
Modeling Structured Dynamics with
Deep Neural Networks

by

Ruben Villegas

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:

Associate Professor Honglak Lee, Chair
Associate Professor Jason Corso
Assistant Professor Jia Deng
Associate Professor Chad Jenkins

Ruben Villegas

rubville@umich.edu

ORCID iD: 0000-0001-8488-9158

c� Ruben Villegas 2019

ACKNOWLEDGEMENTS

I would first like to thank God for guiding me through this road from not knowing what

my future will be after basketball was gone; all the way to have the opportunity to interact

with and befriend some of the smartest people on the planet. I would also like to thank

my parents for raising me with the belief that I have to earn my spot in anything I do, my

brothers for always challenging me and inspiring me, and my amazing wife for keeping

sane and supporting me through this process. My grandmothers, aunts, uncles and cousins

for being there when I needed them the most, and my grandfathers for watching over me.

All the people that guided me and helped me through my academic path, there are too many

to list, but I will highlight a few:

My undergraduate research adviser, Mubarak Shah, for believing in me and giving

me the opportunity to be involved in his research lab. Brian Moore and Niels Da Vitoria

Lobo for interviewing me for the scholarship that helped get involved in research early on.

Afshin Dehghan, Amir R. Zamir and Enrique Ortiz for their research advice throughout

my undergrad and for continuing to challenge me on making algorithms that work outside

of simplified datasets. Omar Orefeij, Shayan Modiri, Mahdi Kalayeh, Gonzalo Vaca and

others at CRCV for their friendship and advice. Lawrence Eric Meyer, my introduction to

programming in C++ teacher at Miami Dade College, for giving me the initial tool that has

helped me throughout my career in Computer Science.

Jimei Yang, Duygu Ceylan, Dumitru Erhan, Quoc V. Le, Arkanath Pathak, Harini

Kannan, Nevan Wichers, Alejandro Troccoli, Iuri Frosio, Wonmin Byeon, Stephen Tyree

and many others for their advice, collaborations, and helping shape my thinking as a

ii

researcher. I am grateful for having the opportunity to work on research projects at Adobe

Research, Google Brain and NVIDIA Research allowed me to have first hand experience of

a wide variety of problems in artificial intelligence.

My adviser and dissertation Committee Chair Honglak Lee, who I have the privilege

to work with since the start of my PhD, and briefly work with during the Summer of 2013

thanks to Michigan’s SROP. He played a very important role in my life as a graduate student;

from rooting for me to being accepted in Michigan’s PhD program; to inspiring me to always

accomplish more as a PhD student; to guiding me on the many projects we worked on; to

believing in me throughout my PhD.

Jia Deng, Chad Jenkins and Jason Corso who kindly served as my dissertation committee,

and provided valuable feedback on this dissertation.

All my amazing lab mates and collaborators for fruitful discussions and collaborations:

Yuting Zhang, Seunghoon Hong, Xinchen Yan, Junhyuk Oh, Ye Liu, Lajanugen Logeswaran,

Kihyuk Sohn, Scott Reed, Hongji Wang, Michael Chang, Sungryull Sohn, Kibok Lee,

Jongwook Choi, Yijie Guo, Wenling Shang, Yunseok Yang, Wilka Carvalho, Tianchen Zhao,

and Kimin Lee.

Last but not least, I would like to thank Rackham Merit Fellowship and the University

of Michigan for supporting me throughout my PhD, and for introducing me to other PhD

students in areas outside of my own.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xiii

LIST OF APPENDICES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Summary of Research Contributions 4

II. Decomposing Motion and Content for Natural Video Prediction 6

2.1 Introduction . 7
2.2 Related work . 9
2.3 Algorithm Overview . 10
2.4 Architecture . 11

2.4.1 Motion Encoder . 12
2.4.2 Content Encoder . 12
2.4.3 Multi-scale Motion-Content Residual 13
2.4.4 Combination Layers and Decoder 14

2.5 Inference and Training . 15
2.5.1 Multi-step prediction 15
2.5.2 Training Objective . 15

2.6 Experiments . 17
2.6.1 KTH and Weizmann action datasets 17
2.6.2 UCF-101 dataset . 20

2.7 Conclusion . 23

iv

III. Learning to Generate Long-term Future via Hierarchical Prediction . 24

3.1 Introduction . 25
3.2 Related Work . 27
3.3 Overview . 28
3.4 Architecture . 29

3.4.1 Future Prediction of High-Level Structures 29
3.4.2 Image Generation by Visual-Structure Analogy 31

3.5 Training . 32
3.5.1 Multi-Step Prediction 33
3.5.2 High-Level Structure LSTM Training 33
3.5.3 Visual-Structure Analogy Training 34

3.6 Experiments . 36
3.6.1 Penn Action Dataset 37
3.6.2 Human 3.6M Dataset 39

3.7 Conclusion and Future Work . 41

IV. Hierarchical Long-term Video Prediction without Supervision 44

4.1 Introduction . 45
4.2 Related Work . 46
4.3 Background . 47
4.4 Method . 48

4.4.1 Network Architecture 48
4.4.2 Training Objective . 50

4.5 Experiments . 54
4.5.1 Long-term Prediction on a Toy Dataset 54
4.5.2 Long-term Prediction on Human 3.6M 55
4.5.3 Ablation Studies . 58

4.6 Conclusion . 60

V. High Fidelity Video Prediction with Large Neural Nets 62

5.1 Introduction . 62
5.2 Related Work . 64
5.3 Scaling up video prediction . 65
5.4 Experiments . 68

5.4.1 Evaluation metrics . 69
5.4.2 Robot arm . 71
5.4.3 Human activities . 73
5.4.4 Car driving . 75

5.5 High resolution videos . 78
5.6 Conclusion . 78

VI. Neural Kinematic Networks for Unsupervised Motion Retargeting . . . 80

v

6.1 Introduction . 80
6.2 Related work . 82
6.3 Background . 84

6.3.1 Forward kinematics . 84
6.3.2 Inverse kinematics . 85

6.4 Method . 85
6.4.1 Neural kinematic networks 86
6.4.2 Adversarial cycle training for unsupervised motion re-

targeting . 88
6.5 Experiments . 92

6.5.1 Online Motion retargeting From Character 95
6.5.2 Online Motion retargeting from Human Video 97

6.6 Conclusion and Future Work . 98

VII. Discussion and Future Work . 100

APPENDICES . 103
A.1 Qualitative and quantitative comparison with considerable camera

motion and analysis . 108
A.2 Extended quantitative evaluation 112
A.3 UCF101 Motion Disambiguation Experiments 113
B.1 Motion-Based Pixel-Level Evaluation, Analysis, and Control Ex-

periments . 117
B.1.1 Penn Action . 119
B.1.2 Human3.6M . 125
C.0.1 Video results . 132
C.0.2 Per-frame evaluation comparison as model capacity in-

creases . 132
C.0.3 Effects of using skip connections in video prediction . . 137
C.0.4 All-vs-all Amazon Mechanical Turk comparison 141
C.0.5 Device and network details 142
C.0.6 Architecture and hyper-parameters 142

D.1 Quantitative Evaluation per Motion Retargeting Scenario, and Anal-
ysis . 143

D.2 Denoising 3D Pose Estimation by Motion retargeting 146
D.3 Data collection process . 147
D.4 Demo video and qualitative evaluation 148
D.5 Architecture and training details 149

BIBLIOGRAPHY . 150

vi

LIST OF FIGURES

Figure

2.1 Overall architecture of the proposed network. (a) illustrates MCnet with-
out the Motion-Content Residual skip connections, and (b) illustrates
MCnet with such connections. Our network observes a history of image
differences through the motion encoder and last observed image through
the content encoder. Subsequently, our network proceeds to compute
motion-content features and communicates them to the decoder for the
prediction of the next frame. 12

2.2 Quantitative comparison between MCnet and ConvLSTM baseline with
and without multi-scale residual connections (indicated by "+ RES").
Given 10 input frames, the models predict 20 frames recursively, one by
one. Left column: evaluation on KTH dataset (Schuldt et al., 2004). Right
colum: evaluation on Weizmann (Gorelick et al., 2007) dataset. 18

2.3 Qualitative comparison between our MCNet model and ConvLSTM. We
display predictions starting from the 12th frame, in every 3 timesteps. The
first 3 rows correspond to KTH dataset for the action of jogging and the
last 3 rows correspond to Weizmann dataset walking action. 19

2.4 Quantitative comparison between our model, convolutional LSTM Shi
et al. (2015), and Mathieu et al. (2015). Given 4 input frames, the models
predict 8 frames recursively, one by one. 21

2.5 Qualitative comparisons among MCnet and ConvLSTM and Mathieu et al.
(2015). We display predicted frames (in every other frame) starting from
the 5th frame. The green arrows denote the top-30 closest optical flow
vectors within image patches between MCnet and ground-truth. More
clear motion prediction can be seen in the project website. 22

3.1 Overall hierarchical approach to pixel-level video prediction. Our al-
gorithm first observes frames from the past and estimate the high-level
structure, in this case human pose xy-coordinates, in each frame. The esti-
mated structure is then used to predict the future structures in a sequence
to sequence manner. Finally, our algorithm takes the last observed frame,
its estimated structure, and the predicted structure sequence, in this case
represented as heatmaps, and generates the future frames. Green denotes
input to our network and red denotes output from our network. 28

vii

3.2 Illustration of our pose predictor. LSTM observes k consecutive human
pose inputs and predicts the pose for the next T timesteps. Note that
the human heatmaps are used for illustration purposes, but our network
observes and outputs xy-coordinates. 30

3.3 Generating image frames by making analogies between high-level struc-
tures and image pixels. 31

3.4 Illustration of our image generator. Our image generator observes an input
image, its corresponding human pose, and the human pose of the future
image. Through analogy making, our network generates the next frame. . 32

3.5 Qualitative evaluation of our network for 55 step prediction on Penn
Action (top rows), and 109 step prediction on Human 3.6M (bottom rows).
Our algorithm observes 10 previous input frames, estimates the human
pose, predicts the pose sequence of the future, and it finally generates the
future frames. Green box denotes input and red box denotes prediction.
We show the last 7 input frames. Side by side video comparisons can be
found in our project website. 42

4.1 The E2E method. The first few frames are encoded and fed into the
predictor as context. The predictor predicts the subsequent encodings,
which the VAN uses to produce the pixel-level predictions. The average
of the losses is minimized. This is the configuration of every method at
inference time, even if the predictor and VAN are trained separately. . . . 51

4.2 Blue lines represent the segment of the EPVA method in which the encoder
and predictor are trained together. The encoder is trained to produce an
encoding that is easy to predict, and the predictor is trained to predict
that encoding into the future. Red lines represent the segment of the
EPVA method in which the encoder and the VAN are trained together.
The encoder is trained to produce an encoding that is informative to the
VAN, while the VAN is trained to output the image given the encoding.
The average of the losses in the diagram is minimized. This part of the
method is similar to an autoencoder. Our method code is available at
https://bit.ly/2HqiHqx . 51

4.3 A visual comparison of the EPVA method and CDNA from Finn et al.
(2016a) as the baseline. This is a representative example of the quality of
predictions from both methods. For videos please visit https://bit.
ly/2kS8r16. 53

4.4 Confidence of the person detector that a person is recognized in the pre-
dicted frame (“person score”). 57

viii

4.5 Comparison of the generated videos from EPVA with the ADVERSARIAL
LOSS (ours), CDNA Finn et al. (2016a), and SVG-LP Denton and Fergus
(2018). We let each method predict 127 frames and show the time steps
indicated on top of the figure. The person completely disappears in all
the predictions generated using Finn et al. (2016a). For the SVG-LP
method Denton and Fergus (2018), the person either stops moving or
almost vanishes into the background. The EPVA with ADVERSARIAL
LOSS method produces sharp predictions in comparison to the baselines.
Additionally, we show the discovered foreground motion segmentation
mask that allows our network to delete the human in the input frame (static
mask in the top example) and generate the human in the future frames
(moving mask in the top example). Please refer to our project website for
video results: https://bit.ly/2kS8r16. 59

4.6 Ablative study illustration. We present comparisons between different vari-
ations of our architecture: E2E, loss without VAN, EPVA, combined E2E
and EPVA loss, and our best model configuration (EPVA ADVERSARIAL).
See our project website for videos. 60

5.1 Towel pick per-frame evaluation (higher is better). We compare the best
performing models in terms of FVD. For model capacity comparisons,
please refer to Supplementary C.0.2.1. 72

5.2 Robot towel pick qualitative evaluation. Our highest capacity model
(middle row) produces better modeling of the robot arm dynamics, as
well, as object interactions. The baseline model (bottom row) fails at
modeling the objects (object blurriness), and also, the robot arm dynamics
are not well modeled (gripper is open when the it should be close at
t=18). For best viewing and more results, please visit our website https:
//cutt.ly/QGuCex. 72

5.3 Human 3.6M per-frame evaluation (higher is better). We compare the best
performing models in terms of FVD. For model capacity comparisons,
please refer to Supplementary C.0.2.2. 74

5.4 Human 3.6M qualitative evaluation. Our highest capacity model (middle)
produces better modeling of the human dynamics. The baseline model
(bottom) is able to keep the human dynamics to some degree but in often
cases the human shape is unrecognizable or constantly vanishing and
reappearing. For more videos, please visit our website https://cutt.
ly/QGuCex. 74

5.5 KITTI driving per-frame evaluation (higher is better). For model capacity
comparisons, please refer to Supplementary C.0.2.3. 76

5.6 KITTI driving qualitative evaluation. Our highest capacity model (middle)
is able to maintain the observed dynamics of driving forward and is able
to generate unseen street lines and the moving background. The baseline
(bottom) loses the street lines and the background becomes blurry. For
best viewing and more results, please visit our website https://cutt.
ly/QGuCex. 76

ix

5.7 Human 3.6M and KITTI driving qualitative evaluation on high resolution
videos (frame size of 128x128) with comparison between smallest model
and largest model we were able to train (M=3, K=3). For best viewing
and more results, please visit our website https://cutt.ly/QGuCex. 77

6.1 Forward kinematics from T-pose skeleton. Starting from the input skeleton,
the forward kinematics layer rotates bones to achieve the desired output
configuration. 85

6.2 Neural kinematic networks for motion synthesis. 87
6.3 Adversarial cycle consistency framework. 89
6.4 Qualitative evaluation. We present a motion retargeting example of our

method against the best baseline. Motion is retargeted from character
Claire into Warrok Kurniawan (left) and Sporty Granny to Malcolm (right).
Plots illustrating the left/right feet and hand end-effectors’ height com-
paring against the groundtruth are shown at the bottom. Arrows in the
plots determine the time steps of the shown animation frames. Please visit
goo.gl/mDTvem for animated videos. 94

6.5 Qualitative evaluation on human videos. Motion is retargeted from esti-
mated 3D pose from the Human 3.6M dataset into Mixamo 3D characters
using the estimated 3D pose from Martinez et al. (2017b). Please visit
goo.gl/mDTvem for animated videos. 97

A.1 Qualitative comparisons on KTH testset. We display predictions starting
from the 12th frame, for every 3 timesteps. More clear motion prediction
can be seen in the project website. 105

A.2 Qualitative comparisons on KTH testset. We display predictions starting
from the 12th frame, for every 3 timesteps. More clear motion prediction
can be seen in the project website. 106

A.3 Qualitative comparisons on UCF-101. We display predictions (in every
other frame) starting from the 5th frame. The green arrows denote the
top-30 closest optical flow vectors within image patches between MCnet
and ground-truth. More clear motion prediction can be seen in the project
website. 107

A.4 Qualitative comparisons on UCF-101. We display predictions (in every
other frame) starting from the 5th frame. The green arrows denote the
top-30 closest optical flow vectors within image patches between MCnet
and ground-truth. More clear motion prediction can be seen in the project
website. 109

A.5 Qualitative comparisons on UCF-101. We display predictions (in every
other frame) starting from the 5th frame. The green arrows denote the
top-30 closest optical flow vectors within image patches between MCnet
and ground-truth. More clear motion prediction can be seen in the project
website. 110

A.6 Qualitative comparisons on KTH testset. We display predictions starting
from the 12th frame, in every 3 timesteps. More clear motion prediction
can be seen in the project website. 111

x

A.7 Extended quantitative comparison including a baseline based on copying
the last observed frame through time. 112

A.8 Extended quantitative comparison on UCF101 including a baseline based
on copying the last observed frame through time using motion based pixel
mask. 114

A.9 Quantitative comparison on UCF101 using motion based pixel mask, and
separating dataset by average `2-norm of time difference between target
frames. 115

A.10 Quantitative comparison on UCF101 using motion based pixel mask, and
separating dataset by average `2-norm of time difference between target
frames. 116

B.1 Quantitative comparison on Penn Action separated by motion decile. . . . 119
B.2 (Continued from Figure B.1.) Quantitative comparison on Penn Action

separated by motion decile. 120
B.3 Predicted frames PSNR vs. Mean Squared Error on the predicted pose for

each motion decile in Penn Action. 120
B.4 Quantitative and visual comparison on Penn Action for selected time-steps

for the action of baseball pitch (top) and golf swing (bottom).
Side by side video comparison can be found in our project website 121

B.5 Quantitative and visual comparison on Penn Action for selected time-steps
for the actions of jumping jacks (top) and tennis forehand
(bottom). Side by side video comparison can be found in our project website122

B.6 Qualitative evaluation of our network for long-term pixel-level genera-
tion. We show the actions of baseball pitch (top row), baseball
swing (middle row), and gold swing (bottom row). Side by side
video comparison can be found in our project website. 123

B.7 Qualitative evaluation of our network for long-term pixel-level generation.
We show the actions of tennis serve (top row), clean and jerk
(middle row), and tennis forehand (bottom row). We show a differ-
ent timescale for tennis forehand because the ground-truth action
sequence does not reach time step 65. Side by side video comparison can
be found in our project website. 124

B.8 Quantitative comparison on Human3.6M separated by motion decile. . . . 125
B.9 Predicted frames PSNR vs. Mean Squared Error on the predicted pose for

each motion decile in Human3.6M. 126
B.10 Quantitative and visual comparison on Human 3.6M for selected time-

steps for the actions of walk dog (top left), phoning (top right),
sitting down (bottom left), and walk together (bottom right).
Side by side video comparison can be found in our project website. 128

B.11 Quantitative and visual comparison on Human 3.6M for selected time-
steps for the action of walking (left) and walk together (right).
Side by side video comparison can be found in our project website. 129

xi

B.12 Qualitative evaluation of our network for long-term pixel-level genera-
tion. We show the actions of giving directions (top three rows),
posing (middle three rows), and walk dog (bottom three rows). Side
by side video comparison can be found in our project website. 130

B.13 Qualitative evaluation of our network for long-term pixel-level generation.
We show the actions of walk together (top three rows), sitting
down (middle three rows), and walk dog (bottom three rows). Side by
side video comparison can be found in our project website. 131

C.1 Towel pick per-frame evaluation (higher is better). As capacity increases,
the per frame evaluation metrics become better. The increase is due to
better modeling of interactions. The objects become sharper, and robot
arm dynamics become better as the model capacity increases. 133

C.2 Human 3.6M per-frame evaluation (higher is better). In this dataset, there
is a large amount of non-moving background that causes a per-frame
evaluation to become not reliable. This is shown by the baseline based on
simply copying the last observed frame through time which significantly
outperforms all methods. 134

C.3 KITTI driving per-frame evaluation (higher is better). As capacity in-
creases, the per frame evaluation metrics become better. The increase is
due to better modeling the driving dynamics and partial observability. Due
to the difficulty of predicting the exact not-observed parts of the image,
the performance converges toward the largest models. 135

C.4 Towel pick video dynamics evaluation (lower is better). Solid lines define
method with skip connections and dotted lines without skip connections. . 137

C.5 Towel pick per-frame evaluation (higher is better). Solid lines define
method with skip connections and dotted lines without skip connections. . 138

C.6 Human 3.6M video dynamics evaluation (lower is better). Solid lines de-
fine method with skip connections and dotted lines without skip connections.138

C.7 Human 3.6M per-frame evaluation (higher is better). Solid lines define
method with skip connections and dotted lines without skip connections. . 139

C.8 KITTI driving video dynamics evaluation (lower is better). Solid lines de-
fine method with skip connections and dotted lines without skip connections.139

C.9 KITTI driving per-frame evaluation (higher is better). Solid lines define
method with skip connections and dotted lines without skip connections. . 140

D.1 Quantitative evaluation based on movement through time. The vertical
axis denotes mean square error, and the horizontal axis denotes the xyz-
coordinate average variance through time observed in the ground-truth.
The average joint location variance is normalized by character height. . . 145

D.2 3D pose estimation denoising. We present end-effector trajectoriess for
5 examples. Each row belongs a single example in the Human3.6M test
set used in [16]. Please refer to our website for visual illustrations of the
denoising results. goo.gl/mDTvem. 147

xii

LIST OF TABLES

Table

3.1 Penn Action Video Generation Preference: We show videos from two
methods to Amazon Mechanical Turk workers and ask them to indicate
which is more realistic. The table shows the percentage of times workers
preferred our model against baselines. A majority of the time workers
prefer predictions from our model. We merged baseball pitch and baseball
swing into baseball, and tennis forehand and tennis serve into tennis. . . . 38

3.2 Activity recognition evaluation. 39
3.3 Human 3.6M Video Generation Preference: We show videos from two

methods to Amazon Mechanical Turk workers and ask them to indicate
which of the the two looks more realistic. The table shows the percentage
of times workers preferred our model against baselines. Most of the
time workers prefer predictions from our model. We merge the activity
categories of walking, walking dog, and walking together into walking. . . 41

4.1 Crowd-sourced human preference evaluation on the moving shapes dataset. 52
4.2 Crowd-sourced human preference evaluation on the Human 3.6M dataset. 55
5.1 Fréchet Video Distance evaluation (lower is better). We compare the

biggest model we were able to train against the baseline models (M=1,
K=1). Note that all models (SVG’, CNN, and LSTM). The biggest recur-
rent models are significantly better than their small counterpart. Please
refer to our supplementary material for plots showing how gradually in-
creasing model capacity results in better performance. 69

5.2 Amazon Mechanical Turk human worker preference. We compared
the biggest and baseline models from LSTM and SVG’. The bigger models
are more frequently preferred by humans. We present a full comparison
for all large models in Supplementary C.0.4. 71

6.1 Quantitative evaluation of online motion retargeting using mean square
error (MSE). 95

C.1 Amazon Mechanical Turk human worker preference. We compared
the biggest and baseline models from LSTM and SVG’. The bigger models
are more frequently preferred by humans. 141

xiii

D.1 Quantitative evaluation of online motion retargeting using mean square
error (MSE). Case study: Known motion / known character (left), and
known motion / new character (right). 144

D.2 Quantitative evaluation of online motion retargeting using mean square
error (MSE). Case study: New motion / known character (left), and new
motion / new character (right). 144

D.3 Data collection for each character and animation page in the Mixamo
website. 148

D.4 Quantitative evaluation of online motion retargeting using mean square
error (MSE). Case study: Known motion / known character (left), and
known motion / new character (right). 148

D.5 Quantitative evaluation of online motion retargeting using mean square
error (MSE). Case study: New motion / known character (left), and new
motion / new character (right). 148

xiv

LIST OF APPENDICES

Appendix
1 Video Prediction Procedure 33

A. Decomposing Motion and Content for Natural Video Prediction 104

B. Learning to Generate Long-term Future via Hierarchical Prediction 117

C. High Fidelity Video Prediction with Large Neural Nets 132

D. Neural Kinematic Networks for Unsupervised Motion Retargeting 143

xv

ABSTRACT

Deep neural networks have become powerful machinery for identifying important

patterns from raw input data when large amounts of data is available. Research adopting

neural networks has excelled in tasks such as object recognition, reinforcement learning,

speech recognition, image in-painting, sequence modeling, amongst others. Previous

works in computer vision have notably excelled at inferring information about the input

data; either from sequence of frames or single frames. However, very few works have

focused on modeling structured motion dynamics for generative tasks. Structured motion

is defined as the constant topological configuration of objects maintained through time

in sequential data. In this thesis, I develop new neural networks that effectively model

structured motion dynamics useful for generative tasks such as future motion prediction and

transfer. Accurate structured dynamic models are an important piece in achieving general

artificial intelligence. It has been recently shown that agents equipped with such models

can learn from environments with far less interactions due to being able to predict the

consequences of their actions in the environment. Additionally, accurate motion dynamic

models are be useful for applications such as motion editing, motion transfer, and others.

Such applications can enhance visual artists ability to create content for the web or can assist

movie makers when transferring motion from actors into movie characters.

This thesis initially presents motion dynamics models in two dimensions: I first present

a neural network architecture that decomposes video into two information pathways that

deal with video dynamics and frame spatial layout separately. The two pathways are later

xvi

combined to generate future frames that contain highly structured objects moving. Second,

I propose to take it a step further by having a motion stream that is visually interpretable.

Specifically, there is a motion stream that predicts structured motion dynamics as landmarks

of the moving structures that evolve through time, and there is an image generation module

that generates future frames given the landmarks and a single frame from the past using

image analogy principles. Next, we keep the image analogy principles of our previous

work, however, we formulate the video prediction problem such that general features for

moving objects structures are learned. Finally, by taking advantage of recent advances

in computational devices for large scale deep learning research, I present a study on the

effects of maximal capacity and minimal inductive bias of neural networks based video

prediction frameworks. From our very thorough evaluation and experimentation, we find

that network capacity plays a very important role in the performance of deep networks for

video prediction that can be applied to any of the previously investigated methods.

Consequently, this thesis presents motion dynamics models in three dimensions: I

propose a neural kinematics network with adversarial cycle consistency. Specifically, I

propose a layer based on the kinematic equations that takes advantage of the backpropagation

algorithm used to optimize neural networks to automatically discover rotation angles that

represent pure motion which can be used for motion transfer from one kinematic structure

into another. Because of the unsupervised nature of learning, the learned model generalizes

to never before seen human video from which motion data is extracted using an off-the-shelf

algorithm.

Overall, this thesis focuses on modeling structured dynamics using the representational

power of deep neural networks. Modeling structured dynamics is an important problem in

both general artificial intelligence, as well as, in applications dealing video editing, video

generation, video understanding and animation.

xvii

CHAPTER I

Introduction

Deep neural networks have served as proxy to make great progress in computer vision

and machine learning in the last few years. Increase in training data and computational

power have enabled us to harvest the pattern recognition capabilities of deep neural as

data becomes more abundant. Traditionally, deep neural networks have excelled at recog-

nizing patterns from high-dimensional data for tasks such as object, activity, and speech

recognition (Krizhevsky et al., 2012; Szegedy et al., 2015; Graves et al., 2013). Recently,

deep neural networks have been used for problems that require inferring information that

depends on clearly defined object structures from raw high-dimensional inputs; such as

image generation, object segmentation and pose estimation (Goodfellow et al., 2014a; Hong

et al., 2015; Newell et al., 2016). However, modeling structured dynamics from sequential

perceptual data has not been extensively studied. We define structures as the constant

topological configuration of objects that can perceptually change based on the object state or

point of view. Therefore, modeling structured dynamics is defined as the ability of models

to understand and maintain the topological configuration of the objects being observed. In

this thesis, I focus on modeling the challenging structured dynamics observed in video data,

and I propose multiple perspectives and approaches ranging from end-to-end methods, to

interpretable hierarchical models, to large-scale models across multiple devices.

Accurate dynamic models are important to predict what will happen next. Having an

1

agent that can imagine the consequence of its actions, as well as, how its surrounding

environment will behave is very important for achieving general artificial intelligence.

Model-based reinforcement learning from pixels has shown great progress in recent works.

Particularly, future prediction models combined with simple planning algorithms (Hafner

et al., 2019) or used for policy learning Kaiser et al. (2019) have been shown to perform

equally or better than model-free methods with far less interactions with the environment.

Additionally, Ebert et al. (2018) showed that future prediction methods are also useful for

robotic control where the reward can be defined telling a robot to move a specific pixel or

region of pixels to a goal location. The predicted future frames can then be used to determine

if the goal has been achieved.

We initially focus on modeling dynamics in two dimensional space. In Chapter II I

propose a neural network architecture that decomposes motion and frame content into two

streams of information that are later combined to predict the next frame. I provide visual

evidence that our method identifies and only moves the moving structures in the video by

computing flow vectors in the predicted frames and comparing against the ground truth. In

Chapter III, I explore an alternative but complementary way for modeling video dynamics

which we also use for future frame prediction. Instead of a simple information separation of

motion and content, the motion stream is modeled as a sequence of landmarks that represent

the high-level structure of the objects moving in the video. The predicted future landmarks

are later used to generate all future video frames given a single frame from the past. This

approach enables future frame prediction for more than an order of magnitude of time steps

into the future in comparison to previous methods. In Chapter IV, we explore a method

inspired by Chapter III in which general representation of the moving structures is learned

directly from input frames rather than using predefined landmark representations. Finally,

in Chapter V, I explore the advantages of large scale training for generating future video

frames. I present a study that maximizes the capacity of neural network architectures while

minimizing inductive bias in order to achieve high quality future frame prediction of videos

2

with highly structured motion. The findings discussed in Chapter V are applicable to all

previous works presented in this thesis. Modeling structured dynamics in two dimensions is

useful, however, our world lives in a three dimensional plane. Therefore, simply modeling

two dimension can result in inaccuracies due to occlusions caused by the missing third

dimension.

Subsequently, I move on to modeling structured dynamics in three dimensional space.

Three dimensional information includes height, width and depth information which is neces-

sary to more accurate model the world. For example, if I need to model the precise location

of an object that is moving directly towards me, I will need to know depth information of

that object which is not easy to infer from two dimensional input. This level accuracy is

necessary for applications such as autonomous driving, navigation, object tracking, amongst

others; where high accuracy of the location of an agent and its surroundings is extremely

important.

In Chapter VI, I propose a new neural network with a forward kinematics layer and

adversarial cycle consistency training technique for unsupervised motion retargeting in three

dimensions. I demonstrate that our method is able to perform online motion retargeting by

modeling pure motion features that are independent of the kinematic structures performing

the motion. In essence, our method automatically discovers the high-level structured motion

dynamics as rotation angles to achieve a desired motion sequence given a reference motion.

Additionally, I show evidence that the solution learned by our method is general and can be

used to retarget motion from never before seen human videos.

In a nutshell, this thesis investigates neural network methods for modeling structured

dynamics. Accurate dynamic models should capture general high-level motion dynamics

features within their transition functions such that extrapolation, interpolation and transfer is

possible. In addition, such models contribute to the progress in many applications ranging

from model-based reinforcement learning, to robotics, to generative models of video, to

character animation.

3

1.1 Summary of Research Contributions

Decomposing Motion and Content for Natural Video Prediction (Chapter II)

This chapter tackles the high-dimensional video prediction problem by separating the

temporal and spatial sources of information present in videos. Videos contain many factors

of variation present through time such as color changes, pixel displacement, previously

unseen pixel appearance, and others. This paper proposes a new neural network architecture

that consists of an encoder network that observes pixel differences through time, another

network that observes pixel layout in the last frame, and a final network that combines

the outputs of the two encoders. I show the effectiveness of the proposed neural network

architecture, and outperform previous state-of-the-art methods in video prediction.

Learning to Generate Long-term Future via Hierarchical Prediction (Chapter III)

This chapter takes a step forward towards a solution to the video prediction problem by

predicting future frames in a hierarchical fashion. A notorious problem in pixel-level video

prediction is that frames exponentially degrade as I recursively predict solely pixels deeper

into the future. I mitigate this problem by making predictions of the future in high-level

feature space (i.e., object landmarks), and then use the predicted high-level features to

generate all future frames given a single input frame from the past. I show that our method

can predict an order of magnitude more frames compared to the previous state-of-the-art.

Hierarchical Long-term Video Prediction without Supervision (Chapter IV)

This chapter focuses on a more general version of the hierarchical method in Chapter

III. We formulate the frame prediction process to discover general learned features rather

than predefined landmarks. Deep analogy making is used as the driving force to discover

features that represent the moving objects structures. We show that our method is capable of

generating long term video without the need of predefined landmark features.

4

High Fidelity Video Prediction with Large Neural Nets (Chapter V)

This chapter takes a slightly different but complementary route to previous chapters on mod-

eling structured dynamics with neural networks. Rather than building additional specialized

layers or losses, I focus on minimizing inductive bias and maximizing the capacity of deep

neural networks to the limits of current computational devices. I show that state-of-the-art

future frame prediction is achievable in multiple datasets with different challenges (object

interaction, structured motion and moving background) using multiple evaluation metrics

(per-frame and full-sequence based evaluations).

Neural Kinematic Networks for Unsupervised Motion Retargeting (Chapter VI)

This chapter focuses on the motion retargeting between 3D humanoid characters, an impor-

tant problem in robotics and character animation. I mainly focus on the motion retargeting

scenario when ground truth input/target motion pairs are not available for learning a retarget-

ing model. In this work, I propose a novel neural network architecture with a differentiable

forward kinematics layer and an adversarial cycle consistency training for unsupervised

motion retargeting. In our experiments, I show that our network is able to successfully

perform motion retargeting between 3D characters with only a simple objective during

training. Additionally, I show that our network can retarget motions from estimated 3D

human pose motion sequence into 3D characters without ever training on estimated human

pose or the human skeleton used by the pose estimation algorithm.

5

CHAPTER II

Decomposing Motion and Content for Natural

Video Prediction

We propose a deep neural network for the prediction of future frames in natural video

sequences. To effectively handle complex evolution of pixels in videos, we propose to

decompose the motion and content, two key components generating dynamics in videos. Our

model is built upon the Encoder-Decoder Convolutional Neural Network and Convolutional

LSTM for pixel-level prediction, which independently capture the spatial layout of an

image and the corresponding temporal dynamics. By independently modeling motion and

content, predicting the next frame reduces to converting the extracted content features

into the next frame content by the identified motion features, which simplifies the task of

prediction. Our model is end-to-end trainable over multiple time steps, and naturally learns

to decompose motion and content without separate training. We evaluate the proposed

network architecture on human activity videos using KTH, Weizmann action, and UCF-101

datasets. We show state-of-the-art performance in comparison to recent approaches. To

the best of our knowledge, this is the first end-to-end trainable network architecture with

motion and content separation to model the spatio-temporal dynamics for pixel-level future

prediction in natural videos.

6

2.1 Introduction
Understanding videos has been one of the most important tasks in the field of computer

vision. Compared to still images, the temporal component of videos provides much richer

descriptions of the visual world, such as interaction between objects, human activities, and

so on. Amongst the various tasks applicable on videos, the task of anticipating the future

has recently received increased attention in the research community. Most prior works in

this direction focus on predicting high-level semantics in a video such as action (Vondrick

et al., 2015; Ryoo, 2011; Lan et al., 2014), event (Yuen and Torralba, 2010a; Hoai and Torre,

2013) and motion (Pintea et al., 2014; Walker et al., 2014; Pickup et al., 2014; Walker et al.,

2016). Forecasting semantics provides information about what will happen in a video, and is

essential to automate decision making. However, the predicted semantics are often specific

to a particular task and provide only a partial description of the future. Also, training such

models often requires heavily labeled training data which leads to tremendous annotation

costs especially with videos.

In this work, we aim to address the problem of prediction of future frames in natural

video sequences. Pixel-level predictions provide dense and direct description of the visual

world, and existing video recognition models can be adopted on top of the predicted frames

to infer various semantics of the future. Spatio-temporal correlations in videos provide

a self-supervision for frame prediction, which enables purely unsupervised training of a

model by observing raw video frames. Unfortunately, estimating frames is an extremely

challenging task; not only because of the inherent uncertainty of the future, but also various

factors of variation in videos leading to complicated dynamics in raw pixel values. There

have been a number of recent attempts on frame prediction (Srivastava et al., 2015; Mathieu

et al., 2015; Oh et al., 2015; Goroshin et al., 2015; Lotter et al., 2015; Ranzato et al., 2014),

which use a single encoder that needs to reason about all the different variations occurring in

videos in order to make predictions of the future, or infer extra information like foreground

7

segmentation masks and static background (Vondrick et al., 2016).

We propose a Motion-Content Network (MCnet) for robust future frame prediction. Our

intuition is to split the inputs for video prediction into two easily identifiable groups, motion

and content, and independently capture each information stream with separate encoder

pathways. In this architecture, the motion pathway encodes the local dynamics of spatial

regions, while the content pathway encodes the spatial layout of the salient parts of an

image. The prediction of the future frame is then achieved by transforming the content of

the last observed frame given the identified dynamics up to the last observation. Somewhat

surprisingly, we show that such a network is end-to-end trainable without individual path

way supervision. Specifically, we show that an asymmetric architecture for the two pathways

enables such decompositions without explicit supervision. The contributions of this paper

are summarized below:

• We propose MCnet for the task of frame prediction, which separates the information

streams (motion and content) into different encoder pathways.

• The proposed network is end-to-end trainable and naturally learns to decompose

motion and content without separate training, and reduces the task of frame prediction

to transforming the last observed frame into the next by the observed motion.

• We evaluate the proposed model on challenging real-world video datasets, and show

that it outperforms previous approaches on frame prediction.

The rest of the paper is organized as follows. We briefly review related work in Sec-

tion 2.2, and introduce an overview of the proposed algorithm in Section 2.3. The detailed

configuration of the proposed network is described in Section 2.4. Section 2.5 describes train-

ing and inference procedure. Section 2.6 illustrates implementation details and experimental

results on challenging benchmarks.

8

2.2 Related work
The problem of visual future prediction has received growing interests in the computer

vision community. It has led to various tasks depending on the objective of future prediction,

such as human activity (Vondrick et al., 2015; Ryoo, 2011; Lan et al., 2014), event (Yuen

and Torralba, 2010a; Hoai and Torre, 2013) and geometric path (Walker et al., 2014).

Although previous work achieved reasonable success in specific tasks, they are often limited

to estimating predefined semantics, and require fully-labeled training data. To alleviate this

issue, approaches predicting representation of the future beyond semantic labels have been

proposed. Walker et al. (2014) proposed a data-driven approach to predict the motion of

a moving object, and coarse hallucination of the predicted motion. Vondrick et al. (2015)

proposed a deep regression network to predict feature representations of the future frames.

These approaches are supervised and provide coarse predictions of how the future will look

like. Our work also focuses on unsupervised learning for prediction of the future, but to a

more direct visual prediction task: frame prediction.

Compared to predicting semantics, pixel-level prediction has been less investigated

due to the difficulties in modeling evolution of raw pixels over time. Fortunately, recent

advances in deep learning provide a powerful tool for sequence modeling, and enable the

creation of novel architectures for modeling complex sequential data. Ranzato et al. (2014)

applied a recurrent neural network developed for language modeling to frame prediction by

posing the task as classification of each image region to one of quantized patch dictionaries.

Srivastava et al. (2015) applied a sequence-to-sequence model to video prediction, and

showed that Long Short-Term Memory (LSTM) is able to capture pixel dynamics. Oh

et al. (2015) proposed an action-conditional encoder-decoder network to predict future

frames in Atari games. In addition to the different choices of architecture, some other works

addressed the importance of selecting right objective function: Lotter et al. (2015) used

adversarial loss with combined CNN and LSTM architectures, and Mathieu et al. (2015)

9

employed similar adversarial loss with additional regularization using a multi-scale encoder-

decoder network. Finn et al. (2016b) constructed a network that predicts transformations

on the input pixels for next frame prediction. Patraucean et al. (2015) proposed a network

that by explicitly predicting optical flow features is able to predict the next frame in a

video. Vondrick et al. (2016) proposed a generative adversarial network for video which,

by generating a background-foreground mask, is able to generate realistic-looking video

sequences. However, none of the previously mentioned approaches exploit spatial and

temporal information separately in an unsupervised fashion. In terms of the way data is

observed, the closest work to ours is Xue et al. (2016). The differences are (1) Our model is

deterministic and theirs is probabilistic, (2) our motion encoder is based on convolutional

LSTM (Shi et al., 2015) which is a more natural module to model long-term dynamics, (3)

our content encoder observes a single scale input and theirs observes many scales, and (4)

we directly generate image pixels values, which is a more complicated task. We aim to

exploit the existing spatio-temporal correlations in videos by decomposing the motion and

content in our network architecture.

To the best of our knowledge, the idea of separating motion and content has not been

investigated in the task of unsupervised deterministic frame prediction. The proposed

architecture shares similarities to the two-stream CNN (Simonyan and Zisserman, 2014),

which is designed for action recognition to jointly exploit the information from frames and

their temporal dynamics. However, in contrast to their network we aim to learn features for

temporal dynamics directly from the raw pixels, and we use the identified features from the

motion in combination with spatial features to make pixel-level predictions of the future.

2.3 Algorithm Overview
In this section, we formally define the task of frame prediction and the role of each com-

ponent in the proposed architecture. Let xt 2 Rw⇥h⇥c denote the t-th frame in an input

video x, where w, h, and c denote width, height, and number of channels, respectively. The

10

objective of frame prediction is to generate the future frame x̂t+1 given the input frames x1:t.

At the t-th time step, our network observes a history of previous consecutive frames up

to frame t, and generates the prediction of the next frame x̂t+1 as follows:

• Motion Encoder recurrently takes an image difference input between frame xt and

xt�1 starting from t = 2, and produces the hidden representation dt encoding the

temporal dynamics of the scene components (Section 2.4.1).

• Content Encoder takes the last observed frame xt as an input, and outputs the hidden

representation st that encodes the spatial layout of the scene (Section 2.4.2).

• Multi-Scale Motion-Content Residual takes the computed features, from both the

motion and content encoders, at every scale right before pooling and computes

residuals rt (He et al., 2015) to aid the information loss caused by pooling in the

encoding phase (Section 2.4.3).

• Combination Layers and Decoder takes the outputs from both encoder pathways

and residual connections, dt, st, and rt, and combines them to produce a pixel-level

prediction of the next frame x̂t+1 (Section 2.4.4).

The overall architecture of the proposed algorithm is described in Figure 2.1. The

prediction of multiple frames, x̂t+1:t+T , can be achieved by recursively performing the above

procedures over T time steps (Section 2.5). Each component in the proposed architecture is

described in the following section.

2.4 Architecture
This section describes the detailed configuration of the proposed architecture, including the

two encoder pathways, multi-scale residual connections, combination layers, and decoder.

11

LSTM LSTM LSTM

Content Encoder

Combination
layers

Decoder

Shared

CONCAT

Motion Encoder

(a) Base MCnet

LSTM LSTM LSTM

Content Encoder

Combination
layers

Decoder

Multi-scale
Motion Residual

Multi-scale
Content Residual

= Conv

= Deconv

CONCAT

Motion Encoder

Shared

(b) MCnet with Multi-scale Motion-Content
Residuals

Figure 2.1: Overall architecture of the proposed network. (a) illustrates MCnet without the Motion-
Content Residual skip connections, and (b) illustrates MCnet with such connections. Our network
observes a history of image differences through the motion encoder and last observed image through
the content encoder. Subsequently, our network proceeds to compute motion-content features and
communicates them to the decoder for the prediction of the next frame.

2.4.1 Motion Encoder

The motion encoder captures the temporal dynamics of the scene’s components by recur-

rently observing subsequent difference images computed from xt�1 and xt, and outputs

motion features by

[dt, ct] = f
dyn (xt � xt�1,dt�1, ct�1) , (2.1)

where xt � xt�1 denotes element-wise subtraction between frames at time t and t � 1,

dt 2 R
w

0⇥h
0⇥c

0 is the feature tensor encoding the motion across the observed difference

image inputs, and ct 2 R
w

0⇥h
0⇥c

0 is a memory cell that retains information of the dynamics

observed through time. f dyn is implemented in a fully-convolutional way to allow our model

to identify local dynamics of frames rather than complicated global motion. For this, we use

an encoder CNN with a Convolutional LSTM (Shi et al., 2015) layer on top.

2.4.2 Content Encoder

The content encoder extracts important spatial features from a single frame, such as the

spatial layout of the scene and salient objects in a video. Specifically, it takes the last

12

observed frame xt as an input, and produces content features by

st = f
cont (xt) , (2.2)

where st 2 R
w

0⇥h
0⇥c

0 is the feature encoding the spatial content of the last observed frame,

and f
cont is implemented by a Convolutional Neural Network (CNN) that specializes on

extracting features from single frame.

It is important to note that our model employs an asymmetric architecture for the motion

and content encoder. The content encoder takes the last observed frame, which keeps

the most critical clue to reconstruct spatial layout of near future, but has no information

about dynamics. On the other hand, the motion encoder takes a history of previous image

differences, which are less informative about the future spatial layout compared to the

last observed frame, yet contain important spatio-temporal variations occurring over time.

This asymmetric architecture encourages encoders to exploit each of two pieces of critical

information to predict the future content and motion individually, and enables the model to

learn motion and content decomposition naturally without any supervision.

2.4.3 Multi-scale Motion-Content Residual

To prevent information loss after the pooling operations in our motion and content encoders,

we use residual connections (He et al., 2015). The residual connections in our network

communicate motion-content features at every scale into the decoder layers after unpooling

operations. The residual feature at layer l is computed by

rl
t
= f

res �⇥sl
t
,dl

t

⇤�l
, (2.3)

where rl
t

is the residual output at layer l,
⇥
sl
t
,dl

t

⇤
is the concatenation of the motion and

content features along the depth dimension at layer l of their respective encoders, f res (.)l the

residual function at layer l implemented as consecutive convolution layers and rectification

13

with a final linear layer.

2.4.4 Combination Layers and Decoder

The outputs from the two encoder pathways, dt and st, encode a high-level representation of

motion and content, respectively. Given these representations, the objective of the decoder

is to generate a pixel-level prediction of the next frame x̂t+1 2 R
w⇥h⇥c. To this end, it first

combines the motion and content back into a unified representation by

ft = g
comb ([dt, st]) , (2.4)

where [dt, st] 2 R
w

0⇥h
0⇥2c0 denotes the concatenation of the higher-level motion and content

features in the depth dimension, and ft 2 R
w

0⇥h
0⇥c

0 denotes the combined high-level

representation of motion and content. g
comb is implemented by a CNN with bottleneck

layers (Hinton and Salakhutdinov, 2006); it first projects both dt and st into a lower-

dimensional embedding space, and then puts it back to the original size to construct the

combined feature ft. Intuitively, ft can be viewed as the content feature of the next time

step, st+1, which is generated by transforming st using the observed dynamics encoded in

dt. Then our decoder places ft back into the original pixel space by

x̂t+1 = g
dec (ft, rt) , (2.5)

where rt is a list containing the residual connections from every layer of the motion and

content encoders before pooling sent to every layer of the decoder after unpooling. We

employ the deconvolution network (Zeiler et al., 2011) for our decoder network g
dec, which

is composed of multiple successive operations of deconvolution, rectification and unpooling

with the addition of the motion-content residual connections after each unpooling operation.

The output layer is passed through a tanh (.) activation function. Unpooling with fixed

switches are used to upsample the intermediate activation maps.

14

2.5 Inference and Training
Section 2.4 describes the procedures for single frame prediction, while this section presents

the extension of our algorithm for the prediction of multiple time steps.

2.5.1 Multi-step prediction

Given an input video, our network observes the first n frames as image difference between

frame xt and xt�1, starting from t = 2 up to t = n, to encode initial temporal dynamics

through the motion encoder. The last frame xn is given to the content encoder to be

transformed into the first prediction x̂t+1 by the identified motion features.

For each time step t 2 [n+ 1, n+ T], where T is the desired number of prediction steps,

our network takes the difference image between the first prediction x̂t+1 and the previous

image xt, and the first prediction x̂t+1 itself to predict the next frame x̂t+2, and so forth.

2.5.2 Training Objective

To train our network, we use an objective function composed of different sub-losses similar

to Mathieu et al. (2015). Given the training data D = {x(i)
1,...,T}Ni=1, our model is trained to

minimize the prediction loss by

L = ↵Limg + �LGAN, (2.6)

where ↵ and � are hyper-parameters that control the effect of each sub-loss during optimiza-

tion. Limg is the loss in image space from Mathieu et al. (2015) defined by

Limg = Lp (xt+k, x̂t+k) + Lgdl (xt+k, x̂t+k) , (2.7)

15

where Lp (y, z) =
TX

k=1

||y � z||p
p
, (2.8)

Lgdl (y, z) =
h,wX

i,j

| (|yi,j � yi�1,j|� |zi,j � zi�1,j|) |� (2.9)

+ | (|yi,j�1 � yi,j|� |zi,j�1 � zi,j|) |� .

Here, xt+k and x̂t+k are the target and predicted frames, respectively, and p and � are hyper-

parameters for Lp and Lgdl, respectively. Intuitively, Lp guides our network to match the

average pixel values directly, while Lgdl guides our network to match the gradients of such

pixel values. Overall, Limg guides our network to learn parameters towards generating the

correct average sequence given the input. Training to generate average sequences, however,

results in somewhat blurry generations which is the reason we use an additional sub-loss.

LGAN is the generator loss in adversarial training to allow our model to predict realistic

looking frames and it is defined by

LGAN = � logD ([x1:t, G (x1:t)]) , (2.10)

where x1:t is the concatenation of the input images, xt+1:t+T is the concatenation of the

ground-truth future images, G (x1:t) = x̂t+1:t+T is the concatenation of all predicted images

along the depth dimension, and D (.) is the discriminator in adversarial training. The

discriminative loss in adversarial training is defined by

Ldisc = � logD ([x1:t,xt+1:t+T])� log (1�D ([x1:t, G (x1:t)])) . (2.11)

LGAN, in addition to Limg, allows our network to not only generate the target sequence, but

also simultaneously enforce realism in the images through visual sharpness that fools the

human eye. Note that our model uses its predictions as input for the next time-step during

the training, which enables the gradients to flow through time and makes the network robust

16

for error propagation during prediction.

2.6 Experiments
In this section, we present experiments using our network for video generation. We first eval-

uate our network, MCnet, on the KTH (Schuldt et al., 2004) and Weizmann action (Gorelick

et al., 2007) datasets, and compare against a baseline convolutional LSTM (ConvLSTM) (Shi

et al., 2015). We then proceed to evaluate on the more challenging UCF-101 (Soomro et al.,

2012) dataset, in which we compare against the same ConvLSTM baseline and also the

current state-of-the-art method by Mathieu et al. (2015). For all our experiments, we use

↵ = 1, � = 1, and p = 2 in the loss functions.

In addition to the results in this section, we also provide more qualitative comparisons in

the appendix and in the videos on the project website: https://sites.google.com/

a/umich.edu/rubenevillegas/iclr2017.

Architectures. The content encoder of MCnet is built with the same architecture as

VGG16 (Simonyan and Zisserman, 2015a) up to the third pooling layer. The motion encoder

of MCnet is also similar to VGG16 up to the third pooling layer, except that we replace

its consecutive 3x3 convolutions with single 5x5, 5x5, and 7x7 convolutions in each layer.

The combination layers are composed of 3 consecutive 3x3 convolutions (256, 128, and

256 channels in each layer). The multi-scale residuals are composed of 2 consecutive 3x3

convolutions. The decoder is the mirrored architecture of the content encoder where we

perform unpooling followed by deconvolution. For the baseline ConvLSTM, we use the

same architecture as the motion encoder, residual connections, and decoder, except we

increase the number of channels in the encoder in order to have an overall comparable

number of parameters with MCnet.

2.6.1 KTH and Weizmann action datasets
Experimental settings. The KTH human action dataset (Schuldt et al., 2004) contains 6

categories of periodic motions on a simple background: running, jogging, walking, boxing,

17

Figure 2.2: Quantitative comparison between MCnet and ConvLSTM baseline with and without
multi-scale residual connections (indicated by "+ RES"). Given 10 input frames, the models predict
20 frames recursively, one by one. Left column: evaluation on KTH dataset (Schuldt et al., 2004).
Right colum: evaluation on Weizmann (Gorelick et al., 2007) dataset.

hand-clapping and hand-waiving. We use person 1-16 for training and 17-25 for testing, and

resize frames to 128x128 pixels. We train our network and baseline by observing 10 frames

and predicting 10 frames into the future on the KTH dataset. We set � = 0.02 for training.

We select the walking, running, one-hand waving, and two-hands waving sequences from the

Weizmann action dataset (Gorelick et al., 2007) for testing the networks’ generalizability.

For all the experiments, we test the networks on predicting 20 time steps into the future.

As for evaluation, we use the same SSIM and PSNR metrics as in Mathieu et al. (2015). The

evaluation on KTH was performed on sub-clips within each video in the testset. We sample

sub-clips every 3 frames for running and jogging, and sample sub-clips every 20 frames

(skipping the frames we have already predicted) for walking, boxing, hand-clapping, and

hand-waving. Sub-clips for running, jogging, and walking were manually trimmed to ensure

humans are always present in the frames. The evaluation on Weizmann was performed on

all sub-clips in the selected sequences.

18

G
.T

.
C

on
vL

ST
M

M
C

ne
t

t=12 t=15 t=18 t=21

Jogging

t=24 t=27 t=30

G
.T

.
C

on
vL

ST
M

M
C

ne
t

Walking

Figure 2.3: Qualitative comparison between our MCNet model and ConvLSTM. We display predic-
tions starting from the 12th frame, in every 3 timesteps. The first 3 rows correspond to KTH dataset
for the action of jogging and the last 3 rows correspond to Weizmann dataset walking action.

19

Results. Figure 2.2 summarizes the quantitative comparisons among our MCnet, ConvL-

STM baseline and their residual variations. In the KTH test set, our network outperforms

the ConvLSTM baseline by a small margin. However, when we test the residual versions

of MCnet and ConvLSTM on the dataset (Gorelick et al., 2007) with similar motions,

we can see that our network can generalize well to the unseen contents by showing clear

improvements, especially in long-term prediction. One reason for this result is that the

test and training partitions of the KTH dataset have simple and similar image contents so

that ConvLSTM can memorize the average background and human appearance to make

reasonable predictions. However, when tested on unseen data, ConvLSTM has to internally

take care of both scene dynamics and image contents in a mingled representation, which

gives it a hard time for generalization. In contrast, the reason our network outperforms

the ConvLSTM baseline on unseen data is that our network focuses on identifying general

motion features and applying them to a learned content representation.

Figure 2.3 presents qualitative results of multi-step prediction by our network and

ConvLSTM. As expected, prediction results by our full architecture preserves human shapes

more accurately than the baseline. It is worth noticing that our network produces very sharp

prediction over long-term time steps; it shows that MCnet is able to capture periodic motion

cycles, which reduces the uncertainty of future prediction significantly. More qualitative

comparisons are shown in the appendix and the project website.

2.6.2 UCF-101 dataset

Experimental settings. This section presents results on the challenging real-world videos

in the UCF-101 (Soomro et al., 2012) dataset. Having collected from YouTube, the dataset

contains 101 realistic human actions taken in a wild and exhibits various challenges, such as

background clutter, occlusion, and complicated motion. We employed the same network

architecture as in the KTH dataset, but resized frames to 240x320 pixels, and trained the

network to observe 4 frames and predict a single frame. We set � = 0.001 for training. We

20

Figure 2.4: Quantitative comparison between our model, convolutional LSTM Shi et al. (2015), and
Mathieu et al. (2015). Given 4 input frames, the models predict 8 frames recursively, one by one.

also trained our convolutional LSTM baseline in the same way. Following the same protocol

as Mathieu et al. (2015) for data pre-processing and evaluation metrics on full images, all

networks were trained on Sports-1M (Karpathy et al., 2014) dataset and tested on UCF-101

unless otherwise stated.1

Results. Figure 2.4 shows the quantitative comparisons between our network trained for

single-step-prediction and Mathieu et al. (2015). We can clearly see the advantage of our

network over the baseline. The separation of motion and contents in two encoder pathways

allows our network to identify key motion and content features, which are then fed into the

decoder to yield predictions of higher quality compared to the baseline.2 In other words, our

network only moves what shows motion in the past, and leaves the rest untouched.

We also trained a residual version of MCnet on UCF-101, indicated by “MCnet + RES

UCF101", to compare how well our model generalizes when trained and tested on the same

or different dataset(s). To our surprise, when tested with UCF-101, the MCnet trained on

Sports-1M (MCnet + RES) roughly matches the performance of the MCnet trained on UCF-

101 (MCnet + RES UCF101), which suggests that our model learns effective representations

which can generalize to new datasets. Figure 2.5 presents qualitative comparisons between

frames generated by our network and Mathieu et al. (2015). Since the ConvLSTM and
1We use the code and model released by Mathieu et al. (2015) at https://github.com/coupriec/

VideoPredictionICLR2016
2We were not able to get the model fine-tuned on UCF-101 from the authors so it is not included in Figure

2.4

21

t=11

t=9

t=7

t=5

G.T. MCnet ConvLSTM Mathieu et al. (2015)

t=11

t=9

t=7

t=5

Figure 2.5: Qualitative comparisons among MCnet and ConvLSTM and Mathieu et al. (2015). We
display predicted frames (in every other frame) starting from the 5th frame. The green arrows denote
the top-30 closest optical flow vectors within image patches between MCnet and ground-truth. More
clear motion prediction can be seen in the project website.

22

Mathieu et al. (2015) lack explicit motion and content modules, they lose sense of the

dynamics in the video and therefore the contents become distorted quickly. More qualitative

comparisons are shown in the appendix and the project website.

2.7 Conclusion
We proposed a motion-content network for pixel-level prediction of future frames in natural

video sequences. The proposed model employs two separate encoding pathways, and

learns to decompose motion and content without explicit constraints or separate training.

Experimental results suggest that separate modeling of motion and content improves the

quality of the pixel-level future prediction, and our model overall achieves state-of-the-art

performance in predicting future frames in challenging real-world video datasets.

23

CHAPTER III

Learning to Generate Long-term Future via

Hierarchical Prediction

We propose a hierarchical approach for making long-term predictions of future frames. To

avoid inherent compounding errors in recursive pixel-level prediction, we propose to first

estimate high-level structure in the input frames, then predict how that structure evolves in

the future, and finally by observing a single frame from the past and the predicted high-level

structure, we construct the future frames without having to observe any of the pixel-level

predictions. Long-term video prediction is difficult to perform by recurrently observing the

predicted frames because the small errors in pixel space exponentially amplify as predictions

are made deeper into the future. Our approach prevents pixel-level error propagation from

happening by removing the need to observe the predicted frames. Our model is built with a

combination of LSTM and analogy-based encoder-decoder convolutional neural networks,

which independently predict the video structure and generate the future frames, respectively.

In experiments, our model is evaluated on the Human 3.6M and Penn Action datasets on the

task of long-term pixel-level video prediction of humans performing actions and demonstrate

significantly better results than the state-of-the-art.

24

3.1 Introduction
Learning to predict the future has emerged as an important research problem in machine

learning and artificial intelligence. Given the great progress in recognition (e.g., Krizhevsky

et al. (2012); Szegedy et al. (2015)), prediction becomes an essential module for intelligent

agents to plan actions or to make decisions in real-world application scenarios Jayaraman

and Grauman (2015, 2016); Finn et al. (2016b). For example, robots can quickly learn

manipulation skills when predicting the consequences of physical interactions. Also, an

autonomous car can brake or slow down when predicting a person walking across the driving

lane. In this paper, we investigate long-term future frame prediction that provides full

descriptions of the visual world.

Recent recursive approaches to pixel-level video prediction highly depend on observing

the generated frames in the past to make predictions further into the future Oh et al. (2015);

Mathieu et al. (2016); Goroshin et al. (2015); Srivastava et al. (2015); Ranzato et al. (2014);

Finn et al. (2016b); Villegas et al. (2017a); Lotter et al. (2017). In order to make reasonable

long-term frame predictions in natural videos, these approaches need to be highly robust to

pixel-level noise. However, the noise amplifies quickly through time until it overwhelms the

signal. It is common that the first few prediction steps are of decent quality, but then the

prediction degrades dramatically until all the video context is lost. Other existing works focus

on predicting high-level semantics, such as trajectories or action labels Walker et al. (2014);

Chao et al. (2017); Yuen and Torralba (2010b); Lee (2015), driven by immediate applications

(e.g., video surveillance). We note that such high-level representations are the major factors

for explaining the pixel variations into the future. In this work, we assume that the high-

dimensional video data is generated from low-dimensional high-level structures, which we

hypothesize will be critical for making long-term visual predictions. Our main contribution

is the hierarchical approach for video prediction that involves generative modeling of video

using high-level structures. Concretely, our algorithm first estimates high-level structures of

25

observed frames, and then predicts their future states, and finally generates future frames

conditioned on predicted high-level structures.

The prediction of future structure is performed by an LSTM that observes a sequence

of structures estimated by a CNN, encodes the observed dynamics, and predicts the future

sequence of such structures. We note that Fragkiadaki et al. (2015a) developed an LSTM

architecture that can straightforwardly be adapted to our method. However, our main

contribution is the hierarchical approach for video prediction, so we choose a simpler LSTM

architecture to convey our idea. Our approach then observes a single frame from the past

and predicts the entire future described by the predicted structure sequence using an analogy-

making network Reed et al. (2015a). In particular, we propose an image generator that learns

a shared embedding between image and high-level structure information which allows us

convert an input image into a future image guided by the structure difference between the

input image and the future image. We evaluate the proposed model on challenging real-world

human action video datasets. We use 2D human poses as our high-level structures similar

to Reed et al. (2016a). Thus, our LSTM network models the dynamics of human poses

while our analogy-based image generator network learns a joint image-pose embedding

that allows the pose difference between an observed frame and a predicted frame to be

transferred to image domain for future frame generation. As a result, this pose-conditioned

generation strategy prevents our network from propagating prediction errors through time,

which in turn leads to very high quality future frame generation for long periods of time.

Overall, the promising results of our approach suggest that it can be greatly beneficial to

incorporate proper high-level structures into the generative process.

The rest of the paper is organized as follows: A review of the related work is presented in

Section 3.2. The overview of the proposed algorithm is presented in Section 3.3. The network

configurations and their training algorithms are described in Section 3.4 and Section 3.5,

respectively. We present the experimental details and results in Section 3.6, and conclude

the paper with discussions of future work in Section 3.7.

26

3.2 Related Work
Early work on future frame prediction focused on small patches containing simple pre-

dictable motions Sutskever et al. (2009); Michalski et al. (2014a); Mittelman et al. (2014)

and motions in real videos Ranzato et al. (2014); Srivastava et al. (2015). High resolution

videos contain far more complicated motion which cannot be modeled in a patch-wise

manner due to the well known aperture problem. The aperture problem causes blockiness in

predictions as we move forward in time. Ranzato et al. (2014) tried to solve blockiness by

averaging over spatial displacements after predicting patches; however, this approach does

not work for long-term predictions.

Recent approaches in video prediction have moved from predicting patches to full frame

prediction. Oh et al. (2015) proposed a network architecture for action conditioned video

prediction in Atari games. Mathieu et al. (2016) proposed an adversarial loss for video

prediction and a multi-scale network architecture that results in high quality prediction for a

few timesteps in natural video; however, the frame prediction quality degrades quickly. Finn

et al. (2016b) proposed a network architecture to directly transform pixels from a current

frame into the next frame by predicting a distribution over pixel motion from previous

frames. Xue et al. (2016) proposed a probabilistic model for predicting possible motions

of a single input frame by training a motion encoder in a variational autoencoder approach.

Vondrick et al. (2016) built a model that generates realistic looking video by separating

background and foreground motion. Villegas et al. (2017a) improved the convolutional

encoder/decoder architecture by separating motion and content features. Lotter et al. (2017)

built an architecture inspired by the predictive coding concept in neuroscience literature that

predicts realistic looking frames.

All the previously mentioned approaches attempt to perform video generation in a pixel-

to-pixel process. We aim to perform the prediction of future frames in video by taking a

hierarchical approach of first predicting the high-level structure and then using the predicted

27

Pose
Estimation

Po
se

Pr

ed
ic

tio
n

Image
Generation

t=1
t=2

t=3
t=4

t=5
t=6

t=7
t=8

t=9
t=10

t=5
t=6

t=7
t=8

t=9
t=10

Figure 3.1: Overall hierarchical approach to pixel-level video prediction. Our algorithm first observes
frames from the past and estimate the high-level structure, in this case human pose xy-coordinates,
in each frame. The estimated structure is then used to predict the future structures in a sequence
to sequence manner. Finally, our algorithm takes the last observed frame, its estimated structure,
and the predicted structure sequence, in this case represented as heatmaps, and generates the future
frames. Green denotes input to our network and red denotes output from our network.

structure to predict the future in the video from a single frame input.

To the best of our knowledge, this is the first hierarchical approach to pixel-level video

prediction. Our hierarchical architecture makes it possible to generate good quality long-

term predictions that outperform current approaches. The main success from our algorithm

comes from the novel idea of first making high-level structure predictions which allows us to

observe a single image and generate the future video by visual-structure analogy. Our image

generator learns a shared embedding between image and structure inputs that allows us to

transform high-level image features into a future image driven by the predicted structure.

3.3 Overview
This paper tackles the task of long-term video prediction in a hierarchical perspective.

Given the input high-level structure sequence p1:t and frame xt, our algorithm is asked to

predict the future structure sequence pt+1:t+T and subsequently generate frames xt+1:t+T .

The problem with video frame prediction originates from modeling pixels directly in a

sequence-to-sequence manner and attempting to generate frames in a recurrent fashion.

Current state-of-the-art approaches recurrently observe the predicted frames, which causes

rapidly increasing error accumulation through time. Our objective is to avoid having to

observe generated future frames at all during the full video prediction procedure.

28

Figure 3.1 illustrates our hierarchical approach. Our full pipeline consists of 1) perform-

ing high-level structure estimation from the input sequence, 2) predicting a sequence of

future high-level structures, and 3) generating future images from the predicted structures

by visual-structure analogy-making given an observed image and the predicted structures.

We explore our idea by performing pixel-level video prediction of human actions while

treating human pose as the high-level structure. Hourglass network Newell et al. (2016) is

used for pose estimation on input images. Subsequently, a sequence-to-sequence LSTM-

recurrent network is trained to read the outputs of hourglass network and to predict the

future pose sequence. Finally, we generate the future frames by analogy making using the

pose relationship in feature space to transform the last observed frame.

The proposed algorithm makes it possible to decompose the task of video frame predic-

tion to sub-tasks of future high-level structure prediction and structure-conditioned frame

generation. Therefore, we remove the recursive dependency of generated frames that causes

the compound errors of pixel-level prediction in previous methods, and so our method

performs very long-term video prediction.

3.4 Architecture
This section describes the architecture of the proposed algorithm using human pose as a

high-level structure. Our full network is composed of two modules: an encoder-decoder

LSTM that observes and outputs xy-coordinates, and an image generator that performs

visual analogy based on high-level structure heatmaps constructed from the xy-coordinates

output from LSTM.

3.4.1 Future Prediction of High-Level Structures

Figure 3.2 illustrates our pose predictor. Our network first encodes the observed structure

dynamics by

[ht, ct] = LSTM (pt,ht�1, ct�1) , (3.1)

29

LSTM LSTM LSTMLSTM LSTM LSTM

Figure 3.2: Illustration of our pose predictor. LSTM observes k consecutive human pose inputs and
predicts the pose for the next T timesteps. Note that the human heatmaps are used for illustration
purposes, but our network observes and outputs xy-coordinates.

where ht 2 R
H represents the observed dynamics up to time t, ct 2 R

H is the memory

cell that retains information from the history of pose inputs, pt 2 R
2L is the pose at time

t (i.e., 2D coordinate positions of L joints). In order to make a reasonable prediction of

the future pose, LSTM has to first observe a few pose inputs to identify the type of motion

occurring in the pose sequence and how it is changing over time. LSTM also has to be able

to remove noise present in the input pose, which can come from annotation error if using

the dataset-provided pose annotation or pose estimation error if using a pose estimation

algorithm. After a few pose inputs have been observed, LSTM generates the future pose by

p̂t = f
�
w>ht

�
, (3.2)

where w is a projection matrix, f is a function on the projection (i.e. tanh or identity), and

p̂t 2 R
2L is the predicted pose. In the subsequent predictions, our LSTM does not observe

the previously generated pose. Not observing generated pose in LSTM prevents errors in

the pose prediction from being propagated into the future, and it also encourages the LSTM

internal representation to contain robust high-level features that allow it to generate the

future sequence from only the original observation. As a result, the representation obtained

in the pose input encoding phase must obtain all the necessary information for generating the

correct action sequence in the decoding phase. After we have set the human pose sequence

30

t=5 t=40 t=5 t=40

:: :: ?
Figure 3.3: Generating image frames by making analogies between high-level structures and image
pixels.

for the future frames, we proceed to generate the pixel-level visual future.

3.4.2 Image Generation by Visual-Structure Analogy

To synthesize a future frame given its pose structure, we make a visual-structure analogy

inspired by Reed et al. (2015a) following pt : pt+n :: xt : xt+n, read as "pt is to pt+n as xt

is to xt+n" as illustrated in Figure 3.3. Intuitively, the future frame xt+n can be generated

by transferring the structure transformation from pt to pt+n to the observed frame xt. Our

image generator instantiates this idea using a pose encoder fpose, an image encoder fimg

and an image decoder fdec. Specifically, fpose is a convolutional encoder that specializes on

identifying key pose features from the pose input that reflects high-level human structure.1

fimg is also a convolutional encoder that acts on an image input by mapping the observed

appearance into a feature space where the pose feature transformations can be easily imposed

to synthesize the future frame using the convolutional decoder fdec. The visual-structure

analogy is then performed by

x̂t+n = fdec (fpose (g (p̂t+n))� fpose (g (pt)) + fimg (xt)) , (3.3)

where x̂t+n and p̂t+n are the generated image and corresponding predicted pose at time

t+ n, xt and pt are the input image and corresponding estimated pose at time t, and g (.)

is a function that maps the output xy-coordinates from LSTM into L depth-concatenated
1Each input pose to our image generator is converted to concatenated heatmaps of each landmark before

computing features.

31

ƒ
pose

ƒ
pose

ƒ
img

ƒ
dec

_

+

x
t

p
t

p
t+n

x
t+n

Figure 3.4: Illustration of our image generator. Our image generator observes an input image, its
corresponding human pose, and the human pose of the future image. Through analogy making, our
network generates the next frame.

heatmaps.2 Intuitively, fpose infers features whose “substractive" relationship is the same

subtractive relationship between xt+n and xt in the feature space computed by fimg, i.e.,

fpose(g(p̂t+n))� fpose(g(p̂t)) ⇡ fimg(xt+n)� fimg(xt).

The network diagram is illustrated in in Figure 3.4. The relationship discovered by our

network allows for highly non-linear transformations between images to be inferred by a

simple addition/subtraction in feature space.

3.5 Training
In this section, we first summarize the multi-step video prediction algorithm using our

networks and then describe the training strategies of the high-level structure LSTM and of

the visual-structure analogy network. We train our high-level structure LSTM independent

from the visual-structure analogy network, but both are combined during test time to perform

video prediction.
2We independently construct the heatmap with a Gaussian function around the xy-coordinates of each

landmark.

32

Algorithm 1 Video Prediction Procedure
input: x1:k

output: x̂k+1:k+T

for t=1 to k do
pt Hourglass(xt)
[ht, ct] LSTM(pt,ht�1, ct�1)

end for
for t=k + 1 to k + T do

[ht, ct] LSTM(ht�1, ct�1)
p̂t f

�
w>ht

�

x̂t fdec (fpose (g (p̂t))� fpose (g (pk)) + fimg (xk))
end for

3.5.1 Multi-Step Prediction

Our algorithm multi-step video prediction procedure is described in Algorithm 1. Given

input video frames, we use the Hourglass network Newell et al. (2016) to estimate the

human poses p1:k. High-level structure LSTM then observes p1:k, and proceeds to generate

a pose sequence p̂k+1:k+T where T is the desired number of time steps to predict. Next,

our visual-structure analogy network takes xk, pk, and p̂k+1:k+T and proceeds to generate

future frames x̂k+1:k+T one by one. Note that the future frame prediction is performed by

observing pixel information from only xk, that is, we never observe any of the predicted

frames.

3.5.2 High-Level Structure LSTM Training

We employ a sequence-to-sequence approach to predict the future structures (i.e. future

human pose). Our LSTM is unrolled for k timesteps to allow it to observe k pose inputs

before making any prediction. Then we minimize the prediction loss defined by

Lpose =
1

TL

TX

t=1

LX

l=1

1{ml
k+t=1}kp̂l

k+t
� pl

k+t
k22, (3.4)

where p̂l

k+t
and pl

k+t
are the predicted and ground-truth pose l-th landmark, respectively,

1{.} is the indicator function, and m
l

k+t
tells us whether a landmark is visible or not (i.e. not

33

present in the ground-truth). Intuitively, the indicator function allows our LSTM to make a

guess of the non-visible landmarks even when not present at training. Even in the absence of

a few landmarks during training, LSTM is able to internally understand the human structure

and observed motion. Our training strategy allows LSTM to make a reasonable guess of the

landmarks not present in the training data by using the landmarks available as context.

3.5.3 Visual-Structure Analogy Training

Training our network to transform an input image into a target image that is too close in

image space can lead to suboptimal parameters being learned due to the simplicity of such

task that requires only changing a few pixels. Because of this, we train our network to

perform random jumps in time within a video clip. Specifically, we let our network observe

a frame xt and its corresponding human pose pt, and force it to generate frame xt+n given

pose pt+n, where n is defined randomly for every iteration at training time. Training to jump

to random frames in time gives our network a clear signal the task at hand due to the large

pixel difference between frames far apart in time.

To train our network, we use the compound loss from Dosovitskiy and Brox (2016a).

Our network is optimized to minimize the objective given by

L = Limg + Lfeat + LGen, (3.5)

where Limg is the loss in image space defined by

Limg = kxt+n � x̂t+nk22, (3.6)

where xt+n and x̂t+n are the target and predicted frames, respectively. The image loss

intuitively guides our network towards a rough blurry pixel-leven frame prediction that

34

reflects most details of the target image. Lfeat is the loss in feature space define by

Lfeat = kC1 (xt+n)� C1 (x̂t+n) k22

+ kC2 (xt+n)� C2 (x̂t+n) k22,
(3.7)

where C1 (.) extracts features representing mostly image appearance, and C2 (.) extracts

features representing mostly image structure. Combining appearance sensitive features with

structure sensitive features gives our network a learning signal that allows it to make frame

predictions with accurate appearance while also enforcing correct structure. LGen is the term

in adversarial loss that allows our model to generate realistic looking images and is defined

by

LGen = � logD ([pt+n, x̂t+n]) , (3.8)

where x̂t+n is the predicted image, pt+n is the human pose corresponding to the target image,

and D (.) is the discriminator network in adversarial loss. This sub-loss allows our network

to generate images that reflect a similar level of detail as the images observed in the training

data.

During the optimization of D, we use the mismatch term proposed by Reed et al. (2016b),

which allows the discriminator D to become sensitive to mismatch between the generation

and the condition. The discriminator loss is defined by

LDisc = � logD ([pt+n,xt+n])

� 0.5 log (1�D ([pt+n, x̂t+n]))

� 0.5 log (1�D ([pt+n,xt])) ,

(3.9)

while optimizing our generator with respect to the adversarial loss, the mismatch-aware term

sends a stronger signal to our generator resulting in higher quality image generation, and

network optimization. Essentially, having a discriminator that knows the correct structure-

image relationship, reduces the parameter search space of our generator while optimizing to

35

fool the discriminator into believing the generated image is real. The latter in combination

with the other loss terms allows our network to produce high quality image generation given

the structure condition.

3.6 Experiments
In this section, we present experiments on pixel-level video prediction of human actions

on the Penn Action Zhang et al. (2013) and Human 3.6M datasets Ionescu et al. (2014a).

Pose landmarks and video frames are normalized to be between -1 and 1, and frames

are cropped based on temporal tubes to remove as much background as possible while

making sure the human of interest is in all frames. For the feature similarity loss term

(Equation 3.7), we use we use the last convolutional layer in AlexNet Krizhevsky et al.

(2012) as C1, and the last layer of the Hourglass Network in Newell et al. (2016) as

C2. We augmented the available video data by performing horizontal flips randomly at

training time for Penn Action. Motion-based pixel-level quantitative evaluation using

Peak Signal-to-Noise Ratio (PSNR), analysis, and control experiments can be found in the

appendix. For video illustration of our method, please refer to the project website: https:

//sites.google.com/a/umich.edu/rubenevillegas/hierch_vid.

We compare our method against two baselines based on convolutional LSTM and optical

flow. The convolutional LSTM baseline Shi et al. (2015) was trained with adversarial loss

Mathieu et al. (2016) and the feature similarity loss (Equation 3.7). An optical flow based

baseline used the last observed optical flow Farnebäck (2003) to move the pixels of the last

observed frame into the future.

We follow a human psycho-physical quantitative evaluation metric similar to Vondrick

et al. (2016). Amazon Mechanical Turk (AMT) workers are given a two-alternative choice

to indicate which of two videos looks more realistic. Specifically, the workers are shown

a pair of videos (generated by two different methods) consisting of the same input frames

indicated by a green box and predicted frames indicated by a red box, in addition to the

36

action label of the video. The workers are instructed to make their decision based on the

frames in the red box. Additionally, we train a Two-stream action recognition network

Simonyan and Zisserman (2014) on the Penn Action dataset and test on the generated videos

to evaluate if our network is able to generate videos predicting the activities observed in

the original dataset. We do not perform action classification experiments on the Human

3.6M dataset due to high uncertainty in the human movements and high motion similarity

amongst actions.

Architectures. The sequence prediction LSTM is made of a single layer encoder-decoder

LSTM with tied parameters, 1024 hidden units, and tanh output activation. Note that

the decoder LSTM does not observe any inputs other than the hidden units from the

encoder LSTM as initial hidden units. The image and pose encoders are built with the same

architecture as VGG16 Simonyan and Zisserman (2015a) up to the third pooling layer, except

that the pose encoder takes in the pose heat-maps as an image made of L channels, and the

image encoder takes a regular 3-channel image. The decoder is the mirrored architecture

of the image encoder where we perform unpooling followed by deconvolution, and a final

tanh activation. The convolutional LSTM baseline is built with the same architecture as the

image encoder and decoder, but there is a convolutional LSTM layer with the same kernel

size and number of channels as the last layer in the image encoder connecting them.

3.6.1 Penn Action Dataset

Experimental setting. The Penn Action dataset is composed of 2326 video sequences of

15 different actions and 13 human joint annotations for each sequence. To train our image

generator, we use the standard train split provided in the dataset. To train our pose predictor,

we sub-sample the actions in the standard train-test split due to very noisy joint ground-truth.

We used videos from the actions of baseball pitch, baseball swing, clean and jerk, golf swing,

jumping jacks, jump rope, tennis forehand, and tennis serve. Our pose predictor is trained to

observe 10 inputs and predict 32 steps, and tested on predicting up to 64 steps (some videos’

37

"Which video is more realistic?" B.B. C. & J. G. J. J. J. R. T. Mean
Prefers ours over Convolutional LSTM 89.5% 87.2% 84.7% 83.0% 66.7% 88.2% 82.4%

Prefers ours over Optical Flow 87.8% 86.5% 80.3% 88.9% 86.2% 85.6% 86.1%

Table 3.1: Penn Action Video Generation Preference: We show videos from two methods to Amazon
Mechanical Turk workers and ask them to indicate which is more realistic. The table shows the
percentage of times workers preferred our model against baselines. A majority of the time workers
prefer predictions from our model. We merged baseball pitch and baseball swing into baseball, and
tennis forehand and tennis serve into tennis.

groundtruth end before 64 steps). Our image generator is trained to make single random

jumps within 30 steps into the future. Our evaluations are performed on a single clip that

starts at the first frame of each video.

AMT results. These experiments were performed by 66 unique workers, where a total

of 1848 comparisons were made (934 against convolutional LSTM and 914 against optical

flow baseline). As shown in Table 3.1 and Figure 3.5, our method is capable of generating

more realistic sequences compared to the baselines. Quantitatively, the action sequences

generated by our network are perceptually higher quality than the baselines and also predict

the correct action sequence. A relatively small (although still substantial) margin is observed

when comparing to convolutional LSTM for the jump rope action (i.e., 66.7% for ours vs

33.3% for Convolutional LSTM). We hypothesize that convolutional LSTM is able to do a

reasonable job for this action class due the highly cyclic motion nature of jumping up and

down in place. The remainder of the human actions contain more complicated non-linear

motion, which is much more complicated to predict. Overall, our method outperforms the

baselines by a large margin (i.e. 82.4% for ours vs 17.6% for Convolutional LSTM, and

86.1% for ours vs 13.9% for Optical Flow). Side by side video comparison for all actions

can be found in our project website.

Action recognition results. To see whether the generated videos contain actions that can

fool a CNN trained for action recognition, we train a Two-Stream CNN on the PennAction

dataset. In Table 3.2, “Temporal Stream” denotes the network that observes motion as

38

Method Temporal Stream Spatial Stream Combined
Real Test Data * 66.6% 63.3% 72.1%

Ours 35.7% 52.7% 59.0%
Convolutional LSTM 13.9% 45.1% 46.4%

Optical Flow 13.9% 39.2% 34.9%

Table 3.2: Activity recognition evaluation.

concatenated optical flow (Farneback’s optical flow) images as input, and “Spatial Stream”

denotes the network that observes single image as input. “Combined” denotes the averaging

of the output probability vectors from the Temporal and Spatial stream. “Real test data”

denotes evaluation on the ground-truth videos (i.e. perfect prediction).

From Table 3.2, it is shown that our network is able to generate videos that are far more

representative of the correct action compared to all baselines, in both Temporal and Spatial

stream, regardless of using a neural network as the judge. When combining both Temporal

and Spatial streams, our network achieves the best quality videos in terms of making a

pixel-level prediction of the correct action.

Pixel-level evaluation and control experiments. We evaluate the frames generated by

our method using PSNR as measure, and separated the test data based on amount of motion,

as suggested by Villegas et al. (2017a). From these experiments, we conclude that pixel-

level evaluation highly depends on predicting the exact future observed in the ground-truth.

Highest PSNR scores are achieved when trajectories of the exact future is used to generate

the future frames. Due to space constraints, we ask the reader to please refer to the appendix

for more detailed quantitative and qualitative analysis.

3.6.2 Human 3.6M Dataset

Experimental settings. The Human 3.6M dataset Ionescu et al. (2014a) is composed of

3.6 million 3D human poses (we use the provided 2D pose projections) composed of 32

joints and corresponding images taken from 11 professional actors in 17 scenarios. For

training, we use subjects number 1, 5, 6, 7, and 8, and test on subjects number 9 and 11. Our

39

pose predictor is trained to observe 10 inputs and predict 64 steps, and tested on predicting

128 steps. Our image generator is trained to make single random jumps anywhere in the

training videos. We evaluate on a single clip from each test video that starts at the exact

middle of the video to make sure there is motion occurring.

AMT results. We collected a total of 2203 comparisons (1086 against convolutional

LSTM and 1117 against optical flow baseline) from 71 unique workers. As shown in

Table 3.3, the videos generated by our network are perceptually higher quality and reflect a

reasonable future compared to the baselines on average. Unexpectedly, our network does

not perform well on videos where the action involves minimal motion, such as sitting,

sitting down, eating, taking a photo, and waiting. These actions usually involve the person

staying still or making very unnoticeable motion which can result in a static prediction (by

convolutional LSTM and/or optical flow) making frames look far more realistic than the

prediction from our network. Overall, our method outperforms the baselines by a large

margin (i.e. 70.3% for ours vs 29.7% for Convolutional LSTM, and 72.3% for ours vs 27.7%

for Optical Flow). Figure 3.5 shows that our network generates far higher quality future

frames compared to the convolutional LSTM baseline. Side by side video comparison for

all actions can be found in our project website.

40

"Which video is more realistic?" Direct. Disc. Eating Greet. Phoning Photo Posing
Prefers ours over Convolutional LSTM 67.6% 75.9% 74.7% 79.5% 69.7% 66.2% 69.7%

Prefers ours over Optical Flow 61.4% 89.3% 43.8% 80.3% 84.5% 52.0% 75.3%
"Which video is more realistic?" Purch. Sit Sit Down Smoke Wait Walk Mean

Prefers ours over Convolutional LSTM 79.0% 38.0% 54.7% 70.4% 50.0% 86.0% 70.3%
Prefers ours over Optical Flow 85.7% 35.1% 46.7% 73.3% 84.3% 90.8% 72.3%

Table 3.3: Human 3.6M Video Generation Preference: We show videos from two methods to Amazon
Mechanical Turk workers and ask them to indicate which of the the two looks more realistic. The
table shows the percentage of times workers preferred our model against baselines. Most of the time
workers prefer predictions from our model. We merge the activity categories of walking, walking
dog, and walking together into walking.

Pixel-level evaluation and control experiments. Following the same procedure as Sec-

tion 3.6.1, we evaluated the predicted videos using PSNR and separated the test data by

motion. Due to the high uncertainty and number of prediction steps in these videos, the

predicted future can largely deviate from the exact future observed in the ground-truth. The

highest PSNR scores are again achieved when the exact future pose is used to generate the

video frames; however, there is an even larger gap compared to the results in Section 3.6.1.

Due to space constraints, we ask the reader to please refer to the appendix for more detailed

quantitative and qualitative analysis.

3.7 Conclusion and Future Work
We propose a hierarchical approach of pixel-level video prediction. Using human action

videos as benchmark, we have demonstrated that our hierarchical prediction approach is

able to predict up to 128 future frames, which is an order of magnitude improvement in

terms of effective temporal scale of the prediction.

The success of our approach demonstrates that it can be greatly beneficial to incorporate

the proper high-level structure into the generative process. At the same time, an important

open research question would be how to automatically learn such structures without domain

knowledge. We leave this as future work.

Another limitation of this work is that it generates a single future trajectory. For an agent

to make a better estimation of what the future looks like, we would need more than one

41

In
pu

tf
ra

m
es

G
ro

un
dt

ru
th

C
on

v
LS

TM
Pr

ed
ic

te
d

fr
am

es
(o

ur
s)

Pr
ed

ic
te

d
po

se
(o

ur
s)

t=11 t=20 t=29 t=38 t=47 t=56 t=65

In
pu

tf
ra

m
es

G
ro

un
dt

ru
th

C
on

v
LS

TM
Pr

ed
ic

te
d

fr
am

es
(o

ur
s)

Pr
ed

ic
te

d
po

se
(o

ur
s)

t=11 t=29 t=47 t=65 t=83 t=101 t=119

Figure 3.5: Qualitative evaluation of our network for 55 step prediction on Penn Action (top rows),
and 109 step prediction on Human 3.6M (bottom rows). Our algorithm observes 10 previous input
frames, estimates the human pose, predicts the pose sequence of the future, and it finally generates
the future frames. Green box denotes input and red box denotes prediction. We show the last 7 input
frames. Side by side video comparisons can be found in our project website.

42

generated future. Future work will involve the generation of many futures given using a

probabilistic sequence model.

Finally, our model does not handle background motion. This is a highly challenging

task since background comes in and out of sight. Predicting background motion will require

a generative model that hallucinates the unseen background. We also leave this as future

work.

43

CHAPTER IV

Hierarchical Long-term Video Prediction

without Supervision

Much of recent research has been devoted to video prediction and generation, yet most

of the previous works have demonstrated only limited success in generating videos on

short-term horizons. The hierarchical video prediction method by Villegas et al. (2017b) is

an example of a state-of-the-art method for long-term video prediction, but their method

is limited because it requires ground truth annotation of high-level structures (e.g., human

joint landmarks) at training time. Our network encodes the input frame, predicts a high-level

encoding into the future, and then a decoder with access to the first frame produces the

predicted image from the predicted encoding. The decoder also produces a mask that

outlines the predicted foreground object (e.g., person) as a by-product. Unlike Villegas et al.

(2017b), we develop a novel training method that jointly trains the encoder, the predictor,

and the decoder together without high-level supervision; we further improve upon this by

using an adversarial loss in the feature space to train the predictor. Our method can predict

about 20 seconds into the future and provides better results compared to Denton and Fergus

(2018) and Finn et al. (2016a) on the Human 3.6M dataset.

44

4.1 Introduction
Building a model that is able to predict the future states of an environment from raw

high-dimensional sensory data (e.g., video) has recently emerged as an important research

problem in machine learning and computer vision. Models that are able to accurately

predict the future can play a vital role in developing intelligent agents that interact with their

environment Jayaraman and Grauman (2015, 2016); Finn et al. (2016a).

Popular video prediction approaches focus on recursively observing the generated frames

to make predictions farther into the future Oh et al. (2015); Mathieu et al. (2016); Goroshin

et al. (2015); Srivastava et al. (2015); Ranzato et al. (2014); Finn et al. (2016a); Villegas

et al. (2017b); Lotter et al. (2017). In order to make reasonable long-term frame predictions

in natural videos, these approaches need to automatically identify the dynamics of the main

factors of variation changing through time, while also being highly robust to pixel-level

noise. However, it is common for the previously mentioned methods to generate quality

predictions for the first few steps, but then the prediction dramatically degrades until all of

the video context is lost or the predicted motion becomes static.

A hierarchical method makes predictions in a high-level information hierarchy (e.g.,

landmarks) and then decodes the predicted future in high-level back into low-level pixel

space. The advantage of predicting the future in high-level space first is that the predictions

degrade less quickly compared to predictions made solely in pixel space. The method

by Villegas et al. (2017b) is an example of a hierarchical model; however, it requires ground

truth human landmark annotations during training time. In this work, we explore ways to

generate videos using a hierarchical model without requiring ground truth landmarks or

other high-level structure annotations during training. In a similar fashion to Villegas et al.

(2017b), the proposed network predicts the pixels of future video frames given the first

few frames. Specifically, our network never observes any of the predicted frames, and the

predicted future frames are driven solely by the high-level space predictions.

45

The contributions of our work are summarized below:

• An unsupervised approach for discovering high-level features necessary for long-term

future prediction.

• A joint training strategy for generating high-level features from low-level features and

low-level features from high-level features simultaneously.

• Use of adversarial training in feature space for improved high-level feature discovery

and generation.

• Long-term pixel-level video prediction for about 20 seconds into the future for the

Human 3.6M dataset.

4.2 Related Work
Patch-level prediction The video prediction problem was initially studied at the patch

level containing synthetic motions (Sutskever et al., 2009; Michalski et al., 2014a; Mittelman

et al., 2014). Srivastava et al. (2015) and Ranzato et al. (2014) followed up by proposing

methods that can handle prediction in natural videos. However, predicting patches encounters

the well-known aperture problem that causes blockiness as prediction advances in time.

Frame-level prediction on realistic videos. More recently, the video prediction problem

has been formulated at the full frame level using convolutional encoder/decoder networks as

the main component. Finn et al. (2016a) proposed a network that can perform next frame

video prediction by explicitly predicting pixel movement. For each pixel in the previous

frame, the network outputs a distribution over locations that a pixel is predicted to move.

The possible movement a pixel can make are then averaged to obtain the final prediction.

The network is trained end-to-end to minimize L2 loss. Mathieu et al. (2016) proposed

adversarial training with multiscale convolutional networks to generate sharper pixel-level

predictions in comparison to the conventional L2 loss. Villegas et al. (2017b) proposed a

network that decomposes motion and content in video prediction and obtained more accurate

46

results over Mathieu et al. (2016). Lotter et al. (2017) proposed a deep predictive coding

network in which each layer learns to predict the lower-level difference between the future

frame and current frame. As an alternative approach to convolutional encoder-decoder

networks, Kalchbrenner et al. (2017) proposed an autoregressive generation scheme for

improved prediction performance. In a concurrent work, Babaeizadeh et al. (2018) and

Denton and Fergus (2018) proposed stochastic video prediction method based on recurrent

variational autoencoders. Despite these efforts, long-term prediction on high-resolution

natural videos beyond approximately 20 frames has been known to be very challenging.

Long-term prediction. Oh et al. (2015) proposed an action conditional convolutional

encoder-decoder architecture that demonstrated high-quality long-term prediction perfor-

mance on video games (e.g., Atari games), but it has not been applied to real-world video

prediction. Villegas et al. (2017b) proposed a long-term prediction method using a hierarchi-

cal approach, but it requires the ground truth landmarks as supervision. Our work proposes

several techniques to address this limitation.

4.3 Background
The hierarchical video prediction model in Villegas et al. (2017b) relieves the blurring

problem observed in previous prediction approaches by modeling the video dynamics in

high-level feature space. This approach enables the prediction of many frames into the

future. The hierarchical prediction model is described below.

To predict the image at timestep t, the following procedure is used: First, the high-level

features pt 2 Rl — in this case human pose landmarks — are estimated from the first C

context frames. Next, an LSTM is used to predict the future landmark states p̂t 2 Rl given

the landmarks estimated from the context frames as follows:

8
>><

>>:

[p̂t, Ht] = LSTM (pt�1, Ht�1) if t  C,

[p̂t, Ht] = LSTM (p̂t�1, Ht�1) if t > C,

47

where Ht 2 Rh is the hidden state of the LSTM at timestep t. Note that the predicted

p̂t after C timesteps is used to generate the video frames. Additionally, they remove the

auto-regressive connections that feed p̂t�1 back into LSTM making the prediction only

depend on Ht�1. In our formulation, however, the prediction depends on both p̂t�1 and

Ht�1, but p̂t�1 is not a vector of landmarks.

Once all p̂t are obtained, the visual analogy network (VAN) (Reed et al., 2015b) generates

the corresponding image at time t. VAN identifies the change between g(pC) and g(p̂t),

where g(.) is a fixed function that takes in landmarks and converts them into Gaussian

heatmaps. Next, it applies the identified difference to image IC to generate image It.

The VAN does this by mapping images to a space where analogies can be represented by

additions and subtractions. Therefore, the image at timestep t is computed by

Ît = VAN (pC , p̂t, IC) =

fdec(fpose(g(p̂t))� fpose(g(pC)) + fimg(IC)).

In contrast to Villegas et al. (2017b), our method does not require landmarks pt, and therefore

the dependence on the fixed function g(.) is removed. Our method automatically discovers

the features needed as input to the VAN for generating frame at time t. These features locate

the object moving through time, and help our network focus on generating the moving

object pixels in future frames. In the following section, we describe our method and training

variations for unsupervised future frame prediction.

4.4 Method

4.4.1 Network Architecture

Our method uses a network architecture similar to Villegas et al. (2017b). However, our

predictor LSTM and VAN do not require landmark annotations and can be trained jointly.

48

In our model, the predictor LSTM is defined by

8
>><

>>:

[êt, Ht] = LSTM (et�1, Ht�1) if t  C

[êt, Ht] = LSTM (êt�1, Ht�1) if t > C,

(4.1)

where et�1 2 Rd is a general feature vector computed from an input image It by an encoder

network, and êt 2 Rd is the feature vector predicted by the LSTM. To compute the frame at

time t, we use a variation of the deep version of the image analogy formulation from Reed

et al. (2015b). In contrast to Villegas et al. (2017b), we use the first frame in the input video

to compute the future frames via image analogy. Therefore, the frame at time t is computed

by

Īt,Mt = VAN (e1, êt, I1) =

fdec(fenc(êt) + T (fimg(I1), fenc(e1), fenc(êt))), (4.2)

Ît = Īt �Mt + (1�Mt)� I1, (4.3)

where fenc : Rd ! Rs⇥s⇥m is a convolutional network that maps a feature vector into a

feature tensor, fimg : Rh⇥w⇥c ! Rs⇥s⇥m is a convolutional network that maps an input

image into a feature tensor, fdec : Rs⇥s⇥m ! Rh⇥w⇥c is a deconvolutional network that

maps a feature tensor into an image, and T (., ., .) is defined as follows:

T (x, y, z) = fanalogy([fdiff (x� y), z]), (4.4)

where fdiff : Rs⇥s⇥m ! Rs⇥s⇥m computes a feature tensor from the difference between

x and y, [., .] denotes a concatenation along the depth dimension of the input tensors, and

fanalogy : Rs⇥s⇥2m ! Rs⇥s⇥m computes the analogy feature tensor to be added to fenc(êt).

Finally, Mt is a gating mechanism that enables our network to identify the moving objects in

the video frames. In Equation 4.3, our network chooses pixels from the input frame that can

49

simply be copied into the predicted frame, and pixels that need to be generated are chosen

from Īt. In Section 4.5, we show that the selected areas resemble the structure of moving

objects in the input and the predicted frames.

4.4.2 Training Objective

These networks can be trained in multiple ways. In Villegas et al. (2017b), the predictor

LSTM and VAN are trained separately using ground truth landmarks. In this work, we

explore alternative ways of training these networks in the absence of ground truth annotations

of high-level structures.

4.4.2.1 End-to-End Prediction

One simple baseline method is to simply connect the VAN and the predictor LSTM together,

and train them end-to-end (E2E). Our full network is optimized to minimize the L2 loss

between the predicted image and the ground truth by:

min(
TX

t=1

L2(Ît, It)).

Figure 4.1 illustrates a diagram of this training scheme. Although a straightforward objective

function is optimized, minimizing the L2 loss directly on the image outputs from previous

observations tends to produce blurry predictions. This phenomenon has also been observed

in several previous works Mathieu et al. (2016); Villegas et al. (2017b,a).

4.4.2.2 Encoder Predictor with Analogy Making

An alternative way to train our network is to constrain the features predicted by LSTM to be

close to the outputs of the feature encoder (i.e. êt ⇡ et). Simultaneously, the feature encoder

outputs can be trained to be useful for analogy making. To accomplish this, we optimize the

following objective function:

min(
TX

t=1

L2(Ît, It) + ↵L2(êt, et)), (4.5)

50

Figure 4.1: The E2E method. The first few frames are encoded and fed into the predictor as context.
The predictor predicts the subsequent encodings, which the VAN uses to produce the pixel-level
predictions. The average of the losses is minimized. This is the configuration of every method at
inference time, even if the predictor and VAN are trained separately.

VAN VAN VAN

Encoder

LSTM

Encoder

LSTM LSTM LSTM

VAN

...

...

L2
Loss

L2
Loss

L2
Loss

L2
Loss

L2
Loss

Encoder Encoder Encoder Encoder

L2
Loss

L2
Loss

L2
Loss

Figure 4.2: Blue lines represent the segment of the EPVA method in which the encoder and predictor
are trained together. The encoder is trained to produce an encoding that is easy to predict, and the
predictor is trained to predict that encoding into the future. Red lines represent the segment of the
EPVA method in which the encoder and the VAN are trained together. The encoder is trained to
produce an encoding that is informative to the VAN, while the VAN is trained to output the image
given the encoding. The average of the losses in the diagram is minimized. This part of the method
is similar to an autoencoder. Our method code is available at https://bit.ly/2HqiHqx

where Ît = VAN (e1, et, I1), et and e1 are both outputs of the feature encoder computed from

the image at time t and the first image in the video, and ↵ is a balancing hyper parameter that

controls the importance between predicting êt that is close to et and learning an encoding et

that is good enough for image analogy. ↵ is used to prevent the predictor and encoder from

both outputting the zero feature vector.

51

Table 4.1: Crowd-sourced human preference evaluation on the moving shapes dataset.

Method Shape has correct color Shape has wrong color Shape disappeared
EPVA 96.9% 3.1% 0%
CDNA Baseline 24.6% 5.7% 69.7%

Figure 4.2 illustrates the flow of information by which the encoder and predictor are

trained together with blue arrows, and the flow of information by which the VAN and

encoder are trained together with red arrows. Separate gradient descent procedures (or

optimizers, in TensorFlow parlance) could be used to minimize L2(Ît, It) and L2(êt, et), but

we found that minimizing the sum is more accurate in our experiments. With this method,

the predictor will generate the encoder outputs in future time steps, and the VAN will use the

encoder output to produce the frame. The advantage of this training scheme is that the VAN

learns to sharply predict the pixels since it is trained given the encoding from the ground

truth frame. The predictor learns to approximate the ground truth high-level features from

the encoder. Therefore, at inference time the VAN knows how to decode the high-level

structure features resulting in better predictions. Note that the encoder outputs et are given

to VAN as input during training; however, the predictor outputs êt are given during testing.

We refer to this method as EPVA.

The EPVA method works most accurately when experimented with ↵ starting small,

around 1e-7, and gradually increased to around 0.1 during training. As a result, the encoder

will first be optimized to produce an informative encoding, then gradually optimized to

make that encoding easy to predict by the predictor.

4.4.2.3 EPVA with adversarial loss in predictor

A disadvantage of the EPVA training scheme alone is that the predictor is trained to minimize

the L2 loss with respect to the encoder outputs. The L2 loss is notoriously known for the

“blurriness effect," and it causes our predictor LSTM to output blurry predictions in encoding

space.

One solution to this problem is to use an adversarial loss Goodfellow et al. (2014b)

52

G
.T

.
Fi

nn
et

al
.

(2
01

6a
)

EP
VA

t=1 t=2 t=3 t=256 t=257 t=258 t=1020 t=1021 t=1022

Figure 4.3: A visual comparison of the EPVA method and CDNA from Finn et al. (2016a) as the
baseline. This is a representative example of the quality of predictions from both methods. For videos
please visit https://bit.ly/2kS8r16.

between the predictor and encoder. We use an LSTM discriminator network, which takes a

sequence of encodings and produces a score that indicates whether the encodings came from

the predictor or the encoder network. We train the discriminator to minimize the improved

Wasserstein loss Gulrajani et al. (2017).

min(
TX

t=1

(D(ê)�D(e) + �(krêD(ê)k2 � 1)2])). (4.6)

Here, e and ê are the sequence of inferred and predicted encodings respectively. We train

both the encoder and the predictor, so we use a loss which takes both the encoder and

predictor outputs into account. Therefore, we use the negative of the discriminator loss to

optimize the generator.

min(�
TX

t=1

(D(ê)�D(e))) (4.7)

We also still optimize the l2 loss between the predictor and encoder, weighted by a scale

factor. This ensures the predictions will be accurate given the context frame. We also feed

a Gaussian noise variable into the predictor in order to generate different results given the

same input sequence. We found that the noise helps generate more complex predictions in

practice.

In addition to passing the predictor or encoder output to the discriminator, we also

pass the output of the VAN encoder, given the predictor or encoder output. This trains the

53

predictor and encoder to encourage the VAN to produce similar quality images. This is

achieved by substituting [fenc(e), e] for e and [fenc(ê), ê] for ê in the equations above, where

fenc is the VAN encoder. The encoder and VAN are trained together in the same way as

previously discussed.

4.5 Experiments
We evaluated our methods on two datasets: the Human 3.6M dataset (Ionescu et al., 2014b,

2011), and a toy dataset based on videos of bouncing shapes. More sample videos and code to

reproduce our results are available at our project website https://bit.ly/2kS8r16.

4.5.1 Long-term Prediction on a Toy Dataset

We train our method on a toy task with known factors of variation. We used a dataset with

a generated shape that bounces around the image and changes size deterministically. We

trained our EPVA method and the CDNA method from Finn et al. (2016a) to predict 16

frames, given the first three frames as context. Both methods are evaluated on predicting

approximately 1000 frames. We added noise to the LSTM states of the predictor network

during training to help predict accurate motion further into the future. Results from a held

out test set are described in the following.

After visually analyzing the results of both methods, we found that when the CDNA

fails, the shape disappears entirely. In contrast, when the EPVA method fails, the shape

changes color. See Figure 4.3 for sample predictions. For quantitative evaluation, we used a

script to measure whether a shape was present from frames 1012 to 1022 and if that shape

has the appropriate color. Table 4.1 shows the results averaged over 1000 runs. The CDNA

method predicts a shape with the correct color about 25% of the time, and the EPVA method

predicts a shape with the correct color about 97% of the time. The EPVA method sometimes

fails by predicting the shape in the same location from frame to frame, but this is rare as the

reader can confirm by examining the randomly sampled predictions on our project website.

It is unrealistic to expect the methods to predict the location of the shape accurately in frame

54

Table 4.2: Crowd-sourced human preference evaluation on the Human 3.6M dataset.

Comparison Ours is better Same Baseline is better
EPVA ADV. 1-127 vs Finn et al. (2016a) 1-127 73.9% 13.2% 12.9%
EPVA ADV. 5-127 vs Denton and Fergus (2018) 5-127 58.2% 24.0% 17.8%

1000 since small errors propagate in each prediction step.

4.5.2 Long-term Prediction on Human 3.6M

In these experiments, we use subjects 1, 5, 6, 7, and 8 for training, and subject 9 for

validation. Subject 11 results are reported in this paper for testing. We use 64 by 64 images,

and subsample the dataset to 6.25 frames per second. We train the methods to predict 32

frames and the results in this paper show predictions over 126 frames. Each method is given

the first five frames as context. In these images, the model predicts about 20 seconds into

the future starting with 0.8 seconds of context. We use an encoding dimension of 64 for

variations of our method on this dataset. The encoder in the EPVA method is initialized

with the VGG network Simonyan and Zisserman (2015b) pretrained on Imagenet (Deng

et al., 2009). To speed up the convergence of the EPVA ADVERSARIAL method, we start

training from a pretrained EPVA model.

We compare our method to the CDNA method in Finn et al. (2016a) and the SVG-LP

method in Denton and Fergus (2018). We trained each method with the same number of

frames and context frames as ours. For Denton and Fergus (2018), we performed grid search

on the � and learning rate to find the best configuration for this experiment, as well as, used

a network as large as we could fit in the GPU. For Finn et al. (2016a), we performed grid

search on the learning rate. The method in Denton and Fergus (2018) can predict multiple

futures, so we generate 5 futures for each context sequence, and compare against the one

that most closely matches the ground truth in terms of SSIM. We find that this produces

slightly better results than taking random predictions. Note that this protocol provides an

unfair advantage to their method.

Figure 4.5 shows comparison to the baselines, and different variations of our method

55

are compared in Figure 4.6. In Figure 4.5, we also show the discovered foreground motion

segmentation mask from our method. This mask clearly shows that the feature embeddings

from our encoder and predictor encode the rough location and outline of the moving human.

From visually analyzing the results, we found that the E2E and CDNA methods usually

blur out very quickly. The EPVA method produces accurate predictions further into the

future, but the figure sometimes disappears. The human predictions from the EPVA

ADVERSARIAL method disappear less often and usually reappear in a later time step.

The CDNA Finn et al. (2016a) and the E2E methods produce blurry images because

they are trained to minimize L2 loss directly. In the EPVA method, the predictor and VAN

are trained separately. This prevents the VAN from learning to produce blurry images when

the predictor is not confident. The predictions will be sharp as long as the predictor network

outputs a valid encoding. The EPVA ADVERSARIAL method makes the predictor network

more likely to produce a valid encoding since the discriminator is trained to produce valid

predictions. We also observe that there is more movement in the EPVA ADVERSARIAL

method.

4.5.2.1 Person Detector Evaluation

We propose to compare the methods quantitatively by considering whether the generated

videos contain a recognizable person. To do this in an automated fashion, we ran a Mo-

bileNet (Howard et al., 2017) object detection model pretrained on the MS-COCO (Lin et al.,

2014) dataset for each of the generated frames. We record the confidence of the detector that

a person (one of the MS-COCO labels) is in the image. We call this the “person score” (with

value ranges from 0 to 1, with a higher score corresponding to a higher confidence level).

The human detector achieves approximately an accuracy of 0.4 on the ground truth data.

The results on each frame averaged over 1000 runs are shown in Figure 4.4. The EPVA

ADVERSARIAL method stays relatively constant over the different frames. For longer-term

predictions, the evaluation shows that the EPVA ADVERSARIAL method is significantly

better than the baselines.

56

Figure 4.4: Confidence of the person detector that a person is recognized in the predicted frame
(“person score”).

4.5.2.2 Human Evaluation

We also use a service similar to Mechanical Turk to collect comparisons of 1,000 generated

videos from Finn et al. (2016a) and Denton and Fergus (2018) to different variations of our

method. The task presents videos generated by the two methods side by side to human raters

and asks them to confirm whether one of the videos is more realistic. The instructions tell

raters to look for realistic motion, as well as a realistic person image. To evaluate the quality

of the long-term predictions from the EPVA ADVERSARIAL method, we compare frames

64 to 127 of the EPVA ADVERSARIAL method to frames 1 to 63 of Finn et al. (2016a). We

evaluate frames 5-127 of Denton and Fergus (2018) against 5-127 of ours since their method

isn’t designed to produce good results for the context frames.

The summary results are shown in Table 4.2. From these results, we conclude the

following: the EPVA method generates significantly better long-term predictions than Finn

et al. (2016a). Further, the EPVA ADVERSARIAL method is a dramatic improvement

over the EPVA method. The EPVA ADVERSARIAL method is capable of high-quality

long-term predictions, as shown by frames 64 to 127 (seconds 10 to 20) of the EPVA

ADVERSARIAL method being rated higher than frames 1-63 of Finn et al. (2016a). The

EPVA ADVERSARIAL is also significantly better than Denton and Fergus (2018) even after

choosing the best out of 5 predictions after comparing with the ground truth in terms of

57

SSIM.

4.5.2.3 Pose regression from learned features

We perform experiments using the learned encoder features for human pose regression. We

compare against a baseline based on features computed using the VGG network Simonyan

and Zisserman (2015b) trained for object recognition. The features are used as input to

a 2-layer MLP, and trained to output human pose landmarks. The MLP trained with our

features achieves an error of 0.0687 against an error of 0.0758 from the baseline features.

This is a relative improvement of approximately 9%. This along with the generated masks

shows the usefulness of our discovered features.

4.5.3 Ablation Studies

We perform the following experiments to test different variations of the network and training.

We hypothesize that using a VAN improves the quality of the predictions. To test this, we

train a version of the network with the VAN replaced by a decoder network that only had

access to the encoding and not the first observed frame.

In this method, as well as the methods with the VAN, the decoder outputs a mask that

controls whether to use its own output, or the pixels of the first frame. Thus, the decoder

will have to set the mask values to not use the pixels from the first frame that correspond

to the image of the person. Without the VAN, the network is often unable to set the mask

values to completely remove the human from the first frame when predicting frames beyond

32. This is because the network is not always given access to the first frame, so it has to

represent both foreground and background information in the prediction, which degrades

over time. Refer to Figure 4.6 for comparison.

We also tried to use a hybrid objective that combines E2E and EPVA losses, but the

videos generated from this method are more blurry than the videos from the EPVA method.

These are called E2E and EPVA in Figure 4.6. Finally, we also trained and evaluated the

EPVA method with 10 frames of context instead of 5. We found that this didn’t improve the

long-term prediction results.

58

G
ro

un
d

tru
th

Fi
nn

et
al

.
(2

01
6a

)
D

en
to

n
an

d
Fe

rg
us

(2
01

8)
O

ur
s

Fr
am

es
O

ur
s

M
as

ks

t=1 t=36 t=54 t=72 t=90 t=108 t=126

G
ro

un
d

tru
th

Fi
nn

et
al

.
(2

01
6a

)
D

en
to

n
an

d
Fe

rg
us

(2
01

8)
O

ur
s

Fr
am

es
O

ur
s

M
as

ks

Figure 4.5: Comparison of the generated videos from EPVA with the ADVERSARIAL LOSS (ours),
CDNA Finn et al. (2016a), and SVG-LP Denton and Fergus (2018). We let each method predict 127
frames and show the time steps indicated on top of the figure. The person completely disappears in
all the predictions generated using Finn et al. (2016a). For the SVG-LP method Denton and Fergus
(2018), the person either stops moving or almost vanishes into the background. The EPVA with
ADVERSARIAL LOSS method produces sharp predictions in comparison to the baselines. Additionally,
we show the discovered foreground motion segmentation mask that allows our network to delete
the human in the input frame (static mask in the top example) and generate the human in the future
frames (moving mask in the top example). Please refer to our project website for video results:
https://bit.ly/2kS8r16.

59

EP
VA

A
dv

er
sa

ria
l

E2
E

an
d

EP
VA

EP
VA

W
ith

ou
t

VA
N

E2
E

t=1 t=36 t=54 t=72 t=90 t=108 t=126

Figure 4.6: Ablative study illustration. We present comparisons between different variations of our
architecture: E2E, loss without VAN, EPVA, combined E2E and EPVA loss, and our best model
configuration (EPVA ADVERSARIAL). See our project website for videos.

4.6 Conclusion
We presented hierarchical long-term video prediction approaches that do not require ground

truth high-level structure annotations. The proposed EPVA method has the limitation of the

predictions occasionally disappearing, but it generates sharper images for a longer period of

time compared to Finn et al. (2016a), and the E2E method. By applying adversarial loss in

the higher-level feature space, our EPVA ADVERSARIAL method generates more realistic

predictions compared to all of the presented baselines including Finn et al. (2016a) and

Denton and Fergus (2018). This result suggests that it is beneficial to apply an adversarial

loss in the higher-level feature space. For future work, applying other techniques in feature

space such as the variational method described in Babaeizadeh et al. (2018) could enable

our network to generate multiple future trajectories.

Acknowledgments. We thank colleagues at Google Brain and anonymous reviewers for

their constructive feedback and suggestions about this work. We also thank Emily Denton

for providing her code available for comparison. R. Villegas was supported by Rackham

60

Merit Fellowship.

61

CHAPTER V

High Fidelity Video Prediction with Large

Neural Nets

Predicting future video frames is extremely challenging, as there are many factors of

variation that make up the dynamics of how frames change through time. Previously

proposed solutions require complex inductive biases inside network architectures with

highly specialized computation, including segmentation masks, optical flow, and foreground

and background separation. In this work, we question if such handcrafted architectures

are necessary and instead propose a different approach: finding minimal inductive bias

for video prediction while maximizing network capacity. We investigate this question by

performing the first large-scale empirical study and demonstrate state-of-the-art performance

by learning large models on three different datasets: one for modeling object interactions,

one for modeling human motion, and one for modeling car driving.

5.1 Introduction
From throwing a ball to driving a car, humans are very good at being able to interact with

objects in the world and anticipate the results of their actions. Being able to teach agents to

do the same has enormous possibilities for training intelligent agents capable of generalizing

to many tasks. Model-based reinforcement learning is one such technique that seeks to do

this – by first learning a model of the world, and then by planning with the learned model.

62

There has been some recent success with training agents in this manner by first using video

prediction to model the world. Particularly, video prediction models combined with simple

planning algorithms (Hafner et al., 2019) or policy-based learning (Kaiser et al., 2019) for

model-based reinforcement learning have been shown to perform equally or better than

model-free methods with far less interactions with the environment. Additionally, Ebert et al.

(2018) showed that video prediction methods are also useful for robotic control, especially

with regards to specifying unstructured goal positions.

However, training an agent to accurately predict what will happen next is still an open

problem. Video prediction, the task of generating future frames given context frames, is

notoriously hard. There are many spatio-temporal factors of variation present in videos that

make this problem very difficult for neural networks to model. Many methods have been

proposed to tackle this problem (Oh et al., 2015; Finn et al., 2016b; Vondrick et al., 2016;

Villegas et al., 2017a; Lotter et al., 2017; Denton and Birodkar, 2017; Tulyakov et al., 2018;

Liang et al., 2017; Denton and Fergus, 2018; Wichers et al., 2018; Babaeizadeh et al., 2018;

Lee et al., 2018; Byeon et al., 2018; Yan et al., 2018; Kumar et al., 2018). Most of these works

propose some type of separation of information streams (e.g., motion/pose and content

streams), specialized computations (e.g., warping, optical flow, foreground/background

masks, predictive coding, etc), additional high-level information (e.g., landmarks, semantic

segmentation masks, etc) or are simply shown to work in relatively simpler environments

(e.g., Atari, synthetic shapes, centered human faces and bodies, etc).

Simply making neural networks larger has been shown to improve performance in

many areas such as image classification (Real et al., 2018; Zoph et al., 2018; Huang et al.,

2018), image generation (Brock et al., 2019), and language understanding (Devlin et al.,

2018; Radford et al., 2019), amongst others. Particularly, Brock et al. (2019) recently

showed that increasing the capacity of GANs (Goodfellow et al., 2014a) results in dramatic

improvements for image generation.

In his blog post "The Bitter Lesson", Rich Sutton comments on these types of develop-

63

ments by arguing that the most significant breakthroughs in machine learning have come

from increasing the compute provided to simple models, rather than from specialized, hand-

crafted architectures (Sutton, 2019). For example, he explains that the early specialized

algorithms of computer vision (edge detection, SIFT features, etc.) gave way to larger but

simpler convolutional neural networks. In this work, we seek to answer a similar question:

do we really need specialized architectures for video prediction? Or is it sufficient to

maximize network capacity on models with minimal inductive bias?

In this work, we perform the first large-scale empirical study of the effects of minimal

inductive bias and maximal capacity on video prediction. We show that without the need

of optical flow, segmentation masks, adversarial losses, landmarks, or any other forms of

inductive bias, it is possible to generate high quality video by simply increasing the scale

of computation. Overall, our experiments demonstrate that: (1) large models with minimal

inductive bias tend to improve the performance both qualitatively and quantitatively, (2)

recurrent models outperform non-recurrent models, and (3) stochastic models perform better

than non-stochastic models, especially in the presence of uncertainty (e.g., videos with

unknown action or control).

5.2 Related Work
The task of predicting multiple frames into the future has been studied for a few years

now. Initially, many early methods tried to simply predict future frames in small videos or

patches from large videos (Michalski et al., 2014b; Ranzato et al., 2014; Srivastava et al.,

2015). This type of video prediction caused rectangular-shaped artifacts when attempting

to fuse the predicted patches, since each predicted patch was blind to its surroundings.

Then, action-conditioned video prediction models were built with the aim of being used

for model-based reinforcement learning (Oh et al., 2015; Finn et al., 2016b). Later, video

prediction models started becoming more complex and better at predicting future frames.

Lotter et al. (2017) proposed a neural network based on predictive coding. Villegas et al.

64

(2017a) proposed to separate motion and content streams in video input. Villegas et al.

(2017b) proposed to predict future video as landmarks in the future and then use these

landmarks to generate frames. Denton and Birodkar (2017) proposed to have a pose and

content encoders as separate information streams. However, all of these methods focused

on predicting a single future. Unfortunately, real-world video is highly stochastic – that is,

there are multiple possible futures given a single past.

Many methods focusing on the stochastic nature of real-world videos have been recently

proposed. Babaeizadeh et al. (2018) build on the optical flow method proposed by Finn et al.

(2016b) by introducing a variational approach to video prediction where the entire future is

encoded into a posterior distribution that is used to sample latent variables. Lee et al. (2018)

also build on optical flow and propose an adversarial version of stochastic video prediction

where two discriminator networks are used to enable sharper frame prediction. Denton

and Fergus (2018) also propose a similar variational approach. In their method, the latent

variables are sampled from a prior distribution of the future during inference time, and only

frames up to the current time step are used to model the future posterior distribution. Kumar

et al. (2018) propose a method based on normalizing flows where the exact log-likelihood

can be computed for training.

In this work, we investigate whether we can achieve high quality video predictions

without the use of the previously mentioned techniques (optical flows, adversarial objectives,

etc.) by just maximizing the capacity of a standard neural network. To the best of our

knowledge, this work is the first to perform a thorough investigation on the effect of capacity

increases for video prediction.

5.3 Scaling up video prediction
In this section, we present our method for scaling up video prediction networks. We first

consider the Stochastic Video Generation (SVG) architecture presented in Denton and

Fergus (2018), a stochastic video prediction model that is entirely made up of standard

65

neural network layers without any special computations (e. g. optical flow). SVG is

competitive with other state-of-the-art stochastic video prediction models (SAVP, SV2P)

(Lee et al., 2018); however, unlike SAVP and SV2P, it does not use optical flow, adversarial

losses, etc. As such, SVG was a fitting starting point to our investigation.

To build our baseline model, we start with the stochastic component that models the

inherent uncertainty in future predictions from Denton and Fergus (2018). We also use

shallower encoder-decoders that only have convolutional layers to enable more detailed

image reconstruction (Dosovitskiy and Brox, 2016b). A slightly shallower encoder-decoder

architecture results in less information lost in the latent state, as the resulting convolutional

map from the bottlenecked layers is larger. Then, in contrast to Denton and Fergus (2018),

we use a convolutional LSTM architecture, instead of a fully-connected LSTM, to fit the

shallow encoders-decoders. Finally, the last difference is that we optimize the `1 loss with

respect to the ground-truth frame for all models like in the SAVP model, instead of using `2

like in SVG. Lee et al. (2018) showed that `1 encouraged sharper frame prediction over `2.

We optimize our baseline architecture by maximizing the following variational lower-

bound:

TX

t=1

Eq�(zT |xT) log p✓(xt|zt,x<t) � �DKL (q�(zt|xt)||p (zt|x<t)) ,

where xt is the frame at time step t, q�(zT |xT) the approximate posterior distribution,

p (zt|x<t) is the prior distribution, p✓(xt|zt,x<t) is the generative distribution, and �

regulates the strength of the KL term in the lowerbound. During training time, the frame

66

prediction process at time step t is as follows:

µ�(t), ��(t) = LSTM�(ht;M) where ht = f
enc (xt;K) ,

zt ⇠ N (µ�(t), ��(t)) ,

gt = LSTM✓ (ht�1, zt;M) where ht�1 = f
enc (xt�1;K) ,

xt = f
dec (gt;K) ,

where f
enc is an image encoder and f

dec is an image decoder neural network. LSTM� and

LSTM✓ are LSTMs modeling the posterior and generative distributions, respectively. µ�(t)

and ��(t) are the parameters of the posterior distribution modeling the Gaussian latent code

zt. Finally, xt is the predicted frame at time step t.

To increase the capacity of our baseline model, we use hyperparameters K and M ,

which denote the factors by which the number of neurons in each layer of the encoder,

decoder and LSTMs are increased. For example, if the number of neurons in LSTM is d,

then we scale up by d ⇥M . The same applies to the encoder and decoder networks but

using K as the factor. In our experiments we increase both K and M together until we

reach the device limits. Due to the LSTM having more parameters, we stop increasing

the capacity of the LSTM at M = 3 but continue to increase K up to 5. At test time, the

same process is followed, however, the posterior distribution is replaced by the Gaussian

parameters computed by the prior distribution:

µ (t), � (t) = LSTM (ht�1;M) where ht�1 = f
enc (xt�1;K) ,

Next, we perform ablative studies on our baseline architecture to better quantify exactly

how much each individual component affects the quality of video prediction as capacity

increases. First, we remove the stochastic component, leaving behind a fully deterministic

architecture with just a CNN-based encoder-decoder and a convolutional LSTM. For this

67

version, we simply disable the prior and posterior networks as described above. Finally, we

remove the LSTM component, leaving behind only the encoder-decoder CNN architectures.

For this version, we simply use f
enc and f

dec as the full video prediction network. However,

we let f enc observe the same number of initial history as the recurrent counterparts.

Details of the devices we use to scale up computation can be found in the supplementary

material.

5.4 Experiments
In this section, we evaluate our method on three different datasets, each with different

challenges.

Object interactions. We use the action-conditioned towel pick dataset from Ebert et al.

(2018) to evaluate how our models perform with standard object interactions. This dataset

contains a robot arm that is interacting with towel objects. Even though this dataset uses

action-conditioning, stochastic video prediction is still required for this task. This is because

the motion of the objects is not fully determined by the actions (the movements of the robot

arm), but also includes factors such as friction and the objects’ current state. For this dataset,

we resize the original resolution of 48x64 to 64x64. For evaluation, we use the first 256

videos in the test set as defined by Ebert et al. (2018).

Structured motion. We use the Human 3.6M dataset (Ionescu et al., 2014a) to measure

the ability of our models to predict structured motion. This dataset is comprised of humans

performing actions inside a room (walking around, sitting on a chair, etc.). Human motion is

highly structured (i.e., many degrees of freedom), and so, it is difficult to model. We use the

train/test split from Villegas et al. (2017b). For this dataset, we resize the original resolution

of 1000x1000 to 64x64.

Partial observability. We use the KITTI driving dataset (Geiger et al., 2013) to measure

how our models perform in conditions of partial observability. This dataset contains driving

scenes taken from a front camera view of a car driving in the city, residential neighborhoods,

68

CNN models LSTM models SVG’ models

Dataset Biggest
(M=3, K=5)

Baseline
(M=1, K=1)

Biggest
(M=3, K=5)

Baseline
(M=1, K=1)

Biggest
(M=3, K=5)

Baseline
(M=1, K=1)

Towel Pick 199.81 281.07 100.04 206.49 93.71 189.91
Human 3.6M 1321.23 1077.55 458.77 614.21 429.88 682.08
KITTI 2414.64 2906.71 1159.25 2502.69 1217.25 2264.91

Table 5.1: Fréchet Video Distance evaluation (lower is better). We compare the biggest model
we were able to train against the baseline models (M=1, K=1). Note that all models (SVG’, CNN,
and LSTM). The biggest recurrent models are significantly better than their small counterpart. Please
refer to our supplementary material for plots showing how gradually increasing model capacity
results in better performance.

and on the road. The front view camera of the vehicle causes partial observability of the

vehicle environment, which requires a model to generate seen and unseen areas when pre-

dicting future frames. We use the train/test split from Lotter et al. (2017) in our experiments.

We extract 30 frame clips and skip every 5 frames from the test set so that the test videos do

not significantly overlap, which gives us 148 test clips in the end. For this dataset, we resize

the original resolution of 128x160 to 64x64.

5.4.1 Evaluation metrics

We perform a rigorous evaluation using five different metrics: Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity (SSIM), VGG Cosine Similarity, Fréchet Video Distance

(FVD) (Unterthiner et al., 2018), and human evaluation from Amazon Mechanical Turk

(AMT) workers. We perform these evaluations on all models described in Section 5.3:

our baseline (denoted as SVG’), the recurrent deterministic model (denoted as LSTM),

and the encoder-decoder CNN model (denoted as CNN). In addition, we present a study

comparing the video prediction performance as a result of using skip-connections from

every layer of the encoder to every layer of the decoder versus not using skip connections at

all (Supplemetary C.0.3).

5.4.1.1 Frame-wise evaluation

We use three different metrics to perform frame-wise evaluation: PSNR, SSIM, and VGG

cosine similarity. PSNR and SSIM perform a pixel-wise comparison between the predicted

69

frames and generated frames, effectively measuring if the exact pixels have been generated.

VGG Cosine Similarity has been used in prior work (Lee et al., 2018) to compare frames in a

perceptual level. VGGnet (Simonyan and Zisserman, 2015c) is used to extract features from

the predicted and ground-truth frames, and cosine similarity is performed at feature-level.

Similar to Kumar et al. (2018); Babaeizadeh et al. (2018); Lee et al. (2018), we sample 100

future trajectories per video and pick the highest scoring trajectory as the main score.

5.4.1.2 Dynamics-based evaluation

We use two different metrics to measure the overall realism of the generated videos: FVD

and human evaluations. FVD, a recently proposed metric for video dynamics accuracy, uses

a 3D CNN trained for video classification to extract a single feature vector from a video.

Analogous to the well-known FID (Heusel et al., 2017), it compares the distribution of

features extracted from ground-truth videos and generated videos. Intuitively, this metric

compares the quality of the overall predicted video dynamics with that of the ground-truth

videos rather than a per-frame comparison. For FVD, we also sample 100 future trajectories

per video, but in contrast, all 100 trajectories are used in this evaluation metric (i.e., not just

the max, as we did for VGG cosine similarity).

We also use Amazon Mechanical Turk (AMT) workers to perform human evaluations.

The workers are presented with two videos (baseline and largest models) and asked to

either select the more realistic video or mark that they look about the same. We choose

the videos for both models by selecting the highest scoring videos in terms of the VGG

cosine similarity with respect to the ground truth. We use 10 unique workers per video

and choose the selection with the most votes as the final answer. Finally, we also show

qualitative evaluations on pairs of videos, also selected by using the highest VGG cosine

similarity scores for both the baseline and the largest model. We run the human perception

based evaluation on the best two architectures we scale up.

70

LSTM models SVG’ models

Dataset Biggest
(M=3, K=5)

Baseline
(M=1, K=1)

About
the same

Biggest
(M=3, K=5)

Baseline
(M=1, K=1)

About
the same

Towel Pick 90.2% 9.0% 0.8% 68.8% 25.8% 5.5%
Human 3.6M 98.7% 1.3% 0.0% 95.8% 3.4% 0.8%
KITTI 99.3% 0.7% 0.0% 99.3% 0.7% 0.0%

Table 5.2: Amazon Mechanical Turk human worker preference. We compared the biggest and
baseline models from LSTM and SVG’. The bigger models are more frequently preferred by humans.
We present a full comparison for all large models in Supplementary C.0.4.

5.4.2 Robot arm

For this dataset, we perform action-conditioned video prediction. We modify the baseline

and large models to take in actions as additional input to the video prediction model. Action

conditioning does not take away the inherent stochastic nature of video prediction due to the

dynamics of the environment. During training time, the models are conditioned on 2 input

frames and predict 10 frames into the future. During test time, the models predict 18 frames

into the future.

Dynamics-based evaluation. We first evaluate the action-conditioned video prediction

models using FVD to measure the realism in the dynamics. In Table 5.1 (top row), we

present the results of scaling up the three models described in Section 5.3. Firstly, we see

that our baseline architecture improves dramatically at the largest capacity we were able

to train. Secondly, for our ablative experiments, we notice that larger capacity improves

the performance of the vanilla CNN architecture. Interestingly, by increasing the capacity

of the CNN architecture, it approaches the performance of the baseline SVG’ architecture.

However, as capacity increases, the lack of recurrence heavily affects the performance

of the vanilla CNN architecture in comparison with the models that do have an LSTM

(Supplementary C.0.2.1). Both the LSTM model and SVG’ perform similarly well, with

SVG’ model performing slightly better. This makes sense as the deterministic LSTM

model is more likely to produce videos closer to the ground truth; however, the stochastic

component is still quite important as a good video prediction model must be both realistic

71

Figure 5.1: Towel pick per-frame evaluation (higher is better). We compare the best performing
models in terms of FVD. For model capacity comparisons, please refer to Supplementary C.0.2.1.

Sm
al

le
st

m
od

el
(B

as
el

in
e)

B
ig

ge
st

m
od

el
(O

ur
s)

G
ro

un
d-

tru
th

t=5 t=6 t=9 t=12 t=15 t=18 t=20

Figure 5.2: Robot towel pick qualitative evaluation. Our highest capacity model (middle row)
produces better modeling of the robot arm dynamics, as well, as object interactions. The baseline
model (bottom row) fails at modeling the objects (object blurriness), and also, the robot arm dynamics
are not well modeled (gripper is open when the it should be close at t=18). For best viewing and
more results, please visit our website https://cutt.ly/QGuCex.

and capable of handling multiple possible futures. Finally, we use human evaluations

through Amazon Mechanical Turk to compare our biggest models with the corresponding

baselines. We asked workers to focus on how realistic the interaction between the robot arm

and objects looks. As shown in Table 5.2, the largest SVG’ is preferred 68.8% of the time vs

25.8% of the time for the baseline (right), and the largest LSTM model is preferred 90.2%

of the time vs 9.0% of the time for the baseline (left).

Frame-wise evaluation. Next, we use FVD to select the best models from CNN, LSTM,

and SVG’, and perform frame-wise evaluation on each of these three models. Since models

that copy background pixels perfectly can perform well on these frame-wise evaluation

72

metrics, in the supplementary material we also discuss a comparison against a simple

baseline where the last observed frame is copied through time. From Figure 5.1, we can see

that the CNN model performs much worse than the models that have recurrent connections.

This is a clear indication that recurrence is necessary to predict future frames, and capacity

cannot make up for it. Both LSTM and SVG perform similarly well, however, towards

the end, SVG slightly outperforms LSTM. The full evaluation on all capacities for SVG’,

LSTM, and CNN is presented in the supplementary material.

Qualitative evaluation. In Figure 5.2, we show example videos from the smallest SVG’

model, the largest SVG’ model, and the ground truth. The predictions from the small

baseline model are blurrier compared to the largest model, while the edges of objects from

the larger model’s predictions stay continuously sharp throughout the entire video. This is

clear evidence that increasing the model capacity enables more accurate modeling of the pick

up dynamics. For more videos, please visit our website https://cutt.ly/QGuCex

5.4.3 Human activities

For this dataset, we perform action-free video prediction. We use a single model to predict

all action sequences in the Human 3.6M dataset. During training time, the models are

conditioned on 5 input frames and predict 10 frames into the future. At test time, the models

predict 25 frames.

Dynamics-based evaluation. We evaluate the predicted human motion with FVD (Table

5.1, middle row). The performance of the CNN model is poor in this dataset, and increasing

the capacity of the CNN does not lead to any increase in performance. We hypothesize that

this is because the lack of action conditioning and the many degrees of freedom in human

motion makes it very difficult to model with a simple encoder-decoder CNN. However, after

adding recurrence, both LSTM and SVG’ perform significantly better, and both models’

performance become better as their capacity is increased (Supplementary C.0.2.2). Similar

to Section 5.4.2, we see that SVG’ performs better than LSTM. This is again likely due to

73

Figure 5.3: Human 3.6M per-frame evaluation (higher is better). We compare the best performing
models in terms of FVD. For model capacity comparisons, please refer to Supplementary C.0.2.2.

Sm
al

le
st

m
od

el
(B

as
el

in
e)

B
ig

ge
st

m
od

el
(O

ur
s)

G
ro

un
d-

tru
th

t=8 t=11 t=14 t=17 t=20 t=23 t=26

Figure 5.4: Human 3.6M qualitative evaluation. Our highest capacity model (middle) produces better
modeling of the human dynamics. The baseline model (bottom) is able to keep the human dynamics
to some degree but in often cases the human shape is unrecognizable or constantly vanishing and
reappearing. For more videos, please visit our website https://cutt.ly/QGuCex.

the ability to sample multiple futures, leading to a higher probability of matching the ground

truth future. Secondly, in our human evaluations for SVG’, 95.8% of the AMT workers

agree that the bigger model has more realistic videos in comparison to the smaller model,

and for LSTM, 98.7% of the workers agree that the LSTM largest model is more realistic.

Our results, especially the strong agreement from our human evaluations, show that high

capacity models are better equipped to handle the complex structured dynamics in human

videos.

Frame-wise evaluation. Similar to the previous per-frame evaluation, we select the best

performing models in terms of FVD and perform a frame-wise evaluation. In Figure 5.3, we

74

can see that the CNN based model performs poorly against the LSTM and SVG’ baselines.

The recurrent connections in LSTM and SVG’ are necessary to be able to identify the human

structure and the action being performed in the input frames. In contrast to Section 5.4.2,

there are no action inputs to guide the video prediction which significantly affects the CNN

baseline. The LSTM and SVG’ networks perform similarly at the beginning of the video

while SVG’ outperforms LSTM in the last time steps. This is a result of SVG’ being able to

model multiple futures from which we pick the best future for evaluation as described in

Section 5.4.1. We present the full evaluation on all capacities for SVG’, LSTM, and CNN in

the supplementary material.

Qualitative evaluation. Figure 5.4 shows a comparison between the smallest and largest

stochastic models. In the video generated by the smallest model, the shape of the human

is not well-defined at all, while the largest model is able to clearly depict the arms and the

legs of the human. Moreover, our large model is able to successfully predict the human’s

movement throughout all of the frames into the future. The predicted motion is close to the

ground-truth motion providing evidence that being able to model more factors of variation

with larger capacity models can enable accurate motion identification and prediction. For

more videos, please visit our website https://cutt.ly/QGuCex.

5.4.4 Car driving

For this dataset, we also perform action-free video prediction. During training time, the

models are conditioned on 5 input frames and predict 10 frames into the future. At test

time, the models predict 25 frames into the future. This video type is the most difficult to

predict since it requires the model to be able to hallucinate unseen parts in the video given

the observed parts.

Dynamics-based evaluation. We see very similar results to the previous dataset when

measuring the realism of the videos. For both LSTM and SVG’, we see a large improvement

in FVD when comparing the baseline model to the largest model we were able to train

75

Figure 5.5: KITTI driving per-frame evaluation (higher is better). For model capacity comparisons,
please refer to Supplementary C.0.2.3.

Sm
al

le
st

m
od

el
(B

as
el

in
e)

B
ig

ge
st

m
od

el
(O

ur
s)

G
ro

un
d-

tru
th

Figure 5.6: KITTI driving qualitative evaluation. Our highest capacity model (middle) is able to
maintain the observed dynamics of driving forward and is able to generate unseen street lines and the
moving background. The baseline (bottom) loses the street lines and the background becomes blurry.
For best viewing and more results, please visit our website https://cutt.ly/QGuCex.

(Table 5.1, bottom row). However, we see a similarly poor performance for the CNN

architecture as in Section 5.4.3, where capacity does not help. One interesting thing to

note is that the largest LSTM model performs better than the largest SVG’ model. This is

likely related to the architecture design and the data itself. The movements of cars driving is

mostly predictable, and so, the deterministic architecture becomes highly competitive as we

increase the model capacity (Supplementary C.0.2.3). However, our original premise that

increasing model’s capacity improves network performance still holds. Finally, for human

evaluations, we see in Table 5.2 that the largest capacity SVG’ model is preferred by human

raters 99.3% of the time (right), and the largest capacity LSTM model (left) is also preferred

by human raters 99.3% time (left).

76

Sm
al

le
st

m
od

el
(B

as
el

in
e)

B
ig

ge
st

m
od

el
(O

ur
s)

G
ro

un
dt

ru
th t=8 t=11 t=14 t=17 t=20 t=23 t=26

Sm
al

le
st

m
od

el
(B

as
el

in
e)

B
ig

ge
st

m
od

el
(O

ur
s)

G
ro

un
dt

ru
th

Figure 5.7: Human 3.6M and KITTI driving qualitative evaluation on high resolution videos (frame
size of 128x128) with comparison between smallest model and largest model we were able to train
(M=3, K=3). For best viewing and more results, please visit our website https://cutt.ly/
QGuCex.

Frame-wise evaluation Now, when we evaluate based on frame-wise accuracy, we see

similar but not exactly the same behavior as the experiments in Section 5.4.3. The CNN

architecture performs poorly as expected, however, LSTM and SVG’ perform similarly well.

Qualitative evaluation. In Figure 5.6, we show a comparison between the largest stochas-

tic model and its baseline. The baseline model starts becoming blurry as the predictions move

forward in the future, and important features like the lane markings disappear. However, our

biggest capacity model makes very sharp predictions that look realistic in comparison to the

ground-truth.

77

5.5 High resolution videos
Finally, we experiment with larger resolution videos. We train SVG’ on the Human 3.6M

and KITTI driving datasets. These two datasets contain much larger resolution images

compared to the Towel pick dataset, enabling us to sub-sample frames to twice the resolution

of previous experiments (128x128). We follow the same protocol for the number of input

and predicted time steps during training (5 inputs and 10 predictions), and the same protocol

for testing (5 inputs and 25 predictions). In contrast to the networks used in the previous

experiments, we add three more convolutional layers plus pooling to subsample the input to

the same convolutional encoder output resolution as in previous experiments.

In Figure 5.7 we show qualitative results comparing the smallest (baseline) and biggest

(Ours) networks. The biggest network we were able to train had a configuration of M=3 and

K=3. Higher resolution videos contain more details about the pixel dynamics observed in

the frames. This enables the models to have a denser signal, and so, the generated videos

become more difficult to distinguish from real videos. Therefore, this result suggests that

besides training better and bigger models, we should also more towards larger resolutions.

For more examples of videos, please visit our website: https://cutt.ly/QGuCex.

5.6 Conclusion
In conclusion, we provide a full empirical study on the effect of finding minimal inductive

bias and increasing model capacity for video generation. We perform a rigorous evaluation

with five different metrics to analyze which types of inductive bias are important for

generating accurate video dynamics, when combined with large model capacity. Our

experiments confirm the importance of recurrent connections and modeling stochasticity in

the presence of uncertainty (e.g., videos with unknown action or control). We also find that

maximizing the capacity of such models improves the quality of video prediction. We hope

our work encourages the field to push along similar directions in the future – i.e., to see

how far we can get by finding the right combination of minimal inductive bias and maximal

78

model capacity for achieving high quality video prediction.

79

CHAPTER VI

Neural Kinematic Networks for Unsupervised

Motion Retargeting

We propose a recurrent neural network architecture with a Forward Kinematics layer and

cycle consistency based adversarial training objective for unsupervised motion retargeting.

Our network captures the high-level properties of an input motion by the forward kinematics

layer, and adapts them to a target character with different skeleton bone lengths (e.g., shorter,

longer arms etc.). Collecting paired motion training sequences from different characters

is expensive. Instead, our network utilizes cycle consistency to learn to solve the Inverse

Kinematics problem in an unsupervised manner. Our method works online, i.e., it adapts

the motion sequence on-the-fly as new frames are received. In our experiments, we use the

Mixamo animation data 1 to test our method for a variety of motions and characters and

achieve state-of-the-art results. We also demonstrate motion retargeting from monocular

human videos to 3D characters using an off-the-shelf 3D pose estimator.

6.1 Introduction
Imitation is an important learning scheme for agents to acquire motor control skills Schaal

(1999). It is often formulated as learning from expert demonstrations with access to sample

trajectories of state-action pairs Bagnell (2015); Ho and Ermon (2016). However, this first-
1https://www.mixamo.com. See details in Section 5.

80

person imitation assumption may not always hold since 1) the teacher and the learner may

have different physical structures, e.g., a human being vs a humanoid robot Bin Hammam

et al. (2015); Sermanet et al. (2017) and 2) the learner may only observe the states of

the teacher, e.g. joint positions, but not the actions that generate these states Merel et al.

(2017). Adapting the motion of the teacher, e.g., a person, to the learner, e.g., a humanoid

robot Ayusawa and Yoshida (2017) or an avatar Shon et al. (2006); Mehta et al. (2017), is

often referred as motion retargeting in robotics and computer animation. This paper focuses

on retargeting motions from a source to any target character with a known but different

kinematic structure in terms of bone lengths and proportions. Skeletal differences between

the source and target characters create the necessity of disentangling skeleton-independent

features of the source motion and automatically adapting them to a target character in one

shot, ideally without any post-processing optimization and hand-tuning steps. Furthermore,

a faithful solution needs to ensure the retargeted motion to be natural and realistic-looking

which has been a long-standing challenge for animation.

Deep neural networks are known to have the ability to learn high-level features in se-

quential data that humans may not be able to easily identify, and have already achieved

remarkable performance in machine translation Johnson et al. (2017) and speech recogni-

tion Graves et al. (2013). However, human motions are highly nonlinear and intrinsically

constrained by kinematic structures of the skeletons. Thus classic sequence models such as

recurrent neural networks (RNNs) may not be directly applicable to motion retargeting.

In this paper, we propose a novel neural network architecture to perform motion retarget-

ing between characters with different skeleton structures (i.e., same topology but different

bone length proportions). Our architecture relies on an analytic Forward Kinematics layer

and two RNNs that work together to (i) encode the input motion data to motion features, and

(ii) decode the joint rotations of the target skeleton from the identified features. The forward

kinematics layer takes as input the joint rotations and the T-pose of a target skeleton, and

renders the resulting motion. This fully differentiable layer forces the network to discover

81

valid joint rotations by enabling to reason about the realism of the resulting motion. We use

an adversarial training objective, rooted on the cycle consistency principle Zhu et al. (2017),

to learn motion retargeting in an unsupervised way. In particular, the motion retargeted

onto a target character should generate the original motion of the source character when

retargeted back. Furthermore, the generated motion should be as natural as other known

motions of the target character for an adversarially trained discriminator. The decoder RNN

is conditioned on the target character, and together with the adverserial training, is able to

generate natural motions for unseen characters as well. In our experiments, we show that

the proposed method can perform online motion retargeting, i.e., adapting the input motion

sequence on-the-fly as new frames are received. We also use 3D pose estimates from video

sequences, e.g., in Human 3.6M dataset Ionescu et al. (2014b), as input to our network to

animate Mixamo 3D characters.

The contributions of our work are summarized below:

• A novel Neural Kinematic Network consisting of two RNNs and a forward kinematics

layer that automatically discovers the necessary joint rotations (i.e., solution to the

Inverse Kinematics (IK) problem) for motion retargeting without requiring ground-

truth rotations during training.

• A sequence-level adversarial cycle consistency objective function for unsupervised

learning for motion retargeting which does not require input/output motion pairs of

different skeletons during training.

6.2 Related work
Gleicher Gleicher (1998) first formulated motion retargeting as a spacetime optimization

problem with kinematic constraints that is solved for the entire motion sequence. Lee

and Shin Lee and Shin (1999) proposed a decomposition approach that first solves the IK

problem for each frame to satisfy the constraints and then fits multilevel B-spline curves to

achieve smooth results. Tak and Ko Tak and Ko (2005) further added dynamics constraints

82

to perform sequential filtering to render physically plausible motions. Choi and Ko Choi and

Ko (1999) proposed an online retargeting method by solving per-frame IK that computes the

change in joint angles corresponding to the change in end-effector positions while imposing

motion similarity as a secondary task. While the above-mentioned approaches require

iterative optimization with hand-designed kinematic constraints for particular motions, our

method learns to produce proper and smooth changes of joint angles (solving IK) in one-pass

feed-forward inference of RNNs, and is able to generalize to unseen characters and novel

motions. The idea of solving approximate IK can be traced back to the early blending-based

methods Rose III et al. (2001); Kovar and Gleicher (2004). A target skeleton can be viewed

as a new style. Our method can be applied to motion style transfer that has been a popular

research area in computer animation Brand and Hertzmann (2000); Hsu et al. (2005); Min

et al. (2010); Xia et al. (2015); Yumer and Mitra (2016).

Different machine learning algorithms have been used in modeling human motions.

Early works used auto-regressive RBMs Taylor et al. (2007) or Gaussian process dynamic

models Wang et al. (2008); Grochow et al. (2004) to learn human motions in small scale. In

particular, Grochow et al. Grochow et al. (2004) solves IK by constraining the generated

poses to a learned Gaussian process prior. With the surge of deep learning, a variety of neural

networks have been used to synthesize human motions Fragkiadaki et al. (2015b); Holden

et al. (2016); Jain et al. (2016); Bütepage et al. (2017); Martinez et al. (2017a); Li et al.

(2018). These networks are not applicable to motion retargeting as they directly generate the

xyz-coordinates of joints and thus require a further post-processing to ensure bone length

consistency. Instead, our method predicts quaternions that represent the rotation of each joint

with respect to the T-pose without rotation supervision, which admits an end-to-end solution

to motion retargeting and also has the potential of synthesizing kinematically plausible

motions. Notably, Jain et al. Jain et al. (2016) model human motions with a spatial-temporal

graph that considers the skeletal structure but not in an analytic form.

Our work is also related to research efforts on “vision as inverse graphics”. Differentiable

83

rendering layers are incorporated into deep neural networks to disentangle imaging factors of

rigid objects, such as 3D shape, camera, normal map, lighting and materials Yan et al. (2016);

Rezende et al. (2016); Tulsiani et al. (2017); Liu et al. (2017). Wu et al. Wu et al. (2017)

further incorporated a differentiable physics simulator Chang et al. (2017) to disentangle

physical properties of multiple rigid objects. Our network disentangles the hierarchical

rotations of articulated skeletons through a differentiable forward kinematics layer.

6.3 Background
We first introduce some concepts in robotics and computer animation essential for building

our model.

6.3.1 Forward kinematics

Forward kinematics (FK) refers to the process of computing the positions of skeleton joints,

also known as end-effectors, in 3D space given the joint rotations and initial positions. FK

is performed by recursively rotating the joints of an input skeleton tree starting from the root

joint and ending in the leaf joints, and is defined by:

p
n = p

parent(n) +R
n
s̄
n
,

where pn 2 R
3 is the updated 3D position of the n-th joint and p

parent(n) 2 R
3 is the current

position of its parent. Rn 2 SO(3) is the rotation of the n-th joint with respect to its parent.

s̄
n 2 R

3 is the 3D offset of the n-th joint relative to its parent in the input skeleton, and is

defined by:

s̄
n = p̄

n � p̄
parent(n)

,

Note that p̄n and p̄
parent(n) refer to joint positions in the input T-pose skeleton as depicted in

Figure 6.1.

84

Input

Output

q6

……….

Rotation axis is denoted by

………. q7

qN-2 qN-1
qN

Figure 6.1: Forward kinematics from T-pose skeleton. Starting from the input skeleton, the forward
kinematics layer rotates bones to achieve the desired output configuration.

6.3.2 Inverse kinematics

While FK refers to computing the 3D joint locations by recursively applying joint rotations,

inverse kinematics (IK) is the reverse process of computing joint rotations R1:N that ensure

specific joints are placed at the desired target locations p1:N starting from initial positions

p
1:N
0 . Thus, IK is defined by:

R
1:N = IK(p1:N , p1:N0).

IK is inherently an ill-posed problem. Target configuration of joint locations can be fulfilled

by multiple joint rotations or no joint rotations. Classic IK solutions often resort to itera-

tive optimization by calculating the inverse Jacobian of the highly nonlinear FK function

numerically or analytically.

6.4 Method
In this section, we present our proposed method for unsupervised motion retargeting. There

are two main components: (i) the neural kinematic network architecture for skeleton condi-

tioned motion synthesis, and (ii) the adversarial cycle consistency training for unsupervised

motion retargeting. We next describe these components in detail.

85

6.4.1 Neural kinematic networks

Our neural kinematic networks for motion synthesis component is built to strictly manipulate

a target skeleton, which we refer as condition skeleton, into performing a given motion

sequence performed by another source skeleton through a Forward Kinematics layer.

In our setup, the input motion data x1:T is decomposed into p1:T and v1:T , where for each

time t, pt 2 R
3N represents the local xyz-configuration of the skeleton’s pose with respect to

its root joint (i.e., hip joint), and vt 2 R
4 represents the global motion of the skeleton’s root

joint (i.e., x,y,z-velocities and rotation with respect to the axis perpendicular to the ground).

Given the condition skeleton, the motion synthesis module outputs the rotations, Rn

t
, that

are then applied to each joint n at time t, as well as the global motion parameters.

6.4.1.1 Forward kinematics layer

At the core of our neural kinematic networks for motion synthesis component lies the

Forward Kinematics layer (Figure 6.1) which is designed to take in 3D rotations for each

joint n at time t parameterized by unit quaternions qn
t
2 R

4, and apply them to a skeleton

bone configuration s̄
n. A quaternion extends a complex number in the form r+x +y +z

and is used to rotate objects in 3 dimensional space, where r, x, y, and z are real numbers

and , , are quaternion units. The rotation matrix corresponding to an input quaternion is

calculated as follows:

R
n

t
=

1�2(qntj

2+q
n
tk

2) 2(qntiq
n
tj+q

n
tkq

n
tr) 2(qntiq

n
tk�q

n
tjq

n
tr)

2(qntiq
n
tj�q

n
tkq

n
tr) 1�2(qnti

2+q
n
tk

2) 2(qntjq
n
tk+q

n
tiq

n
tr)

2(qntiq
n
tk+q

n
tjq

n
tr) 2(qntjq

n
tk�q

n
tiq

n
tr) 1�2(qnti

2+q
n
tj

2)

!
(6.1)

Given the rotation matrices Rn

t
2 SO(3) for each joint, the FK layer updates the joint

positions of the condition skeleton by applying these rotations in a recursive manner as

described in Section 6.3.1 and shown in Figure 6.1,

p
1:N
t

= FK(q1:N
t

, s̄).

86

Figure 6.2: Neural kinematic networks for motion synthesis.

The FK layer serves as a tool for mapping the joint rotations to actual joint locations and

thus helps our network to focus on learning skeleton independent motion features, i.e., joint

rotations.

6.4.1.2 Online motion synthesis

Our proposed neural kinematic networks architecture for online motion synthesis is shown in

Figure 6.2. Taking advantage of the temporal coherency in motion sequences, we synthesize

the current motion step at time t by conditioning on previous steps through an RNN hidden

representation.

The current step in the input motion is encoded by:

h
enc
t

= RNNenc(xt, h
enc
t�1;W

enc), (6.2)

87

where RNNenc(., .) is an encoder RNN, henc
t

is the encoding of the input motion up to time t,

and xt = [pt, vt] is the current input. The encoded feature is then fed to a decoder RNN to

perform skeleton conditioned motion synthesis by:

h
dec
t

= RNNdec(x̂t�1, h
enc
t
, s̄, h

dec
t�1;W

dec), (6.3)

q̂t =
W

pT
h

dec
t

kW pTh
dec
t k

, (6.4)

p̂t = FK(q̂t, s̄), (6.5)

v̂t = W
vT
h

dec
t
, (6.6)

x̂t = [p̂t, v̂t] . (6.7)

where h
dec
t

is the hidden representation of decoder RNN, x̂t is the synthesized motion at

time step t for the condition skeleton s̄. The unit vector q̂t 2 R
4N denotes the rotations —

which can be interpreted as actions — to be applied to the condition skeleton through the

FK layer. The outputs p̂t and v̂t are the estimated local and global motion of the condition

skeleton. Finally, W enc, W dec, W v 2 R
d⇥4 and W

p 2 R
d⇥4N are learnable parameters.

When the condition skeleton is different from the skeleton where the input motion

lives, the decoder is meant to generate the rotations of a new character to achieve motion

retargeting. Please note that in the rest of the paper, we use superscripts A or B to refer to

the identity of the skeleton we are retargeting motion from and into.

6.4.2 Adversarial cycle training for unsupervised motion retargeting

In Section 6.4.1, we describe a method for skeleton conditioned motion synthesis based on

a forward kinematics layer embedded within the network architecture. However, training

such a network for motion retargeting is challenging as it is very expensive to collect paired

motion data x
A

t
and x

B

t
where the same motion is performed by two different skeletons.

Note that collecting such data requires using iterative optimization based IK methods in

addition to human hand-tuning of the retargeted motion.

88

FK

J

Cycle consistency loss

Twist loss

Adversarial loss

FK

J

RNN RNN

R

S S

C

Twist lossSmooth loss Smooth loss

Figure 6.3: Adversarial cycle consistency framework.

We propose a training paradigm based on the cycle consistency principle Zhou et al.

(2016) and adversarial training Goodfellow et al. (2014a) for unsupervised motion retargeting

(Figure 6.3). Let f be our neural kinematic network, and let the superscripts define skeleton

identity. Given an input motion sequence from skeleton A, we first retarget the input motion

to skeleton B and back to A as follows:

x̂
B

1:T = f(xA

1:T , s̄
B), (6.8)

x̂
A

1:T = f(x̂B

1:T , s̄
A), (6.9)

where x̂B

1:T and x̂
A

1:T are synthesized motions for skeletons B and A, respectively. Therefore,

we define four loss terms: adversarial loss on x̂
B

1:T , cycle consistency loss on x̂
A

1:T , twist loss

on rotations q̂A1:T and q̂
B

1:T , and smoothing loss on v̂
A

t
and v̂

B

t
, so our full training objective is

defined by:

min
f

max
d

C(x̂A

1:T , x
A

1:T) +R(x̂B

1:T , x
A

1:T)+

� J(q̂B1:T , q̂
A

1:T) + ! S(v̂B1:T , v̂
A

1:T), (6.10)

where C is the cycle consistency loss, R the adversarial loss, J the joint twist loss, and S

the velocity smoothing loss.

89

Adversarial loss. The input motion x
A

1:T =
⇥
p
A

1:T , v
A

1:T

⇤
, the synthesized motion x̂

B

1:T =
⇥
p̂
B

1:T , v̂
B

1:T

⇤
, and their respective skeleton are fed to a discriminator network g that computes

a realism score for real and fake motion sequences:

r
A = g(pA2:T � p

A

1:T�1, v
A

1:T�1, s̄
A), (6.11)

r
B = g(p̂B2:T � p̂

B

1:T�1, v̂
B

1:T�1, s̄
B), (6.12)

where r
A is the output of the discriminator given real data, and r

B is the output of the

discriminator given the fake data (i.e., the motion retargeted by our network into skeleton B).

The inputs to the discriminator pA2:T�pA1:T�1 and p
B

2:T�pB1:T�1 are the local motion difference

between two adjacent time steps, and s̄
A and s̄

B denote the input and target skeletons A and

B, respectively. During training, we randomly sample s̄
B from all the available skeletons,

thus, it is possible for skeleton B to be the same as skeleton A. In case skeleton B is the

same as skeleton A, x̂B

1:T = x̂
A

1:T , we switch between adversarial and square loss as follows:

R(x̂B

1:T , x
A

1:T) =

8
>><

>>:

kx̂B

1:T � x
A

1:Tk22, if B = A

log rA + � log(1� r
B), otherwise.

, (6.13)

When B and A are not the same, we rely on the motion distributions learned by g as a training

signal. By observing other motion sequences performed by skeleton B, the discriminator

network learns to identify motion behaviors of skeleton B. The generator (encoder and

decoder RNNs) uses this as indirect guidance to learn how the motion should be retargeted

to B and thus fool the discriminator. When applying the adversarial loss, we use a balancing

term � to regulate the strength of the discriminator signal when optimizing f to fool g. We

use � = 0.001 in our experiments.

Cycle consistency loss. The cycle consistency loss C optimizes the following objective:

C(x̂A

1:T , x
A

1:T) = kxA

1:T � x̂
A

1:Tk22. (6.14)

90

Equation 6.14 encourages f to be able to take its own retargeted motion and map it back to

the original motion source effectively achieving cycle consistency.

Twist loss. By optimizing the first two terms in Equation 6.10, our network discovers the

necessary rotations to move the input skeleton end-effectors to the required positions for

motion retargeting. However, this does not prevent potential excessive bone twisting since

xyz-coordinates can be perfectly predicted regardless of how many times we rotate a bone

around its own axis. Thus, the third term in our objective constrains the bone rotations

around its own axis.

J(q̂B1:T , q̂
A

1:T) =kmax(0, |eulery(q̂B1:T)|� ↵)k22+

kmax(0, |eulery(q̂A1:T)|� ↵)k22, (6.15)

where eulery(.) converts the quaternion outputs of our network into rotation angles around

the standard xyz-axes and the subscript y means to select the rotation angle around the plane

parallel to the bone (i.e. y-axis). Therefore, any bone rotation exceeding ↵ degrees in either

negative or positive direction is penalized in our objective function. We use ↵ = 100�, and

� = 10 in our experiments.

Smoothing loss. Finally, the first two terms in our objective function treat global motion

at each time step independently. However, global motion in consecutive timesteps are highly

dependent on each other, that is, global motion in the next timestep should change only

slightly with respect to the previous global motion. We constraint the global motion by:

S(v̂B1:T , v̂
A

1:T) =kv̂B2:T � v̂
B

1:T�1k22+

kv̂A2:T � v̂
A

1:T�1k22, (6.16)

We use ! = 0.01 in our experiments.

91

6.5 Experiments
Dataset. We evaluate our method on the Mixamo dataset Adobe’s Mixamo (2017) which

contains approximately 2400 unique motion sequences for 71 characters (i.e., skeletons).

For training, we collected non-overlapping motion sequences for 7 characters (AJ, Big

Vegas, Goblin Shareyko, Kaya, Malcolm, Peasant Man, and Warrok Kurniawan) which in

total results in 1646 training sequences at 30 frames per second.

For testing, we collected motion sequences for 6 characters (Malcolm, Mutant, Warrok

Kurniawan, Sporty Granny, Claire, and Liam) and perform retargeting in four scenarios:

• Input motion is seen during training, and the target character is also seen during

training but the target motion sequence is not.

• Input motion is seen during training but the target character is never seen during

training.

• Input motion is not seen during training but the target character is seen during training.

• Neither the input motion nor the target character are seen during training.

Note that we also collected the ground truth retargeted motions of testing sequences for

quantitative evaluation purposes only. While we discuss our main findings below, detailed

results and analysis of each scenario and character can be found in the appendix as well as

details of how to acquire the exact training and testing data.

Data preprocessing. Each motion sequence is pre-processed by separating into local

and global motion, similar to Holden et al. (2016). For local motion, we remove the global

displacement (i.e., the motion of the root joint), and rotation around the axis vertical to the

ground. Global motion consists of the velocity of the root in the x, y, and z directions, and

an additional value representing the rotation around the axis perpendicular to the ground.

For training, and testing we use the following 22 joints: Root, Spine, Spine1, Spine2, Neck,

Head, LeftUpLeg, LeftLeg, LeftFoot, LeftToeBase, RightUpLeg, RightLeg, RightFoot,

RightToeBase, LeftShoulder, LeftArm, LeftForeArm, LeftHand, RightShoulder, RightArm,

92

RightForeArm, and RightHand.

Baseline methods. While there have been several optimization based approaches for

the IK problem, most of these expect the user to provide motion specific constraints or goals.

Since this is not feasible to do at a large scale, we instead show comparisons to learning

based baseline methods that aim to identify such constraints automatically. The first baseline

is an RNN architecture without the FK layer that directly outputs xyz-coordinates for the

local motion, and the global motion output is the same as ours. Second, we use an MLP

architecture that lacks recurrent connections, and directly outputs the xyz-coordinates for the

local motion, and the same global motion output as our method. We also train both baselines

with our adversarial cycle consistency objective. Finally, we include another baseline that

directly copies the per-joint rotation and the global motion of the input motion into the target

skeleton.

Training and evaluation. We train our method and baselines by randomly sampling

2-second motion clips (60 frames) from the training sequences, and testing on motion clips

of 4 seconds (120 frames) from the test sequences. We initialized the quaternion outputs of

the decoder RNN to be close to the identity rotation (i.e., close to zero rotation). For training

the discriminator network, we sample random motion sequences being performed by the

same skeleton into which the motion synthesis network is retargeting motion. Details of

the network architecture and hyperparameters can be found in the appendix. We perform

two types of evaluations: 1) We evaluate the overall quality of the motion retargeting using

a target character normalized Mean Square Error (MSE) on the estimated joint locations

through time (i.e., xyz-coordinates after combining local and global motion together). 2)

We compare end-effector locations through time against the ground-truth. 3) We show

qualitative results by rendering the animated 3D characters using the outputs of our network.

93

O
ur

s
C

op
y

Q
ua

te
rn

io
ns

G
ro

un
dt

ru
th

In
pu

t M
ot

io
n

Figure 6.4: Qualitative evaluation. We present a motion retargeting example of our method against
the best baseline. Motion is retargeted from character Claire into Warrok Kurniawan (left) and
Sporty Granny to Malcolm (right). Plots illustrating the left/right feet and hand end-effectors’ height
comparing against the groundtruth are shown at the bottom. Arrows in the plots determine the time
steps of the shown animation frames. Please visit goo.gl/mDTvem for animated videos.

94

Method MSE
Ours: Autoencoder Objective 10.25
Ours: Cycle Consistency Objective 8.51
Ours: Adversarial Cycle Consistency Objective 7.10
Baseline: Conditional RNN 13.65
Baseline: Conditional RNN + Adv. Cycle Consistency 26.93
Baseline: Conditional MLP 17.02
Baseline: Conditional MLP + Adv. Cycle Consistency 16.96
Baseline: Copy input quaternions and velocities 9.00

Table 6.1: Quantitative evaluation of online motion retargeting using mean square error (MSE).

6.5.1 Online Motion retargeting From Character

In this section we evaluate our method on the task of online motion retargeting, i.e., retar-

geting motion from one character to a target character as new motion frames are received.

We present an ablation study to demonstrate the benefits of the different components of

our method, and also compare against the previously described baselines. In Table 6.1, we

report the average MSE of the retargeted motion when our network is trained with different

objectives: 1) Our skeleton conditioned motion synthesis network (Section 6.4.1) trained

with the autoencoder objective (i.e., input reconstruction) and the bone twisting constraint

only. 2) Our network trained with the cycle consistency objective without adversarial train-

ing. Specifically, the "otherwise" branch in Equation 6.13, returns 0. 3) Our network trained

with our full adversarial cycle consistency objective function which requires examples of

motions performed by skeleton B but not paired with any motions used as inputs during

training.

As it can be seen in Table 6.1, simply using the proposed FK layer within RNNs and

training with an autoencoder objective (Ours: Autoencoder Objective), outperforms all

standard neural network based baselines. One explanation is that it is highly probable for the

baselines to ignore the bone lengths of the target skeleton, and learn a motion representation

that is dependent on the input skeleton. The inability to disentangle motion properties

from the input skeleton is more evident after training with our adversarial cycle consistency

objective which still results in poor performance. The inputs to the discriminator network

95

are velocities, that is, local motion difference between adjacent time steps and global motion.

While this input contains information about the shift in joint locations through time, it does

not capture any information about the spatial structure. As a result, optimizing the baselines

to fool the discriminator network, does not impose bone length constraints. Furthermore,

encouraging velocities to be similar to the real data causes further bone length degradation

(i.e., excessive stretching or shrinking) in absence of such constraints. On the other hand,

our architecture is designed to learn a skeleton invariant motion representation that can be

directly transferred to the target skeleton through the FK layer.

The performance of our method improves when training our motion synthesis network

with the proposed objectives for cycle consistency and adversarial cycle consistency. While

training with the autoencoder objective results in reasonable performance, often the network

tries to match end-effector locations but does not fully capture the properties of the input

motion. For example, when an input motion of a small character raising its hands is

retargeted to a very tall character, the tall character is likely not able to raise its hands but

only point in the same direction as the input motion. Our network improves when trained

with the cycle consistency objective alone. In the example of motion retargeting from a small

to a tall character, cycle consistency loss prevents the tall character from directly matching

end-effector positions of the small character as retargeting back to the small character would

have resulted in stretching the limbs in the small character. The cycle consistency encourages

the network to better learn the high level features of the input motion.

Finally, our method performs the best when our objective imposes both cycle consistency

and realism via the full adversarial cycle consistency objective. The adversarial training

helps the network to produce motions that cannot be distinguished from realistic motions of

the target character.

The baseline "Copy input quaternions and velocities" works better than the neural

network baselines due to the following reasons: 1) Copying per-joint rotations of the input

and performing forward kinematics already respects the target skeleton bone lengths, and 2)

96

O
ur

s
In

pu
t M

ot
io

n

Figure 6.5: Qualitative evaluation on human videos. Motion is retargeted from estimated 3D pose
from the Human 3.6M dataset into Mixamo 3D characters using the estimated 3D pose from Martinez
et al. (2017b). Please visit goo.gl/mDTvem for animated videos.

copying the velocities (i.e., global motion) avoids drifting that prediction models may suffer

from. However, when retargeting motions between characters with significant skeleton

difference, this baseline is prone to artifacts such as foot floating (see Figure 6.4). This

baseline is also not scalable to cases where different skeleton limits or topological structures

are considered.

In Figure 6.4, we show qualitative results where we animate target characters using

the output of our network using Blender Blender Online Community (2017), a character

animation software. For all the joints that are not modeled by our network (e.g., the fingers),

we simply directly copy the joint rotations from the input motion if the corresponding joint

names match in the input and the target skeleton, otherwise we leave them fixed.

6.5.2 Online Motion retargeting from Human Video

In this section we present motion retargeting from human video input into characters using

the model trained from the Mixamo data only. We use the Human 3.6M videos as input,

the algorithm from Martinez et al. (2017b) to estimate the 3D pose of each frame, and the

ground truth 3D skeleton root displacement (3D pose estimation algorithms usually assume

the person is centered). The videos are subsampled to 25 FPS, and the estimated 3D poses

are processed similar to our previous experiment. The algorithm in Martinez et al. (2017b)

only outputs 17 joints compared to the 22 joints needed by our network. Therefore, we

manually map the 17 joints to 22 by duplicating the following joint positions in Human

97

3.6M to corresponding Mixamo joints: Spine into Spine and Spine1, LeftShoulder into

LeftShoulder and LeftArm, RightShoulder into RightShoulder and RightArm , LeftFoot

into LeftFoot and LeftToeBase, RightFoot into RightFoot and RightToeBase. Note that this

mapping will create bones of zero length during test time. Thus, our network essentially

only sees 17 joints but uses 22 joints as input. During visualization, we do not rotate joints

that are not predicted by our network (i.e., fingers). As shown in Figure 6.5, our network is

able to generalize to never-seen skeletons and motions estimated from monocular human

videos. More video results and analyses are included in appendix.

6.6 Conclusion and Future Work
We have presented a neural kinematic network with an adversarial cycle consistency training

objective for motion retargeting. Our network only observes a sequence of xyz-coordinates

of joints from existing animations, motion capture or 3D pose estimates of monocular

human videos, and transfers the motion to a target humanoid character without risking

skeleton deformations that occur in the baselines. The success of our method attributes

to the following factors: 1) The proposed Forward Kinematics layer helps to discover

joint rotations of target skeleton that are independent of the input skeleton. 2) The cycle

consistency of the retargeting objective prevents regressing to the end-effector positions

of the input motion. 3) The adversarial objective helps the network to produce realistic

motions. 4) The bone twist loss constrains the solution space of Inverse Kinematics and

prevents bone twisting in the retargeted motion.

Our current method has limitations. First, we perform retargeting on a fixed number

of joints. Handling a variable number of joints is challenging as the retargeting algorithm

is expected to automatically select end-effectors of interest when transferring motions.

Second, we assume the environment in which the target character is being animated lacks

physical constraints such as gravity. Future work will include equipping the network with

physics simulators to generate more natural and physically plausible movements of the target

98

characters with different muscle/bone mass distributions. Third, the input to our method still

requires 3D information (xyz-coordinates of joints). Future work will also include training

our network end-to-end by using monocular videos as input. That may require the algorithm

to learn view-invariant features.

99

CHAPTER VII

Discussion and Future Work

In this thesis, I have proposed algorithms for modeling structured dynamics in 2D and 3D. I

start with separating the motion and contents from the input sequence into separate streams.

By having a separate stream handling the motion, I encourage the neural network identify

useful information from each of the groups to predict future dynamics more easily. Next, I

model the motion stream as a more compact human made representation that can be verified

and directly used for generating future frame dynamics. I model the dynamics as landmarks

that define the shapes of objects to be predicted into the future, and use a separate image

generation module to generate future pixel of the objects. Subsequently, we proposed a

method that learns a general representation of object structures rather than landmarks which

also achieves long-term frame prediction. I then investigate maximizing the capacity of

neural network based architectures for dynamics models while minimizing inductive bias

for high quality future frame prediction. I shine light of the importance of network capacity

for better generative models of video with multiple different challenges going from object

interactions; to highly structured objects; to moving background. Finally, I move on to

modeling dynamics in 3D by using a kinematic structure of humanoid shape (the method

can generalize to any hierarchical kinematic shape). The proposed method have benefits and

potential future work in the following application areas:

100

Model-based reinforcement learning:

The model-based reinforcement learning literature has begun to take notice and advantage

of the use of prediction models from pixels. Having models that can separate environment

dynamics from the objects in the environment can enable agents to more accurately reason

about previous and future state dynamics, and also current state configuration. The models in

Chapter II could be easily used for current model-based reinforcement learning approaches.

However, the model in Chapter III may not be straight forwardly used and will need to

discover landmarks from videos in an unsupervised way. This is addressed in a current

collaboration that is under review.

Video/Motion synthesis:

Methods that can accurately model dynamics can also be used as a motion synthesis tool.

Particularly, a generative or conditional-generative model can enable creation of new motions

by sampling from a distribution. This can enable automatic diverse content generation such

as, in the case of humans, walking, dancing, jumping, etc animations that can then be used as

condition for video generation. The works presented in Chapter III and VI can be extended

with minor changes to make generative models for motion synthesis in both, 2D and 3D

domains. The work in Chapter II will require a more significant change to be able to locate

regions of interest on which to apply motion, however, it has the most potential for generality

in the long run.

Human/object interaction:

An accurate model of structured dynamics such as human dynamics is useful on its own.

However, there are usually more than a single human/objects present in real world scenarios.

Therefore, an extension that considers possible human interactions during a prediction is

necessary. The works in Chapter III and VI can be extended by having multiple recurrent

neural networks where each tracks the dynamics of a single human or object in the scene.

The recurrent neural networks then communicate with each other such that the independent

101

dynamics are consistent with each other. Works on tracking human trajectory interactions

have been recently proposed (Alexandre Alahi and Kratarth Goel and Vignesh Ramanathan

and Alexandre Robicquet and Li Fei-Fei and Silvio Savarese, 2016), however, the detailed

body structure or general objects present is not considered.

102

APPENDICES

103

APPENDIX A

Decomposing Motion and Content for Natural Video

Prediction

104

G
.T

.
C

on
vL

ST
M

M
C

ne
t

t=12 t=15 t=18 t=21

Boxing

t=24 t=27 t=30
G

.T
.

C
on

vL
ST

M
M

C
ne

t

Running

G
.T

.
C

on
vL

ST
M

M
C

ne
t

Walking

Figure A.1: Qualitative comparisons on KTH testset. We display predictions starting from the 12th

frame, for every 3 timesteps. More clear motion prediction can be seen in the project website.

105

G
.T

.
C

on
vL

ST
M

M
C

ne
t

t=12 t=15 t=18 t=21

Handclap

t=24 t=27 t=30

G
.T

.
C

on
vL

ST
M

M
C

ne
t

Handwaving

Figure A.2: Qualitative comparisons on KTH testset. We display predictions starting from the 12th

frame, for every 3 timesteps. More clear motion prediction can be seen in the project website.

106

t=11

t=9

t=7

t=5

G.T. MCnet ConvLSTM Mathieu et al. (2015)

t=11

t=9

t=7

t=5

Figure A.3: Qualitative comparisons on UCF-101. We display predictions (in every other frame)
starting from the 5th frame. The green arrows denote the top-30 closest optical flow vectors within
image patches between MCnet and ground-truth. More clear motion prediction can be seen in the
project website.

107

A.1 Qualitative and quantitative comparison with consid-

erable camera motion and analysis
In this section, we show frame prediction examples in which considerable camera motion

occurs. We analyze the effects of camera motion on our best network and the corresponding

baselines. First, we analyze qualitative examples on UCF101 (more complicated camera

motion) and then on KTH (zoom-in and zoom-out camera effect).

UCF101 Results. As seen in Figure A.4 and Figure A.5, our model handles foreground

and camera motion for a few steps. We hypothesize that for the first few steps, motion

signals from images are clear. However, as images are predicted, motion signals start to

deteriorate due to prediction errors. When a considerable amount of camera motion is

present in image sequences, the motion signals are very dense. As predictions evolve into

the future, our motion encoder has to handle large motion deterioration due to prediction

errors, which cause motion signals to get easily confused and lost quickly.

108

t=11

t=9

t=7

t=5

G.T. MCnet ConvLSTM Mathieu et al. (2015)

Figure A.4: Qualitative comparisons on UCF-101. We display predictions (in every other frame)
starting from the 5th frame. The green arrows denote the top-30 closest optical flow vectors within
image patches between MCnet and ground-truth. More clear motion prediction can be seen in the
project website.

109

t=11

t=9

t=7

t=5

G.T. MCnet ConvLSTM Mathieu et al. (2015)

t=11

t=9

t=7

t=5

Figure A.5: Qualitative comparisons on UCF-101. We display predictions (in every other frame)
starting from the 5th frame. The green arrows denote the top-30 closest optical flow vectors within
image patches between MCnet and ground-truth. More clear motion prediction can be seen in the
project website.

110

KTH Results. We were unable to find videos with background motion in the KTH dataset,

but we found videos where the camera is zooming in or out for the actions of boxing,

handclapping, and handwaving. In Figure A.6, we display qualitative for such videos. Our

model is able to predict the zoom change in the cameras, while continuing the action motion.

In comparison to the performance observed in UCF101, the background does not change

much. Thus, the motion signals are well localized in the foreground motion (human), and

do not get confused with the background and lost as quickly.

G
.T

.
C

on
vL

ST
M

M
C

ne
t

t=12 t=15 t=18 t=21

Boxing

t=24 t=27 t=30

G
.T

.
C

on
vL

ST
M

M
C

ne
t

Handclap

Figure A.6: Qualitative comparisons on KTH testset. We display predictions starting from the 12th

frame, in every 3 timesteps. More clear motion prediction can be seen in the project website.

111

A.2 Extended quantitative evaluation
In this section, we show additional quantitative comparison with a baseline based on copying

the last observed frame through time for KTH and UCF101 datasets. Copying the last

observed frame through time ensures perfect background prediction in videos where most

of the motion comes from foreground (i.e. person performing an action). However, if such

foreground composes a small part of the video, it will result in high prediction quality score

regardless of the simple copying action.

Figure A.7: Extended quantitative comparison including a baseline based on copying the last observed
frame through time.

In Figure A.7 below, we can see the quantitative comparison in the datasets. Copying the

last observed frame through time does a reasonable job in both datasets, however, the impact

is larger in UCF101. Videos in the KTH dataset comprise simple background with minimal

camera motion, which allows our network to easily predict both foreground and background

motion, resulting in better image quality scores. However, videos in UCF101 contain more

complicated and diverse background which in combination with camera motion present

a much greater challenge to video prediction networks. From the qualitative results in

112

Section A.1 and Figures 2.5, A.3, A.4, and A.5, we can see that our network performs better

in videos that contain isolated areas of motion compared to videos with dense motion. A

simple copy/paste operation of the last observed frame, ensures very high prediction scores

in videos where very small motion occur. The considerable score boost by videos with

small motion causes the simple copy/paste baseline to outperform MCnet in the overall

performance on UCF101.

A.3 UCF101 Motion Disambiguation Experiments
Due to the observed bias from videos with small motion, we perform experiments by

measuring the image quality scores on areas of motion. These experiments are similar to the

ones performed in Mathieu et al. (2015). We compute DeepFlow optical flow (Weinzaepfel

et al., 2013) between the previous and the current groundtruth image of interest, compute

the magnitude, and normalize it to [0, 1]. The computed optical flow magnitude is used

to mask the pixels where motion was observed. We set the pixels where the optical flow

magnitude is less than 0.2, and leave all other pixels untouched in both the groundtruth

and predicted images. Additionally, we separate the test videos by the average `2-norm of

time difference between target frames. We separate the test videos into deciles based of the

computed average `2-norms, and compute image quality on each decile. Intuitively, the 1st

decile contains videos with the least overall of motion (i.e. frames that show the smallest

change over time), and the 10th decile contains videos with the most overall motion (i.e.

frames that show the largest change over time).

As shown in Figure A.8, when we only evaluate on pixels where rough motion is

observed, MCnet reflects higher PSNR and SSIM, and clearly outperforms all the baselines

in terms of SSIM. The SSIM results show that our network is able to predict a structure (i.e.

textures, edges, etc) similar to the grountruth images within the areas of motion. The PSNR

results, however, show that our method outperforms the simple copy/paste baseline for the

first few steps, but then our method performs slightly worse. The discrepancies observed

113

between PSNR and SSIM scores could be due to the fact that some of the predicted images

may not reflect the exact pixel values of the groundtruth regardless of the structures being

similar. SSIM scores are known to take into consideration features in the image that go

beyond directly matching pixel values, reflecting more accurately how humans perceived

image quality.

Figure A.8: Extended quantitative comparison on UCF101 including a baseline based on copying the
last observed frame through time using motion based pixel mask.

Figures A.10 and A.9 show the evaluation by separating the test videos into deciles based

on the average `2-norm of time difference between target frames. From this evaluation, it is

proven that the copy last frame baseline scores higher in videos where motion is the smallest.

The first few deciles (videos with small motion) show that our network is not just copying

the last observed frame through time, otherwise it would perform similarly to the copy last

frame baseline. The last deciles (videos with large motion) show our network outperforming

all the baselines, including the copy last frame baseline, effectively confirming that our

network does predict motion similar to the motion observed in the video.

114

10th decile

9th decile

8th decile

7th decile

6th decile

Figure A.9: Quantitative comparison on UCF101 using motion based pixel mask, and separating
dataset by average `2-norm of time difference between target frames.

115

5th decile

4th decile

3rd decile

2nd decile

1st decile

Figure A.10: Quantitative comparison on UCF101 using motion based pixel mask, and separating
dataset by average `2-norm of time difference between target frames.

116

APPENDIX B

Learning to Generate Long-term Future via Hierarchical

Prediction

B.1 Motion-Based Pixel-Level Evaluation, Analysis, and

Control Experiments
In this section, we evaluate the predictions by deciles of motion similar to Villegas et al.

(2017a) using Peak Signal-to-Noise Ratio (PSNR) measure, where the 10th decile contains

videos with the most overall motion. We add a modification to our hierarchical method

based on a simple heuristic by which we copy the background pixels from the last observed

frame using the predicted pose heat-maps as foreground/background masks (Ours BG).

Additionally, we perform experiments based on an oracle that provides our image generator

the exact future pose trajectories (Ours GT-pose⇤) and we also apply the previously

mentioned heuristics (Ours GT-pose BG⇤). We put * marks to clarify that these are

hypothetical methods as they require ground-truth future pose trajectories.

In our method, the future frames are strictly dictated by the future structure. Therefore,

the prediction based on the future pose oracle sheds light on how much predicting a different

future structure affects PSNR scores. (Note: many future trajectories are possible given

117

a single past trajectory.) Further, we show that our conditional image generator given the

perfect knowledge of the future pose trajectory (e.g., Ours GT-pose⇤) produces high-

quality video prediction that both matches the ground-truth video closely and achieves much

higher PNSRs. These results suggest that our hierarchical approach is a step in the right

direction towards solving the problem of long-term pixel-level video prediction.

118

B.1.1 Penn Action

In Figures B.1, and B.2, we show evaluation on each decile of motion. The plots show that

our method outperforms the baselines for long-term frame prediction. In addition, by using

the future pose determined by the oracle as input to our conditional image generator, our

method can achieve even higher PSNR scores. We hypothesize that predicting future frames

that reflect similar action semantics as the ground-truth, but with possibly different pose

trajectories, causes lower PSNR scores. Figure B.3 supports this hypothesis by showing that

higher MSE in predicted pose tends to correspond to lower PSNR score.

Figure B.1: Quantitative comparison on Penn Action separated by motion decile.

119

Figure B.2: (Continued from Figure B.1.) Quantitative comparison on Penn Action separated by
motion decile.

Figure B.3: Predicted frames PSNR vs. Mean Squared Error on the predicted pose for each motion
decile in Penn Action.

The fact that PSNR can be low even if the predicted future is one of the many plausible

futures suggest that PSNR may not be the best way to evaluate long-term video prediction

when only a single future trajectory is predicted. This issue might be alleviated when a

model can predict multiple possible future trajectories, but this investigation using our

hierarchical decomposition is left as future work. In Figures B.4 and B.5, we show videos

where PSNR is low when a different future (from the ground-truth) is predicted (left), and

video where PSNR is high because the predicted future is close to the ground-true future

(right).

120

t=17

t=54

Low PSNR

————————————————

t=12

t=43

Low PSNR

t=40

t=60

High PSNR

————————————————

t=30

t=40

High PSNR

Figure B.4: Quantitative and visual comparison on Penn Action for selected time-steps for the action
of baseball pitch (top) and golf swing (bottom). Side by side video comparison can be
found in our project website

121

t=10

t=20

Low PSNR

————————————————

t=5

t=11

Low PSNR

t=12

t=20

High PSNR

————————————————

t=25

t=40

High PSNR

Figure B.5: Quantitative and visual comparison on Penn Action for selected time-steps for the actions
of jumping jacks (top) and tennis forehand (bottom). Side by side video comparison
can be found in our project website

122

To directly compare our image generator using the predicted future pose (Ours) and the

ground-truth future pose given by the oracle (Ours GT-pose⇤), we present qualitative

experiments in Figure B.6 and Figure B.7. We can see that the both predicted videos contain

the action in the video. The oracle based video prediction reflects the exact future very well.

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

t=11 t=20 t=29 t=38 t=47 t=56 t=65

Figure B.6: Qualitative evaluation of our network for long-term pixel-level generation. We show the
actions of baseball pitch (top row), baseball swing (middle row), and gold swing
(bottom row). Side by side video comparison can be found in our project website.

123

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

t=11

t=11

t=20

t=17

t=29

t=23

t=38

t=29

t=47

t=35

t=56

t=41

t=65

t=47

Figure B.7: Qualitative evaluation of our network for long-term pixel-level generation. We
show the actions of tennis serve (top row), clean and jerk (middle row), and tennis
forehand (bottom row). We show a different timescale for tennis forehand because the
ground-truth action sequence does not reach time step 65. Side by side video comparison can be
found in our project website.

124

B.1.2 Human3.6M

In Figure B.8, we show evaluation (PSNRs over time) of different methods on each decile

of motion.

Figure B.8: Quantitative comparison on Human3.6M separated by motion decile.

125

As shown in Figure B.8, our hierarchical approach (e.g., Ours BG) tends to achieve

PSNR performance that is better than optical flow based method and comparable to con-

volutional LSTM. In addition, when using the oracle future pose predictor as input to our

image generator, the PSNR scores get a larger boost compared to Section B.1.1. This is

because there is higher uncertainty of the actions being performed in the Human 3.6M

dataset compared to Penn Action dataset. Therefore, even plausible future predictions can

still deviate significantly from the ground-truth future trajectory, which can penalize PSNRs.

Figure B.9: Predicted frames PSNR vs. Mean Squared Error on the predicted pose for each motion
decile in Human3.6M.

To gain further insight on this problem, we provide two additional analysis. First, we

compute how the average PSNR changes as the future pose MSE increases in Figure B.9.

The figure clearly shows the negative correlation between the predicted pose MSE and frame

PSNR, meaning that larger deviation of the predicted future pose from the ground future

pose tend to cause lower PSNRs.

Second, we show snapshots of video prediction from different methods along with the

PNSRs that change over time (Figures B.11 and B.10). Our method tend to make plausible

future pose trajectory but it can deviate from the ground-truth future pose trajectory; in such

case, our method tend to achieve low PSNRs. However, when the future pose prediction

from our method matches well with the ground-truth, the PSNR is much higher and the

generated image frame is perceptually very similar to the ground-truth frame. In contrast,

optical flow and convolutional LSTM make prediction that often loses the structure of the

foreground (e.g., human) over time, and eventually their predicted videos tend to become

static. It is interesting to note that our method is comparable to convolutional LSTM in

126

terms of PSNR, but that our method still strongly outperforms convolutional LSTM in terms

of human evaluation, as described in Section 3.6.2.

127

t=36

t=117

Low PSNR

————————————————

t=48

t=93

Low PSNR

t=35

t=91

High PSNR

————————————————

t=61

t=109

High PSNR

Figure B.10: Quantitative and visual comparison on Human 3.6M for selected time-steps for the
actions of walk dog (top left), phoning (top right), sitting down (bottom left), and walk
together (bottom right). Side by side video comparison can be found in our project website.

128

t=31

t=80

Low PSNR

t=61

t=90

High PSNR

Figure B.11: Quantitative and visual comparison on Human 3.6M for selected time-steps for the
action of walking (left) and walk together (right). Side by side video comparison can be
found in our project website.

129

To directly compare our image generator using the predicted future pose (Ours) and the

ground-truth future pose given by the oracle (Ours GT-pose⇤), we present qualitative

experiments in Figure B.12 and Figure B.13. We can see that the both predicted videos

contain the action in the video. However, the oracle based video reflects the exact future

very well.

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

t=11 t=29 t=47 t=65 t=83 t=101 t=119

Figure B.12: Qualitative evaluation of our network for long-term pixel-level generation. We show
the actions of giving directions (top three rows), posing (middle three rows), and walk
dog (bottom three rows). Side by side video comparison can be found in our project website.

130

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

G
ro

un
dt

ru
th

O
ur

s
G

T-
po

se
O

ur
s

t=11 t=29 t=47 t=65 t=83 t=101 t=119

Figure B.13: Qualitative evaluation of our network for long-term pixel-level generation. We show the
actions of walk together (top three rows), sitting down (middle three rows), and walk
dog (bottom three rows). Side by side video comparison can be found in our project website.

131

APPENDIX C

High Fidelity Video Prediction with Large Neural Nets

C.0.1 Video results

We have provided video comparisons of the baseline and largest model for the best two

models (LSTM and SVG’) in this website: https://cutt.ly/QGuCex.

C.0.2 Per-frame evaluation comparison as model capacity increases

In this section, we present a per-frame evaluation for capacities in each of the models we

experiment in our paper.

132

C.0.2.1 Robot Arm.

The plots show a slight improvement as the number of parameters increase for the CNN

architecture. However, for the LSTM and SVG’ architectures the improvement is more

noticeable. We hypothesize that this is due to the model being able to better handle the robot

arm interaction with the objects by having a large capacity.

Figure C.1: Towel pick per-frame evaluation (higher is better). As capacity increases, the per frame
evaluation metrics become better. The increase is due to better modeling of interactions. The objects
become sharper, and robot arm dynamics become better as the model capacity increases.

133

C.0.2.2 Human Activities.

The Human 3.6M dataset is mostly made of static background and the moving human

occupies a relatively very small area of the frame. Therefore, models that are not capable

of perfectly predicting the background become affected by this. To show our point, we

include a baseline where we simply copy the last observed frame through time. This baseline

significantly outperforms all models. Therefore, from these results we can conclude that

per-frame evaluations are not reliable when a large portion of a video does not move.

Figure C.2: Human 3.6M per-frame evaluation (higher is better). In this dataset, there is a large
amount of non-moving background that causes a per-frame evaluation to become not reliable. This
is shown by the baseline based on simply copying the last observed frame through time which
significantly outperforms all methods.

134

C.0.2.3 Car Driving.

In this dataset, as observed by the FVD measure in the main text, we see that the CNN

model fails to make improvement in the per-frame evaluation metrics. However, the LSTM

and SVG’ models performance improves as the capacity of the models increases.

Figure C.3: KITTI driving per-frame evaluation (higher is better). As capacity increases, the per
frame evaluation metrics become better. The increase is due to better modeling the driving dynamics
and partial observability. Due to the difficulty of predicting the exact not-observed parts of the image,
the performance converges toward the largest models.

The metric in which this is the most obvious is the VGG Cosine Similarity. This may be

due to the partial observability of the dataset which makes it very difficult to predict exact

pixels into the future, and so, PSNR and SSIM do not result in a large gap between the

135

larger and baseline models. However, VGG Cosine Similarity compares high-level features

of the predicted frames. Therefore, even if the predicted pixels are not exact, the predicted

structures in the frames may be similar to those the ground-truth future. For this dataset, we

do not present a copy last frame baseline because most pixels move (in contrast to the robot

arm and Human 3.6M dataset, where many pixels stay fixed).

136

C.0.3 Effects of using skip connections in video prediction

In this section, we present a study on the effects of using skip connections from encoder to

decoder. Similar to Denton and Fergus (2018), the method presented in the main text has

skip connections going from the encoder of the last observed frame directly to the decoder

for all frame predictions. This allows the video prediction method to choose to transfer

pixels that did not move from the input frame directly into the output frame, and generate

the pixels that move. Below, we show the performance for each of the datasets presented in

this work.

C.0.3.1 Robot Arm.

In Figure C.4, we can see that skip connections do play an important role in terms of FVD

evaluation for the robot arm action conditioned experiments. This implies that having skip

connections eases the difficulty of video prediction in that it is only required to model the

dynamics of the moving parts and everything else can simply be transferred to the output

frames.

Figure C.4: Towel pick video dynamics evaluation (lower is better). Solid lines define method with
skip connections and dotted lines without skip connections.

In addition, having skip connections also help to make more accurate frame-wise

predictions. In Figure C.5, the advantage of having skip connections is clear in all prediction

steps. This indicates that skip connections are not just essential for predicting dynamics that

look like the ground-truth videos, but also, the accuracy of the predicted pixels becomes

137

better.

Figure C.5: Towel pick per-frame evaluation (higher is better). Solid lines define method with skip
connections and dotted lines without skip connections.

C.0.3.2 Human Activities.

In Figure C.6, having skip connections results in a large performance improvement in FVD

for the CNN based video prediction architecture. However, for the LSTM and SVG’ based

architectures, we can that there is not clear improvement as the model size increases. We

hypothesize that, since there are no interactions, the background is static, and the background

between training and testing data is similar, the dataset dynamics become easier to model.

Therefore, there is no need for the model to separate moving and non-moving parts to

achieve good predictions.

Figure C.6: Human 3.6M video dynamics evaluation (lower is better). Solid lines define method
with skip connections and dotted lines without skip connections.

In contrast to FVD evaluation, having skip connections greatly improves the performance

in the per-frame evaluation metrics for all models (Figure C.7). This is mainly due to the

fact that the moving humans take up a very small portion of the image. Thus, having a

138

way to transfer non-moving pixels directly into the output frames results in more accurate

per-frame performance.

Figure C.7: Human 3.6M per-frame evaluation (higher is better). Solid lines define method with skip
connections and dotted lines without skip connections.

C.0.3.3 KITTI driving.

In Figure C.8, we can see that for the recurrent models (LSTM and SVG’) having skip

connections results in improved FVD performance. However, when using a CNN based

architecture, is clear for most models, but not all of them as the two curves become close to

each other when M and K are make the model twice and three times bigger than the original

model (second and third parameter value in the x-axis). We hypothesize that this happens

because almost all pixels move in these videos, and so, simple skip connections without

recurrent steps to remember what pixels are moving throughout the prediction makes skip

connections not as critical for the intermediate size models.

Figure C.8: KITTI driving video dynamics evaluation (lower is better). Solid lines define method
with skip connections and dotted lines without skip connections.

In terms of per-frame evaluation, we see an interesting behavior as prediction move

139

forward in time (Figure C.9). The predicted frames become less accurate as time moves for-

ward; effectively reducing the performance gap between the architectures with and without

skip connections. This happens because predicting videos in this dataset requires predicting

unseen pixels moving into view (e.g., partial observability). Therefore, having skip connec-

tions can only help for predicting nearby frames and eventually requires generating fully

unseen objects in the frames. The probability that the exact pixels are generated reduces as

time moves forward, even if the overall predicted dynamics are within what is realistic in

the dataset.

Figure C.9: KITTI driving per-frame evaluation (higher is better). Solid lines define method with
skip connections and dotted lines without skip connections.

140

C.0.4 All-vs-all Amazon Mechanical Turk comparison

In this section, we compare the largest models we trained for the different inductive bias

considered in our study. Similar to the experiments presented in the may text, we use 10

unique workers per video and choose the selection with the most votes as the final answer.

The videos used in the comparison are determined by the highest VGG Cosine Similarity

score amongst all samples for the stochastic model, and we use the single trajectory produced

by LSTM and CNN.

Dataset Method 1 Method 2 Method 1 Method 2 About the same

Towel Pick
SVG
SVG
CNN

LSTM
CNN

LSTM

43.8%
38.7%
32.7%

53.5%
58.2 %
66.0%

2.7%
3.1%
2.0%

Human 3.6M
SVG
SVG
CNN

LSTM
CNN

LSTM

34.5%
96.6%
2.5%

63.0%
2.9%

97.5%

2.5%
0.4%
0.0%

KITTI
SVG
SVG
CNN

LSTM
CNN

LSTM

55.4%
97.3%
0.7%

44.6%
2.7%

99.3%

0.0%
0.0%
0.0%

Table C.1: Amazon Mechanical Turk human worker preference. We compared the biggest and
baseline models from LSTM and SVG’. The bigger models are more frequently preferred by humans.

141

C.0.5 Device and network details

To scale up the capacity of the model, we use 32 Google TPUv3 Pods (Google, 2018) for

each experiment and a batch size of 32. We distribute the training batch such that there is a

single batch element in each 16GB TPU. This way we can use each device to the maximum

capacity. We first increase K and M together while keeping K to be equals to M . By

simply doubling the number of neurons in each layer, we see an improvement. We then

continue to increase K and M up to three times the number of neurons in each layer. At

this, point we are not able to increase M anymore without running out of memory, and so,

we only continue increasing K.

C.0.6 Architecture and hyper-parameters

For the encoder network we use VGG-net (Simonyan and Zisserman, 2015c) up to layer

conv3_3 after pooling and a single convolutional layer with output of 128 channels. A

mirrored architecture of the encoder is used for the decoder network. For the Convolutional

LSTMs used throughout we use a single layer network with 512 units for LSTM and

LSTM�, and a two layer network with 512 units for LSTM✓. Other than that, we follow

a similar architecture as Denton and Fergus (2018) including the skip connections from

encoder to decoder. We use � = 0.0001 for all of our experiments. The number of hidden

units in z are 64 for the robot arm dataset and 128 for all other datasets.

142

APPENDIX D

Neural Kinematic Networks for Unsupervised Motion

Retargeting

D.1 Quantitative Evaluation per Motion Retargeting Sce-

nario, and Analysis
In this section, we present quantitative evaluation for the different motion retargeting

scenarios mentioned in the main text. We then present findings showing how our method

significantly outperforms the best performing baseline (copy quaternions and velocities).

In Table D.1, we show results of retargeting motion previously seen during training into

two target scenarios: 1) Character has been seen during training, but not performing the

motion used as input (left). 2) Character has never been seen during training (right). In

Table D.2, we show results of retargeting motion never seen during training into two target

scenarios: 1) Character that has been seen during training (left). 2) Character has never been

seen during training (right).

From these results, we can observe the benefits of our full adversarial cycle training vs

only using cycle training. In both input motion scenarios — seen during training and never

143

Known Motion / Known Character
Method MSE
Ours: Autoencoder Objective 8.61
Ours: Cycle Consistency Objective 5.68
Ours: Adversarial Cycle Consistency Objective 5.35
Ground-truth joint location variance through time: 4.8

Known Motion / New Character
Method MSE
Ours: Autoencoder Objective 2.16
Ours: Cycle Consistency Objective 1.55
Ours: Adversarial Cycle Consistency Objective 1.35
Ground-truth joint location variance through time: 1.5

Table D.1: Quantitative evaluation of online motion retargeting using mean square error (MSE).
Case study: Known motion / known character (left), and known motion / new character (right).

New Motion / Known Character
Method MSE
Ours: Autoencoder Objective 6.55
Ours: Cycle Consistency Objective 4.38
Ours: Adversarial Cycle Consistency Objective 4.39
Ground-truth joint location variance through time: 3.6

New Motion / New Character
Method MSE
Ours: Autoencoder Objective 24.16
Ours: Cycle Consistency Objective 23.49
Ours: Adversarial Cycle Consistency Objective 18.02
Ground-truth joint location variance through time: 11.6

Table D.2: Quantitative evaluation of online motion retargeting using mean square error (MSE).
Case study: New motion / known character (left), and new motion / new character (right).

seen during training — retargeting into a never before seen target skeleton results in overall

performance improvement. For known input motions, retargeting into a new character results

in a performance improvement of 12.9%, while retargeting into a known character results

in a performance improvement of 5.8%. Additionally, for new input motions, retargeting

into a new character results in a performance improvement of 23.3%, while retargeting into

a known character results in a similar performance. In the previous analysis, we can clearly

see that learning character behaviors in the training data results in an overall performance

boost when the target character has been seen before. Most importantly, learning skeleton

conditioned behaviors results in much better generalization to new characters compared to

training with cycle alone. However, we can also see that some scenarios reflect larger errors

than others. To explain this phenomenon, we measure the movement in the ground-truth

motion sequences by computing the average character height normalized joint location

variance through time presented at the bottom of each table. This result shows that the more

movement there is in the ground-truth sequence, the larger the MSE becomes, thus the larger

errors seen on some of the test scenarios previously presented.

144

Next, we quantitative evaluate our method and the best performing baseline (copy input

quaternions and velocities) by separating testing examples into bins based on average

movement through time observed in the ground-truth target motion. This evaluation gives

us a clearer insight on how much input movement in space each method can handle during

retargeting, and how our method is outperforming the best baseline.

Figure D.1: Quantitative evaluation based on movement through time. The vertical axis denotes
mean square error, and the horizontal axis denotes the xyz-coordinate average variance through time
observed in the ground-truth. The average joint location variance is normalized by character height.

In Figure D.1, we can observe that our method outperforms the baseline as the movement in

the evaluation videos increase. Our method substantially outperforms the baseline when the

average joint location variance is larger than 5, however, the baseline marginally outperforms

our method when the average joint location variance is less than or equals to 5. This result

shows that by simply copying the input motion into the target character we cannot guarantee

motion retargeting that follows the correct motion in the target character. Therefore, we

have to rely on a model that has understanding of the target character and input motion

relationships for synthesizing skeleton conditioned motion.

145

D.2 Denoising 3D Pose Estimation by Motion retargeting
In this section, we show the denoising power of our model on estimated 3D poses. Most

3D pose estimation algorithms do it in a per-frame manner completely ignoring temporal

correlations among the estimated poses in videos at every time step. We use our method

trained on the Mixamo dataset to retarget the 3D pose estimated by [16] back into the input

motion skeleton (Human 3.6M skeleton) to demonstrate denoising effects on the input pose

sequence. We compute the Human 3.6M skeleton from the first frame pose in the sequence

WalkTogether 1.60457274 performed by Subject 9. We evaluate for denoising

by plotting the end-effector height trajectories (hands and feet) of the local motion output of

our method since the algorithm we use to estimate 3D pose assumes centered human input.

Below we plot end-effector trajectories of our retargeted poses and the originally estimated

poses (input to our method) for selected examples (None: Please check our project website

for better appreciation of the denoising happening goo.gl/mDTvem).

In Figure D.2, we can see that our method denoises the hand end-effectors well, even

without having trained with such data before. The feet end-effector denoising is good as

well, however in some cases it misses the overall feet height the original estimation had.

However, if we take a look at the provided videos, we can clearly see that our method’s

understanding of the input motion allows it to fix a lot of the shaking seen in the initially

estimated 3D pose after motion retargeting.

146

Figure D.2: 3D pose estimation denoising. We present end-effector trajectoriess for 5 examples.
Each row belongs a single example in the Human3.6M test set used in [16]. Please refer to our
website for visual illustrations of the denoising results. goo.gl/mDTvem.

D.3 Data collection process
In this section, we describe the exact steps for collecting the training and testing data from

the Mixamo website [1]. As training data, we collected 1656 unique motion sequences

distributed over 7 different characters. As testing data, we use 68 unique sequences of at

least 4 seconds each (74 total) from which we extract 173 unique non-overlapping 4-second

clips (185 total). Please note that the last clip in each sequence which may overlap if there

147

are less that 4 seconds left over after all non-overlapping clips have been extracted. The

Mixamo website contains motion separated by pages, the specific pages we downloaded for

each character are specified in Table D.3 below:

Training data
Character Motion sequence page
Malcolm [1-5]
Warrok W Kurniawan [6-10]
Goblin D Shareyko [11-15]
Kaya [16-20]
Peasant Man [21-25]
Big Vegas [26-30]
AJ [31-35]

Test data
Input -> Target Motion sequence page
Malcolm 28, 51
Warrok W Kurniawan 18, 52
Liam 23, 45
Mutant 33, 45, 52
Claire 52
Sporty Granny 51

Table D.3: Data collection for each character and animation page in the Mixamo website.

At test time, we perform motion retargeting for each testing scenario as shown in Tables D.4

and D.5 below:

Known Motion / Known Character
Input ! Target Motion sequence page
Kaya ! Warrok W Kurniawan 18
Big Vegas ! Malcolm 28

Known Motion / New Character
Input ! Target Motion sequence page
Peasant Man ! Liam 23
AJ ! Mutant 33

Table D.4: Quantitative evaluation of online motion retargeting using mean square error (MSE).
Case study: Known motion / known character (left), and known motion / new character (right).

New Motion / Known Character
Input ! Target Motion sequence page
Sporty Granny ! Malcolm 51
Claire ! Warrok W Kurniawan 52

New Motion / New Character
Input ! Target Motion sequence page
Mutant ! Liam 45
Claire ! Mutant 52

Table D.5: Quantitative evaluation of online motion retargeting using mean square error (MSE).
Case study: New motion / known character (left), and new motion / new character (right).

D.4 Demo video and qualitative evaluation
For the results demo video, please refer to the youtube video link https://youtu.be/

BGMyCFmGJWQ (Note: The demo video contains audio. Please wear headphones if you

believe you may disturb people around you). For more videos, please go to goo.gl/

mDTvem.

148

D.5 Architecture and training details
In this section, we provide the network architectures detailes used throughout this pa-

per.The RNN architectures are implemented by a 2-layer Gated Recurrent Unit (GRU)

with 512-dimensional hidden state. As the discriminator network, we use a 5 layer 1D

fully-convolutional neural network with size 4 kernel, and convolutions across. Layers

1-4 have leakyReLU activations with leak of 0.2, dropout of 0.7 keep probability, “same”

convolution output with stride 2. Layers 2-4 each have a instance normalization layer with

default parameters in the tensorflow implementation. The last layer implements a “valid”

convolution with linear activation. For training the networks, we use the Adam optimizer

with a learning rate of 1e-4 for both the retargeting RNN and Discriminator, and clip the

RNN gradients by global norm of 25. We also implemented a balancing technique between

the retargeting network and the discriminator, where the discriminator is not updated if the

probability of the generator output being a real falls below 0.3.

149

BIBLIOGRAPHY

150

BIBLIOGRAPHY

Adobe’s Mixamo (2017). https://www.mixamo.com. Accessed: 2017-09-28.

Alexandre Alahi and Kratarth Goel and Vignesh Ramanathan and Alexandre Robicquet
and Li Fei-Fei and Silvio Savarese (2016). Social lstm: Human trajectory prediction in
crowded spaces. In CVPR.

Ayusawa, K. and Yoshida, E. (2017). Motion retargeting for humanoid robots based on
simultaneous morphing parameter identification and motion optimization. IEEE Trans.
on Robotics.

Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., and Levine, S. (2018). Stochastic
variational video prediction. In ICLR.

Bagnell, J. A. D. (2015). An invitation to imitation. Technical Report CMU-RI-TR-15-08,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Bin Hammam, G., Wensing, P. M., Dariush, B., and Orin, D. E. (2015). Kinodynamically
consistent motion retargeting for humanoids. IJHR.

Blender Online Community (2017). Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam.

Brand, M. and Hertzmann, A. (2000). Style machines. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 183–192. ACM
Press/Addison-Wesley Publishing Co.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large Scale GAN Training for High
Fidelity Natural Image Synthesis. In ICLR.

Bütepage, J., Black, M. J., Kragic, D., and Kjellström, H. (2017). Deep representation
learning for human motion prediction and classification. In CVPR.

Byeon, W., Wang, Q., Srivastava, R. K., and Koumoutsakos, P. (2018). ContextVP: Fully
Context-Aware Video Prediction. In ECCV.

Chang, M. B., Ullman, T., Torralba, A., and Tenenbaum, J. B. (2017). A compositional
object-based approach to learning physical dynamics. In ICLR.

Chao, Y.-W., Yang, J., Price, B., Cohen, S., and Deng, J. (2017). Forecasting human
dynamics from static images. In CVPR.

151

Choi, K.-J. and Ko, H.-S. (1999). On-line motion retargetting. In CGA. IEEE.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR.

Denton, E. and Fergus, R. (2018). Stochastic video generation with a learned prior. In
ICML.

Denton, E. L. and Birodkar, v. (2017). Unsupervised learning of disentangled represen-
tations from video. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30, pages 4417–4426. Curran Associates, Inc.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. volume abs/1810.04805.

Dosovitskiy, A. and Brox, T. (2016a). Generating images with perceptual similarity metrics
based on deep networks. CoRR, abs/1602.02644.

Dosovitskiy, A. and Brox, T. (2016b). Inverting Visual Representations with Convolutional
Networks. In CVPR.

Ebert, F., Finn, C., Dasari, S., Xie, A., and Lee, Alex Levine, S. (2018). Visual Foresight:
Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control. volume
abs/1812.00568.

Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. Image
analysis.

Finn, C., Goodfellow, I., and Levine, S. (2016a). Unsupervised learning for physical
interaction through video prediction. In NIPS.

Finn, C., Goodfellow, I. J., and Levine, S. (2016b). Unsupervised learning for physical
interaction through video prediction. In NeurIPS.

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2015a). Recurrent network models for
human dynamics. In ICCV.

Fragkiadaki, K., Levine, S., Felsen, P., and Malik, J. (2015b). Recurrent network models for
human dynamics. In ICCV.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti
dataset. In IJRR.

Gleicher, M. (1998). Retargetting motion to new characters. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques. ACM.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014a). Generative adversarial nets. In NeurIPS.

152

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014b). Generative adversarial nets. In NIPS.

Google (2018). Cloud TPUs.

Gorelick, L., Blank, M., Shechtman, E., Irani, M., and Basri, R. (2007). Actions as
space-time shapes. TPAMI, 29(12):2247–2253.

Goroshin, R., Mathieu, M., and LeCun, Y. (2015). Learning to linearize under uncertainty.
In NeurIPS.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In ICASSP, pages 6645–6649. IEEE.

Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. (2004). Style-based inverse
kinematics. In ACM transactions on graphics (TOG).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved
training of wasserstein GANs. In NIPS.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019).
Learning Latent Dynamics for Planning from Pixels. In ICML.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385.

Heusel, M., Ramsauer, H., Unterthiner, T., and Nessler, B. (2017). GANs Trained by a Two
Time-Scale Update Rule Converge to a Local Nash Equilibrium. In NeurIPS.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
networks. Science.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In NeurIPS.

Hoai, M. and Torre, F. (2013). Max-margin early event detectors. IJCV.

Holden, D., Saito, J., and Komura, T. (2016). A deep learning framework for character
motion synthesis and editing. TOG.

Hong, S., Noh, H., and Han, B. (2015). Decoupled deep neural network for semi-supervised
semantic segmentation. In NeurIPS.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
and Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint:1704.04861.

Hsu, E., Pulli, K., and Popović, J. (2005). Style translation for human motion. In ACM
Transactions on Graphics (TOG).

153

Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q. V., and Chen, Z. (2018).
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. volume
abs/1811.06965.

Ionescu, C., Li, F., and Sminchisescu, C. (2011). Latent structured models for human pose
estimation. In ICCV.

Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. (2014a). Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments. TPAMI.

Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C. (2014b). Human3.6M: Large scale
datasets and predictive methods for 3D human sensing in natural environments. PAMI.

Jain, A., Zamir, A. R., Savarese, S., and Saxena, A. (2016). Structural-rnn: Deep learning
on spatio-temporal graphs. In CVPR, pages 5308–5317.

Jayaraman, D. and Grauman, K. (2015). Learning image representations tied to ego-motion.
In ICCV.

Jayaraman, D. and Grauman, K. (2016). Look-ahead before you leap: end-to-end active
recognition by forecasting the effect of motion. arXiv preprint:1605.00164.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F.,
Wattenberg, M., Corrado, G., Hughes, M., and Dean, J. (2017). Google’s multilingual
neural machine translation system: Enabling zero-shot translation. Transactions of the
Association of Computational Linguistics.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan,
D., Finn, C., Kozakowski, P., Levine, S., Sepassi, R., Tucker, G., and Michalewski, H.
(2019). Model-Based Reinforcement Learning for Atari. CoRR, abs/1903.00374.

Kalchbrenner, N., Oord, A. v. d., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A., and
Kavukcuoglu, K. (2017). Video pixel networks. In ICML.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014).
Large-scale video classification with convolutional neural networks. In CVPR.

Kovar, L. and Gleicher, M. (2004). Automated extraction and parameterization of motions
in large data sets. In ACM Transactions on Graphics (ToG).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In NeurIPS.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L., and Kingma, D.
(2018). VideoFlow: A Flow-Based Generative Model for Video. In ICML.

Lan, T., Chen, T., and Savarese, S. (2014). A hierarchical representation for future action
prediction. In ECCV.

154

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and Levine, S. (2018). Stochastic
Adversarial Video Prediction. volume abs/1804.01523.

Lee, J. and Shin, S. Y. (1999). A hierarchical approach to interactive motion editing for
human-like figures. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. ACM Press/Addison-Wesley Publishing Co.

Lee, N. (2015). Modeling of Dynamic Environments for Visual Forecasting of American
Football Plays. PhD thesis, Carnegie Mellon University Pittsburgh, PA.

Li, Z., Zhou, Y., Xiao, S., He, C., and Li, H. (2018). Auto-conditioned lstm network for
extended complex human motion synthesis. In ICLR.

Liang, X., Lee, L., Dai, W., and Xing, E. P. (2017). Dual Motion GAN for Future-Flow
Embedded Video Prediction. In ICCV.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: common objects in
context. ECCV.

Liu, G., Ceylan, D., Yumer, E., Yang, J., and Lien, J.-M. (2017). Material editing using a
physically based rendering network. In ICCV. IEEE.

Lotter, W., Kreiman, G., and Cox, D. (2015). Unsupervised learning of visual structure
using predictive generative networks. arXiv preprint arXiv:1504.08023.

Lotter, W., Kreiman, G., and Cox, D. (2017). Deep predictive coding networks for video
prediction and unsupervised learning. In ICLR.

Martinez, J., Black, M. J., and Romero, J. (2017a). On human motion prediction using
recurrent neural networks. In CVPR. IEEE.

Martinez, J., Hossain, R., Romero, J., and Little., J. J. (2017b). A simple yet effective
baseline for 3d human pose. ICCV.

Mathieu, M., Couprie, C., and LeCun, Y. (2015). Deep multi-scale video prediction beyond
mean square error. arXiv preprint arXiv:1511.05440.

Mathieu, M., Couprie, C., and LeCun, Y. (2016). Deep multi-scale video prediction beyond
mean square error. In ICLR.

Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H.-P., Xu, W.,
Casas, D., and Theobalt, C. (2017). Vnect: Real-time 3d human pose estimation with a
single rgb camera. ACM Transactions on Graphics (TOG).

Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G., and Heess, N. (2017).
Learning human behaviors from motion capture by adversarial imitation. arXiv preprint
arXiv:1707.02201.

155

Michalski, V., Memisevic, R., and Konda, K. (2014a). Modeling deep temporal dependencies
with recurrent "grammar cells". In NeurIPS.

Michalski, V., Memisevic, R., and Konda, K. (2014b). Modeling deep temporal dependencies
with recurrent “grammar cells”. In NeurIPS.

Min, J., Liu, H., and Chai, J. (2010). Synthesis and editing of personalized stylistic human
motion. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, pages 39–46. ACM.

Mittelman, R., Kuipers, B., Savarese, S., and Lee, H. (2014). Structured recurrent temporal
restricted boltzmann machines. In ICML.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass networks for human pose
estimation. In ECCV.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). Action-conditional video
prediction using deep networks in atari games. In NeurIPS.

Patraucean, V., Handa, A., and Cipolla, R. (2015). Spatio-temporal video autoencoder with
differentiable memory. CoRR, abs/1511.06309.

Pickup, L. C., Pan, Z., Wei, D., Shih, Y., Zhang, C., Zisserman, A., Scholkopf, B., and
Freeman, W. T. (2014). Seeing the arrow of time. In CVPR.

Pintea, S. L., van Gemert, J. C., and Smeulders, A. W. M. (2014). Dejavu: Motion prediction
in static images. In ECCV.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
Models are Unsupervised Multitask Learners. In Technical report.

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., and Chopra, S. (2014). Video
(language) modeling: a baseline for generative models of natural videos. arXiv preprint
arXiv:1412.6604.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2018). Regularized evolution for image
classifier architecture search. volume abs/1802.01548.

Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., and Lee, H. (2016a). Learning what
and where to draw. In NeurIPS.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016b). Generative
adversarial text-to-image synthesis. In ICML.

Reed, S., Zhang, Y., Zhang, Y., and Lee, H. (2015a). Deep visual analogy-making. In
NeurIPS.

Reed, S. E., Zhang, Y., Zhang, Y., and Lee, H. (2015b). Deep visual analogy-making. In
NIPS.

156

Rezende, D. J., Eslami, S. A., Mohamed, S., Battaglia, P., Jaderberg, M., and Heess, N.
(2016). Unsupervised learning of 3d structure from images. In NeurIPS.

Rose III, C. F., Sloan, P.-P. J., and Cohen, M. F. (2001). Artist-directed inverse-kinematics
using radial basis function interpolation. In Computer Graphics Forum.

Ryoo, M. S. (2011). Human activity prediction: Early recognition of ongoing activities
from streaming videos. In ICCV.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in cognitive
sciences.

Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: A local svm
approach. In ICPR.

Sermanet, P., Lynch, C., Hsu, J., and Levine, S. (2017). Time-contrastive networks: Self-
supervised learning from multi-view observation. arXiv preprint arXiv:1704.06888.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and WOO, W.-c. (2015). Con-
volutional lstm network: A machine learning approach for precipitation nowcasting. In
NeurIPS.

Shon, A., Grochow, K., Hertzmann, A., and Rao, R. P. (2006). Learning shared latent
structure for image synthesis and robotic imitation. In Weiss, Y., Schölkopf, P. B., and
Platt, J. C., editors, NeurIPS.

Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action
recognition in videos. In NeurIPS.

Simonyan, K. and Zisserman, A. (2015a). Very deep convolutional networks for large-scale
image recognition. In ICLR.

Simonyan, K. and Zisserman, A. (2015b). Very deep convolutional networks for large-scale
image recognition. In ICLR.

Simonyan, K. and Zisserman, A. (2015c). Very deep convolutional networks for large-scale
image recognition. In ICLR.

Soomro, K., Zamir, A. R., and Shah, M. (2012). UCF101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402.

Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015). Unsupervised learning of video
representations using lstms. In ICML.

Sutskever, I., Hinton, G. E., and Taylor, G. W. (2009). The recurrent temporal restricted
boltzmann machine. In NeurIPS.

Sutton, R. (2019). The Bitter Lesson.

157

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In CVPR.

Tak, S. and Ko, H.-S. (2005). A physically-based motion retargeting filter. ACM Transactions
on Graphics (TOG).

Taylor, G. W., Hinton, G. E., and Roweis, S. T. (2007). Modeling human motion using
binary latent variables. In NeurIPS.

Tulsiani, S., Zhou, T., Efros, A. A., and Malik, J. (2017). Multi-view supervision for
single-view reconstruction via differentiable ray consistency. In CVPR.

Tulyakov, S., Liu, M.-Y., Yang, X., and Kautz, J. (2018). Mocogan: Decomposing motion
and content for video generation. In CVPR.

Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., and Gelly, S.
(2018). Towards Accurate Generative Models of Video: A New Metric & Challenges.
CoRR, abs/1812.01717.

Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. (2017a). Decomposing motion and
content for natural video sequence prediction. In ICLR.

Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., and Lee, H. (2017b). Learning to generate
long-term future via hierarchical prediction. In ICML.

Vondrick, C., Pirsiavash, H., and Torralba, A. (2015). Anticipating the future by watching
unlabeled video. arXiv preprint arXiv:1504.08023.

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016). Generating videos with scene
dynamics. In NeurIPS.

Walker, J., Doersch, C., Gupta, A., and Hebert, M. (2016). An uncertain future: Forecasting
from static images using variational autoencoders. CoRR, abs/1606.07873.

Walker, J., Gupta , A., and Hebert , M. (2014). Patch to the future: Unsupervised visual
prediction. In CVPR.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian process dynamical models
for human motion. TPAMI.

Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C. (2013). DeepFlow: Large
displacement optical flow with deep matching. In ICCV.

Wichers, N., Villegas, R., Erhan, D., and Lee, H. (2018). Hierarchical Long-term Video
Prediction without Supervision. In ICML.

Wu, J., Lu, E., Kohli, P., Freeman, W. T., and Tenenbaum, J. B. (2017). Learning to see
physics via visual de-animation. In NeurIPS.

158

Xia, S., Wang, C., Chai, J., and Hodgins, J. (2015). Realtime style transfer for unlabeled
heterogeneous human motion. ACM Transactions on Graphics (TOG).

Xue, T., Wu, J., Bouman, K. L., and Freeman, W. T. (2016). Visual dynamics: Probabilistic
future frame synthesis via cross convolutional networks. NeurIPS.

Yan, X., Rastogi, A., Villegas, R., Sunkavalli, K., Shechtman, E., Hadap, S., Yumer, E., and
Lee, H. (2018). Mt-vae: Learning motion transformations to generate multimodal human
dynamics. In ECCV.

Yan, X., Yang, J., Yumer, E., Guo, Y., and Lee, H. (2016). Perspective transformer nets:
Learning single-view 3d object reconstruction without 3d supervision. In NeurIPS.

Yuen, J. and Torralba, A. (2010a). A data-driven approach for event prediction. In ECCV.

Yuen, J. and Torralba, A. (2010b). A data-driven approach for event prediction. In ECCV.

Yumer, M. E. and Mitra, N. J. (2016). Spectral style transfer for human motion between
independent actions. ACM Transactions on Graphics (TOG).

Zeiler, M. D., Taylor, G. W., and Fergus, R. (2011). Adaptive deconvolutional networks for
mid and high level feature learning. In ICCV.

Zhang, W., Zhu, M., and Derpanis, K. G. (2013). From actemes to action: A strongly-
supervised representation for detailed action understanding. In ICCV, pages 2248–2255.

Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., and Efros, A. A. (2016). Learning dense
correspondence via 3d-guided cycle consistency. In CVPR.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures
for scalable image recognition. In CVPR.

159

