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ABSTRACT

Studies show that state-of-the-art deep neural networks (DNNs) are vulnerable to

adversarial examples, resulting from small-magnitude perturbations added to the input

in a calculated fashion. These perturbations induce mistakes in the network’s output.

However, despite the large interest and numerous works, there have only been limited

studies on the impact of adversarial attacks in the physical world. Furthermore, these

studies lack well-developed, robust methodologies for attacking real physical systems.

In this dissertation, we first explore the technical requirements for generating

physical adversarial inputs through the manipulation of physical objects. Based on our

analysis, we design a new adversarial attack algorithm, Robust Physical Perturbations

(RPP) that consistently computes the necessary modifications to ensure the modified

object remains adversarial across numerous varied viewpoints. We show that the RPP

attack results in physical adversarial inputs for classification tasks as well as object

detection tasks, which, prior to our work, were considered to be resistant.

We, then, develop a defensive technique, robust feature augmentation, to mitigate

the effect of adversarial inputs, both digitally and physically. We hypothesize the

input to a machine learning algorithm contains predictive feature information that

a bounded adversary is unable to manipulate in order to cause classification errors.

By identifying and extracting adversarially robust feature information, we can obtain

evidence of the possible set of correct output labels and adjust the classification

decision accordingly. As adversarial inputs are a human-defined phenomenon, we

leverage human-recognizable features to identify adversarially robust, predictive fea-

ture information for a given problem domain. Due to the safety-critical nature of

xiii



autonomous driving, we focus our study on traffic sign classification and localization

tasks.
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CHAPTER I

Introduction

Deep Neural Networks (DNNs) are being used with great success in a variety

of domains ranging from speech processing [32] to medical diagnostics [18] and are

increasingly being used to control physical objects such as cars [44], UAVs [7], and

robots [92]. These DNNs used for the control of physical objects rely on sensory

input to inform decisions. However, many works have demonstrated that DNNs are

vulnerable to adversarial inputs [26, 40, 41, 81, 64, 12, 70, 35]. These maliciously

crafted inputs specifically modify key parts of the input to a DNN in order to cause

the systems they control to misbehave in unexpected and potentially dangerous ways.

This thesis examines adversarial inputs from both the perspective of an adversary

and a defender. As an adversary, most adversarial attack techniques assume digital

access to machine learning systems in order to craft adversarial examples, which is

not always possible. Thus, in an effort to develop a more realistic threat model, we

analyze the challenges of creating robust, physical adversarial inputs for computer

vision systems. Based on our analysis, we develop a new adversarial attack, in which,

we can add small, colored stickers to objects in the environment and cause computer

vision systems to misidentify or fail to detect the modified objects.

Due to the pervasive use of machine learning technologies, the existence of adversar-

ial inputs is a potential concern wherever machine learning is used, especially in safety
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or security critical tasks. Thus, it is of critical importance to also develop techniques,

which prevent the use of or mitigate the risks of adversarial inputs. Informed by our

work in designing adversarial attacks, we identify a fundamental problem in current

machine learning algorithms: the inability to separate and recognize adversarially

robust, predictive features. By definition, adversarial inputs are, limited to small,

sometimes undetectable distortions of correctly recognized inputs. With respect to

computer vision, distinct features such as the color, shape, or size of identifiable

objects would be robust to small adversarial modifications. In the second part of

the dissertation, we propose a new machine learning technique, which augments the

standard machine learning pipeline with robust, predictive information derived from

known unmodifiable features in the task domain. We also describe an adversarially

robust machine learning architecture with theoretical guarantees and experimental

results.

In this dissertation, we systematically identify the challenges of both at-

tacking and defending supervised machine learning algorithms and, based

our analysis, provide novel solutions to overcome those challenges. We first

define a realistic threat model for adversarial attacks on real systems and develop

an attack algorithm using this new threat model. Based on our understanding of

adversarial attacks, we identify a major limitation in current machine learning training

techniques and propose a new technique with theoretical guarantees to address this

limitation. Finally, we test both our adversarial attack and defensive techniques in a

real machine learning problem domain, traffic sign classification and localization.

2



1.1 Contributions of This Dissertation

1.1.1 Developing Physical Adversarial Attacks for Computer Vision Sys-

tems

Most adversarial attacks assume digital access to the machine learning system,

such that fine-grained input manipulations are possible. With respect to computer

vision systems, these manipulations manifest themselves as floating point changes to

the pixels in an image. However, obtaining digital access to the system could prove

hard or impossible. Even if such access was obtained, the adversary is likely able to

perform other, more destructive actions such as disabling the vision sensors entirely.

Although analyzing adversarial attacks using digital manipulations can prove useful

when designing defenses with respect to a strong adversary, we believe that such a

threat model is theoretical. Rather, a more realistic threat model is one in which

the adversary physically modifies the operational environment of a machine learning

system so as to cause predictable errors.

In Chapter III, we detail the process of developing a physical adversarial attack

for computer vision classifiers. With autonomous driving as our target domain, we

identify several technical challenges an attacker must consider when generating robust,

physical adversarial examples. Informed by these challenges, we design the Robust

Physical Perturbations (RPP) attack. The attack creates robust, physical adversarial

perturbations by sampling a distribution of images containing the target object under

varying physical conditions such as different distances, lightning, and camera angles and

applying synthetic transformations to the proposed physical adversarial perturbation

to roughly match the physical condition of the samples. Our experimental results

demonstrate that the adversarial modification proposed by the attack can reliably fool

visual classification systems at least 80% of the time.

Computer vision systems are not only limited to classification tasks. Object

3



detection is another computer vision task in which two sub-tasks are performed:

localization and classification. First, given an image of a scene, an object detector

must identify zero or more areas of interest in the scene that may contain objects.

Then, it attempts to label each object in the proposed areas. In Chapter IV, we

analyze and overcome the additional challenges introduced when attacking object

detection frameworks. Namely, the localization task introduces an additional challenge

for physical adversarial examples: the object’s relative size and position in a scene is

variable. To overcome this challenge, we modify the RPP attack to apply synthetic

transformations to an image of the target object as well as the adversarial perturbation.

These transformations include both the sources of noise considered in Chapter III as

well as the new sources of noise due to variability in an object’s size and position in a

scene.

We introduce two proof-of-concept adversarial attacks on object detectors, which

target the object detector’s localization and classification components separately. Using

a well-known object detection framework, You Only Look Once (YOLO), we show

that our modified attack is able to create robust, physical adversarial modifications

for a target object and fool YOLO in at least 60% of the evaluation images of the

target object.

1.1.2 Robust Feature Augmentation

Given a data set of representative examples, a machine learning algorithm is

typically trained to maximize the algorithm’s predictive accuracy on any other example

from the same distribution. Towards this goal, machine learning algorithms learn to

use any predictive feature in the input. Some of these features such as the shape,

color, or size of an object are predictive features recognizable to a human. However,

machine learning algorithms also learn other equally predictive features, which are

imperceptible to humans, and thus used in adversarial attacks.

4



In Chapter V, we describe a new machine learning technique, robust feature

augmentation, to improve the adversarial robustness of machine learning classifiers,

thus mitigating the effect of adversarial examples. Robust feature augmentation relies

on the assumption that there exists a set of predictive features that cannot be modified

due to constraints on the adversary. We denote such features as robust, and can use

these features as supporting evidence for the final prediction. Under the assumption

that robust features exist and can be reliably extracted, we discuss two possible

architectures, which have theoretical guarantees to mitigate or prevent the effect of

adversarial examples. Furthermore, we deploy robust feature augmentation for digit

recognition and traffic sign classification. In both cases, robust feature augmentation

improves the adversarial robustness of machine learning classifiers by at least 75%.

We also show that combining robust feature augmentation with another adversarial

mitigation technique, adversarial training, can further improve adversarial robustness.
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CHAPTER II

Related Works

We survey the related work in regarding digital adversarial attacks on classifiers

and adversarial defenses. For work related to physical adversarial attacks on classifiers

refer to Chapter III. For work related to both digital and physical adversarial attacks

on object detectors, refer to Chapter IV.

2.1 Adversarial Attacks

Given a classifier fθ(·) with parameters θ and an input x with ground truth

label y, an adversarial example x′ is generated such it is “close” to x measured by a

certain distance metric, such as the Lp norm distance. This closeness ensures that the

adversarial example is perceptibly identical to the original input. x′ is also designed

to cause the classifier to make an incorrect prediction. If x′ is generated such that

fθ(x
′) = y∗ for a specific y∗ 6= y, then x′ is a targeted adversarial input. Otherwise, if

x′ is generated such that fθ(x
′) 6= y, then x′ is an untargeted adversarial input. See

Figure 2.1 for an example of an input and its adversarial counterpart [26].

Existing work in generating adversarial examples for machine learning algorithms

can be divided into either white-box or black-box adversarial attack algorithms. In a

white-box setting, the attacker is assumed to have full access to the classifier including

the model weights and parameters. In a black-box setting, the adversary can typically

6



Figure 2.1: An image of a panda and its corresponding adversarial example. Adversarial
examples are the results of small, imperceptible changes to a correctly classified input.
Image credit to Goodfellow et al. [26].

only access the softmax output or the final classification decision. In some cases, the

number of queries the adversary can make is also limited.

Most of the work in this field assumes that the attacker has “digital-level” access

to an input. For example, the attacker can make arbitrary pixel-level changes to the

input image of a classifier. When considering the use of deep learning in cyber-physical

systems (e.g., in an autonomous vehicle), these attacks thus implicitly assume that

the adversary controls a DNN’s input system (e.g., a camera). A stronger and more

realistic threat model would assume that the attacker only controls the physical layer,

such as the environment or objects that the system interacts with, but not the internal

sensors and data pipelines of the system. We discuss such a threat model in Chapters

III and IV.

2.1.1 White-Box Attacks

Numerous different methods have been proposed to generate adversarial examples

in a white-box setting, where the adversary has full access to the classifier and its

data [81, 26, 12, 57, 64, 6, 37]. In this section, we will discuss a few of the more

well-known or widely used white-box attacks.

In the initial work by Szegedy et al., given an input x they generated adversarial
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examples by finding the closest image x′, based on L2 distance, with target label l

[81]. Formally, they solved the following box-constrained optimization problem:

min c ∗ ||x− x′||2 + lossf,l(x
′) (2.1)

where lossf,l is a continuous loss function and c is a regularization constant. In

their work, they used line search to find the smallest c > 0 for which the adversarial

example worked.

Papernot et al. proposed an alternative approach, the Jacobian-based Saliency

Map Attack (JSMA), for crafting adversarial examples constrained by the L0 norm

[64]. Given an input x and an adversarial label y∗, they use the forward derivative

∆f(x) to construct an adversarial saliency map S(x, y∗, i). For each input feature i:

S(x, y∗)[i] =


0

∆fy∗ (x)

∆xi
< 0 or

∑
j 6=y∗

∆fj(x)

∆xi
> 0(

∆fy∗ (x)

∆xi

) ∣∣∣∣∣ ∑j 6=y∗ ∆fj(x)

∆xi

∣∣∣∣∣ otherwise

This map measures the impact each input feature (e.g., pixel) has on the overall

classification. Changing pixels with a high value on the saliency map increases the

likelihood of the input being misclassified as y∗. In each iteration, the attack chooses

the best pixel based on the saliency map until the input is misclassified as y∗ or until

the attack is considered detectable based on a maximum number of allowable pixel

changes.

Carlini and Wagner improved upon the work done by Szegedy et al., by experi-

menting with different box-constraint encodings and different objective functions [12].

In their work, they demonstrated that although the box-constraint encoding does

not matter, the choice of loss function greatly affects the quality of the adversarial

examples. In fact, cross-entropy loss was the worst performing loss function in their
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experiments. Based on their analysis, they extended the original box-constrained

problem to work with L0, L2, and L∞ distance measures and generated higher quality

adversarial examples compared to previous work.

Optimization based attacks like the ones just discussed are able to generate high

quality adversarial examples, but suffer from poor performance. In an effort to

generate adversarial examples quickly, Goodfellow et al. proposed a non-optimization

based attack, the Fast Gradient Sign Method (FGSM) [26], for generating adversarial

examples measured by the L∞ distance. Given an image x, the adversarial example

x′ is given by:

x′ = x+ ε ∗ sign(∇lossf,l(x)) (2.2)

where ε is very small. In essence, this attack uses the gradient of the loss function to

determine the direction each pixel in the input should tweaked and then modifies them

all at the same time by ε. Although this first-order attack arrives at an adversarial

example very quickly, there is no guarantee that the adversarial example is optimal.

An iterative FSGM attack was proposed by Kurakin et al., which was more likely

to generate successful adversarial inputs [37]. In each iteration of the attack, the

adversarial example in updated by a small amount α:

x′i = clipε(x
′
i−1 + α ∗ sign(∇lossf,l(x′i−1))) (2.3)

where clipε is a function that ensures the adversarial example is within the ε-L∞ ball

from the original input and has valid values for an image. Additional improvements

have been made by others, resulting in higher adversarial success rates [93, 86].
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2.1.2 Black-Box Attacks

Black-box adversarial attacks study how an adversary can generate adversarial

examples without perfect knowledge of the model. Often, the adversary is assumed to

have access to either the output probabilities or the output label for a given input. One

common attack strategy, proposed by Papernot et al., is to exploit the transferability

of adversarial examples [63]. An input which is adversarial to a classifier f ′ has the

possibility to also be adversarial to a different classifier f assuming they are training

on similar input data [26, 81]. The attack strategy is divided into two steps. First, the

adversary, using the target classifier f as an oracle, trains a substitute classifier f ′ that

is a good enough approximation of the target classifier. Starting from an initial set of

inputs, Papernot et al. iteratively train a network and use Jacobian-based Dataset

Augmentation to create new inputs to query and train on. Once trained, they perform

a white-box attack on f ′ with the expectation that most of the adversarial inputs

generated for f ′ will transfer to f . In their original work, they used neural networks

for both the substitute and target models. In a later work, Papernot et al. studied the

transferability of adversarial examples for five different classifier techniques: neural

networks, logistic regression, support vector machines, decision trees, nearest neighbors,

and ensemble networks [62]. They concluded that with their black-box attack strategy,

a neural network classifier can approximate most other machine learning classifiers

and generate highly transferable adversarial examples.

Liu et al. also developed a black-box attack that exploits the transferability of

adversarial examples through the use of ensemble networks [49]. Unlike the work by

Papernot et al., Liu et al. assumed the attacker cannot query the target classifier.

To generate transferable adversarial examples, they trained an ensemble of classifiers

and then generated adversarial examples for the ensemble model. Using the Imagenet

dataset, they demonstrated that their technique greatly improves the transferability of

untargeted adversarial examples as well as generating targeted transferable adversarial
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examples.

Another common attack strategy is query-based adversarial input searches or

gradient estimations. Narodytska and Kasiviswanathan describe a greedy local search

algorithm, which uses oracle queries to identify a small set of vulnerable pixels in the

image that cause large shifts in the output probability [59]. Chen et al. and Bhagoji

et al. both use oracle queries to compute finite differences and estimate the gradient of

the target classifier [15, 5]. The estimated gradient is then used to craft an adversarial

example. For instance, Bhagoji et al. use the estimated gradient to enable the fast

gradient sign attack. Often, these query-based black-box attacks rely on access to

the output probabilities, but attacks which only use the output label to estimate the

gradient have been recently proposed [17].

2.2 Adversarial Defenses

In an effort to mitigate the effect of adversarial examples, there is a push to

design defensive measures against adversarial examples. Research in this area can be

divided into defensive methods [26, 65, 83, 78], which improve a model’s resistance

to adversarial examples, and detection solutions [31, 42, 25], which use statistical

properties or other information to identify adversarial examples from natural examples.

The main issue with many of the proposed strategies is that many of them do

not provide provable security guarantees under a certain threat model. Rather, they

implement a technique, such as gradient masking, PCA analysis, or input normalization,

and show experimentally the proposed strategy is resistant to many adversarial attacks.

However, when exposed to an adaptive adversary that modifies the attack based on

the defense, the defense fails [12, 2, 11, 3].

Currently, the most reliable technique to improve a model’s adversarial robustness

is augment the training dataset with adversarial examples [81]. This technique, known

as adversarial training, has been shown to significantly improve a model’s robustness
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to white-box adversarial attacks. In their work, Madry et al. generated adversarial

inputs that maximized the model’s loss during training. This approach resulted in

significant improvements in adversarial robustness on the MNIST and CIFAR datasets

[51]. Further work by Kurakin et al., demonstrated how to scale adversarial training

to larger datasets and models by using a single-step adversarial attack rather than

an iterative one [38]. Tramèr et al. proposed implementing adversarial training in

an ensemble fashion to reduce adversarial training overhead and and further improve

adversarial robustness for large scale datasets [84]. During training, they pre-computed

adversarial inputs for an ensemble of models, which were used to train a new robust

model, that was not part of the ensemble. They demonstrated that this ensemble

approach both improved the trained model’s robustness to white-box attacks and

black-box transferability attacks.

As adversarial training is a data augmentation technique, it is possible to combine

it with other techniques to create new adversarial defenses. One such approach is to

combine adversarial training with denoising algorithms as adversarial examples are

typically generated by adding noise to a correctly labelled input. Gu and Rigazio

first explored this approach by adding a denoising autoencoder to the input of a

Deep Neural Network (DNN) [29]. Through adversarial training, they created an

autoencoder that learned to minimize the pixel-based reconstruction loss between an

adversarial input and the original input. However, they discovered that an adaptive

adversary can bypass the defense by computing adversarial examples for the full

pipeline. The issue lies in the fact that adversarial noise added at the input layer is

amplified as is passes through successive layers of a classifier eventually resulting in

misclassification. Liao et al. improved upon the denoising autoencoder approach by

using an objective function designed to mitigate the error amplification effect, though

they still did not evaluate their approach with respect to an adaptive adversary [43].

Rather than train the autoencoder to minimize the pixel-based reconstruction loss
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between an adversarial input and the original input, they instead train the autoencoder

to minimize the following:

||fi(x)− fi(x∗)||1 (2.4)

where f is the classifier’s output at the i-th layer for a given input and x∗ is the

adversarial input after being pre-processed by the autoencoder. A similar objective

function is used by Xie et al., but instead of adding a denoising step to the input of a

network, they choose to add denoising steps in between the hidden layers[90].

As an alternative approach to completely negating the effect of adversarial attacks,

some recent work has proposed methods that provides provable security guarantees

against adversarial attacks under certain assumptions. Hein and Andriushchenko

provided the first formal guarantees on the adversarial robustness of a classifier

[30]. More specifically, given a specific instance, they demonstrated a lower-bound

on the L2 norm of the input manipulation required to change the output of the

classifier. Similarly, Raghunathan et al. also established lower bounds on adversarial

perturbations, but do so for the L∞ norm [66].

Concurrently, Wong and Kolter also provided an adversarial robust training

methodology for arbitrarily deep ReLU networks given a certain norm-bound on

adversarial perturbations [87]. In their work, they established a convex space around

each input and ensure that the classification decision for correctly labeled inputs does

not change within the space. Then, they optimized the convex space on the training

point with the highest training loss. Finally, Sinha et al. also provided methods

to guarantee adversarial robustness, but their method uses defined distributional

Wasserstein distances rather than the norm of the adversarial perturbations [77].

Similar to these works, our robust feature augmentation approach also establishes

provable security guarantees against adversarial examples, under the assumption that

13



robust, predictive feature information exists and can be reliably extracted.

14



CHAPTER III

Robust Physical-World Attacks on Deep Learning

Visual Classification

In this chapter, we evaluate the challenges of deploying adversarial attacks in the

physical world. From our analysis, we design a new, robust attack algorithm against

deep learning visual classifiers that creates physical adversarial examples through

modifications of existing physical object.

3.1 Introduction

Deep Neural Networks (DNNs) have achieved state-of-the-art, and sometimes

human-competitive, performance on many computer vision tasks [36, 82, 39]. Based

on these successes, they are increasingly being used as part of control pipelines in

physical systems such as cars [44, 21], UAVs [7, 58], and robots [92]. Recent work,

however, has demonstrated that DNNs are vulnerable to adversarial perturbations [26,

40, 41, 81, 64, 12, 70, 35, 56, 60]. These carefully crafted modifications to the (visual)

input of DNNs can cause the systems they control to misbehave in unexpected and

potentially dangerous ways.

This threat has gained recent attention, and work in computer vision has made

great progress in understanding the space of adversarial examples, beginning in the
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digital domain (e.g., by modifying images corresponding to a scene) [56, 60, 81, 26],

and more recently in the physical domain [75, 37, 1, 4]. Along similar lines, our work

contributes to the understanding of adversarial examples when perturbations are

physically added to the objects themselves. We choose road sign classification as our

target domain for several reasons: (1) The relative visual simplicity of road signs make

it challenging to hide perturbations. (2) Road signs exist in a noisy unconstrained

environment with changing physical conditions such as the distance and angle of the

viewing camera, implying that physical adversarial perturbations should be robust

against considerable environmental instability. (3) Road signs play an important role

in transportation safety. (4) A reasonable threat model for transportation is that an

attacker might not have control over a vehicle’s systems, but is able to modify the

objects in the physical world that a vehicle might depend on to make crucial safety

decisions.

The main challenge with generating robust physical perturbations is environmental

variability. Cyber-physical systems operate in noisy physical environments that can

destroy perturbations created using current digital-only algorithms [50]. For our

chosen application area, the most dynamic environmental change is the distance and

angle of the viewing camera. Additionally, other practicality challenges exist: (1)

Perturbations in the digital world can be so small in magnitude that it is likely that a

camera will not be able to perceive them due to sensor imperfections. (2) Current

algorithms produce perturbations that occupy the background imagery of an object. It

is extremely difficult to create a robust attack with background modifications because

a real object can have varying backgrounds depending on the viewpoint. (3) The

fabrication process (e.g., printing of perturbations) is imperfect.

Informed by the challenges above, we design the RPP attack, which can generate

perturbations robust to widely changing distances and angles of the viewing camera.

The RPP attack creates a visible, but inconspicuous perturbation that only perturbs
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Figure 3.1: The left image shows real graffiti on a Stop sign, something that most
humans would not think is suspicious. The right image shows our a physical perturba-
tion applied to a Stop sign. We design our perturbations to mimic graffiti, and thus
“hide in the human psyche.”

the object (e.g., a road sign) and not the object’s environment. To create robust

perturbations, the algorithm draws samples from a distribution that models physical

dynamics (e.g., varying distances and angles) using experimental data and synthetic

transformations (Figure 3.2).

Using the proposed algorithm, we evaluate the effectiveness of perturbations on

physical objects, and show that adversaries can physically modify objects using low-cost

techniques to reliably cause classification errors in DNN-based classifiers under widely

varying distances and angles. For example, our attacks cause a classifier to interpret a

subtly-modified physical Stop sign as a Speed Limit 45 sign. Specifically, our final

form of perturbation is a set of black and white stickers that an adversary can attach

to a physical road sign (Stop sign). We designed our perturbations to resemble graffiti,

a relatively common form of vandalism. It is common to see road signs with random

graffiti or color alterations in the real world as shown in Figure 3.1 (the left image

is of a real sign in a city). If these random patterns were adversarial perturbations

(right side of Figure 3.1 shows our example perturbation), they could lead to severe

consequences for autonomous driving systems, without arousing suspicion in human

operators.

Given the lack of a standardized method for evaluating physical attacks, we draw
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Figure 3.2: RPP attack pipeline overview. The input is the target Stop sign. The
RPP attack samples from a distribution that models physical dynamics (in this case,
varying distances and angles), and uses a mask to project computed perturbations to
a shape that resembles graffiti. The adversary prints out the resulting perturbations
and sticks them to the target Stop sign.

on standard techniques from the physical sciences and propose a two-stage experiment

design: (1) A lab test where the viewing camera is kept at various distance/angle

configurations; and (2) A field test where we drive a car towards an intersection

in uncontrolled conditions to simulate an autonomous vehicle. We test our attack

algorithm using this evaluation pipeline and find that the perturbations are robust

to a variety of distances and angles. Figure 3.2 shows an overview of our pipeline to

generate and evaluate robust physical adversarial perturbations.

Our Contributions:

• We introduce the RPP attack, which is the first attack that generates physical

perturbations for physical-world objects that can consistently cause misclassifi-

cation in a DNN-based classifier under a range of dynamic physical conditions,

including different viewpoint angles and distances (Section 3.3).

• Given the lack of a standardized methodology in evaluating physical adversarial

perturbations, we propose an evaluation methodology to study the effectiveness
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of physical perturbations in real world scenarios (Section 3.4.2).

• We evaluate our attacks against two standard-architecture classifiers that we

built: LISA-CNN with 91% accuracy on the LISA test set and GTSRB-CNN

with 95.7% accuracy on the GTSRB test set. Using two types of attacks (object-

constrained poster and sticker attacks) that we introduce, we show that the RPP

attack produces robust perturbations for real road signs. For example, poster

attacks are successful in 100% of stationary and drive-by tests against LISA-

CNN, and sticker attacks are successful in 80% of stationary testing conditions

and in 87.5% of the extracted video frames against GTSRB-CNN.

• To show the generality of our approach, we generate robust physical adversarial

examples for general image recognition tasks and modify physical objects. We

show that by adding a single sticker to an object, we can achieve a targeted

misclassification success rate of at least 71% on a pre-trained Inception-v3

classifier.

Our work, thus, contributes to understanding the susceptibility of image classifiers

to robust adversarial modifications of physical objects. These results provide a case

for the potential consequences of adversarial examples on deep learning models that

interact with the physical world through vision. Our overarching goal with this work

is to inform research in building robust vision models and to raise awareness on the

risks that future physical learning systems might face.

3.2 Related Work

We survey the related work on physical adversarial attacks on classifiers. For

related work on digital adversarial attacks on classifiers, please refer to Chapter II.

Physical adversarial attacks were first proposed by Kurakin et al. They generated

physical adversarial examples by printing digital adversarial examples on paper [37].
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In their work, they found that a significant portion of the printed adversarial examples

fooled an image classifier. However, their experiments were done without any variation

in the physical conditions such as different viewing angles or distances.

Athalye improved upon the work of Kurakin et al. by creating physical adversarial

examples for classifiers that are robust to a set of two-dimensional synthetic transfor-

mations [1]. Concurrent with our work, Athalye et al. later improved upon the original

attack creating 3D-printed replicas of perturbed objects [4]. The main intellectual

differences include: (1) Athalye et al. only use a set of synthetic transformations

during optimization, which can miss subtle physical effects, while our work samples

from a distribution modeling both physical and synthetic transformations. (2) Our

work modifies existing true-sized objects whereas Athalye et al. 3D-print small-scale

replicas. (3) Our work generates adversarial examples for both classifiers and object

detectors.

Sharif et al. attacked face recognition systems by printing adversarial perturbations

on the frames of eyeglasses [75]. Their most recent work demonstrated successful

physical attacks against a variety of classifiers using Generative Adversarial Networks

(GAN) to produce the adversarial eyeglasses [76]. In order to account for small

variations in the environment conditions (e.g., pose, distance/angle from the camera,

and facial expression changes), they would pre-collect training images of the attacker

wearing a set of eyeglasses to align the attack. However, the environmental conditions

in facial recognition systems have little variance compared classification and object

detector tasks on the road. In our work, we explicitly design our perturbations to be

effective in the presence of very diverse physical-world conditions (specifically, large

distances/angles and resolution changes).

Finally, Brown et al. use “adversarial patches” to attack image classifiers [8]. In

their work, they relax the imperceptibility constraint on adversarial manipulations

and creates multi-colored stickers to add to any scene. Their attack works by adding
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a new object, the adversarial patch, to the scene, in addition to the original object.

As image inputs are typically expected to contain a single object class, the additional

object serves as a strong distraction for the classifier. Although they demonstrate

the success of their attack using an adversarial toaster patch, they remark that in

a physical setting with varied physical-world conditions, the adversarial patch must

occupy a significant portion of the image in order to cause misclassification. In our

work, however, it is not necessary for our adversarial perturbations to occupy a large

portion of the input image in order to remain adversarial.

3.3 Adversarial Examples for Physical Objects

Our goal is to examine whether it is possible to create robust physical perturbations

for real-world objects that mislead classifiers to make incorrect predictions even when

images are taken in a range of varying physical conditions. We first present an analysis

of environmental conditions that physical learning systems might encounter, and then

present our algorithm to generate physical adversarial perturbations taking these

challenges into account.

3.3.1 Physical World Challenges

Physical attacks on an object must be able to survive changing conditions and

remain effective at fooling the classifier. We structure our discussion of these conditions

around the chosen example of road sign classification, which could be potentially

applied in autonomous vehicles and other safety sensitive domains. A subset of these

conditions can also be applied to other types of physical learning systems such as

drones, and robots.

Environmental Conditions. The distance and angle of a camera in an autonomous

vehicle with respect to a road sign varies continuously. The resulting images that

are fed into a classifier are taken at different distances and angles. Therefore, any
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perturbation that an attacker physically adds to a road sign must be able to survive

these transformations of the image. Other environmental factors include changes in

lighting/weather conditions, and the presence of debris on the camera or on the road

sign.

Spatial Constraints. Current algorithms focusing on digital images add adversarial

perturbations to all parts of the image, including background imagery. However, for a

physical road sign, the attacker cannot manipulate background imagery. Furthermore,

the attacker cannot count on there being a fixed background imagery as it will change

depending on the distance and angle of the viewing camera.

Physical Limits on Imperceptibility. An attractive feature of current adversarial

deep learning algorithms is that their perturbations to a digital image are often so

small in magnitude that they are almost imperceptible to the casual observer. However,

when transferring such minute perturbations to the real world, we must ensure that a

camera is able to perceive the perturbations. Therefore, there are physical limits on

how imperceptible perturbations can be, and is dependent on the sensing hardware.

Fabrication Error. To fabricate the computed perturbation, all perturbation values

must be valid colors that can be reproduced in the real world. Furthermore, even if a

fabrication device, such as a printer, can produce certain colors, there will be some

reproduction error [75].

In order to successfully physically attack deep learning classifiers, an attacker

should account for the above categories of physical world variations that can reduce

the effectiveness of perturbations.

3.3.2 Robust Physical Perturbation

We derive our algorithm starting with the optimization method that generates a

perturbation for a single image x, without considering other physical conditions; then,

we describe how to update the algorithm taking the physical challenges above into
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account. This single-image optimization problem searches for perturbation δ to be

added to the input x, such that the perturbed instance x′ = x+ δ is misclassified by

the target classifier fθ(·):

min H(x+ δ, x), s.t. fθ(x+ δ) = y∗

where H is a chosen distance function, and y∗ is the target class.1 To solve the above

constrained optimization problem efficiently, we reformulate it in the Lagrangian-

relaxed form similar to prior work [49, 12].

argmin
δ

λ||δ||p + J(fθ(x+ δ), y∗) (3.1)

Here J(· , ·) is the loss function, which measures the difference between the

model’s prediction and the target label y∗. λ is a hyper-parameter that controls the

regularization of the distortion. We specify the distance function H as ||δ||p, denoting

the `p norm of δ.

Next, we will discuss how the objective function can be modified to account for

the environmental conditions. We model the distribution of images containing object

o under both physical and digital transformations XV . We sample different instances

xi drawn from XV . A physical perturbation can only be added to a specific object o

within xi. In the example of road sign classification, o is the stop sign that we target

to manipulate.

Given images taken in the physical world, we need to make sure that a single

perturbation δ, which is added to o, can fool the classifier under different physical

conditions. Concurrent work [4] only applies a set of transformation functions to

synthetically sample such a distribution. However, modeling physical phenomena is

1For untargeted attacks, we can modify the objective function to maximize the distance between
the model prediction and the true class. We focus on targeted attacks in the rest of the chapter.
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complex and such synthetic transformations may miss physical effects. Therefore, to

better capture the effects of changing physical conditions, we sample instance xi from

XV by both generating experimental data that contains actual physical condition

variability as well as synthetic transformations. For road sign physical conditions,

this involves taking images of road signs under various conditions, such as changing

distances, angles, and lightning. This approach aims to approximate physical world

dynamics more closely. For synthetic variations, we randomly crop the object within

the image, change the brightness, and add spatial transformations to simulate other

possible conditions.

To ensure that the perturbations are only applied to the surface area of the target

object o (considering the spatial constraints and physical limits on imperceptibility),

we introduce a mask. This mask serves to project the computed perturbations

to a physical region on the surface of the object (i.e., road sign). In addition to

providing spatial locality, the mask also helps generate perturbations that are visible

but inconspicuous to human observers. To do this, an attacker can shape the mask

to look like graffiti—commonplace vandalism on the street that most humans expect

and ignore, therefore hiding the perturbations “in the human psyche.” Formally, the

perturbation mask is a matrix Mx whose dimensions are the same as the size of input

to the road sign classifier. Mx contains zeroes in regions where no perturbation is

added, and ones in regions where the perturbation is added during optimization.

In the course of our experiments, we empirically observed that the position of the

mask has an impact on the effectiveness of an attack. We therefore hypothesize that

objects have strong and weak physical features from a classification perspective, and

we position masks to attack the weak areas. Specifically, we use the following pipeline

to discover mask positions: (1) Compute perturbations using the L1 regularization

and with a mask that occupies the entire surface area of the sign. L1 makes the

optimizer favor a sparse perturbation vector, therefore concentrating the perturbations
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on regions that are most vulnerable. Visualizing the resulting perturbation provides

guidance on mask placement. (2) Recompute perturbations using L2 with a mask

positioned on the vulnerable regions identified from the earlier step.

To account for fabrication error, we add an additional term to our objective

function that models printer color reproduction errors. This term is based upon the

Non-Printability Score (NPS) by Sharif et al. [75]. See the supplemental materials for

a formal definition of NPS.

Based on the above discussion, our final robust spatially-constrained perturbation

is thus optimized as:

argmin
δ

λ||Mx · δ||p + NPS + Exi∼XV J(fθ(xi + Ti(Mx · δ)), y∗) (3.2)

Here we use function Ti(·) to denote the alignment function that maps transformations

on the object to transformations on the perturbation (e.g., if the object is rotated,

the perturbation is rotated as well).

Finally, an attacker will print out the optimization result on paper, cut out

the perturbation (Mx), and put it onto the target object o. As our experiments

demonstrate in the next section, this kind of perturbation fools the classifier in a

variety of viewpoints.2

3.4 Experiments

In this section, we will empirically evaluate the proposed RPP attack. We first

evaluate a safety sensitive example, Stop sign recognition, to demonstrate the robust-

ness of the proposed physical perturbation. To demonstrate the generality of our

approach, we then attack Inception-v3 to misclassify a microwave as a phone.

2For our attacks, we use the ADAM optimizer with the following parameters: β1 = 0.9, β2 = 0.999,
ε = 10−8, η ∈ [10−4, 100]
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3.4.1 Dataset and Classifiers

We built two Convolutional Neural Network (CNN) classifiers based on a standard

crop-resize-then-classify pipeline for road sign classification as described in [73, 63].

Our LISA-CNN uses LISA, a U.S. traffic sign dataset containing 47 different road

signs [55]. However, the dataset is not well-balanced, resulting is large disparities in

representation for different signs. To alleviate this problem, we chose the 17 most

common signs based on the number of training examples.

LISA-CNN’s architecture is defined in the Cleverhans library [61] and consists of

three convolutional layers and an FC layer. It has an accuracy of 91% on the test set.

Our second classifier is GTSRB-CNN, that is trained on the German Traffic Sign

Recognition Benchmark (GTSRB) [28, 79]. We use a publicly available implementa-

tion [91] of a multi-scale CNN architecture that has been known to perform well on

road sign recognition [73]. Further details about the model architecture can be found in

Appendix A.1. Because we did not have access to German Stop signs for our physical

experiments, we replaced the German Stop signs in the training, validation, and test

sets of GTSRB with the U.S. Stop sign images in LISA. GTSRB-CNN achieves 95.7%

accuracy on the test set. When evaluating GTSRB-CNN on our own 181 stop sign

images, it achieves 99.4% accuracy.

3.4.2 Experimental Design

To the best of our knowledge, there is currently no standardized methodology

of evaluating physical adversarial perturbations. Based on our discussion from Sec-

tion 3.3.1, we focus on angles and distances because they are the most rapidly changing

elements for our use case. A camera in a vehicle approaching a sign will take a series

of images at regular intervals. These images will be taken at different angles and

distances, therefore changing the amount of detail present in any given image. Any

successful physical perturbation must cause targeted misclassification in a range of

26



distances and angles because a vehicle will likely perform voting on a set of frames

(images) from a video before issuing a controller action. Our current experiments

do not explicitly control ambient light, and as is evident from experimental data

(Section 3.4), lighting varied from indoor lighting to outdoor lighting.

Drawing on standard practice in the physical sciences, our experimental design

encapsulates the above physical factors into a two-stage evaluation consisting of

controlled lab tests and field tests.

Stationary (Lab) Tests. This involves classifying images of objects from stationary,

fixed positions.

1. Obtain a set of clean images C and a set of adversarially perturbed images

({A (c)},∀c ∈ C) at varying distances d ∈ D, and varying angles g ∈ G. We use

cd,g here to denote the image taken from distance d and angle g. The camera’s

vertical elevation should be kept approximately constant. Changes in the camera

angle relative the the sign will normally occur when the car is turning, changing

lanes, or following a curved road.

2. Compute the attack success rate of the physical perturbation using the following

formula: ∑
c∈C

1
{fθ(A(cd,g))=y∗ ∧fθ(cd,g)=y}∑

c∈C
1{fθ(cd,g)=y}

(3.3)

where d and g denote the camera distance and angle for the image, y is the

ground truth, and y∗ is the targeted attacking class.3

Note that an image A (c) that causes misclassification is considered as a successful

attack only if the original image c with the same camera distance and angle is correctly

classified, which ensures that the misclassification is caused by the added perturbation

instead of other factors.

3For untargeted adversarial perturbations, change fθ(e
d,g) = y∗ to fθ(e

d,g) 6= y.
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Drive-By (Field) Tests. We place a camera on a moving platform, and obtain data

at realistic driving speeds. For our experiments, we use a smartphone camera mounted

on a car.

1. Begin recording video at approximately 250 ft away from the sign. Our driving

track was straight without curves. Drive toward the sign at normal driving

speeds and stop recording once the vehicle passes the sign. In our experiments,

our speed varied between 0 mph and 20 mph. This simulates a human driver

approaching a sign in a large city.

2. Perform video recording as above for a “clean” sign and for a sign with perturba-

tions applied, and then apply similar formula as Eq. 3.3 to calculate the attack

success rate, where C here represents the sampled frames.

An autonomous vehicle will likely not run classification on every frame due to

performance constraints, but rather, would classify every j-th frame, and then perform

simple majority voting. Hence, an open question is to determine whether the choice

of frame (j) affects attack accuracy. In our experiments, we use j = 10. We also

tried j = 15 and did not observe any significant change in the attack success rates. If

both types of tests produce high success rates, the attack is likely to be successful in

commonly experienced physical conditions for cars.

3.4.3 Results for LISA-CNN

We evaluate the effectiveness of our algorithm by generating three types of adver-

sarial examples on LISA-CNN (91% accuracy on test-set). For all types, we observe

high attack success rates with high confidence. Table 3.1 summarizes a sampling of

stationary attack images. In all testing conditions, our baseline of unperturbed road

signs achieves a 100% classification rate into the true class.
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Table 3.1: Sample of physical adversarial examples against LISA-CNN and GTSRB-
CNN.

Distance/Angle Subtle Poster
Subtle Poster
Right Turn

Camouflage
Graffiti

Camouflage Art
(LISA-CNN)

Camouflage Art
(GTSRB-CNN)

5’ 0◦

5’ 15◦

10’ 0◦

10’ 30◦

40’ 0◦

Targeted-Attack Success 100% 73.33% 66.67% 100% 80%

Object-Constrained Poster-Printing Attacks. This involves reproducing the

attack of Kurakin et al. [37]. The crucial difference is that in our attack, the pertur-

bations are confined to the surface area of the sign excluding the background, and are

robust against large angle and distance variations. The Stop sign is misclassified into

the attack’s target class of Speed Limit 45 in 100% of the images taken according to

our evaluation methodology. The average confidence of predicting the manipulated

sign as the target class is 80.51% (second column of Table 3.2).

For the Right Turn warning sign, we choose a mask that covers only the arrow since

we intend to generate subtle perturbations. In order to achieve this goal, we increase
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Table 3.2: Targeted physical perturbation experiment results on LISA-CNN using
a poster-printed Stop sign (subtle attacks) and a real Stop sign (camouflage graffiti
attacks, camouflage art attacks). For each image, the top two labels and their
associated confidence values are shown. The misclassification target was Speed Limit
45. See Table 3.1 for example images of each attack. Legend: SL45 = Speed Limit 45,
STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane
Ends.

Distance & Angle Poster-Printing Sticker

Subtle Camouflage–Graffiti Camouflage–Art

5’ 0◦ SL45 (0.86) ADL (0.03) STP (0.40) SL45 (0.27) SL45 (0.64) LE (0.11)
5’ 15◦ SL45 (0.86) ADL (0.02) STP (0.40) YLD (0.26) SL45 (0.39) STP (0.30)
5’ 30◦ SL45 (0.57) STP (0.18) SL45 (0.25) SA (0.18) SL45 (0.43) STP (0.29)
5’ 45◦ SL45 (0.80) STP (0.09) YLD (0.21) STP (0.20) SL45 (0.37) STP (0.31)
5’ 60◦ SL45 (0.61) STP (0.19) STP (0.39) YLD (0.19) SL45 (0.53) STP (0.16)

10’ 0◦ SL45 (0.86) ADL (0.02) SL45 (0.48) STP (0.23) SL45 (0.77) LE (0.04)
10’ 15◦ SL45 (0.90) STP (0.02) SL45 (0.58) STP (0.21) SL45 (0.71) STP (0.08)
10’ 30◦ SL45 (0.93) STP (0.01) STP (0.34) SL45 (0.26) SL45 (0.47) STP (0.30)

15’ 0◦ SL45 (0.81) LE (0.05) SL45 (0.54) STP (0.22) SL45 (0.79) STP (0.05)
15’ 15◦ SL45 (0.92) ADL (0.01) SL45 (0.67) STP (0.15) SL45 (0.79) STP (0.06)

20’ 0◦ SL45 (0.83) ADL (0.03) SL45 (0.62) STP (0.18) SL45 (0.68) STP (0.12)
20’ 15◦ SL45 (0.88) STP (0.02) SL45 (0.70) STP (0.08) SL45 (0.67) STP (0.11)

25’ 0◦ SL45 (0.76) STP (0.04) SL45 (0.58) STP (0.17) SL45 (0.67) STP (0.08)
30’ 0◦ SL45 (0.71) STP (0.07) SL45 (0.60) STP (0.19) SL45 (0.76) STP (0.10)
40’ 0◦ SL45 (0.78) LE (0.04) SL45 (0.54) STP (0.21) SL45 (0.68) STP (0.14)

the regularization parameter λ in equation (3.2) to demonstrate small magnitude

perturbations. We achieve a 73.33% targeted-attack success rate (Table 3.1). Out

of 15 distance/angle configurations, four instances were not classified into the target.

However, they were still misclassified into other classes that were not the true label

(Yield, Added Lane). Three of these four instances were an Added Lane sign—a

different type of warning. We hypothesize that given the similar appearance of warning

signs, small perturbations are sufficient to confuse the classifier.

Sticker Attacks. Next, we demonstrate how effective it is to generate physical

perturbations in the form of stickers, by constraining the modifications to a region

resembling graffiti or art. The fourth and fifth columns of Table 3.1 show a sample of

images, and Table 3.2 (columns 4 and 6) shows detailed success rates with confidences.

In the stationary setting, we achieve a 66.67% targeted-attack success rate for the
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graffiti sticker attack and a 100% targeted-attack success rate for the sticker camouflage

art attack. Some region mismatches may lead to the lower performance of the LOVE-

HATE graffiti.

Drive-By Testing. Per our evaluation methodology, we conduct drive-by testing

for the perturbation of a Stop sign. In our baseline test we record two consecutive

videos of a clean Stop sign from a moving vehicle, perform frame grabs at k = 10, and

crop the sign. We observe that the Stop sign is correctly classified in all frames. We

similarly test subtle and abstract art perturbations for LISA-CNN using k = 10. Our

attack achieves a targeted-attack success rate of 100% for the subtle poster attack,

and a targeted-attack success rate of 84.8% for the camouflage abstract art attack.

See Table 3.3 for sample frames from the drive-by video.

Table 3.3: Drive-by testing summary for LISA-CNN. In our baseline test, all frames
were correctly classified as a Stop sign. We have manually added the yellow boxes as
a visual guide.

Perturbation Attack Success A Subset of Sampled Frames k = 10

Subtle poster 100%

Camouflage abstract art 84.8%

3.4.4 Results for GTSRB-CNN

To show the versatility of our attack algorithms, we create and test attacks for

GTSRB-CNN (95.7% accuracy on test-set). Based on our high success rates with the

camouflage-art attacks, we create similar abstract art sticker perturbations. The last

column of Table 3.1 shows a subset of experimental images. Table 3.4 summarizes

our attack results—our attack fools the classifier into believing that a Stop sign is a

Speed Limit 80 sign in 80% of the stationary testing conditions. Per our evaluation
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Table 3.4: A camouflage art attack on GTSRB-CNN. See example images in Table 3.1.
The targeted-attack success rate is 80% (true class label: Stop, target: Speed Limit
80).

Distance & Angle Top Class (Confid.) Second Class (Confid.)

5’ 0◦ Speed Limit 80 (0.88) Speed Limit 70 (0.07)
5’ 15◦ Speed Limit 80 (0.94) Stop (0.03)
5’ 30◦ Speed Limit 80 (0.86) Keep Right (0.03)
5’ 45◦ Keep Right (0.82) Speed Limit 80 (0.12)
5’ 60◦ Speed Limit 80 (0.55) Stop (0.31)

10’ 0◦ Speed Limit 80 (0.98) Speed Limit 100 (0.006)
10’ 15◦ Stop (0.75) Speed Limit 80 (0.20)
10’ 30◦ Speed Limit 80 (0.77) Speed Limit 100 (0.11)

15’ 0◦ Speed Limit 80 (0.98) Speed Limit 100 (0.01)
15’ 15◦ Stop (0.90) Speed Limit 80 (0.06)

20’ 0◦ Speed Limit 80 (0.95) Speed Limit 100 (0.03)
20’ 15◦ Speed Limit 80 (0.97) Speed Limit 100 (0.01)

25’ 0◦ Speed Limit 80 (0.99) Speed Limit 70 (0.0008)
30’ 0◦ Speed Limit 80 (0.99) Speed Limit 100 (0.002)
40’ 0◦ Speed Limit 80 (0.99) Speed Limit 100 (0.002)

methodology, we also conduct a drive-by test (k = 10, two consecutive video recordings).

The attack fools the classifier 87.5% of the time.

3.4.5 Results for Inception-v3

To demonstrate generality of the RPP attack, we computed physical perturbations

for the standard Inception-v3 classifier [80, 36] using two different objects, a microwave

and a coffee mug. Due to a different task domain, we chose a sticker attack since

poster printing an entirely new surface for the objects may raise suspicions upon

casual inspection of the objects. Furthermore, we have reduced the range of distances

used for evaluation due to the smaller size of the cup and microwave compared to a

road sign (e.g., Coffee Mug height- 11.2cm, Microwave height- 24cm, Right Turn sign
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Table 3.5: Sticker perturbation attack on the Inception-v3 classifier. The original
classification is microwave and the attacker’s target is phone. See example images in
Appendix B Table B.1. Our targeted-attack success rate is 90%

Distance & Angle Top Class (Confid.) Second Class (Confid.)

2’ 0◦ Phone (0.78) Microwave (0.03)
2’ 15◦ Phone (0.60) Microwave (0.11)
5’ 0◦ Phone (0.71) Microwave (0.07)
5’ 15◦ Phone (0.53) Microwave (0.25)
7’ 0◦ Phone (0.47) Microwave (0.26)
7’ 15◦ Phone (0.59) Microwave (0.18)
10’ 0◦ Phone (0.70) Microwave (0.09)
10’ 15◦ Phone (0.43) Microwave (0.28)
15’ 0◦ Microwave (0.36) Phone (0.20)
20’ 0◦ Phone (0.31) Microwave (0.10)

height- 45cm, Stop Sign- 76cm). For the microwave, our adversarial sticker causes the

classifier to misclassify it as our target class, “phone,” in 90% of the tests. For the

coffee mug, our adversarial sticker causes the classifier to misclassify it as our target

class, “cash machine”, in 71.4% of the tests. These results are shown in Tables 3.5 and

3.6 respectively. Images of the microwave and the mug can be found in Appendix B.

3.5 Discussion

Black-Box Attacks. In developing the RPP attack, we design the attack for a white-

box setting for two reasons. First, to develop a foundation for future defenses, we must

assess the abilities of powerful adversaries, and this can be done in a white-box setting.

Through studying a white-box attack like RPP, we can analyze the requirements for a

successful attack using the strongest attacker model and better inform future defenses.

Second, in our chosen autonomous vehicle domain, the machine learning system is

obtainable by the attacker, and thus is able to act as an oracle. Based on this, we

expect that the RPP attack can be further augmented with the black-box attack
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Table 3.6: Sticker perturbation attack on the Inception-v3 classifier. The original
classification is coffee mug and the attacker’s target is cash machine. See example
images in Appendix B Table B.2. Our targeted-attack success rate is 71.4%.

Distance & Angle Top Class (Confid.) Second Class (Confid.)

8” 0◦ Cash Machine (0.53) Pitcher (0.33)
8” 15◦ Cash Machine (0.94) Vase (0.04)
12” 0◦ Cash Machine (0.66) Pitcher (0.25)
12” 15◦ Cash Machine (0.99) Vase (¡0.01)
16” 0◦ Cash Machine (0.62) Pitcher (0.28)
16” 15◦ Cash Machine (0.94) Vase (0.01)
20” 0◦ Cash Machine (0.84) Pitcher (0.09)
20” 15◦ Cash Machine (0.42) Pitcher (0.38)
24” 0◦ Cash Machine (0.70) Pitcher (0.20)
24” 15◦ Pitcher (0.38) Water Jug (0.18)
28” 0◦ Pitcher (0.59) Cash Machine (0.09)
28” 15◦ Cash Machine (0.23) Pitcher (0.20)
32” 0◦ Pitcher (0.50) Cash Machine (0.15)
32” 15◦ Pitcher (0.27) Mug (0.14)

techniques discussed in Chapter II to generate sucesss physical adversarial attacks.

Image Cropping and Attacking Detectors. When evaluating the RPP attack,

we manually controlled the cropping of each image every time before classification.

This was done so the adversarial images would match the clean sign images provided to

the attack. Later, we evaluated the camouflage art attack using a pseudo-random crop

with the guarantee that at least most of the sign was in the image. Against LISA-CNN,

we observed an average targeted attack rate of 70% and untargeted attack rate of

90%. Against GTSRB-CNN, we observed an average targeted attack rate of 60%

and untargeted attack rate of 100%. We include the untargeted attack success rates

because causing the classifier to not output the correct traffic sign label is still a safety

risk. Although image cropping has some effect on the targeted attack success rate,

Chapter IV demonstrates that an improved version of the RPP attack can successfully

attack object detectors, where cropping is not needed.
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3.6 Conclusion

We introduced the RPP attack, which generates robust, physically realizable

adversarial perturbations. Using our attack, and a two-stage experimental design

consisting of lab and drive-by tests, we contribute to understanding the space of

physical adversarial examples when the objects themselves are physically perturbed.

We target road-sign classification because of its importance in safety, and the naturally

noisy environment of road signs. Our work shows that it is possible to generate

physical adversarial examples robust to widely varying distances/angles. This implies

that future defenses should not rely on physical sources of noise as protection against

physical adversarial examples.
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CHAPTER IV

Physical Adversarial Examples for Object

Detectors

In this chapter, we improve upon the attack algorithm introduced in Chapter

III by extending the RPP attack to object detection frameworks. We evaluate the

attack against a well-known object detection framework and, furthermore, demonstrate

that our attack is transferable, which is an important property necessary to perform

black-box evaluations.

4.1 Introduction

Deep neural networks (DNNs) are widely applied in computer vision, natural

language, and robotics, especially in safety-critical tasks such as autonomous driv-

ing [44]. At the same time, DNNs have been shown to be vulnerable to adversarial

examples [26, 64, 12, 70, 35], maliciously perturbed inputs that cause DNNs to produce

incorrect predictions. These attacks pose a risk to the use of deep learning in safety-

and security-critical decisions. For example, an attacker can add perturbations, which

are negligible to humans, to a Stop sign and cause a DNN embedded in an autonomous

vehicle to misclassify or ignore the sign.

Early works studied adversarial examples in the digital space only. However, it has
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recently been shown that it is also possible to create perturbations that survive under

various physical conditions (e.g., object distance, pose, lighting, etc.) [75, 37, 4, 9].

These works focus on attacking classification networks, i.e., models that produce

a single prediction on a static input image. In this chapter, we explore physical

adversarial examples for object detection networks, a richer class of deep learning

algorithms that can detect and label multiple objects in a scene. Object detection

networks are a popular tool for tasks that require real-time and dynamic recognition

of surrounding objects, autonomous driving being a canonical application. Object

detectors are known to be vulnerable to digital attacks [89], but their vulnerability to

physical attacks remains an open question.

Compared to classifiers, object detection networks are more challenging to attack:

1) Detectors process an entire scene instead of a single localized object. This allows

detectors to use contextual information (e.g., the orientation and relative position of

objects in the scene) to generate predictions. 2) Detectors are not limited to producing

a single prediction. Instead, they label every recognized object in a scene, usually

by combining predictions of the location of objects in a scene, and of the labeling

of these objects. Attacks on object detectors need to take both types of predictions

(presence/absence of an object and nature of the object) into account, whereas attacks

on classifiers only focus on modifying the label of a single (presumably present) object.

To create proof-of-concept attacks for object detectors, we start from the existing

RPP attack we designed to produce robust physical perturbations for image classifiers.

In the original algorithm, we sampled from a distribution that mimics physical

perturbations of an object (e.g., view distance and angle), and find a perturbation that

maximizes the probability of mis-classification under this distribution. We find that

the physical perturbations originally considered for attacking classifiers are insufficient

to also work for object detectors.

Indeed, when working with image classifiers, prior works considered target objects
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that make up a large portion of the image and whose relative position in the image

varies little. Yet, when performing object detection in a dynamic environment such

as a moving vehicle, the relative size and position of the multiple objects in a scene

can change drastically. These changes produce additional constraints that have to

be taken into account to produce successful robust physical attacks. Many object

detectors, for instance, split a scene into a grid or use a sliding window to identify

regions of interest, and produce separate object predictions for each region of interest.

As the relative position of an object changes, the grid cells the object is contained in

(and the corresponding network weights) change as well. Robust perturbations, thus,

have to be adversarial for multiple grid cells simultaneously. We show that robustness

to these new factors can be attained by extending the distribution of inputs considered

in Chapter III to include these additional object transformations within the scene

(e.g., changes in perspective, size, and position).

Again, we consider physical adversarial attacks on the localization and classification

of Stop signs, an illustrative example for the safety implications of a successful attack.

The perturbations, while large enough to be visible to the human eye, are constrained

to resemble human-made graffiti or subtle lighting artifacts that could be considered

benign. We consider an untargeted attack specific to object detectors, which we

refer to as a Disappearance Attack. In a Disappearance Attack, we create either an

adversarial poster or physical stickers applied to a real Stop sign (see Figure 4.2),

which causes the sign to be ignored by an object detector in different scenes with

varying object distance, location, and perspective. This attack is analogous attacking

image classifiers, but targets a richer class of deep neural networks.

We further introduce a new Creation Attack, wherein physical stickers that humans

would ignore as being inconspicuous can cause an object detector into recognizing

nonexistent Stop signs. This attack differs from prior attacks that attempt to fool

a network into misclassifying one object into another, in that it creates an entirely
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new object classification. Specifically, we experiment with creating adversarial stickers

(similar to the ones considered in [9]). Such stickers could for instance be used to

mount Denial of Service attacks on road sign detectors.

For our experiments, we target the state-of-the-art YOLO v2 (You Only Look

Once) object detector [68]. YOLO v2 is a deep convolutional neural network that

performs real-time object detection for 80 object classes. Our indoor (laboratory)

and outdoor experiments show that up to distances of 30 feet from the target object,

detectors can be tricked into not perceiving the attacker’s target object using poster

and sticker perturbations.

Our Contributions:

• We improve the RPP attack to create one of the first proof-of-concept attack

algorithms for object detection networks, a richer class of DNNs than image

classifiers.

• Using our attack algorithm, we propose a new physical attack on object detection

networks: the Disappearance Attack that causes physical objects to be ignored

by a detector.

• We evaluate our attacks on the YOLO v2 object detector in an indoor laboratory

setting and an outdoor setting. Our results show that our adversarial poster

perturbation fools YOLO v2 in 85.6% of the video frames recorded in an indoor

lab environment and in 72.5% of the video frames recorded in an outdoor

environment. Our adversarial stickers fool YOLO v2 in 85% of the video frames

recorded in a laboratory environment and in 63.5% of the video frames recorded

in an outdoor environment.

• We evaluate the transferability of our attack using the Faster R-CNN object

detector in laboratory and outdoor environments. Our results show that our
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attack fools Faster R-CNN in 85.9% of the video frames recorded in a labo-

ratory environment and in 40.2% of the video frames recorded in an outdoor

environment.

• We propose and experiment with a new Creation attack, that aims at fooling a

detector into recognizing adversarial stickers as non-existing objects. Our results

with this attack type are preliminary, yet encouraging.

Our work demonstrates that physical perturbations are effective against object

detectors, and leaves open some future questions: 1) Generalization to other phys-

ical settings (e.g., moving vehicles, or even real autonomous vehicles). 2) Further

exploration of other classes of attacks: Our work introduces the disappearance and

creation attacks which use posters or stickers, yet there are other plausible attack

types (e.g., manufacturing physical objects that are not recognizable to humans, but

are recognized by DNNs). 3) Physical attacks on segmentation networks. We envision

that future work will build on the findings presented here, and will create attacks that

generalize across physical settings (e.g., real autonomous vehicles), and across classes

of object detection networks (e.g., semantic segmentation [89]).

4.2 Related Work

We survey the related work on adversarial attacks on object detection and image

segmentation frameworks. For related work on digital adversarial attacks on classifiers,

please refer to Chapter II.

Xie et al. proposed the Dense Adversary Generation (DAG) algorithm, which

generates adversarial examples for object detection and segmentation frameworks

[89]. Given a set of targets {t1, t2..., tn} ∈ T , DAG seeks to optimize the adversarial
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example x′ such that the label assigned to each target is incorrect. In other words,

∀n,max f(x′, tn) 6= ln (4.1)

where ln is the correct label for tn. For segmentation, T is all of the pixels in the

image. For object detection, they increase the number of region proposals and target

the most probable bounding boxes.

Metzen et al. introduced the concept of universal attacks for an image segmentation

network in which the attack produces a single image [53]. This image, when added

to an input, either causes the network to output the same, incorrect, segmentation

result or causes the network to ignore certain objects in the image. Finally, Cisse

et al. proposed Houdini, which enables targeted attacks against image segmentation

networks [19].

In an effort to study the threat of physical adversarial, Lu et al. performed

experiments using adversarial road signs printed on paper with the YOLO object

detector [50]. Their results suggested it is very challenging to fool YOLO with

physical adversarial examples generated using existing digital attack algorithms. In

our evaluation, however, our proposed attacks can generate physical adversarial

examples that reliably fool YOLO.

Concurrent to our work attacking YOLO, Chen et al. attacked the Faster R-CNN

object detector [16]. Their attack fixes the region proposals and optimizes over a set

of random transformations of the target object. They generate adversarial poster

perturbations that completely replace the road sign to fool Faster R-CNN and cause it

to mislabel the object. Our work differs in that we introduce two different attacks on

object detectors, the disappearance and creation attacks, which use either adversarial

poster or sticker perturbations. We also demonstrate limited black-box transferability

from YOLO to the Faster-RCNN detector.
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4.3 Background on Object Detectors

Object classification is a standard task in computer vision. Given an input image

and a set of class labels, the classification algorithm outputs the most probable label

(or a probability distribution over all labels) for the image. Object classifiers are

limited to categorizing a single object per image. If an image contains multiple objects,

the classifier only outputs the class of the most dominant object in the scene. In

contrast, object detectors both locate and classify multiple objects in a given scene.

The first proposed deep neural network for object detection was Overfeat [72],

which combined a sliding window algorithm and convolution neural networks. A more

recent proposal, Regions with Convolutional Neural Networks (R-CNN) uses a search

algorithm to generate region proposals, and a CNN to label each region. A downside

of R-CNN is that the region proposal algorithm is too slow to be run in real-time.

Subsequent works—Fast R-CNN [24] and Faster R-CNN [69]—replace this inefficient

algorithm with a more efficient CNN.

The above algorithms treat object detection as a two-stage problem consisting

of region proposals followed by classifications for each of these regions. In contrast,

so-called “single shot detectors” such as YOLO [67] (and the subsequent YOLO v2 [68])

or SSD [48] run a single CNN over the input image to jointly produce confidence scores

for object localization and classification. As a result, these networks can achieve the

same accuracy while processing images much faster. In this work, we focus on YOLO

v2, a state-of-the-art object detector with real-time detection capabilities and high

accuracy.

The classification approach of YOLO v2 is illustrated in Figure 4.1. A single CNN

is run on the full input image and predicts object location (bounding boxes) and

label confidences for 361 separate grid cells (organized into a 19× 19 square over the

original image). For each cell, YOLO v2 makes a prediction for 5 different boxes. For

each box, the prediction contains the box confidence (the probability that this box
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Figure 4.1: For an input scene, the YOLO v2 CNN outputs a 19× 19× 425 tensor.
To generate this tensor, YOLO divides the input image into a square grid of S2 cells
(S = 19). For each grid cell, there are B bounding boxes (B = 5). Each bounding box
predicts 5 values: probability of an object in the cell, co-ordinates of the bounding
box (center x, center y, width, height). Additionally, for each bounding box the model
predicts a probability distribution over all 80 output classes.

contains an object), its location and the probability of each class label for that box. A

box is discarded if the product of the box confidence and the probability of the most

likely class is below some threshold (this threshold is set to 0.1 in our experiments).

Finally, the non-max suppression algorithm is applied in a post-processing phase to

discard redundant boxes with high overlap [68].

Such an object detection pipeline introduces several new challenges regarding

physical adversarial examples: First, unlike classification where an object is always

assumed present and the attack only needs to modify the class probabilities, attacks

on a detector network need to control a combination of box confidences and class

probabilities for all boxes in all grid cells of the input scene. Second, classifiers assume

the object of interest is centered in the input image, whereas detectors can find objects

at arbitrary positions in a scene. Finally, the object’s size in the detector’s input

is not fixed. In classification, the image is usually cropped and resized to focus on
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the object being classified. Object detectors are meant to reliably detect objects at

multiple scales, distances and angles in a scene.

These challenges mainly stem from object detectors being much more flexible and

broadly applicable than standard image classifiers. Thus, albeit harder to attack, object

detectors also represent a far more interesting attack target than image classifiers,

as their extra flexibility makes them a far better candidate for use in reliable cyber-

physical systems.

4.4 Physical Adversarial Examples for Object Detectors

We will first review the RPP attack presented in Chapter III, before discussing

the modifications necessary to adapt the algorithm to attack object detectors.

4.4.1 The RPP Attack

The RPP attack optimizes the following objective function:

argmin
δ

λ||Mx · δ||p + NPS (Mx · δ) + Exi∼XV J(fθ(xi + Ti(Mx · δ)), y∗) (4.2)

The first term of the objective function is the `p norm (with scaling factor λ) of

the perturbation δ masked by Mx. The mask is responsible for spatially constraining

the perturbation δ to the surface of the target object. For example, in Figure 4.2, the

mask shape is two horizontal bars on the sign.

The second term of the objective function measures the printability of an adversarial

perturbation. This term is borrowed from prior work by Sharif et al. [75]. The

printability of a perturbation is affected by two factors. First, the colors the computed

perturbation must reproduce. Modern printers have a limited color gamut, thus

certain colors that appear digitally may not be printable. Second, a printer may not
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Figure 4.2: An example of an adversarial perturbation overlaid on a synthetic back-
ground. The Stop sign in the image is printed such that it is the same size as a U.S.
Stop sign. Then, we cut out the two rectangle bars, and use the original print as a
stencil to position the cutouts on a real Stop sign.

(a) Digital Image (b) Printer Result of Digital Image

Figure 4.3: The image in (a) shows the image as it is stored digitally. The result of
printing and taking a picture of the image in (a) is shown in (b).

faithfully reproduce a color as it is shown digitally (see Figure 4.3).

The last term of the objective function is the value of the loss function, J(·, ·)

averaged across all of the images sampled from XV . In practice, this is a set of victim

images, whcih is composed of multiple images of the object taken under a variety of

physical conditions such as changes in viewing angle, viewing distance and lighting.

Ti is an “alignment function” that applies a digital transformation that mimics the

physical conditions of victim object xi. For example, if the victim object xi is a rotated

version of the “canonical” target object, then the perturbation Mx · δ should also be

rotated appropriately. Thus, in Chapter III, to simulate physical consistency of the

perturbed object, we apply the alignment function Ti to the masked perturbation.

fθ(·) is the output of the classifier network, and y∗ is the adversarial target class.
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4.4.2 Extensions to the RPP attack for Object Detectors

The modified version of the RPP attack contains three key differences from the

original attack algorithm proposed. First, due to differences in the output behavior of

classifiers and object detectors, we make modifications to the adversarial loss function.

Second, we observed additional constraints that an adversarial perturbation must be

robust to and model these constraints synthetically. Finally, we introduce a smoothness

constraint into the objective, rather than using the `p norm. In the following, we

discuss each of these changes in detail.

4.4.2.1 Modified Adversarial Loss Function

An object detector outputs a set of bounding boxes and the likelihood of the most

probable object contained within that box given a certain confidence threshold. See

Figure 4.1 for a visualization of this output. By contrast, a classifier outputs a single

vector where each entry represents the probability that the object in the image is of

that type. Attacks on image classifiers typically make use of the cross-entropy loss

between this output vector, and a one-hot representation of the adversarial target.

However, this loss function is not applicable to object detectors due to their richer

output structure. Thus, we introduce a new adversarial loss function suitable for use

with detectors. This loss function is tailored to the specific attacks we introduce in

this work.

Disappearance Attack Loss. The goal of the attacker is to prevent the object

detector from detecting the target object. To achieve this, the adversarial perturbation

must ensure that the likelihood of the target object in any bounding box is less than

the detection threshold (the default is 25% for YOLO v2). In our implementation of

the attack, we used the following loss function:
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Jd(x, y) = max
s∈S2,b∈B

P (s, b, y, fθ(x)) (4.3)

Where fθ(x) represents the output of the object detector (for YOLO v2, this is a

19 × 19 × 425 tensor). P (·) is a function that extracts the probability of an object

class from this tensor, with label y (in our case, this is a Stop sign) in grid cell s and

bounding box b. We denote x as the input scene containing our perturbed target

object.

Therefore, the loss function outputs the maximum probability of a Stop sign if

it occurs within the scene. Using this loss function, the goal of the adversary is to

directly minimize that probability until it falls below the detection threshold of the

network.

Creation Attack Loss. We propose a new type of Creation Attack, wherein the goal

is to fool the model into recognizing nonexistent objects. Similar to the “adversarial

patch” approach of [9], our goal is to create a physical sticker that can be added to any

existing scene. Contrary to prior work, rather than causing a mis-classification our

aim is to create a new classification (i.e., a new object detection) where non existed

before.

For this, we use a composite loss function, that first aims at creating a new object

localization, followed by a targeted “mis-classification.” The mask Mx is sampled

randomly so that the adversarial patch is applied to an arbitrary location in the scene.

As above, let fθ(x) represent the full output tensor of YOLO v2 on input scene x, and

let P (s, b, y, fθ(x)) represent the probability assigned to class y in box b of grid cell s.

Further let Pbox(s, b, fθ(x)) represent the probability of the box only, i.e., the model’s
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confidence that the box contains any object. Our loss is then

object = Pbox(s, b, fθ(x)) > τ

Jc(x, y) = object + (1− object) · P (s, b, y, fθ(x)) (4.4)

Here, τ is a threshold on the box confidence (set to 0.2 in our experiments), after

which we stop optimizing the box confidence and focus on increasing the probability

of the targeted class. As our YOLO v2 implementation uses a threshold of 0.1 on the

product of the box confidence and class probability, any box with a confidence above

0.2 and a target class probability above 50% is retained.

4.4.2.2 Synthetic Representation of New Physical Constraints

Generating physical adversarial examples for detectors requires simulating a larger

set of varying physical conditions than what is needed to trick classifiers. In our initial

experiments, we observed that the generated perturbations would fail if the object was

moved from its original position in the image. This is likely because a detector has

access to more contextual information when generating predictions. As an object’s

position and size can vary greatly depending on the viewer’s location, perturbations

must account for these additional constraints.

To generate physical adversarial perturbations that are positionally invariant, we

chose to synthetically model two environmental conditions: object rotation (in the Z

plane) and position (in the X-Y plane). In each epoch of the optimization, we randomly

place and rotate the object. Our approach differs from the original approach for attack

image classifiers, in we previously modeled an object’s rotation physically using a

diverse dataset. We avoided this approach because of the added complexity necessary

for the alignment function, Ti, to properly position the adversarial perturbation on

the sign. Since these transformations are done synthetically, the alignment function,
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Ti, simply needs to use the same process to transform the adversarial perturbation.

4.4.2.3 Noise Smoothing using Total Variation

The unmodified RPP attack uses the `p norm to smooth the perturbation. However,

in our initial experiments, we observed that the `p norm results in very pixelated

perturbations. The pixelation hurts the success rate of the attack, especially as the

distance between the viewer and the object increases. We found that using the total

variation norm in place of the `p norm gave smoother perturbations, thus increasing

the effective range of the attack. Given a mask, Mx, and noise δ, the total variation

norm of the adversarial perturbation, Mx · δ, is:

TV (Mx · δ) =
∑
i,j

|(Mx · δ)i+1,j − (Mx · δ)i,j|+ |(Mx · δ)i,j+1 − (Mx · δ)i,j| (4.5)

where i, j are the row and column indices for the adversarial perturbation. Thus

our final modified objective function is:

argmin
δ

λTV (Mx · δ) + NPS + Exi∼XV Jd(xi + Ti(Mx · δ), y∗) (4.6)

where Jd(·, y∗) is the loss function (discussed earlier) that measures the maximum

probability of an object with the label y∗ contained in the image. In our attack, y∗ is

a Stop sign.

4.5 Evaluation

We first discuss our experimental method, where we evaluate attacks in a whitebox

manner using YOLO v2, and in a blackbox manner using Faster-RCNN. Then, we

discuss our results, showing that state-of-the-art object detectors can be attacked
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Figure 4.4: Output of the extended RPP algorithm to attack YOLO v2 using poster
and sticker attacks.

Figure 4.5: Patch created by the Creation Attack, aimed at fooling YOLO v2 into
detecting nonexistent Stop signs.

using physical posters and stickers. Figure 4.4 shows the digital versions of posters

and stickers used for disappearance attacks, while Figure 4.5 shows a digital version

of the sticker used in a creation attack.

4.5.1 Experimental Setup

We evaluated our disappearance attack in a mix of lab and outdoor settings.

For both the poster and sticker attacks, we generated adversarial perturbations and

recorded several seconds of video. In each experiment, recording began 30 feet from

the sign and ended when no part of the sign was in the camera’s field of view. Then,
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YOLO v2 Poster Sticker

Indoors 202/236 (85.6%) 210/247 (85.0%)

Outdoors 156/215 (72.5%) 146/230 (63.5%)

Table 4.1: Attack success rate for the disappearance attack on YOLO v2. We tested
a poster perturbation, where a true-sized print is overlaid on a real Stop sign, and a
sticker attack, where the perturbation is two rectangles stuck to the surface of the
sign. The table cells show the ratio: number of frames in which a Stop sign was not
detected / total number of frames, and a success rate, which is the result of this ratio.

we fed the video into the object detection network for analysis. We used the YOLO

v2 object detector as a white-box attack. We also ran the same videos through the

Faster-RCNN network to measure black-box transferability of our attack.

For the creation attack, we experimented with placing stickers on large flat objects

(e.g., a wall or cupboard), and recording videos within 10 feet of the sticker.

4.5.2 Experimental Results

We evaluated the perturbations for a disappearance attack using two different

masks and attacked a Stop sign. First, we tested a poster perturbation, which used

an octagonal mask to allow adversarial noise to to be added anywhere on the surface

of the Stop sign. Next, we tested a sticker perturbation. We used the mask to create

two rectangular stickers positioned at the top and bottom of the sign. The results of

our attack are shown in Table 4.1.

In indoor lab settings, where the environment is relatively stable, both the poster

and sticker perturbation demonstrate a high success rate in which at least 85% of

the total video frames do not contain a Stop sign bounding box. When we evaluated

our perturbations in an outdoor environment, we notice a drop in success rate for

both attacks. The sticker perturbation also appears to be slightly weaker. We noticed

that the sticker perturbation did especially poorly when only a portion of the sign

was in the camera’s field of view. Namely, when the sticker perturbation began to
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FR-CNN Poster Sticker

Indoors 189/220 (85.9%) 146/248 (58.9%)

Outdoors 84/209 (40.2%) 47/249 (18.9%)

Table 4.2: Attack success rate for the disappearance attack on Faster R-CNN. We
tested a poster perturbation, where the entire Stop sign is replaced with a true-sized
print, and a sticker attack, where the perturbation is two rectangles stuck to the
surface of the sign. The table cells show the ratio: number of frames in which a Stop
sign was not detected / total number of frames, and a success rate, which is the result
of this ratio.

leave the camera’s field of view, the Stop sign bounding boxes appear very frequently.

In contrast, this behavior was not observed in the poster perturbation experiments,

likely because some part of the adversarial noise is always present in the video due to

the mask’s shape. Figure 4.7 shows some frame captures of our adversarial Stop sign

videos.

To measure the transferability of our attack, we also evaluated the recorded videos

using the Faster R-CNN object detection network.1. The results for these experiments

are shown in Table 4.2.

We see from these results that both perturbations transfer with a relatively high

success rate in indoor lab settings where the environment conditions are stable.

However, once outdoors, the success rate for both perturbations decreases significantly,

but both perturbations retain moderate success rates. We observe that our improved

attack algorithm can generate an adversarial poster perturbation, which transfers to

other object detection frameworks, especially in stable environments.

Finally, we report on some preliminary results for creation attacks (the results

are considered preliminary in that we have spent considerably less time optimizing

these attacks compared to the disappearance attacks—it is thus likely that they can

be further improved). When applying multiple copies of the sticker in Figure 4.5 to a

1We used the Tensorflow-Python implementation of Faster R-CNN found at https://github.

com/endernewton/tf-faster-rcnn It has a default detection threshold of 80%

52



Figure 4.6: Sample frame from our creation attack video after being processed by
YOLO v2. The scene includes 4 adversarial stickers reliably recognized as Stop signs.

cupboard and office wall, YOLO v2 detects stop signs in 25%–79% of the frames over

multiple independent videos. A sample video frame is shown in Figure 4.6. Compared

to the disappearance attack, the creation attack is more sensitive to the sticker’s size,

surroundings, and camera movement in the video. This results in highly variable

success rates and is presumably because (due to resource constraints) we applied

fewer physical and digital transformations when generating the attack. Enhancing

the reliability and robustness of our creation attack is an interesting avenue for future

work, as it presents a novel attack vector (e.g., DOS style attacks) for adversarial

examples.

4.6 Future Work

In the process of generating physical adversarial examples for object detectors, we

note several open research questions that we leave to future work.

Lack of detail due to environmental conditions. We noticed physical condi-

tions (e.g., poor lighting, far distance, sharp angles), which only allowed macro features

of the sign (i.e., shape, general color, lettering) to be observed clearly. Due to such

conditions, the details of the perturbations were lost, causing it to fail. This is expected

as our attack relies on the camera being able to perceive the adversarial perturbations
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somewhat accurately. When extreme environmental conditions prevent the camera

from observing finer details of the perturbation on the sign, the adversarial noise

is lost. We theorize that in order to successfully fool object detectors under these

extreme conditions, the macro features of the sign need to be attacked. For example,

we could create attachments on the outside edges of the sign in order to change its

perceived shape.

Alternative attacks on object detectors. In this work, we explored attacking

the object detector such that it fails to locate an object, or that it detects non-

existent objects. There are several alternative forms of attack we could consider.

One alternative is to attempt to generate physical perturbations that preserve the

bounding box of an object, but alter its label (this is similar to targeted attacks for

classifiers). Another option is to generate further 2D or even 3D objects that appear

nonsensical to a human, but are detected and labeled by the object detector. The

success of either of these attacks, which have been shown to work digitally [89, 60],

would have major safety implications.

Extensions to semantic segmentation. A broader task than object detection is

semantic segmentation—where the network labels every pixel in a scene as belonging to

an object. Recent work has shown digital attacks against semantic segmentation [89].

An important future work question is how to extend current attack techniques for

classifiers, and detectors (as this work shows) to create physical attacks on segmentation

networks.

Impact on Real Systems. Existing cyber-physical systems such as cars and drones

integrate object detectors into a control pipeline that consists of pre- and post-

processing steps. The attacks we show only target the object detection component in

isolation (specifically YOLO v2). Understanding whether these attacks are capable of
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compromising a full control pipeline in an end-to-end manner is an important open

question. Although YOLO v2 does recognize a Stop sign in some frames from our

attack videos, a real system would generally base its control decisions on a majority

of predictions, rather than a few frames. Our attack manages to trick the detector

into not seeing a Stop sign in a majority of the tested video frames.

Despite these observations, we stress that a key step towards understanding the

vulnerability of the broad class of object detection models to physical adversarial

examples is to create algorithms that can attack state-of-the-art object detectors. In

this work, we have shown how to can extend the existing RPP attack to attack object

detectors in relatively controlled settings, but we have noticed increased interest in

regards to adversarial attacks on real complex systems. Of note is work that utilizes

differential rendering engines, which better approximates the effect the physical

environment has on adversarial noise, thus resulting in more robust adversarial inputs

[47, 88, 10].

4.7 Conclusion

Starting from an algorithm to generate robust physical perturbations for classifiers,

we extend it with positional and rotational invariance to generate physical perturbations

for state-of-the-art object detectors—a broader class of deep neural networks that are

used in dynamic settings to detect and label objects within scenes. Object detectors are

popular in cyber-physical systems such as autonomous vehicles. We experiment with

the YOLO v2 object detector, showing that it is possible to physically perturb a Stop

sign such that the detector ignores it. When presented with a video of the adversarial

poster perturbation, YOLO failed to recognize the sign in 85.6% of the video frames

in a controlled lab environment, and in 72.5% of the video frames in an outdoor

environment. When presented with a video of the adversarial sticker perturbation,

YOLO failed to recognize the sign in 85% of the video frames in a controlled lab
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environment, and in 63.5% of the video frames in an outdoor environment. We also

observed limited blackbox transferability to the Faster-RCNN detector. The poster

perturbation fooled Faster R-CNN in 85.9% of the video frames in a controlled lab

environment, and in 40.2% of the video frames in an outdoor environment. Our

work, thus, takes steps towards developing a more informed understanding of the

vulnerability of object detectors to physical adversarial examples.
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(a) The poster attack inside

(b) The poster attack outside

(c) The sticker attack inside

(d) The sticker attack outside

Figure 4.7: Sample frames from our attack videos after being processed by YOLO v2.
In the majority of frames, the detector fails to recognize the Stop sign.
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CHAPTER V

Robust Feature Augmentation

In this chapter, we introduce a technique to improve adversarial robustness by

removing the effect non-robust features have on the final classification decision. We

first present a theoretical framework to understand the notion of a robust feature and

then demonstrate how clever usage of robust features can improve the adversarial

robustness of a classifier.

5.1 Introduction

Deep neural networks (DNNs) are used for various tasks, including image clas-

sification with applications to character recognition, traffic sign classification, and

autonomous driving. However, the pervasive use of DNNs has also raised concerns

as to their robustness, and thus trustworthiness. Namely, existing DNNs have been

shown to be vulnerable to adversarial inputs [81]. These are inputs that, to a human,

appear similar to each other, but are assigned different labels by the DNN.

Currently, there is an interest in designing networks that are robust to adversarial

examples. Shafai et al. argue that adversarial robustness is limited based on the

dimensionality of the input space [74]. Schmidt et al. suggest that accurate, but not

robust models are a result of an insufficient number of training samples [71]. Under a

theoretical model in which it is possible to learn an accurate classifier from a single
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sample, they demonstrate that learning a robust classifier requires at least O(
√
d)

samples. This problem manifests itself during training as the classifier learns to rely

on predictive, but non-robust features. For example, Malhotra et al. added pixel noise

to training inputs based on the true label of the input and found that the classifier

learned to value the position of the noise pixel over any other feature when classifying

the data [52]. Other works make similar findings, showing that the traditional training

of classifiers results in classifiers learning highly predictive, but non-robust features,

thus making them exploitable [33, 22, 85, 13].

In this chapter, we propose a new approach, robust feature augmentation, as a

component of standard machine learning techniques. In this approach, we augment

a classification pipeline with robust features that are mitigate the effect of most

adversarial perturbations, thus improving the overall adversarial robustness of the

classifier. Under a theoretical model, we provide results and characterizations that

help explain as to why this approach improves adversarial robustness. Our work is

also interesting in the light of recent works on certifiable robustness, for e.g., Cohen

et al. [20] mention that “it is typically impossible to tell whether a prediction by

an empirically robust classifier is truly robust to adversarial perturbations” however,

with robust feature augmentation in the classification pipeline itself, one can expect

robustness to bounded adversarial perturbations, by construction.

Adversarial training, popularized by Madry et al., is the current standard approach

for designing robust machine learning models, in which L∞-bounded adversarial

examples are generated during training (see Section 5.3.2 for details). However,

adversarial training is costly. As an alternative approach, we suggest augmenting a

classification pipeline with robust features. Compared to Madry et al. [51], robust

feature augmentation without adversarial training achieved 80% adversarial accuracy

33x faster on MNIST. Additionally, combining robust feature augmentation with

adversarial training achieved a 14x training time speedup for achieving 90% adversarial

59



accuracy. Since robust feature augmentation works well with any DNN, we can get

higher accuracy compared to recent attempts at certifiable robustness [66] on the

MNIST dataset.

A concurrently developed approach is to create a dataset that only contains robust

features [33]. Previously, this approach was shown to improve the robustness of a

trained model, but required precise manipulations of the dataset [22]. Using adver-

sarial training on CIFAR, Ilyas et al. created an adversarially robust model, from

which they identified robust and non-robust features. They removed the non-robust

features from the dataset and showed that standard training on the robust dataset

improved adversarial performance by about 45% while decreasing test accuracy by 10%.

However, this approach improvement still failed to outperform the model adversarially

trained on the original dataset. In our approach, we choose to improve robustness by

identifying robust features that can be added directly to the classification pipeline,

thus preserving standard training techniques. Our intuition is that since adversarial ex-

amples are a human-defined phenomenon, robust features can also be similarly defined.

Our Contributions:

• We define the notion of a robust feature, computed from an input. Informally,

a robust feature is a feature that does not change as the input is adversarially

perturbed. Typically, we intend these features to be meaningful attributes

such as color and shape of an object being classified. But, it can also be a

coarser categorization of the input that is expected to be stable under permitted

adversarial perturbations (Section 5.4).

• We show that a function computed on a set of robust features is also robust.

In other words, we can use robust features an an input for robust classification

decisions (Section 5.4).
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• We show theoretical connections between (1) adversarially-trained classifiers

that attempt to discover a non-linear separation boundary to maximize the

separation between natural inputs and (2) using robust functions to map natural

inputs to ”pure” natural inputs and then using a linear classifier to separate the

points (Section 5.4).

• On MNIST, we use a binarization function as a robust feature and show that it

improves the robustness of a standard classifier from 0% to 74.64% without any

adversarial training. For an adversarially trained classifier, binarization reduces

the training time by 14x for comparable adversarial accuracy and retains better

accuracy as attack radius increases, e.g., 87.13% adversarial accuracy vs 34.88%

for ε = 0.35 as compared to [51] (Section 5.5).

• On a traffic sign dataset, we design a robust color extractor to augment a

standard traffic sign classifier. Our augmented classifier prevents more than 90%

of adversarial attacks between signs of different colors (Section 5.6).

5.2 Related Work

We survey the related work on robust and non-robust feature information. For

related work on adversarial defenses, please refer to Chapter II.

In robust feature augmentation, we hypothesize that the input contains non-

robust, predictive feature information. Thus, the weakness of current machine learning

algorithm to adversarial attacks is due to a heavy bias on such information. Malhoutra

and Bowers observed such an effect in their experiments in which they trained

networks on poisoned datasets [52]. For each image in the training data, they added

noise dependent on the underlying image labels. They found that standard training

techniques created classifiers, which were heavily biased towards the presence or

absence of the label-dependent noise. Thus, removing the network’s bias on such
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features information can theoretically improve the network’s adversarial robustness.

In their work on an Imagenet classifier, Geirhos et al. observed that traditional

training techniques resulted in classifiers using drastically different classification

strategies compared to their human counterparts [22]. While a human observer learns

to inspect shape or color information when labeling an object, the researchers found

that machine learning classifiers were instead heavily biased towards examining local

texture information to determine the output label. To correct the classifiers’ bias,

Geirhos et al. created Stylized-ImageNet, which is an altered version of Imagenet

where local texture information is removed from the images. After training classifiers

on this new dataset, they observed that shape based representations were learned,

which resulted in improved performance and robustness. From their work, it appears

that directly embedding human priors (i.e., shape) into the dataset can improve the

general robustness of models.

Ilyas improved upon this dataset transformation approach through the use of

adversarial training [33]. Given a dataset, an adversarially robust model is created

using adversarial training. From the adversarially robust model, they derived a set

of robust features and then transformed the original dataset into a dataset that is

only comprised of robust features. They define features as the activation values in

the penultimate layer of a classifier for a given input. Through standard training on

the robust dataset, compared to the baseline model, they obtained a 45% increase

in adversarial robustness, while suffering a 10% decrease in natural test accuracy.

Their approach is interesting as is allows for the use of standard training techniques

given a robust dataset. However, in order to create the robust dataset, adversarial

training is still required and, compared to the model trained on the robust dataset,

an adversarially trained model has both increased natural and adversarial accuracy,

thus negating the usefulness of the robust dataset. Their work, though, does suggest

one method to automatically discover robust features for any dataset. As such, their
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technique may improve the applicability of robust feature augmentation.

5.3 Preliminaries

Before delving into the details of the main contributions of our work, we first give

an overview and some useful notation and definitions, as well as a more thorough

explanation of adversarial training

5.3.1 Notation and Definitions

In this section, we establish some notation and definitions that will be useful in

the exposition of the remaining chapter. We often refer to the set {1, . . . ,m} as [m]

for the ease of notation. We assume there is an underlying data distribution D which

the input set X ⊆ Rn belongs to and each x ∈ X has a corresponding ground truth

label y ∈ [k]. In particular, one can think of X as the set of inputs that a human

(or an oracle) is able to classify. We follow the supervised machine learning setup

where the basic goal is given a training dataset and corresponding labels (xi, yi)i∈[N ],

learn a function F : X 7→ [k], that is a good approximation for the unknown function

f : X 7→ [k]. We will assume that f is such that f(xi) = yi in the given data. More

specifically, the goal is to seek to minimize the loss over a random sample over the input

space Px∼D(F (x) 6= f(x)), which is often approximated by minimizing an empirical

loss over a random training sample.

It has been shown that although highly accurate approximations of f(·) can be

learned, these approximations are not robust for with respect to perturbations of

a majority of inputs. Let d(·, ·) be a distance function that measures the distance

between inputs in Rn and let us denote an ε-neighborhood of x, B(x, ε), as the set of

points in X at a distance at most ε away from x, i.e., B(x, ε) = {z ∈ X | d(x, z) ≤ ε}

for some given ε > 0. We call a function robust if it does not change its output over

small neighborhoods around a subset of desired inputs P ⊆ X.
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Definition 1. A function F : X → [k] is said to be robust over a subset P ⊆ X with

respect to ε > 0 if for all x ∈ P: F (x) = F (z) for all z ∈ B(x, ε).

We refer to P as “pure” inputs. Since the set of all possible inputs, X , encountered

in practice is assumed classifiable by a human (or an oracle), we can assume1 that

X = ∪x∈PB(x, δ) for some δ > 0. As an example, a constant function is robust over

all inputs, by definition, however it may not be accurate. For some large enough ε,

the ground truth f(·) may itself not be robust, although it is accurate. Combining

accuracy and robustness, we can define an adversarial input as follows:

Definition 2. Given a ground truth function f : X → [k] and a learned classification

function F : X → [k], suppose F (x) = f(x) = f(z) for some z ∈ B(x, ε) and

F (x) 6= F (z), then z is an adversarial example for the classification function F (·).

Suppose a function F is robust2 on a subset RF,ε ⊆ X with respect to ε (i.e.,

F (x) = F (z) for all z ∈ B(x, ε), x ∈ RF,ε). By definition, any input in RF,ε cannot be

an adversarial example for the function F with respect to ε and any arbitrary ground

truth function f .

Ideally, we would like a robust classifier that is also accurate on this input space,

i.e., a classifier that minimizes the loss on pure inputs as well as the percentage of

pure inputs that have adversarial inputs. Increases in robustness may result in a loss

of accuracy, and the goal is be to find a feasible trade-off. For the rest of the chapter,

we will assume that ε is chosen small enough such that perturbing inputs in P within

an ε-neighborhoods does not change the ground truth classification, and we would

like to compute classifiers that are robust over P .

1Note that by this definition, the classifiable set of inputs is not convex since convex combination
of two points in different neighborhoods may not lie in the neighborhood of any pure data point.

2A related notion is that of certifiable robustness that deals with the user being able to certify
robustness of a given classifier, in the sense of property testing [66].
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5.3.2 Adversarial Training

Madry et al. [51] proposed the use of adversarial training in which they solve

min
θ
ρ(θ), where: ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)
]

In their formulation, S is the set of allowed perturbations. The loss function

L quantifies the loss relative to the perturbed input x + δ and the original label y.

The inner maximization problem seeks to find a perturbation δ that maximizes the

loss for a given input x. The outer minimization problem aims to find the model

parameters θ such that the expected adversarial loss in the inner maximization problem

is minimized.

In practice, Madry et al. use projected gradient descent (PGD) to generate

adversarial examples. At each iteration t, the input xt is modified based on the

negative gradient of the loss function:

xt+1 = IIx+S(xt + α sgn(∇xL(θ, xt, y)))

S is the set of allowed perturbations as defined previously. IIx+S is a clip function,

which ensures the perturbed input xt+1 is within the allowable range. Their approach

was only demonstrated to work well on small to medium datasets such as MNIST and

CIFAR, but others have modified the approach to work on larger datasets such as

Imagenet [38].

5.4 Robust Feature Augmentation

We propose two general techniques of developing robust classifiers: binarization

(Section 5.4.1) and group feature extraction (Section 5.4.2).

First, we propose that if the first stage of a deep learning pipeline is robust to
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(a) Orig. Image (b) Adv. image (c) Orig. Image (d) Adv. image

Figure 5.1: The MNIST image in (a) is correctly classified as a “4”, however image
in (b) is misclassified as an “8”, despite only minor visual distortions in the image.
Similarly, the image in (c) is correctly classified as a Stop sign, but the image in (d)
is misclassified as German Keep Left sign.

a class of perturbations, then the overall pipeline will also be robust against those

perturbations. An example of binarization is a simple rounding filter that, when

applied to an image, can remove perturbations on most pixels. Such a function is

useful in images where there is a notion of a static background and only the presence

of a single type of pixel defines the object. Previous works have demonstrated that,

for MNIST, binarization is remarkably effective in improving adversarial robustness

with respect to small pixel perturbations, thus we also use this technique [14, 27]. We

will present theoretical reasons in Section 5.4.1 on why the use of a binarizer improves

robustness even without requiring adversarial training for the special case of a linear

classifier, as well as present experimental results on MNIST in Section 5.5 that show

improved adversarial accuracy with this simple, yet powerful idea.

Our second proposal is a generalization of binarization: to use one or more simpler

image features (e.g., color and shape for objects) that are expected to be robust to

adversarial perturbations. Consider the domain of traffic sign images in the US: a

standard Stop traffic sign is known to be predominantly red and with octagonal

shape. Traditional adversarial attacks on images change neither feature as there is

a constraint to maintain the visual appearance of the original input (e.g., Figure

5.1). Therefore, it is apparent that standard classifiers do not learn to prioritize these

features, shape and color, for labeling the sign. Rather, other predictive, non-robust
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Figure 5.2: (a) Max-margin linear classifier, trained over pure data points P , results
in large adversarial input space. Binarizing test data to the nearest-neighbor in P
before classification removes these adversarial inputs completely. (b) When P is not
known, binarization to the nearest lattice point reduces adversarial input space.

features, are learned, which are then exploited by the adversary so as to maintain

the visual appearance of the Stop sign, while causing the predicted label to change.

Our goal, then, is to make classifiers more robust by explicitly factoring in any known

discriminating features that are robust to perturbations on a large subset of the input

space.

5.4.1 Binarization

In order to remove spurious noise learned by a DNN, we propose binarization or a

snapping of input data to desired intervals. Experimentally, we found that about 82%

of the pixels in MNIST images are concentrated near 0 and 8% are concentrated near

1. The remaining pixels are somewhat evenly distributed between 0.1 and 0.9. We

observed that adversarial attacks often changed background pixels, and if the changes

were removed, the classifier would correctly label the example. Previous work suggests

that a binarization function, which rounds all the pixels to {0,1} based on a threshold,

can improve robustness of the resulting classifier [14, 27]. Although its name suggests

rounding values in [0, 1] to {0, 1}, we define binarization more generally:

Definition 3. Consider a set S ⊆ Rn. Any function b(·) that maps each data point
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in the input space X ⊆ Rn to elements in S is called a binarizer, and b(x) is referred

to as the binarization of x ∈ X .

Typically, S is chosen to be much smaller in cardinality compared to X . Suppose

the binarizer b is defined with respect to a distance d(·) such that b(x) is the nearest

neighbor of x in S, i.e. b(x) ∈ arg minz∈S d(x, z). If S = P , we get a binarizer to map

any data point to the nearest neighbor from the pure set of points P. If S = {0, 1}

and d(x, y) = ‖x− y‖∞ we get the vanilla form of binarization where every pixel is

rounded to 0 or 1. One could also define a binarizer with respect to a threshold3, for

example b(x) = Ixi≥τ , which rounds each element to S = {0, 1} based on whether the

coordinate-wise value is less than threshold or not.

We verify in Section 5.5 that binarization has a minimal effect on the standard

accuracy of the classifier, but greatly improves the adversarial robustness. Furthermore,

binarization can be combined with adversarial training. The combination achieved

both an order of magnitude faster training time and higher adversarial accuracy as

compared to Madry et al. [51], with similar test accuracy.

Why does binarization help? To see why binarization works in practice, consider

the example of a support vector machine that computes a max-margin linear classifier.

In Figure 5.2(a), suppose the set of “pure” data points P are the green and red

dots, and their ε-neighborhoods in the L∞ norm are the colored squares enclosing

them. In this example, the pure data points are linearly separable, although the

ε-neighborhoods are not. We depict the max-margin linear classifier with a solid line

that separates the green points from the red points. Clearly, this example has a large

adversarial instance space (pink, bright green regions in Figure 5.2(a)) which belongs

to an ε−neighborhood of some pure data point, however, these would be misclassified

by the linear classifier. On the other hand, suppose a data point was first binarized

3Here, IA is simply an indicator vector for whether A is true or not.
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to nearest-neighbor in P , this would completely remove adversarial instances and we

could obtain a perfect classifier even with the underlying classification technique being

a support-vector machine. This point is important enough to be stated again:

Augmenting the classification pipeline with a nearest-neighbor mapping increases the

power of linear classification to allow non-linear separability (blue decision boundary

in Figure 5.2(a)).

Note that the resultant model from augmenting binarization and linear classification

(see Figure 5.3) is not only powerful in removing adversarial samples but also does so

in an interpretable way. We formalize this example in the theorem below.

Theorem 1. Consider a max-margin classifier that is trained on {(xi, yi)}Ni=1 = P

that is linearly separable. Consider a distance function d : P × P → R and a

parameter ε > 0. For any two data points xi, xj ∈ P, suppose that the d(xi, xj) > 2ε

whenever the ground truth labels yi 6= yj. Consider a nearest-neighbor binarizer

b(x) = arg minz∈P d(x, z), and the max-margin linear classifier L (trained over P),

then the augmented classifier C(x) = L(b(x)) is robust over P with respect to ε and

exact4 over the ε−neighborhood.

Figure 5.3: The MNIST model
with a binarization function b and
classifier L.

The theorem holds because b(x) is uniquely

(and correctly) mapped to the original (unper-

turbed) data point using the nearest-neighbor bi-

narizer, and these are perfectly classified using

C = L(b(·)) since P is linearly separable (there-

fore L(·) did not introduce errors on data points

in P). Since the ε-neighborhoods of oppositely classified points do not overlap, we are

able to perfectly classify the perturbed points using a linear classifier composed with

nearest neighbor matching.

In the case when P is not known, we use binarization to map training/testing data

4By exact, we mean no errors in classification.
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points to the nearest points in a lattice, e.g., the set of all 0/1 vectors {0, 1}n. This

binarizer naturally acts as a regularizer for the output function since outputs in the

neighborhoods of lattice points cannot change with small perturbations. Classification

boundary over 0/1 vectors is much simpler than over the original (non-binarized)

adversarial data. In our experiments, we augment a DNN with a lattice binarizer,

which already gives compelling experimental results without adversarial training. We

depict the reduction in adversarial input space in Figure 5.2(b).

5.4.2 Group Feature Extraction

Although binarization improves adversarial robustness on MNIST, previous work

concluded that the improvements are a special case [14]. On higher dimensional

datasets, Chen et al. show that regardless of the granularity, binarization does not

significantly improve adversarial performance. However, their work does not accurately

characterize binarization for higher dimensional datasets. On MNIST, binarization

should be viewed as a robust feature extraction for digit shape. As such, we extend

our definitions to encompass a collection of features (such as color, shape, size) that

are found to be robust to perturbations. We think of a data point as a member in

a group defined by the value of such a feature (e.g.,STOP, Do Not Enter are

members of the “red” color group). Given a predominantly red US traffic sign, it will

require a large perturbation to change the majority of the sign to another sign color.

However, unlike binarization to a lattice or P, features like color or shape lie in a

much smaller dimension, and lose the finer classification information. We propose

two architectures for classification that can incorporate robust group features: (i)

intersection of multiple group features, and (ii) augmentation with original classifier.

In the first architecture (Figure 5.4a), we propose to use multiple robust group

feature extractors Ti each of which feeds the feature into Gi to get a subset of possible

labels. For example, suppose T1 extracts the dominant sign color (e.g., red) then G1
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can map the color to a set of possible road signs with the color (e.g., map ”red” color

to {Stop, Do Not Enter}). As this information may not be sufficient uniquely

label the input, adding another group extractor T2 (e.g., for shape) would allow for

more precise classification (e.g., identify Stop or Do Not Enter). The classifier

output is simply the intersection of the possible labels given the extracted robust

group features. We show that if all Ti are robust, the resultant classifier formed by

intersection is also robust.

(a) Multiple group
feature extractors

(b) Augmented clas-
sifier design

Figure 5.4: Basic architecture of a ro-
bust classification network using group
classifiers.

Why do group features help improve

robustness? Recall that in Section 5.3, we

defined F : X → [k] as robust over a subset

P ⊆ X with respect to ε > 0 if for all x ∈ P :

F (x) = F (z) for all z ∈ B(x, ε). For a given

classification task that attempts to classify

to labels in [k], a group feature extractor can

be viewed as a function T : X → [m] that is

robust with respect to γ � ε and maps to

features in [m] (typically, m < k). When referring to the architecture, we also refer

to T as a group feature extractor. The intuition here is that, if a group feature is

known, then designing a feature extractor T , which is robust and accurate, is an easier

task than learning a robust and accurate function F . Further, let G : [m]→ 2[k] map

to possible labels given a group feature in [m]. We next show that the robustness

guarantees naturally follow under function composition of T and G:

Theorem 2. Consider a group feature extractor T : X → [k] that is robust on some

subset of inputs R with respect to γ > 0, and a potential-label mapping G : [m]→ 2[k].

Then the composition G(T (·)) : X → 2[k] is also robust on R with respect to γ.

Theorem 2 holds since the internal group feature extractor T acts as a shock
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absorber and the G function is oblivious to the noise. Indeed for any z ∈ B(x, γ) for

x ∈ R, T (x) = T (z) (due to robustness of T ), and therefore, G(T (x)) = G(T (z)), i.e.,

G(T.) is robust on R with respect to γ. Robustness guarantees also hold in the case

of intersection of multiple robust features:

Theorem 3. Consider a set of robust feature extractors Ti : X → [k] that are robust on

some subset of inputs Ri with respect to γi, and a sequence of potential-labels mappings

Gi : [m]→ 2[k] for i = 1, . . . , p. Then the classifier that results by intersecting these:

C(x) =
⋂p
i=1 Gi(Ti(·)) is robust on R =

⋂p
i=1 Ri with respect to γ = mini=1,...,p γi.

Theorem 3 holds trivially if R = ∅. Now consider x ∈ R and γ as defined. Then,

for any z ∈ B(x, γ), we have Gi(Ti(z)) = Gi(Ti(x)) using Theorem 2. Therefore,

C(z) = ∩pi=1Gi(Ti(z)) = ∩pi=1Gi(Ti(x)) for all z ∈ B(x, γ) and x ∈ R.

One limitation of the above architecture is that we may not know sufficient robust

features to make an unambiguous classification. To address this, we propose the

augmented architecture (Figure 5.4b). Specifically, we deploy two networks in parallel,

a group feature extractor of Figure 5.4a operating in parallel with a standard classifier

F . The output of group-based network will be classification possibilities and we require

outputs of F and G to be consistent with each other. This prevents targeted attacks

on x that change to a label /∈ G(T (x), e.g., changing a Stop label (red) to a traffic

light ahead (yellow) label, thus reducing adversarial attack space.

This idea itself is quite powerful since it helps the DNN flag outputs where there

might be an inconsistency: Consider an augmented classifier C(x) = F (x) ∩G(T (x)).

When C(x) = ∅ and G(T (·)) is exact ( i.e., no errors), then we know that F (x) was

definitely an example that was misclassified. This can be very useful in practice, where

a machine can flag a difficult instance of data, and let an oracle (or a human) take

over in these cases until F (·) can be made more accurate. We formalize this in the

following theorem:

Theorem 4. Consider a classifier F : X → [k] and suppose we have access to a group
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feature extractor T : X → [m] as well as a labels mapping G : [m]→ 2[k]. Consider

the augmented classifier C(x) = F (x) ∩G(T (x)). If T (·) is robust over P with respect

to γ, then for all z ∈ B(x, γ), C(z) is non-empty if and only if F (z) ∈ G(T (x)).

The above theorem holds because robustness of T (.) implies robustness of G(T (.))

from Theorem 2. Thus, the label of C(.) for both x and z ∈ B(x, γ) must be in

G(T (x)), ruling out targeted attacks that change label of F (x) to a label not in

G(T (x)).

As an example scenario of the above theorem, suppose x ∈ P is an image of a

stop sign. T (x) is determined to be red. Then, G(T (x)) is the set of sign labels

that can be red, e.g., a set including the Stop sign and Do Not Enter sign. Let’s

assume that normal case that F classifies the sign x correctly. Then, C(x) will also

give a correct classification. Furthermore, for an arbitrary input z ∈ B(x, γ), since

G(T (z)) = G(T (x)) due to robustness of T , label of C(z) is restricted to be either ∅

or in the set of red signs, G(T (x)). C(z) = ∅ implies an inconsistency between the

two outputs of F and G(T (·)) on input z, suggesting a problem, which may require

human inspection or another intervention to resolve. A non-empty result implies that

the two inputs are of the same color, though not necessarily the same label.

5.5 Binarization Augmentation on MNIST Results

We start with a simple classification task, digit classification on the MNIST

dataset [54], and show that a binarization function both improves adversarial robustness

and reduces training time compared to adversarial training to achieve a similar level

of adversarial robustness. We use the pre-trained natural and adversarially trained

MNIST classifiers used by Madry et al. [51]. For the attack, we use the PGD

momentum attack code created by Zheng et al. [94]. Our experiments compare four

models, two of which use proposed binary augmentation:
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1. Natural Model (Natural): Madry et al.’s pre-trained natural classifier.

2. Madry et al.’s Adv. Trained Model (MAT): Madry et al.’s pre-trained

robust classifier.

3. Binarized Natural Model (BIN): A natural classifier with a binarization

function as the first processing step, trained on the natural training data (no

adversarial training).

4. Binarized Adv. Trained Model (BAT): A classifier with a binarization

function at the input, with the overall classifier trained on adversarially perturbed

training data.

Table 5.1: The accuracy of each
model evaluated against the MNIST
test set and L∞ perturbations
within ε = 0.3.

Model Test Acc. Adv. Acc.

Natural 99.17% 0%

BIN* 98.93% 74.64%

MAT 98.04% 89.72%

BAT* 99.29% 91%

All models use the same model architecture

(same as used in [51]). BIN and BAT include a

binarization function, encoded as a step function

centered at a threshold τ , at the input of the

network. Any pixel which is below τ (τ = 0.5 by

default) is set to 0; else it is set to 1. For BAT

and MAT, we generated adversarial examples in

B(x, 0.3) for any given x, we run 100 iterations

of the PGD attack with a step size of 0.0075 and 20 random restarts. As in the

original experiments done by Madry et al. [51], an adversarial attack on a particular

input sample is considered successful if at least one of the 20 generated adversarial

perturbations is successful in changing the predicted label. For BAT, since the step

function is non-differentiable, we use the Backward Pass Differential Approximation

(BPDA) technique to generate good adversarial examples, as suggested by Athalye et

al. [3].

We first evaluated the test and adversarial accuracy of all 4 models for ε = 0.3 (i.e.,

using PGD to find adversarial examples for an input x within B(x, 0.3), see Table 5.1).
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Figure 5.5: The adversarial performance during testing (left) and training (right). Not
shown in the figure: MAT and BAT take approximately 10x more time per training
iteration than BIN.

We observe that binarization greatly improves the adversarial accuracy of Natural

from 0% to 74.64% despite no adversarial examples being used during training. We

see that BAT, the binarized implementation of MAT, improved adversarial accuracy

from 89.72% to 91.14%. Test accuracy was over 98% for all models.

We next measured the adversarial accuracy of all four models for different values of

ε between 0 and 0.5. We emphasize that MAT and BAT are still trained for ε = 0.3;

only the attacker’s capabilities are changed. In Figure 5.5, we see that binarization is

likely the reducing attack space for large ε (e.g., BIN outperforms MAT when ε = 0.35

with adversarial accuracy of 64.11% versus 34.88%, respectively). Also, adversarial

training used with binarization further improves the robustness of the classifier (e.g.,

BAT has an adversarial accuracy of 87.13% for ε = 0.35, more than double that of

MAT).

The above findings can be particularly important in settings where adversarial

training is infeasible, say for learning on edge computing devices with smaller compu-

tational budget. BIN itself, with no adversarial training, results in a significant initial

adversarial robustness. In MAT and BAT, each iteration of training is more expensive

since a PGD attack is executed to create a set of adversarial training examples. To

further analyze the training efficiency, we evaluated the adversarial accuracy every
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300 training iterations for both binarized models and MAT5. Adversarial examples

with ε = 0.3 were generated using 100 iterations of the PGD attack with a step size of

0.0075 and no random restarts6. These results are shown in Figure 5.5. We observe

that although MAT achieves a higher adversarial accuracy than BIN after about

30,000 iterations, each training iteration for MAT took 236 ms versus 22 ms for BIN.

As a result, BIN achieved 80% adversarial accuracy after about 2.9 minutes of training

versus 96 minutes of training for MAT. In BAT, where binarization is used during

adversarial training, we see large reductions in training time required for comparable

adversarial accuracy. BAT achieved 80% adversarial accuracy in about 3.6 minutes

and 90% accuracy in about 19 minutes. MAT only achieved 90% after 273 minutes of

training (14x slower than BAT).

5.6 Group Feature Extraction Results

We now move to a more complex task, traffic sign classification, and demonstrate

how a using a robust function to extract a robust feature, the dominant color of a

sign, can help reduce the adversarial attack space, e.g., preventing attacks that would

change a classification across colors (e.g., red Stop to a blue minimum speed 30 sign

in Germany).

5.6.1 Dataset Description

Traffic signs are fairly standard across countries (e.g., see https://www.autoeurope.

com/roadsigns/ for classes of traffic signs and examples). LISA [46, 55] and German

Traffic Sign Recognition Benchmark (GTSRB) [28, 79] are two popular traffic sign

datasets that have been extensively used in previous studies. We created a traffic sign

dataset using images from both the LISA and GTSRB datasets. The LISA dataset

5All training was done on a 12GB Titan X Pascal GPU
640 iterations with a step size of 0.01 is about twice as fast, but the adversarial accuracy of the

model suffers
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contains images of 47 different U.S. traffic signs. However, there are large class imbal-

ances (e.g.,Stop has 1821 images and Speed Limit 55 has 2 images). To address

this problem, we first combine the LISA training dataset with the GTSRB training

dataset, which has images for 43 German traffic signs classes. The image labelled

as Stop in both datasets are combined as they have the same visual appearance.

Similarly, the images labelled as Do Not Enter and StreetClosedOneWay are

combined.

The combined dataset still has low representation for some of the individual

U.S. traffic signs. To address that, we created two super-classes composed of white

rectangular U.S. traffic signs and yellow U.S. traffic signs. The first super-class

contains U.S. Speed Limit signs and Right Lane Must Turn. The second super-

class contains U.S. Warning signs and School, which are yellow. The 45 class labels

in the augmented dataset are provided in Table C.1.

5.6.2 Model Details

We use a publicly available implementation of a multi-scale DNN traffic sign

classifier [91] and normally train a classifier on our traffic sign dataset. Our trained

model has 97.51% test accuracy based on the GTSRB test dataset containing 12630

images. Based on the architecture shown in Figure 5.4b, we augment this classifier

with a robust feature extraction pipeline, responsible for determining the dominant

color of the sign and mapping the color to a set of possible traffic signs. Simply

described, the color extractor first determines the sign’s position in the image. Once

located, it assigns each pixel a label based on the closest color center in the hue

color space, either “red”, “blue”, or “yellow”, then outputs the color based on a

weighted majority vote. A more detailed description of the model architecture and

color extractor can be found in Appendix Further details of the model architecture

can be found in Appendix A.1 and Appendix C respectively..
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Table 5.2: # Adv. image is the number of adversarial images (ε = 8) in which the
predicted label matched the adversarial target. The correction rate is the percentage
of adversarial examples for which the color extractor outputs red.

Adversarial Target # Adv. Images Correction Rate

Blue Signs (GTSRB) 13633 93.53%
Yellow Signs (LISA) 2389 95.33%

Total # of Stop signs 3021

5.6.3 Experiment Results

We perform 20 iterations of a targeted L∞-bounded PGD attack with ε = 8 and

step size of 2. The goal is to perturb a Stop sign into a target sign class that is either

blue or yellow. The performance is evaluated on 9 target sign class (8 blue sign classes,

1 yellow sign class) and reported in Table 5.2.

Overall, the color extractor prevents over 93% of above adversarial attacks that

change Stop to a blue or yellow sign (Table 5.2).

Of course, an attacker could attempt to adversarially attack the color extractor’s

robustness assumption. Using the same set of Stop sign images, we explored the

edges of the ε-neighborhood (ε = 8) for each image and checked if the color extractor’s

output changed at any point. From this, we found that the extractor is robust on

approximately 75% of the Stop sign images.

In Figure 5.6, we further measure the robustness of the color extractor on STOP

images for varying values of ε. We observe that the robustness of the color extractor

is extremely high for small values of ε, and then steadily decreases. Upon closer

examination, we find that many of the points the color extractor is non-robust on for

small values of ε are points that are very close to a different color boundary, often

due to noisy images. We provide a few examples in Figure 5.7. In some cases, like

in Figures 5.7a and 5.7b, the sign has a blueish tint, often due to poor lighting. In

other cases, like Figure 5.7c, the blurriness hinders correct sign localization. We

attribute the differences between robustness for blue and yellow for higher ε values
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Figure 5.6: The robustness of the color classifier for STOP when changing to blue or
yellow signs as L∞ bound increases.

(a) Close to Blue (b) Close to Blue (c) Close to Yellow

Figure 5.7: Some examples of inputs the color classifier is not robust on. Often, this
occurs due to either the image being too dark (which tends to shift colors to blue) or
the image being too blurry (which causes errors during sign localization).

to the smaller hue distance between red and yellow as compared to between red and

blue. For smaller values of ε, the difference is due to dataset artifacts – more Stop

signs with very poor lighting in the dataset were closer to having a bluish hue than a

yellowish hue (see Figure 5.7 for a few examples).

5.7 Conclusion

The existence of adversarial examples is attributed to a network’s reliance on

predictive, but easily exploitable, features it learned during training. In this chapter,

we introduced two methods of robust feature augmentation to mitigate this problem:

binarizers and robust group features. Both map the input space to a smaller, more
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robust, subspace (like a lattice or group labels) and we formally describe these two

methods to improve DNN robustness. Experimentally, we demonstrated how these

methods can improve the adversarial robustness of a digit classifier and a traffic sign

classifier. Furthermore, when adversarial training is used in conjunction with these

methods, we were able to train a more adversarially robust model for MNIST 14x

faster than without these methods.

We recognize that human identification of robust features may not be applicable

to all machine learning tasks, especially if non-interpretable, robust features exist. As

such, it is important to develop techniques to identify such features, though doing

so is for future work. However, concurrent work done by Ilyas et al. has already

shown some progress in this area, through the use of adversarial training to remove

non-robust features from training data [33]. We expect to see further research, in

which robust feature augmentation can be the method for adversarial robustness.
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CHAPTER VI

Future Work & Conclusion

6.1 Conclusion

Despite the expressive power of machine learning algorithms, adversarial examples

are a large problem that potentially threatens their deployment, especially in safety or

security critical systems. In recent years, previous work demonstrated that adversarial

examples through subtle digital manipulation of the input could cause errors in both

machine learning classification and object detection algorithms. However, these works

failed to motivate it as a real threat since a high level of control over the system is

necessary to digitally manipulate inputs.

This dissertation took the first step in developing a real adversarial attack. Rather

than performing digital manipulations of the input, we proposed physically modifying

the operational environment of the system as it is publicly accessible. Through careful

analysis, we identified several key challenges, which reduce the success rate of physical

adversarial attacks and developed the RPP attack to overcome these challenges. Our

experiment with road sign detection and identification demonstrated that our attack

is successful at creating robust, physical adversarial perturbations for target objects.

Next, we turned towards developing a technique to mitigate the effect of such

attacks. From reviewing previous work on adversarial attacks as well as the experiences

obtained from developing the RPP attack, we theorized that adversarial attacks succeed
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due to subtle manipulations of imperceptible, predictive features. Therefore, in order to

mitigate the effect of adversarial inputs, robust, predictive features need to prioritized

in the classification pipeline. Our technique, robust feature augmentation, introduced

an adversarially robust classification pipeline, in which known robust features are

extracted from the inputs. This extracted information is provided during classification

and acts as evidence for the final classification decision. As robust features cannot

be adversarially manipulated, the classification decision must be supported by the

extracted robust, feature information.

Machine learning is a powerful tool and is seeing widespread use in both old and

emerging technologies. However, although many may recognize numerous applications

of machine learning, most fail to recognize or understand the risks associated with it.

Thus, it is important to be able to evaluate these risk using real threat models so as

to inform future development in mitigation techniques.

6.2 Future Work

We describe some additional future research directions stemming from our work in

developing adversarial attacks and defenses.

6.2.1 Redefinition of Adversarial Constraints

In general, most adversarial attacks begin with the assumption that generated

adversarial examples must have little to no perceptible difference between the ad-

versarial example and the originally labeled input. Mathematically, the perceptible

similarity between the two inputs is often represented by the Lp norm distance. In

Chapters III and IV, we relaxed this constraint as maintaining the imperceptibility of

the perturbation would make the attack impossible given that camera sensors would

not be able to detect such subtleties. Furthermore, our attack is focused on creating

an object that remains adversarial across any image of that object rather than a single
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adversarial image. Thus, we choose to constrain our attack to preserve the semantic

information, the general appearance of the sign.

Gilmer et al. have analyzed this problem and remark that there is little motivation

to maintain imperceptible adversarial perturbations for many machine learning appli-

cations [23]. To evade a facial biometric system that scans for blacklisted persons, an

adversary, presumably blacklisted, would seek to change their actual appearance as

much as possible, while remaining inconspicuous. To upload objectionable content

such as a lewd image to a social media platform, an adversary would seek to make

large changes to the image, while maintaining the semantic content. To unlock a

phone through facial verification, an adversary is interested in any input that unlocks

the phone, rather than one that is indistinguishable from a verified face. The Lp norm

distance, while the most widely used in adversarial attack research, only enforces a

limited subset of non-suspicious inputs. In general, adversarial constraints need to be

adapted based on the task domain and attack goals in order to create real adversarial

attacks and accurately evaluate adversarial defenses.

6.2.2 Automatic Robust Feature Extraction

In Chapter V, we introduced a new technique, robust feature augmentation, as

a method to mitigate or prevent the effects of adversarial inputs. However, in our

experiments, we relied on domain knowledge to pre-select robust, predictive features

such as the color of the road signs to augment the classification pipeline. In general,

such easily identifiable, robust, predictive features may not always be available or

easy to obtain, especially with non-image inputs. In order to fully utilize robust

feature augmentation as a defensive technique, it is necessary to develop methods to

automatically identify and extract robust, predictive features. Ilyas et al. provides

a initial approach towards this goal as they adversarially train a robust model, and

then use the model to identity robust features [33].
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6.2.3 Adversarial Defense through Foreground Extraction

In Chapter V, we used binarization as a robust feature extraction function to

improve the adversarial robustness of an MNIST classifier. Binarization, or more

generally pixel discretization, of an input has not resulted in improved adversarial

robustness of classifiers trained on larger datasets such as CIFAR or Imagenet [14].

As Chen et al. observed, simple pixel discretization as a general technique to improve

adversarial robustness only works if the input features (e.g., pixels for images) are

separable. They showed that the MNIST dataset fits this criteria, but most complex

datasets do not. However, they make the mistake of interpreting binarization in MNIST

as pixel discretization for more complex datasets. While it is true that binarization

is a form of pixel discretization, it is more accurately characterized as a shape or

foreground extraction technique. In MNIST, pixels that are close to 1 represent

foreground information (i.e., the digit shape). Thus, binarization can be thought

to improve adversarial robustness because it focuses the classifier on semantically

informative input information. In work by Xie et al., they noted that adversarial

modifications causes a classifier’s feature maps to have high activation on semantically

uninformative content. In other words, adversarial attacks cause a classifier to shift its

focus from the foreground object or concept information to background information.

Based on their analysis as well as our experimental results on MNIST, we expect that

a classifier focused on semantically informative foreground information will possess

high adversarial robustness.
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APPENDIX A

Traffic Sign Classifier Details

A.1 Model Description

We use a publicly available implementation of a multi-scale DNN architecture [91].

The architecture description is given in Table A.1. Before training, we triple the size

of any class with less than 200 images through oversampling and randomly perturbing

each image.
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Table A.1: Traffic sign classifier architecture. The model expects 32× 32× 3 images
as input with values in the range [-0.5, 0.5].

Layer Type Number of Channels Filter Size Stride Activation

conv 3 1x1 1 ReLU
conv 32 5x5 1 ReLU
conv 32 5x5 1 ReLU

maxpool 32 2x2 2 -
conv 64 5x5 1 ReLU
conv 64 5x5 1 ReLU

maxpool 64 2x2 2 -
conv 128 5x5 1 ReLU
conv 128 5x5 1 ReLU

maxpool 128 2x2 2 -
FC 1024 - - ReLU
FC 1024 - - ReLU
FC 43 - - Softmax
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APPENDIX B

Inception-v3 Physical Adversarial Images

We include the uncropped images of the adversarially modified microwave and mug

along with the distance and viewing angle for the experiments performed in Chapter

III.
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Table B.1: Uncropped images of the microwave with an adversarial sticker designed
for Inception-v3.

Distance/Angle Image Distance/Angle Image

2′ 0◦ 2′ 15◦

5′ 0◦ 5′ 15◦

7′ 0◦ 7′ 15◦

10′ 0◦ 10′ 15◦

15′ 0◦ 20′ 0◦
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Table B.2: Cropped Images of the coffee mug with an adversarial sticker designed for
Inception-v3.

Distance/Angle Image Distance/Angle Image

8′′ 0◦ 8′′ 15◦

12′′ 0◦ 12′′ 15◦

16′′ 0◦ 16′′ 15◦

20′′ 0◦ 20′′ 15◦

24′′ 0◦ 24′′ 15◦

28′′ 0◦ 28′′ 15◦

32′′ 0◦ 32′′ 15◦
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APPENDIX C

Color Extractor

We designed a basic color extractor for traffic sign classification. First, we discuss

the colors we designed the extractor to identify and the motivation for our choices.

Then, we discuss the algorithm and provide additional information regarding the

robustness of the algorithm.

C.1 Sign Colors

For a given image of a traffic sign, we designed the color extractor to identify

one of three colors: red, yellow, and blue. U.S. red signs (See Figure C.1a) are

generally regulatory in nature (e.g., Stop, DoNotEnter). U.S. yellow signs (see

Figure C.1b) are used for cautioning a user (e.g., IntersectionAhead, CurveRight,

CurveLeft, School Zone). Blue signs (see Figure C.1c) are common in Germany

and can be restrictive or mandatory (e.g., KeepLeft, MandatoryLeftTurn,

TrafficCircle , MandatoryAhead). Table C.2 identifies the sign labels in the

dataset and that are either red and blue. For the purpose of classification, yellow

signs are grouped together in a single class due to low representation with respect

to the original sign labels(e.g.,Intersection: 13 images, CurveLeft: 24 images,

TurnRight: 24 images).
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(a) Red sign examples

(b) Yellow sign examples

(c) Blue sign examples

Figure C.1: Examples images of signs for the three color classes we evaluated.

C.2 Color Extraction Algorithm

The color extraction process involves 2 steps:

1. Sign Localization - Determine the sign’s location in the image

2. Color Classification - Determine the dominant color of the sign

The full pipeline is shown in Figure C.2.

C.2.1 Sign Localization

Before we can evaluate the dominant color of the sign, we must first identify the

pixels in the image that compose the surface of the sign. Due to the presence of

numerous noisy images in the dataset, like those shown in Figure 5.7, edge detection
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Table C.1: Class labels of the LISA-GTSRB traffic sign dataset used in the experiments.

Class Label Class Label Class Label

speedLimit20 streetClosedBothWays wildlifeWarning
speedLimit30 noTrucks allRestrictionsEnd
speedLimit50 generalWarning mandatoryRightTurn
speedLimit60 sharpLeftTurnAhead mandatoryLeftTurn
speedLimit70 sharpRightTurnAhead mandatoryAhead
speedLimit80 sequenceSharpTurnsAhead mandatoryAheadOrRight

endSpeedLimit80 bumpsInRoad mandatoryAheadOrLeft
speedLimit100 slipperyRoad keepRight
speedLimit120 tighterRoadOnRight keepLeft

noPassing construction trafficCircle
noPassingTrucks trafficLight endNoPassing

intersectionWarning pedestrianCrossing endNoPassingTrucks
rightOfWay schoolCrossing Yellow Signs

yield bicycles doNotEnter
stop icyRoads White Rectangles

Total # of Signs 44121

Table C.2: Red and blue sign groupings. Yellow is not included as they have been grouped into a
single label with respect to classification.

Red Blue

Stop mandatoryRightTurn
Do Not Enter mandatoryLeftTurn

mandatoryAhead
mandatoryAheadOrRight
mandatoryAheadOrLeft

keepRight
keepLeft

TrafficCircle

and contour extraction algorithms perform poorly. Instead, given a three channel

color image, (r,g,b), we normalize each individual channel by the image intensity and
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Figure C.2: The color extractor pipeline. We show the step-by-step process for a
Stop image.

compute a chromaticity map (C) and 4 color maps (R, G, B, Y) [34, 45].

C = max(r, g, b)−min(r, g, b)

R = r − g + b

2

G = g − r + b

2

B = b− r + g

2

Y =
r + g

2
− |r − g|

2
+ b

Afterwards, all of the maps are converted to a binary image based on the mean of

the non-zero values in each map. Then, we use the binary image of C to mask each of

the binarized color maps and isolate the chromatic colors in each map. Finally, each

channel is scored based on the number of non-zero pixels in the image. If less than

10% of the pixels in each of the four color channels are white, the inverted binary

chromaticity map is output. Otherwise, the binarized color channel with the highest

score is output. We make one optimization based on the fact that in most of the

images, the traffic sign is centered in the image. As such, we restrict thresholding and
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scoring to a small box around the center of the image. In our experiments, we used a

10 by 10 box.

C.2.2 Color Classification

The output of the sign localization step is a mask that is applied to the original

color image, resulting in an image containing mostly foreground pixels. This image is

converted to a hue-based representation (e.g., HSV or HSL). Each non-zero pixel in

the masked image is labelled based on the closest color center of three predefined color

centers (red, yellow, and blue). Afterwards, a weighed majority vote is computed (i.e.,

weight of a pixel’s vote increases the closer it is to the center) and the color with the

most votes chosen.

For these proof-of-concept experiments, we choose to only detect red, yellow, and

blue as these are the three most common colors in the dataset. We did not handle

colors such as brown or green as there were no signs in the dataset with these colors.

Traffic signs that are white do exist, but white is not characterized by hue. Instead, it

is represented by other channel information such as value or lightness. As such, the

color extractor is not robust for predominantly white signs, thus our analysis did not

focus on such signs. This does not hurt the test accuracy of the augmented model,

though, as we can include “white” sign labels in the group-labels for all three colors.

When we augment the classifier with the color extractor, the test accuracy on the

GTSRB test dataset is 97.51%. Extending the color extractor to extract other colors,

or even multiple colors, for finer-grain color-based classification, remains future work.
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