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ABSTRACT

Density functional theory (DFT), in its ground-state as well as time-dependent

variant, have enjoyed incredible success in predicting a range of physical, chemical and

materials properties. Although a formally exact theory, in practice DFT entails two

key approximations—(a) the pseudopotential approximation, and (b) the exchange-

correlation approximation. The pseudopotential approximation models the effect of

sharply varying core-electrons along with the singular nuclear potential into a smooth

effective potential called the pseudopotential, thereby mitigating the need for a highly

refined spatial discretization. The exchange-correlation approximation, on the other

hand, models the quantum many-electron interactions into an effective mean-field of

the electron density (ρ(r)), and, remains an unavoidable approximation in DFT.

The overarching goal of this dissertation work is —(a) to develop efficient numer-

ical methods for all-electron DFT and TDDFT calculations which can dispense with

the pseudopotentials without incurring huge computational cost, and (b) to provide

key insights into the nature of the exchange-correlation potential that can later con-

stitute a route to systematic improvement of the exchange-correlation approximation

through machine learning algorithms (i.e., which can learn these functionals using

training data from wavefunction-based methods). This, in turn, involves—(a) ob-

taining training data mapping ρ(r) to vxc(r), and (b) using machine learning on the

training data (ρ(r) ⇔ vxc(r) maps) to obtain the functional form of vxc[ρ(r)], with

conformity to the known exact conditions.

The research efforts, in this thesis, constitute significant steps towards both the

aforementioned goals. To begin with, we have developed a computationally effi-
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cient approach to perform large-scale all-electron DFT calculations by augmenting

the classical finite element basis with compactly supported atom-centered numerical

basis functions. We term the resultant basis as enriched finite element basis. Our

numerical investigations show an extraordinary 50− 300-fold and 5− 8-fold speedup

afforded by the enriched finite element basis over classical finite element and Gaussian

basis, respectively. In the case of TDDFT, we have developed an efficient a priori

spatio-temporal discretization scheme guided by rigorous error estimates based on

the time-dependent Kohn-Sham equations. Our numerical studies show a staggering

100-fold speedup afforded by higher-order finite elements over linear finite elements.

Furthermore, for pseudopotential calculations, our approach achieve a 3 − 60-fold

speedup over finite difference based approaches. The aforementioned a priori spatio-

temporal discretization strategy forms an important foundation for extending the key

ideas of the enriched finite element basis to TDDFT. Lastly, as a first step towards

the goal of machine-learned exchange-correlation functionals, we have addressed the

challenge of obtaining the training data mapping ρ(r) to vxc(r). This constitute gener-

ating accurate ground-state density, ρ(r), from wavefunction-based calculations, and

then inverting the Kohn-Sham eigenvalue problem to obtain the vxc(r) that yields

the same ρ(r). This is otherwise known as the inverse DFT problem. Heretofore,

this remained an open challenge owing lack of accurate and systematically conver-

gent numerical techniques. To this end, we have provided a robust and systematically

convergent scheme to solve the inverse DFT problem, employing finite element ba-

sis. We obtained the exact vxc corresponding to ground-state densities obtained from

configuration interaction calculations, to unprecedented accuracy, for both weak and

strongly correlated polyatomic systems ranging up to 40 electrons. This ability to

evaluate exact vxc’s from ground-state densities provides a powerful tool in the future

testing and development of approximate exchange-correlation functionals.

xiii



CHAPTER I

Introduction

Density functional theory (DFT), in its both static (ground-state) and time-

dependent variant, constitute an essential method for describing electronic states

in all manner of nano-scale phenomena, including chemical bonds in molecules, band

structures of materials, electron transport, optical properties, photo-chemical pro-

cesses etc. The ground-state density functional theory (or simply density functional

theory), quite justifiably, has enjoyed the distinction of the most widely used elec-

tronic structure method for over four decades. This incredible success is attributed

to its low computational cost along with its reliable predictions for a wide range of

materials properties [1, 2]. It relies on the Hohenberg-Kohn theorems [3] and the

Kohn-Sham ansatz [4] to establish a one-to-one correspondence between the external

potential and the ground-state electron density, ρ(r), thereby allowing all ground-

state properties to be defined as unique functionals of ρ(r). In effect, it provides a

formally exact reduction of the otherwise intractable time-independent many-electron

Schrödinger equation to a set of single-electron equations, wherein each electron in-

teracts with other electrons through an effective mean-field. The time-dependent

density functional theory (TDDFT), on the other hand, extends the keys ideas of

ground-state DFT to electronic excitations and time-dependent processes. It relies

on the Runge-Gross [5] to establish, for a given initial state, a one-to-one correspon-
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dence between the time-dependent external potential and the time-dependent electron

density, ρ(r, t), thereby making the electron density the fundamental variable to de-

fine other physical quantities. Thus, when used in conjunction with the Kohn-Sham

anstaz, TDDFT formally reduces the intractable time-dependent Schrödinger many-

electron equation to single-electron equations. Despite the formal exactness of DFT

(TDDFT), any typical DFT (TDDFT) calculation, entails two key approximations—

the pseudopotential and the exchange-correlation approximation.

The pseudopotential approximation provides a balance of speed and accuracy by

modeling the effect of the sharply varying core-electrons along with the singular nu-

clear potential into a smooth effective potential called the pseudopotential. This

mitigates the need for a highly refined spatial discretization, otherwise required for

describing the core-electrons and the singular nuclear potential. It relies on the fact

that the core-electrons remain chemically inactive, and hence can allow for transfer-

ability of pseudopotentials from atomic calculations to molecules and solids. Although

successful in predicting several material properties, pseudopotentials tend to oversim-

plify the description of core-electrons to be chemically inert for various systems and

external conditions. For example, in systems under high pressure where the core and

valence wavefunctions show increasing overlap with pressure, pseudopotentials tend

to under-predict their phase transition pressures [6, 7, 8]; in systems at high temper-

ature, where the contribution of core electrons to various thermodynamic potentials

is non-negligible, pseudopotentials provide an inaccurate description of the equation

of state [9]; in transition metals, where the penultimate d and f orbitals are not

tightly bound, non-inclusion of these orbitals as valence electrons oftentimes lead to

inaccurate bulk property prediction. More pronounced inaccuracies and sensitivity to

core sizes are observed in prediction of ionization potentials [10], magnetizability [11],

spectroscopic properties [12, 13] of heavier atoms wherein scalar relativistic pseu-

dopotentials are widely employed, and in prediction of band-gap and excited state

2



properties [14].

Unlike the pseudopotential approximation, the second approximation of exchange-

correlation (xc) is an unavoidable approximation in DFT, and the quest for an

accurate exchange-correlation approximation remains the holy-grail in DFT. The

exchange-correlation approximation models the quantum many-electron interactions

into an effective mean-field, and hence, is indispensable to the reduction of the many-

electron Schrödinger equation to effective single-electron equations in DFT. It de-

scribes an energy term, Exc, and a potential term, vxc, to characterize the interact-

ing many-electron system in terms of a non-interacting one. Both vxc and Exc are

known to be unique functionals of the electron density, ρ(r), and are related to each

other as vxc[ρ(r)] = δExc[ρ(r)]
δρ(r)

. However, their exact forms are unknown, necessitating

the use of approximations. The existing exchange-correlation approximations, de-

spite their successes in prediction of various material properties, exhibit some notable

failures—under-prediction of band-gaps, inaccurate bond-dissociation curves, inac-

curate reaction barriers [15, 16], to name a few. The exchange-correlation approxi-

mation also features in TDDFT, albeit with an additional time-dependence for the

exchange-correlation functionals. The existing approximations for TDDFT also ex-

hibit certain notable failures in describing time-dependent processes—missing double

excitations [17], inaccurate charge-transfer excitations [18], incorrect optical response

in insulators [19], to name a few.

The aforementioned limitations in typical DFT (TDDFT) calculations beg two

very ambitious questions—(i) can we dispense with the pseudopotential approxima-

tion and perform all-electron DFT (TDDFT) calculations without incurring heavy

computational cost?, and (ii) can we provide key insights into the nature of the

exchange-correlation potential and device a systematic way to improve the exchange-

correlation approximation that can alleviate the shortcomings of the currently exist-

ing ones? These two questions are central to this thesis, and have been addressed in

3



substantial measures.

Traditionally, all-electron DFT (TDDFT) calculations have been done using atomic-

orbital-type basis sets [20, 21, 22, 23, 24, 25, 26, 27, 28], wherein atom-specific basis,

either analytic or numerical, are used with only a few basis functions per atom. How-

ever, owing to the incompleteness of the basis, systematic convergence for all materials

systems remains a challenge. Additionally, the basis being extended in nature signif-

icantly limits the parallel scalability of their numerical implementations. Among the

family of complete basis sets, several extensions to plane-waves, namely, Augmented

Plane-wave (APW) [29, 30], Linearized Augmented Plane-wave (LAPW) [31, 32, 33]

and APW+lo [34, 35, 36], provide an alternative basis for all-electron calculations.

They achieve adaptive spatial resolution by describing the fields in terms of products

of radial functions and spherical harmonics inside small muffin-tins (MTs) surround-

ing each atom, and in terms of plane waves in the interstitial regions between atoms.

However, the basis functions within the MTs are constructed using trial energy pa-

rameters, and hence the quality of the basis remain sensitive to the choice of the

trial energies. Additionally, since these augmentation schemes are based out of plane

waves, they inherit some of the notable disadvantages associated with planewave, such

as their restriction to periodic boundary conditions and the highly nonlocal commu-

nication associated with fast Fourier transform (FFT). Finite elements, on the other,

owing to its completeness, locality, adaptive resolution, and ease of handling boundary

conditions, constitute a lucrative alternative. However, the standard finite elements

(hereafter termed as classical finite elements) suffer from two notable shortcomings

in all-electron calculations—(i) the requirement of highly refined mesh (O(105) basis

functions per atom) to capture the sharp oscillations of the electronic fields near the

nuclei, and (ii) the widening of the spectral width of the discrete Hamiltonian with

refinement, which in turn, negatively affects any eigensolver employed to solve the

Kohn-Sham equations. In our case, where we employ the Chebyshev polynomial fil-
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ter to selectively compute the occupied (bound) eigenstates, the use of highly refined

classical finite element mesh results in the requirement of a high degree (O(103)) of

Chebyshev polynomial filter. We remedy both these shortcomings, by augmenting

the classical finite elements with numerical atom-centered functions, termed as en-

richment functions, which are evaluated from atomic solutions to the Kohn-Sham

problem [37]. We term the resultant basis as enriched finite element basis. The mo-

tivation behind augmenting the classical finite element basis with these enrichment

functions is that in a multi-atom materials system, the enrichment functions, being

solutions to single atom Kohn-Sham orbitals and electrostatic potentials, can effec-

tively capture the sharp variations in the electronic fields close to an atom, eliminating

the need for a refined classical finite element mesh. The key ideas in the proposed

method involve—(i) pre-computing the enrichment functions by solving radial Kohn-

Sham equations and employing smooth cutoff functions to ensure the locality as well

as control the conditioning of the enriched finite element basis; (ii) employing a divide

and conquer strategy to construct an adaptive quadrature grid based on the nature

of enrichment functions, so as to accurately and efficiently evaluate the integrals in-

volving enrichment functions; (iii) implementing an efficient scheme to evaluate the

inverse of the overlap matrix corresponding to the enriched finite element basis by

using block-wise matrix inversion in conjunction with Gauss-Lobatto-Legendre re-

duced order quadrature rules; and (iv) in each self-consistent field iteration, using a

Chebyshev polynomial based filter to compute the space spanned by the occupied

eigenstates, and solving the Kohn-Sham eigenvalue problem by projecting the prob-

lem onto this Chebyshev-filtered space. Using this approach, we obtain a staggering

50 − 300-fold and a 5 − 8-fold reduction in computational cost when compared to

classical finite elements and Gaussian basis, respectively, for various large-scale semi-

conducting and heavy-metallic system, with the largest system containing ∼9000

electrons. These results present the proposed enriched finite element basis based for-
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mulation as a robust, systematically convergent, and efficient approach to large-scale

all-electron DFT calculations.

The extension of the above enriched finite element basis to all-electron TDDFT

requires some prior groundwork, given the relatively recent origins of TDDFT as

compared to DFT. To elaborate, while one can rely on previously developed a priori

mesh adaption techniques (most notably [38]) for DFT calculations, there exists no

prior efforts at developing any efficient a priori spatio-temporal discretization scheme

for TDDFT. Moreover, while the efficacy of the finite element basis in terms of its

accuracy, efficiency, scalability and relative performance with other competing meth-

ods (e.g., planewaves, Gaussian basis, finite difference), have been thoroughly studied

in the context of ground-state DFT [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

38, 52, 53, 37, 54, 55], a similarly comprehensive study on the efficacy of the finite

element basis for TDDFT is, however, lacking. To this end, we present a compu-

tationally efficient approach to solve the time-dependent Kohn-Sham equations in

real-time using higher-order finite element spatial discretization, applicable to both

pseudopotential and all-electron calculations [56]. The keys ideas in this work can be

summarized as: (i) developing an a priori mesh-adaption scheme, through a semi-

discrete (discrete in space, continuous in time) error analysis of the time-dependent

Kohn-Sham equations, and subsequently, obtaining a close to optimal finite element

discretization for the problem; (ii) use of spectral finite elements in conjunction with

Gauss-Legendre-Lobatto quadrature to render the overlap matrix diagonal, thereby

simplifying the evaluation of the inverse of the overlap matrix that features in the dis-

crete time-evolution operator; (iii) obtaining a suitable temporal discretization using

a full-discrete error analysis, in the context of second-order Magnus propagator; and

(iv) using an adaptive Lanczos iteration to efficiently compute the action of the Mag-

nus propagator on the Kohn-Sham orbitals. We perform various numerical studies to

assess the accuracy, rates of convergence, computational efficiency, and parallel scala-
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bility of the above higher-order finite elements based formulation, for both pseudopo-

tential and all-electron calculations. Moreover, for pseudopotential calculations, we

compare the performance of higher-order finite elements with finite-difference based

approach, as implemented in the Octopus software package. In particular, we ob-

serve an extraordinary 100-fold speedup in terms of the total computational time for

the fourth-order finite elements over linear finite elements. In terms of relative per-

formance with finite-difference, based on the benchmark system, the finite element

discretization shows a 3 to 60-fold savings in computational time as compared to the

finite-difference approach, for pseudopotential calculations. Furthermore, we demon-

strate the capabilities of finite elements for efficiently handling systems subjected to

strong perturbation by studying higher harmonic generation in Mg2. Additionally, we

showcase the competence of finite-elements for all-electron calculations on two bench-

mark systems—methane and benzene molecule. We observe good parallel scalability

with ∼75% efficiency at 768 processors for a benchmark system of a Buckminister-

fullerene molecule containing ∼3.5 million degrees of freedom. These results establish

the higher-order finite elements based RT-TDDFT calculations as a computationally

efficient alternative to the widely used RT-TDDFT approaches. More importantly, it

presents the proposed finite element based approach as a unified treatment of both

pseudopotential and all-electron RT-TDDFT calculations.

Lastly, we turn to the all-important challenge of developing better exchange-

correlation approximations for DFT. Many of the notable failures of the existing

exchange-correlation approximations can be traced to the violations of certain known

exact conditions on Exc[ρ(r)] and vxc[ρ(r)]. Typically, these approximations are con-

structed through semi-empirical parameter fitting in model systems, thereby making

systematic improvement and conformity to the exact conditions difficult. To this

end, we propose to construct these functionals in a data-driven fashion, using accu-

rate ground-state densities, ρ(r), from wavefunction-based methods (e.g., quantum
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Monte-Carlo, full Configuration Interaction). The wavefunction-based methods, ow-

ing to their exponential computational complexity, remain untenable beyond a few

tens of electrons. However, one can utilize the accurate ground-state densities from

these small systems that are within the reach of the wavefunction-based methods to

develop a machine-learned model for vxc[ρ(r)] and Exc[ρ(r)]. This involves three dis-

tinct steps—(i) generation of training data set comprising of {ρ(r), vxc(r)} pairs, (ii)

use of machine learning algorithms to learn the functional form of vxc[ρ(r)], conform-

ing to the exact conditions, and (iii) use of appropriate path-integrals on the learnt

model of vxc[ρ(r)] to obtain Exc[ρ(r)]. As a first step towards this goal of machine-

learned exchange-correlation approximation, we address the challenge of generating

the training data. That is, given an accurate ground-state density, ρ(r), from a wave-

function based method, we are interested in evaluating vxc(r) (as a spatial field) that

yields the same ρ(r). This is otherwise known as the inverse DFT problem. We

remark that there have been several attempts at this inverse problem, using either

iterative updates [57, 58, 59, 60] or constrained optimization approaches [61, 62, 63].

However, all of these approaches suffer from ill-conditioning, thereby resulting in non-

unique solution or spurious oscillations in the resultant vxc(r). The ill-conditioning

in the above approaches has been, largely, attributed to the incompleteness of the

Gaussian basis that were employed to solve them [64, 65, 66, 67, 68, 69]. Recently,

Staroverov and co-workers [70, 71] have presented a different approach which utilizes

the two-electron reduced density matrix (2-RDM) along with the density, both from

wavefunction based methods, to remedy the non-uniqueness and the spurious oscilla-

tions in the obtained vxc(r). However, this method is intended to only provide an ap-

proximate and physically meaningful vxc(r) when the inverse problem is solved using

a Gaussian basis. At convergence, it does not guarantee to yield the input ground-

state density, and hence, does not constitute an inverse DFT calculation per se. In

our approach [72], we mitigate these shortcomings by employing finite elements—a
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complete basis— to discretize the inverse problem. In particular, we cast the inverse

problem as a PDE-constrained optimization—with vxc(r) as the control variable and

the Kohn-Sham eigenvalue problem as the PDE-constraint. The key ingredients in

our approach are—(i) the effective use of finite element basis, which is a systemat-

ically convergent and complete basis, and, in turn, results in a well-posed inverse

DFT problem; (ii) use of numerical corrections and appropriate far-field boundary

conditions so as to alleviate the unphysical artifacts associated with the ubiquitous

Gaussian basis-set densities that are obtained from any wavefunction-based calcula-

tion (e.g., configuration interaction (CI)). In our numerical studies, we, first, verify

the accuracy of our method for densities generated from a known local density ap-

proximation based (LDA) functional. Next, we obtain the exact exchange-correlation

potential for accurate ground-state densities obtained from incremental full configura-

tion interaction (iFCI), for various weakly and strongly correlated molecular systems,

with the largest system containing 40 electrons. Notably, for all the systems we ob-

tain good agreement between the highest occupied molecular orbital (HOMO) level

and the negative of the ionization potential, as mandated by the Koopmans’ theo-

rem [73, 74]. This ability to evaluate exact xc potentials from ground-state electron

densities, enabled by our method, will provide a powerful tool in the future testing and

development of approximate xc functionals. Further, it unlocks a systematic route to

data-driven functional development, wherein one can employ machine-learning on the

{ρ(r), vxc(r)} data from inverse DFT calculations to model the functional dependence

of vxc on ρ, i.e., vxc[ρ], while honoring the known conditions on the exact functional.

The rest of this thesis is organized as follows. Chapter II presents an overview of

the ground-state and time-dependent density functional theory. In Chapter III, we

detail the enriched finite element formulation, and discuss its associated numerical

and computational aspects. Furthermore, in the same chapter, we showcase the

accuracy and efficiency of our enriched finite element implementation against that
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of classical finite element and Gaussian basis. Chapter IV covers our proposed a

priori mesh adaptation scheme for TDDFT calculations. In particular, we compare

the efficacy of higher-order finite elements (in conjunction with our mesh adaption

scheme) against lower-order finite elements as well as the more widely used finite-

difference method. In Chapter V, we introduce the PDE-constrained optimization

problem along with various numerical strategies to solve the inverse DFT problem,

to unprecedented accuracy. In the same chapter, we showcase the exact exchange-

correlation potentials for various benchmark molecular systems. Lastly, we summarize

the major findings of this dissertation and provide an outlook of the future scope of

this thesis in Chapter VI.
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CHAPTER II

Density Functional Theory

In this chapter we present an overview of the fundamentals of both ground-state

and time-dependent density functional theory. The rest of the chapter is organized

as follows. In Sec. 2.1, we introduce the time-independent Schödinger equation. We

provide the main results of ground-state density functional theory (or simply DFT)

in Sec. 2.2. In Sec. 2.3, we introduce the time-dependent Schrödinger equation, and

subsequently present the fundamentals of time-dependent density functional theory

(TDDFT) in Sec. 2.4 .

2.1 Time-independent many-electron Schrödinger equation

The time-independent Schrödinger equation constitutes the most fundamental

equation governing electronic structure of a materials system. Within the non-

relativistic regime, it takes the form of an eigenvalue problem, given by

ĤΨ = EΨ , (2.1)
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where

Ĥ = −1

2

Ne∑
α=1

∇2
α −

Na∑
I=1

1

2MI

∇2
I −

Ne∑
α=1

Na∑
I=1

ZI
|rα −RI |

+
1

2

Ne∑
α=1

Ne∑
β=1
β 6=α

1

|rα − rβ|
+

1

2

Na∑
I=1

Na∑
J=1
J 6=I

ZIZJ
|RI −RJ |

:= T̂ + T̂N + V̂ext + Ŵ + V̂NN ,

(2.2)

Ψ := Ψ(x1,x2, . . . ,xNe ; R1,R2, . . . ,RNa) . (2.3)

In the above equations, Ĥ is the many-body Hamiltonian (in a.u.) comprising of—(i)

T̂ : sum of the kinetic operators of Ne electrons, (ii) T̂N : sum of kinetic operators of Na

nuclei, each with mass MI and charge ZI , (iii) V̂ext: electrostatic interaction between

electrons and the nuclei, (iv) Ŵ : electrostatic interaction between the electrons, and

(v) V̂NN : electrostatic repulsion between the nuclei. The variable xα = (rα, sα)

denotes the combined spatial coordinate and spin of the αth electron, and RI denotes

the spatial coordinate of the I th nucleus. Furthermore, Ψ is anti-symmetric with

respect to interchange of any two electrons. In other words, Ψ changes sign when a

pair of electronic coordinates (say xα and xβ) are interchanged, i.e.,

Ψ (x1, . . . ,xα, . . . ,xβ, . . . ,xNe ; R1, . . . ,RNa) = −Ψ (x1, . . . ,xβ, . . . ,xα, . . . ,xNe ; R1, . . . ,RNa) .

(2.4)

We remark that the form of Ĥ in Eq. 2.2 makes the electronic and nuclear motion cou-

pled to each other. To this end, one can invoke the Born-Oppenheimer approximation

to separate the electronic and nuclear motions. The Born-Oppenheimer approxima-

tion rests on the fact that the nuclei are massive compared to the electrons (e.g., a

proton in more than 1800 times as heavy as an electron), and consequently, move

much more slowly compared to the electrons. Therefore, the nuclei can be approxi-

mated to be fixed with respect to the electrons. In effect, we can neglect the T̂N term
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(sum of kinetic operators for the nuclei) and take the electronic wavefunction, Ψe, to

be only parametrically dependent on the nuclear positions R = {R1,R2, . . . ,RNa}.

In other words, for a fixed position of nuclei, R, we can write the electronic part of

the Schrödinger equation as

ĤeΨe = EeΨe , (2.5)

where Ĥe = T̂ + V̂ext + Ŵ + V̂NN and Ψe := Ψe(x1,x2, . . . ,xNe ; R). We emphasize

that although we have explicitly defined V̂ext in Eq. 2.2, for our subsequent discussion,

it can be taken as any operator of the form,

V̂ext =
Ne∑
α=1

vext(rα) , (2.6)

where vext(rα) is a single-particle potential. This allows us to introduce the essentials

of DFT in a generic manner, without having to express the specific form of vext. One

may note that for the form of V̂ext in Eq. 2.2, vext(rα) = −∑Na

I=1
ZI

|rα−RI | . Similarly,

although we have explicitly defined Ŵ in Eq. 2.2, for our discussion on DFT, Ŵ can

take the form of Ŵ =
∑Ne

α=1

∑Ne
β=1
β 6=α

w(|rα−rβ|), where w(|rα−rβ|) is a pair potential.

We remark that Ψe being an eigenfunction of Ĥe is defined only up to a scaling

constant. It is customary to choose the scaling constant such that Ψe is normalized

to unity, i.e., ∑
s1,s2,...,sNe

∫
dr1 dr2 . . . drNe |Ψe|2 = 1 (2.7)

Additionally, Ψe is mandated to be anti-symmetric with respect to the exchange of

any {xα,xβ} pair.

The electronic ground-state is defined to be the eigenstate Ψ0
e (or a degenerate set

of {Ψe}’s) that corresponds to the lowest eigenvalue of the Eq. 2.5, denoted as E0
e .
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Equivalently, the evaluation of E0
e can be defined as the following variational problem

E0
e = inf

Ψe
〈Ψe| Ĥe |Ψe〉 . (2.8)

subject to the normalization and antisymmetry constraints on Ψe.

Given that Ψe is a multidimensional function from R3Ne×2Ne to C, the problem of

computing the electronic ground-state translates into a computationally intractable

problem. To elaborate, if we are to neglect the spin variables and take K degrees of

freedom (e.g., discrete points) on each of the 3Ne dimensions, the discrete Ĥe ma-

trix takes an astronomical dimension of K3Ne × K3Ne . Consequently, diagonalizing

such an enormous matrix remains computationally infeasible, beyond a few number

of electrons. This is otherwise referred to as the curse of dimensionality in electronic

structure theory. This calls for other means to evaluate electronic properties with-

out having to resort to the solution of the many-electron Schrödinger equation. To

this end, ground-state density functional theory presents a formal route to compute

ground-state properties without having to explicitly solve for Ψ0
e. We discuss the

fundamentals of DFT in the following section.

2.2 Ground-state density functional theory

Ground-state density functional theory, or simply density functional theory (DFT),

seeks to describe ground-state properties of a many-electron system through the elec-

tron density. The electron density, ρ(r), is defined as

ρ(r) = Ne

∑
s1

∫
dr2 dr3 . . . drNe |Ψe|2 . (2.9)

Physically, ρ(r) dr gives us the probability of finding an electron in the infinitesimal

volume dr centered at r. Before proceeding to the details of DFT, a few things
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need to be simplified. For brevity, we omit the label e which was used to denote

the electronic part of the Schrödinger equation (within the Born-Oppenheimer ap-

proximation). Furthermore, we note that V̂NN operator in Ĥe is independent of

the electronic wavefunction and only contributes a constant nuclear-nuclear repulsive

term to the energy, given by

ENN =
1

2

Na∑
I=1

Na∑
J=1
J 6=I

ZIZJ
|RI −RJ |

(2.10)

Thus, we can omit V̂NN from the following discussion, without any loss of generality.

2.2.1 Existence and uniqueness of density functional

The foundation of DFT rests on two simple yet profound results from Hohenberg

and Kohn [3]. The first Hohenberg-Kohn theorem establishes a one-to-one correspon-

dence between the ground-state density ρ0(r) and the external potential vext(r) (de-

fined up to an arbitrary constant). Below we present the proof for the non-degenerate

case. Let us assume that two external potentials, v
(1)
ext(r) and v

(2)
ext(r), which differ by

more than a constant (i.e., v
(1)
ext 6= v

(2)
ext +C), yield the same ground-state density ρ0(r).

Obviously, v
(1)
ext and v

(2)
ext define two different V̂ext’s (i.e., V̂(1)

ext and V̂(2)
ext), and hence, de-

fine two different Ĥ (i.e., Ĥ(1) and Ĥ(2)). Consequently, they generate two different

ground-state wavefunctions Ψ1 and Ψ2. Now, let E1 and E2 denote the ground-state

energies corresponding to Ĥ(1) and Ĥ(2), respectively. Then, using the definition of

ground-state energy, and assuming non-degeneracy of the ground-state, we have

E1 = 〈Ψ1| Ĥ(1) |Ψ1〉 < 〈Ψ2| Ĥ(1) |Ψ2〉

= 〈Ψ2| T̂ + Ŵ + V̂(2)
ext |Ψ2〉+ 〈Ψ2| (V̂(1)

ext − V̂(2)
ext) |Ψ2〉

= E2 +

∫
ρ0(r)(v

(1)
ext(r)− v(2)

ext(r)) .

(2.11)
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Similarly, interchanging the labels 1 and 2, we obtain

E2 < E1 +

∫
ρ0(r)(v

(2)
ext − v(1)

ext(r)) . (2.12)

Adding the above equation leads to E1 +E2 < E1 +E2—a contradiction. Hence, our

assumption must be wrong. This concludes that the ground-state density ρ0(r) must

uniquely determine (up to a constant) the external potential vext(r).

We emphasize that the uniqueness of vext(r) for a given ground-state ρ(r) does not

guarantee that vext(r) exists for any given ρ(r). A density for which a vext(r) exists

is called v-representable. We denote the set of v-representable densities as A. The

second Hohenberg-Kohn theorem assumes v-representability of densities to show that,

for a given vext, a universal functional for the energy Evext [ρ] can be defined in terms

of the density, and the ground-state energy can be determined as the global minimum

of this functional with respect to ρ. The proof of this theorem, for non-degenerate

case, follows from the first theorem along with the assumption of v-representability,

i.e., ρ(r) ∈ A. To elaborate, owing to the v-representability assumption, for any

ρ̃(r) ∈ A we can uniquely determine the external potential ṽ(r) which yields ρ̃(r) as

its ground-state density. The ṽ(r), in turn, determines the ground-state wavefunction

Ψ̃. Thus, transitively, the ground-state wavefunction becomes a functional of ρ̃, i.e.,

Ψ̃ = Ψ̃ [ρ̃]. Thus, for any ρ̃ ∈ A, the functional FHK[ρ̃] =
〈

Ψ̃[ρ̃]
∣∣∣ T̂ + Ŵ

∣∣∣Ψ̃[ρ̃]
〉

is

well-defined and unique, since ρ̃ determines Ψ̃ as well as Ne, and Ne determines both

T̂ and Ŵ . The physical interpretation of FHK[ρ̃] is that of the internal electronic

energy. We now define, for an arbitrary external potential vext, unrelated to the ṽ

determined by ρ̃, the following energy functional

Evext [ρ̃] = FHK[ρ̃] +

∫
ρ̃(r)vext(r) dr . (2.13)

The above definition proves the first part of the second Hohenberg-Kohn theorem
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that a universal energy functional Evext [ρ̃] can be defined in terms of the density.

We now proceed to the second part of the second Hohenberg-Kohn theorem. We

note that if E0 denotes the ground-state energy for vext, then

〈
Ψ̃
∣∣∣ T̂ +Ŵ+V̂ext

∣∣∣Ψ̃〉 =
〈

Ψ̃
∣∣∣ T̂ +Ŵ

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣ V̂ext

∣∣∣Ψ̃〉 = FHK[ρ̃]+

∫
ρ̃(r)vext(r) dr ≥ E0 .

(2.14)

The above inequality is a variational statement, i.e., for a given vext, its ground-

state energy can be obtained as the global minimum of Evext [ρ] with respect to ρ.

This concludes the proof of the second Hohenberg-Kohn theorem. While we have

presented the proof for the non-degenerate case, the same result holds for degenerate

case as well, and can be proven using density matrices. We refer the reader to [75]

for a proof for the degenerate case.

We remark that Hohenberg-Kohn minimization requires the ρ to be v-representable.

However, determining whether a given ρ is v-representable still remains an open ques-

tion. To this end, one can relax the v-representability requirement by defining E0

through the Levy-Lieb constrained search [76] approach. To begin with, it defines a

new functional

F [ρ] = min
Ψ→ρ(r)

〈Ψ| T̂ + Ŵ |Ψ〉 (2.15)

where Ψ→ ρ(r) indicates that the ρ(r) is obtained from an anti-symmetric wavefunc-

tion Ψ. A density which is obtained from an anti-symmetric wavefunction is known

as n-representable. We denote the set of n-representable densities as N . Thus, finding

the ground-state energy E0 for an external potential vext can be reformulated as

E0 = min
ρ(r)∈N

[
min

Ψ→ρ(r)
〈Ψ| T̂ + Ŵ |Ψ〉+

∫
ρ(r)vext(r) dr

]
= min

ρ(r)∈N

[
F [ρ] +

∫
ρ(r)vext(r) dr

]
.

(2.16)

The distinct advantage of the above minimization problem over the Hohenberg-Kohn
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minimization is that the n-representability problem is a solved problem, as opposed

to the v-representability problem. To elaborate, the sufficient conditions for a density

to be n-representable are [77]—(i) ρ(r) ≥ 0, ∀r ∈ R3; (ii)
∫
ρ(r) dr = Ne, and (iii)∫ ∣∣∇ρ(r)1/2

∣∣2 dr <∞.

We emphasize that although the above results prove the uniqueness of FHK[ρ]

or Evext [ρ], the exact form of these functionals are unknown, and thus, finding E0 by

minimizing Evext [ρ] remains as challenging as solving the original many-body problem

of Eq. 2.8. To this end, the real practical breakthrough in DFT is offered by the

approach of Kohn and Sham [4].

2.2.2 Kohn-Sham DFT

The first step in the Kohn-Sham approach is to split Evext [ρ] as

Evext [ρ] = Ts[ρ] + EH[ρ] + Exc[ρ] +

∫
ρ(r)vext(r) dr + ENN . (2.17)

In the above equation, Ts[ρ] is the kinetic energy of a system of non-interacting

electrons which, under the influence of an external potential vKS[ρ], yields the same

density as the interacting system. EH[ρ] is the classical electron-electron electrostatic

interaction energy, given by

EH[ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′| dr dr
′ . (2.18)

ENN is the constant nuclear-nuclear repulsive energy defined in Eq. 2.10. Finally,

Exc[ρ] encapsulates the remainder of Evext [ρ]. Thus, physically Exc[ρ] encapsulates the

quantum many-body interaction among the electrons. The underlying assumption of

the Kohn-Sham approach is that the interacting density ρ(r) is non-interacting v-

representable. That is, there exists a potential vKS(r) which yields the same density

ρ(r) as that of the interacting system. The ground-state of the non-interacting system,

18



Φ, corresponding to vKS can be written as a Slater determinant of orthonormalized

single-electron orbitals {ψ1(r), ψ2(r), . . . , ψNe(r)}. Thus, we can rewrite the energy

as

Evext [ρ] = −1

2

Ne∑
α=1

∫
ψ†α(r)∇2ψα(r) dr + EH[ρ] + Exc[ρ] +

∫
ρ(r)vext(r) dr + ENN ,

(2.19)

where the superscript † denotes the complex conjugate of a function.

The above Kohn-Sham reformulation of the problem, now, reduces the evaluation

of the ground-state energy to minimizing Evext with respect to the ψα’s, subject to the

constraint
∫
|ψα|2 dr = 1. This leads to the following set of Euler-Lagrange equations

known as the Kohn-Sham eigenvalue equations,

(
−1

2
∇2 + vKS[ρ]

)
ψα(r) = εαψα(r) α = 1, 2, . . . (2.20)

In the above equation, εα and ψα are commonly referred to as the Kohn-Sham eigen-

value and eigenfunction (orbital). The density, ρ, is given by

ρ(r) =
∑
α

h(εα, µ) |ψα(r)|2 , (2.21)

where h(ε, µ) is the Heavyside step function given by

h(ε, µ) =


1, if ε ≤ µ

0, otherwise .

(2.22)

The scalar µ is the Fermi energy defined by the constraint on the number of electrons,

i.e., ∫
ρ(r) dr =

∑
α

h(εα, µ) = Ne . (2.23)
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The potential vKS[ρ] is defined as

vKS[ρ] = vext(r) + vH[ρ] + vxc[ρ] , (2.24)

where vH[ρ] and vxc[ρ] denote the Hartree and exchange-correlation potentials, re-

spectively and are given by

vH[ρ] =
δEH

δρ
=

∫
ρ(r′)

|r− r′| dr
′ , (2.25)

vxc[ρ] =
δExc

δρ
. (2.26)

We note that the above equations present a set of non-linear eigenvalue problem,

given that the potential vKS is dependent on the eigenfunction ψα’s via ρ(r). The

practicality of the Kohn-Sham equations lies in the fact that if we can obtain a good

approximation for Exc[ρ] (and hence for vxc[ρ]), then we can solve for the ψα’s self-

consistently. Over the past four decades increasingly sophisticated approximations to

Exc have been developed ranging from local to non-local forms. The simplest of these

forms is the local density approximation [78, 79], wherein Exc[ρ] =
∫
εxc[ρ] dr with

εxc[ρ] being a local functional in ρ. Other widely used forms include the generalized

gradient approximation (GGA), wherein Exc =
∫
εxc[ρ,∇ρ] dr [80]. Recently, hybrid

functionals which combine a portion of the non-local Hartree exchange operator with

local approximations have resulted in improved predictions of a wide range of ma-

terials properties [81, 82, 83, 84, 85, 86, 87]. We refer to [88, 16, 1, 89, 2, 90] and

references there-within for a comprehensive review of the existing Exc approximations,

their successes and failures.
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2.3 Time-dependent many-electron Schrödinger equation

The time-dependent Schrödinger equation (TDSE) constitutes the most funda-

mental equation governing the dynamics of electrons and nuclei. While in its full

glory TDSE involves coupled electronic and nuclear dynamics, one can invoke the

Born-Oppenheimer approximation to separate the two motions. In other words, un-

der the Born-Oppenheimer approximation, we can define the time-dependent elec-

tronic wavefunction (Ψ(t)) to be only parametrically dependent on the nuclei po-

sitions R = {RI}. Thus, within the non-relativistic regime, the evolution of the

electronic wavefunction Ψ(t) is given by the following initial-value problem

i
∂Ψ(t)

∂t
= Ĥ(t)Ψ(t) , Ψ(t0) = Ψ0 , ∀t ≥ t0 . (2.27)

In the above equation, analogous to the time-independent case, we have

Ĥ(t) = −1

2

Ne∑
α=1

∇2
α +

Ne∑
α=1

vext(rα, t) +
1

2

Ne∑
α=1

Ne∑
β=1
β 6=α

1

|rα − rβ|

:= T̂ + V̂ext(t) + Ŵ ,

(2.28)

Ψ(t) := Ψ(x1,x2, . . . ,xNe ; R1,R2, . . . ,RNa ; t) . (2.29)

Typically, the single-electron external potential vext(r, t) comprises of two parts

vext(r, t) = v
(0)
ext(r) + vfield(r, t) , (2.30)

where v
(0)
ext(r) is the time-independent part (usually, the nuclear potential), and vfield(r, t)

is the time-dependent potential. The time-dependent potential is, usually, given in

terms of an electric field, i.e., vfield(r, t) = E(t) · r. We emphasize that in the above

form of TDSE there remains a hidden assumption of the vfield(r, t) being a classical

field. An accurate description warrants quantization of vfield, which, in turn, requires
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solving the TDSE as a quantum electrodynamics (QED) problem. Nevertheless, when

the photon density is high, as is typical of most of the light-matter interactions, one

can safely approximate the vfield to be classical.

Needless to say, any ab initio approach to solve the TDSE suffers from the curse of

dimensionality, owing to the high-dimensionality of Ψ(t) (i.e., Ψ(t) defines a function

from R3Ne × 2Ne × [0, T ] to C × [0, T ]). Consequently, studying electronic dynamics

through ab initio means remain computationally unviable, beyond a few number

of electrons. This warrants a formal route to describe electron dynamics without

resorting to the evaluation of Ψ(t). To this end, the time-dependent density functional

theory (TDDFT) offers a formal as well as practical solution to the problem.

2.4 Time-dependent density functional theory

2.4.1 Runge-Gross Theorem

The foundation of TDDFT rests on the Runge-Gross theorem [5] which, analo-

gous to the Hohenberg-Kohn theorem, establishes a one-to-one correspondence be-

tween the time-dependent density ρ(r, t) and the external potential vext(r, t), for

a given initial many-electron state Ψ0. To elaborate, if there are two potentials

v
(1)
ext(r, t) and v

(2)
ext(r, t) which differ by more than just a purely time-dependent con-

stant (i.e., v
(1)
ext(r, t) 6= v

(2)
ext(r, t) + C(t))), then their corresponding densities, ρ(1)(r, t)

and ρ(2)(r, t), evolving from a common initial state Ψ0, will start to differ infinites-

imally later than t0. The proof comprises of two steps. The first step establishes

the one-to-one correspondence between vext(r, t) and the current density j(r, t). The

second step uses the continuity equation to show that if the current densities j(r, t)

for two different external potentials are different, then the densities ρ(r, t) must be

different as well. We omit the details of the proof, in the interest of brevity. We refer

an interested reader to the standard textbooks on TDDFT [91, 92] for the details of
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the proof. We remark that there are two major assumptions that go into the Runge-

Gross. The first assumption is that the external potentials (v
(1)
ext(r.t) and v

(2)
ext(r, t))

must be Taylor-expandable about t0. For most practical applications this remains a

valid assumption. The second assumption requires the external potential to decay

faster than 1/r as well as the density to decay to zero at infinity. Alternatively, the

second assumption warrants the external potential to be periodic. Thus, while the

Runge-Gross theorem is straightforwadly applicable to finite (non-periodic systems),

its applicability to periodic systems is restricted. The periodic case can be handled

in a more generic and formal way through time-dependent current density functional

theory (TDCDFT) [93], where one uses the current density j(r, t) as the fundamental

quantity instead of ρ(r, t).

In summary, the Runge-Gross theorem establishes the fact that, for a given initial

state Ψ0, the external potential can be expressed as a functional of the time-dependent

density, i.e, vext[ρ(r, t),Ψ0]. This implies that the many-body Hamiltonian Ĥ(t), and

thus, the many-body wavefunction Ψ(t) are functionals of ρ(r, t), i.e, Ĥ(t) = Ĥ[ρ,Ψ0]

and Ψ(t) = Ψ[ρ,Ψ0]. Consequently, the expectation value of all physical obervables

becomes a functional of the density (i.e., O(t) = 〈Ψ[ρ,Ψ0]| Ô |Ψ[ρ,Ψ0]〉 = O[ρ,Ψ0]).

Prima facie, given that the functional dependence of Ψ(t) on ρ(r, t) is unknown, the

above result is no more advantageous than solving the TDSE itself. However, the

practical utility of Runge-Gross theorem is realized when one uses the Kohn-Sham

approach.

2.4.2 Time-dependent Kohn-Sham approach

We remark that the Kohn-Sham approach in ground-state DFT assumes the non-

interacting v-representability of the interacting density ρ(r) (see Sec. 2.2.2). While

the v-representability problem is still an open challenge in DFT, in TDDFT it has

been resolved through the van Leeuwen theorem [94]. To elaborate, the van Leeuwen
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theorem states that given a particle-particle interaction w(|r−r′|), external potential

vext(r, t) and initial state Ψ0 that yields the density ρ(r, t), there exists a different

many-body system with interaction w̃(|r− r′|), initial state Ψ̃0 and a unique external

potential ṽext(r, t) (defined up to a purely time-depdendent C(t)) which yields the

same ρ(r, t). The initial state Ψ̃0 must yield the same density and time derivative

as that of Ψ0 at t0. Further, both vext and ṽext must be Taylor-expandable at t0.

To put it in simple terms, the van Leeuwen theorem allows us to set w̃(r − r′|) = 0

and thereby establish an auxiliary system of non-interacting electrons that yields the

same density as the interacting one. Thus, one can formally reduce the many-electron

TDSE problem into a set of single-electron initial value equations given by

i
∂ψα(r, t)

∂t
= ĤKSψα(r, t) , α = 1, 2, . . . , Ne, ψ(t0) = ψα,0 , ∀t ≥ t0 . (2.31)

The above equations are known as the time-dependent Kohn-Sham (TDKS) equa-

tions. The ψα(r, t) denote the Kohn-Sham orbitals. The ĤKS is the Kohn-Sham

Hamiltonian defined as

ĤKS[ρ(r, t),Ψ0,Φ0] = −1

2
∇2 + vKS[ρ(r, t),Ψ0,Φ0] , (2.32)

where

vKS[ρ(r, t),Ψ0,Φ0] = vext(r, t) + vH[ρ(r, t)] + vxc[ρ(r, t),Ψ0,Φ0] . (2.33)

In the above equation, Φ0 denotes initial Kohn-Sham wavefunction defined as the

Slater determinant composed of the initial Kohn-Sham orbitals {ψα(r, t0)}. vext(r, t)

is the time-dependent external potential. vH[ρ(r, t)], is the Hartree potential (same
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as its ground-state counterpart) and is given by

vH[ρ(r, t)] =

∫
ρ(r′, t)

|r− r′| dr
′ . (2.34)

Finally, vxc[ρ(r, t),Ψ0,Φ0] is the exchange-correlation potential that encapsulates all

the quantum many-electron interactions as a mean-field of ρ(r, t), and the initial

states Ψ0 and Φ0. Similar to ground-state DFT, the exact form of vxc is unknown,

thereby necessitating the use of approximations. The initial state dependence, natu-

rally, increases the complexity of the problem as compared to the ground-state case.

However, usually, one is interested in systems evolving from the ground-state. This

allows us, owing to the Hohenberg-Kohn theorem, to eliminate the initial state depen-

dence as the initial ground-states can be defined in terms of the ground-state density.

The above simplification aside, vxc, in general, is known to be nonlocal in both space

and time. This presents a much more daunting challenge to model approximate vxc’s

in TDDFT as compared to the ground-state DFT. Typically, one uses the adiabatic

approximation to neglect the time nonlocality (memory effect). This allows for direct

use of the existing exchange-correlation approximations used in ground-state DFT,

i.e,

vadia
xc (r, t) = vgs

xc[ρ0(r)]|ρ0(r)=ρ(r,t) . (2.35)

We remark that the above prescription of TDDFT, wherein we explicitly evolve

the Kohn-Sham orbitals in time, is referred to as the real-time TDDFT (RT-TDDFT).

There exists another framework for TDDFT known as the linear-response TDDFT

(LR-TDDFT) which applies to the case of weak interaction between the external field

and the system. Owing to the weak interaction, the system undergoes small perturba-

tion from its ground-state. Consequently, one can forgo the real-time evolution and

directly compute the linear density response from the ground-state. However, the

validity of LR-TDDFT is restricted to handling only perturbative (linear response)
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regimes. Thus, between the two frameworks, RT-TDDFT offers the more generic

framework which captures the electronic dynamics in real-time, thereby, allowing to

handle both perturbative and non-perturbative regimes (e.g., harmonic generation,

electron transport) in a unified manner. In this thesis, we discuss the more general

case of RT-TDDFT.
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CHAPTER III

Large-scale All-electron Density Functional Theory

Calculations Using an Enriched Finite Element

Basis

In this chapter, we present an efficient and systematically convergent approach

to large-scale all-electron DFT calculations by employing an enriched finite element

basis [37]. We begin with an introduction of the concept of all-electron (AE) and

pseudopotential (PSP) DFT and highlight the need for all-electron DFT calculations

in Sec. 3.1. In Sec. 3.2, we provide a brief survey of existing numerical methods for all-

electron DFT calculation, and motivate the need for an enriched finite element basis

for all-electron DFT calculations. In Sec. 3.3, we revisit the Kohn-Sham eigenvalue

problem, in the context of real space formulation of DFT. Sec. 3.4 briefly introduces

the standard finite element discretization for the Kohn-Sham problem. Sec. 3.5 de-

tails the proposed enriched finite element discretization for the Kohn-Sham eigenvalue

problem, and Sec. 3.6 discusses the key ideas based on Chebyshev polynomial filter-

ing employed in the self-consistent field iteration (SCF) solution procedure. Sec. 3.7

presents the convergence, accuracy, performance and parallel scalability of the en-

riched finite element basis. In the same section, we provide the comparison of the

enriched finite basis against classical finite element and Gaussian basis. Finally, we
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summarize the findings from the present work and outline the future scope in Sec 3.8.

3.1 All-electron and Pseudopotenial DFT

The all-electron (AE) DFT pertains to the case of solving the Kohn-Sham eigen-

value problem (cf. Eq. 2.20) for all the occupied orbitals in presence of the full nuclear

potential. To elaborate, in all-electron DFT, the external potential (vae
ext) takes the

form of vae
ext(r) = −∑Na

I=1
ZI
|r−RI | . Additionally, the set of Kohn-Sham orbitals that

are solved for includes all the electrons—core, valence, and (possibly) few unoccu-

pied electrons. Thus, within a given exchange-correlation approximation, all-electron

DFT presents an accurate description of the physical system. Two key observations

are to be made regarding all-electron DFT. First is the straightforward observation

that vae
ext(r) is singular at the positions of the nuclei (i.e., at RI). The second, less

apparent, observation is that the orbitals (especially the valence ones) have a highly

oscillatory profile near the nuclei. To elaborate, the core electrons are, usually, local-

ized near the nuclei. Since the Kohn-Sham orbitals must be mutually orthogonal, the

valence orbitals must oscillate rapidly in the core region to maintain its orthogonality

with the core orbitals. As a consequence, an all-electron calculation requires a highly

refined spatial discretization near the nuclei, so as to accurately describe the singular

vae
ext as well as the sharp variations in the Kohn-Sham orbitals. Thus, all-electron DFT

calculations have a high computational cost. As an efficiency measure, most DFT

calculations employ the pseudopotential approximation [95, 96, 97, 98], wherein the

Kohn-Sham eigenvalue problem is reduced to the evaluation of smooth pseudo-orbitals

corresponding to the valence electrons in the presence of a smooth effective external

potential, namely the pseudopotential (vpsp
ext (r)). The pseudopotential approximation,

in turn, rests on two observations—(i) the core-electrons are, typically, chemically

inactive, and hence, hardly exhibit any change from their atomic states when they

are brought in the vicinity of other atoms; (ii) the valence electrons, typically, ex-

28



hibit change only in a binding region that lies beyond a certain core region around

the nuclei. Thus, it is reasonable to replace the singular vae
ext along with the core-

electrons with a smooth effective pseudopotential, and replace the oscillatory valence

orbitals with smooth pseudo-orbitals. The construction of a pseudopotential, which

is non-unique, entails, for a given atom, matching the pseudo-orbitals for the valence

electrons to its corresponding all-electron orbitals, outside the user defined atomic

core. Subsequently, they are transferred for use in molecules and crystals. Fig. 3.1

presents a schematic of the above process of constructing a pseudopotential. In the

past few decades, pseudopotentials have seen a rapid evolution from norm-conserving

potentials [99, 100, 101, 102] to ultrasoft potentials [103] to the state-of-the-art pro-

jector augmented wave (PAW) [104] method and have proven to be successful in

predicting bulk, mechanical, electrical, magnetic, and chemical properties for a wide

range of materials.

Figure 3.1: Schematic of a pseudopotential. The vpsp
ext is constructed such that the

ψpsp matches its corresponding ψae, beyond a cutoff radius (rcut).

However, despite their success, pseudopotentials are often sensitive to the choice

of core size used in their construction and tend to oversimplify the treatment of

core electrons as chemically inert for various systems and external conditions. For
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example, in systems under high pressure where the core and valence orbitals show

increasing overlap with pressure, pseudopotentials tend to under-predict their phase

transition pressures [6, 7, 8]; in systems at high temperature, where the contribution

of core electrons to various thermodynamic potentials is non-negligible, pseudopoten-

tials provide an inaccurate description of the equation of state [9]; in transition metals,

where the penultimate d and f orbitals are not tightly bound, non-inclusion of these

orbitals as valence electrons oftentimes lead to inaccurate bulk property prediction.

More pronounced inaccuracies and sensitivity to core sizes are observed in prediction

of ionization potentials [10], magnetizability [11], spectroscopic properties [12, 13] of

heavier atoms wherein scalar relativistic pseudopotentials are widely employed, and

in prediction of band-gap and excited state properties [14]. Thus, all-electron calcu-

lations are necessary for an accurate and more reliable description of such systems

and conditions.

3.2 Enriched finite element basis—Motivation

The earliest and the most commonly employed method for all-electron calculations

involves the use of atomic-orbital-type basis sets [20, 21, 22, 23, 24, 25, 26, 27, 28],

wherein atom-specific basis, either analytic or numerical, are used with only a few ba-

sis functions per atom. However, owing to the incompleteness of the basis, systematic

convergence for all materials systems remains a concern. Moreover, in many numeri-

cal implementations, their applicability is largely limited to isolated systems and are

not easily amenable to arbitrary boundary conditions. Furthermore, the non-locality

of the basis substantially limits parallel scalability of their numerical implementa-

tions. Among the family of complete basis sets, the plane-wave basis, owing to the

straightforward evaluation of the Coulomb interactions in Fourier space and the ex-

ponential convergence afforded by the basis, has been the most popular choice for

pseudopotential calculations. However, its applicability to all-electron calculations is
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greatly hindered by its lack of adaptive spatial resolution, as any computationally

efficient basis for all-electron calculations warrants finer resolution closer to nuclei,

where the wavefunctions are rapidly oscillating, and coarser resolution elsewhere.

This shortcoming has been, to a large extent, alleviated through the use of various

augmentation schemes such as Augmented Plane-wave (APW) [29, 30], Linearized

Augmented Plane-wave (LAPW) [31, 32, 33] and APW+lo [34, 35, 36]. All these

methods involve the description of the wavefunctions in terms of products of radial

functions and spherical harmonics inside muffin-tins (MTs) surrounding each atom,

and in terms of plane-waves in the interstitial regions between atoms. Although these

schemes attain adaptive spatial resolution, the basis functions within the MTs de-

pend on the choice of trial energy parameters, typically based on atomic energies, for

each azimuthal (l) quantum number. Owing to the lack of one-to-one correspondence

between the Kohn-Sham eigenvalues and the trial energy parameters, the quality of

the basis is sensitive to the choice of trial energy parameters, especially in systems

where the chosen l quantum number based trial energies fail to describe all states

with the same l-character, and in systems where the occupied bands show substantial

deviation from their atomic counterparts [36]. Additionally, certain notable disad-

vantages of plane-waves such as their restriction to periodic boundary conditions, the

highly non-local communication associated with Fast Fourier Transform (FFT), also

persist in these augmentation schemes.

Blöchl, in his PAW formulation [104], generalized the notion of APW/LAPW and

the pseudopotential approach to construct the all-electron orbitals through a linear

transformation, T̂ , of the smoothly varying pseudo-orbitals, thus providing a bal-

ance between accuracy and computational efficiency. However, typically, PAW is

implemented within the frozen-core approximation, wherein, although the oscillatory

behavior of the valence orbitals near the atomic centers is retrieved through T̂ act-

ing on the pseudo valence orbitals, the core states are treated as frozen and do not
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feature within the self-consistent field iteration. One can, in principle, relax the core

states within the PAW framework, however, this involves achieving simultaneous self-

consistency in core states, valence partial waves and the effective potential, which can

severely affect the computational efficiency otherwise afforded by frozen-core approxi-

mation. Marsman et al. [105] presented a computationally efficient extension of PAW

beyond the frozen-core approximation, wherein, first, the core states are updated

self-consistently within a fixed valence charge density and a spherical approximation

for the one-center potential. Subsequently, new valence partial waves are evaluated.

However, as noted in that work, the spherical approximation of the one-center po-

tential used in the core-state relaxation poses limitations in terms of accounting for

core polarization effects and core-core interactions from neighboring atoms; captur-

ing changes in valence-core interactions outside the augmentation spheres; preserving

orthogonality of the valence partial waves with the core states under situations where

the core charge density spills outside the augmentation spheres. Additionally, the

construction of the valence all-electron and pseudo partial waves that feed into T̂ ,

while using the actual one-center potential (crystal potential) in their construction,

involves the use of trial energy parameters (analogous to APW/LAPW), thereby in-

troducing sensitivity to the choice of these trial energies. Therefore, to account for

these notable limitations, it is desirable to treat the core electrons on equal footing

with the valence electrons while at the same time minimize the huge computational

expense incurred by such explicit treatment of core electrons.

The limitations of plane-waves have, in the past two decades, led to the devel-

opment of various real-space techniques for DFT calculations, of which the Finite

Difference (FD) method [106, 107] remains the most prominent. The FD method

can handle arbitrary boundary conditions, and exhibit improved parallel scalability

in comparison to plane-wave basis. However, the FD method fails to retain the varia-

tional convergence of plane-waves. Moreover, a lack of basis in the FD method makes
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an accurate treatment of singular potentials difficult, thereby, limiting its utility for

all-electron calculations. Finite element basis [108, 109], on the other hand, being a

local piecewise polynomial basis, retains the variational property of the plane-waves,

and, in addition, has other desirable features such as locality of the basis that affords

good parallel scalability, being easily amenable to adaptive spatial resolution, and the

ease of handling arbitrary boundary conditions. While most studies employing the fi-

nite element basis in DFT calculations [39, 40, 41, 42, 44, 46, 49, 50, 51, 38] have shown

its usefulness in pseudopotential calculations, some of the works [39, 47, 48, 38, 52, 53]

have also demonstrated its promise for all-electron calculations. In particular, the

work of Motamarri et al. [38] has combined the use of higher-order spectral finite

elements along with Chebyshev polynomial based filtering technique to develop an

efficient scheme for the computation of the occupied eigenstates. As detailed in the

work, the aforementioned method outperforms the plane-wave basis in pseudopoten-

tial calculations for the benchmark systems considered. However, in the context of

all-electron calculations, it remains an order of magnitude slower in comparison to

the Gaussian basis. This relatively unsatisfactory performance of the finite element

basis in all-electron calculations was attributed to the requirement of large number of

basis functions (O(105) per atom, even for light atoms) as well as the high polynomial

degree required in the Chebyshev filter (O(103)) to accurately compute the occupied

eigenstates. To elaborate, one requires a highly refined finite element mesh closer to

the atomic cores in order to capture the sharp variations in the electronic wavefunc-

tions and the singularity of the nuclear potential. This refinement, in turn, leads to

an increase in the spectral width of the discrete Kohn-Sham Hamiltonian, thereby,

requiring a very high polynomial degree Chebsyhev filter to compute the occupied

eigenstates. This need for a high polynomial degree Chebyshev filter in all-electron

calculations also negatively effects the computational complexity realized through

reduced order scaling methods. As detailed in a recent work [53], which combines
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Chebyshev filtered subspace projection with localization and Fermi-operator expan-

sion, while pseudopotential calculations exhibited linear scaling for materials systems

with a band-gap and subquadratic scaling for materials systems without a band gap,

the overall scaling for all-electron calculations was close to quadratic even for mate-

rials with a band-gap.

In order to alleviate the aforementioned limitations of finite element basis in all-

electron calculations, we propose employing a mixed basis comprising of finite ele-

ment basis functions and compactly supported atomic-orbital-type basis functions.

In particular, the atomic-orbital-type functions capture the essential features of the

electronic fields near the nuclei, thereby, mitigating the need for high mesh refine-

ment around atoms, while the finite element basis functions capture the smooth parts

of the wavefunction away from the nuclei and also extend completeness to the ba-

sis. In this work, we formalize this idea of a mixed basis to develop, what we refer

to as, the enriched finite element basis. The enriched finite element basis is gener-

ated by augmenting the piecewise continuous Lagrange polynomials in finite element

basis, henceforth described as the classical finite element basis, with compactly sup-

ported atom-centered numerical basis functions that are obtained from the solutions

of the Kohn-Sham problem (Kohn-Sham orbitals and electrostatic potentials) for sin-

gle atoms. We term these atom-centered numerical basis functions as enrichment

functions. We note that the proposed enriched finite element basis differs from other

augmentation schemes in plane-waves like APW, LAPW, and APW+lo in the fol-

lowing ways: (i) unlike the plane-wave augmentation schemes, the enriched finite

element basis does not partition the space into muffin tins (MTs) and interstitials,

thereby eliminating the need of any matching or smoothness constraint for the aug-

menting basis functions; (ii) as opposed to the plane-wave augmentation schemes,

the enrichment functions of our proposed method do not have any trial energy pa-

rameter dependence; and (iii) unlike the plane-wave augmentation scheme, wherein
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the basis functions inside the MTs needs to be computed for every materials system

separately, the enrichment functions, being atomic solutions to the electronic fields,

are independent of the materials system and are computed a priori.

The key ideas in the proposed method involve: (i) pre-computing the enrichment

functions by solving radial Kohn-Sham equations and employing smooth cutoff func-

tions to ensure the locality as well as control the conditioning of the enriched finite

element basis; (ii) employing a divide and conquer strategy to construct an adaptive

quadrature grid based on the nature of enrichment functions, so as to accurately and

efficiently evaluate the integrals involving enrichment functions; (iii) implementing

an efficient scheme to evaluate the inverse of the overlap matrix corresponding to

the enriched finite element basis by using block-wise matrix inversion in conjunction

with Gauss-Lobatto-Legendre reduced order quadrature rules; and (iv) in each self-

consistent field iteration, using a Chebyshev polynomial based filter to compute the

space spanned by the occupied eigenstates, and solving the Kohn-Sham eigenvalue

problem by projecting the problem onto this Chebyshev-filtered space. We have im-

plemented the proposed method in a parallel computing framework using the Message

Passing Interface (MPI) to enable large-scale all-electron calculations. To begin with,

we demonstrate optimal convergence rates of the ground-state energies with respect

to enriched finite element basis. Further, we investigate the accuracy and performance

of the proposed method on benchmark semi-conducting (silicon nano-clusters) and

heavy-metallic (gold nano-clusters) systems of various sizes, with the largest system

containing 8694 electrons. The proposed formulation using the enriched finite ele-

ment basis obtains close to 1 mHa accuracy in per-atom ground-state energies of the

benchmark systems when compared to the reference ground-state energies obtained

from classical finite element basis or Gaussian basis calculations. Furthermore, the

proposed method achieves a staggering 50− 300 fold speedup relative to the classical

finite element basis, and a significant speedup relative to the Gaussian basis even
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for modest sized systems. Lastly, we observe good parallel efficiency of our imple-

mentation up to 384 processors for a silicon nano-cluster containing 3920 electrons

discretized using ∼4 million basis functions.

3.3 Real space formulation of Kohn-Sham DFT

We recall that the ground-state properties of a materials system in the Kohn-Sham

DFT framework can be computed by solving the non-linear Kohn-Sham eigenvalue

problem [110], given by

(
−1

2
∇2 + vKS[ρ,R]

)
ψα = εαψα, α = 1, 2, ... , (3.1)

where εα and ψα denote the eigevalues and the corresponding eigenfunctions of the

Kohn-Sham Hamiltonian, respectively, ρ is the electron charge density of the non-

interacting system, R = {R1,R2, . . . ,RNa} is the collective representation for all

nuclear positions in the system, and vKS[ρ,R] is the effective single-electron Kohn-

Sham potential. In the present work, we limit our discussion to a non-periodic setting

and spin-independent Hamiltonian. However, we note that all the ideas discussed

subsequently can be generalized, in a straightforward manner, to periodic [44] or

semi-periodic systems, and spin-dependent Hamiltonians [111].

The effective single-electron potential, vKS[ρ,R], is same as that defined Eq. 2.24,

i.e.,

vKS[ρ,R] = vxc[ρ] + vH[ρ] + vext(r,R) . (3.2)

In the present work, we have used the local density approximation (LDA) [111] for

the exchange-correlation, specifically, the Ceperley-Alder [112] form. We recall that

the Hartree potential, vH[ρ], and the external potential, vext(r,R), in Eq. 3.2 are

the classical electrostatic potentials corresponding to the electron charge density and
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nuclear charges, respectively, and are given by

vH[ρ] =

∫
ρ(r′)

|r− r′| dr
′ , (3.3)

vext(r,R) = −
Na∑
I=1

ZI
|r−RI |

, (3.4)

where ZI denotes the atomic number of the Ith nucleus in the system.

We note that both the electrostatic potentials—Hartree (vH) and external poten-

tial (vext)—are extended in real space. However, noting that the 1
|r| kernel in these

extended interactions is the Green’s function of the Laplace operator, one can refor-

mulate their evaluation as solutions of the Poisson problems, given by

− 1

4π
∇2vH(r) = ρ(r) , (3.5a)

− 1

4π
∇2vext(r,R) = b(r,R) . (3.5b)

In the above Eq. 3.5b, we define b(r,R) = −∑Na
I ZI δ̃(r,RI), where δ̃(r,RI) is a

Dirac distribution centered at RI . We refer to previous works on finite element based

DFT calculations [41, 44, 49, 113, 38] for a comprehensive treatment of the local

reformulation of electrostatic potentials into Poisson problems.

The electron charge density, the central quantity of interest in DFT, is given in

terms of the eigenfunctions in Eq. 3.1 as:

ρ(r) = 2
∑
α

f(εα, µ)|ψα(r)|2 , (3.6)

where f(ε, µ) is the orbital occupancy function and µ is the Fermi energy. Typically,

in DFT calculations the orbital occupancy function f is chosen as the Fermi-Dirac
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distribution [114, 115], given by

f(ε, µ) =
1

1 + exp( ε−µ
kBT

)
, (3.7)

where kB denotes the Boltzman constant and T is the temperature used for smearing

the orbital occupancy function. The Fermi energy, µ, is evaluated from the constraint

on the total number of electrons (Ne) in the system, given by

∫
ρ(r) dr = 2

∑
α

f(εα, µ) = Ne . (3.8)

A reader might note the subtle difference in the expression of ρ(r) given in Eq. 3.6 and

Eq. 2.21. The difference of a factor 2 arises because in this chapter we are considering

only spin unpolarized systems, i.e., systems where the Kohn-Sham orbitals are doubly

occupied. The other difference is the use of a Fermi-Dirac distribution instead of a

Heavyside function. The choice of a Fermi-Dirac distribution is made over a Heavyside

function to avoid charge sloshing, wherein systems with degenerate energy levels at

Fermi energy can exhibit large spatial deviation in electron charge density with SCF

iterations on the account of different degenerate orbitals being occupied at different

SCF iterations.

Finally, upon solving Eqs. 3.1, 3.6 and 3.8 self-consistently, the ground-state en-

ergy of the materials system is computed as

Etot = Eband + Exc −
∫
vxc[ρ]ρ dr− 1

2

∫
ρvH[ρ] dr + ENN , (3.9)

where Eband is the band energy, given by

Eband = 2
∑
α

f(εα, µ)εα , (3.10)
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and ENN is the nuclear-nuclear repulsive energy (same as in Eq. 2.10), given by

ENN =
1

2

Na∑
I=1

Na∑
J=1
J 6=I

ZIZJ
|RI −RJ |

. (3.11)

3.4 Classical finite element method

In this section, we briefly discuss the discretization of the Kohn-Sham eigenvalue

problem using the classical finite element basis. In particular, we comment on the

usefulness of higher-order spectral finite elements, employed in this work. We discuss

how the use of spectra finite elements in conjunction with the reduced order Gauss-

Lobatto-Legendre (GLL) quadrature rule enables an efficient inversion of the overlap

matrix of the classical finite element basis functions.

3.4.1 Classical finite element discretization

In the finite element method, the spatial domain of interest is discretized into

subdomains called finite elements. The finite element basis is constructed from piece-

wise polynomial functions that have a compact support on the finite elements, thus

rendering locality to these basis functions. We note that there is an abundance of

choice in terms of the form and order of the polynomial functions that can be used

in constructing the finite element basis, and we refer to [109, 116] for a comprehen-

sive discourse on the subject. Henceforth, we refer to the standard notion of finite

element basis as the classical finite element basis in order to differentiate from the pro-

posed enriched finite element basis in Sec 3.5, and refer to the corresponding discrete

formulation as the classical finite element discretization.

Let Xh denote the finite element subspace of dimension nh constructed from a

finite element mesh with a characteristic mesh-size h. Let ψhα and φh denote the

classical finite element discretized fields corresponding to the Kohn-Sham orbitals
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and the electrostatic potential (generically representing both Hartree and external

potential), respectively, that are expressed as

ψhα(r) =

nh∑
j=1

NC
j (r)ψCα,j α = 1, 2, . . . , (3.12)

φh(r) =

nh∑
j=1

NC
j (r)φCj . (3.13)

The superscript C, in the above expressions and elsewhere in this chapter, is used to

indicate the discretization based on classical finite element basis. Here NC
j : 1 ≤ j ≤

nh denote the classical finite element basis functions spanning Xh, and ψCα,j and φCj

are the coefficients corresponding to jth basis function (NC
j ) in the expansion of the

αth Kohn-Sham orbital and electrostatic potential, respectively.

Using the classical finite element discretization in Eq. 3.12, the Kohn-Sham eigen-

value problem in Eq. 3.1 reduces to the following discrete form,

HCψC
α = εCαMCψC

α , (3.14)

where HC denotes the discrete Kohn-Sham Hamiltonian, MC denotes the overlap

matrix of the classical finite element basis, εCα denotes the αth discrete Kohn-Sham

eigenvalue, and ψC
α denotes the corresponding eigenvector containing the expansion

coefficients ψCα,j. For a non-periodic problem defined on a domain Ω with homogeneous

Dirichlet boundary conditions, the discrete Hamiltonian matrix HC
jk is given by

HC
jk =

1

2

∫
Ω

∇NC
j (r).∇NC

k (r) dr +

∫
Ω

vhKS(r,R)NC
j (r)NC

k (r) dr .

(3.15)

Although the above expression is for a non-periodic problem, it can be easily extended
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to a periodic problem on a unit cell using the Bloch theorem [44]. We note that owing

to the non-orthogonality of the classical finite element basis, the overlap matrix MC ,

defined by MC
jk =

∫
Ω
NC
j (r)NC

k (r) dr, is not an identity matrix, thereby, resulting in

a generalized eigenvalue problem. However, utilizing the symmetric positive definite-

ness, and hence the invertibility of MC , we can transform the generalized eigenvalue

problem in Eq. 3.14 to a standard eigenvalue problem, given by

(MC)
−1

HCψC
α = εCαψ

C
α . (3.16)

We remark that this transformation of the generalized eigenvalue problem to a stan-

dard eigenvalue problem is essential for the use of Chebyshev polynomial based ac-

celeration technique to compute the occupied eigenspace (to be discussed in the Sec-

tion 3.6). Further, we note that this transformation to a standard eigenvalue prob-

lem relies on computationally efficient methods for computing (MC)
−1

, which forms

the basis for our use of spectral finite elements along with Gauss-Lobatto-Legendre

quadrature rule, as will be discussed in Section 3.4.2.

Turning to the Poisson problems in Eq. 3.5, and using the discretization in Eq. 3.13,

we obtain the following system of linear equations,

ACφC = bC , (3.17)

where AC represents the Laplace operator discretized in the classical finite element

basis that is given by

ACjk =
1

4π

∫
Ω

∇NC
j (r).∇NC

k (r) dr , (3.18)

φC is the electrostatic potential vector containing the expansion coefficients φCj , and
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bC , the forcing vector, is given by

bCi =

∫
Ω

g(r)NC
i (r) dr , (3.19)

where g(r) = ρ(r) or g(r) = b(r,R) for the Hartree and external potential, respec-

tively.

3.4.2 Spectral finite elements

As opposed to conventional classical finite element basis, which is typically con-

structed from a tensor product of Lagrange polynomials interpolated through equidis-

tant nodal points in an element, spectral finite element basis employ a distribution

of nodes obtained from the roots of the derivative of Legendre polynomials or the

Chebyshev polynomials [117]. In the present work, we employ the Gauss-Lobatto-

Legendre node distribution, where the nodes are located at the roots of the derivative

of the Legendre polynomial and the boundary points. The resulting spectral finite

element basis has been shown to provide better conditioning with increasing poly-

nomial degree [117] and has been effective for electronic structure calculations using

higher-order finite element discretization [113, 38]. However, the major advantage

of this spectral finite element basis is realized when it is used in conjunction with

Gauss-Lobatto-Legendre (GLL) quadrature rule [118] for evaluation of the integrals

arising in the overlap matrix, wherein the quadrature points are coincident with the

nodal points in the spectral finite element. Such a combination renders the overlap

matrix MC in the discrete Kohn-Sham eigenvalue problem diagonal, thereby making

the transformation of the generalized eigenvalue problem in Eq. 3.14 to the standard

eigenvalue problem in Eq. 3.16 to be trivial. We note that while an n point rule in

the conventional Gauss quadrature rule integrates polynomials exactly up to degree

2n − 1, an n point GLL quadrature rule integrates polynomials exactly only up to
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degree 2n − 3. Thus, we employ the GLL quadrature rule only in the construction

of MC , while the more accurate Gauss quadrature rule is used for all other integrals

featuring in the Kohn-Sham eigenvalue problem as well as the Poisson problems for

the electrostatic potentials. We refer to Motamarri et al. [38] for a discussion on the

accuracy and sufficiency of GLL quadrature in the evaluation of overlap matrix MC .

Since we employ spectral finite elements all throughout the present work, any refer-

ence to classical finite elements, henceforth in this chapter, corresponds to spectral

finite elements.

3.5 Enriched finite element method

In this section, we first discuss the proposed enriched finite element discretization

for the Kohn-Sham eigenvalue problem. Then, we present various numerical and

algorithmic strategies for efficient use of the enriched finite element basis.

3.5.1 Enriched finite element discretization

In enriched finite element discretization we augment the classical finite element

basis by appending additional atom-centered basis functions called enrichment func-

tions. We write the enriched finite element discretization for the Kohn-Sham orbitals,

ψhα, and the electrostatic potentials (both Hartree and external potential), φh, as fol-

lows:

ψhα(r) =

nh∑
j=1

NC
j (r)ψCα,j︸ ︷︷ ︸

Classical

+
Na∑
I=1

nI∑
k=1

NE,ψ
k,I (r,RI)ψ

E
α,k,I︸ ︷︷ ︸

Enriched

, (3.20a)

φh(r) =

nh∑
j=1

NC
j (r)φCj︸ ︷︷ ︸

Classical

+
Na∑
I=1

NE,φ
I (r,RI)φ

E
I︸ ︷︷ ︸

Enriched

. (3.20b)

In the above expressions, the superscripts C and E are used to distinguish between

classical and enriched components, respectively. As with the classical finite element
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discretization, NC
j denotes the jth classical finite element basis, and ψCα,j and φCj

are the expansion coefficients corresponding to NC
j for the αth Kohn-Sham orbital

and the electrostatic potential, respectively. In addition, we have the enrichment

functions NE,ψ
k,I and NE,φ

I for the Kohn-Sham orbitals and the electrostatic potentials,

respectively, each centered on atom I located at RI . ψEα,k,I denotes the expansion

coefficient corresponding to NE,ψ
k,I for the αth Kohn-Sham orbital, and φEI denotes

the expansion coefficient corresponding to NE,φ
I for the electrostatic potential. The

enrichment functions, NE,ψ
k,I and NE,φ

I , are the atom-centered numerical solutions to

the Kohn-Sham orbitals and electrostatic potentials, respectively, for the atom type

(chemical element) at RI . The index I runs over all the atoms, Na, in the materials

system, and the index k in Eq. 3.20a runs over the number of atomic Kohn-Sham

orbitals, nI , we would want to include for the atom I. Typically, we include all the

occupied and a few lowest unoccupied atomic orbitals for a given atom I. We note

that although we have represented the enrichment functions for both Hartree and

external potential as NE,φ
I , they differ based on the electrostatic potential that is

being discretized.

We now discuss the procedure to generate the enrichment functions. As afore-

mentioned, the enrichment functions are chosen as the solutions to the Kohn-Sham

orbitals and electrostatic potentials for any given single atom. Under the assumption

of equal fractional occupancy for degenerate orbitals, the charge density for a single

atom is spherically symmetric, which in turn, results in spherically symmetric vxc[ρ]

and vH[ρ]. Thus, rewriting the Eqs. 3.1 and 3.5 in spherical coordinates and using

separation of variables, we obtain the following radial equations for any single atom

with the atom type denoted by a superscript S:

− 1

4π

1

r2

d

dr

(
r2 d

dr

)
φS(r) = gS(r) , (3.21a)
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[
− 1

2

1

r2

d

dr

(
r2 d

dr

)
+
l(l + 1)

r2
+ V S

KS(r)
]
RS
nl(r) = εSnlR

S
nl(r) , (3.21b)

ρS(r) = 2
∑
n

∑
l

2l + 1

4π
f(εSnl, µ

S)
(
RS
nl(r)

)2
. (3.21c)

In Eq. 3.21a, φS(r) denotes either the Hartree or the external potential; gS(r) de-

notes the charge density ρS(r) or the nuclear charge bS(r) = ZS δ̃(0) with Zs denoting

the atomic number, depending on whether φS(r) represents the Hartree or the ex-

ternal potential, respectively. In Eq. 3.21b, RS
nl(r) represents the radial part of the

Kohn-Sham orbital corresponding to the principal quantum number n and azimuthal

quantum number l. Equations in 3.21 are solved self-consistently until convergence

in ρS(r) is achieved. We note that these radial equations can be solved inexpen-

sively using a 1D classical finite element mesh comprising of, typically, 1000 − 5000

basis functions. Moreover, the radial atomic solutions can be pre-computed for all

atom types spanning the periodic table and stored for later use in constructing the

enrichment functions.

Having evaluated the radial part RS
nl(r), the full Kohn-Sham orbital is obtained

by multiplying it with spherical harmonics as follows

ψSnlm(r, β, γ) = RS
nl(r)Ylm(β, γ) , (3.22)

where Ylm(β, γ) denotes the real form of spherical harmonics for the pair of azimuthal

quantum number l and magnetic quantum number m, and β and γ represent the

polar and azimuthal angles, respectively. Using the above atomic solutions, we write

the orbital enrichment function NE,ψ
k,I centered at atom I of atom type S as

NE,ψ
k,I (r,RI) = ψSnlm(|r−RI |, βRI

, γRI
) , (3.23)

where the index k represents a specific choice of n, l and m, and βRI
and γRI

are

the polar and azimuthal angles, respectively, for the point r with RI as the origin.
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Similarly, we define the electrostatic enrichment function NE,φ
I (r) centered at atom I

of atom type S as

NE,φ
I (r,RI) = φS(|r−RI |) . (3.24)

Henceforth in the paper, to make our notation of the enrichment functions more

succinct, we combine the indices k and I into a single index denoted by q (or r) for

the orbital enrichment functions and their coefficients, and drop the argument RI in

the enrichment functions. Furthermore, we define nψE =
∑Na

I=1 nI to denote the total

number of enrichment functions in the materials system used for discretization of any

Kohn-Sham orbital ψα.

Discretizing the Kohn-Sham eigenvalue problem in the enriched finite element

basis, we obtain a standard eigenvalue equation analogous to its classical counterpart

(Eq. 3.16), and is given by

(ME)
−1

HEψE
α = εEαψ

E
α , (3.25)

where HE and ME are the discrete Kohn-Sham Hamiltonian matrix and overlap

matrix in the enriched finite element basis, εEα denotes the αth discrete Kohn-Sham

eigenvalue and ψE
α denotes the corresponding eigenvector containing the expansion

coefficients ψCα,j and ψEα,q (defined in Eq. 3.20a). Both HE and ME matrices have a

2× 2 block structure, given by

HE =

 Hcc (Hec)T

Hec Hee

 (3.26)

ME =

 Mcc (Mec)T

Mec Mee

 (3.27)
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where Hcc and Mcc are the classical-classical blocks which comprise of matrix el-

ements involving only the classical finite element basis functions and are same as

the HC and MC matrices appearing in Eq. 3.14, respectively; Hec and Mec are the

enriched-classical blocks containing the cross-term matrix elements involving both

classical finite element basis functions and enrichment functions; and Hee and Mee

are the enriched-enriched blocks comprising of matrix elements involving only the

enrichment functions. Each of these blocks are given by

Hcc
jk =

1

2

∫
Ω

∇NC
j (r).∇NC

k (r) dr +

∫
Ω

vhKS(r,R)NC
j (r)NC

k (r) dr , (3.28a)

Hec
qj =

1

2

∫
Ω

∇NE,ψ
q (r).∇NC

j (r) dr +

∫
Ω

vhKS(r,R)NE,ψ
q (r)NC

j (r) dr , (3.28b)

Hee
qr =

1

2

∫
Ω

∇NE,ψ
q (r).∇NE,ψ

r (r) dr +

∫
Ω

vhKS(r,R)NE,ψ
q (r)NE,ψ

r (r) dr ; (3.28c)

M cc
jk =

∫
Ω

NC
j (r)NC

k (r) dr , (3.29a)

M ec
qj =

∫
Ω

NE,ψ
q (r)NC

j (r) dr , (3.29b)

M ee
qr =

∫
Ω

NE,ψ
q (r)NE,ψ

r (r) dr , (3.29c)

where j, k = 1, 2, . . . , nh and q, r = 1, 2, . . . , nψE.

Discretizing the Poisson problems (Eq. 3.5) in the enriched finite element basis, we

obtain a system of linear equations analogous to its classical counterpart (Eq. 3.17),

and is given by

AEφE = bE , (3.30)

where AE represents the discrete Laplace operator in the enriched finite element basis,
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and φE is the electrostatic potential vector containing the expansion coefficients φCj

and φEI (defined in Eq. 3.20b). Similar to HE and ME, the matrix AE also assumes

a 2× 2 block structure containing classical-classical, enriched-classical and enriched-

enriched blocks, given by

AE =

 Acc (Aec)T

Aec Aee

 (3.31)

with the individual blocks defined as

Accjk =

∫
Ω

∇NC
j (r).∇NC

k (r) dr , (3.32a)

AecIj =

∫
Ω

∇NE,φ
I (r).∇NC

j (r) dr , (3.32b)

AeeIJ =

∫
Ω

∇NE,φ
I (r).∇NE,φ

J (r) dr , (3.32c)

where j, k = 1, 2, . . . , nh; and I, J = 1, 2, . . . , Na.

The forcing vector bE, is also analogous to its classical counterpart, and is defined

as the composite vector

bE =

 bc

be

 (3.33)

where bc is the classical part of bE and is same as bC (defined in Eq. 3.19). be is the

enrichment part of bE and is given by

beI =

∫
Ω

g(r)NE,φ
I (r) dr , (3.34)

where g(r) = ρ(r) or g(r) = b(r,R) for the Hartree and external potential, respec-
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tively, and I = 1, 2, . . . , Na.

The key idea behind augmenting the classical finite element basis with these en-

richment functions is that in a multi-atom materials system, the enrichment functions,

being solutions to single atom Kohn-Sham orbitals and electrostatic potentials, can

effectively capture the sharp variations in the orbitals and the electrostatic potentials

close to an atom, thereby eliminating the need for a refined classical finite element

mesh close to an atom. Loosely speaking, the role of the classical finite element basis

is now to capture the deviation of an electronic field in a materials system from that of

superposition of atomic solutions for the same field. Since these deviations are much

smoother in nature compared to the actual field, we can use a coarse classical finite

element mesh to accurately approximate them. As will be discussed in Section 3.6,

the use of a coarse classical finite element mesh results in two-fold advantage: (i) a re-

duction in the total degrees of freedom, and (ii) a reduction in the polynomial degree

of the Chebyshev filter required to compute the occupied Kohn-Sham eigenspace.

3.5.2 Conditioning of the enriched finite element basis

The enrichment functions, being solutions to the Kohn-Sham orbitals and electro-

static potentials for a single atom, have smooth tails away from their atomic cores.

These smooth tails can cause linear dependency between the enrichment functions

and the classical finite element basis, thereby resulting in an ill-conditioned basis. We

avoid such ill-conditioning by multiplying the enrichment functions with a smooth ra-

dial cutoff function, which generates a compact support for each enrichment function.

In the present work, we employ the smooth cutoff function given by

h(r̃) =
u(r̃)

u(r̃) + u(1− r̃) , (3.35)
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where u(r̃) is defined as

u(r̃) =


e−

1
r̃ r̃ > 0

0 r̃ ≤ 0

and r̃ = 1− t(r−r0)
r0

is a linear transformation of the variable r, which offers h(r̃) the

following properties 
h(r̃) = 1 0 ≤ r < r0

0 ≤ h(r̃) < 1 r0 < r ≤ r0 + r0
t

h(r̃) = 0 r > r0 + r0
t
.

We multiply the radial part of each enrichment function, NE,ψ
q (r) or NE,φ

I , with

h(r̃) to smoothly truncate them to zero. In the above expression, the parameter

r0 is called the cutoff radius, beyond which the truncation begins, and t controls

the width of the transition. In the present work, we employ different values of r0

for different enrichment functions. In particular, for an orbital enrichment function,

the value of r0 is chosen to be the farthest turning point (extremum) in the radial

part of the corresponding atomic orbital. One exception to this rule is the mono-

tonically decreasing 1s radial function, R10(r), for which the r0 is chosen such that

|
∫ r0

0
(h(r̃)R10(r))2 dr− 1| < 10−6, i.e., the density arising out of the truncated R10(r)

must integrate to within 10−6 of unity. The maximum of the set of r0’s correspond-

ing to orbital enrichment functions of a given atom is selected as the cutoff radius

for the electrostatic enrichment functions of the atom. We use t ∈ [0.5, 1] to avoid

sharp truncation of the enrichment functions, which may otherwise require a very

high density of quadrature points in the transition region in order to accurately com-

pute any integrals involving the gradients of these truncated enrichment functions.

Figure 3.2 presents a schematic of the radial part of the truncated atomic orbital.

Henceforth, enrichment functions, NE,ψ
q (r) or NE,φ

I (r), are assumed to be truncated

with the aforementioned smooth cutoff function. We remark that, in addition to
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Figure 3.2: Schematic of truncated atomic orbital (radial part).

improving the conditioning of the basis, the truncation renders locality to the enrich-

ment functions, which in turn renders sparsity to the discrete Hamiltonian, Laplacian

and overlap matrices.

We note that several prior efforts have been made towards the generation of com-

pactly supported (finite-range) atom-centered orbitals by employing different forms

of confining potentials in the atomic Kohn-Sham equation, ranging from hard-wall

potential [119] to polynomial [120, 121] to smooth exponential potential [25]. Other

efforts [122, 123] were made to variationally optimize the parameters in the confining

potential to strike a good balance between the locality and accuracy of the resultant

basis. In our view, all these approaches can be adapted as an alternative to our

approach of using smooth cutoff function.

3.5.3 Adaptive quadrature rule

We note that sharp gradients in regions close to atomic centers and cusps at atomic

centers are characteristics of enrichment functions. Therefore, in order to accurately
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compute any integral involving an enrichment function, we need a high quadrature

density near the atomic centers, while a lower quadrature density may suffice in

regions farther away from atomic centers. To this end, we employ an adaptive refine-

ment of the quadrature grid on each finite element based on the characteristics of the

enrichment functions. Specifically, we follow a divide and conquer strategy proposed

in previous efforts [124, 125, 126], and outline here the main idea and specifics of

our implementation for hexahedral finite elements employed in this work. For any

given finite element, we begin by assigning it to be the parent element Ωp. Further,

we consider a trial function f(r), an n-point Gauss quadrature rule, the 8 child el-

ements ({Ωc
i})8

i=1 that are obtained by sub-dividing Ωp, a fixed tolerance τ , and an

empty list labelled points. Next, we evaluate Ip =
∫

Ωp
f(r) dr and Ici =

∫
Ωci
f(r) dr

for i = 1, 2, . . . , 8, using their respective n-point Gauss quadrature rules. If the base

condition, |Ip −∑8
i=1 I

c
i | < τ , is satisfied, we append the Gauss quadrature points

and weights of the parent element to the list points and terminate the algorithm.

Otherwise, we treat each of the child elements as a parent element, and recursively

sub-divide them until the base condition is satisfied. Whenever the base condition

is satisfied, the Gauss quadrature points and weights corresponding to the parent

element at the current recursion level are appended to the list points. Finally, the list

points represents the quadrature points and weights for the given element. We repeat

this process for each element present in the finite element mesh. Typically, instead

of using a single trial function f(r), we use nt such trial functions, {fν(r)}ntν=1, which

requires nt base conditions corresponding to each fν(r) to be satisfied.

In the present work, we choose the following four trial functions to build the

adaptive quadrature rule:

f1(r) =
Na∑
I=1

(
NE,φ
I (r)

)2
, (3.36a)

f2(r) =
Na∑
I=1

|∇
(
NE,φ
I (r))|2 , (3.36b)
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f3(r) =

nψE∑
q=1

(
NE,ψ
q (r)

)2
, (3.36c)

f4(r) =

nψE∑
q=1

|∇
(
Nψ
q (r))|2 . (3.36d)

Although we have labeled just two trial functions, f1(r) and f2(r), defined by

the electrostatic enrichment functions, these correspond to four trial functions—two

each for enrichment functions corresponding to the Hartree potential and the external

potential. We remark that the aforementioned adaptive quadrature construction is

performed only on the finite elements which are within the compact support of the

enrichment functions. Since only a small fraction of the total elements are within the

compact support of any enrichment function, the adaptive quadrature construction

is computationally inexpensive. Further, once constructed, the adaptive quadrature

list remains fixed for a given finite element mesh, and only needs to be updated if the

finite element mesh changes during the course of the calculation.

We now turn towards determining an economical choice for the tolerance param-

eter, τ , as a loose tolerance may result in an inadequate quadrature grid whereas an

extremely tight tolerance will be computationally inefficient. In the present work, we

employ the following heuristic to choose τ . For each atom type S of atomic number ZS

in the materials system, we obtain the atomic ground-state charge density, ρS(r), its

corresponding Hartree potential, φSH(r), and the atomic external potential, φSext(r), by

solving the the radial Kohn-Sham equations in Eqs. 3.21. Next, we evaluate the follow-

ing two integrals ES,1D
1 = 1

2

∫
4πr2ρS(r)φSH(r) dr and ES,1D

2 =
∫

4πr2ρS(r)φSext(r) dr,

which correspond to the electrostatic interaction energies. We then construct a coarse

3D finite element mesh with atom S at the origin. In order to determine a judicious

choice for τS corresponding to atom type S, we set its initial value as τS = 0.1 and

enter an iterative loop. For the current iterate of τS, we evaluate the 3D counter-

parts of ES,1D
1 and ES,1D

2 , namely, ES,3D
1 and ES,3D

2 , respectively, using the aforemen-
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tioned adaptive quadrature rule. If the convergence criteria, |ES,1D
1 − ES,3D

1 | < γ

and |ES,1D
2 − ES,3D

2 | < γ, are satisfied for a pre-determined γ, we terminate the loop

with the current value of τS. Else, the loop is repeated with τS set to half of its

current value, until the above convergence criteria are met. We use the minimum of

all such τS corresponding to the various atom types in the materials system as our τ

for construction of the adaptive quadrature grid for the materials system calculation.

In all our calculations, we have used γ = 0.1 mHa so as to ensure that the quadrature

errors are an order lower than the desired discretization error (∼1 mHa) that we are

aiming in the ground-state energy per atom. We note that the above procedure to

determine τ , is independent of the choice of 3D finite element mesh. Moreover, the

τS for each S can be precomputed and stored for later use.

3.5.4 Inverse of overlap matrix

We now discuss a computationally efficient way of evaluating the inverse of the

overlap matrix, ME, defined in Eq. 3.27, which is vital to the transformation of the

generalized Kohn-Sham eigenvalue problem to a standard eigenvalue problem, and the

subsequent use of Chebyshev polynomial based acceleration technique to compute the

occupied eigenstates as will be discussed in Section 3.6. We make use of the block-

wise matrix inversion theorem [127] (also known as Banachiewicz inversion formula),

to obtain the following 2× 2 block structure for (ME)
−1

,

(ME)
−1

=


(Mcc)−1 +

LTS−1L
−LTS−1

−S−1L S−1

 (3.37)

where L = Mec(Mcc)−1, and S = Mee −Mec(Mcc)−1(Mec)T . Assuming that the

enriched finite element basis is not ill-conditioned, we note that the overlap matrix
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ME is positive definite, and, hence invertible. Further, Mcc being the overlap matrix

of the classical finite element basis functions, is also positive definite, and hence

invertible. Subsequently, the positive definiteness, and hence invertibility, of S can

be ascertained by noting that it is the Schur complement [127] of Mcc in ME. We

note that the above expression for (ME)
−1

contains two matrix inverses, (Mcc)−1 and

S−1. As mentioned in Section 3.4.2, the matrix Mcc is rendered diagonal through the

use of spectral finite elements along with Gauss-Lobatto-Legendre quadrature rule,

which makes the evaluation of (Mcc)−1 trivial. Regarding the evaluation of S−1, we

note that S is a small matrix of the size of nψE × nψE, where nψE is typically of the

same order as the number of electrons in the system. Thus, S can be easily inverted

through the use of direct solvers.

Further, we note that although the overlap matrix is sparse, its inverse is a dense

matrix. However, the constituent matrices present in the 2 × 2 block structure of

(ME)
−1

are either sparse or much smaller in size compared to (ME)
−1

itself. To

elaborate, we note that L is of the size nψE × nh, and is hence much smaller than the

size (nh + nψE) × (nh + nψE) of (ME)
−1

. Furthermore, L, owing to the locality of the

enrichment functions, is sparse. As noted earlier, S−1 is a small nψE × nψE matrix and

(Mcc)−1, being diagonal, is sparse. Since we are only interested in the action of matrix

(ME)
−1

on a vector (as will be discussed in Section 3.6), we perform the matrix-

vector product using the constituent matrices without ever explicitly constructing the

(ME)
−1

matrix. This matrix-free evaluation of any matrix-vector product presents a

significant advantage for the above inversion technique over the Newton-Schultz [128,

129, 130] and Taylor expansion [131] based methods, wherein the construction of the

(ME)
−1

matrix is explicit and hence have huge memory requirements owing to the

dense structure of (ME)
−1

.

Finally, we briefly compare the proposed enriched finite element method with

the other existing methods which in a similar spirit seek to augment the classical
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finite element basis with other basis functions that efficiently capture the known

physics in regions of interest. One such approach is that of partition-of-unity finite

element method (PUFEM) [132, 133], wherein a typical discretization can be defined

as [134, 135]

ψh(r) =

nh∑
j=1

NC
j (r)ψCj +

nE∑
q

nPU∑
k=1

NPU
k (r)NE

q (r)ψEq,k , (3.38)

where NC
j (r) are the classical finite element basis functions, and NPU

k (r) is a sub-

set of the classical finite element basis functions used to modulate the enrichment

functions, NE,ψ
q (r), thus providing a larger set of augmenting functions. Although

PUFEM preserves the locality of the basis to be commensurate with conventional

finite element basis, the effect of multiplying enrichment functions with a set of clas-

sical finite element basis functions results in smoother augmenting basis functions,

thereby making it more prone to ill-conditioning (due to linear dependency of aug-

menting basis functions with classical finite element basis functions). A more serious

limitation of PUFEM stems from the significant increase in the number of augment-

ing basis functions, which, in turn, significantly increases the size of the Mee block

of the overlap matrix ME, thereby making the evaluation of the S−1 in (ME)
−1

computationally prohibitive.

Another such approach is that of Gaussian finite element mixed basis [43], wherein

a given choice of Gaussian basis is used to the augment the classical finite element

basis instead of atomic solutions to the Kohn-Sham problem, as used in the present

work. We note that compared to the Gaussian basis the atomic solutions provide a

more natural choice for augmenting functions, given that the atomic functions that we

construct preserve the cusp in the density at the nuclear positions, otherwise missing

in the Gaussian basis. Also, the choice of atomic functions provide for better control

over the conditioning of the basis through the use of smooth cutoff functions on the
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radial part of the atomic orbitals. Further, in the work on Gaussian finite element

mixed basis [43], the Kohn-Sham problem was solved as a generalized eigenvalue

problem using preconditioned conjugate-gradient method [136] which is, in general,

less efficient compared to the Chebyshev filtering method used in the present work,

discussed subsequently.

3.6 Self-consistent field iteration and Chebyshev filtering

We begin this section with a brief outline of the well-known Kohn-Sham self-

consistent field iteration (SCF) used to solve the nonlinear Kohn-Sham eigenvalue

problem. This involves starting with an input guess for the charge density, ρin, which

is used to construct the effective potential, vKS[ρin,R]. Having constructed vKS[ρin,R],

the Kohn-Sham eigenvalue problem is solved to obtain the eigenpairs (εα,ψα), which

are in turn used to compute the output charge density, ρout. If the difference between

ρout and ρin, in an appropriately chosen norm, is below a certain tolerance, then the

charge density is deemed to have converged and ρout denotes the ground-state charge

density. Otherwise, ρin is updated through a choice of mixing scheme [137, 138, 139,

140] involving ρin and ρout from the current as well as those from previous iterations,

and the iteration continues until convergence in charge density is achieved.

The most computationally expensive step in every iterate of the SCF procedure

is the solution of the discrete Kohn-Sham eigenvalue problem. Typically, one can use

Krylov-subspace based methods such as Jacobi-Davidson [141] or Krylov-Schur [142]

to evaluate the lowest few eigenpairs corresponding to the occupied eigenstates. How-

ever, benchmark studies presented in a recent work [38] have shown these Krylov-

subspace based methods to be about ten-fold slower in comparison to the Chebyshev

filtering technique [143] to compute the occupied eigenstates. Based on this relative

merit, we have employed the Chebyshev filtering technique to compute the relevant

eigenspectrum of the Kohn-Sham Hamiltonian.
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The key idea involved in the Chebyshev filtering approach is to progressively im-

prove the subspace V spanned by the eigenvectors of the previous SCF iteration

through polynomial based power iteration to eventually compute the occupied eigen-

spectrum upon attaining self-consistency. It relies on two important properties of a

Chebyshev polynomial pm(x) of degreem to magnify the relevant (occupied) spectrum

of the discrete Kohn-Sham Hamiltonian: (i) pm(x) grows rapidly outside the interval

[−1, 1], and (ii) |pm(x)| ≤ 1 for x ∈ [−1, 1]. For the sake of notational simplicity,

we denote the discrete Kohn-Sham Hamiltonian by H̃, which in the classical finite

element basis is (MC)
−1

HC and in the enriched finite element basis is (ME)
−1

HE.

The filtering technique proceeds by first mapping the unoccupied eigenspectrum of

H̃ to [−1, 1] through the affine transformation t(x) = 2x−a−b
b−a , where a and b denote

the upper bounds of the occupied and unoccupied eigenspectrum of H̃, respectively.

The upper bound of the unoccupied spectrum, b, is obtained inexpensively through

a few Arnoldi iterations on H̃. The upper bound of the occupied spectrum, a, is

obtained as the highest Rayleigh quotient of H̃ in the subspace V of the previous

SCF iteration. We denote the resultant transformed matrix as H̄. We then apply the

m-degree Chebyshev polynomial filter pm(H̄) on V to obtain Ṽ = pm(H̄)V . Owing

to the rapid growth property of Chebyshev polynomials outside [−1, 1], the afore-

mentioned filtering of V amplifies, for each vector in V , the components along the

eigenvectors corresponding to occupied states and damps the components along the

eigenvectors corresponding to unoccupied states. The action of the Chebyshev filter

on V can be achieved in an efficient manner by utilizing the recursive construction of

the Chebyshev polynomial [144]: pk+1(x) = 2xpk(x)−pk−1(x). Next, we orthonormal-

ize the Chebyshev-filtered vectors to obtain the orthonormal set of vectors Q spanning

Ṽ , and perform a Galerkin projection of H̃ onto Ṽ to obtain the following reduced
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generalized eigenvalue problem,

QTHQvα = εαQ
TMQvα , (3.39)

where {H, M, εα} represent {HC , MC , εCα} or {HE, ME, εEα} corresponding to the

classical or enriched finite element discretization, respectively. We can now solve

the above generalized eigenvalue problem, whose dimension is commensurate with

the number of electrons in the system, using direct solvers to obtain the eigenvalues

εα and their corresponding projected eigenvectors vα. We subsequently rotate the

projected eigenvectors to the original space to obtain the eigenvectors Qvα, which

along with the eigenvalues εα are used to evaluate the charge density. Finally, the

subspace V is updated to Ṽ for the next SCF iteration.

We remark that in order to gain computational efficiency, we exploit the elemen-

tal structure in HE (or HC) and (ME)
−1

(or (MC)
−1

) to perform the matrix-vector

products involved in the evaluation of Ṽ = pm(H̄)V . To elaborate, we consider the

case of enriched finite element and note that all the blocks in the 2×2 block structure

of HE and all the constituent matrices (except (Mcc)−1 and S−1) can be constructed,

owing to the locality of the basis, by assembling contributions from individual el-

ements. However, since we are interested only in the action of these matrices on

vectors, we perform the matrix-vector products by first evaluating elemental matrix-

vector products and then assembling the resultant elemental vector, without explicitly

assembling any global matrix. We also note that, the dimension of the subspace V ,

denoted by N , is chosen to be greater than the number of occupied orbitals so as to

avoid numerical instabilities for systems with small band-gaps or degenerate energy

levels close to the Fermi energy, and also to avoid missing out any occupied eigenstate

between two successive SCF iterations. Typically, we choose N ∼ Ne
2

+ 20. Further,

we note that Kohn-Sham orbitals of single atoms represent a good initial guess for
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the subspace V for the first SCF iteration, and is adopted in the present work.

We note that the degree m of the Chebyshev polynomial filter needed to obtain

a good approximation to the occupied eigenspace of the Kohn-Sham Hamiltonian

depends on: (i) the separation between eigenvalues in the occupied part of the eigen-

spectrum, and (ii) the ratio between the spectral widths of the occupied and unoc-

cupied part of the eigenspectrum of H̃. While the separation between the occupied

eigenvalues depends on the materials system, the ratio of the spectral widths of the

occupied and unoccupied parts of the eigespectrum depends on the largest eigenvalue

of H̃, which, in turn depends on the finite-element discretization—it increases with de-

creasing element size. Typically, in a pseudopotential calculation, where the orbitals

and the electrostatic potentials vary smoothly, one can use a relatively coarse finite

element mesh to achieve chemical accuracies of ∼1 meV per atom using the classical

finite element method. For such coarse finite element discretizations, a Chebyshev

polynomial degree between 10 to 50 is sufficient to compute the occupied eigenspace.

However, in all-electron calculations, where the orbitals are characterized by sharp

variations near atomic cores and the external potential has Coulomb-singularity, one

requires a highly refined finite element mesh near the atomic cores to achieve chemical

accuracies of ∼1 mHa per atom. In addition to the significant increase in the degrees

of freedom, such mesh refinement also increases the upper bound of the unoccupied

eigenspectrum, thereby requiring a very high Chebyshev polynomial degree, O(103),

to effectively compute the occupied eigenspace. These shortcomings of the classi-

cal finite element discretization in the context of all-electron calculations are noted

in [38], where comparisons were made against plane-wave basis for pseudopotential

calculations and against Gaussian basis for all-electron. It was noted that while the

classical finite elements basis outperforms the plane-wave basis in pseudopotential

calculations on the benchmark systems studied, they were ten-fold slower in compar-

ison to the Gaussian basis in all-electron calculations. These disadvantages of the
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classical finite element basis for all-electron calculations are mitigated by using the

proposed enriched finite element basis, as will be demonstrated in the subsequent

section.

3.7 Results and Discussion

In this section, we discuss the rate of convergence, accuracy, performance, and

parallel scalability of the proposed enriched finite method for all-electron calcula-

tions. We first study the rate of convergence of ground-state energy with respect

to element size for methane and carbon monoxide molecules. We then demonstrate

the accuracy and performance of the enriched finite element method using large-scale

non-periodic semi-conducting and heavy metallic systems. We use non-periodic sil-

icon nano-clusters of various sizes, with the largest one containing 621 atoms (8694

electrons), as our benchmark semi-conducting systems. For heavy metallic systems,

we use gold nano-clusters, Aun(n = 1 − 23), as our benchmark systems. In order to

assess the accuracy, reduction in degrees of freedom, reduction in Chebyshev polyno-

mial degree, and performance of the enriched finite element method, we use, wherever

possible, the classical finite element method as a reference. Depending upon the sys-

tem, we use spectral hexahedral finite elements of polynomial order 2 to 6, denoted

as HEX27, HEX64SPEC, HEX125SPEC, HEX216SPEC, HEX343SPEC respectively.

We also compare, wherever possible, the accuracy and performance of the enriched

finite element method with that of Gaussian basis. All our calculations using the

Gaussian basis are performed with the NWCHEM [26] package. We use n-stage An-

derson mixing [137] for charge density mixing in all our enriched and classical finite

element method based calculations. Finally, we present the parallel scalability of

our implementation of the proposed enriched finite element method using Message

Passing Interface (MPI). The scalability studies as well as the benchmark studies

demonstrating the computational efficiency, reported subsequently, are conducted on
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a parallel computing cluster with the following configuration: Intel Xeon E5-2680v3

CPU nodes with 24 processors (cores) per node, 128 GB memory per node, and

Infiniband networking between all nodes for fast MPI communications.

3.7.1 Rate of convergence

In this section, we study the rate of convergence of the ground-state energy with

element size, h, using quadratic (HEX27) and cubic (HEX64SPEC) spectral finite ele-

ments. To this end, we generate a sequence of finite element meshes with increasingly

smaller element sizes by uniformly subdividing the coarsest mesh. The ground-state

energy, Eh, obtained from each of the HEX64SPEC meshes are used in the expression

|Eh − E0| = Chq (3.40)

to compute the constants E0, q and C through a least-square fit. In the above

expression, E0 is the extrapolated continuum ground-state energy obtained as h→ 0.

We use the E0 obtained from HEX64SPEC to compute the relative error |Eh−E0|
|E0| for

both HEX27 and HEX64SPEC meshes. To assess the accuracy of E0, we also compare

it against the ground-state energy obtained using the polarization consistent-4 (pc-

4) [145] Gaussian basis.

For the benchmark systems in our convergence study, we consider two systems:

(i) methane molecule with a C-H bond length of 2.0784 a.u. and H-C-H bond angle of

109.4712◦, and (ii) carbon monoxide molecule with a C-O bond length of 2.1297 a.u.

For both the systems, we use a Chebyshev filter of order 60 to compute the oc-

cupied eigenspace and Fermi-Dirac smearing with T = 500K. For methane, the

value of E0 is evaluated to be −40.11993 Ha and the ground-state energy from pc-4

Gaussian basis is −40.11992 Ha. For carbon monoxide, the value of E0 is evalu-

ated to be −112.47189 Ha and the ground-state energy from pc-4 Gaussian basis is
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Figure 3.3: Convergence of energy with respect to element size for methane molecule
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Figure 3.4: Convergence of energy with respect element size for carbon monoxide
molecule
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−112.47188 Ha. Next, we plot the relative error, |Eh−E0|
|E0| , against the smallest ele-

ment size, and obtain the rates of convergence from the slopes of these plots. As

evident from Figures 3.3 and 3.4, we obtain close to optimal rates of convergence in

energy of O(h2k), where k is the polynomial order (k = 2 for HEX27 and k = 3 for

HEX64SPEC). The results also suggest higher accuracies obtained with HEX64SPEC

when compared to HEX27 for the same mesh size. We note that the numerically

obtained rates of convergence deviate slightly from the theoretically optimal rates

due to other numerical errors—beyond the discretization errors in the theoretical

estimates—that are present in simulations, such as quadrature errors, errors due to

stopping tolerance in the iterative solutions of the Poisson problem, diagonalization

of the Hamiltonian and the self consistent field iteration.

3.7.2 Large-scale materials systems

We now discuss the accuracy and performance of the proposed enriched finite

element method using large-scale semi-conducting and heavy metallic materials sys-

tems. We also compare, wherever possible, the proposed method against classical

finite element and Gaussian basis based calculations.

3.7.2.1 Semi-conducting systems: Silicon nano-clusters

We consider silicon nano-clusters of various sizes, containing 1×1×1 (252 electrons),

2 × 1 × 1 (434 electrons), 2 × 2 × 2 (1330 electrons), 3 × 3 × 3 (3920 electrons); and

4× 4× 4 (8694 electrons) diamond unit cells, as our benchmark semi-conducting sys-

tems. We employ a lattice constant of 10.26 a.u. in our calculations. These are isolated

clusters in vacuum and we do not use any surface passivation. To obtain the char-

acteristic element size to be used in the enriched finite element based calculations of

the nano-clusters, we first obtain the reference ground-state energy, Eref , for a single

silicon atom by solving its 1D-radial Kohn-Sham eigenvalue problem as mentioned in
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Section 3.5.1. Next, we choose a fourth-order (HEX125SPEC) finite element mesh for

which the single atom ground-state energy obtained from the enriched finite element

based calculation is within 1 mHa accuracy with respect to Eref . Similarly, to obtain

the characteristic element size for the classical finite element based calculations of the

nano-clusters, we choose a fifth-order (HEX216SPEC) finite element mesh which is

also within a 1 mHa accuracy for the single atom ground-state energy. We note that

the smallest element size, thus obtained for the classical finite element based calcula-

tion is found to be an order of magnitude smaller than that of the smallest element

size obtained in the enriched finite element based calculation. This, in turn, affects the

largest eigenvalue of the Kohn-Sham Hamiltonian which is found to be O(106) in case

of classical finite elements, thereby, requiring a Chebyshev polynomial filter of degree

1500 to compute the occupied eigenstates. Correspondingly, for the enriched finite

element case, the largest eigenvalue is found to be O(103), thereby, requiring a ∼20-

fold smaller Chebyshev polynomial degree of 80 to compute the occupied eigenstates.

These choices for element sizes and Chebyshev polynomial degrees from single atom

calculations are then carried forward to the nano-cluster calculations. We note that

owing to the steep computational demand arising from large number of basis functions

and high Chebyshev polynomial degree in the case of classical finite element based

all-electron calculations, we could only perform studies up to 2 × 2 × 2 nano-cluster

size using the computational resources available to us. We also compare the accuracy

and performance of the enriched finite element method with Gaussian basis. We use

the polarization consistent (pc) family of Gaussian basis as it provides a hierarchy

of increasingly larger basis sets. Specifically, we use pc-3 and pc-4 basis as they are

both commensurate with the ∼1 mHa accuracy when compared with aforementioned

Eref for a single silicon atom. All the calculations with Gaussian basis are performed

using Direct Inversion of Iterative Subspace (DIIS) [146] as well as the quadratically

convergent minimization scheme [147], both available within the NWCHEM package,
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and the computational time from the more efficient scheme is reported. For the DIIS

scheme, extrapolation of up to 10 Fock matrices were used. Table 3.1 compares the

ground-state energy, degrees of freedom (number of basis functions) per atom and

the total computation CPU time (CPU time = number of cores × wall-clock time)

for various cluster sizes using classical and enriched finite element basis. Similarly,

Table 3.2 compares the ground-state energy and the total computation CPU time for

various cluster sizes using enriched finite element, pc-3 and pc-4 basis. In all these

calculations, we used a Fermi-Dirac smearing with T = 500K.

Table 3.1: Comparison of classical and enriched finite element (FE) basis: Energy per
atom (E in Ha), degrees of freedom per atom (DoF), and total computation
CPU time (in CPU hours) for various silicon nano-clusters.

Si 1× 1× 1 Classical FE Enriched FE

E −288.320035 −288.319450

DoF 402, 112 14, 728

CPU Hrs 1599.15 24.81

Si 2× 1× 1 Classical FE Enriched FE

E −288.334123 −288.333872

DoF 386, 205 13, 557

CPU Hrs 16441.43 57.10

Si 2× 2× 2 Classical FE Enriched FE

E −288.359459 −288.359266

DoF 360, 467 10, 642

CPU Hrs 75936.4 553.13

As is evident from Tables 3.1 and 3.2, the enriched finite element basis achieves

accuracies of within 1 mHa in the ground-state energies per atom when compared

with classical finite element, pc-3 and pc-4 basis. We observe a staggering 60−

to 300−fold reduction in the total computation CPU time for the enriched finite

element basis when compared with the classical finite element basis. This reduction

in computation time stems from a ∼30−fold reduction in the degrees of freedom as
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Table 3.2: Comparison of enriched finite element, pc-3 and pc-4 basis: Energy per
atom (E in Ha) and total computation CPU time (in CPU hours) for
various silicon nano-clusters.

Si 1× 1× 1 Enriched FE pc-3 pc-4

E −288.319450 −288.318996 −288.319448

CPU Hrs 24.81 8.39 98.88

Si 2× 1× 1 Enriched FE pc-3 pc-4

E −288.333872 −288.333447 −288.333898

CPU Hrs 57.10 151.74 1817.30

Si 2× 2× 2 Enriched FE pc-3 pc-4

E −288.359266 −288.360045 FTC (Failed to converge)

CPU Hrs 553.13 4097.29 −
Si 3× 3× 3 Enriched FE pc-3 pc-4

E −288.374721 FTC FTC

CPU Hrs 6252.15 − −
Si 4× 4× 4 Enriched FE pc-3 pc-4

E −288.381425 FTC FTC

CPU Hrs 45053.82 − −

well as a ∼20−fold reduction in the Chebyshev polynomial degree as compared to

the classical finite element basis. When compared with the pc-3 Gaussian basis, the

enriched finite element is a factor ∼3 slower in the case of the smallest (1 × 1 × 1)

cluster. However, it outperforms the pc-3 basis, in total computation CPU time, by

a factor of 2.5 for the 2× 1× 1 cluster and by a factor of 7.5 for the 2× 2× 2 cluster.

Similarly, the enriched finite element basis outperforms the pc-4 Gaussian basis by

factors 4 and 30 for the 1×1×1 and 2×1×1 clusters, respectively. We note that the

pc-3 basis failed to converge for the 3× 3× 3 and 4× 4× 4 clusters, whereas the pc-4

basis failed to converge for 2× 2× 2 and higher clusters. The failure of the pc-3 and

pc-4 basis to converge for larger system sizes is primarily due to linear dependency

of the Gaussian basis functions for larger system sizes. These results suggest that

the enriched finite element basis offers a computationally efficient and robust basis
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for all-electron calculations in semi-conducting systems as compared to both classical

finite element and Gaussian basis.

3.7.2.2 Heavy metallic systems: Gold nano-clusters

Next, we consider gold nano-clusters, Aun(n = 1 − 23), to study the accuracy

and performance of the enriched finite element basis. For n = 2 and n = 6, we use

the stable geometries obtained in a previous work [148] wherein the Au2 has a bond

length of 4.818 a.u. and Au6 has a planar triangle geometry with D3h symmetry and

bond length of 5.055 a.u. (refer Table A.1 in the Appendices for coordinates). The

Au14 and Au23 nano-clusters were constructed as 1×1×1 and 2×1×1 face centered

cubic (FCC) lattice, respectively, with a lattice constant of 6.812 a.u. We follow the

same strategy as used for silicon nano-clusters to obtain the characteristic element

sizes and Chebyshev polynomial degrees that are to be used in gold nano-cluster

calculations, both using classical and enriched finite element basis. We use fifth-order

(HEX216SPEC) and sixth-order (HEX343SPEC) finite elements for the enriched and

classical finite element based calculations, respectively. We note that since gold is

much heavier than silicon, it is characterized by more sharply oscillating orbitals

and much steeper electrostatic potentials in comparison to silicon, thereby requiring

smaller element sizes than those used in silicon to achieve similar accuracy. This, in

turn, results in an increment in the largest eigenvalues of the Hamiltonian, which are

found to be O(104) and O(108), for the enriched and classical finite element basis,

respectively, thereby requiring higher Chebyshev polynomial degrees to accurately

compute the occupied eigenstates. We note that the Chebyshev polynomial based

filtering technique, being analogous to the power iteration method, can generate an

ill-conditioned space for a very high polynomial degree, thereby resulting in numerical

issues. To circumvent this, we employ, at each SCF iteration, multiple passes of a low

polynomial degree Chebyshev filter and orthonormalize the filtered vectors between

68



two successive passes. For all our gold cluster calculations based on the enriched

finite element basis we used 30 passes of a Chebyshev filter of degree 20, whereas 10

passes of a Chebyshev filter of degree 1200 have been employed for the classical finite

element based calculations. We note that in the case of classical finite element based

calculations, owing to the huge computational cost, we could perform calculations

only up to Au2 using the computational resources at our disposal. Further, we do not

present a comparison with Gaussian basis owing to the lack of a good hierarchical

non-relativistic basis for gold. Table 3.3 presents the comparison of the ground-state

energies, degrees of freedom and total computation CPU times for the gold nano-

clusters using classical and enriched finite element basis.

As is evident from Table 3.3, the enriched finite element basis obtains chemical

accuracy in the ground-state energies per atom with far fewer degrees of freedom.

In terms of computational efficiency, while the enriched finite element basis achieves

∼14−fold speedup over the classical finite Au1, we observe ∼100−fold speedup for

Au2. Once again, these speedups for the enriched finite element basis are the result of

a 40−fold reduction in the number of degrees of freedom and a 20−fold reduction in

the Chebyshev polynomial degree as compared to that of the classical finite element

basis. These numerical experiments demonstrate the accuracy and efficiency for all-

electron calculations in heavy metallic systems.

3.7.3 Scalability

We demonstrate the parallel scalability (strong scaling) of the proposed enriched

finite element basis in Figure 3.5. We choose the 3 × 3 × 3 silicon nano-cluster

containing ∼4 million degrees of freedom (number of basis functions) as our fixed

benchmark system and report the relative speedup with respect to the wall time on

48 processors. The use of any number of processors below 48 was infeasible owing to

the memory requirement posed by the system. As evident from the figure, the scaling
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Table 3.3: Comparison of classical and enriched finite element (FE) basis: Energy per
atom (E in Ha), degrees of freedom per atom (DoF), and total computation
CPU time (in CPU hours) for various gold nano-clusters.

Au1 Classical FE Enriched FE

E −17860.7623 −17860.7622

DoF 5, 040, 409 120, 361

CPU Hrs 612.22 43.39

Au2 Classical FE Enriched FE

E −17860.8001 −17860.8019

DoF 4, 659, 399 122, 300

CPU Hrs 22950.25 220

Au6 Classical FE Enriched FE

E − −17860.8249

DoF − 178, 906

CPU Hrs − 1924.42

Au14 Classical FE Enriched FE

E − −17860.8077

DoF − 88, 657

CPU Hrs − 3740.29

Au23 Classical FE Enriched FE

E − −17860.8045

DoF − 80, 397

CPU Hrs − 8171.40

is in good agreement with the ideal linear scaling behavior up to 384 processors, at

which we observe a parallel efficiency of 87.8%. However, we observe a considerable

deviation from linear scaling behavior at 768 processors with a parallel efficiency of

71.2%. This is attributed to the fact that at 768 processors the number of degrees

of freedom possessed by each processor falls below 5000, which is too low to achieve

good parallel scalability.
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Figure 3.5: Parallel scalability of the enriched finite element implementation.

3.8 Summary

We have developed a computationally efficient mixed basis, termed as enriched

finite element basis, for all-electron DFT calculations which combines the efficiency of

atomic-orbitals-type basis to capture the sharp variations of the electronic fields closer

to the atoms and the completeness of the classical finite element basis. This work

demonstrates the marked computational advantage afforded by the enriched finite

element basis over the classical finite element and the Gaussian basis for all-electron

DFT calculations.

The proposed method is developed based on the following key ideas. Firstly,

we augmented the classical spectral finite element basis with enrichment functions

constructed from single-atom Kohn-Sham orbitals and electrostatic potentials. The

enrichment functions are inexpensively pre-computed and stored by solving radial

Kohn-Sham equations for all atoms in the periodic table. The enrichment functions

are instrumental in capturing the sharp variations of the Kohn-Sham orbitals close to

an atom, thereby, mitigating the need of high mesh refinement near the atomic cores.
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Secondly, we used smooth cutoff functions to truncate the enrichment functions so as

to ensure locality as well as better conditioning of the enriched finite element basis.

Thirdly, we employ a divide and conquer strategy to construct an adaptive quadrature

grid to efficiently evaluate the integrals involving the enrichment functions. Next,

in order to convert the generalized Kohn-Sham eigenvalue problem to a standard

eigenvalue problem, we employed a computationally efficient scheme to evaluate the

inverse of the overlap matrix in the enriched finite element basis, by exploiting the

block-wise matrix inversion. The use of spectral finite elements along with Gauss-

Lobatto-Legendre quadrature rule is crucial in rendering the classical-classical block

of the overlap matrix diagonal, whereas the use of the block-wise matrix inversion is

crucial in utilizing the sparsity of the constituent matrices in the inverse of the overlap

matrix for an efficient evaluation of the ensuing matrix-vector products. Finally, we

employed the Chebyshev polynomial based filter to compute the occupied eigenstates.

Here, we exploited the finite element structure in the Hamiltonian and the inverse

overlap matrices to achieve an efficient and scalable implementation of the matrix-

vector products involved in the action of the Chebyshev filter on a subspace.

In terms of the numerical convergence afforded by the enriched finite element basis,

we demonstrated close to optimal rates of convergence for the ground-state energy

with respect to the finite element discretization. We demonstrated the accuracy

and performance of the proposed enriched finite element basis on: (i) silicon nano-

clusters of various sizes, with the largest cluster containing 8694 electrons; and (ii)

gold nano-clusters of various sizes, with the largest cluster containing 1817 electrons.

We obtained good agreement in the ground-state energies when compared to classical

finite element and Gaussian basis. In the larger clusters considered in this study, the

enriched finite element basis provides a staggering 50 − 300 fold speedup compared

to the classical finite element basis, which is attributed to a 30−fold reduction in the

degrees of freedom as well as a 20−fold reduction in the Chebyshev polynomial degree.
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We also observed a significant outperformance by the enriched finite element basis

relative to Gaussian basis (pc-3 and pc-4). Furthermore, we were able to perform

ground-state energy calculations for silicon clusters containing 280 and 621 atoms

(∼9000 electrons), for which the Gaussian basis failed to converge owing to linear

dependency of the basis. These large clusters underline the fact the proposed enriched

finite element based approach can easily perform all-electron calculations ranging up

to several thousands of electrons with moderate computational resources. In terms

of parallel scalability, we obtained good parallel efficiency with almost linear scaling

up to 384 processors for the benchmark system comprising of 280 atoms silicon nano-

cluster (∼4 million basis functions).

The proposed method offers a computationally efficient, systematically improv-

able, and scalable basis for large scale all-electron DFT calculations, applicable to

both light and heavy atoms. The use of the enrichment in developing linear-scaling

DFT algorithms for all-electron calculations based on finite element basis [53, 54]

or Tucker-tensor basis [149] holds good promise, and is currently being investigated.

Furthermore, the use of enrichment ideas in conjunction with reduced-order scaling

DFT algorithms can also be effectively utilized in the evaluation of the exact ex-

change operator, and forms a future direction of interest. Last, but not the least, the

enriched finite element basis can be useful in a systematic study of the applicability

and accuracy of various pseudopotential approximations on a wide range of materials

and external conditions.
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CHAPTER IV

Real Time Time-Dependent Density Functional

Theory Using Higher-order Finite Element

Methods

In this chapter, we present a computationally efficient approach to solve the

time-dependent Kohn-Sham (TDDFT) equations in real-time using (classical) higher-

order finite element spatial discretization, applicable to both pseudopotential and all-

electron calculations [56]. In particular, we use error estimates to guide our spatial

and temporal discretization. The temporal discretization related error analysis and

numerics are presented in the context of second-order Magnus propagator. We under-

line that the numerical strategies developed in this work lays the essential groundwork

for extending the key ideas of enriched finite element basis, explored in the ground-

state DFT (refer Chapter III), to the TDDFT case.

The rest of the chapter is organized as follows. Sec. 4.1 provides a brief overview

of real-time TDDFT (RT-TDDFT) and motivates the need for a higher-order finite

elements for RT-TDDFT calculations. We revisit the TDKS equations in Sec. 4.2

and discuss the form of the exact time-evolution operator. We introduce the notion

of semi- and full-discrete solution to the TDKS equation in Sec. 4.3. In Sec. 4.4,

we provide formal spatial and time discretization error estimates in the Kohn-Sham
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orbitals. Sec. 4.5 provides an efficient spatio-temporal discretization scheme guided

by the error estimates. In Sec. 4.6, we describe the various numerical implementation

aspects pertaining to spectral finite elements and the discrete second-order Magnus

operator. Sec. 4.7 details the convergence, accuracy, efficiency and parallel scalability

of the higher-order finite elements along with its relative performance against the

finite-difference method. Finally, we summarize our findings and outline the future

scope in Section 4.8.

4.1 Introduction

Time-dependent density functional theory (TDDFT), as we recall from Chap-

ter II, extends the keys ideas of ground-state density functional theory (DFT) to

electronic excitations and time-dependent processes. It relies on the Runge-Gross

theorem [5] to establish, for a given initial state, a one-to-one correspondence be-

tween the time-dependent external potential and the time-dependent electronic den-

sity, thereby making the electronic density the fundamental variable to define other

physical quantities. Subsequently, one invokes the Kohn-Sham ansatz [4] to reduce

the many-electron time-dependent Schrödinger equation to a set of effective single

electron equations, called the time-dependent Kohn-Sham (TDKS) equations. For all

practical purposes, it requires the use of approximate exchange-correlation function-

als, analogous to the ground-state case. However, TDDFT offers a great balance of

accuracy and computational efficiency which have enabled the study of a wide-range

of time-dependent phenomena—optical [150] and higher-order responses [151, 152],

electron transport [153, 154], charge-transfer excitations [155, 156], dynamics of chem-

ical bonds [157], multi-photon ionization [158, 159, 160], to name a few.

Given the practical significance of TDDFT calculations, there has been a growing

interest in developing faster and more accurate numerical methods for solving the

TDKS equations, over the past two decades. Broadly, these numerical methods can
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be classified into two categories, characterized by the strength of the light-matter

interaction, namely, linear-response time-dependent density functional theory (LR-

TDDFT) [161, 162] and real-time time-dependent density functional theory (RT-

TDDFT) [163, 164, 165]. As noted in Chapter I, the LR-TDDFT pertains to the

case of weak interaction between the external field and the system, wherein the field

induces a small perturbation from the ground-state. In such perturbative regime,

one can compute the linear density response from the ground-state itself, which in

turn can be used for the calculation of first-order response functions such as the

absorption spectra. The RT-TDDFT, on the other hand, is a more generic frame-

work which captures the electronic dynamics in real-time, thereby, allowing to handle

both perturbative and non-perturbative regimes (e.g., harmonic generation, electron

transport) in a unified manner. This involves propagating the TDKS equations in

real-time without any restriction to the external field in terms of its frequency, shape

or intensity. This work pertains to the more general RT-TDDFT.

Despite its generality in dealing with various time-dependent processes, there are

two major challenges associated with RT-TDDFT. The first stems from the quality

of the time-dependent exchange-correlation approximation used in the TDKS equa-

tions. The exact exchange-correlation functional is, in general, nonlocal in both

space and time [166, 167, 91] and has an initial-state dependence [168]. However, the

lack of insight into its time nonlocality and initial-state dependence has necessitated

the use of the adiabatic approximation, wherein the exchange-correlation functional

is defined in terms of the instantaneous electronic density. Although the applica-

bility of the adiabatic approximation to various systems and materials properties

are yet to be understood, they have shown remarkable agreement in estimating the

transition frequencies [150], and, in most cases, is the underlying approximation in

existing RT-TDDFT softwares. As with most of the numerical implementations in

RT-TDDFT, this work is restricted to the adiabatic approximation. The second chal-
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lenge stems from the huge computational cost associated with the non-linear TDKS

equations. Numerical simulations for large length- and time-scales are still compu-

tationally challenging, and warrant systematically improvable, accurate, efficient and

scalable spatio-temporal discretization. Addressing these numerical challenges con-

stitutes the main subject of this work.

Significant efforts have been made towards efficient RT-TDDFT numerical schemes

as extensions to popular ground-state DFT packages, borrowing from their respective

spatial discretization. These include planewave basis in QBox [169, 170]; linear combi-

nation of atomic orbitals (LCAO) in Siesta [171, 172] and GPAW [173]; Gaussian basis

in NWChem [26, 174]; and finite-difference based approaches in Octopus [175] and

GPAW [176, 177]. The planewave basis, owing to its completeness, provides system-

atic convergence, and affords an efficient treatment of the electrostatic interactions

through fast Fourier transforms. However, they remain restricted to only periodic

geometries and boundary conditions, thereby ill-equipped to describe systems with

defects, and non-periodic systems like isolated molecules and nano-clusters. Addi-

tionally, the nonlocality of the basis greatly hinders its parallel scalability. Atomic-

type orbitals, such as LCAO and Gaussian basis, owing to their atom-specific basis,

are well-suited to describe molecules and nano-clusters for both pseudopotential as

well as all-electron calculations. However, owing to the incompleteness of such ba-

sis, systematic convergence for all materials systems remains a concern. The finite

difference discretization (FD) provides systematic convergence, can handle a broad

range of boundary conditions, and exhibits improved parallel scalability in compar-

ison to planewave and atomic-type orbital basis. However, incorporating adaptive

spatial resolution in FD through a non-uniform grid remains non-trivial. The lesser

flexibility of FD to vary spatial resolution renders FD less straightforward to employ

in the context of singular potentials (as in the case of all-electron calculations). On

the other hand, the finite element basis [178, 109], being a local-piecewise polynomial
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basis, offers several key advantages—it provides systematic convergence; is amenable

to adaptive spatial resolution, and thereby suitable for both pseudopotential and all-

electron calculations; exhibits excellent parallel scalability owing to the locality of the

basis; and admits arbitrary geometries and boundary conditions. We add that many

of these advantages of finite element basis are also shared by the wavelets basis [179].

While, at present, the use of wavelets basis has been restricted to LR-TDDFT [180],

we expect them to be a competent basis for RT-TDDFT as well.

The efficacy of the finite element basis in terms of its accuracy, efficiency, scalabil-

ity and relative performance with other competing methods (e.g., planewaves, Gaus-

sian basis, FD), have been thoroughly studied in the context of ground-state DFT,

for both pseudopotential [39, 40, 41, 42, 44, 45, 46, 49, 50, 51, 181, 38, 182, 55, 183]

and all-electron calculations [39, 38, 55, 43, 47, 48, 52, 53, 37, 54, 183]. A similarly

comprehensive study on the efficacy of the finite element basis for RT-TDDFT is,

however, lacking. While two recent studies [184, 185] demonstrate the accuracy of

finite elements for RT-TDDFT, they remain restricted to only linear and quadratic

finite elements. As known from prior studies in ground-state DFT [186, 47, 38], lower-

order (linear and quadratic) finite elements require a large number of basis functions

(50, 000− 500, 000 per atom for pseudopotential calculations) to achieve chemical ac-

curacy, and hence, perform poorly in comparison to planewaves and other real-space

based methods. However, this shortcoming of linear and quadratic finite elements

for ground-state DFT calculations has been shown to be alleviated by the use of

higher-order finite elements [38]. In this work, we extend the use of higher-order fi-

nite elements to RT-TDDFT calculations and demonstrate the resulting advantages

over lower-order finite elements as well as finite-difference based methods.

The keys ideas in this work can be summarized as: (i) developing an a priori

mesh-adaption based on semi-discrete (discrete in space, continuous in time) error

analysis of the TDKS equations, and subsequently, obtaining an efficient finite element
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discretization for the problem; (ii) use of spectral finite elements in conjunction with

Gauss-Legendre-Lobatto quadrature to render the overlap matrix diagonal, thereby

simplifying the evaluation of the inverse of the overlap matrix that features in the

discrete time-evolution operator; (iii) obtaining an efficient temporal discretization

using a full-discrete error analysis of the TDKS equations, in the context of second-

order Magnus time-evolution operator; and (iv) using an adaptive Lanczos iteration to

efficiently compute the action of the Magnus propagator on the Kohn-Sham orbitals.

The a priori mesh-adaption in this work is performed by minimizing the discretization

error in the observable of importance, subject to fixed number of elements in the

finite element mesh. In particular, we minimize the semi-discrete error in the dipole

moment of the system with respect to the mesh-size distribution, h(r), to obtain an

efficient a priori spatial discretization. Having obtained the spatial discretization, an

efficient temporal discretization is obtained through a full-discrete error analysis, in

the context of second-order Magnus time-evolution operator. This is, to the best of

our knowledge, the first work that guides the spatio-temporal discretization for the

RT-TDDFT problem using error estimates.

We study the key numerical aspects of the proposed higher-order finite element

discretization for benchmark systems involving both nonlocal pseudopotential and

all-electron calculations. To begin with, we study the numerical rates of convergence

of the dipole moment with respect to spatial and temporal discretization. We use two

benchmark systems: (i) a pseudopotential calculation on methane molecule; and (ii)

an all-electron calculation on lithium hydride molecule, to demonstrate the rates of

convergence for linear, quadratic and fourth-order finite elements. We observe numer-

ical rates of convergence in the dipole moment close to the optimal rates obtained from

our error analysis. Next, we assess the computational advantage afforded by higher-

order finite elements over linear finite element, using the same benchmark systems.

We observe an extraordinary 100-fold speedup in terms of the total computational
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time for the fourth-order finite element over linear finite element, for calculations in

the regime of chemical accuracy. We also compare the relative performance of the

finite element discretization against finite-difference method for pseudopotential cal-

culations. We use aluminum clusters (Al2 and Al13), and the Buckminsterfullerene

(C60) molecule as our benchmark pseudopotential systems. The finite-difference based

calculations are done using the Octopus package [175]. Depending on the benchmark

system, the finite element discretization shows a 3- to 60-fold savings in computa-

tional time as compared to the finite-difference approach, for pseudopotential calcu-

lations. We also demonstrate the efficacy of finite elements for systems subjected to

strong perturbation by studying higher harmonic generation in Mg2. Additionally,

we demonstrate the competence of finite elements for all-electron calculations on two

benchmark systems—methane and benzene molecule. Lastly, we study the strong

scaling of our implementation and observe good parallel scalability with ∼75% effi-

ciency at 768 processors for a benchmark system of a Buckminsterfullerene molecule

containing 3.5 million degrees of freedom.

4.2 Real space time-dependent Kohn-Sham equations

We revisit the TDKS equations and elaborate on certain aspects of it, in the

context of real-space discretization. The TDKS equations, in atomic units, are given

as

i
∂ψα(r, t)

∂t
= HKS[ρ](r, t; R)ψα(r, t)

:=

[
−1

2
∇2 + vKS[ρ](r, t; R)

]
ψα(r, t) ,

(4.1)

where HKS[ρ](r, t; R), vKS[ρ](r, t; R) and ψα(r, t) represent the time-dependent Kohn-

Sham Hamiltonian, potential and orbitals, respectively, with the index α spanning

over all the Ne electrons in the system. R = {R1,R2, ...,RNa} denotes the collective
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representation for the positions of the Na atoms in the system. The electron density,

ρ(r, t), is given in terms of the Kohn-Sham orbitals as

ρ(r, t) =
Ne∑
α=1

|ψα(r, t)|2 . (4.2)

In the present work, we restrict ourselves to only non-periodic (clusters and molecules)

as well as spin-unpolarized systems. However, we note that all the ideas discussed

subsequently can be generalized to spin-polarized systems as well.

The time-dependent Kohn-Sham potential, vKS[ρ](r, t; R) (same as that defined

in Eq. 2.33), is given by

vKS[ρ](r, t; R) = vext(r, t; R) + vH[ρ](r, t) + vxc[ρ](r, t) , (4.3)

where vext(r, t; R) denotes the external potential, vH[ρ](r, t) denotes the Hartree po-

tential, and vxc[ρ](r, t) represents the exchange-correlation potential. We recall from

our discussion that the exchange-correlation potential, vxc[ρ](r, t), in general, is non-

local in both space and time [166, 167, 91], and has a dependence on the initial

many-electron wavefunction [168]. However, in absence of the knowledge of its true

form, most of the existing approximations use locality in time (adiabatic exchange-

correlation) and non-dependence on the initial many-electron wavefunction. This

allows for direct use of the existing exchange-correlation approximations used in

ground-state DFT. In the present work, we use the adiabatic local-density approxi-

mation (ALDA) [187], which is local in both space and time. Specifically, we use the

Ceperley-Alder form [112].

In Eq. 4.3, the Hartree potential is given by

vH[ρ](r, t) =

∫
ρ(r′, t)

|r− r′| dr
′ . (4.4)
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The external potential comprises of the nuclear potential vN(r; R) and the external

field vfield(r, t). The nuclear potential is given by

vN(r; R) =


vae

N = −
Na∑
I=1

ZI
|r−RI | , for all-electron ,

vpsp
N (R), for pseudopotential ,

(4.5)

where ZI and RI represent the atomic charge and position of the I th nucleus. For a

typical pseudopotential calculation, vpsp
N comprises of a local part, vloc

psp, and a non-

local part, vnl
psp. For the nonlocal part, the action on a function φ(r), written in the

Kleinman-Bylander form [188], is given by

vnl
psp(R)φ(r) =

Na∑
I=1

LI∑
l=0

l∑
m=−l

( ∫
uIlm(r′)δvIl (r

′)φ(r′) dr′∫
uIlm(r′)δvIl (r

′)uIlm(r′) dr′

)
δvIl (r)uIlm(r) , (4.6)

where l andm denote the angular and magnetic quantum number, respectively. uIlm(r)

is a pseudo-atomic eigenfunction for the atom at RI , δv
I
l (r) is the specified l angular

component short-ranged potential for the atom at RI , and LI is the maximum an-

gular quantum number specified for the atom at RI . The external field, vfield(r, t), is

typically provided as a laser pulse of the form

vfield(r, t) = −E0(t) · r , (4.7)

where E0(t) represents the time-dependent electric field.

As with the ground-state DFT , we reformulate the evaluation of the electrostatic

potentials as the solutions to the following Poisson equations (refer to Sec. 3.3)

− 1

4π
∇2vH(r, t) = ρ(r, t) , vH(r, t)|∂Ω = f(r,R) , (4.8a)

− 1

4π
∇2vae

N (r; R) = b(r,R) , vae
N (r)|∂Ω = −f(r,R) . (4.8b)
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In the above equation, b(r; R) = −
Na∑
I=1

ZIδ(r; RI), where δ(r; RI) is a bounded regu-

larization of the Dirac-delta distribution with compact support in a small ball around

RI and satisfies
∫
δ(r; RI) dr = 1; f(r, R) =

∑Na
I=1

ZI
|r−RI | ; and ∂Ω denotes the bound-

ary of a sufficiently large bounded domain Ω ∈ R3. We refer to previous works on

finite elements based ground-state DFT calculations [41, 44, 49, 38, 113] for a de-

tailed treatment of the local reformulation of the electrostatic potentials into Poisson

equations.

Formally, the solution to Eq. 4.1 can be written as

ψα(r, T ) = U(T, t0)ψα(r, t0)

= T exp

−i
T∫

t0

HKS[ρ](r, τ)dτ

ψα(r, t0) ,
(4.9)

where U(T, t0) represents the time-evolution operator (propagator) and T denotes

the time-ordering operator. Although the above equation provides a formal way to

directly evaluate the orbitals at any time, t, resolving the implicit time-dependence

of the Kohn-Sham Hamiltonian through the density is too difficult. However, one can

exploit the following composition property of the propagator,

U(t2, t0) = U(t2, t1)U(t1, t0) , t0 < t1 < t2 , (4.10)

to accurately resolve the implicit time-dependence in HKS[ρ](r, t). To elaborate, the

above property allows us to rewrite the propagator U(T, t0) as

U(T, t0) =
N−1∏
i=0

U(ti+1, ti) , (4.11)

where tN = T and ti+1 − ti = ∆ti, with ∆ti denoting the variable time step. Conse-

quently, one can divide the evaluation of the orbitals at T into N short-time propa-
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gation, given by

ψα(r, t+ ∆t) = U(t+ ∆t)ψα(r, t)

= T exp

−i
t+∆t∫
t

HKS[ρ](r, τ)dτ

ψα(r, t) .
(4.12)

In addition to resolving the implicit time-dependence in HKS[ρ](r, t), the short time

propagation provides the numerical advantage of containing the norm of the expo-

nent in Eq. 4.9. To elaborate, any efficient numerical scheme to compute the action

of the propagator on a wavefunction involves either a power series expansion or a

subspace projection of the propagator, wherein the number of terms in the power

series or the dimension of the subspace required for a given accuracy are dependent

on norm of the exponent. Moreover, there is a physical upper bound imposed on

the time step based on the maximum frequency, ωmax, that one wants to resolve in

their calculations, i.e., ∆tmax = 1
ωmax

. Typically, ωmax is determined by the eigen-

spectrum of the ground-state Hamiltonian or by the frequency of the applied field,

vfield. We note that, in practice, one uses a time step ∆t� ∆tmax owing to the need

of containing time-discretization errors that arise in approximating the continuous

propagator, T exp
{
−i
∫ t+∆t

t
HKS[ρ](r, τ)dτ

}
. We discuss these approximations and

their associated time-discretization errors in greater detail in Sec. 4.3 and Sec. 4.4.

4.3 Semi- and full-discrete solutions

In this section, we introduce the notion of semi-discrete (discrete in space but

continuous in time) and full-discrete solution to the TDKS equation. The full-discrete

solution is provided in the context of second-order Magnus propagator.

To begin with, we provide some of the finite element essentials. In the finite ele-

ment method, the spatial domain of interest (Ω ∈ R3) is divided into non-overlapping
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sub-domains, known as finite elements. Each finite element (e) is characterized by its

spatial extent (Ωe) and size (he). Subsequently, the finite element basis is constructed

from piecewise Lagrange interpolating polynomials that have a compact support on

the finite elements (i.e., on Ωe), thus rendering locality to these basis functions. We

note that there is an abundance of choice in terms of the form and order of the poly-

nomial functions that can be used in constructing the finite element basis. We refer

to Refs. [109] and [189] for a comprehensive discourse on the subject.

4.3.1 Semi-discrete solution

To begin with, we express the semi-discrete time-dependent Kohn-Sham orbitals,

ψhα(r, t), as

ψhα(r, t) =

nh∑
j=1

Nj(r)ψjα(t) , s.t. ψhα(r, t)|∂Ω = 0 ,∀t ≥ 0 , (4.13)

where {Nj(r)} represents the set of finite element basis functions, each of polynomial

order p; and ψjα(t) denote the time-dependent expansion coefficient corresponding to

the Nj basis function. Using the discretization of Eq. 4.13 in the TDKS equation

(Eq. 4.1) results in following discrete equation,

iMψ̇α(t) = Hψα(t), (4.14)

where H and M denote the discrete Hamiltonian and overlap matrix, respectively,

and ψα(t) denotes the vector containing the coefficients ψjα(t). The solutions to the

above equation are called the semi-discrete solutions to the TDKS equation. In the
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above equation, the discrete Hamiltonian Hjk is given by

Hjk =
1

2

∫
Ω

∇Nj(r) · ∇Nk(r) dr

+

∫
Ω

vhKS[ρh](r, t)Nj(r)Nk(r) dr ,

(4.15)

where vhKS[ρh](r, t) is the discrete Kohn-Sham potential corresponding to the semi-

discrete density, ρh(r, t) (i.e., evaluated from the solutions of Eq. 4.14). vhKS[ρh](t) is,

in turn, given by

vhKS[ρh](r, t) = vhH[ρh](r, t) + vhN(r)

+ vxc[ρ
h](r, t) + vfield(r, t) ,

(4.16)

where vhH[ρh](r, t) and vhN(r) denote the discrete Hartree and nuclear potential, re-

spectively. We note that for the pseudopotential case, vhN is same as the continuous

potential vpsp
N and hence vhN is relevant only in the all-electron case. Similar to ψhα(r, t),

the discrete electrostatic potentials (vhH[ρh](r, t) and vhN(r)) are obtained by discretiz-

ing them in the finite element basis, i.e.,

vhH[ρh](r, t) =

nh∑
j=1

Nj(r)φjH(t) , (4.17)

vae,h
N (r) =

nh∑
j=1

Nj(r)φjN , (4.18)

satisfying the boundary conditions presented in Eq. 3.5 in a discrete sense. Subse-

quently, the expansion coefficients φjH(t) and φjN can be obtained by using the above

expressions in Eq. 4.8, and solving the resulting system of linear equations

KφH(t) = 4πc(t) , and (4.19)
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KφN = 4πd , (4.20)

where Kjk =
∫

Ω
∇Nj(r).∇Nk(r) dr; φH and φN are the vectors containing the coeffi-

cients φjH(t) and φjN , respectively; cj(t) =
∫

Ω
ρh(r, t)Nj(r) dr; and dj =

∫
Ω
b(r,R)Nj(r) dr.

4.3.2 Full-discrete solution

We now discuss the full-discrete solution to the TDKS equations, in the context of

second-order Magnus propagator. To begin with, we note that the overlap matrix M,

being positive definite, guarantees the existence of a unique positive definite square

root, M1/2. This allows us to rewrite Eq. 4.14 as

i ˙̄ψα(t) = H̄ψ̄α(t) , (4.21)

where ψ̄α(t) = M1/2ψα(t) and H̄ = M−1/2HM−1/2. To put it differently, ψ̄α(t) is

the representation of ψhα(r, t) in a Löwdin orthonormalized basis [190]. We remark

that the practicality of the above reformulation in terms of ψ̄α is contingent upon

the efficient evaluation of M−1/2. To that end, we present an efficient scheme for

computing M−1/2 in Sec. 4.6.

We invoke the Magnus ansatz to write the solution of Eq. 4.21 as

ψ̄α(t) = exp(A(t))ψ̄α(0) , ∀t ≥ 0 . (4.22)

The operator exp (A(t)) is termed as the Magnus propagator, where A(t) is given

explicitly as [191, 192]

A(t) =

t∫
0

−iH̄(τ)dτ

− 1

2

t∫
0

 τ∫
0

−iH̄(σ)dσ,−iH̄(τ)

 dτ + . . . ,

(4.23)
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where [X,Y] = XY−YX denotes the commutator. Although known explicitly, the

above equation is not practically useful, given the difficulty in resolving the implicit

dependence of H̄(t) on ρh(r, t). As mentioned in Section 4.2, we resolve the implicit

dependence by using the composition property of a propagator (cf. Eq. 4.11). This

allows us to rewrite the Magnus propagator as

exp(A(t)) =
N∏
n=1

exp(An) , (4.24)

where An is given by Eq. 4.23, albeit with the limits of integration modified to

[tn−1, tn].

In practice, one replaces the exact An with an approximate operator Ãn, which

involves, first, a truncation of the Magnus expansion (defined in Eq. 4.23), and sec-

ond, an approximation for the time integrals in the truncated Magnus expansion.

Truncating the Magnus expansion after the first p terms results in a time-integration

scheme of order 2p. In this work, we restrict ourselves to the second-order Magnus

propagator, i.e., obtained by truncating the Magnus expansion after the first term.

Furthermore, we use a mid-point integration rule to evaluate
∫ tn
tn−1
−iH̄(τ)dτ . In

particular, the action of the second-order Magnus propagator, with a mid-point inte-

gration rule, on the set of Kohn-Sham orbitals {ψ̄1, ψ̄2, . . . , ψ̄Ne} which defines the

density ρh(r, t), is given by

eÃnψ̄α(t) = e−iH̄[ρh(tn−1+ ∆t
2 )]∆tψ̄α(t) , (4.25)

where ∆t = tn − tn−1 and H̄
[
ρh
(
tn−1 + ∆t

2

)]
is the time-continuous Kohn-Sham

Hamiltonian described by ρh(r, t) at the future time instance tn−1 + ∆t/2. We re-

mark that H̄
[
ρh
(
tn−1 + ∆t

2

)]
, being dependent on a future instance of the density, is

evaluated either by an extrapolation of H̄ using m(> 2) previous steps or by a second

(or higher) order predictor-corrector scheme.
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Thus, time-discrete approximation to ψ̄α(tn), denoted by ψ̄
n
α, is given by

ψ̄
n
α = exp(Ãn)ψ̄

n−1
α . (4.26)

Consequently, the orbitals ψh,nα (r) defined by the coefficient vectors ψn
α = M−1/2ψ̄

n
α

represent the full-discrete solution to the TDKS equation.

4.4 Discretization Errors

In this section, we provide the discretization error in the Kohn-Sham orbitals

which will later on form the basis of our efficient spatio-temporal discretization. To

begin with, we decompose the discretization error in the Kohn-Sham orbitals into

two parts, one arising due to spatial discretization and the other due to temporal dis-

cretization. To elaborate, if ψhα(r, tn) and ψh,nα (r) represent the semi-discrete (discrete

in space but continuous in time) and full-discrete solution to ψα(r, tn), respectively,

then one decompose the discretization error in ψα(r, tn) as

ψα(r, tn)− ψh,nα (r) =
(
ψα(r, tn)− ψhα(r, tn)

)
+
(
ψhα(r, tn)− ψh,nα (r)

) (4.27)

We present the spatial and temporal error estimates (i.e., error estimates for the

two right-hand terms in the above equation in Sec. 4.4.1 and Sec. 4.4.2), respectively.

The detailed derivation for these estimates are presented in Sec. 4.4.4 and in Sec. 4.4.5.
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4.4.1 Spatial discretization error

If ψhα(r, t) denotes the semi-discrete solution to ψα(r, t), then the following bound

holds true (see Sec. 4.4.4 for the derivation)

Ne∑
α

∥∥ψα − ψhα∥∥H1(Ω)
(t) ≤ C(t)

∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C(t)

∑
e

hpe

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C(t)
∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
,

(4.28)

for some {s1,α} , {s2,α} , and s3 ∈ [0, t] .

In the above equations, he and Ωe denote the size and spatial-extent of the e−th

finite element, respectively. C(t) is a time-dependent constant independent of the

finite element mesh. |.|p,Ωe is the semi-norm in Hp(Ωe). The importance of the above

equations lies in relating the semi-discrete error to the mesh parameters (i.e., he and

p), and hence, is instrumental in obtaining an efficient spatial discretization (discussed

in Sec. 4.5). In particular, the above equation informs that the semi-discrete error in∥∥ψα − ψhα∥∥H1(Ω)
decays as O(hpe).

4.4.2 Time discretization error

We now present the formal bounds on the time discretization error in ψα(r, t).

Assuming each time interval [tn−1, tn] to be of length ∆t, we obtain the following

bound for the time-discretization error for a second-order Magnus propagator with a

mid-point integration rule (see Sec. 4.4.5 for the derivation)

∥∥ψhα(tn)− ψh,nα
∥∥
L2(Ω)

≤ C(∆t)2tn max
0≤t≤tn

∥∥ψhα(t)
∥∥
H1(Ω)

. (4.29)
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The essence of the above relation lies in relating the time-discretization error to∥∥ψhα(t)
∥∥
H1(Ω)

, which in turn is related to the spatial discretization. Thus, the above

equation, is crucial in selecting an efficient ∆t, for a given finite element mesh (see

Sec. 4.5).

We now present the derivation for the estimates presented in Eq. 4.28 and Eq. 4.29.

We remark that the proof is rather involved and a reader may choose to skip it and

proceed directly to Sec. 4.5, without any loss of flow or generality. Before proceeding

to the proofs, we introduce some notations, key assumptions and preliminaries.

4.4.3 Notations, assumptions and preliminaries

For a bounded closed domain Ω and bounded time interval [0, T ], we denote

ΩT = Ω × [0, T ]. For any two complex-valued functions f(r, t), g(r, t) : ΩT → C,

the inner product (f, g)(t) =
∫

Ω
f(r, t)g†(r, t) dr, where g†(r, t) denotes the complex

conjugate of g(r, t). Correspondingly, the norm ||f ||L2(Ω)(t) =
√

(f, f)(t). Thus, we

extend the definition of the standard L2(Ω) and H1(Ω) spaces to define

L2(ΩT ) =
{
f(r, t)

∣∣ ||f ||L2(Ω)(t) ≤ ∞, ∀t ∈ [0, T ]
}
, (4.30a)

H1(ΩT ) =

{
f(r, t)

∣∣∣∣ f, ∂f∂t ,Df ∈ L2(ΩT )

}
, (4.30b)

H1
0 (ΩT ) =

{
f(r, t)

∣∣ f ∈ H1(ΩT ), f(r, t)|∂Ω = 0, ∀t ∈ [0, T ]
}
, (4.30c)

where Df denotes the spatial partial derivatives of f , and ∂Ω denotes the boundary of

Ω. Additionally, we define two more spaces relevant to the Poisson problem (Eq. 4.8),

H1
Z(ΩT ) =

{
f(r, t)

∣∣∣∣∣ f ∈ H1(ΩT ), f(r, t)|∂Ω =
Na∑
I=1

ZI
|r−RI |

∀t ∈ [0, T ]

}
(4.31a)

H1
−Z(Ω) =

{
f(r)

∣∣∣∣∣ f ∈ H1(Ω), f(r)|∂Ω =
Na∑
I=1

−ZI
|r−RI |

}
. (4.31b)
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For conciseness of notation, in all our subsequent discussion, we drop the argument

t from the inner product as well as all the Lp and H1 norms. Thus, any occurrence

of (. , .), ||.||Lp(Ω), and ||.||H1(Ω) are to treated as time-dependent, unless otherwise

specified.

We list certain weak assumptions that we invoke throughout our error-estimates.

A1 The time-dependent Kohn-Sham orbitals and their spatial derivatives are bounded

and have a compact support on Ω, which, in turn, is a large but a bounded sub-

set of R3. To elaborate, ψα ∈ H1
0 (ΩT ) ∩ L∞(ΩT ).

A2 The nuclear potential (in the all-electron case), due to the use of regularized

nuclear charge distribution b(r; R) (defined in Eq. 4.8b), is bounded, i.e., vae
N ∈

L∞(R3).

A3 The local part of the pseudopotential is bounded, i.e., vloc
psp ∈ L∞(R3).

A4 The short-ranged potentials appearing in the nonlocal part of the pseudopoten-

tial are bounded, i.e., δvIl ∈ L∞(Ω).

A5 The exchange-correlation potential and its derivative with respect to density

are both bounded, i.e., vxc[ρ], v′xc[ρ] ∈ L∞(R3),∀t ∈ [0, T ].

A6 The external field is bounded, i.e., vfield ∈ L∞(R3),∀t ∈ [0, T ].

A7 The induced operator (or matrix) norm of the Kohn-Sham Hamiltonian and

the Laplace operator are equivalent, i.e., ∃ time-independent bounded constants

C1, C2 such that:

C1 ‖∇2φ‖L2(Ω) ≤ ‖HKSφ‖L2(Ω) ≤ C2 ‖∇2φ‖L2(Ω) ,∀φ ∈ H1
0 (Ω), ∀t ∈ [0, T ].
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A8 The first and second time-derivatives of the Kohn-Sham potential are bounded,

i.e.,
∥∥ d
dt
vKS(t)

∥∥
L2(Ω)

≤ C1 and
∥∥∥ d2

dt2
vKS(t)

∥∥∥
L2(Ω)

≤ C2 ,∀t ∈ [0, T ], where C1, C2

are time-independent bounded constants.

We remark that while the validity of A1 and A7 are apparent in the case of pseudopo-

tential calculations, for the all-electron case, it is reasonable to assume the same owing

to the use of regularized nuclear charge distribution b(r; R). Using these assumptions,

we derive certain formal bounds that will subsequently be used in deriving the error

estimates. To this end, given two different densities ρΨ1(r, t) and ρΨ2(r, t) defined by

the set of orbitals Ψ1 = {ψ1,1, ψ1,2, . . . , ψ1,Ne} and Ψ2 = {ψ2,1, ψ2,2, . . . , ψ2,Ne}, respec-

tively, we seek to bound ‖vKS[ρΨ1 ]ψ1,α − vKS[ρΨ2 ]ψ2,α‖L2(Ω) in terms of (ψ1,α − ψ2,α)

and (ρΨ1 − ρΨ2). We remark that all the subsequent results hold ∀α ∈ {1, 2, . . . , Ne},

unless otherwise specified. Moreover, the constants C, its subscripted forms (i.e., C1,

C2, etc.), and primed forms (C ′), that appear subsequently, are positive and bounded.

To begin with, we note, through straightforward use of Cauchy-Schwarz and

Sobolev inequalities, that

‖ρΨ1 − ρΨ2‖L1(Ω) ≤ C
Ne∑
α=1

‖ψ1,α − ψ2,α‖L2(Ω) , (4.32a)

‖ρΨ1 − ρΨ2‖L2(Ω) ≤ C

Ne∑
α=1

‖ψ1,α − ψ2,α‖H1(Ω) . (4.32b)

Furthermore, for the convolution integral of ρ and 1
|r| , denoted by |r|−1∗ρ =

∫
Ω

ρ(x)
|r−x|dx,

we have ∥∥|r|−1 ∗ ρ
∥∥
L∞(Ω)

≤ C
∥∥|r|−1

∥∥
L2(Ω)

‖ρ‖L2(Ω) , (4.33a)

∥∥|r|−1 ∗ ρ
∥∥
L2(Ω)

≤ C
∥∥|r|−1

∥∥
L2(Ω)

‖ρ‖L1(Ω) , (4.33b)

where we have used the Young’s inequality along with the fact that |r|−1 ∈ L2(Ω).

We now bound ‖vKS[ρΨ1 ]ψ1,α − vKS[ρΨ2 ]ψ2,α‖L2(Ω), by decomposing vKS into its
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Hartree (vH), nuclear (vN), exchange-correlation (vxc) and field (vfield) components,

and bounding each of the components. For the Hartree potential, we have, for ∀v ∈

H1
0 (ΩT ),

(vH[ρΨ1 ]ψ1,α − vH[ρΨ2 ]ψ2,α, v) = (vH[ρΨ1 ](ψ1,α − ψ2,α), v) + (vH[ρΨ1 − ρΨ2 ]ψ2,α, v) .

(4.34)

Thus, using result of Eq. 4.33b along with the fact that ψ2,α ∈ L∞(ΩT ) (from A1)

and vH[ρΨ1 ] ∈ L∞(ΩT ) (from Eq. 4.33a), it follows that

|(vH[ρΨ1 ]ψ1,α − vH[ρΨ2 ]ψ2,α, v)| ≤ C
(
‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω)

)
+ C

(
‖ρΨ1 − ρΨ2‖L1(Ω) ‖v‖L2(Ω)

)
.

(4.35)

Next, for the exchange-correlation potential, we use the mean value theorem to

note that

vxc[ρΨ1 ]ψ1,α − vxc[ρΨ2 ]ψ2,α = (vxc[ρX ] + 2χ2
αv
′
xc[ρX ])(ψ1,α − ψ2,α) , (4.36)

where ρX is defined by the orbitals χα = λαψ1,α + (1− λα)ψ2,α, for some λα ∈ [0, 1].

Using the above relation, we have, ∀v ∈ H1
0 (ΩT ),

|(vxc[ρΨ1 ]ψ1,α − vxc[ρΨ2 ]ψ2,α, v)| =
∣∣((vxc[ρX ] + 2χ2

αv
′
xc[ρX ])(ψ1,α − ψ2,α), v

)∣∣
≤
∥∥vxc[ρX ] + 2χ2

αv
′
xc[ρX ]

∥∥
L∞(Ω)

‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω)

≤ C ‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω) ,

(4.37)

where we have used the boundedness assumption on vxc and v′xc (assumption A5).

Similarly, using the boundedness assumptions on vae
N (A2), vpsp

N ( A3, A4), and
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vfield (A6) it is easy to observe, ∀v ∈ H1
0 (ΩT ),

|(vae
N ψ1,α − vae

N ψ2,α, v)| ≤ C ‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω) . (4.38)

|(vpsp
N ψ1,α − vpsp

N ψ2,α, v)| ≤ C ‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω) . (4.39)

|(vfieldψ1,α − vfieldψ2,α, v)| ≤ C ‖ψ1,α − ψ2,α‖L2(Ω) ‖v‖L2(Ω) . (4.40)

We now define the weak solution of the TDKS equation (Eq. 4.1) as follows: given

an initial state ψα(r, 0) ∈ H1
0 (Ω), we seek ψα(r, t) ∈ H1

0 (ΩT ) such that

i

(
∂ψα
∂t

, v

)
=

1

2
(∇ψα,∇v) + (vKS[ρ]ψα, v) , ∀v ∈ H1

0 (ΩT ) , and ∀t ∈ [0, T ] . (4.41)

Similarly, the weak solutions to the Poisson problems defined in Eq. 4.8 are defined

to be vH(r, t) ∈ H1
Z(ΩT ), and vae

N (r,R) ∈ H1
−Z(Ω), satisfying,

(∇vH,∇v) = 4π(ρ, v), ∀v ∈ H1
0 (ΩT ), and ∀t ∈ [0, T ] (4.42a)

(∇vae
N ,∇v) = 4π (b, v) , ∀v ∈ H1

0 (Ω) . (4.42b)

4.4.4 Derivation of spatial discretization error

We denote Xh,p ∈ H1(Ω) to be the finite-dimensional space of dimension nh,

spanned by finite element basis functions of order p. Further, we denote Xh,p
0 =

Xh,p ∩ H1
0 (Ω). We now define the semi-discrete solution, ψhα(r, t), to Eq. 4.41 as

follows: given an initial state ψhα(r, 0) ∈ Xh,p
0 , we seek ψhα(r, t) ∈ Xh,p

0 × [0, T ] such

that

i

(
∂ψhα
∂t

, vh
)

=
1

2

(
∇ψhα,∇vh

)
+
(
vhKS[ρh]ψhα, v

h
)
, ∀vh ∈ Xh,p

0 ×[0, T ], and ∀t ∈ [0, T ] ,

(4.43)
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where ρh(r, t) =
Ne∑
α=1

∣∣ψhα(r, t)
∣∣2 and vhKS[ρh](r, t) = vhH[ρh](r, t)+vhN(r; R)+vxc[ρ

h](r, t)+

vfield(r, t).

We now elaborate on the different terms appearing in the expression for vhKS[ρh](r, t).

First, to define appropriate boundary conditions for vhH[ρh](r, t) and vhN(r), we intro-

duce the function fh(r; R) =
∑nh

j=1 qjNj(r), with

qj =


∑Na

I=1
ZI

|rj−RI | , if jth node (positioned at rj) is a boundary node

0, otherwise ,

as an interpolation of the boundary conditions of Eqs. 4.8 into Xh,p. This allows

us to define the discrete counterpart of the weak solution described in Eq. 4.42a as

vhH[ρh](r, t) = vhH,0[ρh](r, t) + fh(r; R), with vhH,0[ρh](r, t) ∈ Xh,p
0 × [0, T ], such that

(∇vhH,0,∇vh) = 4π(ρh, vh)− (∇fh,∇vh), ∀vh ∈ Xh,p
0 × [0, T ] , and ∀t ∈ [0, T ] .

(4.44)

Similarly, we define the discrete analog of the weak solution defined in Eq. 4.42b as

vae,h
N (r; R) = vae,h

N,0 (r; R)− fh(r; R), with vae,h
N,0 (r; R) ∈ Xh,p

0 , such that

(∇vae,h
N,0 ,∇vh) = 4π(b, vh) + (∇fh,∇vh), ∀vh ∈ Xh,p

0 . (4.45)

For the pseudopotential case, vhN(r; R) is same as the continuous function vpsp
N (r; R).

We now introduce the concept of Ritz projection, Ph, which will be used in sub-

sequent error estimates. The Ritz projection Ph : H1
0 (ΩT )→ Xh,p

0 × [0, T ] is defined

through the following Galerkin orthogonality condition,

(
∇(ψ − Phψ),∇vh

)
= 0, ∀ψ ∈ H1

0 (ΩT ), ∀vh ∈ Xh,p
0 × [0, T ], and ∀t ∈ [0, T ] .

(4.46)

This allows us to use some standard finite element error estimates [193] to bound
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‖ψ − Phψ‖L2(Ω).

In order to prove the bound of Eq. 4.28, we, first, present a general case with

no assumptions on the initial orbitals ψα(r, 0). We then present the special case

of the initial orbitals being ground-state Kohn-Sham orbitals, as a corollary to the

general case. Furthermore, we note that an error estimate for
∥∥ψα − ψhα∥∥H1(Ω)

, in

turn, requires an estimate for
∥∥ψα − ψhα∥∥L2(Ω)

. Therefore, in our subsequent analysis

we report estimates for both
∥∥ψα − ψhα∥∥L2(Ω)

and
∥∥ψα − ψhα∥∥H1(Ω)

. We emphasize that,

although the numerical studies presented in this work have used hexagonal elements,

the following results apply to other shapes of finite element, and hence, in our analysis

we denote the mesh using the generic term ‘triangulation’ [193]. In particular, we take

a triangulation T h,p of pth order finite elements covering the domain Ω.

Proposition IV.1. Assuming uniqueness and existence of the solution to Eqs. 4.41

and 4.43, we obtain the following bounds on the finite element semi-discrete approxi-

mation error to the Kohn-Sham orbitals:

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(t) ≤ C1e

C2t(t+ 1)
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C1e

C2t(t+ 1)
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C1e
C2tt

∑
e

hp+1
e

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ eC2t

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) ,

(4.47a)

97



Ne∑
α=1

∥∥ψα − ψhα∥∥H1(Ω)
(t) ≤ C3e

C2t(t+ 1)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C3e

C2t(t+ 1)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C3e
C2tt

∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ C3e

C2th−1
min

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) ,

(4.47b)

where e denotes a finite element of mesh size he and cover Ωe in the triangulation

T h,p, hmin represents the smallest element in the triangulation T h,p, and |.|p,Ωe is the

semi-norm in Hp(Ωe). The arguments s1,α, s2,α, and s3 are defined as

s1,α = arg max
0≤s≤t

‖ψα − Phψα‖L2(Ω) (s), s2,α = arg max
0≤s≤t

∥∥∥∥∂ψα∂t − Ph∂ψα∂t
∥∥∥∥
L2(Ω)

(s), and

s3 = arg max
0≤s≤t

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

(s) .

(4.48)

Proof. Taking v = vh ∈ Xh,p
0 ×[0, T ] in Eq. 4.41 (continuous solution) and subtracting

it from Eq. 4.43 (semi-discrete solution), we get ∀vh ∈ Xh,p
0 × [0, T ],

i

(
∂
(
ψα − ψhα

)
∂t

, vh

)
=

1

2

(
∇
(
ψα − ψhα

)
,∇vh

)
+
(
vKS[ρ]ψα − vhKS[ρh]ψhα, v

h
)
. (4.49)

We rewrite ψα − ψhα = (ψα −Phψα) + (Phψα − ψhα) and derive bounds on each of the

terms. For simpler notation, we use uα = ψα − Phψα and wα = (Phψα − ψhα). Thus,

using ψα − ψhα = uα + wα, we rewrite Eq. 4.49 as

i

(
∂wα
∂t

, vh
)

= −i
(
∂uα
∂t

, vh
)

+
1

2

(
∇uα,∇vh

)
+

1

2

(
∇wα,∇vh

)
+
(
vKS[ρ]ψα − vhKS[ρh]ψhα, v

h
)
.

(4.50)
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Taking vh = wα, we have

i

(
∂wα
∂t

, wα

)
= −i

(
∂uα
∂t

, wα

)
+

1

2
(∇uα,∇wα) +

1

2
(∇wα,∇wα)

+
(
vKS[ρ]ψα − vhKS[ρh]ψhα, wα

)
.

(4.51)

Noting that

1

2

d

dt
‖wα‖2

L2(Ω) = Re

{(
∂

∂t
wα, wα

)}
, (4.52)

and comparing the imaginary parts of Eq. 4.51, we have

1

2

d

dt
‖wα‖2

L2(Ω) = −Re

{(
∂uα
∂t

, wα

)}
+

1

2
Im {(∇uα,∇wα)}+

1

2
Im {(∇wα,∇wα)}

+ Im
{(
vKS[ρ]ψα − vhKS[ρh]ψhα, wα

)}
(4.53)

In the above equation, we note that (∇uα,∇wα) = 0, as a consequence of Eq. 4.46.

Furthermore, (∇wα,∇wα) is real. Thus, Eq. 4.53 simplifies to,

1

2

d

dt
‖wα‖2

L2(Ω) = −Re

{(
∂uα
∂t

, wα

)}
+ Im

{(
vKS[ρ]ψα − vhKS[ρh]ψhα, wα

)}
≤
∣∣∣∣(∂uα∂t , wα

)∣∣∣∣+
∣∣(vKS[ρ]ψα − vhKS[ρh]ψhα, wα

)∣∣ . (4.54)

We now decompose vKS into its components to rewrite the second term on the right

of the above equation as

(
vKS[ρ]ψα − vhKS[ρh]ψhα, wα)

)
=
(
vxc[ρ]ψα − vxc[ρ

h]ψhα, wα
)

+
(
vH[ρ]ψα − vH[ρh]ψhα, wα

)
+
((
vH[ρh]− vhH[ρh]

)
ψhα, wα

)
+
(
vNψα − vNψ

h
α, wα

)
+
(
vNψ

h
α − vhNψhα, wα

)
+
(
vfieldψα − vfieldψ

h
α, wα

)
.

(4.55)

We note that the term
(
vNψ

h
α − vhNψhα, wα

)
, on the right side of the above equation,
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is relevant only in the all-electron case (i.e., zero for the pseudopotential case as

vN = vhN). Combining the results from Eqs. 4.35, 4.37, 4.38, 4.39, and 4.40, with

v = wα, and using the fact that ψhα ∈ L∞(Ω), it is straightforward to show that

∣∣(vKS[ρ]ψα − vhKS[ρh]ψhα, wα)
)∣∣ ≤ C0

∥∥ψα − ψhα∥∥L2(Ω)
‖wα‖L2(Ω)

+ C1

(∥∥ψα − ψhα∥∥L2(Ω)
+
∥∥ρ− ρh∥∥

L1(Ω)

)
‖wα‖L2(Ω)

+ C2

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

‖wα‖L2(Ω)

+ C3

∥∥vN − vhN
∥∥
L2(Ω)

‖wα‖L2(Ω) .

(4.56)

Using the above result in Eq. 4.54, we obtain

d

dt
‖wα‖L2(Ω) ≤

∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

+ C0

∥∥ψα − ψhα∥∥L2(Ω)

+ C1

(∥∥ψα − ψhα∥∥L2(Ω)
+
∥∥ρ− ρh∥∥

L1(Ω)

)
+ C2

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

+ C3

∥∥vN − vhN
∥∥
L2(Ω)

≤
∥∥∥∥∂uα∂t

∥∥∥∥
L2(Ω)

+ C0

∥∥ψα − ψhα∥∥L2(Ω)

+ C2

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

+ C3

∥∥vN − vhN
∥∥
L2(Ω)

+ C4

Ne∑
β=1

∥∥ψβ − ψhβ∥∥L2(Ω)
,

(4.57)

where we have used Eq. 4.32a in the second line to simplify the term involving

100



∥∥ρ− ρh∥∥
L1(Ω)

. Summing the above equation over all index α, we have

d

dt

Ne∑
α=1

‖wα‖L2(Ω) ≤
Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

+ C5

∥∥ψα − ψhα∥∥L2(Ω)

)
+ C6

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

+ C7

∥∥vN − vhN
∥∥
L2(Ω)

≤
Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

+ C5 ‖uα‖L2(Ω) + C5 ‖wα‖L2(Ω)

)

+ C6

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

+ C7

∥∥vN − vhN
∥∥
L2(Ω)

,

(4.58)

where in the second line we have split ψα − ψhα into uα and wα. Now, integrating the

above equation, gives

Ne∑
α=1

‖wα‖L2(Ω) (t) ≤
Ne∑
α=1

‖wα‖L2(Ω) (0) + C5

t∫
0

Ne∑
α=1

‖wα‖ (s) ds

+ C5

t∫
0

Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

(s) + ‖uα‖L2(Ω) (s)

)
ds

+ C8

t∫
0

(∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

(s) +
∥∥vN − vhN

∥∥
L2(Ω)

)
ds .

(4.59)

Noting that uα = ψα − Phψα, ∂uα
∂t

= ∂ψα
∂t
− Ph ∂ψα∂t , and using the definitions of s1,α,

s2,α, and s3 (cf. Eq. 4.48), we can simplify the above equation as

Ne∑
α=1

‖wα‖L2(Ω) (t) ≤
Ne∑
α=1

‖wα‖L2(Ω) (0) + C5

t∫
0

Ne∑
α=1

‖wα‖ (s) ds

+ C5t

Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

(s2,α) + ‖uα‖L2(Ω) (s1,α)

)

+ C8t
(∥∥vH[ρh]− vhH[ρh]

∥∥
L2(Ω)

(s3) +
∥∥vN − vhN

∥∥
L2(Ω)

)
.

(4.60)
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Invoking the Grönwall’s inequality on the above equation yields

Ne∑
α=1

‖wα‖L2(Ω) (t) ≤ eC5t

Ne∑
α=1

‖wα‖L2(Ω) (0)

+ eC5tC5t

Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

(s2,α) + ‖uα‖L2(Ω) (s1,α)

)

+ C8e
C5tt

(∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

(s3) +
∥∥vN − vhN

∥∥
L2(Ω)

)
.

(4.61)

Noting that ‖wα‖L2(Ω) (0) ≤
∥∥ψα − ψhα∥∥L2(Ω)

(0), we rewrite the above equation as

Ne∑
α=1

‖wα‖L2(Ω) (t) ≤ C5e
C5tt

Ne∑
α=1

(∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

(s2,α) + ‖uα‖L2(Ω) (s1,α)

)

+ C8e
C5tt

(∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

(s3) +
∥∥vN − vhN

∥∥
L2(Ω)

)
+ eC5t

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) .

(4.62)

Bounds on the terms involving ‖uα‖L2(Ω),
∥∥∂uα

∂t

∥∥
L2(Ω)

,
∥∥vH[ρh]− vhH[ρh]

∥∥
L2(Ω)

, and∥∥vN − vhN
∥∥
L2(Ω)

, can now be obtained using the Ceá’s lemma [193]— a standard finite

element error estimates. The Ceá’s lemma, in simple terms, is stated as follows. Let

φ ∈ H1(ΩT ) and φh ∈ V h ⊆ Xh,p. If y = φ − φh satisfies the following Galerkin

orthogonality condition,

(∇y,∇vh)(t) = 0, ∀vh ∈ V h and ∀t ∈ [0, T ] , (4.63)

then

‖y‖L2(Ω) ≤ C
∑
e

hp+1
e |φ|p+1,Ωe

, and (4.64a)

‖y‖H1(Ω) ≤ C
∑
e

hpe |φ|p+1,Ωe
. (4.64b)

By definition of Ritz projection (Eq. 4.46), y = uα = ψα−Phψα satisfies the Eq. 4.63.
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Further, taking the time-derivative of Eq. 4.46, it is easy to verify that y = ∂uα
∂t

=

∂ψα
∂t
−Ph ∂ψα∂t also satisfies the Eq. 4.63. Thus, applying the Ceá’s lemma (Eq. 4.64a)

to uα and ∂uα
∂t

yields

‖uα‖L2(Ω) ≤ C
∑
e

hp+1
e |ψα|p+1,Ωe

, and (4.65)

∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

≤ C
∑
e

hp+1
e

∣∣∣∣∂ψα∂t
∣∣∣∣
p+1,Ωe

. (4.66)

We further simplify the above inequality, by using Eq. 4.1

∥∥∥∥∂uα∂t
∥∥∥∥
L2(Ω)

≤ C
∑
e

hp+1
e

∣∣∣∣∂ψα∂t
∣∣∣∣
p+1,Ωe

= C
∑
e

hp+1
e

∣∣∣∣−1

2
∇2ψα + vKS[ρ]ψα

∣∣∣∣
p+1,Ωe

≤ C
∑
e

hp+1
e

(
|ψα|p+3,Ωe

+ |(vH + vN + vxc + vfield)ψα|p+1,Ωe

)
≤ C

∑
e

hp+1
e

(
|ψα|p+3,Ωe

+ |ψα|p+1,Ωe

)
,

(4.67)

which follows from the definition of the |.|p+3 semi-norm and the boundedness as-

sumptions on vN, vxc, and vfield (assumptions A2–A6). Lastly, it is straightforward

to observe that both y = vH[ρh] − vhH[ρh] and y = vN − vhN satisfy Eq. 4.63 (take the

difference of Eqs. 4.44 and 4.42a; and Eqs. 4.45 and 4.42b, respectively). Thus, once

again, applying the Ceá’s lemma (Eq. 4.64a), we get

∥∥vH[ρh]− vhH[ρh]
∥∥
L2(Ω)

≤ C
∑
e

hp+1
e

∣∣vH[ρh]
∣∣
p+1,Ωe

. (4.68a)

∥∥vN − vhN
∥∥
L2(Ω)

≤ C
∑
e

hp+1
e |vN|p+1,Ωe

. (4.68b)
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Using Eqs. 4.65, 4.67, and 4.68 in Eq. 4.62, we have

Ne∑
α=1

‖wα‖L2(Ω) (t) ≤ C9e
C5tt

∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C9e

C5tt
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C9e
C5tt

∑
e

hp+1
e

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ eC5t

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) .

(4.69)

Finally, expressing ψα − ψhα = wα + uα and using the result of Eq. 4.65 in the above

equation, we obtain

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(t) ≤ C

∑
e

hp+1
e

Ne∑
α=1

|ψα|p+1,Ωe
(s1,α)

+ C9e
C5tt

∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C9e

C5tt
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C9e
C5tt

∑
e

hp+1
e

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ eC5t

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0)

≤ C10e
C5t(t+ 1)

∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C10e

C5t(t+ 1)
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C10e
C5tt

∑
e

hp+1
e

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ eC5t

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) .

(4.70)
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This concludes the proof of Eq. 4.47a.

In order to derive estimates for
∑Ne

α=1

∥∥ψα − ψhα∥∥H1(Ω)
(t), we use the inverse esti-

mate [178] for wα = (Phψα − ψhα) ∈ Xh,p
0 to obtain

‖wα‖H1(Ω) (t) ≤ Ch−1
min ‖wα‖L2(Ω) (t) . (4.71)

Additionally, applying the Ceá’s lemma (Eq. 4.64b) on uα = (ψα − Phψα), we have

‖uα‖H1(Ω) (t) ≤ C
∑
e

hpe |ψα|p+1,Ωe
(t) . (4.72)

Combining Eqs. 4.71 and 4.72, we get

Ne∑
α

∥∥ψα − ψhα∥∥H1(Ω)
(t) ≤

Ne∑
α=1

(
‖uα‖H1(Ω) (t) + ‖wα‖H1(Ω) (t)

)
≤ C11

∑
e

hpe

Ne∑
α=1

|ψα|p+1,Ωe
(t) + C12h

−1
min

Ne∑
α=1

‖wα‖L2(Ω) (t) .

(4.73)

Finally, using the inequality obtained in Eq. 4.69 in the above equation and using the
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fact that he/hmin ≤ C for all the elements in T h,p, yields

Ne∑
α

∥∥ψα − ψhα∥∥H1(Ω)
(t) ≤ C11

∑
e

hpe

Ne∑
α=1

|ψα|p+1,Ωe
(s1,α)

+ C13e
C5tt

∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C13e

C5tt
∑
e

hpe

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C13e
C5tt

∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ C12e

C5th−1
min

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0)

≤ C14e
C5t(t+ 1)

∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C14e

C5t(t+ 1)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C14e
C5tt

∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
+ C14e

C5th−1
min

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(0) .

(4.74)

This concludes the proof for Eq. 4.47b.

Corollary IV.2. If the initial orbitals ψα(r, 0) are obtained from a ground-state DFT

calculation, wherein [38]

∥∥ψα − ψhα∥∥L2(Ω)
(0) ≤ C

∑
e

hp+1
e

(
|ψα|p+1,Ωe

+
∣∣vH[ρh]

∣∣
p+1,Ωe

+ |vN|p+1,Ωe

)
, (4.75)

106



the results of Proposition IV.1 can be simplified, ∀t ∈ [0, T ], to

Ne∑
α=1

∥∥ψα − ψhα∥∥L2(Ω)
(t) ≤ C ′1e

C2t(t+ 1)
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C ′1e

C2t(t+ 1)
∑
e

hp+1
e

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C ′1e
C2t(t+ 1)

∑
e

hp+1
e

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
.

(4.76a)

Ne∑
α

∥∥ψα − ψhα∥∥H1(Ω)
(t) ≤ C ′3e

C2t(t+ 1)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α)

)
+ C ′3e

C2t(t+ 1)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+3,Ωe

(s2,α)
)

+ C ′3e
C2t(t+ 1)

∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
(4.76b)

The last equation concludes the proof of Eq. 4.28.

4.4.5 Derivation of time discretization error

Before proceeding to the proof for Eq. 4.29, we note that for an exponential

operator of the form eL(t), the partial derivative with respect to t is given by [191],

∂

∂t
eL(t) = dexpL(t)

(
L̇(t)

)
eL(t), (4.77)

where dexpX(Y) =
∑∞

k=0
1

(k+1)!
adkX(Y). The operator adkX(Y) is defined recursively

as

adkX(Y) = adX

(
adk−1

X (Y)
)
, (4.78)

with ad1
X(Y) = XY−YX, and ad0

X(Y) = Y.

We now present the proof for Eq. 4.29 in the following Proposition. In the follow-
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ing analysis, we assume each time interval [tn−1, tn] to be of length ∆t. Moreover, for

simpler terminology, we term eÃn (cf. Eq. 4.25) as the second-order Magnus propa-

gator without explicitly spelling out the mid-point integration rule invoked in it.

Proposition IV.3. For a second-order Magnus propagator with a mid-point integra-

tion rule, we obtain the following bound for the time-discretization error in ψhα

∥∥ψhα(tn)− ψh,nα
∥∥
L2(Ω)

≤ C(∆t)2tn max
0≤t≤tn

∥∥ψhα(t)
∥∥
H1(Ω)

, (4.79)

Proof. To begin with, we introduce the following operators

Sk0 = eAkeAk−1 . . . eA1 =
k−1∏
l=0

eAk−l for 0 < k ≤ n , S0
0 = I (4.80a)

Rn
k = eÃneÃn−1 . . . eÃk+1 =

n−k−1∏
l=0

eÃn−l for 0 ≤ k < n , Rn
n = I . (4.80b)

To elaborate, Sk0 denotes the exact Magnus propagator from t0 to tk, and Rn
k denotes

the second-order Magnus propagator from tk to tn. Let ψh
α(tn) and ψh,n

α denote

the vectors containing the finite element expansion coefficients for ψhα(tn) and ψh,nα ,

respectively. Further, let ψ̄α(tn) = M1/2ψα(tn) and ψ̄
n
α = M1/2ψn

α. Thus, we can

rewrite the time-discretization error in ψ̄α(tn) in terms of the following telescopic

series,

ψ̄α(tn)− ψ̄n
α =

(
Rn
nS

n
0 −Rn

0S0
0

)
ψ̄α(0) =

n∑
k=1

(
Rn
kS

k
0 −Rn

k−1S
k−1
0

)
ψ̄α(0) . (4.81)
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Noting that Sk0 = eAkSk−1
0 and Rn

k−1 = Rn
ke

Ãk , we rewrite the above equation as

ψ̄α(tn)− ψ̄n
α =

n∑
k=1

(
Rn
kS

k
0 −Rn

k−1S
k−1
0

)
ψ̄α(0) =

n∑
k=1

(
Rn
ke

AkSk−1
0 −Rn

ke
ÃkSk−1

0

)
ψ̄α(0)

=
n∑
k=1

Rn
k

(
eAk − eÃk

)
Sk−1

0 ψ̄α(0)

=
n∑
k=1

Rn
k

(
eAk − eÃk

)
ψ̄α(tk−1) .

(4.82)

Since Rn
k is a unitary operator, bounding

(
ψ̄α(tn)− ψ̄n

α

)
reduces to finding the bound

on
(
eAk − eÃk

)
ψ̄α(tk−1). To this end, we extend the proof presented in [192] to the

non-linear case of the TDKS equations. To begin with, we split
(
eAk − eÃk

)
ψ̄α(tk−1)

as

(
eAk − eÃk

)
ψ̄α(tk−1) =

(
eAk − eĀk

)
ψ̄α(tk−1) +

(
eĀk − eÃk

)
ψ̄α(tk−1) , (4.83)

where Āk =
∫ tk
tk−1
−iH̄[ρ(t)]dt. The two terms on the right hand side of the above

equation denote the error due to truncation of the Magnus expansion and the time

integral approximation, respectively.

In order to bound the error in the first term on the right side of Eq. 4.83, we

introduce the following auxiliary function

ξkα(t) = eBk(t)ψ̄α(tk−1), ∀t ∈ [tk−1, tk] , (4.84)

where Bk(t) =
∫ t
tk−1
−iH̄[ρ(τ)]dτ . We remark that ξkα(t) denotes the time-evolution

of ψ̄α(tk−1) using the truncated the Magnus expansion, in the time interval [tk−1, tk].

Differentiating the above equation and using the result of Eq. 4.77 gives

ξ̇
k

α(t) = dexpBk(t)(Ḃk(t))e
Bk(t)ξkα(tk−1) = −iḠk(t)ξ

k
α(t) , ∀t ∈ [tk−1, tk], (4.85)
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where Ḡk(t) = idexpBk(t)(Ḃk(t)). We observe that Ḡk is Hermitian. This can be

proven as follows. First, note that for two Hermitian (or skew-Hermitian) matrices

X, Y, the operator adX(Y) is skew-Hermitian. Second, owing to the Hermiticity of

H̄, both Bk(t) =
∫ t
tk−1
−iH̄[ρ(τ)]dτ and Ḃk(t) = −iH̄(t) (∀t ∈ [tk−1, tk]) are skew-

Hermitian. Thus, by expanding dexpBk(t)(Ḃk(t)) and using the above two arguments,

it can be shown that Ḡk is Hermitian. We now introduce the function γkα(t) =

ψ̄α(t)− ξkα(t), ∀t ∈ [tk−1, tk]. It is important to note that

γkα(tk) = ψ̄α(tk)− ξkα(tk) =
(
eAk − eĀk

)
ψ̄α(tk−1) , (4.86)

where the second equality follows from the definition of ξkα (Eq. 4.84) and the fact that

Bk(tk) =
∫ tk
tk−1
−iH̄[ρ(τ)]dτ = Āk. Thus, the problem of bounding

(
eAk − eĀk

)
ψ̄α(tk−1)

(the first term in Eq. 4.83) reduces to bounding γkα(tk). To this end, we proceed, by

first expressing the time-derivative of γkα as

γ̇kα(t) = −iḠk(t)γ
k
α(t)− i(H̄(t)− Ḡk(t))ψ̄α(t), ∀t ∈ [tk−1, tk] , (4.87)

which follows from Eqs. 4.21 and 4.85. Now, taking the dot product with γkα(t)† on

both sides yields

γkα(t)†γ̇kα(t) = −iγkα(t)†Ḡk(t)γ
k
α(t)− iγkα(t)†

(
H̄(t)− Ḡk(t)

)
ψ̄α(t) . (4.88)

We note that 2Re{γkα(t)†γ̇kα(t)} = d
dt

∥∥γkα∥∥2
, where ‖.‖ represents the Euclidean norm

of a vector. Further, we note γkα(t)†Ḡk(t)γ
k
α(t) is real, owing to the Hermiticity of Ḡ.

Thus, comparing the real parts of the above equation results in

1

2

d

dt

∥∥γkα∥∥2
= Im{γkα(t)†

(
H̄(t)− Ḡk(t)

)
ψ̄α(t)} . (4.89)
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Consequently,

d

dt

∥∥γkα∥∥ ≤ ∥∥(H̄(t)− Ḡk(t)
)
ψ̄α(t)

∥∥ . (4.90)

Time integrating the above equation yields

∥∥γkα∥∥ (tk) =
∥∥ψ̄α(tk)− ξkα(tk)

∥∥ =
∥∥∥(eAk − eĀk

)
ψ̄α(tk−1)

∥∥∥
≤

tk∫
tk−1

∥∥(H̄(τ)− Ḡk(τ)
)
ψ̄α(τ)

∥∥ dτ , (4.91)

where we have used the result of Eq. 4.86 along with the fact that
∥∥γkα∥∥ (tk−1) =

ψ̄α(tk−1) − ξkα(tk−1) = 0 (by the definition of ξkα(t), cf. Eq. 4.84). Thus, the prob-

lem of bounding
∥∥(eAk − eĀk

)
ψ̄α(tk−1)

∥∥ further simplifies to finding a bound for∫ tk
tk−1

∥∥(H̄(τ)− Ḡk(τ)
)
ψ̄α(τ)

∥∥ dτ . To this end, we use the fact that Ḡk(τ) = idexpBk(τ)(Ḃk(τ))

and the definition of the operator dexpX(Y), to obtain

H̄(τ)− Ḡk(τ) = − i
2

[Bk(τ), Ḃk(τ)] + h.o.t = − i
2

τ∫
tk−1

[H̄(τ), H̄(σ)]dσ + h.o.t. , (4.92)

where h.o.t. stands for higher-order terms. In order to bound [H̄(τ), H̄(σ)], we begin

by rewriting H̄ in terms of Ū and V̄, i.e., its kinetic and Kohn-Sham potential

components. To elaborate, Ū = M−1/2UM−1/2 and V̄ = M−1/2VM−1/2, with

Ujk =
1

2

∫
Ω

∇Nj(r).∇Nk(r) dr , (4.93)

Vjk =

∫
Ω

vhKS[ρh](r, t)Nj(r)Nk(r) dr . (4.94)

Noting that Ū is time-independent, we Taylor expand H̄(σ) about τ to rewrite
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[H̄(τ), H̄(σ)] as

[H̄(τ), H̄(σ)] = [H̄(τ), V̄
′
(τ)](σ − τ) +O((σ − τ)2) , (4.95)

where V̄
′
(τ) = d

dt
(V̄(t))|σ=τ . Thus, using the above relation in Eq. 4.92 we get

(H̄(τ)− Ḡk(τ))ψ̄α(τ) =
i

4

(
[H̄, V̄

′
(τ)]ψ̄α(τ)

)
(τ − tk−1)2 +O((τ − tk−1)3) . (4.96)

We now invoke the boundedness assumption on V̄
′

(assumption A8), and the norm

equivalence of Ū and H̄ (assumption A7), to obtain

∥∥(H̄(τ)− Ḡk(τ))ψ̄α(τ)
∥∥ ≤ C(τ − tk−1)2

∥∥ψ̄α(τ)
∥∥
Ū

+O((τ − tk−1)3). (4.97)

Thus, substituting the above result into Eq. 4.91 provides the following bound

∥∥∥(eAk − eĀk

)
ψ̄α(tk−1)

∥∥∥ ≤ C(∆t)3 max
tk−1≤t≤tk

∥∥ψ̄α(t)
∥∥
Ū
. (4.98)

This provides a bound for the first term (truncation error) on the right side of Eq. 4.83.

In order to bound the second term on the right side of Eq. 4.83, i.e., the error due to

mid-point quadrature rule, we begin with the following identity

eĀk − eÃk =

1∫
0

d

dx

(
e(1−x)ÃkexĀk

)
dx =

1∫
0

e(1−x)Ãk(Āk − Ãk)e
xĀk dx. (4.99)

Furthermore, we note that for a function f(x) if F1/2 denotes the midpoint approx-

imation to F =
∫ b
a
f(x) dx, then

∣∣F − F1/2

∣∣ ≤ C(b − a)3f ′′(η), for some η ∈ [a, b].

Thus, for the mid-point integration rule,
∥∥∥Āk − Ãk

∥∥∥ ≤ C(∆t)3
∥∥∥ d2

dt2
(H̄)|t′

∥∥∥ for some

t′ ∈ [tk−1, tk]. Using this result along with the unitarity of the operators e(1−x)Ãk and
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exĀk , we obtain

∥∥∥(eĀk − eÃk

)
ψ̄α(tk−1)

∥∥∥ ≤ ∥∥∥(Āk − Ãk)
∥∥∥ ≤ C(∆t)3

∥∥∥∥ d2

dt2
(H̄)|t′

∥∥∥∥ , for some t′ ∈ [tk−1, tk] .

(4.100)

Noting that d2

dt2
H̄ = d2

dt2
V̄, ∀t ∈ [tk−1, tk], and invoking the boundedness assumption

on d2

dt2
V̄ (assumption A8), we get

∥∥∥(eĀk − eÃk

)
ψ̄α(tk−1)

∥∥∥ ≤ C(∆t)3 . (4.101)

Thus, using the results of Eqs. 4.98 and 4.101 in Eq. 4.82 along with the unitarity of

the operators Rn
k , yields

∥∥ψ̄α(tn)− ψ̄n
α

∥∥ ≤ C(∆t)2tn max
t0≤t≤tn

∥∥ψ̄α(t)
∥∥
Ū
. (4.102)

Finally, noting that the coefficient vectors for the spatial fields ψhα(r, tn) and ψh,nα (r)

are given by M−1/2ψ̄
h
α(tn) and M−1/2ψ̄

h,n
α , respectively, it is now trivial to arrive at

Eq. 4.29 from the above equation.

4.5 Efficient spatio-temporal discretization

We now utilize our spatial and temporal discretization error estimates (Eqs. 4.28

and 4.29) to obtain an efficient spatio-temporal discretization. We follow along the

lines of [194, 113, 38] to obtain an efficient spatial discretization by minimizing the

semi-discrete error in the dipole moment at a given time, subject to a fixed number

of finite elements. We remark that the choice of dipole moment as an observable

for this exercise is solely a matter of convenience, and any observable which can be

inexpensively evaluated in terms of the density or the Kohn-Sham orbitals can be

used instead. Representing the x-component of the continuous and the semi-discrete
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dipole moment at time t as µx(t) and µhx(t), respectively, we have

|µx(t)− µhx(t)| ≤ ‖x‖L2(Ω)

∥∥ρ(t)− ρh(t)
∥∥
L2(Ω)

≤ C
∥∥ρ(t)− ρh(t)

∥∥
L2(Ω)

≤ C

Ne∑
α=1

∥∥ψα − ψhα∥∥H1(Ω)
(t) .

(4.103)

Now using Eq. 4.28 in the above equation, results in

|µx(t)− µhx(t)| ≤ C1(t)
∑
e

hpe

Ne∑
α=1

(
|ψα|p+1,Ωe

(s1,α) + |ψα|p+1,Ωe
(s2,α) + |ψα|p+3,Ωe

(s2,α)
)

+ C1(t)
∑
e

hpe

(∣∣vH[ρh]
∣∣
p+1,Ωe

(s3) + |vN|p+1,Ωe

)
,

(4.104)

for some {s1,α}, {s2,α}, and s3 ∈ [0, t]. We now use the definition of the semi-norm (in

terms of partial spatial derivative) and introduce an element size distribution, h(r),

to rewrite the above equation as

|µx(t)− µhx(t)| ≤ C1(t)

∫
Ω

hp(r)

[
Ne∑
α=1

(
D̄p+1ψα(s1,α) + D̄p+1ψα(s2,α) + D̄p+3ψα(s2,α)

)]
dr

+ C1(t)

∫
Ω

hp(r)
(
D̄p+1vH[ρh] + D̄p+1vN

)
dr ,

(4.105)

where D̄kf =
∑
|l|=k |Dlf |, with Dl being the l−th order spatial derivative (i.e.,

Dlf = ∂lf
∂xl1∂yl2∂zl3

, with l = {l1, l2, l3} and |l| = l1 + l2 + l3). Thus, obtaining the

optimal element size distribution, for a fixed number of elements (Nelem), reduces to

the following minimization problem,

min
h(r)

∫
Ω

hp(r)
Ne∑
α=1

Lα(r) dr ; subject to :

∫
Ω

dr

h3(r)
= Nelem , (4.106)
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where

Lα(r) = D̄p+1ψα(s1,α) + D̄p+1ψα(s2,α) + D̄p+3ψα(s2,α) + D̄p+1vH[ρh](s3) + D̄p+1vN

(4.107)

Solving the Euler-Lagrange equation corresponding to the above optimization prob-

lem yields the following element size distribution,

h(r) = E

[
Ne∑
α=1

Lα(r)

] −1
p+3

(4.108)

where the constant E is evaluated from the constraint on the number of elements. We

remark that although the above discretization approach requires a priori knowledge

of the unknown ψα(s1,α), ψα(s2,α), and vH[ρh](s3), we use the ground-state atomic

solutions to the Kohn-Sham orbitals and the electrostatic potentials to construct

the adaptive finite element mesh for all calculations. Although, this does not in-

form us about the optimal discretization required near the nuclei, this affords an

efficient strategy to accurately handle the regions away from the nuclei, wherein the

time-dependent Kohn-Sham orbitals, typically, have similar decay properties as their

ground-state counterparts. We note that, in practice, the finite element mesh ob-

tained can deviate from h(r) due to conformity and quality requirements, especially

in the context of hexahedral elements that are employed in this work. However,

the resulting finite element mesh broadly captures the optimal coarse-graining rate,

and has the general adaptive characteristics that significantly enhance the computa-

tional efficiency, as demonstrated in Sec. 4.7. Figure 4.1 shows an adaptive mesh for

all-electron Al2 generated using this approach.

Having determined the required spatial discretization, a suitable temporal dis-

cretization for the given finite element mesh can be estimated by using the time-

discrete error bound for the dipole moment. To elaborate, if µh,nx denotes the x-
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Figure 4.1: Adaptive finite element mesh for all-electron Al2 (slice shown on the plane of
the molecule)

component of the full-discrete dipole moment, then using the result in Eq. 4.29 it is

straightforward to show,

|µhx(tn)− µh,nx | ≤ Ctn(∆t)2

Ne∑
α=1

max
0≤t≤tn

∥∥ψhα(t)
∥∥
H1(Ω)

. (4.109)

As is evident from the above relation, our choice of ∆t is intrinsically tied to the

spatial discretization through
∥∥ψhα(t)

∥∥
H1(Ω)

. Furthermore, we remark that although

the presence of tn in the above inequality indicates increasing time-discretization error

with time, it does not pose a limitation in containing the errors due to the fact that

tn ≤ T , where, typically, T lies between 10−30 fs. Now, in order to evaluate a suitable

∆t that can contain the above error bound to a fixed tolerance, we need to estimate

the values of
∥∥ψhα(t)

∥∥
H1(Ω)

and the value of the constant, C, featuring in it. The

value of
∥∥ψhα(t)

∥∥
H1(Ω)

can be reliably approximated from its ground-state value, i.e.,∥∥ψhα(0)
∥∥
H1(Ω)

. The characteristic value of the constant, C, is determined from atomic

RT-TDDFT calculations at different ∆t. To elaborate, for a given atom, the constant
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can be evaluated from a linear fit to the log-log plot of the error |µhx(tn)− µh,nx | with

respect to ∆t. For a multi-atom system, we use the least ∆t obtained for each of its

constituent atomic species.

4.6 Numerical Implementation

We now discuss some of the key numerical aspects involved in our implementation

of the finite element discretization of the TDKS equations.

4.6.1 Higher-order spectral finite elements

Finite-elements, with their varied choices of forms and orders [189, 109], have been

widely used in several engineering applications. While the use of linear finite elements

remains popular in engineering applications that warrant moderate levels of accuracy,

it remains computationally inefficient to attain chemical accuracy in electronic struc-

ture calculations. To highlight, the use of linear finite elements have been shown

to require large number of basis functions per atom (∼100, 000) to achieve chemical

accuracy in ground-state DFT calculations [186, 47]. However, this shortcoming has

been, demonstrably, mitigated by the use of higher-order finite elements [113, 38]. In

this work, we explore the possibility of similar gains from using higher-order finite

elements for RT-TDDFT calculations. Unlike conventional finite elements, we employ

spectral finite elements for the spatial discretization of the TDKS equations. We refer

to Sec. 3.4.2 for a discussion on spectral finite elements and its key advantages. A

major advantage of the spectral finite elements is realized when used in conjunction

with the Gauss-Legendre-Lobatto (GLL) quadrature rule for evaluating the integrals

involved in the overlap matrix M, wherein the quadrature points are coincident with

the nodal points in the spectral finite elements. Such a combination renders M diag-

onal, thereby greatly simplifying the evaluation of M−1/2 (or M1/2) that features in

the discrete TDKS equations (cf. Eq. 4.21). We note that while an n point rule in
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the conventional Gauss quadrature rule integrates polynomials exactly up to degree

2n − 1, an n point GLL quadrature rule integrates polynomials exactly only up to

degree 2n−3. Therefore, we employ the GLL quadrature rule only in the construction

of M, while the more accurate Gauss quadrature rule is used for all other integrals

featuring in the discrete TDKS equations. We refer to Motamarri et al. [38] for a

discussion on the accuracy and sufficiency of GLL quadrature in the evaluation of

overlap matrix M. For the sake of brevity, we use the term finite elements instead of

spectral finite elements in all subsequent discussions in this chapter.

4.6.2 Approximating the second-order Magnus operator

The form of the Magnus operator, as shown in Eq. 4.26, calls for efficient means

of evaluating exp(Ãn)ψ̄
n−1
α . Direct means of evaluating the matrix exp(Ãn) remain

computationally prohibitive beyond small sizes of Ãn. Thus, one needs to evaluate

the action of exp(Ãn) on ψ̄
n−1
α in an iterative fashion. Several such schemes are in use

in RT-TDDFT calculations, namely, Taylor series expansion, Chebyshev polynomial

expansion, split-operator techniques, and Krylov subspace projection method. We

refer to Castro et al. [195] and references there-within for a detailed discussion on each

of these schemes. In this work, we adopt the Krylov subspace projection method for

its superior efficiency and robustness compared to the other methods. To elaborate,

the Krylov subspace projection allows for an a posteriori error control mechanism

based on error estimates that will be described below. On the other hand, polynomial

expansion methods such as Taylor series or Chebyshev polynomial expansion offer no

such a posteriori mechanism. While one can use a priori estimates, based on the

spectral radius of Ãn, the number of terms required in the polynomial expansion,

for a desired accuracy, remain highly over-estimated. Furthermore, in the case of

split-operator, the efficacy of it rests on operating back and forth between Fourier

and real space, so as to diagonalize, in succession, the kinetic and the potential part
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of the Kohn-Sham Hamiltonian. Thus, it involves the use of fast Fourier transforms

(FFTs) which pose serious challenges to the parallel scalability of the code. The

Krylov subspace projection, on the other hand involves operations only in real space

and affords good parallel scalability (as will be shown in Sec. 4.7.4).

We now discuss the details of the Krylov subspace projection approach for the

second-order Magnus operator. To begin with, a k-dimensional Krylov subspace for

the matrix Ãn and the vector ψ̄ (a generic representation for the Kohn-Sham vectors

ψ̄
n−1
α ) is given by

Kk(Ãn, ψ̄) = span{ψ̄, Ãnψ̄, Ã
2

nψ̄, . . . , Ã
k−1

n ψ̄}. (4.110)

The Lanczos iteration provides a recipe for generating an orthonormal set of vectors

Qk = {q1, q2, . . . , qk}, with q1 = ψ̄/
∥∥ψ̄∥∥, that spans the same space as Kk(Ãn, ψ̄).

In particular, the Lanczos iteration, allows for the following approximation to eÃnψ̄,

denoted by zk ∈ Kk(Ãn, ψ̄), given by

zk =
∥∥ψ̄∥∥Qke

QT
k ÃnQke1 =

∥∥ψ̄∥∥Qke
Tke1 , (4.111)

where Tk = QT
k ÃnQk is a tridiagonal matrix, and e1 is the i-th unit vector in Ck.

As is evident from the above form, the problem is now reduced to the evaluation

of exp(Tk), wherein Tk is a small matrix of size k × k, and hence, exp(Tk) can be

evaluated inexpensively either through Taylor series expansion or exact eigenvalue

decomposition of Tk. The error, εk, incurred in the above approximation is given

by [196]

εk =
∥∥∥eÃnψ̄ −

∥∥ψ̄∥∥Qke
Tke1

∥∥∥ ≈ βk+1,k

∥∥ψ̄∥∥ ∣∣∣[eTk]
k,1

∣∣∣ , (4.112)

where βk+1,k is the (k+ 1, k) entry of Tk+1 = QT
k+1ÃnQk+1. Thus, the above relation

provides a robust and inexpensive scheme to adaptively determine the dimension of
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the Krylov subspace by checking if εk is below a set tolerance. An economic choice for

the tolerance for εk is determined from atomic RT-TDDFT calculations, such that it

achieves < 10 meV accuracy in the excitation energies. For a multi-atom system, we

employ the lowest such tolerance obtained for each of the constituent atomic species.

Finally, we comment upon the numerical details of the second-order Magnus prop-

agator with midpoint integration rule. As discussed in Sec. 4.3.2, the use of second-

order Magnus propagator with midpoint integration rule, i.e., eÃn , requires the knowl-

edge of H̄ at a future time instant i.e., H̄[tn−1 + ∆t/2], which is a priori unknown. A

fully consistent approach involves, for a given ψ̄
n−1

, the following steps: (i) approx-

imate H̄[tn−1 + ∆t/2] through extrapolation over previous instants of H̄; (ii) use it

to obtain ψ̄
n
, and then evaluate H̄[tn]; (iii) re-evaluate H̄[tn−1 + ∆t/2] by interpo-

lating between H̄[tn−1] and H̄[tn]; and (iv) repeat steps (ii)–(iii) until convergence.

Although robust and accurate, this approach comes at a huge computational cost

arising out of the Lanczos procedure at each iterate of the self-consistent iteration.

An efficient and sufficiently accurate approach is to use a predictor-corrector method

to, first, predict H̄[tn−1 + ∆t/4] through an extrapolation (linear or higher-order)

from previous instants of H̄, use it to propagate ψ̄
n−1

to ψ̄
n−1/2

, which is then used

to evaluate H̄[tn−1 +∆t/2]. We refer to [197] for the details of the predictor-corrector

scheme. We remark that this predictor-corrector scheme is accurate to O(∆t2), and

hence, does not affect the results of our time-discretization error estimates.

4.7 Results and discussion

In this section, we discuss the accuracy, rate of convergence, computational ef-

ficiency and the parallel scalability of higher-order finite element discretization in

conjunction with second-order Magnus propagator, for both pseudopotential and all-

electron RT-TDDFT calculations. Based on the system, we use hexahedral spectral

finite elements of polynomial order 1 to 5, denoted as HEX8, HEX27, HEX64SPEC,
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HEX125SPEC, and HEX216SPEC, respectively. For the pseudopotential calcula-

tions, we provide comparison, in terms of accuracy and performance, of the higher-

order finite elements against the finite-difference method. The finite-difference based

calculations are performed using the Octopus [175] software package. In all our finite-

difference based calculations, we have used a stencil of order 4 in each direction

(default stencil order in Octopus). All the pseudopotential calculations are done

using the norm-conserving Troullier-Martins pseudopotentials [102]. For all calcula-

tions, the ground-state Kohn-Sham orbitals are used as the initial states. We use the

Chebyshev filter acceleration technique (refer to Sec. 3.6 or [198, 143, 38]) to efficiently

compute the ground-state, for all the calculations done using finite elements. All our

scalability as well as benchmark studies demonstrating the computational efficiency

are conducted on a parallel computing cluster with the following configuration: Intel

Xeon Platinum 8160 (Skylake) CPU nodes with 48 processors (cores) per node, 192

GB memory per node, and Infiniband networking between all nodes for fast MPI

communications.

4.7.1 Rates of Convergence

In this section, we study the rates of convergence of the dipole moment with

respect to both finite element mesh-size, h, as well as time-step, ∆t. We use methane

and lithium hydride molecules as our benchmark systems for studying the rates of

convergence, for pseudopotential and all-electron calculations, respectively.

We note that in order to study the convergence with respect to mesh-size, the

dominant error must arise from spatial-discretization. To this end, we contain other

sources of error, namely, time-discretization error and Krylov subspace projection er-

ror, by choosing a very small time-step of ∆t = 10−4, and using a small tolerance of

10−12 for the Krylov subspace error (cf. Eq. 4.112). In effect, we mimic a semi-discrete

(discrete in space but continuous in time) error analysis. We employ finite elements
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of three different orders (p)—HEX8, HEX27, and HEX125SPEC—in all our conver-

gence studies. For each p, we start with a given Nelem and use the superposition of

ground-state atomic orbitals and electrostatic potentials, to determine the coarsening

rate of the mesh, as per Eq. 4.108. The resultant mesh forms the coarsest mesh. Sub-

sequently, we increase the value of Nelem to obtain a sequence of increasingly refined

meshes. We remark that although we propose for using the ground-state electronic

fields to determine the mesh coarsening rate, it, nevertheless, forms a reliable and

cost effective way for discretizing the mesh as opposed to any ad-hoc coarsening or

using uniform discretization. Furthermore, it allows us to use large computational

domain sizes without significantly increasing the number of elements. This, in turn,

allows us to circumvent the need for artificial absorbing boundary conditions, other-

wise essential to tackle wave reflection effects that are observed while dealing with

small computational domains.

In order to perform the convergence study with respect to mesh-size, and compare

to the semi-discrete error estimate obtained in Eq. 4.104, we require the knowledge

of the continuous value of the dipole moment, µx(t). To this end, we use the discrete

dipole moment µhx(t), obtained from a sequence of increasingly refined HEX125SPEC

finite element meshes to obtain a least-square fit of the form

∣∣µx(t)− µhx(t)∣∣
|µx(t)|

= Chqmin , (4.113)

to determine µx(t), C, and q. In the above equation hmin represents the minimum

element size, he, present in the mesh. The obtained µx(t) represents the extrapo-

lated continuum limit (continuous in space) for the dipole moment computed using

HEX125SPEC element, and is used as the reference value to compute
|µx(t)−µhx(t)|
|µx(t)| for

HEX8 and HEX27 finite elements.

Next, we consider the convergence with respect to temporal discretization, i.e.,
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∆t. To this end, we use a sufficiently refined HEX125SPEC finite element mesh and

use increasingly refined ∆t to obtain a least-square fit of the form

∣∣µhx(tn)− µh,nx
∣∣

|µhx(tn)| = C(∆t)q , (4.114)

to determine µhx(tn), C, and q. The value of µhx(tn) obtained from the above equa-

tion represents the extrapolated continuum limit (continuous in time) for the dipole

moment at tn.

4.7.1.1 All-electron calculations: Lithium Hydride

In this example, we conduct all-electron RT-TDDFT study on a lithium hydride

molecule (LiH) with Li-H bond-length of 3.014 a.u. A large cubical domain of length

of 50 a.u. is chosen to ensure that the electron density decays to zero on the domain

boundary, thereby, allowing us to impose Dirichlet boundary condition on the time-

dependent Kohn-Sham orbitals and the Hartree potential. We use the aforementioned

adaptive mesh generation strategy to construct a sequence of HEX8, HEX27 and

HEX125SPEC meshes. For all the meshes under consideration, we first obtain the

ground-state and employ a weak delta-kick to excite the system. To elaborate, we use

an electric field of the form E0(t) = κδ(t)x̂, with κ = 10−3 a.u., where δ(t) is the Dirac-

delta distribution and x̂ is the unit vector along x-axis. This amounts to perturbing

the ground-state Kohn-Sham orbitals, ψGSα , by a factor e−iκx. Thus, our initial-states

are defined as ψα(0) = e−iκxψGSα . Figure 4.2 depicts the rates of convergence for

the dipole moment at t = 1.0 a.u. for different orders of finite elements. For all

the three types of finite elements under consideration, we observe close to optimal

rates of convergence, O(hp), where p is the degree of the finite element interpolating

polynomial. As is evident from Figure 4.2, much higher accuracies are obtained

with HEX125SPEC when compared to HEX8 and HEX27 of the same mesh size.
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In particular, 200, 000 HEX8 elements (210, 644 degrees of freedom) are required to

achieve relative errors of 10−2, whereas we achieve relative error of 10−3 with just

3, 000 HEX125SPEC elements (83, 156 degrees of freedom). Next, we study the rate

of convergence of the dipole moment with respect to temporal discretization. To this

end, we used a sufficiently refined HEX125SPEC mesh which affords 10−4 relative

error with respect to spatial discretization. We then propagate the initial-states

using second-order Magnus propagator with different ∆t. Figure 4.3 depicts the rate

of convergence of the dipole moment with respect to ∆t at tn = 1.0 a.u. We obtain

a rate of convergence of q = 1.96 (defined in Eq. 4.114), which agrees remarkably

well with the quadratic rate of convergence for second-order Magnus propagator (cf.

Eq. 4.109).
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4.7.1.2 Pseudopotential calculations: Methane (CH4)

We now turn to examining rates of convergence for the pseudopotential case. We

use a methane molecule with C-H bond-length of 2.07846 a.u. and a H-C-H tetrahedral

angle of 109.4712◦ as our benchmark system. Similar to lithium hydride, we use the

ground-state single-atom electronic fields to obtain a sequence of adaptively refined
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HEX8, HEX27, and HEX125SPEC meshes. We, once again, make use of a large

cubical domain of length 50 a.u. to mimic simulations in R3. For all the meshes, we

first, obtain the ground-state and then excite the system using a Gaussian electric

field of the form E0(t) = κe(t−t0)2/w2
x̂, with κ = 2 × 10−5 a.u., t0 = 3.0 a.u., and

w = 0.2 a.u. Figure 4.4 illustrates the rates of convergence of the dipole moment

at t = 5.0 a.u. for different orders of finite elements. As in the case of lithium

hydride, we obtain close to optimal rates of convergence, and observe significantly

higher accuracies for HEX125SPEC over HEX8 and HEX27. Next, we study the

rate of convergence afforded by the second-order Magnus propagator with respect

to the time-step using a sufficiently refined HEX125SPEC mesh. We propagate the

ground-state Kohn-Sham orbitals under the influence of the same Gaussian electric

field using different ∆t. Figure 4.5 shows the rate of convergence of the dipole moment

with respect to ∆t at tn = 5.0 a.u. As was the case with lithium hydride, we obtain a

convergence rate of q = 1.98, which is remarkably close to the optimal (i.e., quadratic)

rate of convergence (cf. Eq. 4.109).
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4.7.2 Computational Cost

In this section, we investigate the relative computational efficiency afforded by

higher-order finite elements over linear finite element. We consider the previous two

systems, lithium hydride and methane, for all-electron and pseudopotential calcula-

tions, respectively. We use the same mesh adaption strategy as detailed in Sec. 4.7.1.

Since the objective of this study is to compare the relative performance of vari-

ous orders of finite elements, we eliminate any time-discretization effect by setting

∆t = 10−4. Furthermore, we use a tolerance of 10−12 for the adaptive Lanczos (cf.

Eq. 4.112) in order to eliminate any Krylov subspace projection error influencing the

spatial discretization error. We repeat the previous numerical studies by exciting

the lithium hydride molecule with a delta-kick (see Sec. 4.7.1.1), and the methane

molecule with a Gaussian electric field (see Sec. 4.7.1.2). Figures 4.6 and 4.7 show

the relative error in the dipole moment against the normalized computational time,

for three different orders of finite elements. The normalization of the computational

time is done with respect to the longest time among the various meshes under consid-

eration. As is evident, the relative computational efficiency afforded by higher-order

finite elements improves as the desired accuracy is increased. In particular, for a

relative accuracy of 10−3, HEX125SPEC outperforms HEX8 and HEX27 by factor

150− 200 and 10− 18, respectively. This underscores the efficacy of higher-order fi-

nite elements for RT-TDDFT calculations, an aspect which had, heretofore, remained

unexplored for RT-TDDFT.

4.7.3 Other materials systems

In this section, we investigate the accuracy and computational efficiency afforded

by higher-order finite elements for other materials systems, in both pseudopoten-

tial and all-electron RT-TDDFT calculations. We use Al2, Al13, and Mg2 as the

benchmark metallic systems for pseudopotential calculations. Furthermore, we use
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Buckminsterfullerene (C60) as our benchmark insulating system for pseudopotential

calculations. For the all-electron case, we use methane and benzene as our benchmark

systems. Additionally, for the all-electron calculations we provide comparison, in the

absorption spectrum, with their pseudopotential counterparts. For all the above sys-

tems under consideration, except Mg2, we use weak electric fields to excite them. For

Mg2, we use a strong laser pulse to study the efficacy of higher-order finite elements

for nonlinear response. Table 4.7.3 lists the important simulation parameters, for all

the benchmark systems under consideration. We remark that the ∆t as well as the

tolerance for Krylov subspace projection error, listed in Table 4.7.3, are chosen such

that they achieve < 10 meV accuracy in the excitation energies. For pseudopotential

systems, we also provide comparison, wherever possible, against calculations based on

a finite-difference discretization, by employing the same propagator (i.e., second-order

Magnus) and simulation details (as listed in Table 4.7.3). To this end, we use the

Octopus [175] software package to perform the finite-difference based calculations.
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We now briefly discuss about the choice of spatial discretization and domain sizes

in our calculations. For both finite elements and finite-difference based calculations,

the spatial discretization and the domain sizes are chosen such that it attains < 10

meV accuracy in the excitation energies. Typically, one needs a larger domain for

RT-TDDFT calculations than ground-state calculations, so as to avoid reflection at

the domain boundaries. For finite elements, owing to adaptive meshing capability,

choosing a large enough domain has little bearing on its computational expense.

However, for finite-difference, wherein Octopus uses a uniform mesh, the use of large

domain sizes can significantly effect its computational cost. In order to obtain a

suitable grid in Octopus, we first obtain the optimal grid-spacing and domain size that

achieves an accuracy of 10 meV in the ground-state energy per atom, commensurate

with the accuracy targeted in the finite element discretization. We then increase the

domain size until it achieves < 10 meV accuracy in the excitation energies (defined
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in Sec 4.7.3.1). The calculation based on the resulting Octopus mesh is considered as

the point of comparison (for both accuracy and efficiency) against the corresponding

finite elements based calculation. We add that, while dealing with uniform mesh,

a typical workaround to the large domain requirement is to use a smaller domain

with absorbing boundary conditions. Hence, to better assess the effects of absorbing

boundary conditions, we employ them in finite-difference based calculations for some

of the benchmark systems discussed below.

Table 4.1: Simulation details for both pseudopotential (PSP) and all-electron (AE) bench-
mark systems: Type of the electric field E0(t); time-step (∆t in a.u.); tolerance
for Krylov subspace projection error (ε , cf. Eq. 4.112); total duration of simu-
lation (T in fs)

System Field type ∆t ε T

Al2 (PSP) Weak-Gaussian1 0.05 10−8 10

Al13 (PSP) Weak-Gaussian1 0.05 10−8 10

C60 (PSP) Weak-Gaussian1 0.05 10−8 10

Mg2(PSP) Strong-Sinusoidal2 0.025 10−8 25.33

CH4 (PSP) Weak-Gaussian1 0.05 10−8 10

CH4 (AE) Weak-Gaussian1 0.025 10−8 10

C6H6 (PSP) Weak-Gaussian1 0.05 10−8 10

C6H6 (AE) Weak-Gaussian1 0.025 10−8 10

1 E0(t) = κe(t−t0)2/ω2
x̂, with κ = 2 × 10−5, t0 = 3.0, and ω = 0.2 (all in

a.u.).

2 E0(t) = κsin2(π/T )sin(ωt)x̂, with κ = 0.01, ω = 0.03, T = 5× (2π/ω)
(all in a.u.).

4.7.3.1 Pseudopotential calculations: Al2

We consider an aluminum dimer (Al2) of bond-length 4.74 a.u. In order to generate

a suitable mesh, we use an adaptive HEX64SPEC finite elements discretization that

follows the coarsening rate obtained from Eq. 4.108 and is commensurate with an

accuracy of 10 meV in the ground-state energy per atom. We use a cubical domain of
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length 60 a.u. to ensure that the wavefunctions decay to zero, and thereby, avoid any

reflection effects. We excite the ground-state using the simulation parameters listed

in Table 4.7.3. We use the Fourier transform of the dipole moment to obtain the

dynamic polarizability, αa,b(ω), where a is the index of the electric field’s polarization

direction and b is the index of the measurement direction of the dipole. Subsequently,

we obtain the absorption spectrum (dipole strength function), S(ω), given by S(ω) =

2ω
3π

Tr [Im[α(ω)]]. The peaks in the absorption spectrum correspond to the excitation

energies. We also assess the performance of higher-order finite elements by comparing

against the finite-difference scheme of Octopus [175]. In order to highlight the effects

of domain size for the finite-difference mesh, we use three cubical domains of sizes 38

a.u, 46 a.u, and 52 a.u., all with a grid-spacing of 0.2 a.u. Furthermore, to understand

the effect of absorbing boundary conditions, we perform an additional finite-difference

calculation on the 38 a.u. mesh with a negative imaginary potential (NIP) near the

boundaries. In particular, we use a potential of the following form

VNIP (x) =


0 |x| ≤ L

−i η sin2
(

2π(x−L)
L

)
L < |x| ≤ L+ ∆L

with η = 0.4, L = 18.0 and ∆L = 1.0 (all in a.u.). For clarity, we refer to the four

finite-difference calculations, namely, with domain size 52 a.u., with domain size 46

a.u., with domain size 38 a.u., and with domain size 38 a.u. along with NIP absorbing

boundary condition as FD-52, FD-46, FD-38, and FD-38-ABS, respectively. We use

the same simulation details, namely, time-step, duration of propagation, choice of

propagator, and tolerance for Krylov subspace, as used for the finite element case.

Fig. 4.8 compares absorption spectrum obtained from finite elements against finite-

difference. We have used a Gaussian window of the form g(t) = e−αt
2
, with α = 0.005

a.u., in the Fourier transform of the dipole moment to artificially broaden the peaks.
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As is evident from the figure, we get good agreement with the finite-difference based

results for FD-46 and FD-52. The finite-difference calculation with domain size 38

a.u., with and without the absorbing boundary condition, provides qualitatively dif-

ferent results with two peaks around 5 eV. We attribute this discrepancy to possible

reflection effects from the boundary, as a domain size of 38 a.u. may not be sufficient

to avoid finite-domain size effects. Furthermore, comparing FD-38 and FD-38-ABS

curves, we observe that the use of NIP based absorbing boundary condition, on its

own, hardly improves the answer. This suggests that, for the system under consid-

eration, one cannot rely, solely, on absorbing boundary conditions to avoid reflection

effects, and hence, must use a larger domain. Table 4.2 compares the first two exci-

tation peaks, the degrees of freedom and the total computational time for the finite

element and the finite-difference (46 a.u. domain size) based calculations. As is ev-

ident from the table, both finite element and finite-difference based results agree to

within 10 meV in the excitation energies. Furthermore, in terms of computational

efficiency, we observe a ∼65-fold speedup for finite elements over finite-difference. We

remark that this superior efficiency for the finite elements is largely attributed to

fewer degrees of freedom that one can afford in finite elements due to adaptive resolu-

tion of the mesh, as opposed to a uniform mesh in finite-difference. We underline this

by noting that while finite-difference requires over 12 million degrees of freedom, the

finite elements require only 31,411 degrees of freedom to attain similar accuracies. Fi-

nally, comparing FD-46 and FD-52 vis-á-vis the FE results, we observe that although

we achieve convergence in the excitation energies by 46 a.u., the convergence of the

peak values requires a larger domain.

4.7.3.2 Pseudopotential calculations: Al13

We now consider a 13 atom aluminum cluster with an icosahedral symmetry (refer

Table A.2 in Appendices for coordinates). We use the same characteristic finite
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Figure 4.8: Absorption spectra for Al2

Table 4.2: Comparison of finite element (FE) and finite-difference (FD) for Al2: First
and second excitation energies (E1, E2, respectively, in eV), degrees of freedom
(DoF), and total computation CPU time (in CPU hours).

Method E1 E2 DoF CPU Hrs

FE 2.477 4.325 31, 411 2.11

FD 2.486 4.332 12, 326, 391 138.8

element mesh as that of Al2 but with a cubical domain of length 70 a.u., to avoid

reflection effects. We excite the system from its ground-state using the parameters

listed in Table 4.7.3. We, once again, provide a comparative study against finite-

difference based calculation by using a uniform cubical mesh of size 56 a.u. and

grid-spacing 0.2 a.u. Fig. 4.9 compares absorption spectrum obtained from finite

elements against finite-difference. We have used the same Gaussian window as in the

case of Al2. As is evident from the figure, the peaks for both finite element and finite-

difference are in good agreement. Table 4.3 compares the first two excitation peaks,

degrees of freedom, and the total computational time for the finite element and the
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finite-difference based calculations. Both the methods agree to within 10 meV in the

first two excitation energies. In terms of computational efficiency, the finite elements

attain an ∼8-fold savings in the computational time against finite-difference, once

again, attributed to the fewer degrees of freedom in finite elements owing to adaptive

resolution of the mesh. In particular, the finite elements afford ∼30-fold fewer degrees

of freedom as compared to finite-difference.
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Figure 4.9: Absorption spectra for Al13.

Table 4.3: Comparison of finite element (FE) and finite-difference (FD) for Al13: First
and second excitation energies (E1, E2, respectively, in eV), degrees of freedom
(DoF), and total computation CPU time (in CPU hours).

Method E1 E2 DoF CPU Hrs

FE 2.876 4.280 698, 782 82.2

FD 2.880 4.282 22, 188, 041 624.6
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4.7.3.3 Pseudopotential calculations: Buckminsterfullerene

In this example, we consider the Buckminsterfullerene molecule comprising of 60

carbon atoms (240 electrons) packed into the shape of a buckyball (refer Table A.2

in Appendices for coordinates). As with Al2, we use an adaptive HEX64SPEC finite

elements discretization that follows the coarsening rate obtained from Eq. 4.108 and

is commensurate with an accuracy of 10 meV in the ground-state energy per atom.

We use a cubical domain of length 50 a.u. to eliminate any reflection effects from

the boundaries. We use the simulation parameters listed in Table 4.7.3 to excite the

system from its ground-state. As with previous cases, we also assess the performance

of higher-order finite elements by comparing against finite-difference based method,

as implemented in the Octopus package. We assess the effects of domain size for the

finite-difference mesh, by using two cubical domains of sizes 30 and 36 a.u., both with

a grid-spacing of 0.15 a.u. Furthermore, we study the effect of absorbing boundary

conditions by performing an additional finite-difference calculation on the 30 a.u.

mesh with a negative imaginary potential (NIP) near the boundaries. We use an NIP

of the same form as used in Al2, albeit with L = 14.0 a.u. We denote these three

finite-difference calculations, namely, with domain size 36 a.u., with domain size 30

a.u., and with domain size 30 a.u. along with NIP absorbing boundary condition

as FD-36, FD-30, and FD-30-ABS, respectively. Figure 4.10 shows the absorption

spectrum obtained from finite element and the three different finite-difference based

calculations. We have used the same Gaussian window of the form g(t) = e−αt
2
, with

α = 0.01 a.u., to artificially broaden the peaks. As is evident from the figure, there

is good agreement between the finite element and FD-36 for all the excitation peaks.

On the other hand, while FD-30 and FD-30-ABS have good agreement with finite

elements for the first two peaks, they differ for the rest, possibly because of reflection

effects. Furthermore, comparing FD-30 and FD-30-ABS, we remark that the use of

NIP based absorbing boundary condition did not improve the absorption spectrum.
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This, once again, indicates that one cannot always dispense with the need for a

larger domain by, solely, using absorbing boundary conditions. Table 4.4 compares

the first two excitation peaks, degrees of freedom, and the computational time for

finite elements against that of FD-36. Both finite element and FD-36 based results

match within 30 meV in the first two peaks. Furthermore, the excitation energies

are also in good agreement with results presented in [199] (the first two excitation

peaks, as we estimate from the absorption spectrum reported in [199], are ∼5.6 eV

and ∼11.5 eV, respectively.). In terms of computational efficiency, finite elements

attain a ∼3-fold speedup over FD-36. This higher efficiency of the finite elements,

is once again, attributed to a ∼9-fold fewer degrees of freedom required by the finite

elements against that of finite-difference.
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Figure 4.10: Absorption spectra of Buckminsterfullerene
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Table 4.4: Comparison of finite element (FE) and finite-difference (FD) for C60: First
and second excitation energies (E1, E2, respectively, in eV), degrees of freedom
(DoF), and total computation CPU time (in CPU hours).

Method E1 E2 DoF CPU Hrs

FE 5.499 11.412 1, 548, 073 5, 200

FD 5.476 11.439 13, 997, 521 15, 361

4.7.3.4 Pseudopotential calculations: Mg2

In this example, we study the higher harmonic generation in a magnesium dimer

with bond-length of 4.74 a.u. Unlike the previous examples, we use a strong laser

pulse to excite the system from its ground-state (see Table 4.7.3 for the simulation de-

tails). We use an adaptive HEX125SPEC mesh with the coarsening rate determined

by Eq. 4.108. Furthermore, we use a cubical domain of length 100 a.u. to eliminate

any reflection effects from the boundaries. We obtain the dipole power spectrum,

P (ω), of the system by taking the imaginary part of the Fourier transform of the ac-

celeration of the dipole moment, µ(t). To elaborate, P (w) = Im
(∫ T

0
e−iωt d

2

dt2
µ(t) dt

)
.

Theoretically, for a system with spatial inversion symmetry, only odd multiples of the

frequency of the exciting laser pulse must be emitted. We verify this in Figure 4.11

wherein the peaks in the power spectrum coincide with odd harmonics. Furthermore,

we observe that the decay of the intensity of the peaks flattens beyond the 13-th

harmonic, which corroborates well with the plateau phenomenon, typically observed

in experiments [200]. We emphasize that despite the large domain size used in this

calculation, we require only ∼60, 000 basis functions. This underlines the efficacy of

higher-order finite elements for even nonlinear regime in RT-TDDFT.

4.7.3.5 All-electron calculations: Methane (CH4)

We now examine the competence of higher-order finite elements for all-electron

RT-TDDFT calculations by providing a comparative study with its pseudopotential

counterpart. In this example, we consider a methane molecule with the same geometry
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Figure 4.11: Dipole power spectrum of Mg2

as described in Sec. 4.7.1.2. We use HEX64SPEC and HEX125SPEC elements for

the pseudopotential and all-electron case, respectively. For both all-electron and

pseudopotential cases, we use the same mesh adaption strategy as used in all previous

examples. For both the meshes, we use a large cubical domain of length 40 a.u., so

as to eliminate reflection from the boundaries. Both the systems are excited from

their respective ground-states using the simulation details listed in Table 4.7.3. The

absorption spectra for both the calculations are shown in Figure 4.12. We used

the same Gaussian window as in the case of Buckminsterfullerene (see Sec. 4.7.3.3)

to artificially broaden the peaks. As evident from the figure, we obtain remarkable

agreement between the all-electron and pseudopotential results, i.e., the two curves are

almost identical. Table 4.5 we list the first two excitation peaks, degrees of freedom,

and total computational time for both the calculations. The first two excitation

peaks agree to within 10 meV. We remark that the all-electron calculation requires

∼100x more computational time as compared to the pseudopotential case. This
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large computational expense for the all-electron calculation stems primarily from

the need of a highly refined mesh near the nuclei, so as to accurately capture the

sharp variations in the electronic fields near the nuclei. This refinement has two

major consequences: (i) an increase in the degrees of freedom; and (ii) increase in∥∥ψhα∥∥H1(Ω)
, which in turn, warrants a smaller time-step (cf. Eq. 4.109) as well as a

larger Krylov subspace to achieve the prescribed accuracy. In particular, for the case

of all-electron methane, we required ∼4x degrees of freedom and ∼10x the size of

the Krylov subspace as compared to that of the pseudopotential case. We emphasize

that while finite elements are expensive for the all-electron calculation, they provide

the desired accuracy and offer systematic convergence (see Sec. 4.7.1.1). Moreover,

one can mitigate the need of a refined mesh for the all-electron calculation by using

an enriched finite element basis [37] (i.e., augmenting the standard (classical) finite

element basis with numerical atom-centered basis). This enrichment idea, for ground-

state DFT, has been detailed in Chapter III, wherein we have successfully attained

100−300x speedup over the standard (classical) finite elements. Similar ideas can be

extended to RT-TDDFT to further the capabilities of finite elements for all-electron

RT-TDDFT calculations.

Table 4.5: Comparison of all-electron (AE) and pseudopotential (PSP) calculations for
methane: First and second excitation energies (E1, E2, respectively, in eV),
degrees of freedom (DoF), and total computation CPU time (in CPU hours).

Method E1 E2 DoF CPU Hrs

AE 8.898 11.238 348, 289 13, 653

PSP 8.907 11.244 80, 185 145

4.7.3.6 All-electron calculations: Benzene

In this example, we perform similar comparative studies between all-electron and

pseudopotential calculations for benzene molecule (refer Table A.2 in Appendices for

coordinates). As with the methane molecule, we use HEX64SPEC and HEX125SPEC
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Figure 4.12: Absorption spectra of methane

finite elements for the pseudopotential and all-electron calculation, respectively. Fur-

thermore, we use the same characteristic mesh features (i.e., refinement near the nu-

clei, coarsening rate, simulation domain), in both the meshes, as their counterparts

in the methane calculation. The simulation details, for both the cases, are listed in

Table 4.7.3. Figure 4.13 compares the absorption spectra from the all-electron and

pseudopotential calculations. Both the spectra compares well with the results pre-

sented in [184], in terms of first two excitation peaks (the first two excitation peaks,

as we estimate from the absorption spectrum reported in [184], are ∼6.6 eV and ∼10

eV, respectively). We remark that while there is qualitative agreement between the

pseudopotential and all-electron calculations, quantitatively the predictions from all-

electron and pseudopotential calculations differ. In particular, the first two excitation

peaks (see Table 4.6) differ up to ∼0.2 eV. This suggests that one ought to carefully

test for the transferability of the pseudopotential approximation used, to provide re-

liable quantitative predictions from RT-TDDFT calculations. We take note that a
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more careful comparison of pseudopotential and all-electron calculations warrants a

scan through a range of pseudopotential approximation. Nevertheless, the objective

of this exercise is to highlight the fact that finite elements, by treating both pseu-

dopotential and all-electron calculations on an equal footing, allows for a robust tool

for such transferability studies.
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Figure 4.13: Absorption spectra of benzene

Table 4.6: Comparison of all-electron (AE) and pseudopotential (PSP) calculations for
benzene: First and second excitation energies (E1, E2, respectively, in eV),
degrees of freedom (DoF), and total computation CPU time (in CPU hours).

Method E1 E2 DoF CPU Hrs

AE 6.521 10.131 989, 649 153, 600

PSP 6.316 10.007 257, 473 1, 574

4.7.4 Scalability

Lastly, we demonstrate the parallel scalability (strong scaling) of the proposed

finite element basis in Figure 4.14. We choose the Buckminsterfullerene molecule

140



containing ∼3.5 million degrees of freedom (number of basis functions) as our fixed

benchmark system and report the relative speedup with respect to the wall time on 24

processors. The use of any number of processors below 24 was unfeasible owing to the

memory requirement posed by the system. As is evident from the figure, the scaling

is in good agreement with the ideal linear scaling behavior up to 384 processors,

at which we observe a parallel efficiency of 86.2%. However, we observe a deviation

from linear scaling behavior at 768 processors with a parallel efficiency of 74.2%. This

is attributed to the fact that, at 768 processors, the number of degrees of freedom

possessed by each processor falls below 5000, which is low to achieve good parallel

scalability.
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Figure 4.14: Parallel scalability of the higher-order finite element implementation.

4.8 Summary

In summary, we have investigated the accuracy, computational efficiency and scal-

ability of higher-order finite elements for the RT-TDDFT problem, for both pseu-
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dopotential and all-electron calculations. We presented an efficient a priori spatio-

temporal scheme guided by the discretization errors in the time-dependent Kohn-

Sham orbitals, in the context of second-order Magnus propagator. In particular,

we used the knowledge of the ground-state electronic fields to determine an efficient

adaptively resolved finite element mesh. This adaptive resolution is crucial in afford-

ing the use of large simulation domains without significant increase in the number

of basis functions, and hence, allows us to circumvent the use of any artificial ab-

sorbing boundary conditions. A key aspect of the finite element discretization in this

work is the use of higher-order spectral finite elements, which while providing a bet-

ter conditioned basis also renders the overlap matrix diagonal when combined with

special quadrature rules for numerical integration. This, in turn, enabled an efficient

construction of the Magnus propagator (or any exponential time-integrator) for finite

element discretization. Furthermore, we employed an adaptive Lanczos subspace pro-

jection to evaluate the action of the Magnus propagator, defined as exponential of a

matrix, on the Kohn-Sham orbitals.

We demonstrated the accuracy of the proposed approach through numerical con-

vergence studies on both pseudopotential and all-electron systems, where we obtained

close to optimal rates of convergence with respect to both spatial and temporal dis-

cretization, as determined by our error estimates. The computational efficiency af-

forded by using higher-order finite element discretization was established, where a

staggering 10 − 100 fold speedup was obtained on benchmark systems by using a

fourth-order finite element in comparison to linear and quadratic finite elements. Fur-

thermore, we assessed the accuracy and efficiency afforded by our approach against

the finite-difference based method of Octopus software package, for pseudopoten-

tial calculations. Across all the benchmark systems considered, we obtained good

agreement between the absorption spectrum evaluated using the finite elements and

finite-difference (Octopus) based calculations. In terms of computational efficiency,
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we obtained 3 − 60 fold speedup over finite-difference, which is largely attributed

to the adaptive spatial resolution afforded by our approach. We also demonstrated

the efficacy of finite elements, especially its efficient handling of large domains, for

nonlinear response by studying the higher harmonic generation under a strong elec-

tric field. We also demonstrated the competence of higher-order finite elements for

the all-electron RT-TDDFT calculations. This underscores the versatility of finite

elements in handling both pseudopotential and all-electron calculations on an equal

footing. Lastly, in terms of parallel scalability, we obtained good parallel efficiency

up to 768 processors for a benchmark system comprising of the Buckminsterfullerene

molecule containing ∼3.5 million basis functions.

Thus, the proposed approach offers a computationally efficient, systematically

improvable, and scalable basis for RT-TDDFT calculations, applicable to both pseu-

dopotential and all-electron cases. We remark that, for the all-electron case, the need

for a highly refined mesh near the nuclei increases the computational cost, as ob-

served from the numerical studies reported in this chapter. For systems with heavier

atoms, the mesh requirements are expected to become even more exacting. However,

this can be alleviated by augmenting the finite element basis with numerical atom-

centered basis along with efficient numerical strategies to evaluate the inverse of the

resultant overlap matrix as well handle the increased quadrature costs [124]. These

ideas have been successfully used for ground-state DFT [201, 202, 135, 37] (also see

Chapter III), and its extension to RT-TDDFT is currently being investigated. Fur-

ther, assessing the transferability of pseudopotentials for electron dynamics, enabled

by the unified treatment of all-electron and pseudoptential calculations, is another

interesting direction for future investigation.
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CHAPTER V

Exact Exchange-correlation Potentials from

Ground-state Electron Densities

The success of DFT rests fundamentally on the quality of the approximation

to the exchange-correlation (xc) functional, as it describes the many-electron quan-

tum mechanical behavior through a computationally tractable quantity—the electron

density—without resorting to multi-electron wave functions. Naturally, the quest for

accurate exchange-correlation functionals has long remained the grand challenge in

DFT. To this end, the inverse DFT problem of mapping the ground-state density to

its exchange-correlation potential is a powerful tool to aid in functional development

in DFT. However, the lack of an accurate and systematically convergent approach has

left the problem unresolved, heretofore. This work presents a numerically robust and

accurate scheme to evaluate the exact exchange-correlation potentials from correlated

ab initio densities [72].

The rest of the chapter is organized as follows. Sec. 5.1 introduces the subject and

motivates the need for an accurate numerical method for inverse DFT calculations. In

Sec. 5.2, we formalize inverse DFT problem as a PDE-constrained optimization prob-

lem. We provide the numerical implementation aspects of our approach in Sec. 5.3.

Sec. 5.4 provides the verification of our approach against densities obtained from

DFT calculations performed using known exchange-correlation approximations (e.g.,
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LDA). In Sec. 5.5 we present two important numerical strategies that are essential to

circumvent the Gaussian basis-set density induced oscillations in vxc. In Sec. 5.6, we

present the exact vxc for various molecular systems, ranging up to 40 electrons, us-

ing ground-state densities from configuration-interaction (CI) based calculations. In

Sec. 5.7, we compare the accuracy of our results with that of other existing methods,

using data from published literature. Finally, we present the summary of this work

and lay out its future scope in Sec. 5.8.

5.1 Introduction

The inverse DFT problem [61, 58, 203, 63, 204] rests on the fact that the vxc

is a unique functional of the electron density (ρ(r)), so there exists a one-to-one

relationship from vxc(r) to ρ(r), and vice-versa. This observation presents a possible

route forward to construct accurate exchange-correlation (xc) functionals, via the

transformation of the electron density into vxc(r) (refer to the schematic in Figure 5.1).

The inverse problem not only provides a route for finding the sole unknown quantity

in DFT, it is also central for describing quantum mechanics without resorting to

complicated multi-electron wave functions.

Given the large importance of this problem, there have been several attempts to

solve the inverse DFT problem, employing either iterative updates [57, 58, 59, 203, 60]

or constrained optimization approaches [61, 62, 63, 205]. However, these approaches

have suffered from ill-conditioning, thereby resulting in non-unique solutions or caus-

ing spurious oscillations in the resultant vxc(r). This ill-conditioning has been largely

attributed to the incompleteness of the Gaussian basis sets that were employed to

solve the inverse DFT problem [66, 67, 205]. Recent efforts [70, 206, 71] have pre-

sented a different approach, which utilizes the two-electron reduced density matrix

(2-RDM) to remedy the non-uniqueness and the spurious oscillations in the obtained

vxc(r). However, this does not represent the solution of the inverse DFT problem,
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Figure 5.1: Schematic of the inverse DFT problem. The exact ground-state many-body
wavefunction (Ψ(r1, r2, . . . , rNe)), and hence, the ground-state electron den-
sity (ρ(r)) is obtained from configuration interaction calculation. The inverse
DFT calculation evaluates the exact exchange-correlation potential (vxc(r))
that yields the given ρ(r). The ability to accurately solve the inverse DFT
problem, presented in this work, presents a powerful tool to construct accurate
density functionals (vxc[ρ(r)]), either through conventional approaches or via
machine-learning. The schematic shows the ground-state density and the exact
exchange-correlation potential for H2O obtained in this work.

i.e., the vxc obtained from this approach is not guaranteed to yield the input elec-

tron density [71]. Thus, the inverse DFT problem has, heretofore, remained an open

challenge.

In this work, we present an advance that provides an accurate solution to the

inverse DFT problem, enabling the evaluation of exact vxc from an ab initio density.

Specifically, the approach uses a finite element basis that is systematically convergent

and complete, thereby eliminating ill-conditioning in the discrete solution of the in-

verse DFT problem. Our approach is tested on a range of molecular systems, both

weakly and strongly correlated, showing robustness and efficacy in treating realistic
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polyatomic molecules. The proposed approach therefore unlocks the door to con-

structing accurate exchange-correlation functionals that provide precise energies and

electronic properties of a huge range of chemical, materials, and biological systems.

To elaborate, we envisage the inverse DFT problem to be instrumental in generat-

ing {ρ(i), v
(i)
xc } pairs, using ρ(i)’s from correlated ab-initio calculations. Subsequently,

these can be used as training data to model vxc[ρ] through machine-learning algo-

rithms [207, 208] that are designed to preserve the functional derivative requirement

on vxc[ρ] [209]. Further, the exchange-correlation energy (Exc[ρ]) can be directly

evaluated through line-integration on vxc[ρ].

5.2 PDE-constrained optimization for inverse DFT

We cast the inverse DFT problem of finding the vxc(r) that yields a given density

ρdata(r) as the following partial differential equation (PDE) constrained optimization:

arg min
vxc(r)

∫
w(r) (ρdata(r)− ρ(r))2 dr , (5.1)

subject to (
−1

2
∇2 + vext(r) + vH(r) + vxc(r)

)
ψi = εiψi , (5.2)

∫
|ψi(r)|2 dr = 1 . (5.3)

In the above equation, w(r) is an appropriately chosen weight to expedite conver-

gence; vext(r) represents the nuclear potential; vH(r) is the Hartree potential cor-

responding to ρdata(r); and ψi and εi denote the Kohn-Sham orbitals and eigenval-

ues, respectively. For simplicity, we restrict ourselves to only closed-shell systems,

and hence, the Kohn-Sham density ρ(r) = 2
∑Ne/2

i=1 |ψi(r)|2. Equivalently, the above
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PDE-constrained optimization can be solved by minimizing the following Lagrangian,

L (vxc, {ψi}, {pi}, {εi}, {µi}) =

∫
w(r) (ρdata(r)− ρ(r))2 dr +

Ne/2∑
i=1

∫
pi(r)

(
Ĥ − εi

)
ψi dr

+

Ne/2∑
i=1

µi

(∫
|ψi(r)|2 dr− 1

)
,

(5.4)

with respect to all its constituent variables—pi, µi, ψi, εi and vxc. In the above

equation, Ĥ = −1
2
∇2 + vext(r) + vH(r) + vxc(r) is the Kohn-Sham Hamiltonian; pi is

the adjoint function which enforces the Kohn-Sham eigenvalue equation corresponding

to ψi; and µi is the Lagrange multiplier corresponding to the normality condition of

ψi. The optimality of L with respect to pi, µi, ψi and εi are given by:

Ĥψi = εiψi , (5.5)∫
|ψi(r)|2 dr = 1 , (5.6)

(Ĥ − εi)pi(r) = gi(r) , (5.7)∫
pi(r)ψi(r) dr = 0 , (5.8)

where gi(r) = 8w(r)(ρdata(r)− ρ(r))ψi − 2µiψi. We remark that the operator Ĥ − εi
in Eq. 5.7 is singular with ψi as its null-vector. However, the orthogonality of gi(r)

and ψi (consequence of Eq. 5.7) along with the orthogonality of pi and ψi (Eq. 5.8)

guarantee a unique solution for pi. Having solved the above optimality conditions in

Eqs. 5.5–5.8, the variation (gradient) of L with respect to vxc is given by

δL
δvxc

=

Ne/2∑
i=1

piψi . (5.9)
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This constitutes the central equation for updating vxc(r) via any gradient based op-

timization technique.

Summing up, the proposed approach involves: (i) obtaining ρdata(r) from corre-

lated ab initio calculations (i.e., configuration interaction calculations); (ii) using an

initial guess for vxc(r); (iii) solving Eqs. 5.5–5.8 using the current iterate of vxc; (iv)

updating vxc using Eq. 5.9 as the gradient; (v) repeating (iii)-(iv) until ρ(r) con-

verges to ρdata(r). We note that the general idea of PDE-constrained optimization

has been explored recently in [204]. However, its utility had only been demonstrated

on non-interacting model systems in 1D.

5.3 Numerical Implementation

5.3.1 Finite-element discretization

We employ spectral finite element (FE) basis to discretize all the spatial fields—

vxc, {ψi}, {pi}. The FE basis is constructed from piecewise Lagrange interpolating

polynomials on non-overlapping subdomains called elements. The basis, thus con-

structed, can be systematically improved to completeness by reducing the element

size and/or increasing the polynomial order [183]. We remark that the spectral FE

basis are not orthogonal, and hence, result in a generalized eigenvalue problem as

opposed to the more desirable case of standard eigenvalue problem. To this end, we

use special reduced order quadrature (Gauss-Legendre-Lobatto quadrature rule) to

render the overlap matrix diagonal, and thereby, trivially transform the generalized

eigenvalue problem into a standard one (see Sec. 3.4.2 for more details). For all the

H2 molecules used in our numerical studies (refer Sec. 5.5 and Sec. 5.6), we used

adaptively-refined quadratic finite elements to discretize the {ψi} and {pi}, whereas

for all other systems we used adaptively-refined fourth-order finite elements. The vxc,

in all the calculations, is discretized using linear finite elements. Most importantly,

149



the form of the FE basis is chosen carefully, so as to guarantee the cusp in ψi’s (and

hence in ρ) at the nuclei, which in turn is critical to obtaining accurate vxc’s near the

nuclei (as will be discussed in Sec. 5.5). To elaborate, in our calculations, we construct

an adaptive finite element mesh such that the nuclei are positioned on corner nodes

of elements. Since Lagrange interpolating functions have C0 continuity at element

boundaries, the resultant finite element basis admits cusps in the Kohn-Sham orbitals

(ψi(r)) (and hence in ρ(r)) at the nuclear positions. We illustrate this through a 1D

cubic finite element basis, as shown in Figure 5.2. In this figure, the black circles

mark the C0 continuity at the element boundary. This C0 continuity of the basis at

the element boundaries is vital to ensuring the cusp in ρ(r) at the nuclei.

e1 e2

𝐶0 Cusp 𝐶0 Cusp𝐶0 Cusp

Figure 5.2: Illustration of two adjacent 1D cubic finite elements—e1 and e2. The vertical
dashed lines denote the boundary between adjacent elements. The black circles
highlight the C0 continuity (cusp) of the basis at the element boundary.
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5.3.2 Solvers

In order to efficiently solve the Kohn-Sham eigenvalue problem in Eq. 5.5, we

employ the Chebyshev polynomial based filtering technique (refer Sec. 3.6 or [198,

38, 183]). Compared to a forward ground-state DFT calculation, the inverse DFT

calculation warrants much tighter accuracy in solving the Kohn-Sham eigenvalue

equation(s). However, the use of a very high polynomial degree Chebyshev filter can

generate an ill-conditioned subspace, akin to any power iteration based eigen-solver.

To circumvent the ill-conditioning and attain higher accuracy, we employ multiple

passes of a low polynomial degree Chebyshev filter (polynomial order ∼1000) and

orthonormalize the Chebyshev filtered vectors between two successive passes. The

number of passes is determined adaptively so as to guarantee an accuracy of 10−9 in

||Ĥψi − εiψi||L2 .

The discrete adjoint function (pi) is solved by, first, projecting Eq. 5.7 onto a

space orthogonal to the corresponding ψi (or degenerate ψi’s), and then employing

the conjugate-gradient method to compute the solution. The discrete adjoint problem

is solved to an accuracy of 10−12 in ||(Ĥ − εi)pi − gi||L2 .

The update for vxc is computed using limited-memory BFGS (L-BFGS), a memory-

efficient quasi-Newton solver which constructs approximate Hessian matrices using

the history of the gradients [210]. In all the calculations, we used a history of size

100 to construct the approximate Hessian.

5.3.3 Ab Initio Densities

Accurate electron densities were generated using the Incremental Full Configu-

ration Interaction (iFCI) method [211] in the Q-Chem software package [24]. This

method solves the electronic Schrodinger equation via a many-body expansion, and

asymptotically produces the exact electronic energy and density as the number of

bodies in the expansion approaches the all-electron limit. For this study, electron
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densities were provided in the all-valence-electron limit of iFCI, that is, where the

full valence set is fully correlated and the core orbitals of H2O and C6H4 (as will be

discussed in Sec. 5.6) are treated as an uncorrelated electron pair. Additionally, we

also evaluated the ionization energies at the same level of theory, for each system with

one less electron.

Lastly, to expedite the convergence of the non-linear solver, we make use of two

different weights, w(r) = 1 and w(r) = 1/ραdata (1 ≤ α ≤ 2), in sequence. The latter

penalizes the objective function in the low density region.

5.4 Verification with LDA-based densities

To assess the accuracy and robustness of the proposed approach, we use ρdata

obtained from local density approximation (LDA) [78, 79] based DFT calculations,

discretized using the finite element (FE) basis—a systematically improvable and com-

plete basis constructed from piecewise polynomials. This verification test allows us

to compare the vxc obtained from the inverse DFT calculation against vLDA
xc [ρdata]. As

remarked earlier, most of the previous attempts at this verification test have suffered

from either non-unique solutions or had resulted in unphysical oscillations in vxc, ow-

ing to the incompleteness of the Gaussian basis employed in these works. Figure 5.3

presents the comparison of vLDA
xc [ρdata] against the vxc obtained from the inverse cal-

culation, for various atomic systems. We also provide, in Figure 5.4, the vxc for

1,3-dimethylbenzene (C8H10) obtained from the inverse calculation with LDA based

ρdata, highlighting the efficacy of our approach in accurately treating large systems.

We note that all the inverse DFT calculations have been performed in 3D, and the L2

norm error in the density, ||ρdata−ρ||L2 , is driven below 10−5. We remark that the L2

error norm is a natural convergence criterion, given the form of the objective function

in Eq. 5.1. However, given that previous works on this inverse problem have reported

the L1 error, we provide the same in the Table 5.1, for all the systems considered
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in our verification studies. As evident from these figures, the vxc determined from

the inverse DFT calculation is devoid of any spurious oscillations, and is in excellent

agreement with vLDA
xc [ρdata]. Additionally, the Kohn-Sham eigenvalues computed us-

ing the inverted vxc are in excellent agreement (i.e., |εLDA
i − εi| < 1 mHa), further

validating the accuracy of the method. While we have reported the verification of

our method for LDA based densities, similar accuracy was obtained using generalized

gradient approximation (GGA) based densities.

Table 5.1: ‖ρ(r)− ρdata(r)‖L1 /Ne for the verification tests against the local density ap-
proximation (LDA) based ρdata.

He Be Ne C8H10

8.1× 10−6 8.4× 10−6 7.2× 10−6 6.8× 10−6
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Figure 5.3: The exchange-correlation potential (vxc) for various atomic systems, each cor-
responding to the local density approximation (LDA) based density (ρdata).
The dashed line corresponds to the exchange-correlation potential obtained
from the inverse DFT calculation, and the solid line corresponds to the LDA
exchange-correlation potential. The atomic systems considered are: (a) He;
(b) Be; (c) Ne.
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(a)

(b)

Figure 5.4: (a): The vxc(r) (in a.u.) for 1,3-dimethylbenzene (C8H10) obtained from the
inverse DFT calculation with the local density approximation (LDA) based
ρdata, displayed on the plane of the benzene ring. (b): Relative error in the vxc

for 1,3-dimethylbenzene (C8H10) obtained from the inverse DFT calculation
with the local density approximation (LDA) based ρdata (refer Table A.3 in
Appendices for coordinates).
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5.5 Removing Gaussian basis-set artifacts

We next turn to employing the proposed method with input densities generated

from configuration interaction (CI) calculations. All the CI calculations reported in

this work are performed using the incremental full-CI approach presented in [211],

and discretized using the universal Gaussian basis set (UGBS) [212] or cc-PVTZ

Gaussian basis set [213]. It is known that Gaussian basis-set densities, owing to their

lack of cusp at the nuclei as well as incorrect far-field decay, induce highly unphysical

features in the vxc’s obtained from inverse calculations. To this end, we provide two

numerical strategies which for all practical purposes remedy the Gaussian basis-set

artifacts, and thereby, allow for accurate evaluation of exact vxc’s from CI densities.

It is to be noted that the following numerical strategies are only necessitated due to

the unphysical asymptotics in the Gaussian basis-set densities, and not due to any

inadequacy of the proposed inverse DFT algorithm.

To begin with, the CI density obtained from a Gaussian basis has wrong decay

characteristics away from the nuclei (i.e., Gaussian decay instead of exponential de-

cay). This, in turn, results in incorrect asymptotics in the vxc obtained from an

inverse DFT calculation. Thus, to ensure the correct asymptotics in vxc, we employ

the following approach. First, we use an initial guess for vxc that satisfies the correct

−1/r decay. In particular, we use the Fermi-Amaldi potential (vFA) [214]. Next,

we enforce homogeneous Dirichlet boundary condition on the adjoint function (pi)

in the low density region (i.e., ρdata < 10−6), while solving Eq. 5.7. In effect, this

fixes the vxc to its initial value in the low density region, thereby ensuring correct

far-field asymptotics in the vxc. This approach is also crucial to obtaining an agree-

ment between the highest occupied Kohn-Sham eigenvalue (εH) and the negative of

the ionization potential (Ip), as mandated by the Koopmans’ theorem [73, 74].

Furthermore, the Gaussian basis-set based CI densities lack the cusp at the nu-

clei, which, in turn, leads to undesirable oscillations in the vxc near the nuclei in any
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inverse DFT calculation [65, 64, 68]. We demonstrate this in the case of equilibrium

H2 molecule (bond-length RH-H = 1.4 a.u.), henceforth denoted as H2(eq). Figure 5.5

shows the vxc profile for H2(eq) corresponding to the ρdata(r) obtained from a CI cal-

culation, discretized using UGBS. As evident, we observe large unphysical oscillations

in the vxc near the nuclei. We remedy these oscillations by adding a small correction

(∆ρ(r)) to ρdata(r), so as to correct for the missing cusp at the nuclei. The ∆ρ(r) is

given by

∆ρ(r) = ρDFT
FE (r)− ρDFT

G (r) , (5.10)

where ρDFT
FE (r) is the ground-state density obtained from a forward DFT calculation

using a known xc functional (e.g., LDA, GGA) and discretized using the FE basis;

and ρDFT
G (r) denotes the same, albeit obtained using the Gaussian basis employed in

the CI calculation. The key idea here is that ρDFT
FE (r), obtained from the FE basis,

contains the cusp. Thus, one can expect ∆ρ to reasonably capture the Gaussian

basis set error near the nuclei. Additionally,
∫

∆ρ(r) dr = 0, preserving the number

of electrons. A conceptually similar approach has been explored in [68], wherein one

post-processes the vxc instead of pre-processing the ρdata, to remove the oscillations

arising from the lack of cusp in ρdata. We illustrate the efficacy of the ∆ρ correction

with the H2(eq) molecule as an example. Figure 5.6 presents the vxc corresponding

to the cusp-corrected density (i.e., ρdata + ∆ρ) for H2(eq), with two different ∆ρ:

∆ρLDA evaluated using an LDA functional [78, 79], and ∆ρGGA evaluated using a

GGA functional [80]. As evident, both ∆ρLDA and ∆ρGGA based cusp-correction

generate smooth vxc profiles. More importantly, both the profiles are nearly identical,

except for small differences in the bonding region between the H atoms. Further, a

comparison of both these vxc’s against the LDA based xc potential (vLDA
xc ) elucidates

the significant difference between the exact vxc and vLDA
xc even for a simple system

that is not strongly correlated. Lastly, for both the vxc’s we obtain the same HOMO

level of −0.601 Ha, which, in turn, is in excellent agreement with the −Ip (listed in
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Table 5.2). We remark that the agreement of εH with −Ip is a stringent test of the

accuracy of the inversion, and is particularly sensitive to the vxc in the far-field.
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Figure 5.5: Artifact of Gaussian basis-set based density. The exchange-correlation poten-
tial (vxc) is evaluated from inverse DFT, using ρdata obtained from a Gaussian
basis-set based configuration interaction (CI) calculation for the equilibrium
hydrogen molecule (H2(eq)). The lack of cusp in ρdata at the nuclei induces
wild oscillations in the vxc obtained through inversion. The two atoms are
located at r = ±0.7 a.u.

Table 5.2: Comparison of the Kohn-Sham HOMO level (εH) and the negative of the ion-
ization potential (Ip) (all in Ha).

H2(eq) H2(2eq) H2(d) H2O C6H4

εH −0.601 −0.482 −0.479 −0.452 −0.354

−Ip −0.604 −0.484 −0.498 −0.454 −0.355

5.6 Exact vxc from CI densities for molecules

We now combine the above numerical strategies to evaluate the exact vxc for four

other benchmark systems—two stretched H2 molecules, and two polyatomic systems
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Figure 5.6: Exchange-correlation potentials (vxc) for equilibrium hydrogen molecule
(H2(eq)). A comparison is provided between the exact and the LDA based
vxc potential. The exact exchange-correlation potential is evaluated using the
cusp-corrected configuration interaction (CI) density. The effect of the choice
of the functional used in evaluating the cusp correction is demonstrated using
two different functionals—LDA (exact-∆ρLDA) and GGA (exact-∆ρGGA).

(water and ortho-benzyne molecules). The CI calculations for all the molecules,

excepting ortho-benzyne, are performed using the UGBS. For ortho-benzyne, we used

the cc-PVTZ basis. Given the weak sensitivity of the inverted vxc to the choice of

xc functional used in ∆ρ, we employ ∆ρLDA for performing the cusp-correction in

all our calculations. Further, for all the systems, the inverse problem is deemed to

have converged when ||ρdata−ρ||L2 < 10−4. Given that previous works on this inverse

problem have reported the L1 error, we provide the same in the Table 5.3, for all the

benchmark systems considered.

Figure 5.7 compares the vxc for two stretched H2 molecules—H2(2eq) (RH-H = 2.83

a.u., roughly twice the equilibrium bond-length), and H2(d) (RH-H = 7.56 a.u., at

dissociation). We emphasize that these are prototypical systems where all existing xc

approximations perform poorly, owing to their failure in handling strong correlations.
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Figure 5.7: Exact vxc for stretched H2 molecules. The exact vxc is provided for two
stretched hydrogen molecules: one at twice the equilibrium bond-length
(H2(2eq)) and the other at dissociation (H2(d)). The H atoms for H2(2eq)
and H2(d) are located at r = ±1.415 a.u. and r = ±3.78 a.u., respectively.

We could successfully solve the inverse DFT problem for these systems (||ρdata −

ρ||L2∼8×10−5), thereby, suggesting that our approach works equally well for strongly

correlated systems. As indicated in Table 5.2, we get remarkable agreement between

εH and −Ip for H2(2eq). However, for H2(d), we obtain εH within 19 mHa of −Ip.

We attribute this larger difference between εH and −Ip (as compared to H2(eq) and

H2(2eq)) to the use of vFA as the boundary condition for vxc in the low density region.

To elaborate, for a single-orbital system, vFA is the exact vx (exchange-only potential),

and, hence, represents the exact vxc in regions where the correlations are negligible.

While for the H2(eq) and H2(2eq) molecules the correlations are short-ranged, they

are relatively longer-ranged for H2(d). We highlight this in Figure 5.8 by comparing

the vxc against vx for H2(eq), H2(2eq), and H2(d). As evident, H2(d) has strong

correlations extending to a significantly larger domain (in the far-field) in comparison

to H2(eq) and H2(2eq). Thus, for H2(d), the use of vFA is warranted only in regions
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of much lower density (i.e., ρdata � 10−6) than considered here. However, at such

low densities, the wrong far-field asymptotics of a Gaussian basis-set density produces

spurious oscillations in the far-field vxc. Thus, for the want of more accurate densities,

we are restricted to using vFA in regions where ρdata < 10−6, at the cost of incurring

some error in εH.

We now turn to a polyatomic system—the H2O molecule. Figure 5.9 compares the

exact vxc against vLDA
xc , on the plane of the H2O molecule. Additionally, Figure 5.10

provides the comparison along the O-H bond. For the exact vxc, we observe an atomic

inter-shell structure—marked by a yellow ring around the O atom in Figure 5.9(b) (as

well as the local maxima and minima at around r = ±0.4 a.u. in Figure 5.10). This

atomic inter-shell structure is a distinctive feature of the exact vxc [215, 216], and is

absent in the standard xc approximations, as evident from vLDA
xc . Further, we observe

a deeper potential around the O atom, as compared to vLDA
xc , thereby suggesting a

higher electronegativity on the O atom than that predicted by LDA. Moreover, we

observe a distinct local maximum at the H atom, as opposed to a local minimum in

vLDA
xc . Lastly, as indicated in Table 5.2, we obtain striking agreement between εH and

−Ip for this polyatomic system.

Finally, we evaluate the exact vxc for the singlet state of the ortho-benzyne radical

(C6H4)—a strongly correlated species that has previously served as a test for accurate

wave function theories [217]. Figure 5.11 compares the exact vxc against vLDA
xc , on the

plane of the benzyne molecule. This example underscores the efficacy of our approach

in handling both large as well as strongly correlated systems. As expected for the

exact vxc, we observe an atomic inter-shell structure—marked by a yellow ring around

the C atoms, which, on the other hand, are absent in the case of vLDA
xc . As is the case

with H2O, we observe a deeper potential around the C atom, as compared to vLDA
xc ,

suggesting a higher electronegativity on the C atom than that predicted by LDA.

Furthermore, as indicated in Table 5.2, we obtain remarkable agreement between εH
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and −Ip.

Table 5.3: ‖ρ(r)− ρdata(r)‖L1 /Ne for ρdata obtained from CI calculations.

H2(eq) H2(2eq) H2(d) H2O C6H4

3.5× 10−5 4.7× 10−5 4.2× 10−4 3.4× 10−5 8.2× 10−5

5.7 Comparison with existing methods

The proposed approach to the inverse DFT problem is now compared to prior

approaches in terms of accuracy, robustness and computational viability, using re-

sults from existing literature. Given the importance of the inverse DFT problem,

several attempts have been made at solving this over the past two decades. Broadly

speaking, the approaches proposed can be classified into three major categories—(a)

iterative update based algorithms [57, 58, 59, 203, 218, 60]; (b) constrained optimiza-

tion approaches [61, 62, 63, 66, 67, 205]; (c) linear response based approaches [64].

Irrespective of the underlying approach, the two major factors that determine the

accuracy of obtained vxc(r) are—(i) the completeness of the basis in which the Kohn-

Sham orbitals (ψi(r)) and the vxc(r) are discretized, and (ii) the accuracy of the input

density ρdata(r), including the correct near-field (cusp at the nuclear positions) and

far-field asymptotics. The major criteria for judging the accuracy of the resulting

vxc(r) are the L1 and L2 errors in the Kohn-Sham density (i.e. the output density)

that is produced by this vxc(r), as well as errors in the vxc(r) potential itself (as in

the case of the verification studies presented in Sec. 5.4). These metrics will form the

basis for our discussion that follows.

To begin with, we discuss the importance of using a complete basis to discretize

the inverse DFT problem, which in this work is achieved by using a systematically

convergent finite element basis. To this end, we compare the results of our verification

studies using ρLDA
data with similar results from published literature. This verification test
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allows for a direct assessment of the accuracy of the vxc obtained using inversion, by

comparing it against vLDA
xc [ρdata]. As noted earlier, several attempts at this verification

test have suffered from either non-unique solutions or had resulted in unphysical os-

cillations in vxc, owing to the incompleteness of the Gaussian basis employed in these

works. In particular, as demonstrated in [66, 67], the use of Gaussian basis results in

errors in
∣∣vxc(r)− vLDA

xc [ρdata]
∣∣ in the range of O(100 − 101) (cf. Figure 2 in [66] and

Figure 2 in [67]). A workaround to suppress this incomplete basis induced oscillation

is to either introduce a regularization constraint on the vxc, or to construct a balanced

potential basis (for the corresponding orbital basis). Although these techniques alle-

viate the wild oscillations, the resulting vxc still exhibits O(100) error (cf. Figures 4

and 6 in [66]; Figures 6 and 7 in [67]), and is sensitive to the choice of regularization

parameters/balanced basis. On the other hand, we demonstrate that the use of finite

element basis, owing to its completeness, results in smooth vxc with a tight accuracy

of O(10−2), for similar LDA-based verification studies (refer Fig. 5.3 and Fig. 5.4(b)).

A recent effort [205] employs additional constraints to obtain the most optimal vxc in

a given Slater basis. Although this approach results in better vxc for similar verifica-

tion studies, the normalized error in the density (i.e., ‖ρ(r)− ρdata(r)‖L1 /Ne) remains

high (∼ 3 × 10−3 − 6 × 10−4). In comparison, we obtain ‖ρ(r)− ρdata(r)‖L1 /Ne in

the range of 6× 10−6 − 8× 10−6 (cf. Table 5.1), for similar verification studies. We

remark that, in addition to these quantitative errors, the use of Gaussian basis has

also resulted in qualitatively incorrect vxc’s. For example, in [63], the vxc for H2,

corresponding to CCSD based ρdata, does not have a local maximum between the two

H atoms, a feature present in both the exact as well approximate vxc’s (such as LDA,

GGA)—cf. Fig. 5.5. Thus, the above comparisons show that the finite element basis

simultaneously provides accurate potentials and densities in solving the inverse DFT

problem.

Using accurate densities (ρdata) is also important in the inverse DFT problem,
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and the presence of cusp in ρdata at nuclei is particularly important. The vitality

of the nuclear cusp has been highlighted in Fig. 5.5, wherein the lack of cusp in

the Gaussian basis-set density induces wild oscillations in the vxc near the nuclei.

Similar Gaussian-density induced oscillations have also been observed in [65, 64, 218].

Thus, it is desirable to use ρdata generated using Slater or other complete basis sets.

However, the difficulty of performing CI calculations in Slater basis (owing to the

large computational cost involved in the four-center integrals associated with Slater

basis) restricts the availability of physically meaningful densities to atomic and small

molecular systems. To this end, we provide a practically useful solution by adding

a small ∆ρ correction to ρdata (cf. Eq. 5.10), so as to correct for the missing cusp

at the nuclei. This has enabled us to obtain exact vxc’s of remarkable quality using

Gaussian densities, with an accuracy of O(10−5 − 10−4) in ‖ρ(r)− ρdata(r)‖L1 /Ne

(cf. Table 5.3), for systems comprising up to 40 electrons. Similar accuracy has

been obtained in 1D (atomic) systems [58, 64, 203, 60], wherein Slater densities (or

densities obtained on a radial grid) are used in conjunction with solution of 1D (radial)

Kohn-Sham equations via numerical integration. An extension of these techniques to

3D systems remains computationally challenging, due to the difficulty in obtaining

accurate Slater densities for large molecular systems as well as adapting the numerical

approach used in these works for the solution of Kohn-Sham equations to 3D setting.

To this end, the use of finite elements, as employed in this work, affords both the

availability of accurate densities and the computational viability to handle large 3D

molecular systems.

5.8 Summary

We have presented an accurate and robust method to evaluate the exact vxc, solely

from the ground-state electron density. The key ingredients in our approach are—(i)

the effective use of FE basis, which is a systematically convergent and complete basis,
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and, in turn, results in a well-posed inverse DFT problem; (ii) use of ∆ρ correction

and appropriate far-field boundary conditions to alleviate the unphysical artifacts as-

sociated with Gaussian basis-set densities. We emphasize that the proposed approach

can easily drive the error in the target densities, i.e., ||ρdata−ρ||L2 , to tight tolerances

of O(10−5− 10−4)—which represents a stringent accuracy. Notably, as demonstrated

through the 1,3-dimethylbenzene and the ortho-benzyne molecules, our approach can

competently handle system sizes which have, heretofore, remained challenging for

other inverse DFT methods. Furthermore, for all the exact vxc’s obtained from CI

densities, we obtain excellent agreement between εH and −Ip (excepting in the case of

H2(d)), further validating the accuracy and robustness of the approach. We remark

that the larger discrepancy between εH and−Ip in the case of H2(d) is a consequence of

long-range (static) correlations in this system coupled with incorrect far-field asymp-

totics of Gaussian basis-set densities, and can be remedied with the availability of

more accurate densities. The ability to evaluate exact xc potentials from ground-

state electron densities, enabled by this method, will provide a powerful tool in the

future testing and development of approximate xc functionals. Further, it paves the

way for using machine-learning to construct the functional dependence of vxc on ρ,

i.e., vxc[ρ], providing another avenue to develop density functionals [219, 220, 207]

that can systematically improve both ground-state densities and energies [221] as

well as satisfy the known conditions on the exact functional [222, 223, 224].
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Figure 5.8: Nature and extent of electronic correlations in H2 molecules. A comparison
of the exact exchange-correlation (vxc) and the exchange-only (vx) potentials
is provided for H2 molecules at three different bond-lengths: (a) equilibrium
bond-length (H2(eq)); (b) twice the equilibrium bond-length (H2(2eq)); (c) at
dissociation (H2(d)). The relative difference between vxc and vx indicates the
nature and extent of electronic correlations. The correlations become stronger
with bond stretching.
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(a)

(b)

Figure 5.9: Comparison of the local density approximation (LDA) based and the exact
exchange-correlation potential for H2O (in a.u.), presented on the plane of the
molecule. (a) LDA based exchange-correlation potential. (b) exact exchange-
correlation potential. The O atom is at (0,0), and the two H atoms are at
(0,1.89) and (1.83, -0.46) (a.u.), respectively.
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Figure 5.10: Comparison of the LDA based and the exact exchange-correlation potential
for H2O along an O-H bond. The O and H atoms are located at r=0 and
r=1.89 (a.u.), respectively.
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(a)

(b)

Figure 5.11: Comparison of exchange-correlation potentials (vxc) for C6H4. (a) LDA based
exchange-correlation potential. (b) exact exchange-correlation potential. In
both the cases, the vxc (in a.u.) is presented on the plane of the molecule
(refer Table A.3 in Appendices for coordinates).
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CHAPTER VI

Conclusions

6.1 Summary

This thesis had set out with two challenges questions in DFT (TDDFT)—(i) to

dispense with the pseudopotential approximation without incurring heavy computa-

tional cost, and (ii) provide key insights into the exchange-correlation potential that

can form the basis for future testing and development of exchange-correlation approx-

imation. We have addressed both these challenges, in substantial measure, through

multiple numerical schemes.

The first part of this thesis (Chapter III) deals with the first question of dispens-

ing with the pseudopotential approximation and performing efficient all-electron DFT

calculations. We have developed a computationally efficient mixed basis, termed as

enriched finite element basis, which augments the classical finite element basis with

numerical atom-centered basis (called enrichment functions) [37]. The underlying

rationale for use of an enriched finite element basis is to combine the efficiency of

the atom-centered basis to capture the sharp variations of the electronic fields closer

to the atoms with that of the completeness of the classical finite element basis. In

effect, we mitigate the need for a highly refined finite element near the atoms, that is

typical for all-electron DFT calculations. The enrichment functions were constructed

from single-atom Kohn-Sham orbitals and electrostatic potentials. In particular, the
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enrichment functions were inexpensively pre-computed and stored by solving radial

Kohn-Sham equations for all atoms in the periodic table. Care was taken to trun-

cate the enrichment functions with smooth cutoff functions so as to ensure locality

as well as better conditioning of the enriched finite element basis. Furthermore, we

employed a divide and conquer strategy to construct an adaptive quadrature grid

that can efficiently evaluate the integrals involving the enrichment functions. We

employed a computationally efficient scheme to evaluate the inverse of the overlap

matrix in the enriched finite element basis, by exploiting the block-wise matrix in-

version, which is instrumental in converting the generalized Kohn-Sham eigenvalue

problem to a standard one as well as in performing sparse matrix-vector products.

The classical-classical block of the overlap matrix is rendered diagonal with the use of

spectral finite elements along with Gauss-Lobatto-Legendre, which, in turn, is crucial

to efficient evaluation of the inverse of the full overlap matrix. Finally, we employed

the Chebyshev polynomial based filter to compute the occupied eigenstates. Here,

we exploited the finite element structure in the Hamiltonian and the inverse over-

lap matrices to achieve an efficient and scalable implementation of the matrix-vector

products involved in the action of the Chebyshev filter on a subspace. In terms of

the numerical convergence afforded by the enriched finite element basis, we demon-

strated close to optimal rates of convergence for the ground-state energy with respect

to the finite element discretization. We demonstrated the accuracy and performance

of the proposed enriched finite element basis on: (i) silicon nano-clusters of various

sizes, with the largest cluster containing 8694 electrons; and (ii) gold nano-clusters of

various sizes, with the largest cluster containing 1817 electrons. We obtained good

agreement in the ground-state energies when compared to classical finite element and

Gaussian basis. In the larger clusters considered in this study, the enriched finite el-

ement basis provides a striking 50− 300 fold speedup compared to the classical finite

element basis, owing to a 30−fold reduction in the degrees of freedom as well as a
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20−fold reduction in the Chebyshev polynomial degree. We also attained a significant

3 − 8-fold outperformance by the enriched finite element basis relative to Gaussian

basis (pc-3 and pc-4). Furthermore, we were able to perform ground-state energy

calculations for silicon clusters containing 280 and 621 atoms, for which the Gaussian

basis failed to converge owing to linear dependency of the basis. These larger systems

underscore the effectiveness of enriched finite element basis to systematically scale

to several thousands of electrons, with moderate computational expense. In terms

of parallel scalability, we obtained good parallel efficiency with almost linear scal-

ing up to 384 processors for the benchmark system comprising of 280 atoms silicon

nano-cluster and containing ∼4 million basis functions.

Unlike the case in ground-state DFT, wherein prior works (most notably [38])

lay the ground for an efficient adaptive finite element based spatial discretization,

TDDFT lacks such adaptive spatio-temporal schemes. To that end, the second part

of this thesis (Chapter IV) built the foundation for an efficient higher-order (clas-

sical) finite element based spatio-temporal discretization, for both all-electron and

pseudopotential based real-time TDDFT (RT-TDDFT) calculations [56]. Hence, this

work forms an important stepping stone towards extending the ideas of the enriched

finite element based discretization for all-electron TDDFT calculations. We presented

an efficient a priori spatio-temporal scheme guided by the discretization errors in the

time-dependent Kohn-Sham orbitals, in the context of second-order Magnus propa-

gator. In particular, we employed the knowledge of the ground-state electronic fields

to determine an efficient adaptively resolved finite element mesh and to make an eco-

nomic choice for the time-step. We remark that the adaptive resolution, so afforded

by our scheme, is crucial to the use of large simulation domains without significant

increase in the number of basis functions. This, in turn, allowed us to circumvent the

use of any artificial absorbing boundary conditions. We employed higher-order spec-

tral finite-elements along with special (Gauss-Lobatto-Legendre) quadrature rules to
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render the overlap matrix as well as improve the conditioning of the basis. Con-

sequently, it enabled the transformation of a generalized equation to its standard

form, and hence, provided for an efficient construction of the Magnus propagator

(or any exponential time-integrator) for finite element discretization. Furthermore,

we used an adaptive Lanczos subspace projection to efficiently evaluate the action

of the Magnus propagator, defined as exponential of a matrix, on the Kohn-Sham

orbitals. Numerically, we attained rates of convergence, on both pseudopotential and

all-electron systems, that are close to the optimal rates of convergence with respect

to both spatial and temporal discretization, as determined by our error estimates.

We established the computational efficiency afforded by higher-order finite elements

by demonstrating a staggering 10− 100 fold speedup for fourth-order finite elements

over linear and quadratic finite elements. We assessed the performance of our ap-

proach against the finite-difference based method of Octopus software package, for

pseudopotential calculations. For all the benchmark systems considered, we obtained

good agreement between the absorption spectrum evaluated using the finite elements

and finite-difference (Octopus) based calculations. Remarkably, we obtained 3 − 60

fold speedup over finite-difference, largely attributed to the adaptive spatial resolution

afforded by our approach. Further, we demonstrated the efficacy of finite elements, es-

pecially its efficient handling of large domains, for nonlinear response by studying the

higher harmonic generation under a strong electric field. We also demonstrated the

competence of higher-order finite elements for all-electron RT-TDDFT calculations.

This highlights the versatility of finite elements in handling both pseudopotential and

all-electron calculations on an equal footing, and, thereby, offers a powerful tool for

conducting transferability studies on pseudopotentials for RT-TDDFT calculations.

Lastly, in terms of parallel scalability, we obtained good parallel efficiency up to 768

processors for a benchmark system comprising of the Buckminsterfullerene molecule

containing ∼3.5 million basis functions.

173



In the third part of the thesis (Chapter V), we turned to the vital question of

obtaining the exact exchange-correlation potential corresponding to a ground-state

density, otherwise known as the inverse DFT problem. Although it constitutes an

immensely consequential question for testing and developing approximate exchange-

correlation functionals in DFT, the lack of an accurate and systematically convergent

approach has left the problem unresolved, heretofore. To this end, we have presented

an accurate and robust method to evaluate the exact vxc, solely from the ground-

state electron density. We remark that while the continuous form of inverse DFT

problem remains well-posed, the discrete one turns ill-posed when discretized using

an incomplete basis. Consequently, prior works, which had employed Gaussian basis

to discretize the inverse problem, suffered from either spurious oscillations or non-

uniqueness in vxc. In this work, we mitigate any such incomplete basis-induced artifact

by employing finite element basis, a systematically convergent and complete basis, to

discretize both the Kohn-Sham orbitals as well as the vxc. We, first, demonstrated

the accuracy of our approach through verification studies against ground-state den-

sities obtained from DFT calculations with known exchange-correlation functionals

(e.g., LDA, GGA). Next, we addressed the challenge of obtaining the exact vxc cor-

responding to ground-state densities obtained from wavefunction based calculations

(e.g., configuration interaction (CI)). We remark that, from a practical viewpoint,

Gaussian basis is the only viable means, at present, to obtain all-electron correlated

ab initio densities from any wavefunction based methods (like CI). However, it is

known that Gaussian basis-set densities, owing to their lack of cusp at the nuclei

as well as incorrect far-field decay, induce highly unphysical features in the vxc’s

obtained from inverse calculations. To this end, we remedy these artifacts by—(a)

adding a small ∆ρ correction to the CI densities, so as to correct for the missing cusp

at the nuclei, and (b) using approximate far-field boundary conditions for vxc that

honors the −1/r decay. Consequently, the combination of these numerical strate-
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gies, in conjunction with the use of finite elements, have attained stringent accuracies

in the target densities, i.e., ||ρdata − ρ||L2 of O(10−5 − 10−4). More importantly, as

demonstrated through the 1,3-dimethylbenzene and the ortho-benzyne molecules, our

approach can competently handle system sizes which have, heretofore, remained chal-

lenging for other inverse DFT methods. Notably, for all the exact vxc’s obtained from

CI densities (excepting in the case of H2(d)), we could verify the Koopmans’ theorem

to remarkable accuracy by demonstrating the close agreement between εH and −Ip.

This further validates the accuracy and robustness of the approach. In the case of

H2(d), the relatively larger discrepancy between εH and −Ip stems from the presence

of long-range (static) correlations in the system, which when coupled with incorrect

far-field asymptotics of Gaussian basis-set densities results in relatively higher error

in εH. However, this error can be remedied with the availability of more accurate

densities. In conclusion, this ability to evaluate exact xc potentials from ground-state

electron densities, enabled by our method, offers a powerful tool that can aid in future

testing and development of approximate xc functionals. Further, it provides a new

avenue of functional development through machine-learning, wherein one can use the

{ρ(r), vxc(r)} data from inverse calculations to construct the functional dependence

of vxc on ρ, i.e., vxc[ρ]. Thus, it holds the key to a systematic route to functional de-

velopment that can simultaneously improve both ground-state densities and energies

as well as satisfy the known conditions on the exact functional.

6.2 Future directions

The numerical strategies developed in this thesis, ranging from efficient all-electron

DFT calculations to efficient spatio-temporal discretization in TDDFT to accurate

evaluation of the vxc(r) from a given ρ(r), holds a great deal of promise for all-electron

DFT (TDDFT) calculations, from a numerical as well as physical standpoint. It

paves the way for a number of interesting research directions within the realm of
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DFT (TDDFT). We list some of these worthwhile subjects below.

• Robust othogonalized enriched finite element basis: As noted in Sec. 3.5.2,

one needs to pre-multiply the enrichment functions with smooth cutoff functions

to enforce locality as well as avoid ill-conditioning of the resultant enriched

finite element basis. Although it provides a practical approach to avoid ill-

conditioning in the enriched finite element basis, it demands some degree of

care in terms of choosing the cutoff radius and smoothness of the cutoff func-

tion. Furthermore, the conditioning of the basis can become sensitive to the

choice of these cutoff parameters, especially while working with a refined clas-

sical finite element mesh, thereby affecting the accuracy of the ground-state

calculation. Thus, in order to alleviate these shortcomings, we have formulated

a modified enriched finite element basis, wherein the enrichment functions are

orthogonalized to the subspace spanned by the classical finite element basis,

without compromising on their locality. In addition to alleviating the the ill-

conditioning concerns, the orthogonality of the modified enrichment functions

with the classical finite element basis will render the overlap matrix ME (see

Sec 3.5.1) block-diagonal, and hence, will greatly simplify the evaluation of its

inverse.

• Enriched finite element based all-electron TDDFT: Having developed an

efficient a priori spatio-temporal discretization scheme for RT-TDDFT using

classical finite elements, it is but natural to extend the key ideas of enriched

finite element basis to RT-TDDFT. As demonstrated in the case of all-electron

ground-state DFT, we expect similar reduction in the degrees of freedom for

an enriched finite element based all-electron TDDFT calculation. Additionally,

the ability to use a coarser finite element discretization will also afford the use

of larger time-step and/or smaller Krylov subspace to evaluate the action of the

Magnus propagator, thereby, allowing for all-electron TDDFT calculations for
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larger time-scales.

• Dynamic subspace based TDDFT calculations: We remark that the adap-

tive Krylov subspace projection based approach to evaluate the action of the

Magnus propagator (or any exponential propagator) provides an accurate and

efficient scheme for the description of the action of the exponential operator on

an orbital. However, it still remains sub-optimal from a computational efficiency

standpoint due to a different subspace being used for each ψ̄α(t), and the need

to construct these subspaces at each time-step. Consequently, TDDFT calcu-

lations on systems containing more than 1000 electrons for over a time-scale of

100 fs remains a serious computational challenge. To this end, one can dispense

with these computational costs by: (i) constructing a common subspace that

represents all the electrons in the system, (ii) using a multiscale propagation

technique, wherein the subspace is updated on a larger time-scale as compared

to the time-step of the exponential propagator. The evolution and size of the

common subspace can be guided by drawing ideas from time-dependent pertur-

bation theory and the time-dependent variational principle. To elaborate, the

time-dependent perturbation theory can allow us to determine an adequate low-

lying eigenspace to represent the Kohn-Sham orbitals, and the time-dependent

variational principle can govern the optimal evolution of the subspace.

• Accelerating inverse DFT: While the challenge of obtaining the exact vxc(r)

from a given ρ(r) have been adequately addressed in this thesis, from an effi-

ciency viewpoint there is much more to be desired. Accelerating the inversion,

without compromising on the accuracy, is instrumental to the generation of

training data that can be used for a machine-learned exchange-correlation func-

tional. The current numerical implementation, as presented in this work, relies

on the use of classical finite element basis to discretize the inverse DFT prob-
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lem, which, in turn, remains inefficient for any all-electron DFT calculation. To

this end, the idea of enriched finite element basis can play an important role in

accelerating the inverse DFT calculations.

• Machine learned exchange-correlation functional: As noted earlier, the

solution to the inverse DFT problem presented in this thesis provides a powerful

tool to constructing accurate exchange-correlation functionals using machine-

learning. To elaborate, we can use the inverse DFT scheme to generate {ρ(i), v
(i)
xc }

pairs, using ρ(i)’s from correlated ab-initio calculations. Subsequently, these

{ρ(i), v
(i)
xc } can be used as training data to model vxc[ρ] through machine-learning

algorithms [207, 208], conforming to the known exact conditions on vxc. Fur-

ther, the exchange-correlation energy (Exc[ρ]) can be directly evaluated through

line-integration on vxc[ρ]. Given the paramountcy of the exchange-correlation

to DFT (TDDFT), this work will constitute an exceedingly interesting research

direction.
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Table A.1: Coordinates (in a.u.) of sys-

tems used in Chapter III

Au6

Au 2.9185 −5.0550 0.0000

Au 2.9185 0.0000 0.0000

Au 2.9185 5.0550 0.0000

Au −1.4593 2.5275 0.0000

Au −5.8370 0.0000 0.0000

Au −1.4593 −2.5275 0.0000

Table A.2: Coordinates (in a.u.) of sys-

tems used in Chapter IV

Al13

Al 3.2046 1.8002 3.5079

Al −3.2046 −1.8002 −3.5079

Al 0.0000 0.0000 0.0000

Al −3.8897 −2.7943 1.6963

Al 4.5987 −2.1518 0.1944

Al 0.9330 −3.0116 3.9844

Al 0.2141 −4.9914 −0.9252

Al −0.9330 3.0116 −3.9844

Al −4.5987 2.1518 −0.1944

Al 3.8897 2.7943 −1.6963

Al −0.2141 4.9914 0.9252

Al −2.0415 1.4031 4.4361

Al 2.0415 −1.4031 −4.4361

C6H6 (benzene)

C 0.0000 2.6381 0.0000

C 2.2847 1.3190 0.0000

C 2.2847 −1.3190 0.0000

Continued on next column
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Continued from previous column

C 0.0000 −2.6381 0.0000

C −2.2847 −1.3190 0.0000

C −2.2847 1.3190 0.0000

H 0.0000 4.6846 0.0000

H 4.0573 2.3433 0.0000

H 4.0573 −2.3433 0.0000

H 0.0000 −4.6846 0.0000

H −4.0573 −2.3433 0.0000

H −4.0573 2.3433 0.0000

C60 (Buckminsterfullerene)

C −2.6748 5.6976 −2.2071

C 4.8825 4.3314 −1.3628

C 1.3628 −4.8825 4.3314

C 5.6976 −2.2071 2.6748

C −5.6976 −2.2071 2.6748

C −1.3627 −4.8825 4.3314

C −4.8825 4.3314 −1.3628

C −6.5411 0.0000 1.3121

C 2.6748 5.6976 −2.2071

Continued on next column

Continued from previous column

C 6.5411 0.0000 1.3121

C −2.6748 −5.6976 −2.2071

C −4.3314 −1.3628 −4.8825

C 0.0000 1.3121 −6.5411

C 4.3314 −1.3628 −4.8825

C 2.6748 −5.6976 −2.2071

C −4.3314 1.3628 −4.8825

C 2.2071 2.6748 −5.6976

C 5.6976 −2.2071 −2.6748

C 1.3121 −6.5411 0.0000

C −4.8825 −4.3314 −1.3628

C 1.3628 4.8825 4.3314

C 2.2071 2.6748 5.6976

C 0.0000 1.3121 6.5411

C −2.2071 2.6748 5.6976

C −1.3628 4.8825 4.3314

C −1.3121 6.5411 0.0000

C 4.8825 4.3314 1.3628

C 4.3314 −1.3628 4.8825

Continued on next column
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Continued from previous column

C −2.2071 −2.6748 5.6976

C −5.6976 2.2071 2.6748

C 2.2071 −2.6748 5.6976

C −4.3314 −1.3628 4.8825

C −4.8825 4.3314 1.3628

C 1.3121 6.5411 0.0000

C 5.6976 2.2071 2.6748

C −1.3121 −6.5411 0.0000

C −5.6976 −2.2071 −2.6748

C −2.2071 2.6748 −5.6976

C 4.3314 1.3628 −4.8825

C 4.8825 −4.3314 −1.3628

C 2.2071 −2.6748 −5.6976

C 1.3628 −4.8825 −4.3314

C −1.3628 −4.8825 −4.3314

C −2.2071 −2.6748 −5.6976

C 0.0000 −1.3121 −6.5411

C 1.3627 4.8825 −4.3314

C 6.5411 0.0000 −1.3121

Continued on next column

Continued from previous column

C 2.6748 −5.6976 2.2071

C −4.8825 −4.3314 1.3628

C −5.6976 2.2071 −2.6748

C −4.3314 1.3628 4.8825

C −2.6748 5.6976 2.2071

C 2.6748 5.6976 2.2071

C 4.3314 1.3628 4.8825

C 0.0000 −1.3121 6.5411

C −2.6748 −5.6976 2.2071

C −6.5411 0.0000 −1.3121

C −1.3628 4.8825 −4.3314

C 5.6976 2.2071 −2.6748

C 4.8825 −4.3314 1.3628
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Table A.3: Coordinates (in a.u.) of sys-

tems used in Chapter V

H2(eq)

H −0.6990 0.0000 0.0000

H 0.6990 0.0000 0.0000

H2(2eq)

H −1.4150 0.0000 0.0000

H 1.4150 0.0000 0.0000

H2(d)

H −3.7795 0.0000 0.0000

H 3.7795 0.0000 0.0000

H2O

O 0.0000 0.0000 0.0000

H 0.0000 1.8897 0.0

H 1.8327 −0.4607 0.000

C6H4 (ortho-benzyne)

C 1.17276 −2.085 0.0000

C −1.17276 −2.0850 0.0000

C −2.7274 −0.0054 0.0000

C −1.3202 2.2231 0.0000

Continued on next column

Continued from previous column

C 1.3202 2.2231 0.0000

C 2.7274 −0.0054 0.0000

H −4.7590 −0.00896 0.0000

H −2.303 4.0071 0.0000

H 2.303 4.0071 0.0000

H 4.7590 −0.00896 0.0000

C8H10 (1,3-dimethylbenzene)

C 2.2976 0.2359 0.0000

C −0.00276 1.50778 0.0000

C −2.3137 0.2284 0.0000

C −2.284 −2.3996 0.0000

C −0.00226 −3.7077 0.0000

C 2.2689 −2.4046 0.0000

C 4.7677 1.6546 0.0000

C −4.7636 1.6818 0.0000

H −0.00426 3.5568 0.0000

H −4.0496 −3.4334 0.0000

H −0.00443 −5.7529 0.0000

H 4.0371 −3.4356 0.0000

Continued on next column
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Continued from previous column

H 5.8985 1.1838 1.6606

H 4.464 3.6909 0.0000

H 5.89852 1.1838 −1.6606

H −4.9107 2.8976 1.6608

H −6.3865 0.4148 0.0000

H −4.9107 2.8976 −1.6608
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