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Abstract

Wireless sensor networks (WSNs) consist of small autonomous processors spatially

distributed, typically with the goal of gathering physical data about the environment

such as temperature, air pressure, and sound. WSNs have a wide range of appli-

cations including military use, health care monitoring, and environmental sensing.

Because sensors are typically battery powered, algorithms for sensor network models

should not only seek to minimize runtime but also energy utilization. Specifically, to

maximize network lifetime, algorithms must minimize the energy usage of the sensors

that use the most energy in the network.

In extremely dense networks it may be inefficient for sensors to communicate

with all neighboring sensors on a consistent basis, especially in mobile wireless sensor

networks (MWSNs) where the topology of the network is constantly changing. Sensors

conserve energy by going into a low-energy sleep state, and in our algorithms sensors

will be asleep for the vast majority of the total runtime. Algorithms under these

conditions face additional challenges because of the increased difficulty of coordinating

between sensors. Because of the spatial nature of sensor networks, geometry problems

are often of particular interest. For example, to detect outliers, data is often compared

with the nearest neighboring sensors.

In this dissertation we provide algorithmic techniques designed for divide-and-

conquer solutions to computational geometry problems. We provide a technique for

x



coordinating divide-and-conquer algorithms in a single-hop setting called breadth first

recursion. We use this technique to sort data and to find the convex hull. Although

most WSNs are multi-hop networks, locally very dense, expansive networks resemble

single-hop networks. Thus we use algorithms for single-hop networks as a building

blocks for multi-hop algorithms with α-consolidation algorithms. We then provide

α-consolidation algorithms for all points k-nearest neighbors, the coverage boundary,

and the Voronoi diagram.

We also analyze the WSN problem of propagating data to a high-energy base

station. Clustering approaches, such as low-energy adaptive clustering hierarchy

(LEACH) and its multi-hop variant (MR-LEACH), are extremely popular for data

propagation. The energy balanced protocol (EBP) is a clustering approach like MR-

LEACH where clusters pass data towards the base station but also, with some prob-

ability, send data long distances directly to the base station. We analytically and

empirically show that EBP is close to optimal while approaches that do not use long

hops like MR-LEACH are only close to optimal if sending messages long distances is

prohibitively expensive.
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Chapter I

Introduction

1.1 Overview of Wireless Sensor Networks

Wireless sensor networks (WSNs) are networks containing many small autonomous

processors that are spatially distributed, typically with the goal of sampling data from

the environment such as temperature, air pressure, and sound. Sensors are equipped

with radio transceivers and typically communicate via a small number of broadcast

channels. WSNs have use in many diverse applications including ecological studies

[20], military intelligence [54], robotics [35], and health care monitoring [41]. Of-

ten sensors are placed in remote or even dangerous locations, so maintaining sensor

longevity is critical. Longevity is typically determined by battery lifetime, hence

energy dissipation is a primary concern [26, 40, 49]. To this end, sensors are often

designed to have a low energy sleep state where messages cannot be sent or received

but energy consumption is drastically cut [14].

Data gathered by sensors is often sent, either directly or through intermediate

sensors, to a high-power base station which acts as a gateway between sensor nodes

and the end user [4, 5]. Clustering approaches, such as low-energy adaptive clustering

2



hierarchy (LEACH) [22] and its multi-hop variant (MR-LEACH) [17], are extremely

popular for data propagation. The energy balanced protocol (EBP) [15] is a clustering

approach like MR-LEACH where clusters pass data towards the base station but also,

with some probability, send data long distances directly to the base station.

In Chapter IV we analyze the exact cost of optimal data propagation with the

goal of extending network lifetime. We show that EBP is close to optimal and that

other approaches that use only short hops such as MR-LEACH are only close to

optimal if transmitting long distances is prohibitively expensive. In large expansive

networks, transmitting data to a powerful base station may be too expensive in terms

of energy, as our analysis in Chapter IV shows, and in other cases such base stations

may not even exist [45]. In these situations sensors do computations to analyze data

and manage the network in a distributed manner on the network itself.

Creating distributed algorithms on wireless sensor networks presents additional

challenges because of the added energy constraints. In particular, coordinating pro-

cessors is much more difficult because sensors are asleep for the vast majority of the

algorithm’s runtime. In Chapter II, we present breadth first recursion as a framework

for executing recursive algorithms where the runtime of each recursive call is random

or data dependent in single-hop networks. Although single-hop networks are rare in

practice we use single-hop algorithms as building blocks for creating multi-hop algo-

rithms in Chapter III, where we present consolidation algorithms. In consolidation

algorithms sensors are involved in multiple overlapping single-hop regions where they

compute a local solution to the problem. Then once all the local solutions are gener-

ated these solutions are consolidated into a single global solution. Both breadth first

recursion and consolidation algorithms are specifically designed to assist in divide-

and-conquer algorithms. Divide and conquer algorithms are specifically relevant in

wireless sensor networks because many computational geometry problems can typi-

3



cally be solved using divide-and-conquer [44].

Due to the spatial nature of the way sensors are distributed, geometric problems

are often relevant in WSNs. For example, sensors may compare data with nearby

neighboring sensors to determine outliers [33]. As another example, in [53] sensors

are used to monitor the boundary of some environmental contaminant. Also in [1] the

Voronoi diagram is used to optimize deployment of sensors to maximize the coverage of

an area of interest. We provide fast, energy-efficient solutions for these computational

geometry solutions in Chapters II and III.

The breadth of problems and areas of study relevant to WSNs is particularly

expansive. Localization, which is the process of determining sensor position relative

to neighboring sensors, is important because sensors are often not equipped with

expensive GPS technology [36]. Clock synchronization and managing clock drift is

critical for managing sleep wake-up schedules [52]. Clustering sensors helps conserve

energy by combining data into larger packets [8, 19]. Radio interference detection [60]

and medium access control protocols [57] are often used to manage the radio broadcast

channels. Because adversaries may have easy access to the radio channel being used

or even the sensor devices themselves, security is particularly important in WSNs,

especially in military settings [11]. Because sensors are small and low cost, hardware

failures are inevitable and for this reason algorithms for WSNs are often designed

to be fault tolerant in the case that one or multiple sensors go down [2]. While we

consider these problems when creating our model and when discussing future work,

they are beyond the scope of the main work of this dissertation.
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1.2 Model Assumptions and Justifications

Throughout this dissertation we primarily use two major WSN models, a broad-

cast model and a message-passing model, and consider different variants of both

models. The broadcast model is used in Chapters II and III and the message-passing

model is used in Chapter IV. The primary difference between the two is that the

message-passing model assumes use of a medium access control (MAC) protocol which

allows for direct communication between sensors, and the broadcast model does not.

Instead, in the broadcast model transmissions are sent to all sensors within range and

may possibly interfere with other simultaneous broadcasting sensors.

There are two major categories of MAC protocols, contention-based and schedule-

based. In contention-based MAC protocols there are contention windows where sen-

sors use backoff to vie for each transmission slot. On the other hand, schedule-based

MAC protocols where each transmission slot is assigned for a message to be sent at

regular intervals. In Chapter IV we analyze different protocols for propagating data

generated by sensors to a high-energy base station. In the data propagation protocols

we analyze each sensor only sends messages to a small number of other sensors and

these messages are repeated each time data is generated. Thus it is practical to use

a schedule-based MAC protocol in this scenario.

In Chapters II and III we analyze distributed algorithms on very large, dense

WSNs such as Smart Dust [28]. In such networks, transmitting data to a powerful

base station may be too expensive in terms of energy, and in other cases such base

stations may not even exist [45]. In distributed algorithms, communication patterns

are far more unpredictible in terms of which sensors interact. Additionally, interact-

ing with all neighboring sensors may be far too expensive in terms of energy and if

the network topology is changing over time this further complicates communication
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protocols. This means that establishing MAC protocols will be much less practical

in this scenario. Furthermore, MAC protocols typically do not fully use the broad-

cast capability of the radio channels. That is, sensors are not able to broadcast to

small varying subnetworks. In Chapters II and III we utilize partial broadcasts to

subnetworks and thus our broadcast model does not use a MAC protocol.

The following is a more formal list of assumptions our models make and jus-

tifications for these assumptions. Additionally, Table 1.1 provides quick reference

comparing the broadcast and message-passing models.

Homogeneous network: All sensors have the same battery life and are identi-

cally configured except for a O(log n) bit unique ID. The sensors’ IDs are not neces-

sarily 1, . . . , n and the sensors may not even know n. These IDs are primarily only

used for identification but in Subsection 3.2.2 we use the unique IDs to help resolve

the hidden node problem.

For each sensor there is a point in R2 representing that sensor’s location which

may or may not be known by the sensor. There has been some work with sensors

in three-dimensional space [27], however applications where the third dimension is

relevant are uncommon and algorithms for two dimensions are much simpler [7].

In the message-passing model there is a powerful base station which is only used

as a sink for sensors to send data to. In the broadcast model there are no powerful

base stations in the network.

Low-energy sleep state: In terms of the energy needed per operation, broad-

casting is the most energy intensive, receiving is the second-most intensive, and cal-

culations are third. To limit energy usage, sensors often have a very low energy sleep

state with no communication and limited processing. For instance the ZigBee mi-

crocontroller uses 9,300 µA of current while active, and only 4.18 µA while in deep

sleep [14]. We do not assume that sleeping sensors can be woken up by other sensors

6



on command. Thus a sensor must determine the duration that it will sleep before

entering the sleep state, and it stays asleep for that entire duration.

By the energy dissipation of a sensor we mean the energy in excess of that of

the sleeping state and assume this is proportional to the time the sensor is awake.

Particularly we care about minimizing the maximum energy dissipated by any sensor,

since the sensor using the most energy drains its battery the quickest.

Broadcast vs. message passing: Sensors are typically equipped with a radio

transceiver that can send and receive broadcasts among a small number of radio chan-

nels, and typically only a small number of channels are used to reduce radio spectrum

pollution. Our results generalize for some small number of broadcast channels but

for simplicity we assume only one channel is available.

Often sensors coordinate usage of the broadcast channel using a medium access

control (MAC) protocol [57]. There are two main categories of MAC protocols: con-

tention based and schedule based. In contention-base MAC protocols there are con-

tention windows where sensors use backoff to vie for transmission slots. On the other

hand, in schedule-based MAC protocols each transmission slot is assigned to be used

by specific sensors at regular, predetermined intervals. While MAC protocols do usu-

ally allow sensors to broadcast to all other sensors they usually do not fully utilize

the broadcast capability of the radio transceivers. That is, they do not allow sensors

to broadcast to varying small subnetworks while the rest of the network sleeps.

The primary difference between our two models is the usage of a MAC protocol.

The broadcast model does not use a MAC protocol and allows for broadcasts to all

nearby listening sensors. The message-passing model does use a MAC protocol and

assumes sensors can send messages to other individual sensors.

We assume that a transceiver can send and receive only small O(log n) sized

packets in unit time. That is, the “word size” of our models are O(log n) to allow IDs

7



to be sent in constant time.

Radio interference detection: For the message-passing model the MAC pro-

tocol already ensures that no messages will interfere, so radio interference is only

relevant to the broadcast model. If two or more sensors within broadcast range of

a listening sensor broadcast at the same time then these transmissions will interfere

with each other and the listening sensor will hear neither message. This is often called

a collision. Collision detection is an important area of study and we assume some

method such as in [60] is being used. While listening a sensor may either receive no

broadcast, a single broadcast, or interference, and can distinguish between the three.

Sensors can broadcast and listen at the same time, meaning a broadcasting sen-

sor can detect if some other sensor within broadcast distance is also broadcasting

simultaneously. It cannot, however, read this message because of the interference. In

a multi-hop network it is also possible for there to be interference for some sensors

within broadcast range but for the broadcasting sensor not to hear interference. If

a sensor just further than rc away broadcasts simultaneously then the broadcasting

sensors will not hear interference but the sensors in between will hear interference.

Fixed vs. variable transmission distance: Radio transceivers are typically

able to transmit at varying broadcast strengths. For the broadcast model we assume

that this broadcast strength is fixed and thus the communication radius rc is also

fixed.

For the message-passing model we consider the data propagation problem and in

this problem deciding how far to send the data each sensor has is the main focus of

the problem. Thus in the message-passing model we allow transmission distance to

be variable, where the energy cost E(d) for transmitting unit-sized data d distance is

E(d) = e0 + etd
α
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where e0 is the cost to run the transmitter circuitry, et is the coefficient of energy cost

due to transmission amplification, and α is the path loss exponent. We assume that

e0 and et are positive constants and α is a constant between 2 and 4. In practice e0

is about 50 nJ/bit and et is about 100 pJ/bit/mα [22]. In an ideal environment with

a perfectly clear radio channel we have α = 2, but due to multi-path loss α is higher

in realistic scenarios [39].

Notably, in the message-passing model we ignore the energy for receiving messages

because, as will be discussed in Chapter IV, the vast majority of data a sensor sends in

the data propagation setting has been received from another sensor. Thus to account

for energy spent receiving data one simply needs to add this energy cost to the e0

term.

Single-hop vs. multi-hop network: In the broadcast model with fixed broad-

cast radius we will use both a single-hop model in Chapter II and a multi-hop model

in Chapter III. In the single-hop model every sensor is within broadcast range of

every other sensor. In the multi-hop model two sensors are within broadcast range of

each other if the Euclidean distance between the two is at most the communication

radius rc.

Although single-hop networks are unrealistic in practice, the main technique we

present in Section 3.2 is designed for divide-and-conquer algorithms, which typically

require local solutions to be solved before merging the solutions together [36]. When

a problem is divided into sufficiently small subproblems a large multi-hop network

locally resembles a single-hop network and thus algorithms for single-hop networks

can be building blocks for algorithms for a multi-hop network. Because of the spatial

nature of sensor networks, geometric problems often arise very naturally and these

problems are often solved using divide-and-conquer algorithms. These algorithms

will be most useful for extremely dense sensor networks like Smartdust [28] where the
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local networks may have hundreds or even thousands of nodes.

Global coordinate system vs. no global coordinate system: In some net-

works sensors are equipped with GPS devices which allows them to know their exact

position in R2 [52]. These networks are said to have a known global coordinate system.

A global coordinate system can be used as a method of coordination between sensors

where sensors know at certain times only sensors with specific GPS coordinates will

be allowed to broadcast.

However, GPS can be quite expensive for these small, power-sensitive devices and

thus many sensor networks are not equipped with GPS. If GPS coordinates are not

available sensors may need to create local coordinate systems. In these situations

each sensor can determine its position relative to other neighboring sensors using

techniques such as triangulation [12]. While the relative positions of sensors are

consistent in these local coordinate systems, they may be subject to rotation and

translation. That is, distance and angle information between sensors are preserved in

all local coordinate systems but the exact coordinates of each sensor may vary wildly

in different local coordinate systems.

Throughout most of this dissertation the results will hold for both networks with

and without a known global coordinate system. However this distinction will be im-

portant for Section 3.2 because global coordinate systems can be used for coordinating

radio channel usage.

Synchronized clocks: Synchronizing clocks is a fundamental problem in dis-

tributed systems, especially in wireless sensor networks. Many techniques are dis-

cussed in [52]. We assume that sensors have already synchronized their clocks by

some method and that this procedure will account for any drift between clocks.

Synchronization will be an important assumption for the broadcast model that

allows sensors to schedule sleep-wake cycles and to coordinate radio broadcast channel

10



Broadcast model Message-passing model
(Ch. II & III) (Ch. IV)

Homogeneous network X X
High-power base station X
Unique ID X X
Positions in R2 X X
Synchronized clocks X X
Radio interference detection X X
MAC protocol X
Variable transmission strength X

Table 1.1: Comparison between the broadcast model and the message-passing model.

usage. We will not explicitly use this assumption in the message-passing model but

it is used implicitly because MAC protocols typically require clock synchronization.

1.3 Organization of Dissertation

The remainder of this dissertation is structured as follows. First Chapter II ex-

amines single-hop networks and introduces breadth first recursion, a framework for

overcoming problems that arise when creating randomized recursive algorithms. We

use this technique to create algorithms for sorting and computing the convex hull

and we run simulations showing the time and energy usage of these algorithms. Then

Chapter III introduces consolidation algorithms as a framework for using single-hop

algorithms as building blocks to create multi-hop algorithms. We use this technique

to compute all points k-nearest neighbors, the coverage boundary, and the localized

Voronoi diagram. Then Chapter IV provides analysis of the exact cost of optimally

propagating data from sensors to a high-power base station. This motivates the

previous chapters by comparing the cost of performing calculations in a distributed

manner versus collecting data and performing calculations at the high-power base

station. Finally, Chapter V provides a detailed conclusion and future work related to
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this dissertation.
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Chapter II

Single-Hop Algorithms

2.1 Introduction

In this chapter we discuss single-hop wireless sensor networks and overcome chal-

lenges when creating distributed algorithms for these networks. In a single-hop net-

work every processor is within transmission range of every other processor. While

this is unrealistic in practice we will use these single-hop algorithms as building blocks

for multi-hop algorithms in Chapter III. Our primary goals are not only to minimize

runtime and total energy usage but also to minimize the maximum energy used by

any sensor, ensuring that the network lifetime is maximized. To conserve energy sen-

sors will go into a low energy sleep state for the vast majority of the runtime of our

algorithms.

Coordinating processors can be significantly more difficult in settings where each

processor is inactive for the vast majority of the time. Specifically, hibernating pro-

cessors may not be certain of what happened while they were asleep. For many simple

algorithms this is straightforward; one can easily sum n numbers among n ordered

processors in O(n) time with each processor being awake for O(1) time. However,
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even something as simple as stepwise simulation of serially merging two lists is more

involved in this setting because it is not known when a given value will be needed to

merge [30]. Having all processors awake until their value is merged will take optimal

O(n) time, but each processor will use O(n) energy.

Randomization is a useful approach for minimizing expected time and for load

balancing [37]. However, if a processor is sleeping during a task with a random com-

pletion time then it may require waking many times to determine when the task is

finished. In Section 2.2 we discuss task completion testing, a simple method for ex-

ecuting randomized algorithms in this setting. It is yet more complex for recursive

algorithms where the runtime is an accumulation of the runtime of subproblems with

random completion times where the processors working on the subproblems must

themselves determine when to wake for their subtasks. To execute recursive algo-

rithms in this setting we introduce breadth first recursion in Section 2.4. This process

uses elected leaders to coordinate recursion one entire recursive level at a time. We

discuss different election protocols used throughout this chapter in Section 2.3.

We then use breadth first recursion to create an algorithm for sorting based on

quick sort in Section 2.5. We show that this algorithm is faster than previous re-

sults both in theory and through simulation, and that the energy usage is similar

to previous results. We also use breadth first recursion to create an algorithm for

finding the convex hull in Section 2.6. This algorithm again is energy efficient and its

runtime is output sensitive, meaning that the runtime is dependent upon the size of

the convex hull. For many realistic distributions of sensors this algorithm’s runtime

is sublinear. Additionally, we provide simulations showing the performance of this

convex hull algorithm on different sensor distributions.
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2.2 Task Completion Testing

Since sensors are asleep for the vast majority of the time, if the runtime of a task

is a random variable then a coordination strategy must be used to determine when

the task actually completes. Task completion testing is a simple concept which allows

the sensors in a single-hop network to coordinate the completion of a task with, in

expectation, only a constant factor overhead in the runtime and an additive constant

overhead in energy for any sensor.

The execution of the task is interrupted at predetermined intervals proportional

to the expectated runtime of the task. During an interruption, if the task is not

completed then every sensor that knows the task is not complete will broadcast an

announcement. Each sensor waiting for the algorithm to complete will wake up at

these intervals and listen for an announcement or for interference from multiple sensors

broadcasting an announcement. If it hears this then it goes back to sleep until the

next scheduled interrupt.

Lemma 1. In a single-hop network if a task with random completion time T is inter-

rupted at intervals τ then the expected number of interruptions is at most E[T ]/τ + 1.

Proof. Let I be the number of interruptions. Then

E[I] =
∞∑
i=0

P (T = i)

⌈
i

τ

⌉
≤

∞∑
i=0

P (T = i)

(
i

τ
+ 1

)
=

E[T ]

τ
+ 1
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Thus the total time including interruptions is at most (τ + a) · (E[T ]/τ + 1),

where a is the time taken for an interruption. Notice that if τ = c · E[T ] then the

expected number of interrupts is at most 1
c

+1 and the total expected time is at most

E[T ](1 + c) + a(1
c

+ 1).

2.3 Leader Election

Our algorithms will require groups of sensors to coordinate usage of the communi-

cation channel. To assist with this, the groups elect a leader to make announcements

for the group. In general a sensor knows if it is in the group, but no sensor knows

which, or how many, other sensors are in the group.

Leader election is well studied in the sensor network setting, and for a specific

application more appropriate leader election techniques may be substituted. We will

provide two algorithms for electing leaders in a single-hop sensor network. The first

algorithm (BackoffElect) uses a simple backoff mechanism in which sensors drop out

of the election until only one sensor is left. In the second algorithm (EstimateElect)

the group of sensors use an estimate of the total number in the group. Using this

estimate each sensor then selects itself with some probability and the estimate is

improved until a single sensor has been selected.

BackoffElect will be used primarily throughout this chapter. It uses in expectation

O(log n) time, O(1) average energy per sensor, and O(log n) maximum energy by any

sensor. This algorithm has better average energy usage so it will be used throughout

when there is no estimate on the number of sensors in the set or the faster second

election procedure is not needed.

To perform the election each sensor flips a fair coin and broadcasts its ID if the

coin lands heads. If only a single sensor announces its ID then that sensor is now
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BackoffElect(S) =

1: while a leader has not been elected
2: each sensor that has not dropped out

broadcasts its ID with probability 1
2

3: if exactly one sensor broadcasted its ID then
4: that sensor is the leader
5: else if multiple sensors broadcasted their IDs
6: all sensors that did not broadcast drop out
7: else if no sensor broadcasted its ID
8: no sensors drop out
9: end if

10: end while

Figure 2.1: Algorithm for electing a leader from a set S of sensors.

the leader. If more than one sensor broadcasts then the sensors that flipped a tail

drop out of the election and the remaining sensors repeat this process. If no sensor

broadcasts then no sensors drop out of the election and the process continues. The

exact algorithm is given in Figure 2.1.

Lemma 2. The expected runtime of BackoffElect in a single-hop network of n sensors

is O(log n) with an exponentially small tail.

Proof. Notice that for a single sensor s, if any other sensors broadcast and s does not

then s drops out of the election, and if no other sensors broadcast and s does then s

is elected. So each coin flip has exactly a 1
2

probability of being the last coin flip a

sensor makes. Then the expected number of coin flips a single sensor will make is 2

and forms a geometric distribution. Thus Lemma 36 in the Appendix completes the

proof.

If E elections are performed with a set of n sensors then the expected energy per

sensor is O(E log n). This can be improved if the number of sensors in the election is

known or at least an estimate is known. We do so by allowing sensors that drop out
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of the election to go to sleep and use task completion testing. Then the total time

remains within a constant factor of the actual election time and the energy a sensor

uses is proportional to the number of coin flips that it makes which is shown to be

O(E + log n) in the following lemma.

Lemma 3. If a single-hop network of n sensors is involved in E elections using

BackoffElect, then the expected maximum number of coin flips any sensor makes is

O(E + log n) with an exponentially small tail.

Proof. Since each coin flip that a sensor makes has exactly a 1
2

probability of being its

last of an election the distribution of the number of coin flips for a single sensor is a

negative binomial distribution with expectation 2E. Thus Lemma 36 in the Appendix

completes the proof.

EstimateElect is only used in Section 2.6 when we have an approximation of the

number of sensors involved in the election. The runtime of this algorithm is dependent

upon the accuracy of our estimation, m, and every sensor must be awake for the entire

election.

This algorithm is similar to the algorithm used for maximum finding as described

in [38]. We begin by having each sensor decide to announce itself as leader with

probability 1
m

. Then if no sensor broadcasts, m is lowered, and if multiple sensors

broadcast, m is raised. This process is repeated until a single sensor elects itself. The

exact algorithm is given in Figure 2.2.

Lemma 4. The expected runtime of EstimateElect on a single-hop network of n

sensors with estimate m is O(| log n
m
|+ 1) with an exponentially small tail.

Proof. Throughout we will assume n ≥ 3. Also note that no attempts are made to

optimize the constants.
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EstimateElect(S,m) =

1: while a leader has not been elected
2: each sensor broadcasts its ID with probability 1

m

3: if exactly one sensor broadcasted its ID then
4: that sensor is the leader
5: else if multiple sensors broadcasted their IDs
6: m = 2m
7: else if no sensor broadcasted its ID
8: m = max

(
m
2
, 1
)

9: end if
10: end while

Figure 2.2: Electing a leader from a set S of sensors with estimate m of |S|.

We will say that m is a good estimate if n
2
< m < 2n. Suppose m is a good

estimate; then the probability a sensor is elected in a single step is

n · 1

m
·
(

1− 1

m

)n−1
≥ n · 1

2n
·
(

1− 2

n

)n−1
≥ 1

18

If m is initially a bad estimate, we will say that m is improved during a time step

if after the time step m is closer to the “good” interval
(
n
2
, 2n
)
. Suppose m < n

2
; then

we will look at the probability that m improves or that a sensor is elected. This is

the same as the probability that at least one sensor announces itself as leader. The

probability that at least one sensor announces is

1−
(

1− 1

m

)n
≥ 1−

(
1− 2

n

)n
≥ 1− e−2 ≈ 0.86

Suppose m > 2n; then the probability that m improves is the probability that no

sensor announces, which is

(
1− 1

m

)n
≥
(

1− 1

2n

)n
≥ 9

16
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Let d =
⌊
| log2

n
m
|
⌋
, which is the minimum number of steps before n

2
≤ m ≤ 2n.

Let’s assume that every time step where m is a good estimate and a sensor is not

elected that m falls out of range of being a good estimate. Let k be the number of

time steps where m is a good estimate, let s be the number of time steps where m is

not a good estimate but m improves or a leader is elected, and let f be the number of

steps where m is not a good estimate and does not improve. Notice if s− f ≥ k + d

then a sensor must have been elected and the runtime T is bounded by s+ f + k. So

we can use the following loose upper bound

P (T = t) ≤ P

(
k ≥ t

100

)
+ P

(
s− f < k + d

∣∣∣ k < t

100

)

We know P
(
k ≥ t

100

)
≤
(

1
18

) t
100
−1

and given k < t
100

, P (s− f < k + d) ≤ P
(
f < d+t

2

)
.

Then, using the Hoeffding/Chernoff bound with ε = 9
16
−

d
t
+1

1.98
, we get

P

(
s <

(
9

16
− ε
)

(s+ f)

)
≤ e−2ε

2(s+f) ≤
(
e−1.98ε

2
)t

If t ≥ 100d then ε ≥ 0.05. Therefore when t = Ω(| log n
m
|), P (T = t) is bounded

by the sum of two negative exponentials which is itself a negative exponential. This

completes the proof.

2.4 Breadth-First Recursion

2.4.1 Overview

Task completion testing is effective for coordinating any number of consecutive

tasks in a single-hop network. However this procedure is not effective if used for tasks

that are nested recursively. This is because the total runtime is slowed by a constant
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factor c for each recursive level, leading to a c` factor slowdown if ` is the number

of recursive levels. In this section we provide a technique that resolves this issue for

recursive algorithms in a single-hop network by completing the tasks in a consecutive

manner instead. We call this technique breadth-first recursion.

Figure 2.3 gives the general form of a recursive algorithm for which this technique

applies. We require that the two recursive calls are independent, which is to say that

the results of one recursive call are not required to complete the other. However the

recursive calls are allowed to depend upon the results of A, the procedure executed

before the recursive calls. Similarly B, the procedure executed after the recursive

calls, can depend upon the results of either the recursive calls or A.

Notice that if the algorithm is executed as written in Figure 2.3 then the tasks

A and B will be executed in a depth-first manner. As the name would suggest,

during breadth-first recursion these routines will instead be executed in a breadth-

first manner. We complete the A tasks top to bottom, one recursive layer at a time.

Once all layers of A tasks are complete we execute the B tasks similarly but from

bottom to top. The reason for this breadth first execution is that it allows us to

eliminate the recursive nature of the dependencies between tasks and instead treat

them like consecutive tasks. Figure 2.4 gives an example recursion tree and lists the

order of execution for tasks A and B for both breadth-first and depth-first.

2.4.2 Execution of a Single Recursive Layer

From this point forward, we will refer to a set of sensors Si involved in the execution

of a task R(Si) as a group of sensors. Similarly we will refer to a subset Sj of Si

involved in the execution of a task R(Sj) as a subgroup of Si. If R(Sj) is recursively

called in R(Si) then we will also say that Sj is a child of Si and Si is the parent of
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R(S) =

1: A(S)
2: R(S1) {S1 ⊆ S}
3: R(S2) {S2 ⊆ S and S1 ∩ S2 = ∅}
4: B(S)

Figure 2.3: General form of a recursive algorithm R which utilizes routines A and B.

R(S1)

R(S2)

R(S4) R(S5)

R(S3)

Depth-first Breadth-first
A(S1) A(S1)
A(S2) A(S2)
A(S4) A(S3)
B(S4) A(S4)
A(S5) A(S5)
B(S5) B(S5)
B(S2) B(S4)
A(S3) B(S3)
B(S3) B(S2)
B(S1) B(S1)

Figure 2.4: Example recursion tree and task execution order.

Sj. If a group Si has a leader we will denote that leader li.

To complete the tasks in a recursive layer we alternate between coordination

phases and work phases. During a work phase all groups that have not completed

task A are allocated a portion of time to use the broadcast channel and work on their

task. During a coordination phase the groups determine how many groups are not

yet complete, how much time is needed for the next work phase, and what portion

of that work phase each group is allocated. The amount of time allocated to a group

during a work phase is a constant fraction of the total amount of time used by the

group’s parent to complete routine A. The execution of each layer consists of multiple

coordination and work phases. This entire task of completing a layer is executed using

task completion testing so that once a group has completed task A it can ignore the
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1: initial coordination phase
2: begin task completion testing
3: while some group is not done do
4: work phase
5: coordination phase
6: end while
7: end task completion testing

Figure 2.5: Overview of the execution of a single layer of recursion.

remaining coordination phases, which in expectation will be logarithmic in the number

of groups. Figure 2.5 gives an outline of how a layer of the recursion tree is executed.

Figure 2.6 shows an example recursion tree with two layers completed and Figure 2.7

provides an example timeline of the completion of the third layer of that tree.

2.4.3 Coordination Phase

As a broad overview, each coordination phase is essentially a serial scan of the

number of groups still in the layer and the total time all the groups will take.

To assist in the coordination phase each group elects a leader so that only one

sensor attempts to broadcast at a time. If the A task does not already include an

election we simply add the election of a leader to the beginning of A. We will show

that these elections do not add substantially to the overall runtime or energy usage

of the algorithm. Since leader election takes place during the work phase, a leader for

a group may not have been elected by the first few coordination phases. To handle

this case, the leader of the parent of the group will listen to the election and act as

the leader for the group if the election is not complete.

Each layer begins with an initial coordination phase where each group from left to

right in the previous layer wakes up. First every sensor in the left subgroup broadcasts

so that the sensors know whether or not the left subgroup is empty, and then the right
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l0

l1

S0
S1

l2

S3

S2

Figure 2.6: Example recursion tree with two layers completed.

S0

S1

S2

S3

S0

S2

S2

T
im

e

Coordination Phase
Work Phase
Work Completed
Completion Test

Coordination Phase 1
Broadcasts Listens

S0 l1, S1

S1 l1
l1 l2, S2, S3

S2 l2, S3

S3 l2
l2 all sensors

Coordination Phase 2
Broadcasts Listens

S0 l1
l1

l1 l2, S2

S2 l2
l2

l2 l1, S0, S2

Coordination Phase 3
Broadcasts Listens

l1
l1 l2, S2

S2 l2
l2 S2

Figure 2.7: Sample timeline for completing the third layer of the recursion tree in
Figure 2.6.
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subgroup follows suit. Then the leader announces the total number of subgroups so

far in the current layer and the total amount of time all groups will use in the next

work phase. The next group listens to this announcement so that they know when

to wake up during the next coordination and work phases. All sensors wake up and

listen to the last leader’s announcements so they know how long the next work and

coordination phases will last. The time announced here is the estimate of the runtime

of the layer used in task completion testing.

All remaining coordination phases are executed similarly. From left to right each

group in the current layer that was allocated time in the last work phase wakes up

and all sensors that know that the task is not completed broadcast. Then the leader

announces the total number of groups so far that are not complete and the total

amount of time these groups will use in the next work phase. Each group listens to the

previous group’s announcement so that every sensor knows the group’s allocated time

in the work phase and when to wake up in the next coordination phase. Every sensor

that is in a group that is not complete will listen to the last leader’s announcements

so that it knows how long the next work and coordination phases will last.

2.4.4 Work Phase

During a work phases each group of sensors wakes up at the beginning of the

time frame allocated to them during the last coordination phase and begins work

on the A task (which will begin with an election). They then go to sleep when this

time frame ends even if they haven’t completed the task. Notice that this phase does

not explicitly use task completion testing but a similar process is occurring. The

task is interrupted at intervals proportional to the expected runtime and during the

interruptions the sensors determine if the task is complete, albeit after a long wait
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period. So the analysis of the time and energy overhead for task completion testing

holds here as well.

2.4.5 Traversing Up the Tree

The procedure for completing the B tasks is almost identical, with the only differ-

ences being that it works from the bottom up, the initial coordination phase is not a

special case from the rest of the coordination phases, and the amount of time given to

each group for work phases is proportional to the expected time for the B task (not

the A task). The initial coordination phase is not needed because each sensor can

just remember its group’s place for each layer. In an extremely low memory setting

instead we can just have each leader remember the position when it was leader and

then use a pre-coordination phase to remind each sensor of its position in the next

layer. In many cases at this point we can actually keep track of the exact number of

sensors in the subtree so the work estimation can be more precise. In the case where

B is not randomized these tasks can instead simply be completed in a single reverse

breadth-first traversal of the tree.

2.4.6 A Note on Completion Testing

Before analyzing the time and energy usage of our procedure it is worth pointing

out that when we use task completion testing, the estimate of the runtime is actually

a random variable and is not precisely the expectation of the runtime. However,

the time and energy analysis in Section 2.2 will still hold if the estimate E has the

properties that E[E] = O(E[T ]) and E
[
1
E

]
= O

(
1

E[T ]

)
. We call a random variable

that has these properties a good estimate of T.

An easy way to obtain an estimate for the runtime of a task A (resp. B) is to use
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the parent’s (resp. childrens’) runtime. This will be a good estimate if the probability

that the task finishes well below the expectation is low and the size of each child is

expected to be on within a constant factor of the size of the parent. We call such

a task whose runtime is a good estimate of the child’s runtime nice. Notice that

if a task has the property that there exist constants k > 0 and c > 1 such that

P (T = kE[T ] − j) ≤ (1/c)j then it is a nice task. This implies that electing a

leader is a nice task. Although not explicitly proven the tasks used for the algorithms

presented here have this nice property.

2.4.7 Analysis

Let R be the execution of the recursive algorithm on a single-hop network if each

sensor knew, via some oracle, the time that each subtask will be complete and let

R′ be the execution of the recursive algorithm using breadth first recursion. Also let

TX(S), EX(S), MX(S) be the expected runtime, energy dissipation, and maximum

energy dissipation, respectively, of a task X over the set of sensors S. Let H be the

height of the recursion tree and S1, . . . , Sm be the subsets of S that appears in the

recursion tree of R(S).

Theorem 5.

TR′(S) = O

(
TR(S) +

m∑
i=1

log |Si|

)

ER′(S) = ER(S) +O (H)

MR′(S) = MR(S) +O (H + log |S|)

Proof. First notice that because of our strategic use of task completion testing the

total time of R′ is proportional to the runtime of R plus the overhead of the coordi-

nation phases and electing leaders. However the time spent on coordination phases
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is less than the time spent during the work phases, so this time is negligible for the

purposes of our analysis. Also notice that, as previously discussed, the expected time

spent electing a leader for a group of n sensors is O(log n). Therefore we achieve the

desired total runtime for R′.

Next, the expected energy dissipation per sensor during R′ is the sum of the ex-

pected energy dissipation during R, during elections, and during coordination phases.

The expected energy per election is proportional to the average number of coin flips

sensors make which is constant. Since each sensor is involved in at most H elections

the expected energy dissipation during elections is O(H). Next by Lemma 1 the

expected number of coordination phases each sensor participates in is constant per

layer. Then, since each coordination phase takes constant energy per sensor, this

energy is also O(H) in expectation. Therefore we achieve the desired average energy

dissipation.

Finally, the expected maximum energy dissipated for a sensor duringR′ is bounded

by the sum of the maximum energy dissipated for a single sensor during R, during the

elections, and during coordination phases. By Lemma 3 the maximum energy spent

for a single sensor on elections is O(H + log |S|). At each recursive layer a sensor

is expected to be involved in a constant number of coordination phases. However if

the number of groups is O(|S|) then the expected number of coordination phases is

O(log |S|). But by a similar proof as Lemma 36 in the Appendix the expectation of the

maximum number of coordination phases any sensor is involved in is O(H + log |S|).

Therefore we achieve the desired maximum energy dissipation.
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2.5 Sorting

2.5.1 Sorting Algorithm

Sorting is one of the most fundamental computational building blocks and is used

in many important problems in a plethora of areas. An algorithm for sorting n values

on n sensors is provided in [49]. It requires only O(log n) energy per sensor, but takes

O(n log n) time and hence is not optimal. A more practical algorithm was presented

in [30] but it still requires O(n log n) time. Because of the broadcast capabilities

of sensor networks sorting can actually be done in O(n) time. Since at least n − 1

sensors must announce their values, O(n) is time optimal. A simple algorithm that

achieves this bound is just to have each sensor one by one announce their value with

every other sensor listening and determining the rank of its element. This of course

is not energy efficient as each sensor is awake for O(n) time. A simple work analysis

shows that sorting requires Ω(log n) average energy per processor. We now provide a

randomized sorting algorithm that meets both these bounds and is energy balanced.

We will prove:

Theorem 6. Given a single-hop network S of n sensors with one data element each,

the elements can be sorted in expected time O(n) and expected maximum energy dis-

sipation of any sensor O(log n).

In this context sorting means that each sensor in the network determines its rank

among all sensors in the network. In Figure 2.8 we give a rank-finding algorithm

based on a quicksort approach. It is of the same form as Figure 2.3 and hence can

executed using breadth-first recursion.

Notice that once the election is complete the time of the A and B tasks are

constant. This implies that the total runtime is expected to be O
(∑

Si
log |Si|

)
where
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FindRanks(S) =

1: ElectLeader(S)
2: Leader broadcasts its ID and value
3: FindRanks(S<) {sensors with value less than the leader’s}
4: FindRanks(S>) {sensors with vlaue greater than the leader’s}
5: Leader of S< broadcasts |S<|
6: Leader of S> broadcasts |S>|

Figure 2.8: Recursive rank-finding algorithm.

each Si is a subset of sensors that appears in the recursion tree. This runtime is

similar to the runtime of constructing a binary heap which is O(n), except in this

case our tree is not perfectly balanced. Despite the imbalance in our recursion tree

the expected runtime is still O(n) and we prove this using the substitution method.

Suppose there exist constants a and b such that for all m < n the expected runtime

T (m) ≤ am− b logm. Then if the constants a and b are sufficiently large,

T (n) =
1

n

n∑
i=1

(T (i− 1) + T (n− i)) +O(log n)

=
2

n

n−1∑
i=0

T (i) +O(log n)

≤ 2

n

n−1∑
i=0

ai− 2

n

n−1∑
i=0

b log i+O(log n)

≤ 2a

n
· n(n− 1)

2
− 2b

n
· 3n

4
log

n

4
+O(log n)

= an− 3b

2
log n+O(log n) +

3b

2
log 4− a

≤ an− b log n

Since A (after electing a leader) and B take constant time the expectation of the

maximum energy dissipation is O(H + log n) where H is the expected height the
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recursion tree. Since each sensor has an equal chance of being elected leader this is

just the expected height of a binary search tree with random insertions. It is well

known that this is O(log n) and more precise bounds are available [47]. Thus our

algorithm has expected maximum energy dissipation per sensor of O(log n). Finally,

Theorem 5 completes the proof of Theorem 6.

2.5.2 Sorting Simulations

Here we discuss the results of simulations of a basic implementation of our sorting

algorithm. We simply counted the number of number of time units each sensor was

awake and the total number of time steps the algorithm took. We define a single

time unit to be the time it takes a sensor to broadcast a message with a logarithmic

number of bits, and a single energy unit is the energy spent to stay awake for a single

time step.

This implementation uses task completion testing with interruptions beginning at

the expected runtime and interrupts every 1
5

of the expected runtime. Since the B

task takes constant time, we simply perform a reverse breadth-first traversal of the

tree instead of using the general procedure outlined in Section 2.4 to complete the B

tasks. The simulations were performed for networks ranging from 10 to 4,000 sensors

with data averaged over 1,000 trials.

We compare the results for our sorting algorithm (BFR-QS) to the best performing

algorithm (BSORT) from [49] and a more practical algorithm (MK-MS) presented in

[30]. Table 2.1 provides the runtime and energy usage of these algorithms.

Figure 2.9 compares the runtimes of these sorting algorithms. Asymptotically,

the runtime of BFR-QS outperforms BSORT and MK-MS, running in O(n) expected

time compared to O(n log n). The figure shows that the theoretical speed advantage
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Algorithm Runtime Avg. Energy Max. Energy
BSORT ∼ 13n log n ∼ 33 log n ∼ 82 log n

MK-MS 2n log n 1
2

log2 n+ 7
2

log n 1
2

log2 n+ 7
2

log n
BFR-QS ∼ 7n ∼ 8 log n ∼ 17 log n

Table 2.1: Runtime and energy dissipation of sorting algorithms.

0 1,000 2,000 3,000 4,000
0

20,000

40,000

60,000

80,000

100,000

Sensors

T
im

e
S
te

p
s

BFR-QS

MK-MS

BSORT

Figure 2.9: Runtime of sorting algorithms.

of BFR-QS also translates into practice as BFR-QS seems to be several times faster

than MK-MS and orders of magnitude faster than BSORT.

Figure 2.10 compares the energy usage of these algorithms—omitting BSORT

to keep the figure’s scale reasonable. Also error bars representing plus or minus

one standard deviation are provided for BFR-QS. In terms of energy usage BFR-QS

and BSORT outperform MK-MS asymptotically with O(log n) energy per processor

compared to O(log2 n). However, in practice, BFR-QS and MK-MS perform similarly

while BSORT uses much more energy. BFR-QS uses less energy than MK-MS when

there are more sensors and MK-MS does better when there are fewer sensors.

One disadvantage of BFR-QS is that it is not as perfectly energy balanced as

MK-MS is. The typical maximum energy dissipation of BFR-QS seems to be around
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Figure 2.10: Energy dissipation per processor of sorting algorithms, including average
energy dissipation and maximum energy dissipation of any processor for BFR-QS.
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Figure 2.11: Energy dissipation by rank of BFR-QS sorting algorithm with 500 sen-
sors, also including the average energy dissipated per processor over all ranks and
expected maximum energy dissipation over all ranks.

double the energy dissipation of MK-MS. However, Figure 2.11 shows that energy

dissipation of BFR-QS is nearly data independent. That is, no sensor with a given

rank is—on average—going to use significantly more energy than the average energy

dissipation over all ranks. This implies that if this algorithm is repeated many times
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the maximum energy usage of any sensor will approach the average energy used per

sensor, even if the data is adversely distributed.

2.6 Convex Hull

2.6.1 Convex Hull Algorithm

Due to the spatial nature of sensor networks many problems in computational ge-

ometry such as the Coverage Problem, All Points Nearest Neighbor, and 2-Dimensional

Convex Hull are particularly important [24, 51, 56]. For example, in [48] sensors com-

pute the convex hull of a region in a distributed manner to approximate the shape of

forest fires. For the 2-Dimensional Convex Hull problem in this setting each sensor

has a single two-dimensional point which typically represents the sensor’s physical

location and is usually obtained either through GPS or localization techniques [36].

The goal is for each sensor to determine if its point is an extreme point of the convex

hull of the set of all points. Given a set of points P the convex hull of P is the set of

convex combinations of the points in P , in other words, the set of linear combinations

of points in P where the coefficients sum to exactly one.

CH(P ) =


|P |∑
i=1

aipi : pi ∈ P and ai ≥ 0 ∀1 ≤ i ≤ |P | and

|P |∑
i=1

ai = 1


Here we present a randomized algorithm using breadth-first recursion for the 2-

Dimensional Convex Hull problem in a single-hop sensor network. Our result is output

sensitive just like the serial result in [32] which, in our case, means that the runtime

will be sublinear on many distributions.

Theorem 7. Given a single-hop broadcast network S of n sensors with one 2-dimensional

34



FindConvexHull(S, b1, b2) =

1: p = ElectLeader(S)
2: p broadcasts its coordinates
3: M = line perpendicular to (b1, b2) that crosses p
4: L = set of vertices from S left of M
5: R = set of vertices from S right of M
6: find edge of convex hull (l, r) that crosses M
7: FindConvexHull(L, b1, l)
8: FindConvexHull(R, r, b2)

Figure 2.12: Recursive algorithm for finding the convex hull between two base points
b1 and b2.

point each, the convex hull of these points can be found using a single broadcast chan-

nel in expected time O(min(H log n, n)) where H is the size of the convex hull, with

expected energy dissipation per processor O(log n), and expected maximum energy dis-

sipation of any processor O(log2 n).

We use a divide-and-conquer algorithm that uses breadth first recursion. At each

recursive step we begin with two vertices known to be on the convex hull; we call these

vertices base points b1 and b2. At each recursive step we find two adjacent vertices l

and r—or in some cases a single vertex labeled both l and r—in the convex hull that

lie between the two base points. Figure 2.13 provides an illustration of the vertices

found at a single recursive step. We then recursively find the remaining vertices in

the convex hull between l and b1 and between r and b2. Initially we find the leftmost

and rightmost points to be b1 and b2 and make two recursive calls to find the points

on the convex hull above and below (b1, b2), respectively. Without loss of generality,

we will assume we are computing the convex hull above (b1, b2).

Now we describe the recursive step in more detail. First a vertex is elected to act

as a pivot p. Let M be the line that goes through p that is perpendicular to (b1, b2).

Then M partitions the possible points in the convex hull into a left and right half,
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Figure 2.13: An example of a single recursive call of the algorithm in Figure 2.12. If
p is the pivot then the algorithm finds l and r before recursing.

L and R respectively. For simplicity we when we refer to a vertex being more left

or more right we mean when projected on the line (b1, b2). In other words we will

treat (b1, b2) as the x-axis. Then the edge—or single point—of the convex hull that

M crosses will be used for the base points in the recursive calls.

The line with one end point in L and the other in R that crosses M at the highest

point is the edge of the convex hull that crosses M . For v ∈ L (resp. R) define h(v)

to be the maximum height that a line between v and a point in R (resp. L) crosses

M . We will keep track of two vertices l ∈ L and r ∈ R that maximize h(l) and h(r),

respectively. We will alternate between electing a vertex from L and electing a vertex

from R. Without loss of generality we describe the process of electing a vertex from

L. The idea is that each vertex v that is elected will either improve our value of h(l)

or will eliminate vertices in L from being in contention for having the maximum value

for h.

For the first election we use the algorithm from Figure 2.1. For the remaining

elections we use the previous election to estimate the number of sensors and use the

algorithm in Figure 2.2. Once a new vertex l′ ∈ L is elected it broadcasts its point

and every vertex in R that lies above the line (l, l′) broadcasts.

If no sensor announces then
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• the point that is further to the right of l and l′ becomes the new maximum, and

• every point that is below or on the line (l, l′) and is to the left of the new

maximum drops out.

If at least one sensor announces then

• the point that is further to the left of l and l′ becomes the new maximum, and

• every point that is below or on the line (l, l′) and is to the right of the new

maximum drops out.

Lemma 8 proves that every point that drops out during this process does not

maximize h. This is because if no point in R lies above (l, l′) then for any of the

sensors that dropped out there will be no point in R above the line between that

point and the new maximum. Similarly if a point r ∈ R lies above (l, l′) then for any

of the sensor that dropped out r lies above the line between that point and the new

maximum. See Figure 2.14 for illustration.

Lemma 8. Let l1, l2 ∈ L be such that l1 is further left than l2. Then h(l1) > h(l2) if

and only if some point in R lies above (l1, l2).

Proof. First note that for every point r ∈ R (l1, r) crosses M at a higher point

than (l2, r) if and only if r lies above (l1, l2). So if no r ∈ R lies above (l1, l2) then

h(l2) > h(l1).

Notice also that the points where (l1, r) and (l2, r) cross M is above the point

where (l1, l2) crosses M if and only if r lies above (l1, l2). Therefore if some r ∈ R lies

above (l1, l2) then h(l1) > h(l2) because the highest crossing point of M for both l1

and l2 will come from a point in R that lies above (l1, l2).
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Figure 2.14: On the left no point in R lies above (l1, l2) and on the right a point in R
does lie above (l1, l2). The li that maximizes h is circled and h(li) is larger than h(l′)
for any l′ in the shaded region.

Further, since at least one sensor drops out after each election this process will

eventually find the l ∈ L that maximizes h(l) and once both l and r have been found

and once then know all other sensors have been eliminated this process is complete.

Next we analyze the runtime and energy usage of this process.

Lemma 9. Given a set of n sensors the points in the convex hull that crosses M can

be found in expected time O(log n) and the expected energy dissipation per processor

O(1).

Proof. We prove this by showing that a constant fraction of the sensors drop out after

a constant number of elections with constant probability. Since we alternate between

time steps for elections for L and for R each sensor is only awake for twice the number

of steps as if we were only doing elections for one of the sets. So in our analysis we

will consider the time and energy for L to be elected.

We partition the set of vertices in L that have not yet dropped out into 3 sets:

• H the set of vertices that have a higher h value than our current l

• L the set of vertices that have a lower h value than l and are to the left of l
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• R the set of vertices that have a lower h value than l and are to the right of l

Suppose a vertex v is elected. If v ∈ H then all the sensors with smaller h value

either drop out or are now in L or R. If v ∈ L then all the points in L who form a

line with l with a larger slope drop out. This is because if (v′, l) has a larger slope

than (v, l) then v′ lies below (v, l). Similarly if v ∈ R then all points in R that form

a line with l with smaller slope drop out.

If H is larger than L and R then with at least 1
6

probability a vertex from H is

elected with h value greater than 5
6

of all other vertices currently still in the election.

If at least 1
6

of the sensors drop out then we are done. Otherwise H is now smaller

than at least one of L or R.

If L is larger than H and R then with at least 1
6

probability a vertex from L is

elected whose line through l has larger slope than half the other vertices in L. In

this case these vertices dropout and at least 1
6

of the vertices drop out. A similar

argument holds if R is larger.

Thus after 2 elections there is at least a 1
36

chance that 1
6

of the sensors in L that

were still awake drop out. Thus the expected number of elections is O(log n) and the

expected number of elections each sensor is in before it drops out is O(1).

From Lemma 4 the expected time for each election is O(| log n
m
| + 1) where m is

our estimate and n is the number of sensors in the election. If only a constant fraction

of the sensors drop out then this will be constant. However if more than a constant

fraction drop out then the next election will, in expectation, take time proportional

to the negative log of the proportion of sensors that dropped. However this is just

proportional to the time our process would have taken if only a constant fraction

had dropped out at one time. Therefore this does not change the time analysis and

only improves our energy dissipation. This means that the total time spent is in
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expectation O(log n) the expected energy dissipation per processor is O(1).

The initial values for b1 and b2 are the points with maximum and minimum x

values which can be done in expected O(log n) time by using the algorithm from [38].

Notice every sensor in the recursive call with base points b1 and l are to the left of

M and every sensor in the recursive call with base points r and b2 are to the right of

M . Because the pivot p was chosen uniformly randomly the height of this recursion

tree will be bounded by the height of a random binary search tree of size n so the

expected number of recursive layers is O(log n), in expectation.

Thus in expectation the maximum energy per processor will be O(log2 n) and the

average energy per processor will be O(log n). Note that we cannot decrease the

maximum energy per processor to O(log n) like in Section 2.5 because the energy

usage per layer may be correlated with position. Also, the number of recursive calls

is O(H) so the total amount time taken for all recursive calls will be O(H log n).

Further this time is upper bounded by O(n) like in Section 2.5 because the time

taken at each recursive layer is logarithmic in the number of sensors in that recursive

call. Finally, Theorem 5 completes the proof of Theorem 7.

2.6.2 Convex Hull Simulations

Here we discuss the results of simulations of a basic implementation of our convex

hull algorithm. As with the sorting algorithm in Section 2.5 we simulated this algo-

rithm with task completion testing interruptions beginning at the expected runtime

and subsequent interrupts occurring every 1
5

of the expected runtime. This algorithm

does not contain a B task so we did not need to traverse back up the recursion tree.

The simulations were performed for networks ranging from 10 to 4,000 sensors

with data averaged over 1,000 trials on points that are chosen from three different
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probability distributions: the uniform distribution on a circle (just the perimeter),

the uniform distribution on a disk (includes the center), and the normal 2-dimensional

Gaussian distribution. These distributions were chosen to represent realistic sensor

placements. The uniform circle represents the case where sensors are strategically

placed on the boundary of an area, the uniform disk represents sensors that are

purposefully evenly distributed, and the Gaussian represents sensors that are less

carefully scattered resulting in sensors being concentrated towards the center. Each

distribution has different convex hull sizes which is relevant to the algorithm’s runtime

and energy usage. The circle is the worst case with all n points on the convex hull, the

disk has O(n
1
3 ) points on the convex hull in expectation, and the Gaussian distribution

has O(
√

log n) points on the convex hull in expectation [46].

The results of the simulations of our convex hull algorithm on the distributions

previously described are given in Figures 2.15, 2.16, and 2.17 comparing the run-

time, average energy usage, and maximum energy usage, respectively. The figures

include error bars representing plus or minus one standard deviation. These results

largely reflect the theoretical bounds given in Section 2.6. On the uniform circle our

algorithm’s runtime is linear with respect to the number of processors while for the

uniform disk and Gaussian the runtime is sublinear. Although our convex hull run-

time on the uniform circle is significantly slower than the uniform disk and Gaussian

it is still faster than the previous best sorting algorithm, MK-MS. Even though these

algorithms solve different problems this illustrates the speed that this framework al-

lows. The average energy is logarithmic for all three distributions with the constants

depending upon the size of the convex hull. The maximum energy usage appears to

be between log and log-squared. Interestingly, although having the highest maximum

energy usage in practice, the uniform circle appears to have logarithmic maximum

energy used while the disk and Gaussian appear to have ω(log n) maximum energy.
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Figure 2.15: Runtime of our convex hull algorithm under different point distributions.
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Figure 2.16: Average energy dissipation per processor of our convex hull algorithm
under different point distributions.
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Figure 2.17: Maximum energy dissipation of any processor of our convex hull algo-
rithm under different point distributions.
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Chapter III

Multi-Hop Algorithms

3.1 Introduction

This chapter focuses multi-hop algorithms and overcomes challenges in merging

local solutions into global solutions. In Section 3.2 we present a technique called

multi-hop consolidation algorithms in which sensors execute single-hop algorithms in

overlapping single-hop regions and then consolidate these local solutions into a global

solution. One major consideration when creating multi-hop consolidation algorithms

is whether or not the network has an established global coordinate system such as

GPS. If a sensor network has a global coordinate system then these coordinates can

be used to coordinate usage of the radio broadcast channel. If a sensor network does

not have an established global coordinate system then we elect leaders and use the

leaders to coordinate usage of the radio broadcast channel.

Multi-hop consolidation algorithms can only be used to solve inherently local

problems such as many geometry problems. Because of the spatial nature of sensors

these geometry problems are especially relevant. In Subsection 3.3 we create a con-

solidation algorithm for all points k-nearest neighbors, which is often used to detect
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outliers in sensor data [18]. In Subsection 3.4 we present a consolidation algorithm

for coverage boundary detection. Finally, in Subsection 3.5 create a consolidation

algorithm for computing the Voronoi diagram which is an important general-purpose

geometric structure.

3.2 Consolidation Algorithms

Here we define multi-hop consolidation algorithms. These algorithms have two

parts: first a single-hop algorithm is used to find local solutions to the problem, then

overlapping single-hop solutions are merged together using a specific type of merge

we call a consolidation. We will refer to the execution of the local algorithm or the

execution of the consolidation as a local action. We call a disk of diameter rc, where rc

is the communication radius, a single-hop region in which every sensor in the region

can listen to radio broadcasts from every other sensor in the region. We distinguish

this from a larger disk of radius rc that we call a broadcast range disk which is the

area in which other sensors can listen to radio broadcasts sent by the sensor at the

center of the disk. The single-hop algorithm will be executed in several overlapping

single-hop regions, computing local solutions for those regions. Note that a sensor

will likely be involved in multiple instances of the single-hop algorithm. Then once

the local algorithms are complete the consolidation step merges the local solutions

into a global solution. This consolidation may be as simple as taking the minimum

of the single-hop solutions or may be much more involved.

The advantage of a multi-hop consolidation algorithm is that it is much easier to

create and execute algorithms in single-hop networks. However, consolidation algo-

rithms are also constrained to only being applicable to problems that are inherently

local. Due to the spatial nature of sensor networks, inherently local geometry prob-
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lems are actually quite common in sensor networks and consolidation algorithms are

a powerful tool.

We define an α-consolidation algorithm, 0 < α ≤ 1, to be a multi-hop consolida-

tion algorithm where every sensor is involved in a single-hop instance of the algorithm

with every other sensor within distance αrc. That is, every sensor is involved with

multiple single-hop instances, the union of which includes every sensor within distance

αrc.

3.2.1 Consolidation Algorithms With Global Coordinate Sys-

tem

Here we present a procedure for executing (1 − ε)-consolidation algorithms in

O
(
T
ε2

)
time and O

(
log T
ε2

)
energy overhead per sensor, where T is the maximum run-

time of any local action. With a known coordinate system sensors can use the global

coordinate system to pre-decide usage of the broadcast channel. The basic idea is

to disregard sensor positioning and prearrange overlapping disks of of diameter rc to

cover the entire plane so that if any two points in the entire plane are within (1− ε)rc

then they lie in the same disk at least once. Then, based on the position of the

disks and a prearranged ordering, we execute the local algorithm on disks in specific

pattern such that they sufficiently far apart so there is no interference, stopping after

a constant number of steps so other disks can begin working. This is continued until

every disk has had an opportunity to get some work done and then we repeat the

pattern.

The covering that we use is often attributed to Kershner [29]. The idea is to have

the center of the disks be the vertices of a tiling by equilateral triangles. In our case

we use triangles with edges of length εrc
√
3

2
. Notice that no global communication is
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needed because for a given ε and rc sensors always use the exact same pattern.

Lemma 10. If disks of radius rc
2

cover the plane with centers being the endpoints of

a tiling by equilateral triangles of edge length εrc
√
3

2
then for any two points p1 and p2

that are within (1− ε)rc there exists a disk in the covering that both p1 and p2 lie in.

Proof. Let m be the midpoint of (p1, p2). Notice that any point on the plane, specif-

ically m, is within εrc
2

at least one of endpoint t of one of the triangles in the

tiling. Thus, by the triangle inequality, the distance from p1 or p2 and t is at most

(1−ε)rc
2

+ εrc
2

= rc
2

. Thus p1 and p2 both lie on the disk centered at t.

We then divide these centers up into different regions so that we can execute one

local algorithm per region without interference from the other regions. To do this

we choose centers of each region to be centers of a disk such that each center of the

region is at least 2rc away from each other, using the exact same tiling scheme as

before. Then every disk center is associated with the region whose center it is closest

to, breaking ties arbitrarily (for example the rightmost regional center it is closest

to).

We divide the runtime into O
(

1
ε2

)
repeating constant-sized time slices, one for each

center in each region. Each center is assigned a time slice based on a predetermined

pattern, Figure 3.1 shows one such pattern. Then each during the time slices assigned

to each center every sensor within rc
2

of the center wakes up and executes the local

algorithm. Note all sensors are within a single-hop of every other sensor in the disk

and no disks will ever interfere with each other because corresponding disks in different

regions are at least rc apart.

We then interrupt this cycle at exponentially increasing number of cycles to test,

for each disk, if every overlapping disk is also complete. During each interruption

we iterate through the disks twice in the same order that we do during execution of
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Figure 3.1: Tiling of disk centers with ε = 2
√
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≈ 0.38 showing regions, regional

centers, and the order that in which disks in a specific region are executed.

the local algorithm. During the first iteration any sensor that knows that the disk

is not done with the local algorithm broadcasts. During the second iteration every

sensor that was in a disk where a sensor announced that the local algorithm was

not complete broadcasts. After a disk discovers that every overlapping disk is also

complete they then use the time steps allocation to the disk for the consolidation

procedure.

3.2.2 Consolidation Algorithm Without Global Coordinate

System

If no global coordinate system is available then picking disk centers while prevent-

ing interference cannot be done for free. Consolidation algorithms with no known

global coordinate system will still greatly resemble consolidation algorithms with a

known coordinate system but will be more involved. The major difference is that now
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sensors will be elected to be disk centers and time slices will be distributed on the fly.

We present a procedure for executing
(
1
2
− ε
)
-consolidation algorithms. The ex-

pected runtime of our procedure is O
(
T+log2 n

ε2

)
time, where T is the maximum run-

time of any local action. In expectation, the average energy overhead per sensor is

O
(
log T+logn

ε2

)
and the maximum energy overhead for any sensor is O

(
log T+log2 n

ε2

)
.

A couple of our model assumptions will be key for this procedure. The first is the

assumption that every sensor has a unique id of O(log n) bits. The second is that

sensors can determine the distance from a broadcasting sensor in constant time by

observing the strength of the received signal.

Our procedure takes place in three phases. These phases are thought of as se-

quential, however we actually partition the algorithm’s runtime into constant sized

time slices and assign every other chunk of time slices to each phase. This is to pre-

vent unexpected interference between sensors in different areas currently working on

different phases.

• Phase 1: Elect leaders to be disk centers and determine which sensors lie within

the disks.

• Phase 2: Allocate time slices and determine if local algorithms are complete.

• Phase 3: Run local algorithm and consolidate local solutions.

3.2.3 Phase 1: Electing Leaders

In this phase our goal is to elect leaders who will act as the centers of the rc
2

radius

disks in the known global coordinate system and will help coordinate sensors in its

disk during phase 2. Sensors will remain awake for this entire phase until they are

certain no more leaders will be elected nearby.
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When electing leaders we disallow sensors that are within εrc of another leader

from becoming a leader and we continue electing leaders until every sensor is either a

leader or within εrc of a leader. In other words we find a maximal set of sensors such

that no two leaders are within εrc of any other leader. The following lemma gives

an upper bound on the number of leaders whose rc
2

–disks can interfere with a given

leader’s rc
2

–disk. The proof follows easily from a geometric argument.

Lemma 11. If P is a set of points on a 2D plane and L ⊆ P is a maximal set such that

for all u, v ∈ L we have d(u, v) > εrc then for all u ∈ L,

|{x ∈ L such that d(x, u) ≤ 2rc}| ≤ 1
ε2

During phase 1 each sensor can be in one of 4 states: leader, candidate, potential

candidate, or non-leader. Each sensor begins as a candidate and eventually becomes

either a leader or a non-leader. Candidates are sensors currently in contention to be

elected as a leader. Potential candidates are not currently in contention to become a

leader but may come back in contention at some point and become a candidate again.

To elect leaders we repeatedly use the broadcast structure given in Figure 3.2.

This election is based on the exponential back off where candidates become non-

candidates with probability 1
2
. Steps 1-3 tell potential candidates that they cannot

yet become candidates again. Steps 4-5 are used for a candidate to determine no

other candidates are nearby and thus become an elected leader. Finally, step 6 is

used to determine if any more leaders are going to be elected, indicating whether or

not sensors have completed phase 1.

If a sensor is a candidate and does not broadcast in step 1 it becomes a potential

candidate. Potential candidates keep track of a variable i that represents how many

iterations it has been out of contention. If a broadcast or interference is heard in steps

1-3 the potential candidate increments i. If no broadcast or interference is heard in
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1: broadcast with probability 1
2

if currently a candidate
2: broadcast if a broadcast or interference was heard in 1
3: broadcast if a broadcast or interference was heard in 2
4: broadcast if interference was heard in 1
5: broadcast if broadcasted in 1 and no broadcast or interference was heard in 4
6: broadcast if candidate or potential candidate

Figure 3.2: The repeating broadcast steps for electing leaders in phase 1.

steps 1-3 the potential candidate decrements i and if i becomes 0 then the potential

candidate becomes a candidate again.

If a candidate broadcasts in step 5 that means that it has been elected as a leader.

During this step sensors around a leader determine their distance to the leader. If

this distance is less than rc
2

then the sensor knows it is in the leader’s disk and if this

distance is less than εrc then the sensor becomes a non-leader.

If a sensor hears no broadcast or interference in step 6 then it can sleep for the

remaining time steps allocated to phase 1 because there will be no more leaders

elected within rc
2

of the sensor. When this occurs for every sensor in the network we

say that phase 1 is complete. Notice that no sensor can ever be certain that phase 1

is complete so we continue allocating time steps to phase 1 even after every sensor

falls asleep.

Lemma 12. The expected time for phase 1 to complete is O
(
logn
ε2

)
.

Proof. First we will find the expected time for a given sensor s to complete phase 1.

We do this using the potential method and random walks.

Our potential function f is defined below. We define l to be the number of current

leaders within 3rc of s, c and pk to be the number of current candidates and potential

candidates with i = k within rc of s, respectively. We define L to be the set of

sensors within 3rc of s that will eventually become a leaders in the future. We define

a function g on the elements of L to be n if the element is the not the next sensor
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to be elected and to otherwise be the number of sensors who are as close to being

elected. We say a sensor u is closer to being elected than another sensor v if u is a

candidate and v is not or u and v are potential candidates and u has a smaller value

for i.

f(s) = 2
36
ε2
−l

(
c+

∞∑
k=1

(
1

6

)k
pk

)∏
v∈L

g(v)

Examine the following cases:

1. The next leader is elected.

2. There are no candidates within two hops of the next leader.

3. There are candidates within two hops of the next leader but none of them

broadcast.

4. The next leader is a candidate, broadcasts in step 1, and at least 1
3

of the

candidates within two hops of the next leader drop out.

5. The next leader is a candidate, broadcasts in step 1, and less than 1
3

of the

candidates within two hops of the next leader drop out.

6. The next leader is a candidate and does not broadcast in step 1.

7. The next leader is not a candidate.

Notice that this in each of these cases there is a constant probability that the

potential function is decreased by a constant amount. Therefore since this is a biased

random walk, the expected time for a given sensor to complete phase 1 is the log of

the initial value of f(s) which is 2O( 1
ε2

) · O(n). Thus the expected time for a given
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sensor to complete is O
(
logn
ε2

)
and using Lemma 36 in the Appendix completes the

proof.

3.2.4 Phase 2: Allocating Time Slices

In this phase each leader attempts to claim time for its single-hop region to com-

plete the local action. Local actions are completed in Phase 3 which is divided into

O
(

1
ε2

)
constant sized time slices. The leading coefficient will be important and is

discussed in the proof of Lemma 13. Each leader will claim a time slice so that no

leaders whose disks interfere with each other can claim the same time slice. Sensors

can strategically sleep during many parts of phase 2 but for our analysis we will as-

sume sensors are awake for all of phase 2 until it is complete with phase 1 and all of

its leaders have claimed a time slice of phase 3.

Phase 2 takes place in several repeated rounds with each round consisting of

log2
1
ε2

stages. During each stage O
(

1
2iε2

)
time slices for phase 3 will be available to

be claimed by each group. As an example, perhaps during the first stage time slices

1 through 64 are available, then in stage two time slices 65 through 96 are available,

then in stage three time slices 97 through 112 are available, and so on. For each time

slice available to be claimed in a stage that stage will contain time for that time slice

to be claimed.

Each leader who has not yet successfully claimed a time slice picks a random slice

that is available to be claimed and attempts to claim that time slice. In Figure 3.3

we detail the process in phase 2 for claiming a time slice. If this claim is successful

then this group ignores the remaining stages and continues to claim this time slices

each round until every group that could interfere also successfully claims a slice. If
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the group fails to claim a time slice then the leader picks another random time slice

in the next stage to attempt to claim. If a group fails to claim a time during a round

then the group simply repeats this whole process in the following round.

To efficiently assign a time slice to a group of sensors we must resolve a problem

related to the hidden node problem. This problem, which we call the multi-interference

information loss problem, occurs when two groups of sensors attempt to exchange

information (in this case claim a time slice) and only a small number of sensors are

actually in communication range of the other group. If a group attempts to exchange

information by having more than one sensor broadcast and use interference or lack

thereof to represent a bit of information, then the groups lose the ability to detect

collisions. This then essentially becomes the loneliness detection problem where each

group is attempting to determine if there exists another group trying to claim the

same time slice. As discussed in [9] it can be impossible to detect loneliness in some

circumstances.

In this situation every sensor in the group must broadcast at least once because

it may be the only sensor which is in range of communicating with the other group.

However we cannot solve this problem by having each sensor in the convex hull

announce one at a time because then this would require the other group to listen for

O(n) steps.

We resolve the multi-interference information loss problem by using the unique id

of the group’s leader. For each bit in the leader’s id each sensor broadcasts if the bit

is a 1 and only listens if the bit is a 0. Then if multiple groups broadcast the leaders’

ids at the same time then all but at most one of the groups will have a sensor that

hears a broadcast that does not correspond to its leader’s id.

In step 1 any leader that decides to claim a time slice in the partition of phase

3 time slices associated with this claiming time broadcasts. If any sensor heard
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1: broadcast if you are a leader that is attempting to claim a time slice in the
corresponding partition

2: broadcast if you heard interference in 1
3: broadcast your id and the group you are attempting to claim if you are a leader

who broadcast in 1 and did not hear a broadcast or interference in 2
4: broadcast the leader’s id bit pattern if you heard your leader broadcast in 3
5: broadcast if you broadcast in 4 and heard a broadcast or interference that does

not correspond to your leader’s id in 4
6: broadcast if you are a leader that broadcast in 3 and did not hear a broadcast

or interference in 5
7: broadcast if your leader broadcast in 6.
8: broadcast if you heard a broadcast or interference in 7

Figure 3.3: The broadcast schedule used in phase 2 for claiming a time slice of phase
3.

interference in step 1 then it cannot determine if the sensors broadcasting are its

leaders and must stop all broadcasting sensors from going through with the claim. So

these sensors broadcast in step 2. If a leader did not hear a broadcast or interference

in step 2 then it knows every sensor in its rc
2

–disk heard it broadcast and knows its

id. So the leader broadcasts a confirmation message which every sensor in its group

are guaranteed to hear.

This does not guarantee that there can be no interference between two different rc
2

–

disks so each disk broadcasts the bit pattern of the leader in step 4. Then if multiple

interfering rc
2

–disks attempt to make a claim during this time at most one claim will

go through. In step 5 sensors indicate if their groups claim did not go through by

broadcasting if they heard a broadcast in step 4 that does not correspond to their

leaders bit pattern. If a leader did not hear a broadcast or interference in 5 then it is

safe for the rc
2

–disk to claim the time slice so the leader sends a confirmation message

in step 6 finalizing the claim. Then in step 7 every sensor in the disk broadcasts that

a time slice in the group was taken. Then in step 8 sensors let their leaders know

that a time slice in that group was taken.
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During each round when a disk claims a time slice, other sensors that are not in

the disk may not hear the disk’s leader announcing which time slice is claimed. They

hear that their disk interferes with a disk that claimed a time slice in that group but

not which time slice that is.

Lemma 13. The expected time for a sensor to complete phase 2 is O
(
logn
ε2

)
and the

expected time for all sensors to complete phase 2 is O
(

log2 n
ε2

)
.

Proof. First we show that each sensor has a constant probability of finishing Phase 2

after each round. This will then imply the expected maximum number of rounds is

O(log n) for any sensor by Lemma 36. Since the energy spent per round is O
(
logn
ε2

)
this will complete the proof.

Let m = π(2r)2

π(εrc)2
= 4

ε2
which is the maximum number of disks that can interfere

with a given disk while attempting to claim a time slice. For the sake of this proof

we will pick the total number of time slices to be 32m so that at each stage a large

fraction of the disks will successfully claim time slots. If at each stage only 1
4

of the

remaining disks within interference range fail claim a time frame then all these disks

will be allocated a time slice at the end of the round. So we bound this probability.

There is one final caveat that we need to take into account: if a large number of

groups many hops away fail to claim time slices this could cascade causing neighboring

groups to fail to claim time slices in the next stage, which in turn would cause their

neighbors to fail to claim time slices in the next time stage and so on. To count

these dependencies we will use a hexagonal Kershner covering, see Figure 3.4. Our

invariant for each stage will then become that at stage log4(n) − i, for each disk in

the Kershner covering with side length i and radius equal to the interference range

between groups, that at most 1
4

of the leaders fail to claim a time slice. Note that the

Kershner covering of side length i has 3i2 + 3i+ 1 points.
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Figure 3.4: Hexagonal Kershner covering with side length of two

Assuming that in all previous rounds at most 1
4

of the groups fail to claim a time

slice, the probability that any group fails to claim a time slice is at most 1
16

because

the number of groups are decreasing at a faster rate than the number of time slices

available to claim. Therefore, assuming in all previous rounds that at most 1
4

of

interfering groups failed to claim a time slice, the probability that at most 1
4

of the

interfering groups fail to claim a time slice in round log4(n) − i in each disk of the

hexagonal Kershner covering with side length i is bounded by

1−
4i−1∑
j=0

(
4i

j

)(
1

16

)j (
15

16

)4i−j

Table 3.1 shows the probability that more than 1
4

of the groups within interference

range fail to claim a time slice in the log4(n)− ith stage in each disk of the Kershner

covering of side length i and radius equal to the interference range between groups,

assuming that in previous rounds at most 1
4

of groups failed to claim a time. For all

stages of the form log4(n) − i with i ≥ 4 we use the Hoeffding/Chernoff bound to
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i equation exact value
0 1

16
0.0625

1 7

(
1−

1∑
j=0

(
4
j

) (
1
16

)j (15
16

)4−j)
0.151

2 19

(
1−

4∑
j=0

(
16
j

) (
1
16

)j (15
16

)16−j)
0.044

3 37

(
1−

16∑
j=0

(
64
j

) (
1
16

)j (15
16

)64−j)
1.01e−5

≥ 4
∞∑
i=4

(3i2 + 3i+ 1) e−
9

128
4i 9.29e−7

Table 3.1: Upper bound on probability that more than 1
4

of the groups within inter-
ference range fail to claim a time slice in the log4(n) − ith stage in each disk of the
Kershner covering of side length i and radius equal to the interference range between
groups, assuming that in previous rounds at most 1

4
of groups failed to claim a time

slice.

get an approximation. Notice that the sum of these probabilities is a constant less

than 1. Thus each sensor has a constant probability of being finished with Phase 2

after each round. This implies the expected maximum number of rounds is O(log n)

for any sensor by Lemma 36 in the Appendix. Since the energy spent per round is

O
(
logn
ε2

)
this completes the proof.

3.2.5 Phase 3: Executing Local Actions

This phase is where sensors complete the local algorithms and merge. Phase 3

is divided into O
(

1
ε2

)
repeating constant sized time slices. If a group is allocated

a time slice it wakes up during that time slice and continues work on either the

local algorithm or consolidation algorithm. At exponentially increasing intervals the

execution of the local algorithm is paused and every sensor that knows that the

local algorithm is not complete announces. Once the local algorithm is complete the
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sensors wake up at exponentially increasing intervals to determine if they can begin

the consolidation algorithm. During one of these wake-ups if a sensor is a member of

a disk that is not complete or the sensor has not completed phase 1 or 2 the sensor

announces.

This phase will complete in O
(
T
ε2

)
time after phase 2 is complete and only O

(
log T
ε2

)
energy is used per sensor in addition to the energy used for the local actions.

3.3 All Points k-Nearest Neighbors

In this section we provide an algorithm for the 2-dimensional all points k-nearest

neighbors problem for serial computers, single-hop sensor networks, and multi-hop

sensor networks. The all points k-nearest neighbors problem is defined as follows:

given a set P of n 2-dimensional points in Lp space, for each point p find k < n

neighboring points in P such that no other point in P lies closer to p than any of

the k points found. In parallel models we assume that each processor is given only

a single point. For the multi-hop model, if a sensor has fewer than k neighbors

within broadcast range then we only require that the sensor find all neighbors within

broadcast range.

Nearest neighbors is an extremely relevant problem to wireless sensor networks.

All points k-nearest neighbors is used in [50] to solve certain coverage problems.

Another common use of all points nearest neighbors is to detect outliers in sensor data

[18]. Since sensors are small and unreliable detecting when sensors give faulty data is

a concern. To detect faulty data, sensors may compare their data with neighboring

sensors. Typically nearest neighbors are chosen because their close proximity means

that their data will be more highly correlated.

Determining each sensor’s nearest neighbors is trivial if each sensor has complete
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information of all neighboring sensors, but in extremely dense networks this can be

too expensive in terms of energy usage. However we do not assume that sensors know

about neighboring sensors and still each sensor only uses at most poly-log energy.

First we present a O(kn log n) serial version of of our k-Nearest Neighbors algo-

rithm and prove the correctness of our approach. This algorithm is, in essence, the

all nearest neighbors algorithm from [7]. We describe the algorithm more explicitly

and generalize the algorithm for finding the k nearest neighbors for every Lp-space,

1 ≤ p ≤ ∞. Using multidimensional divide-and-conquer [7] points out that this al-

gorithm can be generalized to any fixed d dimensions in O(kn logd−1 n) time. This

algorithm is, to our knowledge, the simplest O(n log n) planar all nearest neighbor

algorithm.

We then show how this algorithm can be implemented in a single-hop sensor net-

work using a maximum of O(k log n) energy per sensor. Finally, we use this algorithm

and the framework in Section 3.2 to create our multi-hop algorithm.

3.3.1 Serial All Points k-Nearest Neighbors

For the sake of simplicity we assume that no two points have the same y-coordinate.

Pseudocode for the following algorithm is described in Figure 3.6. The basic form of

our algorithm follows the divide-and-conquer pattern. We first find the point with

the median x-coordinate value and then divide the given set of points P into two

equal sized halves, the left half L and the right half R. We then recursively solve the

All Points k-Nearest Neighbors for L and R. Now for each point in L we need to find

the neighbors in R that are nearer than the kth nearest neighbor from the points in

L already discovered. We also need to do a symmetric task for each point in R.

To discover the nearest neighbors on from the opposing set of points we will do two
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· · ·

rc

v

Figure 3.5: To find the 5 nearest neighbors for each processor or to compute the
global Voronoi diagram sensor v must transfer information for every sensor from the
top half of the network to the bottom and vice versa.

NearestNeighbor(P , k) =

1: divide P by the median x-coordinate into left points L and right points R
2: NearestNeighbor(L, k)
3: NearestNeighbor(R, k)
4: Lhelp = Rhelp = {}
5: FOR EACH p ∈ P by ascending y-coordinate
6: IF p ∈ L
7: FOR EACH pR-help in Rhelp

8: add p to knn[pR-help]
9: add p to Lhelp

10: FOR EACH pL-help ∈ Lhelp

11: pmed = (median x-coordinate, p’s y-coordinate)
12: pk = kth nearest neighbor to pL-help
13: IF dist(pL-help, pk) ≤ dist(pL-help, pmed)
14: remove pL-help from Lhelp

15: ELSE
16: same as lines 7-14 switching L and R
17: Lhelp = Rhelp = {}
18: FOR EACH p ∈ P by descending y-coordinate
19: same as lines 6-16
20: FOR EACH p ∈ P
21: remove all but k points nearest to p from knn[p]

Figure 3.6: Serial O(kn log n) k-Nearest Neighbors algorithm.

serial scans. First by ascending y-coordinate and then by descending y-coordinate.

Note that we do not need to sort at each recursive level because we can just merge

the sorted list of points from the previous recursive level in O(n) time. During the
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ascending serial scan we find each point from the opposing set that has higher y-

coordinate is nearer than the kth nearest neighbor already found. Similarly, during

the descending serial scan we find each point from the opposing set that has lower

y-coordinate than the kth nearest neighbor already found.

During each scan we keep track of a set of points for each side, labelled Lhelp

and Rhelp respectively. Each set will contain all points for which there could exist

a neighbor from the opposing set later on in the scan that is nearer than the kth

nearest neighbor already found. When we reach a point from L during our scan we

add the point to the set of possible nearest neighbors for each point in Rhelp. We then

determine if this point belongs in Lhelp and remove any points that no longer belong

in the set. To determine which points should be removed we just need to compare the

distance from the kth nearest neighbor already found and the point with x-coordinate

equal to the median x-coordinate and y-coordinate equal to the current y value of

the scan. It is easy to see that any point from the opposing set yet to come in the

scan must be further away than this point. We perform a similar task when our scan

reaches a point in R replacing Lhelp and Rhelp respectively.

Finally, for each point we use a linear time selection algorithm to determine the

nearest k points from the potential nearest points discovered during the scans and

the recursive calls. By translating the x and y axes to the current position in the scan

and the median x value respectively, Lemma 14 implies that Lhelp and Rhelp are at

most 2k at all times. This means that each step in the scan takes O(k) time and that

the total size of all sets of possible nearest neighbors is O(kn). Thus each recursive

call takes O(kn) time and the total runtime of our algorithm is O(kn log n).

Lemma 14. Let P be a set of 2-dimensional points in Lp-space with positive x and

y-coordinates. At most 2k points in P are closer to the origin than their kth nearest
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neighbor in P .

Proof. Observe the two regions obtained by dividing the first quadrant into two oc-

tants by the line y = x. Let a = (xa, ya) and b = (xb, yb) be two points in a single

octant. Without loss of generality assume that they lie in the octant above the line

y = x—that is ya ≥ xa and yb ≥ xb—and assume that ya ≥ yb.

If xa ≥ xb then we get |xa − xb|p + |ya − yb|p ≤ |xa|p + |ya|p directly. On the other

hand if xa ≤ xb then from the triangle inequality

|xa − xb|p + |ya − yb|p ≤ |xb − xa + ya − yb|p

≤ |ya + xb − yb|p

≤ |ya|p

≤ |xa|p + |ya|p

In either case a is as close or closer to b as the origin.

Therefore in the octant above the line y = x any point that is not one of the k

points with smallest y-coordinate will be as close or closer to those k points than

to the origin. A symmetric argument also proves that there are also at most k in

the octant below the line y = x points closer to the origin than to their kth nearest

neighbor and completes the proof of the lemma.

3.3.2 Single-Hop All Points k-Nearest Neighbors

Our algorithm for k-Nearest Neighbors on a single-hop sensor network will be a

very similar divide-and-conquer algorithm as the serial algorithm. The first difference

is that we need a different technique to sort the set of sensors by y-coordinate at each

recursive call because in this low-energy sensor network model it seems unlikely for two

63



lists to be able to be merged with O(1) energy per sensor in the worst case. We instead

sort once before making recursive calls and split this list into two smaller sorted lists

using a serial scan before each recursive call. Then we find the median x-coordinate

by either using the selection algorithm used in [49] or more simply by maintaining the

points in sorted x order in addition to sorted y order. Then each sensor broadcasts in

the sorted order with the next sensor in the sorted order listening. What each sensor

broadcasts is the running sum of the number of sensors in L. With this information

each sensor will know its position in sorted order for the next recursive call.

Now we iterate through each sensor first in ascending y-coordinate then by de-

scending y-coordinate. Each sensor will listen to the previous sensor broadcast then

execute the iterative step from the serial algorithm and then broadcast each point

in Lhelp and Rhelp and for each point will broadcast a running sum of the number of

possible k-nearest neighbors already found.

We then iterate through the sensors once again. This time the sensors that re-

moved the sensor from Lhelp or Rhelp in each previous iteration take turns broadcasting

the total number of potential k-nearest neighbors found. Each sensor that was a po-

tential nearest neighbor listens to these leaders broadcast. Now for each sensor each

potential nearest neighbor

Finally, for each sensor s the set of potential k-nearest neighbors use the selection

algorithm in [49] to determine which points are actually the k-nearest neighbors.

During this algorithm s will act in place of the k points from the previous recursive

call. To get the information of s’s k nearest neighbors to s, the k-nearest neighbors

broadcast one a time with s listening. As one final complication, each sensor must

know when it must wake up to begin the selection algorithm. Since the selection

algorithm is deterministic we can keep a running total of the time that these tasks

are going to take when broadcasting the total number of potential k-nearest neighbors.
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Theorem 15. In a single-hop sensor network of n sensors with one 2-dimensional

point per sensor, each sensor can determine the k nearest points in O(kn log n) time

and O(k log n) maximum energy used by any sensor. These bounds are deterministic

if the sensors are already in some ordering. If the sensors are not ordered and even

if n is not known then these bounds can be met in expectation.

Proof. First, if the sensors are already ordered in some way, then sorting can be done

deterministically in O(n log n) time with O(log n) maximum energy per sensor [49].

However, if the sensors are not ordered and even if n is not known, we can simply use

the sorting algorithm from Section 2.5 in expected O(n) time with expected O(log n)

maximum energy per sensor. This will be the only source of randomness in the rest

of the algorithm so each sensor will know when to wake up after the recursive calls

are complete.

The time at each recursive level is O(kn) because selection algorithm in [49] takes

linear time. This algorithm also takes O(1) maximum energy for any sensor. Since

each sensor is involved with O(k) calls of this algorithm and one additional call where

it acts as k sensors, during a single recursive call each sensor spends at most O(k)

energy during selection.

During each of the first two iterations each sensor broadcasts O(k) information

and listens to only one other sensor broadcast. In the third iteration each broadcast

is constant size and each sensor broadcasts at most O(k) times and listens to at most

O(k) broadcasts. In the remaining places a sensor is awake it is easy to see that the

sensor only uses O(k) energy.
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3.3.3 Multi-Hop All Points k-Nearest Neighbors

Finally, we have all the tools we need to solve the k-Nearest Neighbors on a

multi-hop network of sensors. In this model we assume that each point actually

represents the sensor’s physical location and further we modify the problem so that

each sensor is only required to find it’s k-nearest neighbors if those neighbors within

broadcast range. If fewer than k neighbors are within broadcast range then the

sensor is required to determine all neighbors within broadcast range. We make this

modification because if this is not done then, depending upon the structure of the

graph, global communication may be necessary and it may be impossible to compute

the k-nearest neighbors without a single sensor spending O(n) energy. Figure 3.5

illustrates one such network.

Our algorithm in this model is simply a 1
2
-Consolidation Algorithm using the

single-hop algorithm we previously described. Once the single-hop is complete for

every region the sensor is involved in the sensor will know its k-nearest neighbors if

the sensor has k neighbors within 1
2
rc. During the consolidation phase each sensor

sensor with k-nearest neighbors between 1
2
rc and rc will be found. We split this

consolidation phase into 3 steps where for each step regions wait until all regions that

could interfere complete, not just intersecting regions, before moving on to the next

step. To do this we simply have each of the less than k vertices that still need to

broadcast one at a time during the first consolidation phase. Each sensor will listen to

all time slices of the first consolidation step so they know which nearby sensors they

may be a k-nearest neighbor for. Then, during the second consolidation phase each

region does a single recursive level of the single-hop algorithm to determine the k-

nearest neighbors for the O(k) points it’s sensors heard in the previous consolidation

step. In the final consolidation step each sensor will broadcast for the points it may be
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a k-nearest neighbor for and listens to each sensor that may be its k-nearest neighbor.

Theorem 16. Let S be multi-hop sensor network with n sensors and a maximum

of m sensors in any single-hop region, distributed on a two-dimensional plane, with

a global coordinate system. All sensors in S can determine the k nearest neighbors

within broadcast range in O(km logm) expected time with O(k logm) maximum energy

usage in expectation.

Theorem 17. Let S be multi-hop sensor network with n sensors and a maximum of

m sensors in any single-hop region, distributed on a two-dimensional plane, without

a global coordinate system. All sensors in S can determine the k nearest neighbors

within broadcast range in O(km logm+ log2 n) expected time with O(k logm+ log n)

average energy and O(k logm+ log2 n) maximum energy usage in expectation.

3.4 Coverage Boundary

In this section we present energy efficient algorithms for the coverage boundary

problem. Discovering which processors lie near the outskirts of the network can be

especially important in this sensor network model. The definition of boundary we

use in this paper is the coverage boundary originally presented in [58]. There the

authors presented an algorithm for determining which sensors lie on the coverage

boundary using two techniques they call localized Voronoi diagram and neighbor em-

bracing polygon. The authors argued that in some expected cases the number of

neighbors each sensor interacts with may remain constant. However there are some

cases where the number of neighbors each sensor interacts with may be unbounded,

see Figure 3.10 for example. Our solution for this problem will have a bound on the

expected maximum energy usage for any process regardless of the sensor’s distribu-

tion.
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Given some radius rs, which in the sensor model typically represents the radius

around which the processor can sensor relevant information from the environment,

we define the coverage area of a point p to be the disk around p with radius rs. This

is denoted by

Cover(p) =
{
q ∈ R2 : ‖p− q‖ ≤ rc

}
. We define the coverage area of a set of points S to be the union of the coverage

areas of each point in the set. Using similar notation as before we write this

Cover(S) =
⋃
p∈S

Cover(p)

.

Then we use the topological definition of boundary when talking of the coverage

boundary. This definition implies that a point is in the boundary if it is exactly rs

away from some node in S and all other node in S are at least rs away. We denote

this boundary

δCover(p) =
{
q ∈ R2 : ‖p− q‖ = rc

}
δCover(S) = {q ∈ Cover(S) : ∀p ∈ S, ‖p− q‖ ≥ rc}

We define a boundary arc of a node p to be a maximal set of points in δCover(p)∩

δCover(S) that form a circular arc. That is, if p+ rc · (sin(θ), cos(θ)) ∈ δCover(S) for

all θ1 ≤ θ ≤ θ2 but p+ rc · (sin(θ1− ε), cos(θ1− ε)) /∈ δCover(S) and p+ rc · (sin(θ2 +

ε), cos(θ2+ε)) /∈ δCover(S) for small ε > 0 then {p+ rc · (sin(θ), cos(θ)) : θ1 ≤ θ ≤ θ2}

is a boundary arc of p. A node may have multiple boundary arcs and we denote the

set of all boundary arcs for a node p ∈ S to be C-Arcs(p, S). Note then that

⋃
C-Arcs(p, S) = δCover(p) ∩ δCover(S)
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Finally, we say that a node p in S is a boundary node if some point in δCover(p) is

also in δCover(S). In other words p ∈ BN if and only if p has at least one boundary

arc. All other nodes in S are called interior nodes. These are denoted as following

BN(S) = {p ∈ S : δCover(p) ∩ δCover(S) 6= ∅}

IN(S) = S \BN(S)

The coverage boundary problem is then for each sensor to determine if it is a

boundary node. This definition of boundary has the several advantages that make it a

good definition. For one this definition captures coverage holes as well as the external

boundary. Secondly for this definition is entirely local, meaning that whether or not a

sensor is on the boundary only depends upon the position of other sensors within 2rs.

However, if rs >
rc
2

then computing the boundary may require global communication

or if the network is disconnected may be impossible to compute. See Figure 3.7

for illustration. As previously pointed out requiring global communication can lead

to bottle-necks where individual sensors are required to spend far too much energy.

Therefore for our algorithm we require rs < rc
2

. Fortunately most commercially

available sensors meet these requirements. This makes computing the boundary in

an energy efficient manner feasible with the techniques presented in this chapter.

The strategy for our coverage boundary algorithm is to use a 2rc-consolidation

algorithm with single-hop algorithm using a divide-and-conquer approach. First we

present the single-hop algorithm for the coverage boundary problem.
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rc
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v

· · ·

· · ·

rc
rs

v

Figure 3.7: On the left, rs >
rc
2

and in order to determine that the light grey arcs are
not boundary arcs and, thus, determine BN(S), sensor v must transfer information
for every node in from the top of the network to the bottom of the network. On the
right, rs <

rc
2

so only local communication is needed to determine the boundary arcs
and BN(S).

3.4.1 Single-Hop Coverage Boundary

Theorem 18. The coverage boundary of a set S of n 2-dimensional points can be

computed on a single-hop broadcast network in O(n log n) expected time with maximum

energy usage O(log2(n)) in expectation for any processor.

This result directly follows from Theorem 27 presented later in Section 3.5. This

is because a point v ∈ S is in the coverage boundary of S if and only if there exists a

point on one of v’s Voronoi edges that is within rs of v. See Figure 3.8 for illustration

of this fact and see Section 3.5 for clarification on the Voronoi diagram. However

in this section we will present a simpler algorithm with better coefficients that also

meets these bounds.

The single-hop algorithm for coverage boundary presented here follows the same

basic pattern as the single-hop 2-dimensional k-nearest neighbor algorithm. First we

pre-sort the set of nodes by x and y-coordinate so each sensor knows it’s rank in

each dimension. Then, based upon the median x-coordinate m, S is divided into left
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Figure 3.8: Each point p is in the coverage boundary if and only if p’s Voronoi face
is not completely contained in the rs ball around v. Also the intersecting arcs of the
coverage boundary all lie on the Voronoi edge of the two equidistant points.

CoverageBoundary(P ) =

1: divide P by the median x-coordinate m into left points L and right points R
2: CoverageBoundary(L)
3: CoverageBoundary(R)
4: Construct interval tree of arcs from δCover(L) to the right of m
5: Sweep down the tree to determine where δCover(L) and δCover(R) intersect to

the right of m
6: Sweep up the tree and use a scan to determine the new arcs in δCover(S) from
δCover(R) that are to the right of m

7: Use a scan to determine the new arcs in δCover(S) from δCover(L) that are to
the right of m

8: Repeat steps 4− 7 replacing L and R and “left” and “right” respectively
9: Redistribute arcs so that each processor has a constant number of arcs

Figure 3.9: Structure of the single-hop coverage boundary algorithm.

and right halves which we call L and R respectively. Then we recursively find the

boundary arcs of L and R. Then using interval trees and serial scans we determine

which boundary arcs must be truncated or removed entirely. Figure 3.9 gives a more

detailed overview of the algorithm.

We maintain the following invariants for each recursive call:

• Each boundary arc is maintained by a single processor and each processor main-
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v

Figure 3.10: Sensor v has a boundary arc for every other sensor in the network.

tains O(1) boundary arcs.

• In addition to maintaining each node’s y-coordinate rank, each node’s boundary

arcs maintain their ranks in a rotational ordering.

Each node may have up to Θ(n) boundary arcs so it is not possible for each

processor to maintain all of its boundary arcs in an energy efficient manner. See

Figure 3.10 for illustration. However Lemma 19 implies that it is possible to reorder

the boundary arcs so that each processor only maintains O(1) boundary arcs.

Lemma 19. For a set S of n 2-dimensional points δCover(S) contains O(n) boundary

arcs.

Proof. The intersection of two boundary arcs must be exactly rC away from two

points u, v ∈ P and every other point in P must be more than rC away. Therefore

this intersection lies on the Voronoi edges separating the Voronoi faces of u and v.

See Figure 3.8 for an illustration of this fact and see Section 3.5 for further discussion

of the Voronoi diagram. Further there may only be at most two intersections of

boundary arcs lying on the Voronoi edge because there are only two points on the

Voronoi edge that are exactly rC away from u and v. Since the number of Voronoi

edges of Vor(P ) is at most 3n−6 [44], the total number of boundary arc intersections

is O(n) and finally the total number of boundary arcs is also O(n).
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L R

m
y1

y2

y3
y4
y5

y6

[y1, y6]

[y1, y3]

[y1, y2] [y2, y3]

[y3, y6]

[y3, y4] [y5, y6]

Figure 3.11: On the left, δCover(L) with shoreline bolded. On the right, correspond-
ing interval tree of the shoreline of L.

Once the boundary arcs of L and R are found recursively we determine which

arcs must be truncated and which arcs must be removed completely. To do this

we determine each point where δCover(L) intersects δCover(R). First we determine

where δCover(L) intersects δCover(R) to the right of the median x-coordinate m and

then where they intersect to the left of m. For sake of simplicity we will only describe

how to find the intersections to the right of m.

We call the points of δCover(L) with x-coordinate greater than m to be the

shoreline of L. To determine where the boundary arcs of L and boundary arcs

of R intersect to the right of m we will construct an interval tree of the shoreline

of L. The leaves of our tree contains information for a single boundary arc from

L’s shoreline. These boundary arcs are keyed by their maximum and minimum y-

coordinates. Lemma 20 implies that the y-coordinates of these arcs do not overlap.

Each non-leaf node in the tree contains, as the key, the maximum and minimum y-

coordinate of each boundary arc in the subtree rooted at that node. See Figure 3.11 for

an example beachline and corresponding interval tree. Along with the minimum and

maximum y-coordinates we also maintain the minimum and maximum x-coordinate

of any point on an arc in the subtree.
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Lemma 20. The shoreline of L has at most a single point with any given y-coordinate.

Proof. Suppose, by way of contradiction, that a, b ∈ δCover(L) such that ay = by

and without loss of generality m < ax < bx. There must be some point p ∈ L such

that ‖b− p‖ = rs. Then

‖a− p‖ =
√

(ax − px)2 + (ay − qy)2

=

√
(bx − px − (bx − ax))2 + (by − py)2

<
√

(bx − px)2 + (by − py)2

= rs

This contradicts a being in δCover(L).

In order to construct the interval tree first each arc in the shoreline must know

it’s y-coordinate rank to form the leaves of the interval tree. Lemma 21 implies that

these ranks can be determined with a simple scan using each sensor’s y-coordinate

and the arc’s ranks in the rotational ordering. Then deterministically based upon the

rank of the leaf each sensor picks a non-leaf node in the interval tree to maintain.

Then we perform a sweep up the tree. Each leaf node broadcast in order and each

parent listens to each of its children broadcast. We then repeat this for the nodes in

the second level and so on, until we reach the top of the tree.

Lemma 21. Let p, q ∈ L such that py > qy, then uy ≥ vy for every point u on a

boundary arc of p and every point v on a boundary arc of q that each lie on shoreline

of L.

Proof. Suppose, by way of contradiction, that uy < vy. If px ≤ qx then

‖q − u‖ =
√

(qx − ux)2 + (qy − uy)2
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=

√
(px − ux − (px − qx))2 + (py − uy − (py − qy))2

<
√

(px − ux)2 + (py − uy)2

= rs

This contradicts u lying on a boundary arc. In the other case if qx ≤ px the same

argument shows that ‖p− u‖ < rs, contradicting v lying on a boundary arc.

Once the tree is constructed we now perform a sweep down the interval tree

to determine each intersection of δCover(L) and δCover(R) to the right of m. To

sweep down the tree first the root broadcasts, then each node in the second level

will broadcast, and so on until we reach the leaf nodes. For each boundary arc â

in δCover(R) the sensor maintaining the arc listens to the root broadcast and then

continues down the tree for each branch for which it is possible for â to intersect.

When we say â possibly intersects with an arc in the subtree we mean that some

point in â is within the minimum and maximum y and x values stored in the root of

the subtree.

If each processor with an arc â in δCover(R) to the right of m listens to all nodes in

the tree where its arcs may intersect then some processors may need to listen to Θ(n)

nodes which will excessive amounts of energy. To remedy this issue each processor

will only keep track of the subtrees it possibly intersects with highest and lowest

y-coordinate in the interval tree. For every other node in the tree the processors

maintaining the tree will be responsible for determining where â intersects. This is

done by allocating time slots after each node broadcasts for sensors responsible for

arcs such as â to broadcast.

For example, when the original processor keeping track of â could possibly intersect

two children of the subtree it is maintaining with highest y-coordinate it continues
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down the subtree of the child with higher y-coordinate and broadcasts during one of

these time slots after the child with lower y-coordinate broadcasts. Then that child

may broadcast during these time slots after its children broadcast depending upon

whether â could possibly intersect the arcs in those subtrees. This continues until

either we reach a leaf node or it is determined that it is not possible for â to intersect

any arcs in the childrens’ subtrees.

Lemma 22 implies that only a constant number of arcs will need to be passed to

each node in the tree. Additionally, which time each possibly intersecting arc is needed

to be broadcast without radio interference can be deterministically decided simply

using the positioning of the arc. This means that each intersection of δCover(L) and

δCover(R) to the right of m can be determined in O(n) time and O(log n) maximum

energy used by any processor.

Lemma 22. Let T be the subset of δCover(L) with x-coordinate at least m and

y-coordinate between ymin and ymax. Also let xmin and xmax be the minimum and

maximum x-coordinate of T respectively. Then no more than 4 boundary arcs in

δCover(R) have maximum y-coordinate greater than ymax, minimum y-coordinate less

than ymin, and have some point with x-coordinate between xmin and xmax. In other

words no more than 4 arcs in δCover(R) go from above to below the bounding box of

T and intersect the bounding box.

Proof. We will prove this lemma by observing the center of the arcs in δCover(R)

that meet the criteria of the theorem. We will show that only one center can be to

the left of the bounding box, one center can be to the right of the bounding box, and

at most two centers can be neither to the left or right of the bounding box.

Suppose, for the sake of contradiction, that there are two boundary arcs meeting

the criteria of the theorem whose centers u and v have ux ≤ xmin and vx ≤ xmin.
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First notice that these arcs cannot intersect for any y-coordinate between ymin and

ymax. Without loss of generality, let the arc of u have lower x-coordinate for each

y-coordinate between ymin and ymax. Let p be on the arc of u such that px ≥ xmin and

let q be on the arc of v such that py = qy. Then

‖v − p‖ =
√

(vx − px)2 + (vy − py)2

=

√
(vx − qx − (px − qx))2 + (vy − qy)2

<
√

(vx − qx)2 + (vy − qy)2

= rs

This contradicts p being on a boundary arc. Additionally, a symmetric argument

holds if two boundary arcs meet the criteria of the theorem and have centers to the

right of xmax.

Now suppose that there are three boundary arcs whose centers u, v, and w are not

to the left or right of the bounding box, or in other words xmin ≤ ux < vx < wx ≤ xmax.

Notice that if L contains a single point then ymax−ymin =
√
rs2 − (rs − xmax + xmin)2

and adding points to L can only increase ymax − ymin while maintaining xmax − xmin

constant. Therefore xmax− xmin ≤
√
rs2 − (rs − ymax + ymin)2 if ymax− ymin < rs and

otherwise xmax − xmin ≤ rs. Notice also that |vy − ymax| < rs and |vy − ymin| < rs

so there must be some point p on the boundary arc of v with ymin ≤ py ≤ ymax

and |vx − px| ≥
√
rs2 − (rs − ymax + ymin)2 ≥ xmax − xmin. This implies that the

x-coordinate of some point q on the boundary arc of v and inside the bounding box is

either ux or wx. Without loss of generality let’s say that qx = ux. Then ‖u− q‖ ≤ rs

because |uy−ymax| < rs and |uy−ymin| < rs. This contradicts q being on a boundary

arc and completes our proof.
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Now that each intersection between δCover(L) and δCover(R) to the right of m

has been discovered, we need to next fix the boundary arcs from δCover(R). To do

this we perform a modified predecessor search on the interval tree. First we perform

a sweep up the interval tree from the leaves to the root where each node in the tree

broadcasts for each arc that it was responsible for during the sweep down the tree.

Each node broadcasts the total number of times that arc intersects with the arcs in

the subtree and the intersections with minimum and maximum y-coordinate. Each

node then possibly constructs the arcs based upon the intersections with maximum

y-coordinate from the child with smaller y-coordinate and the intersections with min-

imum y-coordinate from the child with larger y-coordinate. Additionally, the original

sensor that was keeping track of the arc listen to each of the nodes that it transmitted

to in the original sweep to construct the first and last new arc.

Once these arcs are constructed their ranks can be determined using a sweep up

the tree, a serial scan, and a sweep down the tree. During the sweep up the tree we

count the total number of new arcs an old boundary arc is broken into. Then during

the scan each old arc announces the uses this new number of arcs to compute the

new ranks of the first and last new arc. Then these values are passed down the tree

so that each new arc also knows its rank.

Now we need to fix the boundary arcs from δCover(R). We simply sort the

intersections by y-coordinate. To do this we simply need to order the intersections of

δCover(L) and δCover(R) by y-coordinate. If it were true that the y-coordinate of

each point in R corresponding to each intersection point was monotonically increases

with the y-coordinate of the intersection point itself, then this ordering could be

determined by a simple scan using the ranks from the invariant.

This completes our single-hop, O(n log n) time algorithm to determine the cover-

age boundary with at most O(log2) energy for any sensor and the proof of Theorem 18.
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3.4.2 Multi-Hop Coverage Boundary

Now we have the tools necessary to create a multi-hop coverage boundary algo-

rithm.

Theorem 23. Let S be multi-hop sensor network with n sensors and a maximum of

m sensors in any single-hop region, distributed on a two-dimensional plane, with a

global coordinate system. All sensors in S can determine if they lie on the coverage

boundary in O

(
m logm

( 1
2
− rs
rc

)
2

)
expected time with O

(
log2m

( 1
2
− rs
rc

)
2

)
maximum energy usage in

expectation.

Theorem 24. Let S be multi-hop sensor network with n sensors and a maximum of

m sensors in any single-hop region, distributed on a two-dimensional plane, without

a global coordinate system. All sensors in S can determine if they lie on the coverage

boundary in O

(
m logm+log2 n

( 1
4
− rs
rc

)
2

)
expected time with O

(
log2m+logn

( 1
4
− rs
rc

)
2

)
average energy and

O

(
log2 n

( 1
4
− rs
rc

)
2

)
maximum energy usage in expectation.

Our multi-hop approach to this problem uses a consolidation algorithm. If a global

coordinate system is known we use a 1− ε-consolidation algorithm where ε = 1
2
− rs

rc

and if a global coordinate system is not known we use a 1
2
− ε-consolidation algorithm

where ε = 1
2
− 2rs

rc
. First notice that this requires ε > 0 and therefore rs <

rc
2

if

there is a known coordinate system and rs <
rc
4

otherwise. The main idea behind

this consolidation algorithm is that after the single-hop algorithm some, but not

necessarily all, boundary arcs computed will provide witness for a sensor being in the

coverage boundary.

A boundary arc computed by an execution of the single-hop algorithm will provide

witness if all possible sensors within rs of some point on the arc participated in the

local algorithm. If the global coverage boundary of the network was computed at
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least some this point would still be on a boundary arc, implying that the sensor is

indeed on the coverage boundary for the global network. One small complication

is that the sensor may not know all of its boundary arcs after the execution of the

single-hop algorithm. Therefore, as a final step to the single-hop algorithm, each

sensor will be allocated a time step for sensors with a boundary arc providing witness

will broadcast.

First consider the case where a global coordinate system is known beforehand and

rs <
rc
2

. Because of the method chosen for tiling disks in Section 3.2.1 every point

is within ε · rc = rc
2
− rs of the center of some rc

2
-disk. That implies that during the

execution of the single-hop algorithm represented by this disk every sensor within rs

of this point participates in this execution. Thus to check if an arc is a witness we

just need to check if some point on this arc is within ε · rc of the center of the disk.

Additionally, if a sensor is a boundary node a boundary arc of some local execution

will be a witness. This completes the proof of Theorem 23.

In the case where no known coordinate system and rs <
rc
4

, each sensor will for

some execution of the single-hop algorithm be within ε of the some leader at the

center of the single-hop algorithm. Let u be some sensor within ε of the center, c,

and let v be some sensor within rc of a boundary arc of u. Then

‖v − c‖ ≤ ‖v − u‖+ ‖u− c‖

= 2rs +
(rc

2
− 2rs

)
=
rc
2

This implies v participates in the single-hop algorithm centered at c and any boundary

arc of u found during this execution will provide witness for u being in the boundary.

This completes the proof of Theorem 24.
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3.5 Localized Voronoi Diagram

The Voronoi diagram is an important geometric structure in computational ge-

ometry and closely relates to many proximity and covering problems. The Voronoi

diagram has many applications relevant to sensor networks, such as in [27] the Voronoi

diagram is used in 3 dimensions to determine underwater sensors sleep schedules while

maintaining coverage. Distributed algorithms to compute the Voronoi diagram are

given in [6, 21]. In [6] the authors use Dulaunay triangulation to solve the exact

Voronoi diagram. However in this algorithm each sensor communicates with all of

it’s neighbors and in cases such as Figure 3.5 these sensors may need to communicate

with their neighbors many times. In [21] the authors compute the localized Voronoi

diagram using a technique similar to Graham’s scan for computing the convex hull

so that each sensor may not need to interact with each neighboring sensor. However

as in Figure 3.12 the number of neighbors some sensors interact with may still be

quite large. We improve on these results for dense sensor networks by providing an

algorithm for computing the localized Voronoi diagram with an energy usage bound

for each sensor that does not depend upon the number of neighbors.

Given two sensors u and v we define Dom(u, v) to be the set of points as close or

closer to u than to v using Euclidean distance. Dom(u, v) is the half plane bounded

by the perpendicular bisector of u and v containing u.

Dom(u, v) = {x ∈ R2 : ‖x− u‖2 ≤ ‖x− v‖2}

Then we define u’s Voronoi polygon or Voronoi face to be the set of points as close
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or closer to u as any other point in S.

Vor(u) =
⋂

v∈S\{u}

Dom(u, v)

The Voronoi edge of u and v is the points on the perpendicular bisector of u and v

that are as close or closer to u and v than any other points in S, or in other words,

the Voronoi edge of u and v is Vor(u) ∩ Vor(v). Similarly, the Voronoi vertex of u,

v, and w to be the point equidistant to u, v, and w if no points in S. Note that

a Voronoi vertex lies at the intersection of three Voronoi edges. Then the Voronoi

diagram of S Vor(S) is the partitioning of the plane into the respective Voronoi faces

of the sensors in S.

For some networks computing the exact Voronoi diagram may require information

to be transferred globally, see Figure 3.5. This may require a single critical sensor

to transmit large amounts of information. Even more extreme if the graph is not

connected it is impossible to compute the exact Voronoi diagram. To this end we

instead compute the localized Voronoi diagram defined in [58] and [21]. We define an

α-localized Voronoi face of u to be the set of points in the Voronoi face of u that are

also within αrc of u.

α-LVor(u) = Vor(u) ∩ {x ∈ R2 : ‖x− u‖2 ≤ αrc}

Then the α-localized Voronoi edge and α-localized Voronoi vertex are defined similarly

in the obvious way. The α-localized Voronoi diagram α-LVor(S) is simply the set

containing all the α-localized Voronoi faces. This is no longer a partition because

there are inevitably some points in the plane that are not within rc of any sensor.

Another problem that may arise when computing the Voronoi diagram is that if
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v

Figure 3.12: Sensor v has a Voronoi edge for every other sensor in the network.

we require every sensor to know all of its Voronoi edges then the amount of energy

dissipation may be linear for some sensors because the number of Voronoi edges they

have may be linear in the number of sensors, see Figure 3.12. On the other hand

if we only require that some sensor in the network knows of the Voronoi edge then

this information may be useless as it may be too far from the actual sensors that

form the edge. To these ends we require that for each Voronoi edge at least one of

the two sensors that form the edge know of the edge. Even though each sensor may

may require information from its neighbors that it shares a Voronoi edge with to

determine its exact Voronoi face this will be sufficient for some applications. With

this requirement we are still able to distribute the Voronoi edges such that each sensor

only maintains O(1) Voronoi edges.

We now present our algorithm for computing the localized Voronoi diagram either

with or without a known global coordinate system.

Theorem 25. Let S be multi-hop sensor network with n sensors and a maximum

of m sensors in any single-hop region, distributed on a two-dimensional plane, with

a global coordinate system. The 1
2
− ε-localized Voronoi diagram can be computed in

O
(
m logm
ε2

)
expected time with O

(
log2m
ε2

)
maximum energy usage in expectation.
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Theorem 26. Let S be multi-hop sensor network with n sensors and a maximum of

m sensors in any single-hop region, distributed on a two-dimensional plane, without

a global coordinate system. The 1
4
− ε-localized Voronoi diagram can be computed

in O
(
m logm+log2 n

ε2

)
expected time with O

(
log2m+logn

ε2

)
average energy and O

(
log2 n
ε2

)
maximum energy usage in expectation.

In both cases with a known or no known global coordinate system we use a 2α-

consolidation algorithm. Note that an α-Voronoi diagram is computed using a 2α-

consolidation algorithm because to guarantee that a sensor is closest to a point that

is within αrc of the sensor it must take into account all sensors within 2αrc. To

create such a consolidation algorithm we need to define is a single-hop algorithm and

a single-hop consolidation step.

Theorem 27. Given a single-hop sensor network with n sensors each with a 2-

dimensional point, the Voronoi diagram of these points can be computed in O(n log n)

expected time with O(log2 n) maximum energy used per sensor in expectation.

3.5.1 Single-Hop Voronoi Diagram

Our single-hop algorithm is based on a PRAM algorithm presented in [16] which

corrected an algorithm presented in [13]. Both of which follow the classical divide-

and-conquer approach due to Shamos [44]. Due to randomness used in our algorithm

we will use the breadth-first recursion technique from Section 2.4 to abstract away

the difficulties of executing randomized recursive algorithms in this energy restricted

sensor network model.

During the single-hop algorithm each sensor will be assigned a constant number

of Voronoi edges to maintain. This is possible because the number of Voronoi edges

is at most 3n − 6 [44]. However during the single-hop algorithm each Voronoi edge
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L R

Figure 3.13: The dark line is the contour between L and R. The dashed lines are the
Voronoi edges of L and R that are cut by the contour. The solid lines are the Voronoi
edges from L and R that remain in L ∪R.

will not necessarily be assigned to one of the two sensors that for the edge. This

requirement will be taken care of once at the end of the single-hop algorithm.

This approach divides the set of all points S into two halves L and R usually by

x coordinate and recursively finds the Voronoi diagram for L and R. These solutions

are then merged by finding the Vornoi edges between L and R–called the contour–and

trimming or removing Voronoi edges that are cut by the contour (see Figure 3.13 for

example).

An overview of a single recursive step can be found below:

1. For each Voronoi vertex determine if it is closer to a point in L or a point in

R and for each infinite Vornoi edge determine determine as the edge goes to

infinity if it is closer to a point in L or a point in R, in the limit.

2. Using this information for each Voronoi edge determine if it is intersected by

the contour. Doing so we determine if the Voronoi edge remains in the Voronoi

diagram, if it must be trimmed, or if it must be completely removed.

3. Find the order that the faces of Vor(L) and Vor(R) are intersected by the
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contour, using list ranking.

4. Find the new endpoints for each Voronoi edge that must be trimmed and create

the contour.

Determining which Voronoi Edges are Intersected by the Contour

For each Voronoi vertex we are to determine if it is closer to the nearest point in

L or the nearest point in R and for each infinite Voronoi edge we determine if as the

edge goes to infinity if it is closer to the nearest point in L or the nearest point in R,

in the limit.

For the infinite edges we simply compare the slope of the line to the slope of the

perpendicular bisector of the line tangent to the convex hulls of L and R. This is

because the perpendicular bisector lies on the infinite Voronoi edges of the contour.

See Figure 3.14 for illustration. The tangent line of the convex hulls of L and R can

be computed in O(log n) time by either maintaining the convex hull for each recursive

call and using a binary search or using the randomized algorithm in Section 2.6.

To determine if each endpoint p of a Voronoi edge, without loss of generality, from

Vor(L) is closer to L or to R we simply need to use Vor(R) to find whether the closest

point to p in R. We do this using Kirkpatrick’s triangle refinement technique [31].

Lemma 28. Given a single-hop sensor network with n sensors and a set of O(n)

query points, A, and the Voronoi diagram of a set of O(n) points, B, distributed

so that each sensor has O(1) query points and Voronoi edges. For each query point

in A, the closest point in B can be determined in O(n) expected time and O(log n)

maximum energy per sensor in expectation.

Proof. We begin by bounding the Voronoi diagram by a triangle. Then we triangulate

the Voronoi faces, for each Voronoi face we pick a single Voronoi vertex in that face
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L R

Figure 3.14: The solid lines are the convex hull of L and R with the dark solid lines
being the tangent lines between the convex hulls. The dotted lines are the Voronoi
edges of L and R and the dark dotted lines are the perpendicular bisectors of the
tangent lines between the convex hulls of L and R.

and add an edge from every other vertex on the face to that vertex. Now we remove

an independent set of Voronoi vertices and retriangulate. We must pick vertices that

form an independent set and each vertex’s degree must be bounded by a constant.

These triangles created by this process form the vertices in a directed acyclic search

graph, where each triangle points to the triangles that it intersects with in previous

triangulation. We continue removing sets of independent vertices until every vertex

has been removed. See Figure 3.15 for an example of this process and Figure 3.16 for

the corresponding directed acyclic search graph.

A bounding triangle can easily be found and broadcast in O(log n) expected time

three runs of the maximum finding algorithm from [38]. First for every Voronoi vertex

we elect one of the sensors with an edge incident that vertex to maintain that vertex.

Then we can triangulate the Voronoi faces by ordering the faces and for each electing

a Voronoi vertex and adding an edge connected to every other Voronoi vertex on

the face. Now we can order the vertices and for each vertex we can order the edges
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incident to this vertex in rotational order, say clockwise starting from 12 o’clock. This

can all be done in O(n) expected time and with at most O(log n) energy per sensor

in expectation using the sorting algorithm from Section 2.5.

Now can determine which vertices to remove and construct the directed acyclic

search graph just using a few scans. While doing so we maintain the vertex ordering

and the rotational ordering on the edges incident to each vertex. First we determine

the number of edges incident to each vertex. Then we determine which vertices

to remove by iterating through each vertex having any edge incident to the vertex

broadcast if the other endpoint has been selected and if not selecting the vertex if it’s

degree is bounded by a predetermined constant. For each vertex v that was removed

we replace each edge incident to that vertex to an edge incident to an arbitrary vertex

u that was incident to v–except of course u and the vertices already adjacent to u

which can be determined because of the rotation ordering of the edges. Then we

perform a scan to maintain the number of edges incident to each vertex and the

rotational ordering of these edges for the new triangulation. One final scan can then

determine the order in which the faces will broadcast in the directed acyclic search

graph. Since these are all just scan operations they take O(n) time and O(1) energy

per sensor.

Since the number of vertices is decreasing geometrically the number of rounds is

O(log n) and the total time for all rounds is O(n). Then we can finally determine for

each query point which Voronoi face the point lies in using the directed acyclic search

graph, in O(n) time with O(log n) energy per sensor.

Now we describe how to determine if a Voronoi edge is intersected by the contour

and if the edge must be trimmed or removed. We only consider the finite case where

our Voronoi edge has two endpoints but the infinite case is handled similarly. Let pq
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Figure 3.15: Kirkpatrick’s triangule refinement steps, removing points and retriangu-
lating.
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Figure 3.16: Directed acyclic search graph formed by the refinements in Figure 3.15.

be a Voronoi edge in Vor(L) with a ∈ L being the point closest to pq with largest x

coordinate. The following cases exhaust all possibilities for us to consider:

• If both p and q are closer to L than R, then pq lies completely to the left of the

contour and pq remains a Voronoi edge in the new Voronoi diagram.

• If both p and q are closer to R than L, then:

– If pq intersects the horizontal line through a, then the contour intersects
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pq exactly twice and pq is replaced by p′q′ in the new Voronoi diagram for

some points p′ and q′ on pq.

– Otherwise if pq does not intersect the horizontal line through a, then pq

lies completely to the right of the contour and pq is completely removed

from the new Voronoi diagram.

• If, without loss of generality, p is closer to L and q is closer to R, then the

contour intersects pq exactly once and pq is replaced by pq′ in the new Voronoi

edge for some point q′ on pq.

Most of these cases are straightforward and a more detailed analysis of these cases

can be found in [16]. However, we will briefly explain the cases where p and q are

closer to R and L. If pq does not intersect the horizontal line through a then all

points in pq must either be above a or must be below a. Without loss of generality we

assume pq lies above a and that p has smaller y-coordinate than q. Then any point

in R that is closer to p than a is must also be closer to any other point on pq than a

is. If however pq intersects the horizontal line through a then this point is closer to a

than any point in R. Thus pq must intersect the contour at least twice. Additionally,

the contour cannot intersect pq more than twice because, as before, if x lies on pq

above a and is closer to a point in R than to a then any point above x that lies on

pq is also closer to some point in R than to a.

Finding new Voronoi edges

We are now going list subsections of the faces of Vor(L) in order that they are in-

tersected by the contour from bottom to top and do the same for Vor(R) respectively.

As in [3] we define a conduit as a triangular subsection of Voronoi face with one apex

being a point in L and the other two apexes being the endpoints of a Voronoi edge
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v

L R

Figure 3.17: The Vornoi edge to the right of v is intersected twice and so the conduit
of v on the right is divided into two smaller conduits denoted by the dotted lines.

of the first apex. Each conduit is intersected by the contour at most twice and in the

case that it is intersected twice we further subdivide the conduit into two smaller con-

duits. We divide the conduit into two triangles using the point which the horizontal

line through a intersects pq as the third apex point for each triangle. Each conduit

is only intersected twice if and only if it’s Voronoi edge pq is intersected twice by the

contour so all remaining conduits and the semi-conduits are intersected at most once.

See Figure 3.17 for example.

For the edges that are intersected by the contour we know that their conduit is

also intersected by the contour. However for the edges that lie completely to the right

of the contour we do not now if the edge’s conduit is intersected by the contour. For

each conduit we will determine if it intersected by the contour and if it is what the

previous conduit and next conduit intersected by the contour. As pointed out in [16]

the contours of a given face are intersected by the contour in counter-clockwise order

beginning directly to the left of the point in L. Therefore if we maintain the edges

in this ordering at each recursive level we can do a simple scan to determine for each
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contour if it is intersected by the contour and what the next conduit intersected by

the contour are.

Our goal now is to determine for all conduits of Vor(L) to use the ordered pairs

we generated to determine what order they are intersected by the contour globaly,

and to do the same for Vor(R). This is a more general problem often called list

ranking. List ranking is formally defined as given a set S of n sensors each with a

single ordered pair representing the sensor’s ID and it’s predecessors ID determine

the rank of each sensor in the linked list formed by these pairs. For example on input

(c, a), (d, c), (a, b), (f, d), (b, e) form the linked list (f, d, c, a, b, e) and rank(f) = 1,

rank(d) = 2, . . . , rank(e) = 6.

Lemma 29. In a single-hop sensor network list ranking can be computed in O(n)

expected time with a maximum of O(log n) energy for any sensor in expectation.

Proof. First we assign the sensors a random ordering by sorting with a random com-

parator. Then we sort by ID and use a binary search so that each sensor knows its

predecessor’s rank in the random ordering. Each sensor will keep track of a single

descendant–initially just the predecessor–and the distance from the sensor to this de-

scendant in the linked list. Then the sensors take turns broadcasting the descendant

they currently are keeping track of and their distance to this descendant. The sen-

sors broadcast in the randomly chosen ordering. Each sensor will listen when their

descendant broadcasts and then they will then keep track of that sensors descendant

and calculate their distance to this descendant. After the last sensor in the chosen

ordering has broadcast each sensor will know their distance to the end of the list

which is sufficient to compute their rank. See Table 3.2 for example.

By Theorem 6 sorting in a single-hop sensor network can be done in O(n) expected

time with O(log n) maximum energy per sensor. Also n simultaneous binary searches
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time broadcasting descendant distance listening
1 c h 1 g
2 b e 1 h
3 d g 1 f
4 h e 2 c, g
5 a f 1
6 f g 2 a
7 g e 4 a, f, d

Table 3.2: List ranking algorithm with input (g, c), (a, f), (d, g), (b, e), (c, h), (f, d),
(h, b) using the random broadcast ordering c, b, d, h, a, f, g.

take O(n) time and use O(log n) energy per sensor. Since the sensors broadcasting

in the randomly chosen order takes O(n) time all that remains to show is that each

sensor listens to at most O(log n) descendants in expectation.

When a sensor first begins keeping track of a descendant if that descendant broad-

casts in the second half of the remaining time slots then we will call this a “good”

descendant. Notice that each sensor can listen to at most O(log n) “good” descen-

dants and the probability of a descendant being “good” is 1
2
. So the energy each

sensor uses is the number of fair coin flips until the sensor flips O(log n) heads. Even

though the coin flips are correlated between sensors the maximum number of coin

flips is O(log n) in expectation by Lemma 36 in the Appendix.

Now we determine the new Voronoi vertices that lie on the contour and these are

also the new endpoints of the edges intersected by the contour. We say a conduit

from Vor(L) and a conduit from Vor(R) interact if some point on the contour lies in

both faces. As pointed out in [3] we can easily determine if two conduits interact by

simply checking both conduits overlap and some point in the perpendicular bisector

of the point in L and the point in R lies in this overlap. Thus we need to merge

the list of conduits of Vor(L) and the list of conduits of Vor(R) in the sense that we

need to determine the order of pairs of conduits of Vor(L) and conduits of Vor(R)
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that interact. Suppose we knew the conduits of Vor(L) that the contour intersects is

a, b, c, then d and the conduits of Vor(R) that the contour intersects is x, y, then

z then we want to determine, for example, that the contour intersects (a, x), (b, x),

(b, y), (c, y), (d, y), then (d, z). Importantly since we divided the conduits that were

intersected twice by the contour each conduit is now only intersected once.

To merge the lists of conduits the median of the list of conduits of Vor(L) in-

tersected by the contour is broadcast. Then using local information of neighboring

conduits each sensor containing a conduit of Vor(R) determines if it is either the

first or last conduit of Vor(R) that interacts with the median conduit from Vor(L)

and consecutively broadcast the ranks of these first and last conduits. Then the only

conduits of Vor(R) with rank at least as high as the last conduit that interacts with

the median can interact with the conduits of Vor(L) after the median. So we simply

split the lists of conduits intersected by the contour in two and recurse.

It is possible that only a single conduit interacts with the median which would

mean that the sensor containing this conduit would have to follow both recursive

calls. To fix this each sensor in containing a conduit of Vor(L) simply remembers

the first and last conduit of Vor(R) in the range for it’s recursive call. Then when a

conduit is the first or last conduit that interacts with the median it does not need to

continue with either recursive call and if no sensor broadcasts the first or last conduit

of Vor(R) that interacts with the median it is assumed to be the first or last conduit

of Vor(R) in the entire recursive call.

After the recursive calls we can use a scan to determine the rank of each pair of

interacting conduits and create a new Voronoi edge for each pair. Additionally, a

scan can be used to update the endpoints of each of the original Voronoi edges that

intersect the contour. Thus we now have the complete Voronoi diagram for L∪R and

all of this can be done in O(n) time with at most O(log(n)) energy per processor.
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Final Redistribution of Voronoi Edges

Once the single-hop algorithm has computed the Voronoi diagram of all sensors

we need to redistribute the edges so that each edge is assigned to one of the two

sensors that form the edge. During each recursive call we ensured that each sensor

only maintains O(1) Voronoi edges but each sensor’s location does not have any

bearing on the edges that sensor is assigned. However for the multihop algorithm

we need each Voronoi edge to be assigned to one of the two sensors that the edge is

the perpendicular bisector of while still keeping the number of edges assigned to each

sensor O(1).

First we each sensor whose Veronoi face has 6 or fewer edges takes all of it’s Voronoi

edges. If both sensors try to take the same edge we use some arbitrary tie breaker

to decide which sensor takes the edge. Since there are at most 3n− 6 Voronoi edges

[44] at least n
2

sensors will take their edges. If there are n′ remaining sensors then the

number of remaining Voronoi edges will be 3n′ − 6 because each remaining Voronoi

edge will correspond to a Voronoi edge in the Voronoi diagram of the remaining n′

sensors. Thus if we repeat this process with each sensor taking all of it’s remaining

Voronoi edges if the number of remaining edges is 6 or less all edges will be taken

after dlog2(n)e iterations.

This can easily be implemented so that each of the O(log(n)) iteration takes O(n)

time with O(1) energy per sensor using simple scans. Therefore overall each edge will

be assigned to one of the two sensors that the edge is the perpendicular bisector of,

each sensor will be assigned at most 6 edges, each sensor will use at most O(log2(n))

energy, and this will take O(n log(n)) time. This completes the proof of Theorem 27.
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3.5.2 Multi-Hop Localized Voronoi Diagram

During the consolidation phase our goal is for each vertex to determine if the

endpoints of each of its edges have been cut shorter–or if the edge has been removed–

in another run of the single-hop algorithm. If this has happened then either this sensor

or the other sensor which this edge is the perpendicular bisector of must contain the

shorter of these endpoints.

First every sensor consolidates each edge with the information it currently has.

If a sensor has the perpendicular bisector–possibly with different endpoints–between

itself and another sensor for multiple runs of the single-hop algorithm then the sensor

updates the edge picking the endpoints that cause the edge to be as short as possible.

It picks the leftmost right endpoint and the rightmost left endpoint of all versions of

the perpendicular bisector to be the actual endpoints of the edge. If the left endpoint

is actually to the right of the right endpoint then the edge is instead removed.

Now, during the consolidation phase, each sensor broadcasts the consolidated

versions of the edges it was distributed during the corresponding single-hop algorithm.

Also for each edge a sensor has it will pick a run of the single-hop algorithm where

it was not assigned a version of the edge that includes the other sensor that the

edge is a perpendicular bisector of and listens to this sensor broadcast the edges it

was distributed. The sensor then consolidates these version of the edge it has and the

version the other sensor broadcasts the same way as before. If a sensor was distributed

a version of the edge in all runs of the single-hop algorithm then it contains the final

version of the edge. If the other sensor does not broadcast a version of the edge

then that it must have been discarded by the other sensor or must not appear in the

single-hop Voronoi diagram, so the sensor can discard this edge.

The runtime of this single-hop algorithm is O(m logm) and the energy each sensor
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uses for broadcasting is O(logm) and across all runs of the consolidation algorithm the

energy each sensor uses for listening is O
(

log2m
ε2

)
. Then the analysis in Sections 3.2.1

and 3.2.2 completes the proof of Theorems 25 and 26 respectively.
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Chapter IV

Data Propagation

4.1 Introduction

Often the goal of a wireless sensor network is to collect data from the environment

and send that data to the end user via a high-power base station—or root r—acting as

a data sink. In expansive networks it may be too expensive to send the data directly

to the base station so instead data is propagated from one sensor to another until the

data finally reaches the base station. We will assume that each sensor receives a unit

of data at a fixed rate and the goal is to maximize network longevity or, equivalently,

to minimize the maximum energy usage of any sensor while propagating all sensors’

data to the base station.

For this problem we consider the case where sensors can vary the radio transmis-

sion power and in turn vary their broadcast radius. Sending unit data distance d

requires E(d) = e0 + etd
α energy, where e0 is a fixed overhead for using the radio

transmitter, et is the energy cost above e0 to send a single unit of data a single unit

distance, and α is the path loss exponent. Typically 2 ≤ α ≤ 4 with the exact value of

α depending upon many environmental factors such as refraction, diffraction, absorp-
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tion, and multipath interference [39]. In perfect free space α = 2 and environmental

factors increase α.

We do not consider any additional energy is needed to receive data from other

sensors. The reason for this assumption is that, as will be apparent in our analysis,

the vast majority of data sent by a sensor is also data it has received. Since the

energy for receiving does not depend upon the distance of the transmission, the cost

of receiving a unit of data can simply be added to e0 without changing the results.

The model used in this chapter assumes usage of a medium access control (MAC)

protocol, meaning that messages can be passed freely from sensor to sensor without

fear of interference from other transmitting sensors. Schedule-based and contention-

based MAC protocols are common in sensor networks [57] and will be particularly

useful because of the consistent nature of the sensor transmission patterns. Because

this protocol only needs to be established once when sensors are first distributed we

do not consider the cost of initializing the MAC protocol.

Data propagation is already a well studied problem in the literature [4, 5]. The

following is a sample of the protocols that have been designed for data propagation

in different settings.

• Low Energy Adaptive Clustering Hierarchy protocol (LEACH) [22, 55] is a

cluster-based protocol where sensors in a local region transmit data to a local

leader who makes the possibly long transmission to the root. The leadership is

rotated over time to maintain energy balance in the network. Multi-hop Routing

with Low Energy Adaptive Clustering Hierarchy protocol (MR-LEACH) is a

multi-hop version of LEACH where data is passed cluster by cluster to the

root [17].

• Direct Diffusion (DD) [25] is a data-centric protocol that solves a related prob-
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lem where the root requests data from the network and nodes that match the

requested data then send data back via intermediate nodes.

• Probabilistic Forwarding Protocol (PFP) [10] is a location-based protocol where

each sensor transmits data to a neighbor a small distance away towards the sink.

It picks which neighbor to transmit to by randomly veering from the direct path

to the root with some probability to attempt to balance the energy used by the

sensors receiving the data.

• Energy Balanced Protocol (EBP) [15] is a location-based protocol where each

sensor transmits data a small distance toward the sink and with some probabil-

ity bypasses these small hops and transmits data directly to the base station.

While much work has been put into creating and implementing these protocols,

little work has been done to analytically determine the energy usage of these protocols.

One analytical result was showed that in a simplified one-dimensional model with

e0 = 0, EBP is optimal [43]. However these results do not generalize when e0 > 0

and the authors did not analyze the exact cost of data propagation.

In Section 4.2 we generalize the one-dimensional model introduced in [43] and

analyze the case when e0 > 0. First we show an exact linear programming solution

for data propagation and discuss the intuition this provides. Then we provide a lower

bound for the energy cost of data propagation and show that EBP provides an upper

bound that is close to this lower bound. Additionally we provide empirical results

which compute the exact leading coefficients for the energy cost EBP. Finally, in this

section we show that any protocol such as MR-LEACH which only uses short hops

is only close to optimal if sending long distances is prohibitively expensive in terms

of energy. In Section 4.3 we analyze a more realistic two-dimensional model and

generalize the lower bound and EBP upper bound.
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4.2 1-Dimensional Data Propagation

The one-dimensional slice model discussed in this section was first proposed in [43].

This simplified model will aid in the analysis of the more realistic two-dimensional

model used in the next section and provide additional insights. In the slice model

a network of n total sensors is divided into N clusters or “slices”, S1, . . . , SN . By

convention if i < j we say Si is a predecessor of Sj and Sj is a successor of Si. In the

one-dimensional model the sensors are distributed at unit distances along a straight

line from the root, where the root is at location 0. In other words the sensors in

slice Si are i distance from the root. To send unit data d distance costs the sending

sensor e0 + etd
α energy. Finally, to represent sensors being evenly distributed in two-

dimensions, in the 1D model we assume that |Si| = i. Under this assumption the

total number of sensors in the network is n = N2+N
2

.

We also assume that work is evenly distributed among sensors at the same location.

That is, each sensor i away from the root receives 1
i

of the total data sent to sensors

at location i and sends 1
i

of the data sent from location i to location j for each other

location j. The 1D model uses our standard data propagation assumption and goal:

every sensor generates unit data and the goal is to send all data base station while

minimizing the maximum energy usage of any sensor.

In this section we determine the exact cost of energy optimal data propagation

in the 1D model. The following theorems are the main results of this section. Their

proofs appear in Subsections 4.2.2 and 4.2.3. The first theorem, regards the exact

energy cost of data propagation in the 1D network slice model.

Theorem 30. Let S be a sensor network in the one-dimensional network slice model

with n sensors, radius N , and energy cost e0 + etd
α of sending unit data d distance
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away. If α > 2 then the optimal data propagation on S takes

C(α, e0, et)(α− 2) max
(
et, e

1− 2
α

0 e
2
α
t

)
n+ l.o.t.

maximum energy per sensor, where C is a function of α, e0, and et bounded above

and below by positive constants. If α = 2 then optimal data propagation on S takes

etn

ln(N)
+ l.o.t.

maximum energy per sensor.

For α > 2 the leading coefficient contains a (α − 2) term, meaning that as α

decreases the leading coefficient also decreases until at α = 2 becomes a 1
lnN
≈ 2

lnn

term. This follows the intuition that the network should be more efficient with smaller

values of α.

The theorem also shows that as the fixed overhead for transmitting data e0 de-

creases the energy usage decreases but there is a limit to how much this can help.

On the other hand decreasing et will always decrease the energy usage. The larger

α is the more important it is to keep e0 small. As α approaches 2 keeping et small

becomes much more important to the point where e0 does not appear in the high

order terms at all if α = 2.

The other main theorem of this section states that EBP is close to optimal.

Theorem 31. On a sensor network in the one-dimensional network slice model the

energy balanced protocol (EBP) is within a constant factor optimal and if α = 2 is

within low order terms of optimal.
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4.2.1 Exactly Optimal Linear Programming Results

There exists a simple centralized linear programming solution to data propagation

which exactly minimizes the maximum energy usage of any sensor, as [43] points out.

This linear program is not specific to the network slice model and finds the exact op-

timal solution regardless of the position of the sensors. Additionally, a linear program

can be designed for nearly any energy cost model. However this solution is not as

useful in practice because it is centralized and requires knowing the exact locations of

all sensors. Furthermore this solution may not be robust to small perturbations in the

parameters of the network. Still, this solution can provide intuition and clarification

as to what a more practical solution may look like.

We will present the linear program that is specific to our energy cost model but

is general in terms sensor positioning, including the dimensionality of the sensor

positions. Let di be the rate at which sensor si produces data and let fi,j be the units

of data sent from sensor si to sensor sj. Additionally, assume that the base station

is located at the origin and that the location of each sensor si is xi. Our goal then

becomes to minimize E where the following system of linear constraints are met for

each sensor si.

E ≥ (e0 + et‖xi‖α)

(
di +

∑
j 6=i

fi,j

)
−
∑
j 6=i

et (‖xi‖α − ‖xi − xj‖α) fj,i (4.1)

di +
∑
j 6=i

fj,i ≥
∑
j 6=i

fi,j (4.2)

fi,j ≥ 0 (4.3)

Equation 4.1 requires that E is bounded by the energy spent for each sensor si.
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Equation 4.2 requires that the data generated by sensor si plus the data si receives

is not exceeded by the data that si sends to sensors other than the base station.

Finally, Equation 4.3 simply requires that the data sent from one sensor to another

is non-negative. Then the minimum value for E under these constraints which are

linear in fi,j is the maximum energy usage of any sensor.

Table 4.1 shows the optimal communication pattern for data propagation of the

1D network slices model with N = 8, e0 = 1, et = 0.2, and α = 2. Notice that in this

solution each sensor sends some data along fixed distance short hops and sends the

rest directly to the base station. This provides empirical evidence that EBP may be

an optimal or near optimal solution and motivates the usage of EBP to provide an

upper bound on optimal maximum energy usage in Subsection 4.2.3.

One concern that arises from this empirical result is that some sensors send to

multiple clusters along the short hops. In EBP typically sensors only to a single

cluster along the short hop a fixed number of hops away δ. This reduces the overhead

of the MAC protocol used to set up communication and removes the problem of

determining how to distribute data among the different short hops a single sensor

uses. A related concern is how each sensor determines how much data to send to the

root which seems to vary seemingly without pattern in the empirical result. However

with a target maximum energy usage a sensor can easily determine how much energy

it can send to the root given the amount of data it receives from other sensors.

Another challenge is that EBP is not always optimal if small changes are made

to the one-dimensional network slices model. Consider the case where there is a

hole in the middle of the middle of the network. Table 4.2 shows the optimal linear

programming solution to this problem with N = 12, e0 = 1, et = 0.2, and α = 2 but

slices S5, S6, . . . S12 have no sensors. In some ways this solution resembles EBP in

that it appears most sensors send data along a short hop and a long hop. However
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Optimal Data Propagation
Receiving

Root S1 S2 S3 S4 S5 S6 S7 S8

S
en

d
in

g

S1 5.52 0 0 0 0 0 0 0 0
S2 7.35 0 0 0 0 0 0 0 0
S3 7.09 0 0 0 0 0 0 0 0
S4 6.3 0 0 0 0 0 0 0 0
S5 0.96 4.52 2.98 0 0 0 0 0 0
S6 3.63 0 2.37 0 0 0 0 0 0
S7 2.63 0 0 4.09 0.28 0 0 0 0
S8 2.52 0 0 0 2.02 3.46 0 0 0

Table 4.1: The optimal data propagation pattern for the one-dimensional network
slice model with N = 8, e0 = 1, et = 0.2, and α = 2. The entry of row i column j is
the total data sent from sensors in slice Si to sensors in slice Sj. This configuration
results in each sensor using 6.62 units of energy.

the destination of the long hop is not the root for sensors on the far side of the hole.

Interestingly, sensors in slice S16 send more data to sensors in slice S3 than sensors

in slice S15 do and sensors in slice S15 also send data to sensors in slice S4 where as

sensors in slice S16 do not.

4.2.2 1-Dimensional Lower Bound

This subsection contains lower bounds on the maximum energy usage of any sensor

to propagate data to a high-energy base station in the one-dimensional network slice

model. This along with Subsection 4.2.3 provides proof of Theorems 30 and 31.

First let us assume that each sensor spends all of its energy sending data directly

to the root. That is, assume that sending data between sensors takes no energy. Then

for each unit of energy the network can transmit
∑N

i=1
i

e0+etiα
units of data to the

root. The network produces a total of n units of data which must all be sent to the

root. Therefore the maximum energy usage of any sensor E must obey the following

bound.
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Optimal Data Propagation with a Hole
Receiving

Root S1 S2 S3 S4 S13 S14 S15 S16

S
en

d
in

g

S1 19.8 0 0 0 0 0 0 0 0
S2 26.39 0 0 0 0 0 0 0 0
S3 21.8 5.66 0 0 0 0 0 0 0
S4 0 13.14 24.39 11.93 0 0 0 0 0
S13 0 0 0 0 17.95 0 0 0 0
S14 0 0 0 0 15.84 0 0 0 0
S15 0 0 0 2 11.67 1.32 0 0 0
S16 0 0 0 10.53 0 3.63 1.84 0 0

Table 4.2: The optimal data propagation pattern for a modified one-dimensional
network slice model with a hole and with N = 16, e0 = 1, et = 0.2, and α = 2. The
only modification of the network is the hole in the network from slice 5 through 12
where there are no sensors. That is |S5| = |S6| = . . . = |S12| = 0 The entry of row
i column j is the total data sent from sensors in slice Si to sensors in slice Sj. This
configuration results in each sensor using 23.75 units of energy.

E ≥ n

/ N∑
i=1

i

e0 + etiα
(4.4)

An easy lower bound for this term is to ignore the e0 term and get the following.

E ≥ n

/ N∑
i=1

i

e0 + etiα

≥ etn

/ N∑
i=1

1

iα−1

≥ etn

/(
1 +

∫ N

1

1

xα−1
dx

)

If α = 2 then

E ≥ etn

/
(1 + lnN)
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=
etn

lnN
−O

(
n

log2 n

)

On the other hand if α > 2 then

E ≥ etn

/(
1 +

1

α− 2

)
=

1

α− 1
(α− 2)etn (4.5)

This bound however is not very tight when α > 2 and e0 is much larger than et.

To find a tighter bound for Equation 4.4 we find an upper bound for
∑N

i=1
i

e0+etiα
.

We let y be the maximum of the function i
e0+etiα

and use that as an upper bound

when i is small. After some point w, for all i > w we have 1
etiα

< y. Thus before w

we estimate i
e0+etiα

with y and after w we use 1
e0+etiα

. See Figure 4.1 for illustration.

This gives us the following lower bound.

N∑
i=1

i

e0 + etiα
≤ wy +

∫ N

w

1

etxα−1
dx

First we find the value xmax which maximizes x
e0+etxα

.

d

dx

x

e0 + etxα
=
e0 − et(α− 1)xα

(e0 + etxα)2

xmax =

(
e0

(α− 1)et

) 1
α

Then we find y, which is the maximum of the function x
e0+etxα

, by plugging in

xmax.
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y

wxmax

x
e0+etxα

1
etxα−1

Figure 4.1: We estimate
N∑
i=1

i
e0+etiα

with the shaded region above with area wy +∫ N
w

1
etxα−1dx. In this figure e0 = 1

2
, et = 1

10
, and α = 3.

y =
xmax

e0 + etxmax
α

=

(
e0

(α−1)et

) 1
α

e0 + et
e0

(α−1)et

=
1

(α− 1)
1
α

(
1 + 1

α−1

)
e0

1− 1
α et

1
α

=
(α− 1)1−

1
α

e0
1− 1

α et
1
αα

Then we solve for w in the equation y = 1
wα−1et

.

w =

(
1

ety

) 1
α−1

=

(
αe0

1− 1
α

(α− 1)1−
1
α et

1− 1
α

) 1
α−1
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=
α

1
α−1 e0

1
α

(α− 1)
1
α et

1
α

Now we compute wy.

wy =
α

1
α−1 e0

1
α

(α− 1)
1
α et

1
α

· (α− 1)1−
1
α

αe0
1− 1

α et
1
α

=
(α− 1)1−

2
α

α1− 1
α−1 e0

1− 2
α et

2
α

Then by solving the integral we get the following.

wy +

∫ N

w

1

etxα−1
dx =

(α− 1)1−
2
α

α1− 1
α−1 e0

1− 2
α et

2
α

+
1

(α− 2)etwα−2
− 1

(α− 2)etNα−2

≤ (α− 1)1−
2
α

α1− 1
α−1 e0

1− 2
α et

2
α

+

(
(α−1)

1
α et

1
α

α
1

α−1 e0
1
α

)α−2
(α− 2)et

=
(α− 1)1−

2
α

α1− 1
α−1 e0

1− 2
α et

2
α

+
(α− 1)1−

2
α

α1− 1
α−1 (α− 2)e

1− 2
α

0 e
2
α
t

=
(1 + 1

α−2)(α− 1)1−
2
α

α1− 1
α−1 e0

1− 2
α et

2
α

=
(α− 1)2−

2
α

α1− 1
α−1 (α− 2)e0

1− 2
α et

2
α

Finally, this gives the following lower bound.

E ≥ α1− 1
α−1

(α− 1)2−
2
α

(α− 2)e0
1− 2

α et
2
αn (4.6)

This completes the lower bound of Theorems 30 and 31.
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4.2.3 1-Dimensional EBP Upper Bound

This subsection analyzes the cost of using the Energy Balanced Protocol (EBP),

which provides an upper bound for data propagation, in the one-dimensional network

slice model. In EBP each cluster will with some probability send data directly to the

base station also called the root. The remaining data is passed along a short hop to

another cluster of sensors a fixed number of hops away, δ.

To analyze the energy usage of EBP we introduce the concept of data efficiency.

Let di be the amount of data sent to the base station per sensor in slice i. We define

ηi = di
E

as the data efficiency of slice i.

Note that each cluster only receives data that originated from other clusters that

are equivalent modulo δ. That is sensors from clusters Si, Si+δ, Si+2δ, . . . only ever

use data from other sensors in clusters Si, Si+δ, Si+2δ, . . .. We say that sensors in

clusters Si, Si+δ, Si+2δ, . . . are the ith partition of the network. Since each partition

only interacts with other sensors in the same partition we can consider each partition a

completely separate parallel network and can be analyzed independently. For the sake

of simplicity we will first only analyze the δ partition containing clusters Sδ, S2δ, . . .,

then argue that the results hold for all partitions.

To further simplify our analysis we assume that N is divisible by δ. Finally we

assume that each generates exactly n
δ

data. The exact quantity data contained by

the δ partition is

N
δ∑
i=1

iδ = N2/δ+N
2

= n
δ

+O(
√
n) and so this assumption only impacts

low order terms.

Under these assumptions we bound the maximum energy usage of any sensor by

simply using the definition of data efficiency.
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E = n

/
δ

N
δ∑
i=1

iδηiδ

= n

/
δ2

N
δ∑
i=1

iηiδ (4.7)

Now we bound the data efficiency by noting the total amount of data sent from

sensors in slice S(i+1)δ to sensors in slice Siδ is
i∑

j=1

jδ(djδ − 1). Note that the −1 term

in the sum is due to the data generated by each sensor. This can be used to give us

a lower bound on diδ.

diδ =

E − e0+etδα

i

i−1∑
j=1

j(djδ − 1)

e0 + etiαδα

≥
E − e0+etδα

i

i−1∑
j=1

jdjδ

e0 + etiαδα

Because ηi = di
E

we can now bound the data efficiency.

ηiδ ≥
1− e0+etδα

i

i−1∑
j=1

jηjδ

e0 + etiαδα
(4.8)

The base case for ηδ is 1
e0+etδα

because all data sent received by these sensors is

sent directly to the root. Thus we get the following bounds for the data efficiency.

ηiδ ≥
1− 1

i
− e0+etδα

i

i−1∑
j=2

jηiδ

e0 + etiαδα
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≥
1− 1

i
− e0+etδα

i

i−1∑
j=2

j−1
e0+etjαδα

e0 + etiαδα

If α = 2 then this simplifies to the following.

ηiδ ≥
1−O

(
log(i)
i

)
e0 + eti2δ2

E ≤ n

/
δ2

N
δ∑
i=1

i−O(log i)

e0 + eti2δ2

= n

/(
ln(N)

et
− ln(δ)

et
−O(1)

)

As long as δ is constant the ln(δ) term is O(1).

E ≤ 2etn

ln(n)
+O

(
n

log2(n)

)
This bound holds regardless of the partition being considered because the slices

far away from the root are important. For the jth partition

N
δ
−1∑

i=0

(iδ + j)ηiδ is still

O(log n). Thus

N
δ
−1∑

i=0

iδ+j−O(log i)
e0+et(iδ+j)2

=
(

ln(N)
et
− ln(δ)

et
−O(1)

)/
δ

E ≤ n

/
δ

N
δ
−1∑

i=0

iδ + j −O(log i)

e0 + et(iδ + j)2

= n

/(
ln(N)

et
− ln(δ)

et
−O(1)

)
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On the other hand if α > 2 then we let δ =

⌈(
e0
et

) 1
α

⌉
.

E ≤ n

/
δ2

N
δ∑
i=1

iηiδ

= n

/
δ2

 1

e0 + etδα
+

N
δ∑
i=2

i− 1−
i−1∑
j=2

(j−1)(e0+etδα)
e0+etjαδα

e0 + etiαδα


Notice that each (j−1)(e0+etδα)

e0+etjαδα
term is decreasing as δ increases because j > 1. If

δ ≥
(
e0
et

) 1
α

then

(j − 1)(e0 + etδ
α)

e0 + etjαδα
≤ 2e0(j − 1)

e0(1 + jα)

=
2j − 2

1 + jα

≤ 2j − 2

1 + j2

It turns out 2j−2
1+j2

reaches a maximum of
√

2−1 ≈ 0.414 at 1+
√

2. When i = 2 we

have i− 1−
i−1∑
j=2

2j−2
1+jα

= 1 and then when i increases by 1 the sum gains an additional

term in the sum less than 1
2
. Therefore i−1−

i−1∑
j=2

2j−2
1+jα

≥ i
2

when i ≥ 2 and δ ≥
(
e0
et

) 1
α
.

Therefore if δ ≥
(
e0
et

) 1
α

then

E ≤ 2n

/
δ2

N
δ∑
i=1

i

e0 + etδαiα
(4.9)
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Thus we let δ =

⌈(
e0
et

) 1
α

⌉
. If e0 ≤ et then δ = 1 and Equation 4.9 simplifies to

E ≤ 2n

/ N∑
i=1

i

e0 + etiα

which is exactly double the lower bound in Equation 4.4. Furthermore,

E ≤ 2n

/∫ N+1

1

x

et(1 + xα)
dx

≤ 2etn

/∫ N+1

1

x

2xα
dx

≤ 4(α− 2)etn

On the other hand if e0 ≥ et then Equation 4.9 simplifies to

E ≤ 2e
− 2
α

0 e
2
α
t n

/ bNδ c∑
i=1

i

e0 + etδαiα

≤ 2e
1− 2

α
0 e

2
α
t n

/ bNδ c∑
i=1

i

e0 + 2αe0iα

≤ 2(2α + 1)e
1− 2

α
0 e

2
α
t n

/∫ N
δ

1

x1−αdx

≤ 2(2α + 1)e
1− 2

α
0 e

2
α
t n

/
1−

(
N
δ

)2−α
α− 2

≤ 2(2α + 1)(α− 2)e
1− 2

α
0 e

2
α
t n+O

(
n2−α

2

)
These bounds still hold within a constant factor regardless of the partition being

considered. To show this we consider a modified EBP protocol where sensors in slice

Siδ+j sends the same total amount of data to the root as sensors in slice Siδ. This

protocol uses strictly more energy then the typical EBP protocol and each sensor in

slice Siδ+j uses at most a constant factor more energy than the sensors in slice Siδ.
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This subsection along with Subsection 4.2.2 completes the proofs of Theorems 30

and 31.

4.2.4 Empirical Results

In this subsection we show empirical results for the energy balanced protocol

(EBP). We approximate the energy usage by using Equation 4.7 for energy usage and

using Equation 4.8 for the data efficiency ηiδ. Notice that multiplying e0 and et by k

exactly increases the energy by a factor of k. Therefore the actual magnitude of e0 and

et do not affect the constant C in E = C(α, e0, et)(α− 2) max
(
et, e

1− 2
α

0 e
2
α
t

)
n+ l.o.t.

for EBP, just the ratio of e0 and et. Similarly the lower bound from Equation 4.4

increases by a factor of k if e0 and et and increased by a factor of k. Thus in this section

we will only be analyzing varying ratios of e0 to et ignoring their actual magnitudes.

In our analysis we let e0
et

range from 1
1,000

to 1, 000 on a log scale. We also analyze

values for α ranging from 2—wherever possible—to 4. In order to minimize low

order terms in our calculations we use N = 108 and compute exact values using

equations 4.7 and 4.8.

First in Figure 4.2 we show the optimal value for the short hop distance δ to

minimize energy usage. These values for δ are very close to the
(
e0
et

) 1
α

even when

α = 2.

Next in Figure 4.3 we plot the approximation ratio for EBP which is obtained

by dividing Equation 4.7 by Equation 4.4. This gives us a maximum approximation

ratio for EBP of about 1.35. This ratio appears to be highest when e0 > et and α

is around 3. When α = 2 the ratio appears to approach 1 which is to be expected

and interestingly when α increases towards 4 the ratio actually appears to go down

a little.
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Figure 4.2: Optimal value for δ for e0
et

from 0.001 and 1,000, α between 2 and 4.
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Figure 4.3: Approximation ratio for e0
et

from 0.001 and 1,000, α between 2 and 4, with
optimal values for d.

It is also worth pointing out there are some significant undulations that appear

when α approaches 4 and when e0 is slightly bigger than et. This is likely caused

by the granularity of δ. That is, initially δ = 1 and the ratio increases with e0
et

until

δ = 2 where the ratio begins to decrease for a while. This affect is visible with smaller

values for α but is most visible when α is large because δ increases more slowly with

e0
et

when α is large.
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Figure 4.4: Coefficient for e0
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from 0.001 and 1,000, α between 2.1 and 4, with optimal
values for δ.

Finally, from theorems 30 and 31 we know that if α > 2 then the energy used

for EBP is of the form C(α, e0, et)(α − 2) max
(
et, e

1− 2
α

0 e
2
α
t

)
n + l.o.t. where C is a

function bounded above and below by a positive constant. In Figure 4.4 plot this

coefficient by dividing Equation 4.7 by (α− 2) max
(
et, e

1− 2
α

0 e
2
α
t

)
n.

It appears that C varies from around 0.45 to around 1.24. The coefficient appears

to increase as α decreases and increases sharply when e0 becomes larger than et.

There is also a sharp increase present in the figure as α approaches 2 which appears

to be because low order terms have a much larger impact as α is small.

4.2.5 Protocols Using Only Short Hops

In this subsection we analyze protocols such as Multi-hop Routing with Low En-

ergy Adaptive Clustering Hierarchy protocol (MR-LEACH) and Probabilistic For-

warding Protocol (PFP) in which sensors far from the root only transfer data short

distances to nearby sensors and do not send data long distances to the base station.

The goal of this subsection is to show that these protocols are only close to optimal

when sending messages long distances is expensive, i.e., when α is large. That is, we
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will show that as α approaches 2 the energy these protocols use is much greater than

the bounds found in Subsections 4.2.2 and 4.2.3.

We assume that the short hop distance is a fixed value δ depending upon the

parameters of the network. There are δ(δ+1)
2

sensors in slices S1, . . . , Sδ within δ of

the root and these are the sensors that send the data directly to the root. To simplify

our analysis we will assume that there are only δ2

2
sensors in slices S1, . . . , Sδ. Some

protocols such as PFP attempt to more evenly distribute data by randomizing the

transmission path. As a generous assumption we assume that the data is evenly

distributed among these sensors within δ of the root.

Sensors further than δ away from the root use strictly less energy than the sensors

δ away from the root because there are more sensors to distribute the data and each

sensor transfers data at most distance δ. Under our assumptions the maximum energy

usage of any sensor using a protocol only using short hops of distance δ satisfies

E ≥ e0 + etδ
α

δ2
2n

To determine the optimal choice of δ we simply take the derivative with respect

to δ.

d

dδ

e0 + etδ
α

δ2
2n =

(α− 2)etδ
α − 2e0

δ3
2n

If α = 2 then this simplifies to −4e0
δ3
n which implies that there is no fixed δ that

minimizes E. In the limit as δ goes to infinity the energy usage approaches 2etn for

the short hop approach. However our lower bound and the result achieved when using

both short hops and long hops was etn
ln(N)

+ l.o.t.. Therefore if α = 2, protocols using

only short hops are at least a ln(n) factor away from optimal.

On the other hand if α > 2 then energy is minimized when
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δ =

(
2e0

(α− 2)et

) 1
α

If et > e0 then energy is minimized when δ = 1 since δ must be a positive integer.

In this case E ≥ (e0 + et)n ≥ etn when using only short hops. Using Equation 4.5 as

a lower bound gives us an approximation ratio of α−1
α−2 . Note that as α approaches 2

this ratio approaches infinity.

If e0 ≥ et then we simply use the value we previously found for δ. Even though

this value may not be a whole number it still provides a bound for E.

E ≥ e0 + etδ
α

δ2
2n

≥ 2
e0 + 2e0

α−2(
2e0

(α−2)et

) 2
α

=
21− 2

αα

(α− 2)1−
2
α

e
1− 2

α
0 e

2
α
t n

Dividing this by the lower bound in Equation 4.6 gives us the following approxi-

mation ratio:

Ratio =
21− 2

αα
1

α−1 (α− 1)2−
2
α

(α− 2)2−
2
α

Again this ratio goes to infinity as α goes to 2. As α increases the ratio decreases

and when α = 4 the ratio is approximately 4.12. Figure 4.5 plots the exact values of

this ratio.

All of these ratios show that data propagation protocols that only use short hops

such as MR-LEACH and PFP do not perform well compared to optimal solutions

when α is close to 2. They can only perform well when sending long distances is

particularly expensive.
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Figure 4.5: Plot of approximation ratio of the energy usage for the short hop protocol
when e0 ≥ et and the lower bound in Equation 4.6.

4.3 2-Dimensional Data Propagation

In this section we discuss the two-dimensional model and show how the bounds

from Section 4.2 carry over to two dimensions. The network is distributed on a a

disk of radius R which has been partitioned into equally sized sectors, each of which

is subtended by an angle of θ from the center of the disk. Each sector is partitioned

into N evenly spaced slices, S1, . . . , SN , such that all sensors at distance ( (i−1)R
N

, iR
N

]

from the base station are in slice Si. This is the 2D model used in [15].

In this slice model the distance between the leftmost sensor in slice Si and the

rightmost sensor in Si+1 may be may be proportional to i. This means that sensors

further away from the root may spend large amounts of energy on the “short hops”

between slices. This is insufficient for the analysis in this chapter, so we introduce a

new variant of this model we call the splitting slice model. In this model we split each

slice Si into 2k smaller clusters where k = blog2 ic by evenly spaced lines emanating

from the base station. That is, S1 remains a single cluster but S2 and S3 are split
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Figure 4.6: On the left is the slice model with 4 slices. On the right is the splitting
slice model with 4 slices.

into 2 clusters, S4, . . . , S7 are split into 4 clusters, and so on. We say a cluster Ci

in slice Si is a predecessor of another cluster Cj in slice Sj if i < j and Ci is on the

direct path to the root from Cj; we also say Cj is a successor of Ci. Throughout

this section, sensors will only receive data from successive clusters and will only send

data to preceding clusters or the root. Figure 4.6 compares the the slice model and

splitting slice model on a sector with 4 slices.

The splitting slice model has some major advantages. First, the area of each cluster

remains close to constant even as the radius goes to infinity, meaning in an evenly

distributed network each cluster has about the same number of sensors. Secondly,

each cluster has only one predecessor in each slice, which simplifies the process of

using the short hops to send data to a predecessor. Finally, the distance between any

sensor in a cluster and any sensor region in the cluster’s predecessor is bounded by a

fixed constant regardless of the total number of hops in the network.

A fundamental assumption we make in this section is that sensors are evenly

spaced, by which we mean each slice has exactly n sensors and each cluster has exactly

1 or 2 sensors. Throughout the analysis we will also assume that θ = π
2
. Additionally,

instead of n being the number of sensors in the entire network n will be the number

of sensors in a single sector of the network and we will analyze the energy usage of
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the sensors in this sector alone. These previous two assumptions about n and θ will

not affect the statements of our main theorems since if α > 2 these assumptions will

impact the leading constant C and if α = 2 the assumptions will impact the low order

terms. As in the one-dimensional case the following are main theorems of this section

and their proofs appear in Subections 4.3.1 and 4.3.2.

Theorem 32. Let S be an evenly spaced sensor network with n sensors on a two-

dimensional disk of radius R with energy cost e0+etd
α of sending unit data d distance

away. If α > 2 then the optimal data propagation on S takes

C(α, e0, et)(α− 2) max

(
etR

α

n
α
2
−1 , e

1− 2
α

0 e
2
α
t R

2

)
+ l.o.t.

maximum energy per sensor, where C is a function of α, e0, and et bounded above

and below by positive constants. If α = 2 then optimal data propagation on S takes

etR
2

ln(min(n, R2))
+ l.o.t.

maximum energy per sensor.

The constants e0, et, and α behave similarly in this theorem as in the 1D case of

Theorem 30 but the network behaves much differently as n increases. As the number

of sensors increases the energy actually decreases from O(Rα) to O(R2). The first

term etRα

n
α
2 −1 in the first equation can be rewritten in the form et

(
R√
n

)α−2
R2. It is then

apparent that if more sensors are added to the network the energy usage decreases

until the density reaches a constant value at which point the energy usage which is

O(R2). Also notice that if α = 2 the logarithmic factor in the denominator also

depends upon the density of the network. If n is too small then the denominator

becomes ln(n) but adding more sensors can only increase the term up to ln(R2).
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If α > 2 and the density of the network is decreasing, that is R = ω(
√
n), then

the first term in the maximum function will dominate. However if the density of the

network is increasing, that is R = o(
√
n), then the second term will dominate. If the

density of the network is fixed at ρ = n
R2 then either term may be larger depending

on the exact constants. This gives us the following corollary which more closely

resembles Theorem 30 with et replaced by et

ρ
α
2

.

Corollary 33. Let S be an evenly spaced sensor network with n sensors on a two-

dimensional disk with fixed density ρ = n
R2 and energy cost e0 + etd

α of sending unit

data d distance away. If α > 2 then the optimal data propagation on S takes

C(α, e0, et)(α− 2) max

(
et

ρ
α
2

,
e
1− 2

α
0 e

2
α
t

ρ

)
n+ l.o.t.

maximum energy per sensor where C is a function of α, e0, and et bounded above and

below by positive constants. If α = 2 then optimal data propagation on S takes

etn

ρ ln(n)
+ l.o.t.

maximum energy per sensor.

The other main theorem of this section, as in the 1D case, states that EBP is close

to optimal.

Theorem 34. In a evenly spaced sensor network on a two-dimensional disk, energy

balanced protocol (EBP) is within constant factor optimal and if α = 2 is within low

order terms of optimal.
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4.3.1 2-Dimensional Lower Bound

Our general approach to our lower bound for data propagation in the two-dimensional

model will be similar to that of the one-dimensional case in Subsection 4.2.2. The

major differences being that the distance data is being sent from the ith cluster is now

at least (i−1)R
N

as opposed to i in the 1-dimensional model. With this in consideration

our bound for maximum energy becomes the following

E ≥ n

/ N∑
i=1

i

e0 + et(i− 1)αRα/Nα
(4.10)

The sensor in the first slice s may be arbitrarily close to the root. This causes

problems if we attempt to replicate the analysis of Subsection 4.2.2. Thus we will

modify Equation 4.10 based on the distance s is from the root. In the first case if

s is at least R
2N

away from the root then we bound energy the usual way with the

following

E ≥ n

/(
1

e0 + etRα/2αNα
+

N∑
i=2

i

e0 + et(i− 1)αRα/Nα

)

≥ n

/ N∑
i=1

i

e0 + etRα/2αNα

If the s is less than R
2N

away from the root, then we bound the energy to get all

data to either r or s. For a sensor in slice i the closest that s or r could be is
(i− 1

2)R
N

.

Essentially, we are treating s as the new root and bounding the energy to send all

data to s. The data generated by s does not need to be sent at all so only n − 1
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sensors need to transfer data to r or s. Thus we get the following bound

E ≥ (n− 1)

/ N∑
i=2

i

e0 + et(i− 1
2
)αRα/Nα

(4.11)

≥ (n− 1)

/ N∑
i=1

i

e0 + etRα3α/4αNα

≥ (n− 1)

/ N∑
i=1

i

e0 + etRα/2αNα

These two bounds are exactly the same as Equation 4.4 with et replaced by etRα

2αNα ,

with the exception of the −1 term in the numerator of Equation 4.13 which will turn

into low order terms. Thus using the same method as Subsection 4.2.2 if α > 2 we

get the following bounds

E ≥ α1− 1
α−1

23(α− 1)2−
2
α

(α− 2)e0
1− 2

α et
2
αR2 −O

(
R2

n

)

E ≥ 1

4α(α− 1)
(α− 2)

etR
α

n
α
2
−1 −O

(
Rα

n
α
2

)
This technique, however, is not tight enough to give a result within low order terms

of optimal if α = 2. We break the case where α = 2 into two subcases depending on

whether R or N is larger. The first case is if R = Ω(N) and we use both equations 4.12

and 4.13. If the first sensor is at least R
2N

away from the root then

1

e0 + etR2/4N2
+

N∑
i=2

i

e0 + et(i− 1)2R2/N2
≤

N−1∑
i=1

i+ 1

eti2R2/N2
+O

(
N2

R2

)
≤
∫ N

1

N2

etxR2
dx+O

(
N2

R2

)
=

N2

etR2
ln(N) +O

(
N2

R2

)
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If the first sensor is more than R
2N

then

N∑
i=2

i

e0 + et(i− 1
2
)2R2/N2

≤
∫ N− 1

2

3
2

N2

etxR2
dx+O

(
N2

R2

)
=
N2 ln(N)

etR2
+O

(
N2

R2

)

Therefore in either case

E ≥ etR
2n

N2 ln(N)
−O

(
R2

log2(n)

)
=
etR

2

ln(n)
−O

(
R2

log2(n)

)

When α = 2 and R = O(N) the simple bound from Equation 4.10 is enough.

Using this equation we get the following bound

E ≥ n

/ N∑
i=1

i

e0 + et(i− 1)2R2/N2

= n

/(
1

e0
+

N−1∑
i=1

i+ 1

e0 + eti2R2/N2

)

≥ n

/ 1

e0
+

∫ N
R

1

x

e0
dx+

∫ N

N
R

N2

etxR2
dx+

N∫
1

N2

etx2R2
dx


= n

/(
N2

etR2

(
ln(N)− ln

(
N

R

))
+O

(
N2

R2

))
=

etnR
2

N2 (ln(R) +O (1))

=
etR

2

ln(R2)
−O

(
R2

log2(R)

)
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4.3.2 2-Dimensional EBP Upper Bound

This subsection analyzes the cost of using the Energy Balanced Protocol (EBP),

which provides an upper bound for data propagation, in the two-dimensional network

slice model. As in the 1D case each cluster will with some probability send data

directly to the base station also called the root. The remaining data is passed along

a short hop to another cluster of sensors closer to the root a fixed number of hops

away, δ.

As in Subsection 4.2.3, we assume that δ evenly divides N , we only analyze the

δ partition of the network which consists of clusters Sδ, S2δ, . . . , SN , and we assume

that the exact amount of data generated by each partition is n
δ
. As before, we use

the data efficiency which is defined as ηi = di
E

where di is the amount of data sensors

in cluster i send to the root. Under these assumptions the maximum energy usage of

any sensor obeys the following bound.

E = n

/
δ2

N
δ∑
i=1

iηiδ (4.12)

We can also bound the data efficiency similarly to Subsection 4.2.3 however work-

ing with the distance between sensors in different clusters is slightly more difficult.

First notice that the distance between the inner edge and the outer edge of a cluster

is between R
N

and 2R
N

and the distance from a sensor in Si to the root is between

(i−1)R
N

and iR
N

. Finally, the distance between a sensor in Si and one of its predecessors

in slice Si−1 can be generously bounded by 4R
N

. Also the number of sensors in Si with

the same predecessors in slice Sj can be bounded by 2j
i

and there may be 2 sensors

in the predecessor. These bounds give us the following bound on the data efficiency.
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ηiδ ≥
1− (e0 + etδ

α4αRα/Nα)
i−1∑
j=1

4j
i
ηjδ

e0 + etiαδαRα/Nα

≥
1− 4(e0+etδα4αRα/Nα)

i

i−1∑
j=1

j
e0+et(j−1)αδαRα/Nα

e0 + etiαδαRα/Nα

This expands Equation 4.12 into the following.

E ≤ n

/
δ2
bNδ c∑
i=1

i− 4 (e0 + etδ
α4αRα/Nα)

i−1∑
j=1

j
e0+et(j−1)αδαRα/Nα

e0 + etiαδαRα/Nα
(4.13)

If α = 2 then Equation 4.13 simplifies to the following.

E ≤ n

/
δ2
bNδ c∑
i=1

i−O (log(i))

e0 + eti2δ2R2/N2

Now we approximate the sum using integration. However to bound this sum by

an integral the terms of the sum must be monotonic. To this end we only consider

the terms of the sum after i
e0+eti2δ2R2/N2 reaches its maximum value at i =

(
e0
et

) 1
2 N
δR

.

Doing so we get the following bound.

E ≤ n

/
δ2 ·

∫ bNδ c
max

(
1,
(
e0
et

) 1
2 N
δR

) x−O (log(x))

e0 + etx2δ2R2/N2
dx

= nR2

/
N2

ln

(
xδR

N

)
+O(1)

∣∣∣∣bNδ c
max

(
1,
(
e0
et

) 1
2 N
δR

)


=
R2

2 min
(
ln
(
N
δ

)
, ln(R)

)
+O(1)

+O

(
1

n2

)
=

R2

ln
(
min

(
n
δ2
, R2

)) +O

(
R2

log2
(
min

(
n
δ2
, R2

)))
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Thus if α = 2, as long as δ = O
(
min

(
N
R
, 1
))

E ≤ R2

ln (min (n, R2))
+O

(
R2

log2 (min (n, R2))

)

On the other hand if α > 2 a problem arises when trying to use the same strategy

as in Subsection 4.2.3. It is no longer possible to always bound the term subtracted

in the data efficiency by a constant less than 1 and for small values of i it may be

possible for this term to be greater than 1. This may be the case, for example, if the

sensor in the first layer very close to the root and the 2 sensors in the second layer

are as far as possible from the root and δ = 1.

To overcome this challenge we artificially limit ηiδ when i is small. That is, we

assume the first say 1, 000 layers only send the data they generate to the root and do

not receive any additional data from following layers. We define the data efficiency of

a sensor in the ith layer for this modified strategy to be η′i. Notice that
N∑
i=1

iηi ≥
N∑
i=1

iη′i.

Doing so we can bound the data efficiency with the following.

η′iδ ≥
1− (e0 + etδ

α4αRα/Nα)
i−1∑

j=1,000

4j
i
ηjδ

e0 + etiαδαRα/Nα

≥
1− 4(e0+etδα4αRα/Nα)

i

i−1∑
j=1,000

j
e0+et(j−1)αδαRα/Nα

e0 + etiαδαRα/Nα

We let δ =

⌈(
e0
et

) 1
α N
R

⌉
and get the following generous bound.

η′iδ ≥
1− 4(1+2α4α)

i

i−1∑
j=1,000

j
1+(j−1)α

e0 (1 + 2αiα)
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Then if say j ≥ 1, 000 then
j(4+23α+2)
1+(j−1)α < 1

2
and thus η′iδ ≥ 1

2e0(1+iα)
. Additionally,

notice for sufficiently large N ,

N
δ∑
i=1

1
2e0(1+iα)

≤ c ·
N
δ∑

i=1,000

1
2e0(1+iα)

for some constant c.

Thus following the same steps as in Subsection 4.2.3 we get the same lower bound as

before with a larger leading coefficient and et replaced by etRα

n
α
2

. If e0 ≤ etRα

n
α
2

then for

some constant c

E ≤ c · (α− 2)
etR

α

n
α
2
−1

On the other hand if e0 ≥ etRα

n
α
2

then for some constant c

E ≤ c · (α− 2)e
1− 2

α
0 e

2
α
t R

2 +O
(
R4−α)

This completes the proofs of Theorems 32 and 34.
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Chapter V

Final Remarks

Energy dissipation is a primary concern in wireless sensor networks. Algorithms

and protocols for wireless sensor networks should not only minimize runtime and

average energy usage but also the maximum energy usage of any sensor. Sensors

conserve energy by going into a low-energy sleep state in which they cannot commu-

nicate with other sensors or do meaningful computations. Coordinating networks of

sensors that are asleep for the vast majority of the time provides unique challenges.

Because of the spatial nature of sensor networks geometry problems are of particular

interest. Sensor networks often have a high-energy base station and sensors will often

propagate the data generated at each sensor to the base station.

In this dissertation we presented research on energy efficient algorithms for low-

energy wireless sensor networks and data propagation. In Chapter II we focus on

algorithms in single-hop networks. We then use single-hop networks as a building

block for creating multi-hop algorithms in Chapter III. Finally, in Chapter IV we

analyze the energy usage for optimally propagating data to the base station.

In Section 2.4 we discuss a problem that arises when executing randomized recur-

sive algorithms in a single-hop sensor network. To overcome this problem we present

the technique breadth first recursion. We use this technique in Section 2.5 to create a
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sorting algorithm that is optimal within a constant factor both in terms of time and

energy. We then analyze simulations of our sorting algorithm to show that it is much

faster than previous algorithms and is competitive with previous algorithms in terms

of energy usage. Then in Section 2.6 we use breadth first recursion to compute the

2-dimensional convex hull with an algorithm that is often sublinear depending upon

the number of points in the convex hull and analyze simulations of this algorithm

under different distributions.

In Section 3.2 we introduce consolidation algorithms as a method for executing

algorithms for multi-hop networks using single-hop algorithms as a building block.

Then in sections 3.3, 3.4, and 3.5 we create consolidation algorithms for all points

nearest neighbor, coverage boundary, and the Voronoi diagram respectively.

In Section 4.2 we analyze data propagation in a simplified 1D model and show

that short hop long hop approaches like the Energy Balanced Protocol (EBP) are

close to optimal and show empirical results that compute the coefficient of the high

order terms. We additionally show that only using short hops is only close to optimal

if sending long distances is exceptionally expensive. In Section 4.3 we generalize some

of these results to a 2D model and show that EBP is still close to optimal.

Several open questions relating to this work still remain.

• Fault Tolerance Because sensor networks consist of small low energy proces-

sors, faults in individual sensors or communication are relatively common [59].

Fault tolerance is already a well studied problem in the literature [19, 34, 42].

Techniques for fault tolerance are considered at every level of the stack from

hardware, to communication protocols, to algorithms. To apply the techniques

presented in Chapters II and III in realistic scenarios one must anticipate sen-

sor failures. Is it possible to create fault tolerant versions of the breadth first
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recursion framework and consolidation algorithms?

• Data Propagation There many open problems relating to analysis of the data

propagation problem discussed in Chapter IV. In Section 4.3 we assumed that

the sensors were placed at evenly distributed locations. Do these results also

apply to the case where sensor locations are instead drawn from the uniform

distribution? In this case there are logarithmic sized gaps in the network [23].

What results are achievable when sensors’ locations are distributed in other

manners, such as a Gaussian distribution? Here there are more sensors near

the root, so data propagation should be more efficient. When the sensors’

locations are chosen from some distribution, how does the distribution affect

their energy usage?
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Appendix

Extreme Statistics

We introduce the following definition to help describe random variables with prop-

erties that will be useful when examining extreme statistics.

Definition 35. If X(n) ∈ Z+ is a random variable, X(n) is said to have an expo-

nentially small tail if there exist constants k > 0 and c > 1 such that for all j > 0

we have P (X(n) = kE[X(n)] + j) ≤ c−j.

In particular, negative binomial (and geometric) distributions have exponentially

small tails. These random variables have the following property that will be useful

for analyzing the behavior of the maximum values of random variables. This lemma

is referenced throughout the dissertation and we note that the random variables in

the lemma need not be independent.

Lemma 36. If X1(n), . . . , Xm(n) ∈ Z+ are random variables with exponentially small

tails, then

E[max
i

(Xi(n))] = O(max
i

(E[Xi(n) ]) + logm)

with exponentially small tail.

Proof. Let Xmax(n) = max
i

(E[Xi(n) ]) and let k > 0 and c > 1 be the constants such

134



that for all 1 ≤ i ≤ m and j > 0 we have P (Xi(n) = kE[Xi(n)] + j) ≤ c−j.

Then

P (max
i

(Xi(n)) = kXmax(n) + j)

≤ P (∃i s.t. Xi(n) ≥ kXmax(n) + j)

≤
m∑
i=1

P (Xi(n) ≥ kXmax(n) + j)

≤
m∑
i=1

∞∑
l=j

(1/c)l

=
m

1− 1/c
(1/c)j

= (1/c)j−logc(
m

1−1/c)

and

P
(

max
i

(Xi(n)) = kXmax(n) + logc

(
m

1−1/c

)
+ j
)
≤ (1/c)j

From this probability bound it directly follows that

E[max
i

(Xi(n))] = O (Xmax(n) + log(m))

which completes the proof.
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