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ABSTRACT

In early-stage design, critical decisions are made within a limited information en-

vironment. Designers conduct and interpret analyses, while taking into account the

associated risks, so that meaningful design trade-offs can be investigated. To aid in

this, design tools are utilized to generate solutions in the hopes of characterizing a

design space. However while it is known that solutions are prescribed by the tools

used to generate them, there seems to be little concern toward how these predisposed

biases affect the quality of solutions relative to the desired outcome. Without the

ability to determine a tool’s biases, one cannot understand their effects on decision-

making. This inability can promote inaccurate perspectives of the desired design

space, can negatively impact the ultimate success of the design, and poses a currently

unquantified risk within the design process. To make truly informed decisions, de-

signers must be able to assess a tool’s inherent biases, its intended applications, and

its contextual appropriateness to the design questions it is being used to answer.

To provide these capabilities, this thesis presents a framework for evaluating a

model’s underlying biases. Within this thesis, new and novel aspects of quality have

been developed, namely solution-centric quality and generative quality. Novel qual-

ity metrics have been created and are used to evaluate a model as it is subjected to

biases. A modified Genetic Algorithm (GA) has been developed so that an ensemble

of biased solutions can be generated over time. Thereby, this GA provides a dynamic

environment of the solution generation process associated with a model. Addition-

ally, newly created and novel Hereditary-Amelioration Networks (HANs) are derived

from the dynamics within this modified GA. The HANs capture the implied-causality

ix



behind solution dynamics and represent temporal, causal relationships between solu-

tions. This newly developed approach is used to establish the comparative context

necessary for a model’s biases to be analyzed and understood by creating reference

and biasing cases.

Utilizing the developed framework, a variety of solution-centric and generative

analyses are developed to evaluate a model’s inherent tendencies. A comprehensive

case study is conducted to demonstrate how the framework and the various analyses

are implemented and interpreted. The case study’s results demonstrate that the

framework can successfully identify a model’s biases, providing designers with the

contextual information necessary to make truly informed decisions.
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CHAPTER I

Introduction

1.1 Background and Motivation

The design of complex products, such as naval vessels, is difficult and has been

classified as a “wicked problem” (Andrews , 2012). Due to the nature of wicked prob-

lems, decisions made during the conceptual design phase have the largest impacts

on cost, performance, and schedule. In addition to being the most impactful toward

the successful creation of a complex product, early-stage design is uniquely difficult.

Within early-stage design, decisions are made with limited information, and thus the

designer is tasked with not only making a decision but also with intuitively evaluating

their associated risk given a limited information environment. To aid in this, design

tools are utilized to explore and evaluate potential design solutions and characterize

the design space. Designers are responsible for generating and interpreting these re-

sults to understand their significance in the context of a given design problem, with

the hopes of providing meaningful decision trade-offs so that future emergent design

failure risks can be mitigated.

1.1.1 Current Design Environment in the Navy

Over the past four decades, the U.S. Navy and the Office of Naval Research (ONR)

have made significant investments toward developing engineering analysis tools, early-
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stage design tools, and computational models to facilitate information generation

and decision-making throughout an acquisition’s lifecycle. The cultural effect of this

investment is apparent when considering the current state of design within the U.S.

Navy. Modeling and synthesis dominate all design activities, and design itself is

tracked and managed through product models (Naval Sea Systems Command , 2012).

Early-stage design activities are characterized by a strong cultural bias toward design

space exploration, with an emphasis on solution generation capabilities (Mackenna,

2011). The perceived limitations of this current approach are seen to primarily reside

in computing power or in graphical representations (Chalfant , 2015). The Navy’s

vision for analysis tools comprise massively integrated synthesis codes and simulation

environments, with the goal of creating automated tools to rapidly produce a full

range of feasible solutions, evaluate them, and thereby make the designer instantly

aware of design implications:

“ Because of the limited amount of tool integration, and a manual ship

design definition process, the Navy enterprise is usually driven to select

one design alternative early in the design process. The vision for Navy

design tools is to move to an automated high-end toolset that integrates

many information dense design definition tools with high fidelity physics-

based analysis tools. A system such as this could be used to explore the

design space to ensure that the correct design is selected before signing a

contract to build a ship. For example, an automated tool could rapidly

produce a full range of feasible ship arrangements from a basic shell of a

ship, and then a vulnerability assessment could be performed on each of

these many design variations and the resultant range of achievable levels of

vulnerability can be fed back to the designer. Thus, the designer is instantly

aware of the vulnerability implications of the sizing and arrangement of

the ship. ” - Kassel et al. (2010)
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From these sources, the current state of design in the U.S. Navy can be summarized by

the belief that automated tools and additional computational resources will provide

novel knowledge for decision-making and thereby eliminate decision errors in early-

stage design.

1.1.2 Introducing Quality and Bias

While useful, it is important to understand the limitations of synthesis models

and optimization techniques within a design process (McKenney , 2013). The blind,

unfounded faith in automated tools exemplifies how design is perceived by many in

academics and industry to simply be the act of developing and utilizing tools or the

act of running models and simulations. An alternative view is that design is the act

of generating knowledge for decision-making through time (Shields , 2017); it is about

understanding design drivers and interdependencies. If one views design as the act of

generating knowledge for decision-making, then evaluating “what the analysis results

are” is equally as important as assessing “how” or “why” those are the results.

An underlining issue is that more results do not necessarily equate to additional

novel knowledge for decision-making. The belief that generating a massive num-

ber of solutions will provide novel knowledge for decision-making is grounded on the

presumption that novel knowledge is simply hidden and can be uncovered after ad-

dressing the limiting factor of how much can be processed. The reality is that the

creation of a model is based on the subjective judgment of the modeler, and differ-

ent methods can produce different results (Papalambros and Wilde, 2000). Solution

attributes and solution generation strategies are embedded within a model during

its development (Dosi , 1982). Knowledge development is implicit in the synthesis

process, and therefore previous knowledge, regardless of applicability to the design

problem under consideration, is embedded in design tools. Thus rather than uncover-

ing any new knowledge, the act of generating more solutions merely enumerates the
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hard-coded knowledge, applicable or not, embedded within the tool. The presump-

tion that increasing solution generation capabilities will generate novel knowledge is

fundamentally untrue, and thus a shift away from blinding generating solutions is

needed. Since it is known that generated solutions are driven by the modeler’s judg-

ment and the tool’s embedded artifacts, the most important considerations should be

toward identifying these biases and understanding their effects on decision-making.

One of the most significant implications from the stated realization is the existence

of solution predication. Solutions are prescribed by the equations used, interdepen-

dencies defined, and methods used to synthesize them (Gillespie, 2012; Parker , 2014;

Shields , 2017). There are multiple examples in the literature that demonstrate how

design solutions are predicated by the tools used to generate them. Regarding the

Intelligent Ship Arrangements tool, Gillespie (2012) shows how solutions are preor-

dained by the set of global and local preference constraints. Given initial parameters

to a general arrangements problem, Shields (2017) demonstrates how the most prob-

able solutions matched those resulting from an intensive optimization procedure. By

decomposing a model into its constituent parts, Parker (2014) identifies internal de-

sign drivers that are indicative of the model’s primary tendencies.

Published limitations on the current state of the art are perceived as either a

lack of tool integration or computational resources and not as the applicability of

a tool to a specific design problem. However, embedded knowledge development

and solution predication raise the question of quality. Given that a tool may be

predisposed to generating particular solutions, how does this affect the tool’s quality in

terms of generating knowledge for decision-making, and how is this quality evaluated?

Within optimization, simulation, and analysis literature, there are countless metrics

to evaluate the quality of a model through its execution (Sargent , 2011). Traditional

verification and validation (V&V) is focused on (1) ensuring that a model and its

operation are “correct” and (2) confirming that a model is satisfactorily accurate
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when used within its domain of applicability. The assumption is that if a model is

verified and validated then the solutions that it produces have high quality and thus

the tool has high quality. The issue lies in the fact that a tool can pass all the “tests”

but, due to reasons discussed and demonstrated throughout this thesis, may not be

appropriate for the early-stage design questions that it is being used to answer. There

seems to be little concern for (1) understanding how the quality of a tool’s results is

affected by its appropriateness or (2) evaluating if the generated solutions go against

its intended use.

Regardless of the environment, it is still the designer’s responsibility to accurately

inform decision-making through meaningful interpretations of analyses. To do this,

designers must be able to assess a tool’s intended applications, its inherent biases, and

its appropriateness in the context of the given design problem. Currently, designers do

not have the capability to assess the quality of prospective design solutions toward a

specific intent in this manner. Without this type of information, decision-makers must

operate under the erroneous notion that all solutions contain an equivalent quality of

applicable information, which leaves designers and decision-makers unknowingly vul-

nerable to only considering solutions that may be predicated by the tools themselves.

The solutions that are generated, and thus used, can provide inaccurate perspectives

of the desired design space, which impacts the ultimate success of the design and

poses a currently unquantified risk to the design process.

1.1.3 Relevant Issues

The consequences of not accounting for solution predication are significant given

the simple fact that solutions generated using early-stage design tools provide the

basis for critical early-stage design decisions. The importance of addressing these

issues is increased when considering that design is path dependent with respect to use

of information and decision-making (Page, 2006). Decisions made during the design
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process affect the availability of future decisions and solutions. Decisions based on

synthesis impact future developments and may predicate future outcomes.

Increases in tool automation, opacity, integration, and complexity affect a de-

signer’s ability to determine a tool’s original purpose or the assumptions that went

into its development. As toolsets continue to grow, designers will become increasingly

limited in their ability to manually diagnose how the tools affect solution quality

(Savoie and Frey , 2012), necessitating an automated evaluation method to fill this

gap. The integration of disparate tools enables the propagation of a single source’s

inferior quality, creating a product with a “lowest common denominator” degree of

quality. Furthermore, this integration increases the complexity of the combined prod-

uct and can lead to emergent failures (Leveson, 2004).

Given that tool development costs are high, tool reuse becomes a very attractive

alternative within early-stage design. Tools are often utilized to address questions

that they were not originally developed to answer. The push toward purely physics-

based analysis tools should reduce some of their biases, however these methods often

require more expertise and design information to execute. In contrast, early-stage ship

design must operate with very limited information and generally relies on reduced-

order models that have been developed with assumptions concerning physics or with

regressions using data that may not be applicable to all reuse cases the tool will

be applied to. While verification of analysis tools is straightforward, a truly honest

validation is not.

1.2 Research Scope

The presented thesis is focused on developing methods to answer the fundamental

question, “How can an analysis tool be evaluated to determine if it is presenting biased

information?” The existence of biased information is not necessarily a concern, but

rather the issues occur when the tool’s inherent biases are misaligned with the design
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space under consideration. To answer this question, one must determine if the tool is

appropriate and applicable for reuse to answer questions outside its original reasons

for development. More specifically, does the quality of result when asking question

A match the quality of result when asking question B? How can designers be made

aware of when a tool’s embedded knowledge affects design outcomes? How can this

be identified and measured? The following section outlines how these questions are

approached and answered in this thesis.

1.3 Dissertation Structure

This dissertation is divided into the five following chapters that are organized as

follows:

• Chapter II presents a discussion of quality and proposes that, in design, a holistic

assessment of quality requires multiple contextual views. The chapter discusses

the considerations necessary to evaluate quality and how these evaluations can

be used to understand the biases of a model.

• Chapter III details the mechanics of the developed framework and how aspects

of the framework address the considerations necessary for evaluating bias.

• Chapter IV details a variety of analyses that, utilizing the developed framework,

are used to evaluate a model’s inherent tendencies.

• Chapter V presents a comprehensive case study that was conducted to demon-

strate how a model’s biases are evaluated using the framework proposed in

Chapter III and the analyses detailed in Chapter IV.

• Chapter VI details the contributions of this thesis and future topics of interest.
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CHAPTER II

Discussing Quality and Bias

This chapter discusses quality, defines two types of quality and their intents, and

discusses considerations that are needed to evaluate quality and thereby assess and

understand a model’s inherent biases. This provides answers to the questions: what

does quality mean within the context of early stage design tools, how can it be

measured, what does bias mean, how do quality and bias relate to each other, and

how can evaluations of quality be used to understand the biases of a model?

2.1 Quality and Optimality

When discussing solution quality, a term that is bound to come up is optimality.

A solution’s optimality is determined by the objectives that are defined and the other

solutions that it is compared to. When only one objective is specified, determining

the optimal solution is trivial: it is the best solution. When more than one objectives

are specified, the optimality of a solution is often determined using the concept of

Pareto dominance. Consider two solutions x1 and x2 with objective evaluations z1

and z2, respectively. Solution x1 is said to dominate solution x2 when two conditions

are met:

1. No element in z1 is worse than the corresponding element in z2.
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2. At least one element in z1 is better than the corresponding element in z2.

The expression x1 � x2 is used to denote that solution x1 dominates solution x2
1.

Given a solution set G = {x1, · · · ,xn}, solution xi ∈ G is considered optimal (or

nondominated) if there does not exist another solution xj ∈ G that dominates xi.

Thereby, the Pareto-set P of G is defined as the set containing all optimal solutions

in G relative to the given objectives.

P = {xi ∈ G | (@xj ∈ G)[xj � xi]} (2.1)

Figure 2.1 depicts an example that demonstrates the concept of Pareto dominance,

where the Pareto-set has been defined in terms of minimizing both objectives.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e 
2

Objective 1

Nondominated
Dominated

Figure 2.1: Nondominated and dominated solutions defined by a bi-objective evalu-
ation of Pareto dominance.

In design, optimality is often erroneously perceived as synonymous with quality.

By its definition, optimality is solely a product of the objective functions that are

specified and the solution set considered. Thus given objectives and any solution set

1The notation on dominance varies widely in literature, such that both x1 � x2 and x1 ≺ x2

have been used to denote that x1 dominates x1 (Audet et al., 2018). In this document, the former
notation is used, as specified in the text.
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G, optimal solutions within G can be determined. But therein lies the rub; solutions

are deemed optimal relative to the other solutions in G. If all the solutions are bad,

the optimal solutions will also be bad, just better than the other bad solutions that

they have been compared against.

Therefore without a sufficient context, the assessment that a solution is optimal

does not presuppose or imply any evaluation of its quality relative to solutions that

were not considered during this assessment. Additionally, the act of finding optimal

solutions does not provide an evaluation of the quality of the process used to generate

those solutions. Without assessing the quality of the solution generation process, the

overall quality of solutions cannot be determined.

Designers are responsible interpreting analyses by looking at “what the results are”

and from these, attempting to understand “what they mean” in the context of a given

design problem. However, “what the results are” does not explain “how or why they

are.” By looking at results alone, one cannot determine if the results are predisposed

by the processes used to generate them. Without such knowledge, interpreting the

results and evaluating their quality, from a design decision perspective, becomes a

fool’s errand. Both aspects (“what” and “why” the results are) must be considered

to inform the interpretation of what results mean; either alone is insufficient. With

that in mind, the following section presents the definitions of quality used in this

research.

2.2 Defining Two Views of Quality

The discussion of optimality brings to light the fact that an honest assessment

of quality requires multiple contextual views. A determination of quality requires

assessing both the quality of the solutions in terms of the questions being asked and

the quality of the solution generation process so that one can determine if optimal

solutions are honestly generated or simply random blind luck. To accomplish this goal,
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two different views of quality are defined: solution-centric quality (representing the

quality of solutions) and generative quality (representing the quality of the solution

generation process).

2.2.1 Solution-centric Quality

Solution-centric quality refers to how well solutions characterize the desired design

space in terms of thoroughness, optimality, and diversity. Solution-centric evaluations

of quality describe “what results are” and operate primarily within the solution-space

and objective-space of a model. They are used to determine if the solutions gener-

ated by the tool provide an accurate and sufficient representation of the information

required to make design decisions.

In the field of optimization, many metrics have been developed to evaluate and

compare different Pareto-sets (Audet et al., 2018; Li et al., 2014, 2015; Wu and Azarm,

2001; Zitzler et al., 2003). These metrics are primarily used by optimization prac-

titioners as performance indicators to determine superiority between different opti-

mizers (Zitzler and Thiele, 1998; Wang et al., 2016). In optimization, the model is

never the focus of the research. While the interplay between models and optimizers

is recognized, the model is viewed as an input, and the focus is on developing more

superior optimizers to solve them. In contrast, designers are more concerned with the

models than with the optimizers used to solve them. Designers need a method for

evaluating the predispositions of a model to understand how the generated solutions

affect the characterization of the design space.

While solution-centric evaluations of quality may utilize similar metrics to those

developed in optimization, the intent behind solution-centric quality is focused on

providing a more thorough understanding of the model. In optimization, perfor-

mance indicators are primarily concerned with optimal solutions. Even in design,

much of the current focus is on optimal solutions. However, there are other aspects of
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solution-centric quality aside from optimality. For example in early stage design ac-

tivities, solution feasibility has significant importance to designers. How the model’s

biases affect the creation of feasible solutions will affect the characterization and un-

derstanding of the feasible design space. Therefore, analyzing aspects other than

solely optimality may provide additional indicators of quality and a better under-

standing of the design space; ignoring them would be naive and could cause one to

make false conclusions.

2.2.2 Generative Quality

Generative quality refers to how effectively the solution generation process utilizes

previous information to inform its progression over time. Generative assessments of

quality attempt to explain “why results exist” and are critical to understanding if a

tool is producing solutions against its designed intent. Until now, generative metrics

have not been considered as a means to evaluate solution quality. This is due to the

fact that the quality of solutions is currently not seen as dependent on the quality

of the process used to generate them. In the field of optimization, this may not be

a concern. However in design, the quality of solution generation can have significant

implications on the quality of resultant solutions.

While related, generative evaluations of quality are distinct from temporal solution-

centric ones: solution generation implies a temporal process, but evaluating a tempo-

ral process does not necessitate an understanding of the process’s driving causes. For

example, the convergence of an optimization procedure assesses a temporal attribute,

but it does not provide an understanding of why the results exist.

2.3 The Necessity of Comparison

Optimality, quality, and bias share a commonality in design: each requires com-

parison in order to provide any meaningful value. A designer should want to know if
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a model’s biases are predisposing solutions against its intended application. Bias can-

not be understood without a reference; the very idea of bias implies some comparison.

Therefore, a comparative context is necessary to analyze, assess, and understand a

model’s inherent biases. When establishing a context to provide comparisons for eval-

uating the biases of a model, at least one reference is needed: a baseline. Within this

thesis, the baseline contains the execution dynamics and solutions generated when

the tool is operated with its original intent and set-points. Given this context, the

optimality of the baseline’s solutions can be used to provide a measure of quality.

2.4 Capturing Solution Generation Dynamics

In traditional optimization, people often only look at the final set of optimal

solutions or the convergence of optimal solutions over time. As generative quality

is defined, it evaluates how efficiently the optimizer utilizes previous information to

inform its future actions. Therefore to evaluate generative quality, a method is needed

to capture the utilization of information within the solution generation process.

Though the methods discussed in Section 1.1.2 present analyses that demonstrate

solution predication, these methods cannot be used to evaluate generative quality.

They are based on interrogating the structure of a model and draw conclusions from

the connectivity within the model: the relationships between its inputs, outputs,

constraints, external and internal functions, initialization parameters, etc. Analyz-

ing a tool’s structure may provide additional insight to understand how information

propagates within it, and may identify potential leading indicators of the tool’s ten-

dencies. However, these analyses do not involve the process of generating solutions,

and therefore cannot be used to evaluate how solutions are produced over time. The

structure of a tool does not provide the information necessary to evaluate the solution

generation dynamics within the tool, which is critical to enable an understanding of

how and why solutions are created through time. Additionally, these analyses cannot
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be utilized when the model’s internal structure is unknown, as is the case with many

“black-box” design tools.

2.5 Biasing a Solution Generation Process

As stated above, evaluating the biases of a model requires at least one reference:

a baseline. However, if only the baseline is known, no conclusions can be made

concerning the model’s biases. Therefore to evaluate bias, additional references are

needed to provide comparisons against the baseline. Specifically, references are needed

that enable a designer to draw conclusions regarding the model. Therefore, a method

is needed to generate references in such a way that their results reflect a given bias

so that the biases of the model can be determined by comparison.

In addition, the evaluation of a model’s bias should assess whether that bias is

causal or simply correlated. Causation is used to indicate that one event is the result

of another event, such that a cause and effect relationship exists between them. On

the other hand, correlation is used to measure the probabilistic relationship between

the values of In the determination of a model’s biased toward producing something re-

quires the ability to exercise a model in ways counter to the baseline so that causation

or correlation can be determined. In order to look at this, a dynamic environment is

needed where the solution generation process can be subjected to a bias over time.

By “pushing” the generation process toward a particular bias, the resulting quality of

solutions is used to evaluate if the model is predisposed toward producing solutions

corresponding to the given bias.

2.6 Summary

This chapter discussed an alternative view of quality that is critically needed

within early stage design. Two types of quality, solution-centric and generative, were
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defined and discussed. Within the discussion, the intent and considerations of bias

and quality were presented so that an assessment of a model’s inherent biases can be

evaluated. This chapter outlined what quality means within the context of early stage

design tools and provided the justification for the development of several execution

views of a model so that a comparative analysis between the model’s baseline and

alternative execution strategies can be achieved.
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CHAPTER III

Developing the Framework

This chapter details the mechanics of the developed framework and how different

aspects of this framework address the considerations for evaluating and understanding

bias.

1. Evaluating generative aspects of quality requires a solution generation process.

While operating on a given model, a Genetic Algorithm (GA) is used generate

solutions over time and thereby provide a dynamic environment of the solution

generation process associated with the model. Section 3.1 presents foundational

information concerning GAs and the types of models used.

2. Evaluating the utilization of information throughout the solution generation

process requires a method for capturing and representing how that information

is being used over time. Section 3.2 discusses how Hereditary-Amelioration

Networks (HANs) are derived from the dynamics within a GA and capture the

implied-causality behind solution dynamics by representing temporal, causal

relationships between solutions throughout the GA’s optimization procedure.

3. Evaluating a model’s biases requires the ability to make meaningful compar-

isons. Section 3.3 presents how the GA is modified to establish the comparative

context necessary for a model’s biases to be analyzed and understood.
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3.1 Background

3.1.1 Objective-based Models

An objective-based model is defined by its inputs x, functions f(x), objectives

Ω(x), and constraints c(x). A simple example of a multi-objective model is given in

Table 3.1. A set of instantiated inputs (called a solution) represents a single point in

the model’s solution-space (also called the decision-space (Zitzler et al., 2000)). The

model’s functions define the mapping from a solution’s inputs to its corresponding

point in the model’s objective-space.

Table 3.1: A simple multi-objective model.

Component Example
Inputs x1 ∈ R

x2 ∈ R
x3 ∈ R
x = [x1, x2, x3]

Functions f1(x) = x2
1 − x2x

2
3

f2(x) = x1x2x3 + f3(x)
f3(x) = x2

2 − x1

f(x) = [f1(x), f2(x), f3(x)]
Objectives Ω1(x) = min f1(x)

Ω∗2(x) = max f2(x)
Ω(x) = [Ω1(x),Ω2(x)]

Constraints c∗1(x) = x1 ≤ x2 − x3

c∗2(x) = x3 ≥ 1.4
c(x) = [c1(x), c2(x)]

The model’s objectives define how to assess if a solution is optimal, as discussed

in Section 2.1. Though objectives can be specified as minimization or maximization

problems, common practice is to express objectives solely as minimization problems.

To comply with this standard, a maximization problem, max f(x), is expressed as

its corresponding minimization problem, min f̄(x), where f̄(x) = −f(x). In the

example provided, Ω∗2(x) would be formatted to be expressed as Ω2(x) = min f̄2(x).

The model’s constraints define boundaries that assess a solution’s feasibility: a
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solution is infeasible if it violates a constraint; otherwise, it is feasible. Common

practice is to express inequality constraints in the form c(x) ≤ 0. Using algebraic

manipulation, the example’s constraints c∗1(x) and c∗2(x) would be formatted to be

expressed as c1(x) = x1 − x2 + x3 and c2(x) = 1− x3
1.4

.

To account for the model’s constraints, the objective values of infeasible solutions

are generally modified by a penalty function (Goos et al., 2007). For example, to en-

sure that feasible solutions are never dominated by infeasible solutions, an infinitely

large penalty can be added to the objective values of infeasible solutions. This rep-

resents an extreme version of a penalty function. However, large, discrete penalties

can greatly affect an optimizer’s ability to find optimal solutions along constraint

boundaries. To remedy this, an external penalty function is utilized that penalizes

solutions linearly for each violated constraint. The penalty associated with solution

x from constraint c(x) is given by:

g(c(x)) = max(c(x), 0) (3.1)

If x is feasible (c(x) ≤ 0), no penalty is applied to x (g(c(x)) = 0); if x is infeasible

(c(x) > 0), a positive penalty is applied to x (g(c(x)) = c(x)). Multiple constraints

are accounted for by summing each of their associated penalties.

Φ(c,x) =
∑
ci ∈ c

g(ci(x)) (3.2)

whereby the penalized objective values of solution x are given by:

R(Ω, c,x, ξ) = Ω(x) + ξ Φ(c,x) (3.3)

where ξ is a positive linear scaling factor. Since ξ is positive and g(ci(x)) is greater

than or equal to zero, the penalty term ξ Φ(c,x) is subsequently also greater than

18



or equal to zero. When solution x is infeasible, its associated penalty is, by design,

a positive number. As Ω(x) represents minimization problems, the addition of a

positive penalty means that infeasible solutions receive a worse evaluation.

3.1.2 Genetic Algorithms

Genetic Algorithms (GAs) are iterative, population-based, evolutionary search

algorithms commonly used in optimization (Holland , 1975, 1992; Gen et al., 2008).

Figure 3.1 depicts the GA optimization procedure that is used in this research. Before

discussing each of these steps in detail, an overview of the procedure is given.

The goal of a GA is to find optimal solutions to a given optimization problem

(in the field of optimization, an objective-base model, such as the one defined in

Table 3.1, is often referred to as the optimization problem). In a GA, the model’s

solution-space is represented by a set (or population) of individuals, each of which

represent a single solution by encoding a set of instantiated inputs to the model.

Until its stopping condition is fulfilled, a GA searches the model’s objective-space for

optimal solutions by iteratively manipulating its population using genetic operators.

As shown in Figure 3.1, the GA used in this research utilizes two types of genetic

operators: crossover and selection. GAs do not have any well-established convergence

criteria; the user commonly specifies the stopping condition as a number of iterations

to complete. Once its stopping condition is fulfilled, a GA returns the set of optimal

solutions that it has found throughout its progression.

Running a GA requires specifying an optimization problem to solve and setting the

algorithm’s hyperparameters. Hyperparameters are configuration parameters whose

values cannot be estimated from data and are instead specified by the user (Coello

Coello et al., 2007). The GA hyperparameters utilized in this research are presented

in Table 3.2 and each will be discussed as they become relevant. The remainder of

this section details each step of the optimization procedure shown in Figure 3.1.
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Figure 3.1: The optimization procedure of a GA.

Table 3.2: Common hyperparameters of a GA.

Hyperparameter Description
Population size (N) The number of individuals that comprise the GA’s

population.
Probability of crossover (pcx) The probability that a selected individual will en-

gage in crossover.
Blend parameter (α) A parameter used in blend crossover.
Tournament size (k) A parameter used in tournament selection.
Number of epochs (E) The total number of iterations that the GA com-

pletes before finalizing.
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Step 1: Initialization

Before the population can be used to search the model’s objective-space, it must

be initialized. This entails filling the population with N individuals, where hyperpa-

rameter N is specified as an integer value. As stated, each individual represents a

solution in the model’s solution-space by encoding a set of input values. The method

by which these values are determined varies; they may be assigned randomly, dictated

by the user, or chosen from a set of provided inputs. In this research, the initial input

values of each individual were chosen from a large set of feasible inputs, which was

generated by randomly sampling the model’s solution-space. After assigning input

values for each of the individuals, their corresponding constraint, penalty, and objec-

tive values are calculated using the given model, as discussed in Section 3.1.1. Table

3.3 presents an example of a population’s first three individuals, utilizing the model

defined in Table 3.1.

Table 3.3: A population’s first three individuals with their corresponding input, con-
straint, penalty, and objective values.

Individual Inputs, x Contraints, c(x) Penalty Objectives, Ω(x)
x1 x2 x3 c1(x) c2(x) Φ(c,x) Ω1(x) Ω2(x)

0 1.5 2.5 -1.0 -2.00 1.71 1.71 -0.25 -1.00
1 -0.7 1.3 1.5 -0.50 -0.07 0.00 -2.44 -1.03
2 2.4 1.5 2.3 3.20 -0.64 3.20 -2.17 -8.13
...

...
...

...
...

After the population has been created, the GA establishes its initial Pareto-set

using Equation 2.1 and the objectives Ω(x) specified by the model. Additionally, the

Pareto-set is created using only feasible (Φ(x) = 0) individuals from the population,

to guarantee that optimal solutions are never infeasible.
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Step 2: Crossover

After initialization, the GA begins its core iterative cycle. At the start of this cycle,

the GA’s current epoch is incremented: t = t+ 1 (the initialization step is considered

as t = 0). Then as shown in Figure 3.1, each epoch begins with the crossover operator,

which is responsible for creating new individuals. Since individuals represent points

in the model’s solution-space, crossover is the mechanism through which new search

points for the model are determined.

In blend crossover, new individuals are created by the following process. Each

individual in the current population Q(t) is selected in turn, and has a probability

pcx to engage in crossover. When an individual engages in crossover, the selected

individual p1 is paired with a different individual p2, chosen randomly from the pop-

ulation. This pair of individuals (called parents) are used to create a new individual

c1 (called a child) by assigning input values to c1 as a combination its parents’ input

values. For each of i inputs, the child’s input value ci is determined by:

ci = (1− ξ)p1i + ξp2i (3.4)

where ξ is given by:

ξ = (1 + 2α)η − α (3.5)

where η is random number in the range [0, 1], and α is the blend parameter. The

parameter ξ dictates how much of the child’s input value ci comes from its first parent

p1i and how much comes from its second parent p2i. For example when ξ = 0, the

child’s input value ci is inherited completely from p1i. The positive blend parameter

α scales the random number η about 0.5, such that ξ effectively becomes a random

number in the range [−α, 1 + α]. When α > 0, the input value assigned to the
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child can extend beyond the ranges of its parents input values, enabling the GA to

more effectively search the breadth and extents of the model’s solution-space. After

assigning a child’s inputs in this manner, its corresponding constraint, penalty, and

objective values are calculated using the given model, similarly to the evaluation

discussed in the initialization step. After each individual is given a chance to engage

in crossover, the newly created children are added to the GA’s current population

Q(t), resulting in population growth. The expected amount of population growth is a

function of the population size N and the probability of crossover pcx. Since pcx is the

probability that an individual engages in crossover and creates a child, the expected

number of children created across N individuals is equal to Npcx.

In this way, the GA creates new search points each epoch; it decides where to

search based on where it’s been. As a final note before discussing the next step, most

GAs utilize a mutation operator that is applied directly after the inputs of a child

are assigned. The mutation operator it is not utilized in the current research and

therefore is not discussed here.

Step 3: Pareto Update

After crossover, the GA’s Pareto-set P is updated using the feasible children that

were created during crossover this iteration. Using Equation 2.1, the optimality of

each child is assessed by comparing it to individuals in P , which is updated accord-

ingly. If the child is dominated by one or more individuals in P , it is not optimal

and is not added to P . If the child is nondominated by individuals in P , it is optimal

and is added to P . Furthermore, if a nondominated child dominates one or more

individuals in P , the dominated individuals are subsequently removed from P . Given

this implementation, the size of the Pareto-set is not constrained and can continue to

grow throughout the progression of the GA.
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Step 4: Selection

After updating the Pareto-set, the selection operator is used to reduce the inflated

population in order to maintain a constant population size at each iteration of the

GA. With population size N and tournament size k specified as hyperparameters,

tournament selection operates as follows. The next epoch’s population, Q(t + 1), is

initialized as an empty set (Q(t+1) = {}). Then until Q(t+1) contains N individuals,

Q(t+ 1) is filled as follows:

1. A subset T (called a tournament) is filled with k individuals, chosen randomly

without replacement from the current population Q(t).

2. The individuals in T are evaluated by a penalized ranking function fr(x), where

fr is traditionally defined as the problem’s objective functions Ω. Using Equa-

tion 3.3, this penalized ranking function can be expressed as:

R(fr, c,x, t) = fr(x) + t Φ(c,x) (3.6)

where Φ(c,x) is given by Equation 3.2. Here, the GA’s current epoch t is used

as the scaling factor, so that infeasible individuals receive higher penalties as

the GA progresses.

3. The nondominated individual in T with respect to R(fr, c,x, t) is selected. If T

contains multiple nondominated individuals, one of them is selected at random.

4. The selected individual is removed from Q(t) and added to Q(t+ 1). Since the

selected individual no longer resides in Q(t), subsequent tournaments cannot

contain individuals that have already been selected. In other words, this process

represents selection without replacement, whereby Q(t+1) does not contain any

duplicate individuals.
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While the selection operator does not create additional search points, it directly

affects solution generation process by determining which individuals remain in the

population for the next iteration of the GA. It is the mechanism that enforces “natural

selection” with the purpose of finding additional optimal solutions.

Step 5: Iteration and Finalization

As shown in Figure 3.1, steps 2 through 4 are repeated until the GA’s stopping

condition has been satisfied. As stated, GAs do not have any well-established con-

vergence criteria, and instead the user commonly specifies the stopping condition as

a total number of epochs E to complete. Therefore until t = E, the GA continues

to create new solutions, update its optimal solutions, and remove solutions from its

population at every epoch. Once its stopping condition is satisfied, the GA returns its

Pareto-set, containing the optimal solutions that it found throughout its progression.

3.2 Capturing Solution Dynamics

As stated in Chapter II, effectively establishing the impact of bias or predication

of an early stage design tool requires a method for creating and capturing the evo-

lutionary dynamics of the solution generation process. The GA’s process of creating

and removing solutions at each epoch embodies how the GA represents an iterative

evolution of solutions over time. To model this generative process, HANs are derived

from the dynamics within the GA as it progresses through time.

To understand the effects of bias, it is not only the final solutions that must be

investigated, but the generative process as well. Rather than assuming that intermedi-

ate solutions are solely a means to the final Pareto-set, different types of relationships

between intermediate solutions are represented using networks. HANs capture the

implied-causality behind the evolution of solutions by representing temporal, causal

relationships throughout the progression of the GA. The networks are termed heredi-
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tary, in reference to the relationship of information between individuals (parents and

children), and amelioration, in reference to the progressive improvement of solutions;

both terms denote the temporal nature of the iterative solution generation process.

The development of HANs is a novel and unique contribution of this thesis.

3.2.1 Creating Hereditary-Amelioration Networks

This section details how two types of HANs are created during a GA’s opti-

mization procedure, namely the Parent-Child Network (PCN) and the Parent-Parent

Network (PPN). As stated, HANs represent relationships within the solution gener-

ation process as networks. A network is simply a collection of points (called nodes)

that are connected by lines (called edges) Newman (2003, 2010). As demonstrated in

Figure 3.2, a network can be directed or undirected, as determined by its edges. In

directed networks, edges specify a direction, pointing from one node and to another.

In undirected networks, edges do not specify a direction and represent bi-directional

relationships between nodes.

Directed network Undirected network

Figure 3.2: Two different types of networks. The edges in an undirected network
(right) do not signify directional relationships, whereas those in a directed network
(left) do.

Mirroring the steps discussed in Section 3.1.2, the following sections detail how

HANs are created during the GA’s optimization procedure.
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Step 1: Initialization

Prior to initializing the population, both HANs are initialized as empty networks,

having no nodes or edges. As individuals are created during the GA’s initialization

step, a node is added to the HANs for each. Thereby, individuals in the GA are

represented by nodes in the two HANs. Figure 3.3 depicts the PCN and PPN after

initializing a population of six individuals.

00

11
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33

44 55

Parent-Child Network

00

11
22

33

44 55

Parent-Parent Network

Figure 3.3: HANs after initializing a population containing six individuals. Individ-
uals in the GA are represented by nodes in the PCN and PPN.

Each node contains the attributes of its corresponding individual: its input, con-

straint, penalty, and objective values (e.g., as shown in Table 3.3). In addition, each

node encodes temporal attributes that indicate when it is created (tstart), when it is

dominated (tdominated), and when it leaves the population (tend). In this case when

the population is initialized (t = 0), all nodes in the network set tstart = 0. After the

GA establishes its initial Pareto-set, any dominated nodes set tdominated = 0. Table

3.4 presents the temporal attributes of the six nodes from Figure 3.3. As indicated by

tdominated in the table, nodes 1 and 2 are either dominated by other nodes or infeasible

(Φ(c,x) > 0) and therefore cannot be contained in the Pareto-set.
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Table 3.4: Temporal nodal attributes after initialization at t = 0.

Node tstart tdominated tend
0 0 - -
1 0 0 -
2 0 0 -
3 0 - -
4 0 - -
5 0 - -

Step 2: Crossover

When individuals are created during crossover, nodes are added to the HANs for

each of them, and these nodes set tstart equal to the GA’s current epoch t. Continuing

the example, Table 3.5 contains the temporal attributes of three new nodes created

during crossover at t = 1. Though individuals are similarly represented as nodes

in both networks, the networks’ edges capture and represent different relationships.

When a node is created during crossover, the PCN creates an edge to it from each

of its parents, while the PPN creates an edge between the child’s parents. Thereby,

the PCN is a directed network that represents the mapping from parents to children,

and the PPN is an undirected network that represents the mapping between parents.

Table 3.5: Temporal nodal attributes after crossover at t = 1.

Node tstart tdominated tend
...

...
6 1 - -
7 1 - -
8 1 - -

Continuing the example, Figure 3.4 depicts the development of both HANs during

crossover at t = 1. In the figure, blue nodes indicate parents that were chosen

to engage in crossover and create children. In this example, node parent pair (2,3)

created node 6, (0,3) created 7, and (2,5) created 8. Representing these three children,

nodes 6, 7, and 8 are created and added to each of the networks. Since an edge in

the PCN points to a child from its parent, edges are created to child 6 from parents
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2 and 3, to 7 from 0 and 3, and to 8 from 2 and 5. Since an edge in the PPN points

between parents, edges are created between node pairs (2,3), (0,3), and (2,5).
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Figure 3.4: Development of HANs during crossover at t = 1. Nodes are added to the
networks for each newly created individual. Blue nodes indicate parents that were
chosen to engage in crossover and create children. In the PCN, edges are added to
child nodes from parent nodes. In the PPN, edges are added between parent nodes.

This describes how edges and nodes are created in the HANs, but does not im-

mediately convey their significance in terms of the GA’s solution generation process.

When parents engage in crossover and create a child, the child’s input values are as-

signed as a function of its parents’ inputs values. Thereby, a child inherits information

contained in both of its parents, and parents influence their children through this in-

heritance of information. Through its edges, the Parent-Child Network captures this

directional influence of information and represents the genealogy of solutions created

throughout the GA. The Parent-Parent Network captures the connectivity between

parents and represents the community of information that is utilized to generate new

solutions throughout the GA. Both HANs provide a structured representation of the

temporal solution generation process, though each identifies different aspects.
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Step 3: Pareto Update

When the Pareto-set P is updated, any newly dominated nodes set tdominated to the

current epoch t. This includes children that were created during crossover this epoch

as well as any nodes in P that are dominated by these children this epoch. Table

3.6 presents the updated temporal attributes of the nine nodes from Figure 3.4. As

indicated by tdominated in the table, nodes 4 and 7 are either infeasible or dominated

by other nodes at t = 1. Since node 7 was also created at t = 1, it represents a

solution that was never optimal. In contrast, node 4 was nondominated at t = 0 and

therefore represents a previously optimal solution.

Table 3.6: Temporal nodal attributes after the Pareto-set is updated at t = 1.

Node tstart tdominated tend
0 0 - -
1 0 0 -
2 0 0 -
3 0 - -
4 0 1 -
5 0 - -
6 1 - -
7 1 1 -
8 1 - -

Step 4: Selection

Though selection reduces the GA’s population by effectively removing individuals,

nodes are not removed from the HANs. Therefore, these networks continue to grow

each iteration of the GA. However when an individual is removed from the population,

its corresponding node sets tend to the current epoch t. Continuing the previous

example, Figure 3.5 depicts both HANs at t = 1 after the next population’s nodes

have been selected. In the figure, green nodes indicate those that were selected to

remain in the population at t = 1. Therefore, nodes 2, 4, and 7 are not chosen

during selection and their respective individuals are subsequently removed from the
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population. The updated temporal attributes of these nodes are reflected in Table

3.6.
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Figure 3.5: Development of HANs during selection at t = 1. Green nodes indicate
those that were selected to remain in the population.

Table 3.7: Temporal nodal attributes after selection at t = 1.

Node tstart tdominated tend
0 0 - -
1 0 0 -
2 0 0 1
3 0 - -
4 0 1 1
5 0 - -
6 1 - -
7 1 1 1
8 1 - -

The selection step does not alter the HANs’ structures through the addition or

removal of nodes or edges. However, it does influence which individuals remain in the

GA’s population, and therefore has significant implications on the solution dynamics

within the procedure. In the example, nodes 4 and 7 did not create children, and

since they are removed from the population at t = 1, they can never be chosen to

create children in future epochs. Therefore, the information contained in these nodes

is never utilized, and they have no influence on the process. In Figure 3.5, this effect
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is captured by the PPN, where no edges are connected to nodes 4 and 7. Although

node 2 is also removed from the population, it parented two children: nodes 6 and

8, as shown in the PCN. While node 2 cannot be chosen to create children in future

epochs, information contained in it is inherited by its children (and subsequently by

its “grand-children”, etc.). Therefore, a node continues to influence the process for

as long as one of its descendants exists within the population.

Step 5: Iteration and Finalization

As discussed in Section 3.1.2, steps 2 through 4 are repeated until iterating for

the specified number of epochs E. Therefore, the HANs continue to grow throughout

the duration of the GA. To demonstrate this growth and reiterate the main steps in

creating HANs, the presented example is continued into epoch 2.

After selection at t = 1, the stopping condition is not met, and epoch 2 begins

with crossover. Figure 3.6 depicts the development of both HANs during crossover at

t = 2. As shown previously in Figure 3.5, nodes 2, 4, and 7 were not chosen during

selection at t = 1 and were removed from the population. While these nodes still

exist in the HANs, they cannot be chosen to engage in crossover. To indicate this,

these nodes are shaded red in Figure 3.6. Again, blue nodes indicate parents that

were chosen to engage in crossover and create children. In the example at t = 2, node

parent pairs (3,5), (3,0), and (5,0) created child nodes 9, 10, and 11, respectively. To

represent these children, nodes 9, 10, and 11 are created and added to each HAN.

Since an edge in the PCN points to a child from its parent, edges are created to child

9 from parents 3 and 5, to 10 from 3 and 0, and to 11 from 5 and 0. Since an edge in

the PPN points between parents, edges are created between node pairs (3,5), (3,0),

and (5,0).

After crossover and updating the Pareto-set, Figure 3.7 depicts selection at t = 2.

Again, red nodes indicate those that were removed from the population at t = 1 and
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Figure 3.6: Development of HANs during crossover at t = 2. Red nodes indicate
those that were removed from the population at t = 1 and therefore cannot be chosen
to engage in crossover. Blue nodes indicate parents that were chosen to engage in
crossover and create children at t = 2.

therefore cannot be selected this epoch; green nodes indicate those that were selected

to remain in the population at t = 2. Therefore, nodes 0, 5, and 10 are not chosen

during selection and their respective individuals are subsequently removed from the

population at t = 2. Since node 10 is removed from the population and did not

create any children, its information is never utilized, and it has no influence on the

process. Although nodes 0 and 5 are removed from the population, their influence on

the process continues through their children. However while node 5 has three existing

descendants, node 0 only has one. In order for node 0 to continue influencing the

process, node 11 (or one of its children) will need to be selected at t = 3.

Once the GA has completed E epochs, the GA returns the two resulting HANs

that were created during the process. To provide an intuitive visualization of these

networks, a network layout was developed. Respectively, Figures 3.8 and 3.9 utilize

this layout to depict the aggregate PCN and PPN after completing 40 iterations of

the continued example. One of the layout’s aspects is that the progression of the

GA is represented by connected nodes as roughly following the passage of time on
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Figure 3.7: Development of HANs during selection at t = 2. Red nodes represent
those that were removed from the population at t = 1. Green nodes indicate those
that were selected to remain in the population at t = 2.

a clock-face. Thereby, the GA is initialized at 1:00 and iterates clockwise before

finalizing at 11:00. In the figures, this effect is demonstrated by the roughly linear

increase of connected node labels while moving clock-wise along the networks. Any

unconnected nodes are positioned in the center of the network; these do not indicate

time. The layout’s representation of time is approximate since other aspects of the

layout necessarily detract from this goal; these are discussed in Chapter IV as they

become relevant.
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Figure 3.8: An aggregate Parent-Child Network.

00

11

22

33

44

55

66

77

88

99

1010

1111

1212

13131414

1515

1616

1717

1818 1919
2020

2121

2222

2323

2424

2525

2626

2727

2828

2929 3030

3131

3232

3333

3434
3535

3636

3737
3838

3939

4040

4141

4242
4343

4444

4545

4646

4747

4848
4949

5050
5151

5252

5353

5454

5555

5656

5757

5858

5959
6060

6161

6262

6363
6464

6565

6666

6767

6868
6969

7070

7171

7272

7373

7474

7575

76767777

7878

7979

8080

8181

8282

8383

8484

8585

8686

8787

8888

8989

9090

9191

9292
9393

9494

95959696
9797

9898

9999

100100101101

102102

103103

104104
105105

106106107107

108108

109109

110110

111111 112112

113113

114114

115115

116116

117117118118119119

120120

121121

122122

123123

124124
125125

126126

127127

Figure 3.9: An aggregate Parent-Parent Network.
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3.2.2 Deriving the Parent-Parent Network

While the creation of the Parent-Parent Network was detailed to provide an in-

tuitive understanding for what it represents, it does not need to be manually created

in this fashion. Instead, it can be derived directly using the adjacency matrix of

the Parent-Child Network. In network theory, the adjacency matrix of a network

is defined as a square matrix where rows and columns represent nodes within the

corresponding network. For example, a network with n nodes has an n×n adjacency

matrix where row i refers to node i and column j refers to node j. Entries within the

adjacency matrix denote the existence of edges between nodes. As shown below, Aij

equals one if an edge exists from i to j, and zero otherwise. By this definition, the

adjacency matrix of an undirected network is necessarily symmetric.

Aij =


1 if there exists an edge from i to j

0 otherwise

(3.7)

The derivation of the PPN is most easily demonstrated using an example. For the

PCN depicted in Figure 3.4, its adjacency matrix can be constructed using Equation

3.7 as:

APCN =


0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (3.8)

As seen in the figure, the only edge that exists from node 0 is to node 7. This is

captured in the adjacency matrix above where APCN07 = 1. The adjacency matrix of
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the PCN can be expressed in terms of its rows as:

APCN =


r0
r1
r2
r3
r4
r5
r6
r7
r8

 =


0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (3.9)

where row vector ri indicates nodes that were parented by node i. For example, r0

indicates that node 7 was parented by node 0. The adjacency matrix of the PCN can

also be expressed in terms of its columns as:

APCN = [ c0 c1 c2 c3 c4 c5 c6 c7 c8 ] =


0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (3.10)

where the column vector ci indicates the parents of node i. For example, c6 indicates

the parents of node 6 are nodes 2 and 3. However, this is precisely the information

needed to create an edge in the PPN. Therefore given this representation, the ad-

jacency matrix of the Parent-Parent Network APPN can be derived. First, APPN

is initialized as an n × n matrix where APPNij = 0 for all i and j. Then for each

column vector ci of APCN , the non-zero elements of ci which indicate inter-parental

relationships are used to define non-zero elements of APPN . Continuing the example

from Equation 3.10, the non-zero elements of column vectors c6, c7, and c8 define the

following non-zero elements of APPN :

c6 ⇒ APPN23 = APPN32 = 1 (3.11)

c7 ⇒ APPN03 = APPN30 = 1 (3.12)

c8 ⇒ APPN25 = APPN52 = 1 (3.13)

37



which produces the following adjacency matrix for the PPN:

APPN =


0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 (3.14)

Inspecting Figure 3.4, Equation 3.14 indeed reproduces the depicted PPN, with

undirected edges between node pairs (2,3), (3,0), and (5,2). This demonstrates that

the PPN can be derived from the PCN; however, it should be noted that this operation

is not invertible, i.e. APCN ⇒ APPN but APPN ; APCN .

3.3 Establishing a Comparative Context

As discussed in Section 2.3, evaluating bias requires comparisons; it cannot be

understood without a reference. This section details the how a comparative context

is established so that a model’s inherent biases may be analyzed, assessed, and un-

derstood. Section 3.3.1 details how a GA is modified by implementing alternative

ranking functions that can intentionally bias the solution generation process within

the GA. Section 3.3.2 details how these ranking functions are used to define reference

and biasing cases. For each of these cases, HANs are created using the modified GA;

these results are then comparatively analyzed to evaluate a model’s innate tenden-

cies. However, the ranking functions do not affect the macro behavior of the GA,

as will be discussed. Section 3.3.3 defines temporal network subsets that are used

in Chapter IV to differentiate results and demonstrate the model’s biases. Lastly,

Section 3.3.4 discusses how the GA’s tournament size affects the influence imposed

by ranking functions.
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3.3.1 Alternative Ranking Functions

As discussed in step 4 of Section 3.1.2, tournament selection utilizes a ranking

function fr such that for each tournament T , the nondominated individual with re-

spect to R(fr, c,x, t) (given by Equation 3.6) is selected to remain in the population.

Thereby, fr is the mechanism through which the GA influences the evolution of its

population over time. As previously stated, fr is traditionally defined as the model’s

objectives Ω. In this case for each tournament T , the nondominated individual in T

with respect to model’s penalized objectives is selected to remain in the population.

Over time, this promotes the GA’s search of the model’s objective-space toward more

optimal solutions.

Since fr directly influences the population’s evolution over time, it also provides

a means to intentionally bias the solution generation process. Rather than enforc-

ing that fr be defined as Ω, the GA is modified so that fr can be defined as an

alternative ranking function. If an alternative ranking function is used, it must be

specified as a hyperparameter before running the GA. Aside from this modifica-

tion, the GA’s tournament selection operates in the same way discussed in Section

3.1.2. The penalized ranking function R(fr, c,x, t) is still used to rank individuals

in each tournament. However rather that being influenced by the model’s objectives,

the population’s temporal evolution is influenced by the alternative ranking function

that has been defined.

3.3.2 Reference and Biasing Cases

Modifying a GA to utilize an alternative ranking function is not done for reasons of

optimality. On the contrary, it may be the case that the alternative ranking function

finds fewer optimal solutions, does not progress the Pareto-set, or creates a entire

population of infeasible individuals. However, this is precisely its purpose: to impose

a bias on the model and analyze the response of the solution generation process. By
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itself, implementing a single alternative ranking function is not particularly useful or

informative. This is due to the fact that analyzing a model’s inherent biases requires

a comparative context.

To establish these comparisons, multiple alternative ranking functions are used to

create reference and biasing cases. Each case implements a different ranking function

that influences the solution generation process within the GA. Reference cases are

created to provide a base context for interpreting results of the biasing cases. This

research defines and utilizes two distinct reference cases: the baseline case and the

random case.

• The baseline case provides an “ideal” reference by representing the traditional

application of the model. The baseline case directly favors solutions that are

optimal with respect to the model in question. Therefore, the ranking function

of the baseline case fB
r is defined as the model’s objectives Ω.

fB
r (x) = Ω(x) (3.15)

Thereby for each tournament T chosen during the GA’s selection procedure, the

dominating individual with respect to R(fB
r , c,x, t) is selected to remain in the

population. If T contains multiple non-dominated individuals, one of them is

selected at random.

• The random case provides a reference by representing a completely unguided

search. The random case favors no particular solution, and the ranking function

of the random case, fR
r , does not actually rank individuals. Instead, for each

tournament T chosen during the GA’s selection procedure, a random individual

in T is selected to remain in the population.

These reference cases can be constructed for any objective-based model, and they do

not require any additional input from the designer: the baseline case is defined by
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the model and the random case is self-contained. In contrast, a biasing case require

the designer to define its ranking function. Since this ranking function will bias

the solution generation process within the GA, it should be defined to represent a

particular bias that is being investigated. To define this ranking function, a designer

may leverage their intuition, knowledge of relevant physical phenomena, or other

analyses. Future research will investigate methods for implementing biasing cases

that do not require such manual definitions by the designer.

After defining reference and biasing cases, HANs are generated for each case using

the modified GA and its corresponding ranking function. In addition, this process

is performed a number of times for each, to obtain statistical quantification of the

results. In this research, the number of trials completed for each case was specified by

the user; however, this number could also be assessed dynamically based on results

(e.g., desired 95% confidence interval).

3.3.3 Temporal Network Subsets

The ranking functions do not affect the macro behavior of the GA; on average,

the HANs create the same number of nodes and edges at each epoch, regardless of

ranking function. However the goal is not to assess this macro behavior but instead

to understand how an imposed bias affects the solution generation process within the

GA. The analyses presented in Chapter IV demonstrate the effects of these biases by

differentiating results using temporal network subsets, which are defined here. These

subsets contain nodes from a given HAN based on conditions defined by the attributes

of each node.

The noncumulative super-set, S(t), contains all solutions that exist in the pop-

ulation at time t. For a node in G to reside in S(t), it must have been created
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(tstart(x) ≤ t) and must be currently active (t ≤ tend(x)).

S(t) = {x ∈ G | tstart(x) ≤ t ≤ tend(x)} (3.16)

The cumulative super-set Sc(t) contains all solutions that have been created by

time t. For a node in G to reside in Sc(t), it must have been created (tstart(x) ≤ t).

In terms of S(t), Sc(t) can be expressed as the union of all S(τ) for 0 ≤ τ ≤ t.

Sc(t) = {x ∈ G | tstart(x) ≤ t} (3.17)

=
t⋃

τ=0

S(τ) (3.18)

The noncumulative Pareto-set, P (t), contains all optimal solutions at time t. For

a node in G to reside in P (t), it must have been created (tstart(x) ≤ t) and must be

currently non-dominated (t < tdominated(x)).

P (t) = {x ∈ G | tstart(x) ≤ t < tdominated(x)} (3.19)

The cumulative Pareto-set Pc(t) contains all solutions that are or have been opti-

mal at time t. For a node in G to reside in Pc(t), it must have been created (tstart(x) ≤

t) and must have been non-dominated at that time (tstart(x) 6= tdominated(x)). In terms

of P (t), Pc(t) can be expressed as the union of all P (τ) for 0 ≤ τ ≤ t.

Pc(t) = {x ∈ G | (tstart(x) ≤ t) ∧ (tstart(x) 6= tdominated(x))} (3.20)

=
t⋃

τ=0

P (τ) (3.21)

The noncumulative feasible-set F (t) contains all feasible solutions that exist in

the population at time t. For a node in G to reside in F (t), it must have been created
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(tstart(x) ≤ t), must be currently active (t ≤ tend(x)), and must be feasible (Φ(x) = 0).

F (t) = {x ∈ G | (tstart(x) ≤ t ≤ tend(x)) ∧ (Φ(x) = 0)} (3.22)

The cumulative feasible-set Fc(t) contains all feasible solutions that have been

created by time t. For a node in G to reside in Fc(t), it must have been created

(tstart(x) ≤ t) and must be feasible (Φ(x) = 0). In terms of F (t), Fc(t) can be

expressed as the union of all F (τ) for 0 ≤ τ ≤ t.

Fc(t) = {x ∈ G | (tstart(x) ≤ t) ∧ (Φ(x) = 0)} (3.23)

=
t⋃

τ=0

F (τ) (3.24)

These temporal network subsets are summarized below in Table 3.8.

Table 3.8: Summary of temporal network subsets.

Subset Type Symbol Contains
Super-set Noncumulative S(t) Nodes that exist within the population

at t.
Cumulative Sc(t) Nodes that were created at or before t.

Pareto-set Noncumulative P (t) Nodes that are optimal at t.
Cumulative Pc(t) Nodes that are or have been optimal at

t.
Feasible-set Noncumulative F (t) Feasible nodes that exist within the

population at t.
Cumulative Fc(t) Feasible nodes that were created at or

before t.

3.3.4 Effects of Increasing Tournament Size

In using alternative ranking functions, it is important to understand how tourna-

ment size affects the potency of the imposed bias. As discussed in step 4 of Section

3.1.2, the tournament size k is the number of randomly chosen individuals in each

tournament T created during the GA’s selection process. It controls how much influ-
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ence the ranking function fr has on the selection process. When k = 1, each tour-

nament contains a single randomly chosen individual, and that individual is added

to the next epoch’s population; fr exerts no influence, and the selection is effectively

random. The amount of influence imposed by fr increases with k. Therefore when

k = 2, the selection is influenced by fr, but as minimally as possible. By using mul-

tiple values of k ≥ 2, the increasing influence of fr can be compared and analyzed to

determine its impact on the solution generation process.

3.4 Summary

This chapter presented details associated with development and execution of the

proposed framework. Within the framework, a GA was used generate solutions over

time and thereby provide a dynamic environment of the solution generation process.

Derived from these dynamics, HANs were developed to capture the implied-causality

behind solution dynamics and represent the utilization of information throughout the

GA’s optimization procedure. These networks provide a means for understanding

bias within the execution of an optimization procedure. Lastly, the GA was modified

to establish the comparative context necessary for a model’s biases to be analyzed

and understood. The combination of the GA, HANs, and the context make up this

novel framework.

To summarize the methodology, the following text describes how a designer would

implement the framework in practice:

1. First, the designer decides what model they choose to investigate. This model

defines inputs, constraints, and objectives. Then, the form of these constraints

and objectives are assessed and manipulated appropriately, as discussed in Sec-

tion 3.1.1.

2. The reference and biasing cases are defined. As discussed in Section 3.3.2,
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the baseline and random reference cases are defined by the model. Then, the

designer chooses the biasing cases that they’d like to consider. This entails the

designer defining a ranking function for each biasing case that embodies what

they are trying to investigate. Chapter V provides a detailed example.

3. Finally HANs for each case are created by running the modified GA with the

corresponding ranking function. Each case runs a number of trials to estab-

lish an understanding of the variance in results and produce the appropriate

statistics needed to draw a conclusion.

The resulting HANs provide a comparative context and can be analyzed to understand

the model’s tendencies regarding the biasing cases. The next chapter discusses how

these are analyzed through the execution of a test case.
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CHAPTER IV

Analyzing the Framework

While the previous chapter provided the procedural details concerning the net-

works and solution generation aspects of the method, this chapter presents the various

novel analyses created to enable the evaluation of a model’s inherent tendencies rela-

tive to the comparative context established by reference and biasing cases. Sections

4.1 through 4.4 present solution-centric analyses while sections 4.5 and 4.6 present

generative analyses.

4.1 Cardinality

As a first step in evaluating the different cases, this section discusses analyses

that assess the cardinality of the temporal network subsets defined in Section 3.3.3.

The cardinality of a set A is defined as the number of elements contained in A.

Mathematically, the cardinality of A, denoted as |A|, can be expressed as:

|A| =
∑
a ∈A

1 (4.1)

In this analysis, cardinality is used to evaluate the dynamics of four temporal

subsets: the noncumulative and cumulative Pareto-sets as well as the noncumulative

and cumulative feasible-sets. The analysis of these subsets are discussed in turn.
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Pareto-set

The cardinality of the noncumulative Pareto-set, |P (t)|, assesses the number of

optimal solutions at time t. An increase in |P (t)| indicates that more simultaneously

optimal solutions are being found. Consequently, a decrease in |P (t)| indicates that

an optimal solution is found that dominates more than one of the previously nondom-

inated solutions; for continuous objectives, this situation is rarely observed. When

|P (t)| reaches an equilibrium, either (1) the process has either converged, or (2) ad-

ditional optimal solutions are found that improve on previous ones. If an optimal

solution is found that dominates a single previously nondominated solution, the net

change in |P (t)| is zero; this is interpreted as solution improvement.

When evaluated and compared across cases, Figure 4.1 gives an example of these

results. As discussed in Section 3.3, multiple trials should be completed for each case

to provide an understanding of the results’ variability. For each case in the figure,

the dark line represents the average across trials, and the lighter shading represents

a 68% confidence interval off this average. Unless otherwise specified, this format

applies to all such figures presented in this document.
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Figure 4.1: Cardinality of the noncumulative Pareto-set, |P (t)|.
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The results in Figure 4.1 demonstrate the necessity of comparisons. If the results

of only one case is shown, there is not sufficient context to interpret the quality of the

results or the tendencies of the model. Using the BASELINE (ideal) and RANDOM

(unguided) cases as references, results of the BIASED case can be interpreted. In

discussing these results, the terms PB(t), PR(t), and P I(t) are used to denote the

noncumulative Pareto-sets of the BASELINE (B), RANDOM (R), and BIASED (I)

cases, respectively. In the example, P I(t) is slightly less than PR(t), meaning that

BIASED finds fewer simultaneously optimal solutions than RANDOM.

The cardinality of the cumulative Pareto-set, |Pc(t)|, assesses the number of opti-

mal solutions that have been found at or before time t. An increase in |Pc(t)| indicates

that additional optimal solutions are being found; by its definition, |Pc(t)| cannot ex-

perience a decrease. When |Pc(t)| reaches an equilibrium, the process is not finding

additional optimal solutions and has, for practical purposes, converged.

Once evaluated and compared across cases, Figure 4.2 presents an example of

these results. The reference cases exhibit similar trends as in the noncumulative

case: both BASELINE and RANDOM increase over time, but BASELINE increases
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Figure 4.2: Cardinality of the cumulative Pareto-set, |Pc(t)|.
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considerably more than RANDOM. In the biasing case, BIASED is slightly more than

RANDOM; BIASED has found more total optimal solutions than RANDOM.

Since |Pc(t)| − |P (t)| is the number of previously optimal solutions found at time

t, the difference between the cumulative and noncumulative Pareto-sets provides a

measure of how well the process improves on optimal solutions that it has already

found. When assessed at t = E, this measures the total amount of improvement

throughout the process. In the examples, BIASED finds fewer optimal solutions than

RANDOM (|P I(E)| < |PR(E)|), but finds more of them throughout its progression

(|P I
c (t)| > |PR

c (t)|). This implies that the biased case improves on previous solutions

more than the random case does.

Feasible-set

The cardinality of the noncumulative feasible-set, |F (t)|, assesses the number of

feasible solutions that exist in the population at time t. This provides an understand-

ing of the state of the search at t and the search dynamics over time. Furthermore

since the expected number of individuals each epoch equals N(1 + pcx), this mea-

sures of the fraction of feasible individuals in the population at time t, which is used

to determine if the solution generation process is promoting the creation of feasible

individuals.

An example of these results are shown in Figure 4.3. For the reference cases,

both BASELINE and RANDOM decrease initially and then continue to increase.

BASELINE does not decrease as much initially, and increases significantly higher than

RANDOM. The increase of feasible solutions over time makes sense given that the

ranking functions are penalized using a linear scale factor equal to the current epoch:

infeasible solutions get worse evaluations as time progresses. BASELINE has the most

feasible solutions by the end; since optimal solutions must be feasible, BASELINE

has a higher opportunity of creating optimal solutions due to its number of feasible
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Figure 4.3: Cardinality of the noncumulative feasible-set, |F (t)|.

solutions. Another difference between the reference cases is that BASELINE has much

less variability than RANDOM. BIASED decreases initially like the reference cases,

however rather than increasing after this, BIASED instead reaches an equilibrium.

Since for the number of feasible solutions does not grow or shrink over time, the

solution-space searched by BIASED must not be very close to constraint boundaries:

if it was, feasible solutions would be promoted more.

Cardinality of the cumulative feasible-set, |Fc(t)|, assesses the number of feasible

solutions that have been created at or before time t. This differentiates whether

solutions are sticking around or if additional feasible solutions are being generated.

Additionally, it provides an understanding of how many feasible solutions are created

for a given bias, which can be used to assess the likelihood of feasible options in

an early stage design activity. When |Fc(t)| reaches an equilibrium, the process has

ceased finding feasible solutions.

An example of these results are shown in Figure 4.4. For the reference cases, both

BASELINE and RANDOM share the same increasing trend over time, with BASE-

LINE producing more than RANDOM; this makes sense given the noncumulative
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Figure 4.4: Cardinality of the cumulative feasible-set, |Fc(t)|.

results already shown. For BIASED, although |F I(t)| reaches an equilibrium, |F I
c (t)|

continues to grow. BIASED is still finding feasible solutions, and the 30 solutions in

|F I(t)| are not the same 30 solutions each epoch.

4.2 Coverage

While the cardinality analyses assess how each case affects the generation of opti-

mal solutions, those solutions are only deemed optimal relative to the other solutions

found by that particular case’s optimization procedure. To evaluate the relative op-

timality of Pareto-sets across cases, a different analysis is needed. Here, the coverage

metric presented by Zitzler (1999) is used to assess the optimality of the cases’ final

Pareto-sets P (t = E) relative to each other.

The coverage metric compares two different Pareto-set approximations, A and B,

by evaluating how much of B is dominated by A. It is defined as:

C(A,B) =
|{b ∈ B|(∃a ∈ A)[a � b]}|

|B|
(4.2)
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where a � b indicates that solution a dominates solution b. The numerator in Equa-

tion 4.2 is the number of solutions in B that are dominated by a solution in A. By

dividing the number of dominated solutions by the total number of solutions in B,

the coverage metric gives the fraction of B that is dominated by A and is therefore

bounded between zero and one: 0 ≤ C(A,B) ≤ 1. When C(A,B) = 1, all solutions

in B are dominated by solutions in A, and when C(A,B) = 0, no solutions in B

are dominated by solutions in A. By its definition, C(A,B) does not imply C(B,A);

therefore, both orderings have to be computed.

The coverage metric is used to compare the final Pareto-sets found by each case,

and thereby evaluate how a case’s ranking function affects the relative optimality of

its solutions. An example of these results is presented in Table 4.1, where A is shown

in rows, B in columns, and coverage results are expressed as percentages. Thereby,

values presented in the table represent the percentage of B’s final Pareto-set PB(E)

that is dominated by A’s final Pareto-set PA(E). The mean µ and standard deviation

σ of these values are calculated across the trials performed for each case.

Table 4.1: Coverage results C(PA(E), PB(E)) assessing the percentage of the Pareto-
set of B that is dominated by the Pareto-set of A.

A
B Baseline Biased Random

µ σ µ σ µ σ
Baseline - - 26.0% 14.2% 38.2% 17.1%
Biased 18.7% 12.5% - - 29.5% 13.7%

Random 18.6% 13.0% 20.2% 12.1% - -

To provide some intuition for interpreting these results, the reference cases are

compared. In the example presented in Table 4.1, BASELINE dominates 38.2% of

RANDOM, meaning that 38.2% of RANDOM’s optimal solutions are dominated by

BASELINE’s optimal solutions. On the other hand, RANDOM dominates 18.6%

of BASELINE. Since BASELINE dominates RANDOM more than RANDOM dom-

inates BASELINE, the coverage results demonstrate that the BASELINE case pro-

duces a more superior Pareto-set than the RANDOM case, as is expected.
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For a given row, higher values indicate a more optimal solution set. The BASE-

LINE row shows BASELINE dominates BIASED less than RANDOM. The BIASED

row shows BIASED dominates BASELINE less than RANDOM. The RANDOM row

shows RANDOM dominates BASELINE less than BIASED. In Table 4.1, the first

row shows that the baseline Pareto-set dominates 26.0% and 38.2% of the biased

and random Pareto-sets, respectively. Similarly, the last row shows that the random

Pareto-set dominates 18.6% and 20.2% of the baseline and biased Pareto-sets, respec-

tively. When the model is biased toward a given case, that case will dominated more

of the other cases. For biasing cases, higher row values indicate a bias that the model

is predisposed toward.

For a given column, lower values indicate a more optimal solution set. The BASE-

LINE column shows BASELINE is dominated by BIASED the same as by RANDOM.

The BIASED column shows BIASED is dominated by BASELINE more than by

RANDOM. The RANDOM column shows RANDOM is dominated by BASELINE

much more than by BIASED. In Table 4.1, the first column shows that 18.7% and

18.6% of the baseline Pareto-set is dominated by the biased and random Pareto-sets,

respectively. The last column shows that 38.2% and 29.5% of the random Pareto-set

is dominated by the baseline and biased Pareto-sets, respectively. When the model

is biased toward a given case, that case will be less dominated by the other cases.

For biasing cases, lower column values indicate a bias that the model is predisposed

toward.

4.3 Superfront Relative Distance

The coverage analysis considers the number of solutions in Pareto-set B that

are dominated by solutions in Pareto-set A, but it does not evaluate the degree to

which these solutions are dominated; that is, solutions’ objective values are used to

assess dominance, but the objective-space distance between solutions is not assessed.
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Furthermore, the optimality of Pareto-set B is assessed relative to Pareto-set A and

not relative to the model’s “true” Pareto front. This section defines two metrics assess

the objective-space distance of a given solution set A relative to the model’s “true”

Pareto front. These metrics are then used to evaluate the dynamics of the Pareto-set

and feasible-set as they develop over time.

In this analysis, the model’s “true” Pareto front is represented by a solution set

called the superfront. To construct the superfront, solutions from the final Pareto-sets

across all cases and trials are combined into a single set, denoted as P̄ . Mathemati-

cally, P̄ can be expressed as:

P̄ =
⋃
i

⋃
j

P ij(E) (4.3)

where P ij(E) denotes the final Pareto-set from trial j of case i. The superfront SF

is defined as the Pareto-set of P̄ , excluding any duplicate solutions.

SF = {xi ∈ P̄ |(@xj ∈ P̄ )[xj � xi]} (4.4)

Thereby, the superfront contains each nondominated solution from the set of all

nondominated solutions that were generated; it is the Pareto-set of Pareto-sets.

Thereby, the superfront provides a representation the “true” Pareto front in the

model’s objective-space and is used as a standard basis from which to measure the

relative distance of a given solution.

To calculate the objective-space distance between two discrete solution sets A and

B, a variation of the M∗
1 -metric presented by Zitzler et al. (2000) is utilized:

M∗
1 (A,B) =

1

|A|
∑
i ∈A

min
j ∈B

dij (4.5)

where dij is the Euclidean (or L2) distance between the objective values of solutions
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i and j:

dij =

√∑
Ω ∈Ω

(Ω(i)− Ω(j))2 (4.6)

The term minj ∈B dij calculates the distance from solution i ∈ A to its closest solution

in B. The sum over A assesses this distance for each solution in A, and normalizing

by |A| equates to M∗
1 (A,B) representing the average minimum distance of solutions

in A to solutions in B.

Before any distances are evaluated, the objective-space is normalized so as to not

skew results toward any single objective. For example if values of Ω1 are in [10, 11] and

values of Ω2 are in [1, 100], then the distance between solutions will only effectively

reflect the difference between their Ω2 values. To account for this, solutions in P̄ are

normalized to the interval [0, 1] by linearly scaling each of their objective values based

on its corresponding minimum and maximum values in P̄ .

Using the M∗
1 -metric, two new metrics are defined to measure the objective-space

distance of solution set A relative to the superfront. Distance to superfront DT (A)

measures the distances of solutions in A to solutions in the superfront, and distance

from superfront DF (A) measures the distances of solutions in the superfront to solu-

tions in A. These metrics can be expressed in terms of the M∗
1 -metric as:

DT (A) = M∗
1 (A, SF ) =

1

|A|
∑
i ∈A

min
j ∈ SF

dij (4.7)

DF (A) = M∗
1 (SF,A) =

1

|SF |
∑
i ∈ SF

min
j ∈A

dij (4.8)

These metrics are depicted in Figure 4.5. DT (A) evaluates the proximity of solu-

tions in A to the superfront. Table 4.2 summarizes how to interpret DT (A) in terms

of its mean µ and standard deviation σ. DF (A) evaluates the proximity of solutions

in the superfront to A. Table 4.3 summarizes how to interpret DF (A) in terms of
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Figure 4.5: The mechanics of the superfront-relative-distance metrics.

its mean µ and standard deviation σ. The difference between DT (A) and DF (A) is

subtle, but important.

The combination of DT (A) and DF (A) provides a visual idea of how solutions in

A are situated in objective-space. For example if DT (A) is low and DF (A) is high,

then solutions in A are close to optimal, although many solutions in the superfront

are still far distances away. This effect demonstrates that A is clustered in a localized

Table 4.2: Interpretation of DT (A) in terms of mean µ and standard deviation σ.

Term Value Interpretation
µ Low Solutions in A are close to solutions in the superfront.

High Solutions in A are not close to solutions in the superfront.
σ Low Solutions in A have similar minimum distances to solutions

in the superfront.
High Solutions in A have dissimilar minimum distances to solutions

in the superfront.

Table 4.3: Interpretation of DF (A) in terms of mean µ and standard deviation σ.

Term Value Interpretation
µ Low Solutions in the superfront are close to solutions in A.

High Solutions in the superfront are not close to solutions in A.
σ Low Solutions in the superfront have similar minimum distances

to solutions in A.
High Solutions in the superfront have dissimilar minimum distances

to solutions in A.
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area of the superfront and is not well-distributed across it. Thereby the solutions in

A lack diversity, which is a very important quality to designers, especially in early

stage ship design.

To evaluate the objective-space progression of solutions over time, these metrics

are used to investigate the Pareto-sets and feasible-sets of the reference and biasing

cases. To assess the state of solutions specifically at time t, only the noncumulative

subsets are considered, since accounting for previously optimal solutions or all feasible

solutions would inhibit an understanding of the search’s progression. The results of

each subset is discussed in turn.

Pareto-set

The distance to superfront of the noncumulative Pareto-set, DT (P (t)), calculates

the average minimum distance at time t from optimal solutions in P (t) to solutions

in the superfront. An example of these results is shown in Figure 4.6. Agreeing with

expectation, BASELINE is always closer than RANDOM. In addition, BASELINE

has lower variability than RANDOM; BASELINE optimal solutions have more similar
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Figure 4.6: Distance to superfront of the Pareto-set, DT (P (t)).
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minimum distances than random. BIASED decreases at a similar rate as RANDOM,

but is less than RANDOM; BIASED finds optimal solutions closer to the superfront.

The distance from superfront of the noncumulative Pareto-set, DF (P (t)), calcu-

lates the average minimum distance at time t from solutions in the superfront to

optimal solutions in P (t). An example of these results are shown in Figure 4.7. Simi-

larly for these results, the superfront is always closer to BASELINE than RANDOM.

BIASED is farther from the superfront than RANDOM. Comparing DT (P (t)) and

DF (P (t)), BIASED is lower than RANDOM for DT but higher for DF : BIASED

optimal solutions are focusing on a localized area; they are closer to optimal, but are

less distributed across objective-space.
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Figure 4.7: Distance from superfront of the Pareto-set, DF (P (t)).

Feasible-set

Beyond inspecting the Pareto-set, solution dynamics may also be understood by

investigating where the optimizer is searching for potential solutions. The distance to

superfront of the noncumulative feasible-set, DT (F (t)), calculates the average min-

imum distance from feasible solutions at time t to solutions in the superfront. An
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example of these results are shown in Figure 4.8. For the reference cases, BASE-

LINE steadily decreases, while RANDOM decreases initially, increases slightly, and

then seems to reach an equibilbrium. Feasible solutions found by RANDOM are

not getting closer to superfront over time, continuing the search with little solution

improvement. BIASED has similar dynamics as RANDOM, and BIASED is always

closer than RANDOM. In fact before reaching an equilibrium at t = 10, BIASED is

initially closer than BASELINE. BIASED finds a feasible region of solutions faster

than BASELINE but then ceases to improve. These results indicate that BIASED is

capturing some, but not all, of the intent in BASELINE.
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Figure 4.8: Distance to superfront of the feasible-set, DT (F (t)).

The distance from superfront of the noncumulative feasible-set, DF (F (t)), cal-

culates the average minimum distance at time t from solutions in the superfront to

feasible solutions in F (t). An example of these results are shown in Figure 4.9. For the

reference cases, BASELINE and RANDOM increase steadily, with BASELINE being

less than RANDOM. DF increasing means solutions are getting farther from SF ,

while DT decreasing means solutions are getting closer to SF , and the low variability

for both metrics means than solutions are all similar distances. Therefore, feasible
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Figure 4.9: Distance from superfront of the feasible-set, DF (F (t)).

solutions are getting closer to optimal, but they are concentrated in an area and

are not well-distributed across the superfront. This type of behaviour demonstrates

that feasible solutions are becoming less diverse over time. BIASED being farther

than RANDOM shows that BIASED creates feasible solutions with less diversity than

RANDOM.

4.4 Generational Distance

As stated in Section 3.1.2, GAs do not have any well-established stopping criteria,

and the data presented in this work is created by iterating for a specified number of

epochs E. However, assessing the convergence of the Pareto-set is important for at

least two reasons: (1) it would be incorrect to make claims concerning a model’s biases

based on the comparison of solutions sets that have not converged, and (2) differences

in convergence dynamics may aid an understanding of the model’s tendencies, the

quality of resultant solutions, and the quality of the solution generation process.

Pareto-set convergence is assessed using the Generational Distance metric pre-
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sented by Van Veldhuizen (1999). This indicator is given by the following formula:

GD(A,B) =
1

|A|

(∑
i ∈A

min
j ∈B
||Ω(i)−Ω(j)||p

) 1
p

(4.9)

where A is a Pareto-set approximation and B a discrete representation of the Pareto-

set. When p = 2, Generational Distance is equivalent to the M∗
1 -metric discussed in

Section 4.3. To assess convergence, Collette and Siarry (2011) present a variation of

Generational Distance where GD(P (t−1), P (t)) evaluates successive iterations of the

noncumulative Pareto-set. Figure 4.10 shows an example of results using this variant.
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Figure 4.10: Generational Distance as a convergence metric, GD(P (t− 1), P (t)).

4.5 Out-degree

This section details an analysis of the PCN that utilizes the out-degree central-

ity to evaluate the relationships between solutions. In network theory, out-degree

centrality (often simply referred to as out-degree) is one of the simplest measures of

the importance or influence of nodes within a network (Newman, 2010). In directed
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networks such as the PCN, the out-degree of a node is defined as the number of edges

that point away from it. Out-degree represents a node’s ability to influence other

nodes within the network, such that nodes with a high out-degree are perceived as

being highly influential. Using the adjacency matrix as defined in Section 3.2.2, the

out-degree of a node i can be written as:

xi =
n∑
j=1

Aij (4.10)

As discussed in Section 3.2, edges in the PCN represent the relationships from

parents to children in the solution generation process. When parents create a child in

the GA, the child inherits information contained in both of its parents, and parents

influence the child through this transference of information; this is captured by the

PCN. In the PCN, a node’s out-degree corresponds to the number of children it

created and thereby to the number of times that its input values are used to define a

new search point in the model’s solution-space. For a node to have a high out-degree,

it must be chosen to engage in crossover multiple times. Naturally, the longer an

individual remains in the population, the more opportunity it has to create children;

to remain in the population, it must be chosen during the selection process. Therefore

in the PCN, out-degree indicates a node’s popularity as an information source; a node

with a high out-degree is more influential to the solution generation process.

Since a node’s out-degree corresponds to its influence within the solution genera-

tion process, optimal nodes are expected to have higher out-degree scores. Using this

basic tenant, the PCN is analyzed by comparing the out-degree of its optimal nodes

to that of its dominated nodes. To account for previously optimal nodes, this analysis

considers the network’s cumulative Pareto-set Pc(t) when evaluating the status of a

node; i.e., a node are considered optimal if it is in Pc(t) and dominated otherwise.

Then, PCNs are compared across cases to assess their relative quality. An example of
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this is shown in Figure 4.11, where the aggregate PCNs from each case are visualized

using the layout detailed in step 5 of Section 3.2. In the figures, a node’s size illustrates

its relative out-degree, and colored nodes are contained in Pc(E). The progression of

time is roughly represented by a clockwise rotation starting at 12 o’clock.

(a) Baseline

(b) Biased (c) Random

Figure 4.11: Aggregate PCNs for each case. A node’s size illustrates its relative
out-degree, and colored nodes are contained in Pc(E).
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In BASELINE, optimal nodes are generated continually throughout the process.

Additionally, optimal nodes have more influence than dominated nodes, in general.

There are some large nodes that are not optimal; these solutions may be close to

optimal, but that isn’t assessed in this analysis. In RANDOM, the out-degree of

optimal nodes seems similar to dominated nodes; they are not perceived as being

better or worse by the solution generation process. In BIASED, very few optimal

nodes are found in the second half (6:00 to 11:00), and the most influential (highest

out-degree) nodes are not optimal nodes.

The network visualization provides intuition for understanding the generative pro-

cess in a snapshot. However, Figure 4.11 depicts the cases’ PCNs of only a single

trial; and no trivial method is apparent for compiling these results across multiple

trials. Instead, multiple trials are considered by using logistic regression to evaluate

how a node’s out-degree corresponds to its optimality. Specifically, binary logistic

regression is used to determine the log-odds (logarithm of odds) that a node resides

in Pc(E) given its out-degree (the odds is defined as the probability p that a node

resides in Pc(E) divided by the probability that it does is not). The log-odds ` that

node i resides in Pc(E) is calculated as:

` = ln
p

1− p
= β0 + β1xi (4.11)

where xi is the out-degree of node i, and βj are parameters of the model. Parameters

βj are calculated from a given set of observations using iteratively reweighted least

squares. The odds are calculated by exponentiating the log-odds:

p

1− p
= eβ0+β1x (4.12)

Then by algebraic manipulation, the probability p that node i resides in Pc(E) can
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be expressed in terms of the logistic function as:

p(i ∈ Pc(E)|xi) =
eβ0+β1xi

eβ0+β1xi + 1
=

1

1 + e−(β0+β1xi)
(4.13)

where p can vary between zero (certainly dominated) and one (certainly optimal).

To consider all trials, logistic regression is used to model the probability that a

node resides in Pc(E) given its out-degree. This answers the question, “Do optimal

nodes influence the process more?” An example of these results is shown in Figure

4.12. For a high quality results, optimal nodes should have higher out-degree scores;

the probability should increase with out-degree. This is seen in BASELINE, where the

most influential nodes have an 80% probability of being optimal; out-degree is a good

indicator of a node’s optimality. RANDOM is less than BASELINE, as expected;

the most influential nodes only have an 35% probability of being optimal. However,

RANDOM also has a positive trend; this makes sense given that many optimal nodes

are found in the initial population, which are more likely to have higher out-degree.

Again, BIASED cases are compared against the reference cases to evaluate the model’s
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Figure 4.12: Probability of a node residing in Pc(E) given its out-degree.
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tendencies. BIASED is greater than RANDOM and less than BASELINE. Although

BIASED trends similarly to RANDOM, its endpoint is situated between BASELINE

and RANDOM; the most influential nodes have a 55% probability of being optimal.

The example in Figure 4.12 considers the aggregate PCNs at the end of the pro-

cess. The same process can be conducted at different time steps to understand the

progression and to look for leading indicators of quality. Figure 4.13 shows an ex-

ample of these results at epochs 10, 20, 30, and 40. All cases have high values at

t = 10, due to the fact that optimal solutions are easier to find initially. However as t

increases, BASELINE remains high while RANDOM decreases. In BASELINE, the

influence of optimal nodes continues to be heavily utilized; whereas in RANDOM,

this is not the case.
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(a) t = 10
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(b) t = 20
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(c) t = 30
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(d) t = 40

Figure 4.13: Probability of a node residing in Pc(E) given its out-degree. Evaluating
out-degree as a leading indicator of bias.

66



4.6 Betweenness Centrality

Out-degree analysis considers the relationships in the PCN. This section presents

an analysis of the PPN to assess how information is used throughout the process

and to evaluate if optimal nodes are central to the process. This is done by using

betweenness centrality to evaluate the PPN. Betweenness centrality (often simply

referred to as betweenness) measures the extent to which a node lies on paths between

other nodes (Newman, 2010). A path between two nodes is a route across the network

that runs along the edges of the network. Thereby, path length is determined by the

number of edges that are traversed along a given path. A geodesic path is a path

between two nodes such that no shorter path exists. A number of ways exist to

calculate this, such as (Dijkstra, 1959). Using the adjacency matrix A, the total

number of paths with length r between nodes i and j is given by:

N r
ij =

n∑
k=1

AikAkj = [Ar]ij (4.14)

Using this, the geodesic distance from i to j is the smallest value of r such that

[Ar]ij > 0. The betweenness of node i is defined as:

xi =
1

n2

∑
st

nist
gst

(4.15)

where nist is the number of geodesic paths from s to t that pass through i, and gst is the

total number of geodesic paths from s to t. Therefore, the term nist/gst represents the

fraction of geodesic paths from s to t that pass through i. We adopt the convention

that nist/gst = 0 if both nist and gst are zero. This is summed over all nodes s and t

such that a path st exists which passes through i. The entire sum is normalized by

the factor 1/n2 (where n is the number of nodes in the network) which means that

betweenness values will always lie between 0 and 1. Betweenness is an approximate
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guide to evaluating the influence that nodes have on the flow of information within

the network.

As discussed in Section 3.2, edges in the PPN represent the relationships between

parents in the solution generation process. When parents create a child in the GA,

information contained in the parents is utilized to define a new search point in the

model’s solution-space; this utilization of information is captured by the PPN. In

the PPN, betweenness indicates how central a solution’s information is within the

solution generation process. A node with a high betweenness has more influence in

terms of the importance of its information.

For these reasons, optimal nodes are expected to have higher betweenness scores.

Similarly to out-degree on the PCN, the PPN is analyzed by comparing the between-

ness of its optimal nodes to that of its dominated nodes; the network’s cumulative

Pareto-set Pc(t) is considered to account for previously optimal nodes. Then, PPNs

are compared across cases to assess their relative quality. An example of this is shown

in Figure 4.14, where the aggregate PPNs from each case are visualized using the lay-

out detailed in step 5 of Section 3.2. In the figures, a node’s size illustrates its relative

betweenness, and colored nodes are contained in Pc(E).

In BASELINE, optimal nodes have hightest betweenness; optimal nodes are most

central in the network. In RANDOM, optimal nodes have low betweenness, especially

later in the process (early nodes are predisposed to being optimal). The information

contained in optimal nodes is not perceived as being better by the solution generation

process. In BIASED, optimal nodes have low betweenness, similarly to RANDOM;

the most central nodes are not optimal nodes. However, BIASED also has the least

diversity of betweenness; some nodes are highly central while most are not central at

all.

To consider all trials, similarly to out-degree, logistic regression is used to calculate

the probability that node resides in Pc(E) given its betweenness. This answers the
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(a) Baseline

(b) Biased (c) Random

Figure 4.14: Aggregate PPNs for each case. A node’s size illustrates its relative
betweenness, and colored nodes are contained in Pc(E).

question, “Are optimal nodes central to the utilization of information in the process?”

An example of these results are shown in Figure 4.15. In BASELINE, the most

central nodes have more than a 95% probability of being optimal; betweenness is a

good indicator of a node’s optimality. The information contained in BASELINE’s
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Figure 4.15: Probability of a node residing in Pc(E) given its betweenness.

optimal nodes is very central to the solution generation process. RANDOM is much

less than BASELINE, but still has a positive trend; the most central nodes only have

a 30% probability of being optimal. BIASED is greater than RANDOM but still less

than BASELINE; the most central nodes have a 80% probability of being optimal.

Optimal nodes are central and their information is utilized by the process.

The results shown in Figure 4.15 consider all the nodes in the PPN. However,

the intent of this analysis is more concerned with evaluating nodes that actually

contribute to the process. In Figure 4.14, there are a large number of unconnected

nodes in the middle of the networks. These are nodes that were created but didn’t

create any children; their information is never utilized by the solution generation

process. The connect nodes (those that do contribute to the process) can be analyzed

by only considering the largest component in the network (a component is a subset

of nodes within a network such that there exists at least one path from each member

of that subset to each other member of that subset). This is done to evaluate how

central a node is within the community of utilized information.

The betweenness of nodes in the largest component are analyzed using logistic
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regression. An example of these results is shown in Figure 4.16. Again, BASELINE

has a strong positive trend with betweenness, and the most central nodes have an 90%

probability of being optimal. RANDOM no longer has a positive trend: being optimal

doesn’t affect how its information is utilized. This makes sense given RANDOM

doesn’t discriminate between solutions in selection; it just picks a random solution.

Therefore in the community of nodes that are utilized, RANDOM is expected to be

relatively flat; the most central nodes only have a 15% probability of being optimal.

BIASED is less than BASELINE but better than RANDOM; the most central nodes

have a 60% probability of being optimal.
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Figure 4.16: Probability of a node residing in Pc(E) given its betweenness. Consid-
ering only nodes in the largest component of the PPN.

4.7 Summary

Chapter 4 details six analysis methods that were developed to determine the bias

and predication of a early stage design tool. The first four methods provide solution-

centric evaluations, while the last two methods provide generative evaluations. It is

important to consider both types of evaluation since they complement one another
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by providing different types of information. In the next chapter, a case study is

conducted to demonstrate the conclusions that can be made using these novel analysis

techniques.

72



CHAPTER V

Case Study

This chapter presents a case study that demonstrates how the innate tendencies of

a model are evaluated using the framework proposed in Chapter III and the analyses

detailed in Chapter IV. Section 5.1 details the model that is investigated and how

the framework was implemented for the case studies. Sections 5.2 through 5.5 present

results of the solution-centric analyses, and Sections 5.6 through 5.7 present results

of the generative analyses. Finally, Section 5.8 presents results demonstrating the

effects of increasing tournament size, as discussed in Section 3.3.4.

5.1 Case Study Setup

The model used to demonstrate the contributions of this thesis is the bulk carrier

synthesis model developed by Sen and Yang (1998). Outlined in Appendix A, this

model defines the inputs x, objectives Ω, and constraints c that are used by the

modified GA to generate and evaluate solutions over time. The Sen bulker model’s

inputs are length (L), beam (B), draft (T ), depth (D), speed (V ), and block coef-

ficient (CB); these inputs are expressed by the input vector x = [L,B, T,D, V, CB].

Though the model defines many intermediate functions, they are solely dependent on

its inputs. Thereby, constraint and objective evaluations follow directly and deter-

ministically for a given set of inputs (i.e., c and Ω can be expressed as deterministic
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functions of x). As discussed in Section 3.1.1, the model’s constraints and objectives

were appropriately formatted, and constraint handling was accomplished using an

external penalty function.

As discussed in Section 3.3, a comparative context is established by implementing

alternative ranking functions to define reference and biasing cases. The two reference

cases described in Section 3.3.2 were created: the baseline case and the random case.

• The baseline case provides an “ideal” reference by representing the traditional

application of the model as described in the referenced paper. The ranking

function of the baseline case, fB
r , is defined by the model’s objectives Ω, given

in Equations A.24 - A.26.

• The random case provides a reference by representing a completely unguided

search. The random case favors no particular solution, and the ranking function

of the random case, fR
r , does not actually rank solutions, but instead chooses

one randomly.

As stated in Section 3.3.2, biasing cases are specified by the designer. In his

research, Parker (2014) investigated the same synthesis model and determined that

deadweight was a significant design driver and resistance criteria were not. These

findings agree with the institutional knowledge concerning bulk carriers, which are

designed to traverse slowly and carry a lot of cargo. Leveraging this information, two

biasing cases were specified: the length-over-beam (L/B) case and the deadweight

case.

• The L/B case favors design solutions that have less resistance due to their

more slender profiles. The ranking function of the L/B case, fL
r , is defined by

maximizing a solution’s length-to-beam ratio.

maxfL
r (x) =

length(x)

beam(x)
(5.1)
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In general, resistance criteria are not primary concerns associated with the

design of a bulk carrier. This case was developed to bias the solution generation

process in a dissimilar way to the model’s tendencies.

• The deadweight case favors design solutions that have higher capacities. The

ranking function of the deadweight case, fD
r , is defined by maximizing a solu-

tion’s deadweight.

maxfD
r (x) = deadweight(x) (5.2)

where deadweight(x) is calculated by Equation A.10. For bulk carriers, cargo

capacity is definitely a primary concern. This case was developed to bias the

solution generation process in a similar way to the model’s tendencies.

These four ranking functions define the four cases that are used to demonstrate

the analyses presented in Chapter IV. For each of the cases, HANs were created

using the modified GA discussed in Chapter III. Aside from each case utilizing its

associated ranking function, the GA’s other hyperparameters were the same across

cases; these are presented in Table 5.1. For each case, twenty-five separate trials were

completed. To control for randomness and guarantee reproducibility, the computer’s

random number generator was seeded explicitly, and a trial’s zero-based index was

used as the seed value s (e.g., for trial i, s = i). Thereby for a given trial, the same

Table 5.1: Hyperparameters of the GA used to generate HANs for the case studies.

Hyperparameter Value
Population size (N) 40
Probability of crossover (pcx) 0.5
Blend parameter (α) 0.15
Tournament size (k) 2
Number of epochs (E) 40
Ranking function (fr) per case basis
Random number generator seed (s) per trial basis
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seed value is used for each case. Subsequently, this implies that the cases initialize

their populations using the same individuals.

5.2 Cardinality Results

As presented in Section 4.1, cardinality analyses were conducted on the Pareto-set

and feasible-set. These results are presented and discussed in turn.

Pareto-set

Cardinality of the noncumulative Pareto-set, |P (t)|, assesses the number of solu-

tions that are simultaneously optimal at time t. These results are shown in Figure

5.1. For the reference cases, both BASELINE and RANDOM increase over time,

though BASELINE increases more than RANDOM. This behavior agrees with our

expectation: BASELINE finds simultaneously optimal solutions at a faster rate than

RANDOM. When the GA is initialized, each case shares the same initial population,

and therefore initial Pareto-sets are established using the same individuals. This is
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Figure 5.1: Cardinality of the noncumulative Pareto-set, |P (t)|.
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the reason that the cases all contain the same number of optimal solutions at t = 0.

L/B has fewer simultaneously optimal solutions than RANDOM, and L/B has only

minimal increase past t = 20. Compared to RANDOM, L/B performs worse. Initially,

DEADWEIGHT has more than BASELINE, suggesting that the model may be sig-

nificantly predisposed toward generating DEADWEIGHT-based solutions. However,

DEADWEIGHT decreases rapidly while BASELINE continues to increases. This

may be due to the fact that DEADWEIGHT is concentrating around a local mini-

mum and ceases to progress outside this, but other analyses will have to be used to

explain why this is. By the end, DEADWEIGHT still has more than RANDOM, but

RANDOM is increasing faster than DEADWEIGHT at that point: if more iterations

were completed, RANDOM would likely find more than DEADWEIGHT.

Cardinality of the cumulative Pareto-set, |Pc(t)|, assesses the number of optimal

solutions that have been found at or before time t. This equates to the total num-

ber of optimal solutions that have been found by time t. When |Pc(t)| reaches an

equilibrium, the process has ceased finding additional optimal solutions and has, for

practical purposes, converged. These results are shown in Figure 5.2. The refer-

ence cases exhibit the same trends that they do in the noncumulative case: both

BASELINE and RANDOM increase over time, and BASELINE increases consider-

ably faster than RANDOM. For the biasing cases, the results are similar to those of

the noncumulative (|P (t)| and |Pc(t)| have similar dynamics). However, the differ-

ences across cases are more pronounced: L/B appears worse, and DEADWEIGHT

appears better.

Comparing results between the noncumulative and cumulative Pareto-sets pro-

vides a measure of solution improvement over time, since |Pc(t)| − |P (t)| is the

number of previously optimal solutions found at time t. When t = E, this mea-

sures the total improvement on past solutions. BASELINE has good improvement

(|PB
c (40)| − |PB(40)| ≈ 50); since |PB(40)| ≈ 105, BASELINE improves on roughly
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Figure 5.2: Cardinality of the cumulative Pareto-set, |Pc(t)|.

48% of its solutions. RANDOM has less improvement (|PR
c (40)| − |PR(40)| ≈ 20);

since |PR(40)| ≈ 70, RANDOM improves on roughly 28% of its solutions. L/B has

less improvement than RANDOM (|PL
c (40)| − |PL(40)| ≈ 10); by the end, only 10

solutions are found that are better than other previously optimal solutions; since

|PL(40)| ≈ 60, L/B improves on roughly 17% of its solutions. DEADWEIGHT

has twice as much improvement as RANDOM (|PD
c (40)| − |PD(40)| ≈ 40); since

|PD(40)| ≈ 75, DEADWEIGHT improves on roughly 53% of its solutions; in terms

of percentage, DEADWEIGHT has more solution improvement than BASELINE.

Feasible-set

Cardinality of the noncumulative feasible-set, |F (t)|, assesses the number of fea-

sible solutions that exist in the population at time t. This provides an under-

standing of the state of the search at t and the search dynamics over time. Since

N = 40 and pcx = 0.5, the expected number of individuals each epoch is equal to

N(1 + pcx) = 40(1.5) = 60. These results are shown in Figure 5.3. For the refer-

ence cases, both BASELINE and RANDOM decrease initially and then continue to
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increase. BASELINE does not decrease as much initially, and increases significantly

more than RANDOM. The increase of feasible solutions over time makes sense since

the ranking functions are penalized using a linear scale factor equal to the current

epoch: infeasible solutions are getting worse evaluations as time progresses Since an

average of 60 individuals exist each epoch, BASELINE has almost completely fea-

sible solutions by the end. Since optimal solutions must be feasible, BASELINE

has a higher opportunity of creating optimal solutions due to its number of feasible

solutions.
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Figure 5.3: Cardinality of the noncumulative feasible-set, |F (t)|.

L/B decreases initially like the others, but unlike the others it never increases

and instead reaches an equilibrium. Even though L/B has 10-20 feasible solutions

each epoch, L/B is not finding more optimal solutions: either (1) these are the same

feasible solutions each epoch, or (2) the feasible solution-space motivated by L/B is

far from optimal such that they do not dominate the currently optimal solutions.

Since L/B does not increase over time, the solution-space searched by L/B must not

be very close to constraint boundaries; if it was, feasible solutions would be promoted

more. DEADWEIGHT decreases initially, but increases faster than any of the others.
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DEADWEIGHT has more than BASELINE in t = [3, 16]; however, DEADWEIGHT

decreases again starting at t = 11. Since the rise of feasible solutions implies that

solutions are being penalized, this behaviour suggests that DEADWEIGHT hits a

constraint boundary, adapts to it, but then progressively fails to find feasible solutions

around that boundary. This also provides an explanation for why DEADWEIGHT

has more optimal solutions than BASELINE initially but then decreases: since op-

timal solution must be feasible, the lack of feasible solutions in DEADWEIGHT

represents a lack of opportunity. By the end, DEADWEIGHT has almost no feasible

solutions.

Cardinality of the cumulative feasible-set, |Fc(t)|, assesses the number of feasi-

ble solutions that have been created at or before time t. This differentiates whether

feasible solutions are sticking around or if additional feasible solutions are being gen-

erated. Additionally, it provides an understanding of how many feasible solutions

are created for a given bias, which can be used to assess the likelihood of feasible

options in an early stage design activity. When |Fc(t)| reaches an equilibrium, the

process has ceased finding feasible solutions. These results are shown in Figure 5.4.
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Figure 5.4: Cardinality of the cumulative feasible-set, |Fc(t)|.
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For the reference cases, both BASELINE and RANDOM have an increasing trend

over time, with BASELINE producing more than RANDOM. This makes sense given

the noncumulative results already shown. Again, L/B finds fewer than any other

case. L/B does not embody a bias that generates feasible options; the model is not

biased toward L/B. DEADWEIGHT finds more than any other case initially, but this

falls off and by the end, DEADWEIGHT and RANDOM have generated the same

number of feasbile solutions. However given their trends, RANDOM would continue

to surpass DEADWEIGHT in this regard.

5.3 Coverage Results

To compare the relative optimality of the cases’ final Pareto-sets P (E), the cov-

erage analysis discussed in Section 4.2 was conducted. Given the final Pareto-sets

PA(E) and PB(E) from cases A and B, the coverage metric C(PA(E), PB(E)) was

used to calculate the percentage of solutions in PB(E) that were dominated by solu-

tions in PA(E). These results of the reference and biasing cases are presented in Table

5.2, where A is shown in rows, B in columns. The mean µ and standard deviation σ

are calculated across the trials performed for each case.

Table 5.2: Coverage results C(PA(E), PB(E)) assessing the percentage of the Pareto-
set of B that is dominated by the Pareto-set of A.

A
B Baseline L/B Deadweight Random

µ σ µ σ µ σ µ σ
Baseline - - 43.3% 16.4% 22.6% 11.3% 38.2% 17.1%

L/B 13.6% 9.91% - - 16.8% 9.91% 22.9% 12.3%
Deadweight 16.2% 10.4% 30.3% 14.4% - - 25.7% 13.2%

Random 18.6% 13.0% 34.1% 15.2% 19.4% 11.5% - -

For the reference cases, BASELINE dominates 38.2% of RANDOM, meaning

that 38.2% of RANDOM’s optimal solutions are dominated by BASELINE’s opti-

mal solutions. On the other hand, RANDOM dominates 18.6% of BASELINE. Since

BASELINE dominates RANDOM more than RANDOM dominates BASELINE, the
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BASELINE case produces a more superior Pareto-set than the RANDOM case, as is

expected.

Results show that the model is not biased toward the L/B case. L/B domi-

nates BASELINE (13.6%) much less than BASELINE dominates L/B (43.3%). In

fact, these are the lowest and highest values in the table. BASELINE generates a

much more superior Pareto-set than L/B. Additionally, BASELINE dominates L/B

(43.3%) even more than BASELINE dominates RANDOM (38.2%). From BASE-

LINE’s perspective, RANDOM generates a better Pareto-set than L/B, indicating

that the model is not predisposed toward producing L/B solutions. L/B dominates

RANDOM (22.9%) less than RANDOM dominates L/B (34.1%); therefore, RAN-

DOM generates a more superior Pareto-set than L/B. When biased toward L/B, the

model generates less optimal solutions than when performing an unguided search. Ad-

ditionally, RANDOM dominates L/B (34.1%) much more than RANDOM dominates

BASELINE (18.6%).

Results show that the model is biased toward the DEADWEIGHT case. DEAD-

WEIGHT dominates BASELINE (16.2%) less than BASELINE dominates DEAD-

WEIGHT (22.6%). However although BASELINE generates a more superior Pareto-

set than DEADWEIGHT, the difference is closest. BASELINE dominates DEAD-

WEIGHT (22.6%) much less than BASELINE dominates RANDOM (38.2%). DEAD-

WEIGHT dominates RANDOM (25.9%) more than RANDOM dominates DEAD-

WEIGHT (19.4%). RANDOM dominates DEADWEIGHT (19.4%) only slightly

more than RANDOM dominates BASELINE (18.6%).

DEADWEIGHT is producing better solutions than RANDOM; however, the re-

sults also suggest that DEADWEIGHT is focusing on an specific area of the objective-

space while RANDOM is more well-distributed. RANDOM dominates BASELINE

(18.6%) more than DEADWEIGHT dominates BASELINE (16.2%); given the other

results for DEADWEIGHT, this makes sense if RANDOM has more solution diver-
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sity. DEADWEIGHT dominates RANDOM (25.7%) only slightly more than L/B

dominates RANDOM (22.9%). Aside from these results, DEADWEIGHT clearly has

better solutions than L/B, further suggesting that DEADWEIGHT is clustered and

RANDOM is more diverse.

5.4 Superfront Relative Distance Results

To evaluate the cases’ objective-space dynamics relative to the model’s “true”

Pareto front, the analysis discussed in Section 4.3 was conducted. The superfront-

relative-distance metrics were calculated for the Pareto-set and feasible-set at each

time step. Results from each of these temporal subsets are discussed in turn.

Pareto-set

The distance to superfront of the noncumulative Pareto-set, DT (P (t)), calculates

the average minimum distance from optimal solutions at time t to solutions in the

superfront. These results are depicted in Figure 5.5. Agreeing with expectation,
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Figure 5.5: Distance to superfront of the Pareto-set, DT (P (t)).
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BASELINE is always closer than RANDOM. In addition, the BASELINE has lower

variability than RANDOM, indicating that BASELINE’s optimal solutions have more

similar minimum distances than RANDOM’s.

L/B demonstrates poor relative quality: it is far from superfront relative to refer-

ence cases and does not show much improvement over time. L/B is always worse than

RANDOM, and always much worse than BASELINE; even RANDOM find better so-

lutions than L/B. Aside from a slight initial decrease, L/B does not move closer to

the superfront; any optimal solutions it is finding are the same distance away. From

the cardinality analysis, L/B does not find additional optimal solutions for t > 20.

DEADWEIGHT demonstrates high relative quality. DEADWEIGHT is always closer

than RANDOM. DEADWEIGHT is even closer than BASELINE for t < 20, at which

point it reaches an equilibrium while BASELINE continues to improve.

The distance from superfront of the noncumulative Pareto-set, DF (P (t)), cal-

culates the average minimum distance from solutions in the superfront to optimal

solutions at time t. These results are depicted in Figure 5.6. Similarly for these

results, the superfront is always closer to BASELINE than RANDOM.
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Figure 5.6: Distance from superfront of the Pareto-set, DF (P (t)).
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L/B and DEADWEIGHT are both farther from the superfront than RANDOM.

L/B is higher than RANDOM for both DT and DF ; it has worse quality all around.

DEADWEIGHT is lower than RANDOM for DT but higher than RANDOM for

DF ; this indicates that DEADWEIGHT is focusing on a localized area in objective-

space. This also provided an explanation for the coverage results in Table 5.2. De-

spite DEADWEIGHT having good results otherwise, BASELINE was dominated

by RANDOM more than by DEADWEIGHT, and RANDOM was dominated by

DEADWEIGHT only slightly more than by L/B. This scenario makes sense if DEAD-

WEIGHT is generating good solutions that are not well-distributed across the model’s

objective-space.

Feasible-set

Beyond inspecting the Pareto-set, solution dynamics may also be understood by

investigating where the optimizer is searching for potential solutions. The distance to

superfront of the noncumulative feasible-set, DT (F (t)), calculates the average min-

imum distance from feasible solutions in F (t) to solutions in the superfront. These

results are depicted in Figure 5.7. For the reference cases, BASELINE steadily de-

creases, while RANDOM decreases initially, increases slightly, and then seems to

reach an equilibrium. Feasible solutions found by RANDOM are not getting closer

to superfront over time, continuing the search with little solution improvement.

L/B is always farther than RANDOM, although it has similar dynamics as RAN-

DOM. In L/B, variability decreases over time. In order for variability to decrease,

the distance of the feasible solutions to superfront has to be becoming more similar

over time: in L/B, the feasible solution-space is moving away from the superfront.

DEADWEIGHT is always closer than RANDOM, and closer than BASELINE up

until the end. DEADWEIGHT’s trend is sporadic and has the most variability at

t = E. From the cardinality results in Figure 5.3, the number of feasible solutions
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Figure 5.7: Distance to superfront of the feasible-set, DT (F (t)).

for DEADWEIGHT decreases for t > 10. This suggests that DEADWEIGHT is very

close to optimal but is pushing into a constraint boundary in objective-space. Al-

though DEADWEIGHT finds fewer feasible solutions for t > 10, the feasible solutions

that it does find are all very close to optimal, relatively.

The distance from superfront of the noncumulative feasible-set, DF (F (t)), calcu-

lates the average minimum distance from solutions in the superfront to solutions in

F (t). These results are depicted in Figure 5.8. For the reference cases, BASELINE

and RANDOM increase steadily, with BASELINE being less than RANDOM. DF

increasing means solutions are getting farther from SF , while DT decreasing means

solutions are getting closer to SF , and the low variability of both metrics means than

solutions are all similar distances. This behavior shows that solutions are getting

closer to optimal but are concentrated in an particular area and not well-distributed

across the superfront; the diversity of feasible solutions decreases over time.

L/B is farther than RANDOM, similarly as with DT . L/B is worse than RAN-

DOM in all regards since L/B is farther to and from the superfront. DEADWEIGHT

increases more rapidly than any other case; feasible solutions in DEADWEIGHT are
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Figure 5.8: Distance from superfront of the feasible-set, DF (F (t)).

getting increasingly farther from the superfront. Since DEADWEIGHT DT is closer

than BASELINE, but DEADWEIGHT DF is much farther than any case, this con-

firms than DEADWEIGHT is concentrated in an area and not well-distributed across

the superfront.

5.5 Generational Distance Results

To assess convergence and compare differences across cases, the analysis presented

in Section 4.4 was conducted. In this analysis, the current Pareto-set P (t) is evaluated

relative to the previous Pareto-set P (t − 1) using the Generational Distance metric

GD(P (t− 1), P (t)). These results are shown in Figure 5.9 and demonstrate that all

of the processes converge. Given that the previous analyses have shown large differ-

ences in each case’s quality, this demonstrates that the phrase “optimal, converged

solutions” does not necessarily imply any assessment of the solutions’ quality. For

the reference cases, BASELINE converges slower than RANDOM, which makes sense

given that BASELINE is improving on solutions much more than RANDOM. L/B
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Figure 5.9: Generational Distance as a convergence metric, GD(P (t− 1), P (t)).

converges faster than RANDOM; its lack of solution improvement results in quicker

convergence. Initially, DEADWEIGHT is slightly slower than RANDOM, but then

DEADWEIGHT converges before RANDOM. This also agree with the amount of

solution improvement that DEADWEIGHT experiences over time.

5.6 Out-degree Results

Next the out-degree analysis is completed, as presented in Section 4.5. The PCNs

are depicted in Figure 5.10, where a node’s size illustrates its relative out-degree, and

colored nodes are contained in Pc(E). In BASELINE, optimal nodes are generated

continually throughout the process. Additionally, optimal nodes have more influence

than dominated nodes, in general. There are some large nodes that are not optimal;

these solutions may be close to optimal, but that isn’t assessed in this analysis.

In RANDOM, the majority of optimal nodes are found early in the process. Since

RANDOM is an unguided search with little solution improvement, the easiest optimal

solutions to find are found early. Although optimal nodes are found later, they
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(a) Baseline (b) L/B

(c) Deadweight (d) Random

Figure 5.10: Aggregate PCNs for each case. A node’s size illustrates its relative
out-degree, and colored nodes are contained in Pc(E).

have low out-degree values; they are not perceived as being better by the solution

generation process.

In L/B, most optimal solutions are found early as well, similarly to RANDOM;

the second half of the search finds very few optimal solutions. Additionally, the most

influential nodes (highest out-degrees) are not optimal nodes, indicating that optimal

nodes are not as influential in the process. In DEADWEIGHT, optimal solutions
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are found throughout, similar to BASELINE Additionally, optimal nodes have higher

out-degree, indicating that optimal nodes are more influential in the process.

To consider all trials, logistic regression is used to model the probability that a

node resides in Pc(E) given its out-degree. This answers the question, “Do optimal

nodes influence the process more?” These results are shown in Figure 5.11. For a high

quality results, optimal nodes should have higher out-degree scores; the probability

should increase with out-degree. This is seen in BASELINE, where the most influen-

tial nodes have an 80% probability of being optimal; out-degree is a good indicator

of a node’s optimality. RANDOM is less than BASELINE, as expected; the most in-

fluential nodes only have an 35% probability of being optimal. However, RANDOM

also has a positive trend; this makes sense given that many optimal nodes are found

in the initial population, which are more likely to have higher out-degree.

L/B is much less than BASELINE and similar to RANDOM; the most influential

nodes only have an 30% probability of being optimal. In L/B, out-degree is a poor

indicator of optimal nodes; L/B has poor generative quality within the model, thereby
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Figure 5.11: Probability of a node residing in Pc(E) given its out-degree.
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the model is not biased toward L/B. DEADWEIGHT is greater than RANDOM

and less than BASELINE (although similar); the most influential nodes have a 60%

probability of being optimal, demonstrating that optimal nodes are more influential

in the process.

Figure 5.11 considers the aggregate PCNs at the end of the process (t = 40). The

same process is be conducted at different time steps to understand the progression and

to look for leading indicators of quality. Figure 5.12 shows these results at epochs 10,

20, 30, and 40. As t increases, BASELINE remains high and RANDOM decreases. In

BASELINE, the influence of optimal nodes continues to be heavily utilized; whereas in

RANDOM, this is not the case. As t increases, L/B behaves similarly to RANDOM:

L/B is slightly higher than RANDOM at t = 10 and then progressively decreases
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(a) t = 10
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(b) t = 20
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(c) t = 30
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(d) t = 40

Figure 5.12: Probability of a node residing in Pc(E) given its out-degree. Evaluating
out-degree as a leading indicator of bias.
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to be slightly lower than RANDOM at t = 40. Optimal nodes do not represent

influential solutions within the process, indicating the model is not biased toward

L/B. DEADWEIGHT is very similar to (if not slightly higher than) BASELINE at

t = 10 and t = 20; the most influential nodes have a 90% probability of being optimal.

DEADWEIGHT decreases to less than BASELINE at t = 30 (70%) and t = 40 (60%).

However given the other analyses, DEADWEIGHT is not producing many feasible or

optimal solutions at the end, and DEADWEIGHT converges toward the constraint

boundary quickest.

5.7 Betweenness Centrality Results

Next the betweenness analysis is considered, as presented in Section 4.6. The

resulting PPNs are depicted in Figure 5.13, where a node’s size illustrates its relative

betweenness, and colored nodes are contained in Pc(E). In BASELINE, optimal

nodes have highest betweenness: optimal nodes are most central in the network.

Since the PPN represents the utilization of information within the solution generation

process, this means that, for BASELINE, the information contained in optimal nodes

is very important. In RANDOM, optimal nodes have low betweenness, especially

later in the process (early nodes are predisposed to being optimal); the information

contained in optimal nodes is not perceived as being better by the solution generation

process. In L/B, optimal nodes have low betweenness, similarly to RANDOM; the

most central nodes are not optimal nodes. DEADWEIGHT is between BASELINE

and RANDOM; in the first half of the search (from 1:00 to 6:00), the most central

nodes are optimal. However in the second half (from 6:00 to 11:00), the most central

nodes are not optimal, although there are optimal nodes in the second half that have

decent betweenness values. While RANDOM and L/B have only a few highly central

nodes in the second half, DEADWEIGHT has many influential nodes in the second

half.
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(a) Baseline (b) L/B

(c) Deadweight (d) Random

Figure 5.13: Aggregate PPNs for each case. A node’s size illustrates its relative
betweenness, and colored nodes are contained in Pc(E).

To consider all trials, logistic regression is used to model the probability that a

node resides in Pc(E) given its betweenness. This answers the question, “Are optimal

nodes central to the utilization of information in the process?” These results are

shown in Figure 5.14. In BASELINE, the most central nodes have more than a 95%

probability of being optimal; betweenness is a good indicator of a node’s optimality.

RANDOM is much less than BASELINE but still has a positive trend; the most
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Figure 5.14: Probability of a node residing in Pc(E) given its betweenness.

central nodes only have a 30% probability of being optimal. L/B is much less than

BASELINE and even less than RANDOM; the most central nodes only have a 15%

probability of being optimal; In L/B, betweenness is not a good indicator of optimal

nodes, and the information contained in optimal nodes is not well-utilized by the

process. DEADWEIGHT is greater than RANDOM but still less than BASELINE;

the most central nodes have a 70% probability of being optimal. Optimal nodes are

central, and the information contained in them is utilized by the process.

As discussed in Section 4.6, this analysis is primarily concerned with evaluating

solutions that actually contribute to the process. Figure 5.15 shows the probability

results when only considering nodes in the largest component of the PPN. This evalu-

ates how central a node is within the community of utilized information. BASELINE

has a strong positive trend with betweenness; the most central nodes have an 90%

probability of being optimal. RANDOM is expected to be relatively flat, as it is;

the most central nodes have a 15% probability of being optimal. L/B is less than

RANDOM; the most central nodes have less than a 5% probability of being optimal.

Furthermore, L/B has a negative trend with betweenness; the probability of a node
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Figure 5.15: Probability of a node residing in Pc(E) given its betweenness. Consid-
ering only nodes in the largest component of the PPN.

being optimal decreases as its information becomes more utilized; the model is def-

initely not biased toward L/B. DEADWEIGHT is greater than RANDOM but less

than BASELINE; the most central nodes have a 50% probability of being optimal.

DEADWEIGHT has the most uncertainty; as can be seen in the PPN visualiza-

tion, DEADWEIGHT has more varied values of betweenness for both its optimal and

dominated solutions.

5.8 Effects of Increasing Tournament Size

As discussed in Section 3.3.4, the tournament size can be increased to increase

the amount of bias imposed by the ranking function. This is demonstrated using a

cardinality analysis of the noncumulative feasible-set, |F (t)|. To conduct this analysis,

additional HANs were generated for each of the cases using tournament sizes of 3 and

5; the other hyperparameters of the GA were unchanged. These results are shown in

Figure 5.16. As k increases, BASELINE decreases less initially, but does not increase

as much in the end. As expected, RANDOM does not change with k. As k increases,
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Figure 5.16: Cardinality of the noncumulative feasible-set, |F (t)|. Comparison of
tournament sizes k = 2 (top), k = 3 (bottom left), and k = 5 (bottom right).

L/B decreases; fewer feasible solutions exist in the population each epoch; relative to

RANDOM, L/B gets worse. As k increases, DEADWEIGHT decreases less initially,

increases, and then decreases more rapidly; in fact DEADWEIGHT has no feasible

solutions at t = 30 when k = 3 and at t = 20 when k = 5.

5.9 Conclusions

Identifying the underlying influences within design tools is crucial to ensure that

design outcomes are not being predicated by the tools employed. Since the synthesis

model was designed to produce parameters for bulk carriers, these results are under-

standable and expected. The bias toward deadweight and away from L/B align with
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institutional knowledge regarding these vessels. As such, the methods and analysis

created in this thesis provide designers with a sense of validation for the tool in its

intended application. The analysis also indicates that the tool should not be utilized

universally since it contains inherent influences from traditional bulk carriers; this

includes simply trying to create ships with a maximum deadweight. While L/B was

never a biasing factor (it always had lower quality) and although the model is biased

toward deadweight, the results demonstrated the deadweight case does not capture

the full intent of the model. This case study shows that the Sen bulker model has

other design drivers beyond the simplistic view that the best bulk carrier is the one

with the maximum capacity. The model also includes aspects of cost, and thus it is

balancing both optimal cargo capacity and cost of that decision.
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CHAPTER VI

Conclusions

6.1 Contributions

This thesis has been focused on the development of methods to answer the funda-

mental question, “How can an analysis tool be evaluated to determine if it is present-

ing biased information?” Toward this goal, the following are unique contributions of

this research:

• Characterized a novel perspective of quality. Within the context of early stage

ship design, the classical definition of quality associated with a design tool is

insufficient. An extended definition of tool quality has been developed as part

of this thesis. The contributions are:

– Recognition that an honest assessment of quality requires new novel mul-

tiple contextual views.

– Defined and developed two unique views of quality, solution-centric and

generative.

– Identified the factors necessary to evaluate quality and how evaluations of

quality can be used to understand bias.

• Development of a novel framework to enable the evaluation of a design tool’s

biases.
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– Creation of a novel GA procedure that provides a dynamic environment

of the solution generation process.

– Modified the underlining process of a GA to enable the intentional impo-

sition of bias.

– Utilized this GA to establish a comparative context by defining reference

and biasing cases.

– Created two Hereditary-Amelioration Networks that are derived from the

dynamics within the GA, captured the implied-causality behind solution

evolution, and represented the utilization of information throughout the

GA’s optimization procedure.

• Developed novel solution-centric and generative analysis techniques that utilized

the newly developed framework to evaluate a model’s inherent biases.

– Developed novel analysis metrics, extended existing metrics, and applied

some existing metrics in a novel way to evaluate quality and understand

bias.

– These metrics include:

∗ Cardinality of the Pareto-Set and Feasible-Set

∗ Coverage

∗ Superfront Relative Distance of the Pareto-set and feasible-set

∗ Generational Distance

∗ Out-degree

∗ Betweenness Centrality

• Completed a representative case study that demonstrates the effectiveness of

the developed framework and analysis methods.
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6.2 Future Topics of Interest

As with any new and novel research activities there are many possible future op-

portunities for expansion. The focus of this thesis was the creation of the framework

needed to develop the data needed for bias investigation as well as a set of analysis

techniques that are sufficient to draw conclusion concerning bias of an early stage de-

sign tool. With the completion of this thesis there are several future topics concerning

the framework developed in Chapter III and Chapter IV that are worth investigation.

These include but are not limited to:

• Implementing the mutation operator within the current GA, which can prevent

convergence in local minima by creating new individuals that are not solely

derivatives of their parents. However to accomplish this, the HANs should be

adapted to accurately represent these individuals.

• Developing strategies to define biasing cases that do not require the manual

specification of the designer.

• Expanding the current GA to consider different selection and crossover opera-

tors. For example, implementing the selection operator as NSGA-II to impose

diversity. Since tournament selection is modified to impose bias, a different

method of imposing bias on the solution generation process would be required.

• Developing additional HANs to represent additional or different aspects of the

solution generation process. For example, a multilayer network that represents

(1) individuals on one layer and (2) inputs and objective values on other layers.

Edges from the input layer to node layer would represent which inputs belong to

which nodes; objective values would be similarly represented by edges from the

node layer to the objective layer. Using this structure, analysis methods can be

developed to investigate the dynamics of, influences within, and relationships
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between the input-space and objective-space of the model.

• Investigation of HANs development in different optimization procedures. For

early stage design purposes, an appropriate next step would be developing HANs

for use in multidisciplinary optimizers.

• Investigating application of the framework to models without specified objec-

tives.

• In the solution-centric analyses that evaluated distance, solution sets were eval-

uated discretely; that is, each solution was considered as a discrete point, and

distance metrics were calculated using discrete points. Since solutions may be

clustered in a certain area, distance evaluations using a discrete representation

do not accurately reflect the design space characterized by the given solution

set. Methods for determining continuous representations of discrete sets should

be investigated to more accurately reflect the quality of solutions. For example,

discrete solutions could be represented by their interpolated surface; then, a

quality metric could be defined by surface area or by the integrated distance

between two surfaces. This has particular significance to the superfront.

• Developing metrics that are applicable to objective-spaces with more than three

dimensions. Research and practice have shown that Euclidean distance is a

less than desirable measure of distance when operating in more than three

dimensions.

• Investigating out-degree and betweenness as indicator variables for continuous

evaluation of quality. In this work, the network metrics were assessed as indica-

tors for a discrete result: optimal or not. This binary segregation does not reflect

how close solutions are to optimal (similarly to the difference between coverage

and superfront-relative-distance). Therefore, one example is using out-degree
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as an indicator for distance to superfront.

• Developing conditional network metrics for the PCN to evaluate the influence

that a node has on its descendant and the opportunity a node based on its

ancestors.

• Developing analyses investigating influential communities within the PPN based

on the network’s structural aspects of network. In contrast, out-degree and

betweenness are node-based evaluations and do not capture the structure of the

network.

• In general, the development of solution-centric and generative metrics to eval-

uate the different aspects of quality.

• Evaluating results across different hyperparameters for the GA. In Chapter

V, solutions were generated by implementing the GA using the same hyper-

parameters. This would be done (1) across a sweep of hyperparameters, (2)

using optimal hyperparameters of the baseline case, and (3) the optimal hy-

perparameters of each case. By comparing across cases, analyses would further

investigate the biases of the model by evaluating the differences of the resulting

solutions and the utilization of information within their processes.

• Applying the framework to larger, more complex models.
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APPENDIX A

Bulk Carrier Synthesis Model

This appendix provides an overview of the bulk carrier synthesis model developed

by Sen and Yang (1998). Additional information may also be found in Yang et al.

(1990) and Yang and Sen (1996).

Inputs and Intermediate Functions

The model defines six inputs: length (L), beam (B), draft (T ), depth (D), speed

(V ), and block coefficient (CB). These inputs can be expressed by the input vector

x = [L,B, T,D, V, CB]. Using these inputs, the model defines a host of intermediate

functions:

annual cost = capital charges + running cost

+ voyage cost + RTPA (A.1)

capital charges = 0.2× ship cost (A.2)

ship cost = 1.3× (steel mass)0.85

+ 3500× outfit mass + 2400× P 0.8 (A.3)

steel mass = 0.034× L1.7 ×B0.7 ×D0.4 × C0.5
B (A.4)
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outfit mass = L0.8 ×B0.6 ×D0.3 × C0.1
B (A.5)

machinery mass = 0.17× P 0.9 (A.6)

P = ∆2/3 × V 3 × 1

b(cB)× V
(g×L)0.5

+ a (CB)
(A.7)

∆ = 1.025× L×B × T × CB (A.8)

running cost = 40000×DW 0.3 (A.9)

DW = ∆− light ship mass (A.10)

voyage cost = fuel cost + port cost (A.11)

fuel cost = 1.05× daily consumption× sea days× fuel price (A.12)

daily consumption = P × 0.19× 0.024 + 0.2 (A.13)

sea days =
round trip miles

24× V
(A.14)

round trip miles = 5000 (nautical miles) (A.15)

fuel price = 100 (pounds/ton) (A.16)

port cost = 6.3×DW 0.8 (A.17)

RTPA =
350

sea days + port days
(A.18)

port days = 2×
(

cargo deadweight

cargo handling rate
+ 0.5

)
(A.19)

cargo deadweight = DW − fuel carried− crew, stores, and water (A.20)

fuel carried = daily consumption× (sea days + 5) (A.21)

crew, stores, and water = 2.0×DW 0.5 (A.22)

cargo handling rate = 8000 (tons/day) (A.23)

where RTPA is round trips per annum, DW is deadweight, and g is the gravitational

constant (g = 9.8065 m/s2). The functions a(CB) and b(CB) are regression equations

based on Froude Number and a coefficient referred to as the Admiralty Coefficient,

detailed in the original paper.
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Objectives

The model defines three objectives:

Ω1 = min(transportation cost) (A.24)

Ω2 = min(light ship mass) (A.25)

Ω3 = max(annual cargo) (A.26)

which can be expressed by the objective vector Ω = [Ω1,Ω2,Ω3]. The functions that

comprise the individual objectives are defined in terms of the model’s intermediate

functions as:

transportation cost =
annual cost

annual cargo
(A.27)

light ship mass = steel mass + outfit mass + machinery mass (A.28)

annual cargo = cargo deadweight× RTPA (A.29)

Constraints

The model defines dimensional and displacement constraints:

L/B ≥ 6 (A.30)

L/D ≤ 15 (A.31)

L/T ≤ 19 (A.32)

T ≤ 0.45×DW 0.31 (A.33)

T ≤ 0.7×D + 0.7 (A.34)

DW ≥ 3000 (A.35)

DW ≤ 500000 (A.36)
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powering constraints:

CB ≥ 0.63 (A.37)

CB ≤ 0.75 (A.38)

V ≥ 14 (A.39)

V ≤ 18 (A.40)

V

(g × L)0.5 ≤ 0.32 (A.41)

and a stability constraint:

GM ≥ 0.07×B (A.42)

where

GM = KB +BM −KG (A.43)

KB = 0.53× T (A.44)

BM =
(0.085× CB − 0.002)×B2

T × CB
(A.45)

KG = 1.0 + 0.52×D (A.46)
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