large robot consumes much more energy than the

smaller robot, the ratio between the highest and lowest predicted power is ≈ 1.2 for

the large robot and ≈ 1.9 for the small robot. In other words, the small robot is

much more sensitive to the changes in the terrain than the large robot. However, the

differences in the terrain are still noticeable, in terms of power consumption, for the

large robot.

4.4.4 MTGP-NN Evaluation

The performance of MTGP-NN is now evaluated in terms of the accuracy of power

predictions. For the following results, k = 20 nearest neighbor points were used for

Algorithm 2. First, Fig. 4.5 shows the credible intervals for power predictions in

both the MTGP-NN and STGP cases. In Fig. 4.5a, the power is predicted for the

small robot, using only data from the large robot’s mapping of the environment.

Similarly, Fig. 4.5b shows the predicted power for the large robot, only using data

from the small robot. In both cases, MTGP-NN appears to reduce uncertainty over
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Figure 4.4: (a) Top-down grayscale satellite image used to define the s(x,y) input.
Data collected on both the small (green) and large (red) robots are overlaid. (b),(c)
STGP predictive mean over the environment with θ = 0 using data from the (b) small
robot and the (c) large robot.
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Figure 4.5: Power prediction 95% credible intervals (CI) for (a) small robot using only
data from the large robot and (b) vice versa. Test points are given by black dots.
Note that data are from 10 separate paths for each robot and have been concatenated
together.

STGP. There are outlier test points that are not well captured by either STGP or

MTGP-NN.

A more quantitative comparison is provided in Fig. 4.6. The following case is

evaluated: predictions are made for robot A, given all the data on the environment

from robot B, and varying levels of data from robot A. The following testing procedure

was used to evaluate the aggregate performance of STGP and MTGP-NN over varying

levels of data:

1. A set of training paths (ranging from 0 to 7 paths) were randomly selected from

the small robot’s data set to be included in predictions.

2. A set of 10 testing paths from the remaining data set of robot A were ran-
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Figure 4.6: Power prediction error as more training data is added, with ±1 standard
deviation over 100 randomized tests. (a) Error for the small robot, in which MTGP-
NN uses the entire data set from the large robot, and the number of paths included
from the small robot’s data set increases. The STGP case uses only data from the
small robot. (b) Error for the large robot.

domly selected and the STGP and MTGP-NN power predictions were compared

against this testing set.

3. Steps 1 and 2 were repeated 100 times for each ”number of paths” in the x-axis

of Figs. 4.6a and 4.6b.

The testing procedure allows evaluation of predictive performance specifically with

respect to paths. Each randomized test took approximately 0.01 seconds of compu-

tation time for MTGP-NN.

The results in Fig. 4.6 clearly demonstrate that, through MTGP-NN, using data

from the large robot improves performance, particularly when the small robot has

less data from the specific environment. However, as the robot collects more data

(the number of paths traversed in the environment increase), the difference in per-

formance between STGP and MTGP-NN is smaller. This results shows the utility of

information sharing when data on the environment is limited.

The same testing procedure was repeated for making predictions with the large

robot, using the small robot’s data set. Corresponding results are provided in Fig.
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4.6b. While the improvement in performance for MTGP over STGP is clear, the

difference is less significant than for the small robot. This follows from the fact that

the large robot is less impacted by variations in the terrain, and the power difference

between concrete and grass is less significant than for the small robot.

4.5 Conclusions and Future Work

In this chapter, a multi-robot power prediction framework for heterogeneous ground

robots, based on MTGP, was proposed. Simulation results demonstrate the improved

performance and efficiency of the approach in scaling the number of robots and data

points. Experimental results provided a demonstration that the sharing of data be-

tween robots can significantly improve prediction accuracy, particularly when one

robot has little data on the environment.

One major challenge with modeling off-road terrain is its irregularity, sometimes

leading to brief spikes in power consumption (e.g. hitting a rock that was previously

missed by the robot). This challenge motivates the development of further robust

methods that better handle outliers, such as using a Student-t process [94], rather

than a Gaussian process. Additionally, our work assumes that all robots can traverse

over the same parts of the environment, there are scenarios in which some robots may

be able to traverse terrain that other robots can not. Handling such a scenario would

provide an interesting and useful extension of the presented framework.

Heterogeneous robot predictions also have fascinating implications in planning.

For example, the large robot used in the experiments is less impacted by variations in

the terrain. It can however, detect such variations and inform the small robot of ter-

rain that is likely to be very costly for it. Under the MTGP framework, the resulting

predictions could be naturally incorporated into planning. Planning strategies that

take advantage of this can improve performance over the multi-robot system.
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CHAPTER V

Conclusions and Future Work

5.1 Conclusions

Energy is a central aspect of robot platforms and must be considered in both

robot design and operation. During operation, such as in missions of reconnaissance

or exploration, energy requirements are highly uncertain due to the complex nature

of environments. Energy cost prediction and, subsequently, planning strategies must

account for the significant uncertainty in off-road environments. To do this, methods

that take advantage of both prior knowledge and data collected during operation

must be developed.

This dissertation has contributed methods that begin to address these problems

through spatial mapping, reachability, and multi-robot information sharing. In sum-

mary, we have shown that:

1. Spatial mapping of collected power consumption data can be used to signifi-

cantly improve the accuracy of path energy cost predictions, while accounting

for uncertainty in predictions.

2. Path energy cost predictions can be used to improve the computation of a

robot’s reachability in an environment with significant uncertainty.
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3. Terrain cost information can be shared between heterogeneous robots in order to

improve predictive accuracy and reduce the time needed to map an environment.

One important conclusion of this work is that, to make accurate predictions with

uncertainty, correlations in costs must be considered. Predicting the total cost of a

path involves the summation of individual costs along that path. Many prediction

and stochastic planning approaches consider those individual costs to be independent.

However, that assumption can lead to very overconfident predictions. Furthermore,

overconfidence often results in poor decision-making (in robotics applications and

beyond). By considering that costs along a path are correlated, a more reasonable

quantification of uncertainty can be obtained.

Many other factors can lead to poor predictions. A common dilemma is deciding

what modeling approach to use on the spectrum of purely physical to purely data-

driven. There is, of course, no approach that is best for every system. Data-driven

modeling can be advantageous when the physical system is complex and poorly un-

derstood. However, a physical model can effectively provide a general form for the

data-driven model to fit. Otherwise, the data-driven model may require significant

amounts of data to be effective. In the case of off-road energy prediction, a data-

driven approach (Gaussian process regression) was used for spatial mapping, while

both physical and data-driven models were considered for vehicle specific factors.

While the physical model required much less data to make more accurate predictions,

it also tended to be more over-confident than the data-driven model. Computation

time is also a major consideration in model selection, particularly in robotics, where

learning is expected to be fast. For example, a data-driven approach may be more

flexible, however, many such methods require significant time for training, with few

guarantees on convergence.
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5.2 Real-Time System Implementation

The energy prediction strategy presented in this dissertation was evaluated off-line

with experimentally collected data. Implementation on an online, real-time system,

requires that the dataset be effectively managed to avoid excessive computation time.

As discussed previously, the computation time of GPR prediction grows as O(n3),

where n is the number of data points. Without proper data management, prediction

of energy costs would quickly become infeasible as a robot collects more data. There

is a significant body of research on GPR with large data sets [49] which could aid in

this problem. In Chapter IV, we described a strategy specific to making efficient path

energy cost prediction. In short, the strategy uses a subset of the data comprised of

the nearest neighbors to the candidate path. The number of data points included in

the prediction can be tuned to trade-off computation time and accuracy. Simulation

results in Chapter IV, Fig. 4.2, showed that computation time for a candidate path

using this strategy is quite low (under 0.003 seconds), with similar error as using

the whole dataset. Theoretical bounds on error and computational complexity for a

related strategy of truncating the dataset have been shown by Xu et al. [118]. In

practice, our path energy cost prediction strategy could be applied to robotic path

planning via commonly used graph-based algorithms such as RRT* [42] or A*.

Local subsets of the full data set are particularly useful for predicting the energy

cost of a given path. Some path planning strategies, however, are based on a pre-

computed set of cells on a costmap [62] in which a full map of the environment, given

all the data, must be maintained. The computation time for the full spatial map of

the experimental environment, provided in Chapter III, Fig. 3.3a, was about 0.26

seconds. To update the map in real-time, cells in the costmap can be recomputed as

more data on energy costs is collected. To avoid unnecessary computation, only cells

that are close to the new data should be updated, and those cells should be updated

with a local subset of data.
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A further challenge is that data can accumulate rapidly if the sampling rate of

the system is high. Chapter III provides a decimation strategy in which the data is

filtered and downsampled to a desired sampling length, before use in training and

prediction. The sampling length can be set by a user, for example, based on the size

of the robot. In practice, this has allowed for a significant reduction in computation

time with little impact on performance.

5.3 Future Directions

There are several interesting directions that the research presented in this disser-

tation could take, both with respect to the theory and applications of spatial mapping

for energy prediction, reachability, and multi-robot power prediction. Several areas

of active research currently exist that could benefit from the contributions of this

dissertation. A few of such directions are provided here:

• Metrics other than energy: While this dissertation focused on energy, the meth-

ods developed have implications for other metrics, such as time or risk of de-

tection by an adversary. In some scenarios, completing a mission or task in

minimum time is more important than minimum energy. However, a robot’s

maximum speed is dependent on the terrain. A methodology similar to our en-

ergy prediction methodology may be used to predict the time needed to traverse

a path, or the time-limited reachability of the robot.

• Non-Gaussian distributions: A rigorous quantification of uncertainty in robotics

will inevitably crash into computational problems. While methods such as

Markov chain Monte Carlo are very effective for understanding probability in off-

line applications, applications in robotics typically require real-time predictions

and decision-making. The work in this dissertation has largely focused on using

Gaussian process regression as a tool for tractable analytical prediction. Due to
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their analytical advantages and reasonable approximation of the data, Gaussians

are commonly used in stochastic planning problems [47, 21]. However, the

unstructured nature of off-road environments makes outliers in the data likely.

Further research could explore using robust methods of handling outliers. For

example, the Student-t distribution and the Student-t process [94] have heavier

tails than the Gaussian distribution, allowing for better modeling of outliers.

• Robotic mission planning: Informative path planning (IPP) is a type of robotic

planning in which a robot must efficiently gather information, possibly subject

to a budget (such as energy or time) [10, 119, 105]. IPP is an active area of

research, with numerous formulations and solutions for single and multi-robot

problems. However, the budget is typically used in a known, deterministic man-

ner. For example, many formulations constrain the robot by distance travelled.

By expanding the reachable space using data collected during the mission, as

demonstrated in Chapter II, better performance than näıve distance-based ap-

proach could be achieved in an IPP task, while maintaining robustness. The

direct application of these methods to IPP problems remains future work, and

the results and conditions of performance improvements have not yet been ex-

plored.

• Multi-robot planning: The results in Chapter IV provide a framework for power

prediction with multiple heterogeneous robots. Many robotic mission planning

algorithms assume that robots are homogeneous. Robot heterogeneity, how-

ever, is a growing area of interest due to practical necessity and the utility of

robots with different capabilities [58, 112, 86, 91, 54]. Under the framework of

Chapter IV, robot heterogeneity can be an advantage in robotic mission plan-

ning algorithms. The framework could be used to enable automatic replanning

if, for example, a large robot discovers terrain that is likely to be very costly
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for a small robot. Resources (or robots) could subsequently be allocated more

efficiently based on shared information.

• Aerial and marine robots: In addition to ground robots in off-road environ-

ments, there are similar energy dependent applications for autonomous marine

robots [101, 102] and aerial robots [24]. For marine and aerial applications,

there are ocean currents and wind fields, respectively, that are spatially and

temporally varying, as well as uncertain. Optimal planning under uncertainty

is the subject of ongoing research in these applications [102], and the methods

developed in this dissertation could be extended for flow fields. For example,

consider a heterogeneous team of quadcopters performing a task. By spatially

mapping a wind field through multi-task Gaussian processes, information about

the field could be transferred between the robots. Furthermore, smaller quad-

copters could avoid particularly windy areas that have been observed by a larger

quadcopter, saving energy.

• Vehicle modeling: The work in this dissertation used a simple longitudinal ve-

hicle model for understanding power consumption, whereas the research contri-

butions focused on spatial mapping. However, the literature on the modeling of

vehicle dynamics and power consumption is vast [115, 82]. Energy predictions

based on spatial mapping are likely to benefit from thorough modeling research,

especially by accounting for factors specific to the type of vehicle. For exam-

ple, Salama et al. [89] provide longitudinal modeling for UGVs that accounts

for tire slippage for the purpose of energy efficiency. Dogru and Marques [27]

model turning on a skid-steered robotic platform. Additionally, larger slopes

have impacts on energy consumption that are vehicle specific, e.g. regenerative

breaking. The wealth of knowledge in vehicle modeling should be leveraged for

future systems that perform spatial mapping and prediction.
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• Additional prior information: Grayscale satellite imagery was used in this re-

search to help inform discontinuities between different terrains. In general,

however, there are many different sources of information that could be useful

for more accurate energy prediction. Such sources could include full RGB data

[62], or segmentation of the environment based on camera imagery [59]. Fur-

thermore, soil moisture content is known to have an impact on wheel-terrain

interaction, often leading to increased energy consumption. Prior information

(such as on weather conditions) would likely improve predictions.

These future directions address both research questions and the necessary practi-

cal considerations for applying the methods presented in this dissertation to robotic

systems being developed for real-world applications. It is both exciting and daunting

to consider the difficult problems, in both theory and applied settings, that remain

to enable robust operation of autonomous robots in realistic, complex environments.
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APPENDIX A

Path Predictions for Sparse Data and Varying

Hyperparameters

This Appendix provides further results related to Chapter III through additional

path predictions in the case of sparse data. The results are shown in Fig. A.1. The

LVM maintains an advantage over the DPM in providing improved PLL, showing

that the vehicle modeling can aid predictions when data is sparse.

Further results for varying hyperparameters are provided in Fig. A.2. Varying

the prior mean c is most significant in its effect on the prediction with no data, as

seen in Fig. A.2a. A higher prior mean (which is interpreted as the rolling resistance

coefficient in the LVM case) results in higher predicted energy costs. As paths are

added to the data set, however, the disparity between predictions with different prior

means is reduced. Thus, the prior mean is extremely important is cases where data

is very sparse. But the prior is quickly overwhelmed by the data.

The spatial length-scale lxy has a nuanced impact on predictions, shown in Fig.

A.2b. A higher lxy increases the distance over which two GP inputs are highly cor-

related. The correlations effect the variance of the path energy cost prediction in

Eqn. (3.14), specifically through summation over the off-diagonal elements of cov(P∗).
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Figure A.1: Predicted path energy costs for LVM (blue) and DPM (red) models as
data from traversed paths is added. The average PLL over the 6 predictions in each
model are (better performance is in bold): (a) Path 3; LVM: -3.70, DPM: -4.86 (b)
Path 4; LVM: -6.04, DPM: -6.09 (c) Path 6; LVM: -3.96, DPM: -4.27 (d) Path 12;
LVM: -3.56, DPM: -4.10
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When no paths have been added to the data set, the higher correlation results in in-

creased uncertainty. However, the uncertainty is reduced when path 10 is added to

the data set. The larger lxy increases the distance over which path 10 provides in-

formation, causing a greater change in the mean prediction over smaller lxy values.

Varying the other length-scale hyperparameters (ls, lθ is mathematically similar to

varying lxy and lψ). The practical effects of doing so may be different and are not

explored here.

A higher noise variance σ2
η also increases uncertainty in predictions, as shown in

Fig. A.2c. Increased uncertainty happens in two different ways: First, by reducing

the impact of new data in the GP variance prediction of Eqn. (3.7). Second, by

increasing the uncertainty of the predicted power, as in Eqn. (3.11).
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Figure A.2: Effect of hyperparameters on the prediction of Path 6 using LVM. (a)
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η.

109



APPENDIX B

Path Energy Prediction Results on a Large Robot

This Appendix provides a further set of experimental results related to Chapter

III. A similar experiment to the experiment described in Chapter III was performed

in the same environment on a larger robot (SuperDroid Robots, IG42-SB4-T, 4WD).

The results of the leave-one-path-out cross-validation are shown in Fig. B.1b and

Table B.2. The spatial length-scale hyperparameter was bounded from above during

optimization as lxy ≤ 10. This is due to relatively small variations in terrain costs for

the large robot, leading to a large lxy under log marginal likelihood optimization. As

with the small robot, the spatial mapping methodology shows an improvement over

the baseline energy prediction. The improvement is somewhat less drastic than for

the small robot because the large robot was less impacted by variations in the terrain,

leading to more accurate baseline LVM predictions.

Parameter Small Robot Large Robot

u 0.457 m
s 0.435 m

s
m 7.25 kg 15.15 kg

aaccel 0 m
s2

0 m
s2

CI 9.0 N 30.0 N
bint 0.76 W 1.11 W

Table B.1: Physical parameters used for LVM
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GP Kernel
Model Inputs Mean abs. % error Mean PLL

DPM Baseline 19.08 -5.86
x, y, s 20.14 -9.05

x, y, ψ, s 3.14 -4.32
x, y, θ, s 5.83 -5.21
x, y, ψ, θ, s 3.65 -4.39

LVM Baseline 7.14 -5.13
x, y, s 6.70 -6.28
x, y, ψ, s 3.86 -4.58
x, y, θ, s 5.53 -5.34
x, y, ψ, θ, s 3.87 -4.50

Table B.2: Mean absolute percent error and mean PLL in path energy cost prediction
(best performance highlighted green). Results are shown for Ma1/2.
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Figure B.1: (a) Grayscale top-down satellite image of the experiment environment
used to define the GP input s, along with the paths traversed by the large robot. (b)
Boxplot percent error for the 20 path cross-validation results with the large robot. The
boxplot show the baseline LVM prediction result (baseline DPM has much higher er-
ror), as well as results when using different inputs to the GP (e.g. x, y, s, or x, y, θ, ψ, s,
etc.).
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APPENDIX C

Derivation of Multi-Task Log Marginal Likelihood

Through Eigendecomposition

The derivation of Eqn. (4.10) is provided in this appendix. The derivation is anal-

ogous to that of [83], though we provide more thorough details for clarity. We show

also the case of noise that is independent between tasks (rather than the structured

noise shown in [83]).

Recall that K̄MT := B ⊗ K(X̄, X̄) and the log marginal likelihood [84] in the

isotopic multi-task case is [83]:

L =− NM

2
ln(2π)− 1

2
ln|K̄MT + Σ̄⊗ IN×N |

− 1

2
vec(Z̄)T (K̄MT + Σ̄⊗ IN×N)−1vec(Z̄).

(C.1)

Let B̃ = Σ̄−
1
2 BΣ̄−

1
2 . In the derivation, the following properties are used [71]:

(A⊗B)(C⊗D) = AC⊗BD

vec(AXB) = BT ⊗Avec(X)

|A⊗B| = |A|rank(B)|B|rank(A)
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(A⊗B)−1 = A−1 ⊗B−1

Then,

L =− NM

2
ln(2π)

− 1

2
ln|(Σ̄

1
2 ⊗ IN×N)(B̃⊗K(X̄, X̄) + IM×M ⊗ IN×N)(Σ̄

1
2 ⊗ IN×N)|

− 1

2
vec(Z̄)T (Σ̄−

1
2 ⊗ IN×N)(B̃⊗K(X̄, X̄) + IM×M ⊗ IN×N)−1(Σ̄−

1
2 ⊗ IN×N)vec(Z̄).

=− NM

2
ln(2π)− N

2
ln|Σ̄| − 1

2
ln|B̃⊗K(X̄, X̄) + IM×M ⊗ IN×N |

− 1

2
vec(Z̃)T (B̃⊗K(X̄, X̄) + IM×M ⊗ IN×N)−1vec(Z̃).

(C.2)

where vecZ̃ = vec(Z̄Σ−
1
2 ). The eigenvalue decompositions are then given by B̃ =

UB̃SB̃U
T
B̃

and K(X̄, X̄) = UKSKU
T
K . Using that fact that UB̃ and UK are orthogonal

matrices,

B̃⊗K(X̄, X̄) + IM×M ⊗ IN×N

=UB̃SB̃U
T
B̃
⊗ UKSKUT

K + IM×M ⊗ IN×N

=(UB̃ ⊗ UK)[SB̃ ⊗ SK + (UT
B̃
⊗ UT

K)(UB̃ ⊗ UK)](UT
B̃
⊗ UT

K)

=(UB̃ ⊗ UK)[SB̃ ⊗ SK + IM×M ⊗ IN×N ](UT
B̃
⊗ UT

K)

(C.3)

Finally, substituting Eqn. (C.3) into Eqn. (C.2):

L =− NM

2
ln(2π)− 1

2
ln|SB̃ ⊗ SK + IMN×MN | −

N

2
ln|Σ̄|

− 1

2
vec(Z̃)T (UB̃ ⊗ UK)(SB̃ ⊗ SK + IMN×MN)−1(UT

B̃
⊗ UT

K)vec(Z̃)

=− NM

2
ln(2π)− 1

2
ln|SB̃ ⊗ SK + IMN×MN | −

N

2
ln|Σ̄|

− 1

2
vec(UT

KZ̃UB̃)T (SB̃ ⊗ SK + IMN×MN)−1vec(UT
KZ̃UB̃)

(C.4)
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