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ABSTRACT

Dense particulate flow simulations using integral equation methods demand accu-

rate evaluation of Stokes layer potentials on arbitrarily close interfaces. In this thesis,

two spectrally-accurate integration schemes for close evaluation of 2D Stokes layer

potentials are developed – a global quadrature for the moving particles (e.g., blood

cells, vesicles) represented as smooth closed curves, and an adaptive panel quadrature

for the stationary boundaries (e.g., vessel walls, microfluidic channels) which are more

complex curves that can be non-smooth. Both schemes rely on expressing Stokes layer

potentials in terms of Laplace potentials and related complex contour integrals, which

are then evaluated accurately either through a singularity cancellation technique or

using analytic expressions. Numerical examples are presented to demonstrate the

robustness and super-algebraic convergence of both schemes. Finally, as an applica-

tion of the integration schemes, we investigate the electrohydrodynamic interactions

between (possibly deflated) vesicles, where interesting behaviors unique to vesicles,

such as circulatory and oscillatory motions, are observed and analyzed.

xii



CHAPTER I

Introduction

Complex fluids are fluids that exhibit unusual macroscopic behavior, even if the

microscopic governing laws are simple and linear. One major category of complex

fluids is the particulate flows – flows that contain rigid and/or deformable parti-

cles. These systems are ubiquitously seen in industrial and biomedical applications,

examples include blood stream, vesicle suspensions, bacterial flow, and a variety of

microfluidic systems. Besides experiments, direct numerical simulations are often the

only means for gaining insights into their non-equilibrium behavior.

One of the main challenges for existing numerical methods to simulate particulate

flows is to accurately resolve the particle-particle or the particle-wall interactions. In

these complex fluid flows, more often than not, particles approach very close to each

other or to the wall when subjected to flow and other effects (such as electric stress).

Numerical instabilities arise when the near interactions are not computed accurately,

jeopardizing the entire simulation.

The boundary integral equation (BIE) method is particularly suitable for particu-

late flow simulations because, under the BIE formulation, all the unknowns reside on

the surfaces of the particles and walls, leading to a reduction of dimensionality com-

pared to methods that discretize the equations directly in the bulk fluid. In addition,

with an appropriate choice of integral operators (which are called layer potentials in
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the language of potential theory), many equations that govern complex fluids can be

reformulated as second kind integral equations. These equations are well-conditioned

and lead to fast convergence when solved with iterative linear algebra solvers. More

over, state-of-the-art fast algorithms such as the Fast Multipole Methods (FMM) are

widely used to build powerful fast solvers for these linear systems.

Under the BIE framework, the particle-particle or the particle-wall close interac-

tions demand accurate evaluation of nearly singular integrals associated to the Stokes

layer potentials. This is called the close evaluation problem, which will be the main

focus of this thesis.

We will extend Helsing-Ojala’s close evaluation technique for the Laplace layer

potentials [31] to develop two close evaluation schemes for the Stokes layer potentials

and their associated pressure and traction formulae. These potentials all take the

form of ∫
Γ

K(x, y)τ(y) dsy, x ∈ R2 (1.1)

which is defined on a planar curve Γ for some density function τ . When the target

point x is close to a source point y ∈ Γ, the kernel K(x, y) becomes nearly singular.

The two close evaluation schemes we will develop in this thesis are

• a global scheme for when Γ is a smooth closed curve, and

• a panel scheme for when Γ is an open curve, which is suitable for more complex

geometries that are represented as a collection of disjoint panels.

Both schemes rely on expressing Stokes layer potentials in terms of Laplace potentials

and the related complex contour integrals, which are then accurately evaluated with

the help of complex analysis and techniques such as singularity cancellation. In addi-

tion, for the panel quadrature scheme we also formulate a set of rules for adaptively

refining the panels used to represent the boundaries, so that a user-specified error

tolerance can be achieved automatically.
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Finally, as an application of the global scheme, we will investigate the electrohy-

drodynamics (EHD) of vesicles. Vesicles are deformable particles sharing the same

structural component as many biological cells, hence their EHD has been a paradigm

for understanding how general biological cells behave when subjected to electric sig-

nals. We develop a new BIE formulation and numerical method for the vesicle EHD,

which is able to handle multiple vesicles that can be deflated. Our numerical experi-

ments investigate new phenomena such as “budding” and pairwise EHD interactions.

Close evaluation is important in this study since vesicles are driven very close to each

other by the electric stress.

This thesis is organized as follows. The next two chapters (Chapter II and III)

introduce the close evaluation schemes, where the global quadrature is introduced in

Chapter II and the adaptive panel quadrature in Chapter III. Chapter IV investigates

the vesicle EHD. Then a summary is followed in Chapter V.

3



CHAPTER II

Spectrally-Accurate Quadratures for Evaluation of

Layer Potentials Close to the Boundary for the 2D

Stokes and Laplace Equations

Preamble. This and the next chapters focus on the accurate quadratures for

2D Stokes layer potentials. This chapter introduces a global quadrature scheme for

smooth closed curves. In this scheme, the Stokes potentials are first split into Laplace

potentials, which in turn are rewritten as complex contour integrals. These contour

integrals are evaluated accurately using the periodic trapezoid rule (PTR) with the

help of a barycentric-type formula for the Cauchy integral [37]. Our scheme is spec-

trally accurate for target points arbitrarily close to the source curve. This is a joint

work with Alex Barnett and Shravan Veerapaneni that is published in [8].

2.1 Introduction

Dense suspensions of deformable particles in viscous fluids are ubiquitous in nat-

ural and engineering systems. Examples include drop, bubble, vesicle, swimmer and

blood cell suspensions. Unlike simple Newtonian fluids, the laws describing their flow

behavior are not well established, owing to the complex interplay between the de-

formable microstructure and the macroscale flow. Besides experiments, direct numer-
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ical simulations are often the only means for gaining insights into the non-equilibrium

behavior of such complex fluids. One of the main challenges for existing numerical

methods to simulate dense or concentrated suspensions is to accurately resolve the

particle-particle or the particle-wall interactions. In these complex fluid flows, more

often than not, particles approach very close to each other when subjected to flow

(e.g., see Figure 2.1). Numerical instabilities arise when the near interactions are not

computed accurately, jeopardizing the entire simulation.

Boundary integral methods are particularly well-suited for vanishing Reynolds

number problems where the Stokes equations govern the ambient fluid flow [60]. The

advantages over grid- or mesh-based discretizations include: a much smaller number

of unknowns (exploiting the reduced dimensionality), no need for smearing of interface

forces onto a grid, the availability of very high-order discretizations, and of accelerated

solvers such as the fast multipole method (FMM) [25] for handling the dense matrices

in linear time.

The kernels of the integral operators such as the single-layer potential,

(Sτ)(x) =

∫
Γ

G(x, y)τ(y) dsy , x ∈ R2, (2.1)

defined on a smooth closed planar curve Γ for some smooth density function τ , become

nearly singular when the target point x is close to Γ. Neither smooth quadrature

rules (such as the trapezoidal rule) nor singular quadratures are effective (uniformly

convergent) for nearly singular integrals; for example, the error in a fixed smooth

quadrature rule grows exponentially to O(1) as x approaches Γ [9, Thm. 3]. The

objective of this paper is the design of numerical integration schemes for (2.1) that,

given the smooth density τ sampled at the N nodes of a periodic trapezoid rule on

Γ, exhibit superalgebraic convergence in N , with rate independent of the distance of

x from Γ.

5



Figure 2.1: Motivational example: snapshots from a Stokes simulation of nine vesi-
cles squeezing through a fixed-wall microfluidic device. Using the close-evaluation
scheme presented here, accurate simulations can be run with only 32 points per vesi-
cle. (Without the scheme, instabilities creep in and the simulation breaks down after
a few time-steps.) Details of this application and its accuracy tests will be presented
in [50].

Remark 1. For smooth geometries and data many simple boundary integral solution

methods, such as Nyström’s method [44], exhibit superalgebraic convergence in the

density. Our goal is thus to provide layer potential evaluations that are as accurate

as the N -node spectral interpolant to the density itself, i.e. limited only by the data

samples available. This means that in simulations, even those with close-to-touching

geometry, only the smallest number of unknowns N required to capture the density

is needed, and optimal efficiency results.

Specifically, we develop a new suite of tools for evaluating layer potentials such

as (2.1) (and their derivatives) on smooth closed curves for Laplace’s equation in two

dimensions (2D), and from this build evaluators for Stokes potentials that can handle

close-to-touching geometries and flow field evaluations arbitrarily close to curves, with

accuracies approaching machine precision.

Despite its importance in practical applications, very few studies have addressed

the accuracy issue with nearly singular integrals. Adaptive quadrature on a target-

by-target basis is impractically slow. Beale et al. [12, 80] proposed a regularized

kernel approach that attains third-order accuracy by adding analytically determined
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corrections. Ying et al. [97] developed a method that interpolates the potentials

along extended surface normals. Quaife–Biros [61] applied this in the context of

2D vesicle flows, attaining 5th-order accuracy. Despite its high-order accuracy, the

computational cost scales as a suboptimal O(N3/2), due to the need to compute

values near the boundary using an upsampled trapezoid rule. Helsing–Ojala [31],

exploiting Cauchy’s theorem and recurrence relations, developed 16th-order panel-

based close evaluation schemes in 2D; these have recently been adapted to the complex

biharmonic formulation of Stokes potentials by Ojala–Tornberg [56]. The recent QBX

scheme [9, 41] can achieve arbitrarily high order for Laplace and Helmholtz potentials

in 2D and 3D, but this requires upsampling the density by a factor of 4–6.

The pioneering work of Helsing–Ojala includes a “globally compensated” scheme

for the 2D double-layer potential (DLP) [31, Sec. 3] which builds upon a second-kind

barycentric-type formula for quadrature of Cauchy’s theorem due to Ioakimidis et

al. [37]. The scheme we present extends this to the interior and exterior 2D single-

layer potential (SLP); since the complex logarithmic kernel is not single-valued, this

requires careful application of a spectrally-accurate product quadrature for the saw-

tooth function, in the style of Kress [43]. We also supply a true barycentric evaluation

for first derivatives of layer potentials that is stable for target points arbitrarily close

to nodes. Unlike [31], we prefer to use an underlying global quadrature (the periodic

trapezoid rule) on Γ, since it is most commonly used for vesicle simulations such as

Fig. 2.1, and (as our results show) is somewhat more efficient in terms of N than

panel-based quadratures in this setting.1

One advantage of our approach is that no auxiliary nodes or upsampling is needed;

another is that the resulting discrete Cauchy sums are amenable for fast summation

via the FMM. While the new tools for the planar Laplace equation are of interest

in their own right, our main motivation and interest is to enable accurate close eval-

1It is worth noting that even some panel-based schemes exploit global schemes for adaptivity
[56].
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uation of Stokes potentials to target applications in interfacial fluid mechanics. We

accomplish this using the well-known fact that Stokes potentials can be written in

terms of Laplace potentials and their derivatives [19, 81, 88]. Specifically in 2D,

the Stokes SLP requires three Laplace SLP evaluations and the DLP requires five

Laplace DLP evaluations (two of which are Cauchy-type). We demonstrate in several

numerical experiments that our Stokes evaluations are very nearly as accurate as for

Laplace.

The paper is organized as follows. We define Laplace and Stokes integral repre-

sentations and set up notation in Section 2.2. Barycentric-type formulae for Cauchy

integrals and their derivatives in the interior and exterior of Γ are discussed in Sec-

tion 2.3. Based on these formulae, we derive spectrally accurate global quadratures

for close evaluation of Laplace potentials in Section 2.4, and demonstrate their per-

formance in evaluating all four types of boundary value problem (BVP) solutions.

We test performance of the quadratures applied to Stokes potentials, and for the

four Stokes BVPs, including one with close-to-touching boundaries, in Section 2.5.

Finally, we summarize and discuss future work in Section 2.6.

2.2 Laplace and Stokes layer potentials

Let Γ be a smooth closed Jordan curve in R2, with outwards-directed unit normal

ny at the point y ∈ Γ. Let Ω be the interior domain of Γ, and Ωc := R2\Ω be the

exterior domain. Let τ ∈ C(Γ) be a density function. We review some standard

definitions [44, Ch. 6]. The Laplace SLP is defined by

(Sτ)(x) :=
1

2π

∫
Γ

(
log

1

ρ

)
τ(y) dsy x ∈ R2 . (2.2)

where the distance is ρ := |r|, the displacement r := x−y, and |x| :=
√
x2

1 + x2
2 is the

Euclidean length of x ∈ R2. Finally, dsy is the arc length element on Γ. The Laplace
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DLP is defined by

(Dτ)(x) :=
1

2π

∫
Γ

(
∂

∂ny
log

1

ρ

)
τ(y) dsy =

1

2π

∫
Γ

(
r · ny
ρ2

)
τ(y) dsy x ∈ R2\Γ .

(2.3)

Associating C with R2, and noticing that the complex line element is dy = inydsy,

for purely real τ the DLP may also be written as the real part of a Cauchy integral,

as follows,

(Dτ)(x) = Re v(x) , where v(x) :=
1

2πi

∫
Γ

τ(y)

x− y
dy x ∈ C\Γ . (2.4)

Let S be the restriction of S to evaluation on Γ, in other words S is the boundary

integral operator with kernel k(x, y) = (1/2π) log 1/ρ. (Sτ)(x) exists as an improper

integral. Let D be the restriction of D to evaluation on Γ, in other words D is

the boundary integral operator with kernel k(x, y) = (1/2π)(r · ny/ρ2), taken in the

principal value sense [44, Sec. 6.3]. D has a smooth kernel when Γ is smooth.

We define the interior and exterior boundary limits of a function u defined in

R2\Γ, at the point x ∈ Γ, by u±(x) := limh→0+ u(x ± hnx). Likewise, u±n (x) :=

limh→0+ nx · ∇u(x ± hnx). We will need the following standard jump relations [44,

Sec. 6.3]. For any C2-smooth curve Γ, and density function τ ∈ C(Γ),

(Sτ)±n = (DT ∓ 1
2)τ (2.5)

(Dτ)± = (D ± 1
2)τ . (2.6)

2.2.1 Stokes potentials expressed via Laplace potentials

Let σ(y) = (σ1(y), σ2(y)), for y ∈ Γ, be a smooth real-valued vector density

function. The Stokes single and double layer potentials, denoted by S and D, are
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defined by

(Sσ)(x) :=
1

4π

∫
Γ

(
log

1

ρ
I +

r ⊗ r
ρ2

)
σ(y)dsy, (2.7)

(Dσ)(x) :=
1

π

∫
Γ

(
r · ny
ρ2

r ⊗ r
ρ2

)
σ(y)dsy, (2.8)

where r := x − y and ρ := |r|. In [19, 81, 88], fast algorithms to compute Stokes

potentials were developed by expressing them in terms of Laplace potentials for which

standard FMMs are applicable. We use the same strategy in this paper for close

evaluation of Stokes potentials. Using the identity

r ⊗ r
ρ2

σ =
r

ρ2
(r · σ) = (r · σ)∇x log ρ,

we can rewrite the Stokes SLP in terms of the Laplace SLP (2.2) as

(Sσ)(x) =
1

4π

∫
Γ

(
log

1

ρ

)
σdsy +

1

4π
∇
∫
Γ

(
log

1

ρ

)
(y · σ)dsy

− 1

4π
x1∇

∫
Γ

(
log

1

ρ

)
σ1dsy −

1

4π
x2∇

∫
Γ

(
log

1

ρ

)
σ2dsy ,

(2.9)

where ∇ = ∇x is assumed from now on. Therefore, three Laplace potentials (and

their first derivatives), with density functions y · σ, σ1, and σ2, need to be computed

to evaluate the Stokes SLP. Similarly, using the identity

∇
(
r · ny
ρ2

)
=
ny
ρ2
− (r · ny)

2r

ρ4
,
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the Stokes DLP (2.8) can be written as

(Dσ)(x) =
1

2π

∫
Γ

ny
ρ2

(r · σ)dsy +
1

2π
∇
∫
Γ

r · ny
ρ2

(y · σ)dsy

− 1

2π
x1∇

∫
Γ

r · ny
ρ2

σ1dsy −
1

2π
x2∇

∫
Γ

r · ny
ρ2

σ2dsy .

(2.10)

The last three terms require Laplace DLP (2.3) potentials (and first derivatives) for

the same three densities y · σ, σ1, and σ2. However, the first term is not a strict

Laplace DLP of the form (2.3): the derivative is taken in the σ rather than normal

ny direction. Yet, it can fit into our framework via two DLPs if we generalize slightly

the Cauchy expression for the DLP (2.4) to allow complex densities τ , thus, using

vector notation for the two components,

1

2π

∫
Γ

ny
ρ2

(r · σ)dsy = Re
1

2πi

∫
Γ

(τ1, τ2)

x− y
dy , (2.11)

where

τ1 = (σ1 + iσ2)
Reny
ny

, τ2 = (σ1 + iσ2)
Imny
ny

.

So, in total five Laplace DLPs are needed. Equations (3.16)–(2.11) allow us to com-

pute Stokes potentials by simply applying accurate (Cauchy-form) Laplace close eval-

uation schemes, which are the focus of the next two sections.

2.3 Barycentric approximation of the interior and exterior

Cauchy integral formulae

In this section we describe an efficient and accurate method to approximate a

holomorphic function v from its boundary data sampled on a set of quadrature nodes

on the closed curve Γ. The interior case is review of Ioakimidis et al. [37], but we

extend the method to the exterior case in a different manner from Helsing–Ojala
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[31, Sec. 3], and correct an accuracy problem in the standard formula for the first

derivative. In Sec. 2.3.5 we present results showing uniform accuracy close to machine

precision. We associate R2 with C.

We fix a quadrature scheme on Γ, namely a set of nodes yj ∈ Γ, j = 1, . . . , N ,

and corresponding weights wj, j = 1, . . . , N , such that

∫
Γ

f(y)dsy ≈
N∑
j=1

wjf(yj)

holds to high accuracy for all smooth enough functions f . Let Γ be parametrized

by the 2π-periodic map Z : [0, 2π) → R2, with Z(t) = Z1(t) + iZ2(t), such that

Γ = Z([0, 2π)), and with “speed” |Z ′(t)| > 0 for all 0 ≤ t < 2π. Then probably the

simplest global quadrature arises from the N -point periodic trapezoid rule [18] with

equal weights 2π/N and nodes

sj :=
2πj

N
, j = 1, . . . , N . (2.12)

By changing variable to arc-length on Γ, we get a boundary quadrature

yj = Z(sj), wj =
2π

N
|Z ′(sj)|, j = 1, . . . , N . (2.13)

It is well known that this rule can be exceptionally accurate: since the periodic

trapezoid rule is exponentially convergent in N for analytic 2π-periodic integrands

[17] [44, Thm. 12.6] [85], the rule (2.13) is exponentially convergent when Z1 and

Z2 are analytic (hence Γ is an analytic curve), and the integrand f is analytic. The

exponential rate is controlled by the size of the region of analyticity. In the merely

smooth case we have superalgebraic convergence.
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2.3.1 Interior case

Cauchy’s formula states that any function v holomorphic in Ω whose limit ap-

proaching Γ from the inside is v− ∈ C(Γ) may be reconstructed from its boundary

data alone:

1

2πi

∫
Γ

v−(y)

y − x
dy =

 v(x), x ∈ Ω

0, x ∈ Ωc
(2.14)

Note that we have taken care to specify the data as the inside limit v−; this matters

later when v will be itself generated by a Cauchy integral.

By combining (2.14) with the special case (1/2πi)
∫

Γ
1/(y − x)dy = 1 for x ∈ Ω,

we have ∫
Γ

v−(y)− v(x)

y − x
dy = 0, x ∈ Ω . (2.15)

Even as the target point x approaches Γ, the integrand remains smooth (e.g. the

neighborhood in which it is analytic remains large) because of the cancellation of the

pole, and hence the quadrature rule (2.13) is accurate. Thus

N∑
j=1

v−j − v(x)

yj − x
wj ≈ 0 .

Rearranging derives a way to approximate v(x), given the vector of values v−j :=

v−(yj), namely

v(x) ≈


∑N

j=1

v−j
yj−xwj∑N

j=1
1

yj−xwj
, x ∈ Ω, x 6= yi, i = 1, . . . , N

v−i , x = yi

(2.16)

We have included x in the closure of Ω because in practical settings with roundoff

error, targets may fall on Γ. The second formula is needed when x hits a node. We

believe (2.16) is due to Ioakimidis et al. [37, (2.8)]; Helsing–Ojala call it “globally
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compensated” quadrature [31]. It is in fact a barycentric Lagrange polynomial in-

terpolation formula of the second form, with two crucial differences from the usual

setting [13]:

• the nodes are no longer on the real axis, and

• the weights wj come simply from quadrature weights on the curve rather than

from the usual formula related to Lagrange polynomials.

In the case of Ω the unit disc with equispaced nodes, the equivalence of (2.16) to

barycentric interpolation was recently explained by Austin–Kravanja–Trefethen [5,

Sec. 2.6].

A celebrated key feature of barycentric formulae is numerical stability even as the

evaluation point x approaches arbitrarily close to a node yi. Although relative error

grows without limit in both numerator and denominator of (2.16), due to roundoff

error in the dominant terms 1/(yi − x), these errors cancel (see [13, Sec. 7], [33] and

references within). Thus close to full machine precision is attainable even in this

limit.

2.3.2 Exterior case

We turn to the exterior Cauchy formula that states for v holomorphic in Ωc,

1

2πi

∫
Γ

v+(y)

y − x
dy =

 v∞, x ∈ Ω

v∞ − v(x), x ∈ Ωc
(2.17)

where v∞ := limx→∞ v(x). We are interested only in v that can be generated by

the exterior Cauchy integral, i.e. the case v∞ = 0. We pick a simple non-vanishing

function p with p∞ = 0 that will play the role that the constant function played in

the interior case. We choose p(x) = 1/(x− a) where a ∈ Ω is a fixed arbitrary point
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chosen not near Γ. Applying (2.17) this is generated by

1

x− a
=
−1

2πi

∫
Γ

(y − a)−1

y − x
dy

Multiplying both sides by (x− a) we get a way to represent the constant function 1

via an exterior representation. Using this we create an exterior equivalent of (2.15),

∫
Γ

v+(y)− (y − a)−1(x− a)v(x)

y − x
dy = 0 for x ∈ Ωc . (2.18)

The integrand remains smooth and analytic even as the target x approaches Γ. Sub-

stituting the periodic trapezoid rule in (2.18) and rearranging as in the interior case

gives

v(x) ≈


1

x− a
·
∑N

j=1

v+
j

yj−xwj∑N
j=1

(yj−a)−1

yj−x wj
, x ∈ Ωc, x 6= yi, i = 1, . . . , N

v+
i , x = yi

(2.19)

which is our formula for accurate evaluation of the exterior Cauchy integral. It also

has barycentric stability near nodes.

Remark 2. Helsing–Ojala [31, Eq. (27)] mention a different formula for the exterior

case,

v(x) ≈
∑N

j=1

v+
j

yj−xwj

−2πi+
∑N

j=1
1

yj−xwj
, x ∈ Ωc, x 6= yi, i = 1, . . . , N.

This is marginally simpler than our (2.19) since the interior point a is not needed; we

have not compared the two methods numerically, since our scheme performs so well.

2.3.3 First derivative and its barycentric form, interior case

Accurate Stokes evaluation demands accurate first derivatives of Laplace poten-

tials and hence of the Cauchy representation. The interior Cauchy formula for the
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first derivative is,

v′(x) =
1

2πi

∫
Γ

v−(y)

(y − x)2
dy, x ∈ Ω .

We can combine this with the Cauchy formula as in (2.15) to get,

∫
Γ

v−(y)− v(x)− (y − x)v′(x)

(y − x)2
dy = 0 x ∈ Ω , (2.20)

which holds because the middle term vanishes (the contour integral of 1/(x − y)n is

zero for integer n 6= 1). The integrand is analytic and smooth even as x approaches Γ

because the numerator kills Taylor terms zero and one in the expansion of v about x,

so the trapezoid rule (2.13), as before, is accurate. Applying the quadrature (making

sure to keep the middle term, which is mathematically zero but numerically necessary

to compensate the quadrature) gives

v′(x) ≈



∑N
j=1

v−j −v(x)

(yj−x)2 wj∑N
j=1

1
yj−xwj

, x ∈ Ω, x 6= yi, i = 1, . . . , N

− 1

wi

∑
j 6=i

v−j − v−i
yj − yi

wj, x = yi

(2.21)

Here the case where x coincides with a node is derived by taking the limit as x ap-

proaches a node. (2.21) is analogous to the derivative of the barycentric interpolant

derived by Schneider–Werner [75, Prop. 11] (who also generalized to higher deriva-

tives). The case for x not a node is equivalent to the derivative formula of Ioakimidis

et al. [37, (2.9)], and that of [5, Algorithm P’].

However, (2.21) (and its equivalent forms cited above) suffers from catastrophic

cancellation as x approaches a node, a point that we have not seen discussed in the

literature. Even if v(x) is computed to high accuracy (say, using (2.16)), the relative

accuracy of the term (v−j − v(x)) in (2.21) deteriorates, in a way that involves no

explicit cancellation of poles as in the second barycentric form. A solution which
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regains true barycentric stability is to evaluate this term via

v−j − v(x) ≈
∑

k 6=j
v−j −v

−
k

yk−x
wk∑N

k=1
1

yk−x
wk

. (2.22)

Because the numerator term k = j is absent, then as x tends to node yj an overall

factor of (yj − x) dominates in a way that cancels (to high accuracy) one power in

the term (yj − x)2 in (2.21). Thus using (2.22) for each term v−j − v(x) is a true

second barycentric form, which we believe is new. The problem is that it increases

the effort from O(N) to O(N2) per target point x. Our remedy is to realize that

(2.22) is only helpful for small distances |yj − x|: thus we use the value v(x) from

(2.16) unless |yj − x| < δ, in which case (2.22) is used. We choose δ = 10−2, since in

most settings with Ω of size O(1) only a small fraction of targets lie closer than this

to a node, and at most around 2 digits are lost due to the loss of barycentric stability

for larger target-node distances. Unless many nodes are spaced much closer than δ,

the method remains O(N) per target point.

Remark 3. It has been pointed out2 to us that another way to alleviate the issue of the

first formula in (2.21) not itself being barycentric is to instead compute v′(yi) at each

of the nodes using the second formula in (2.21), then to use barycentric interpolation

(2.16) from these values. I.e. one interpolates the derivative instead of differentiating

the interpolant. We postpone comparing these two methods to future work, since we

note that we already achieve close to machine precision errors, uniformly.

2.3.4 First derivative with a barycentric form, exterior case

Combining the ideas of (2.18) and (2.20) we have the identity

∫
Γ

v+(y)− v(x)− (x− a)(y − a)−1(y − x)v′(x)

(y − x)2
dy = 0 , for x ∈ Ωc ,

2L. N. Trefethen, personal communication.
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which, as with (2.20), has smooth analytic integrand even as x approaches Γ because

the first two Taylor terms are cancelled. Inserting the quadrature rule gives the

approximation

v′(x) ≈ 1

x− a
·
∑N

j=1

v+
j −v(x)

(yj−x)2 y
′
jwj∑N

j=1
(yj−a)−1

yj−x y′jwj
, x ∈ R2\Ω, x 6= yi, i = 1, . . . , N (2.23)

which, as in the interior case, does not have barycentric stability as x approaches a

node. Unfortunately the formula analogous to (2.22) which uses (2.19) to write v(x)

also fails to give stability, because the k = j term no longer vanishes and roundoff

in this term dominates. However, it is easy to check that the following form is

mathematically equivalent,

v+
j − v(x) ≈ 1

x− a

[∑
k 6=j

v+
j (yj−a)(yk−a)−1−v+

k

yk−x
wk∑N

k=1
(yk−a)−1

yk−x
wk

− (yj − x)v+
j

]
, (2.24)

and does give barycentric stability when inserted into (2.23), because, as x approaches

yj, the factor yj − x in both terms is explicit. As with the interior case, we only use

this when |yj−x| < δ. This completes our recipes for interior/exterior Cauchy values

and first derivatives.

2.3.5 Numerical tests of values and derivatives close to the curve

We test the Cauchy integral evaluation formulae presented in this section on the

smooth star-shaped domain of Fig. 2.2(a) given by the radial function f(θ) = 1 +

0.3 cos(5θ). (This shape is also used in [31].) For the interior case, the test points x lie

along the line shown in Fig. 2.2(a), at a set of distances from a node yj logarithmically

spanning the range from machine precision to 1. A test point x = yj is also included

(data for this test point appears in the left-most column of each plot (b)–(d)). The

function v is a pole located outside of Γ and is therefor holomorphic in Ω; its maximum
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Figure 2.2: (a) Curve (with N = 200 nodes shown) for the test of the interior Cauchy
integral evaluation; points x (shown by + symbols along the straight line) lie at
approximate distances from a node 0, 10−16, 10−14, . . ., 10−2, 1. The test function
is v(x) = 1/(x − b) where the pole b = 1.1 + 1i (shown by ∗) is a distance of 0.5
from Γ. (b) Convergence of log10 of the absolute error (see colorbar at right) for
v(x), using formula (2.16), plotted vs distance of x from a node (horizontal axis) and
number of nodes N (vertical axis). (c) Convergence of v′(x), using the formula (2.21).
(d) Convergence of v′(x), inserting (2.22) into (2.21) for distances below δ = 10−2.
Exterior results are very similar, so we do not show them.

magnitude on Γ is of order 1.

Fig. 2.2(b) shows exponential convergence with 15 digit accuracy in value reached

by N = 180 at all distances, and that small distances converge at the same rate but

with a smaller prefactor. For comparison, applying the quadrature scheme (2.13)

directly to the Cauchy integral, as is common practice, with the same N = 180, gives

15 digits of accuracy at the most distant point, but zero digits of accuracy at all other

points.

The derivative formula (2.21) of Ioakimidis et al. is tested in plot (c): there is a

clear loss of accuracy in inverse proportion to the distance from a node, regardless

of N , simply due to non-barycentric loss of relative error in the term v−j − v(x).

(However, when x coincides with a node, convergence is again exponential). Finally,

evaluating v−j − v(x) by (2.22) for distances less than δ = 10−2 gives plot (d), which

achieves 14 digit accuracy at all distances.

We also tested the exterior methods, choosing a generic interior point a = −0.1

in the method, and using v given by a pole at b = 0.1 + 0.5i a distance 0.33 from Γ.
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This v is holomorphic in Ωc and has v∞ = 0. Results for the value formula (2.19), and

derivative formula (2.23) with v+
j − v(x) evaluated via (2.24), are essentially identical

to the interior case, with equally good achievable accuracies, so we do not show them.

Note that the rate of exponential convergence is clearly affected by the choice of

holomorphic test function v: moving the pole of v closer to Γ worsens the rate since

the data becomes less smooth. We chose poles not too far from Γ. For comparision,

for an entire function, such as v(x) = e2x, full convergence in the interior is achieved

at only N = 80.

2.4 Evaluation of Laplace layer potentials with global quadra-

ture

The goal of this section is to describe accurate methods to evaluate the single-

and double-layer potential in the interior and exterior of a closed curve Γ, given only

the density values τj := τ(yj) at the nodes yj belonging to a global quadrature (2.13)

on the curve. We remind the reader that direct application of the rule (2.13) to the

layer potentials (2.2) and (2.3) is highly inaccurate near Γ. In contrast, our methods

retain accuracy and efficiency for targets x arbitrarily close to Γ. The effort will be

O(N(N +M)) for N nodes and M targets (although see discussion in Sec. 2.6).

2.4.1 Laplace double-layer potential

Recall that the double-layer potential (2.3) can be written as the real part of the

function v given by the Cauchy integral (2.4). v is holomorphic in Ω and in Ωc.

For interior evaluation, Helsing–Ojala [31] proposed a two-stage scheme, which for

convenience we review in our setting of the global periodic trapezoid quadrature:

Step 1. Approximate the boundary data v−j := v−(yj) which is the interior limit of the

function (2.4) at each of the nodes.
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Step 2. Use this data to numerically approximate the Cauchy integral (2.14) to generate

v(x) at any x ∈ Ω, using the method of Section 2.3.1.

Finally, taking u = Re v extracts the desired potential. We extend this to first

derivatives by including in Step 2 the method of Section 2.3.3 to evaluate v′(x), then

extracting the gradient as ∇u = (Re v′,− Im v′).

It only remains to present Step 1 (following [31, Sec. 3]). For x ∈ Γ, let v−(x) :=

limy→x,y∈Ω v(y) be the interior limit of (2.4). It follows from the Sokhotski–Plemelj

jump relation [44, Thm. 7.6] that

v−(x) = −1
2τ(x)− 1

2πi
PV

∫
Γ

τ(y)

y − x
dy , x ∈ Γ ,

where PV indicates the principal value integral. We split the PV integral into an

analytic and Cauchy part:

PV

∫
Γ

τ(y)

y − x
dy =

∫
Γ

τ(y)− τ(x)

y − x
dy + τ(x) PV

∫
Γ

1

y − x
dy .

The latter integral is −1
2 for x ∈ Γ for any closed curve Γ. Thus

v−(x) = −τ(x)− 1

2πi

∫
Γ

τ(y)− τ(x)

y − x
dy , x ∈ Γ (2.25)

The integrand is analytic (compare (2.15)), so the periodic trapezoid rule is again

excellent. We need the boundary point x = yk, i.e. the kth node, so must use the

correct limit of the integrand at the diagonal y = x. If we define τ̃(t) := τ(Z(t)) as

the density in the parameter variable, and let τ ′k := τ̃ ′(sk), then the integrand has

diagonal limit τ̃ ′(sk)/|Z ′(sk)|, and applying quadrature (2.13) to (2.25) gives

v−k = −τk −
1

2πi

∑
j 6=k

τj − τk
yj − yk

wj −
τ ′k
iN

, k = 1, . . . , N . (2.26)
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We compute the vector {τ ′j}Nj=1 by spectral differentiation [83] of the vector {τj}Nj=1

via the N -point fast Fourier transform (FFT). This completes Step 1 for the interior

case.

The case of x exterior to Γ is almost identical, except that by the Sokhotski–

Plemelj jump relation we change Step 1 to

v+
k = v−k + τk = − 1

2πi

∑
j 6=k

τj − τk
yj − yk

wj −
τ ′k
iN

, k = 1, . . . , N , (2.27)

and in Step 2 we now use the exterior methods of Sections 2.3.2 and 2.3.4 for v(x)

and v′(x).

2.4.2 Laplace single-layer potential

This section is the heart of the contribution of this paper. Although we have not

seen this in the literature (other than [9]), it is also possible to write the single-layer

potential (2.2) as the real part of a holomorphic function,

u(x) = (Sτ)(x) = Re v(x) (2.28)

where the function v is defined by

v(x) :=
1

2π

∫
Γ

(
log

1

y − x

)
τ(y) |dy| , x ∈ R2\Γ . (2.29)

Note that the integration element |dy| = dy/iny is real. We present the interior and

exterior cases in turn.

2.4.2.1 Interior case

We first explain the (simpler) interior case x ∈ Ω. In order that v be holomorphic

in Ω, care needs to be taken with the branch cuts of the logarithm in (2.29), and
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it must be considered as a function of two variables, L(y, x) := log 1/(y − x), which

agrees with the standard logarithm up to the choice of Riemann sheet. Fixing a

boundary point y0 ∈ Γ, the following branch choices for L are sufficient for v to be

holomorphic [9, Remark 7]: i) for each fixed x ∈ Ω, as y loops around Γ a jump of

2πi occurs in L only at y0, and ii) for each fixed y ∈ Γ, L(y, ·) is continuous in Ω.

As before we have two steps, only the first of which differs from the double-layer

case: Step 1 finds the interior boundary data v−j for the function (2.29), then Step

2 evaluates v at arbitrary interior target points using (2.14) and the Cauchy integral

method of Section 2.3.1. Finally the real part is taken. Accurate first partials are

also found in the same way as the double-layer case.

All that remains is to explain Step 1. Inserting the parametrization of Γ from

Section 2.3 and recalling τ̃(s) := τ(Z(s)), the interior boundary data of v at x =

Z(t) ∈ Γ is

v−(x) := lim
Ω3z→x

1

2π

2π∫
0

(
log

1

Z(s)− z

)
τ̃(s)|Z ′(s)|ds . (2.30)

To handle the logarithmically singular kernel which results in the limit, we exploit

the identity

log
1

Z(s)− Z(t)
= log

eis − eit

Z(s)− Z(t)
− log(eis − eit) . (2.31)

For Γ smooth, the first term on the right-hand side is smooth as a function of s when

the correct branch cuts of log are taken, while the second term (relating to the single-

layer kernel on the unit disc) can be handled analytically. Similar ideas are used in

analytic PDE theory [82, Sec. 8]. Inserting this into (2.30), realizing that the sense
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of the limit (interior) only affects the second term, gives

v−(Z(t)) :=
1

2π

2π∫
0

(
log

eis − eit

Z(s)− Z(t)

)
τ̃(s)|Z ′(s)|ds

− 1

2π

2π∫
0

log(eis − ei(t+i0))τ̃(s)|Z ′(s)|ds

(2.32)

where t + i0 indicates the limit where the imaginary part of t approaches zero from

above, i.e. eit approaches the unit circle from inside. We write log(eis − ei(t+i0)) =

is + g(s− t) where g is a convolution kernel. We simply drop the non-convolutional

term is because it contributes a purely imaginary constant to v that will have no

effect on Re v. The sense of the limit allows a Taylor expansion of the logarithm in

the kernel,

g(s) = log(1− e−i(s−i0)) =
∑
n>0

e−ins

n
=:
∑
n∈Z

gne
ins , (2.33)

where the last term defines a Fourier series whose coefficients are read off as

gn =

 −
1
n
, n < 0

0, n ≥ 0
(2.34)

These coefficients can be used to construct weights that approximate the product

quadrature with g, via trigonometric polynomials. Let any function f be smooth and

2π-periodic, then
2π∫

0

f(s)g(s)ds ≈
N∑
j=1

Rjf(sj)

holds to spectral accuracy, where the general formula3 for the weights (as derived in

3We drop the factor of 1
2 from the last term present in [43] and [27, Sec. 6], it being exponentially

small.
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the review [27, Sec. 6]), followed by the weights for our particular case (2.33) of g, is

Rj =
2π

N

∑
|n|<N/2

gne
−insj = −2π

N

−1∑
n=−N

e−insj

n
, j = 1, . . . , N . (2.35)

The action of g as a convolution kernel on any f is thus approximated by a circulant

matrix:
2π∫

0

f(s)g(s− sk)ds ≈
N∑
j=1

Rj−kf(sj), k = 1, . . . , N .

We are now ready to apply quadrature rules to (2.32). For each boundary target

x = yk = Z(sk), the first (smooth) term is well approximated using the periodic

trapezoid rule with the correct diagonal limit, while the second term uses the above

product quadrature, giving

v−k ≈
1

2π

∑
j 6=k

(
log

ei(sk−sj)

Z(sk)− Z(sj)

)
wjτj +

1

2π
log

ieisk

Z ′(sk)
wkτk

− 1

2π

N∑
j=1

Rj−kwjτj, k = 1, . . . N.

(2.36)

With (2.36) and (2.35) defined, Step 1 is complete.

A couple of practical words are needed. The vector {Rj}Nj=1 is simply filled by

taking the FFT of (2.34). Handling the branch cuts of the first term in (2.36) so

that it corresponds to a smooth kernel may seem daunting. In fact this is done easily

by filling the N -by-N matrix S corresponding to the first two terms in (2.36), using

the machine’s standard branch cut for log, then applying to it the following simple

MATLAB code,

for i=1:numel(S)-1

p = imag(S(i+1)-S(i));

S(i+1) = S(i+1) - 2i*pi*round(p/(2*pi));

end
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This loops through all matrix elements and adjusts them by an integer multiple of 2πi

whenever they jump by more than π in imaginary part from a neighboring element.

Once N is sufficiently large to resolve the kernel, such large jumps cannot occur unless

a branch is being crossed.

2.4.2.2 Exterior case

Here we describe the differences from the interior case. In Step 1, the crucial sign

change causes the convolutional part of the kernel to reverse direction as follows,

log(eis − ei(t−i0)) = iπ + log(eit − ei(s+i0)) = i(π + t) + g(t− s) ,

where g is as in (2.33). Thus the exterior version of (2.32) is

v+(Z(t)) :=
1

2π

2π∫
0

(
log

eis − eit

Z(s)− Z(t)

)
τ̃(s)|Z ′(s)|ds+

T

2πi
(π + t)

− 1

2π

2π∫
0

g(t− s)τ̃(s)|Z ′(s)|ds

(2.37)

where the total charge of the single-layer density τ is

T :=

∫
Γ

τ(y)|dy| =
2π∫

0

τ̃(s)|Z ′(s)|ds . (2.38)

The first (smooth) term in (2.37) is identical to that in (2.32). The π in the middle

term can be dropped since it has no effect on Re v. In the last term, the convolution

kernel is g(−s) instead of g(s); we can achieve this by replacing Rj with R−j. Thus
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the exterior version of (2.36) is

v+
k ≈

1

2π

∑
j 6=k

(
log

ei(sk−sj)

Z(sk)− Z(sj)

)
wjτj+

1

2π
log

ieisk

Z ′(sk)
wkτk+

T

2πi
tk−

1

2π

N∑
j=1

Rk−jwjτj .

(2.39)

This completes Step 1 for the Laplace single-layer exterior case.

Remark 4. Kress [43] gives formulae (due to Martensen–Kussmaul) for splitting a

periodic kernel with a logarithmic singularity into a smooth part and the product of

a smooth part and the convolution kernel log
(
4 sin2 s

2

)
. The formula g(s) = log(1−

e−i(s−i0)) = 1
2 log

(
4 sin2 s

2

)
+ i s−π

2
, for 0 ≤ s < 2π, shows that (2.31) is the analogous

Kress-type split for the complex logarithmic kernel case. The imaginary part of g is a

“sawtooth wave” (periodized linear function) whose sign depends on from which side

the limit is taken.

If the total charge T = 0 then v given by (2.29) is single-valued in Ωc and has

v∞ = 0, so Step 2 may proceed just as for the double-layer case, and we are done.

However, if T 6= 0, then there must be a branch cut in v connecting Γ to ∞ (along

which the imaginary part must jump by T ), and v grows logarithmically at ∞. In

this latter case we must subtract off the total charge as follows. Let a ∈ Ω be chosen

not close to Γ, then define

w(x) := v(x)− T

2π
log

1

a− x
, (2.40)

where v is as in (2.29). Then w, being holomorphic in Ωc (the branch cut of log in

(2.40) can be chosen to cancel that of v), and having w∞ = 0, is appropriate for

representation by Step 2, using its boundary data w+
k = v+

k − (T/2π) log 1/(a − yk),

for k = 1, . . . , N . Finally, after Step 2 produces w and w′, the missing monopole must

be added back in to get v via (2.40), and v′(x) = w′(x) + (T/2π)/(a − x). Then as

before, u = Re v and ∇u = (Re v′,− Im v′).
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Remark 5. The reader may wonder how spectral accuracy is to be achieved in Step

2 using the periodic trapezoid rule when T 6= 0, given that then the boundary data

(2.39) has a discontinuity due to the imaginary sawtooth (third term). In fact there is

also a discontinuity of equal size and opposite sign, in w, introduced by the branch cut

of the log in (2.40). Moreover, these discontinuities may occur at different boundary

locations; but, since the number of nodes lying between them is fixed, the error

introduced is a purely imaginary constant and has no effect on u. The overall scheme

for evaluating u and ∇u, as for the interior case, is spectrally accurate.

2.4.3 Numerical tests of Laplace evaluation quadratures

In order to test the new global quadrature evaluation schemes at a variety of

distances from the boundary, we set up simple BVPs on a smooth closed curve with

boundary data corresponding to known Laplace solutions. We then solve each using

an integral equation formulation and record the error between the numerical layer

potential evaluation and the known solution. Introducing and solving the BVP is

necessary since on a general curve there are very few known density functions which

generate known analytic potentials (specifically, τ ≡ 1 generating u ≡ −1 via the

DLP is the only example known to the authors).

The Laplace BVPs we use for tests are the standard four possibilities of inte-

rior/exterior, Dirichlet/Neumann problems [44, Sec. 6.2]. The integral equation rep-

resentations are those of [44, Sec. 6.4] with the exception of the exterior Dirichlet,

which we do not modify since we choose the solution to vanish at ∞. We use the

representation u = Dτ for the Dirichlet BVP, and u = Sτ for the Neumann BVP,

with boundary data f . Using the operator D and the jump relations (2.5)–(2.6), the
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Figure 2.3: Evaluation error for the Laplace single-layer potential on a grid exterior
to the closed curve Γ defined by the radial function r(θ) = 1 + 0.3 cos 5θ. The color
shows log10 of the errors relative to a known solution to the exterior Neumann BVP.
(a) uses the native periodic trapezoid rule (2.13), whereas (b) and (c) use the scheme
of Section 2.4.2.2 (note the change in color scale). In all cases N = 240 nodes are
used for solution and evaluation.

integral equations are thus,

Dirichlet BVP : (D ± 1
2)τ = f , (+ exterior case,− interior case) (2.41)

Neumann BVP : (DT ∓ 1
2)τ = f , (− exterior case,+ interior case) .(2.42)

Since the kernel of D is smooth, we fill the system matrix via the Nyström method

[44, Sec. 12.2] using the diagonal values lims→tD(s, t) = −κ(t)/4π where κ(t) is the

curvature of Γ at Z(t). The interior Neumann solution is only defined up to a constant,

hence we fix this constant by defining the error at the origin to be zero. For a solution

in Ω we use u(x) = Re ei(1+x), x ∈ C, and in Ωc we use u(x) = Re 1/(x− 0.1− 0.3i),

which has u∞ = 0. For the exterior Dirichlet and interior Neumann cases the operator,

and hence Nyström matrix, has nullity 1; however, this does not pose a problem

when a backward-stable dense linear solver is used (we use the backslash command

in MATLAB).

Figure 2.3 shows results for the exterior single-layer potential on the curve used

in Sec. 2.3.5, for the converged value of N = 240. As described in the introduction,

we see that with the native quadrature scheme errors grow exponentially up to O(1)

near Γ. In contrast, the new scheme of this section achieves 14 digits in value, and 12
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N DLP int DLP ext SLP int SLP ext
u ∇u u ∇u u ∇u u ∇u

100 2.9e-07 9.6e-06 8e-05 2.6e-03 7e-09 2.7e-07 1e-06 3.9e-05
150 7.8e-11 3.8e-09 6.7e-10 6.8e-08 1.4e-12 8.7e-11 7.9e-10 7.5e-08
200 2.1e-14 2e-12 2.6e-13 3.4e-11 9.8e-15 7e-13 2.7e-13 3.6e-11
250 2e-14 1.7e-12 4.7e-14 4.6e-12 5.9e-14 4.5e-12 4.9e-15 6.3e-13

Table 2.1: Convergence of error for the Laplace layer potential evaluation scheme of
Section 2.4 for BVPs solved on the curve shown in Figure 2.3. The maximum error
in u or ∇u is taken over a square grid of spacing 0.01.

digits in first derivative, uniformly for points arbitrarily close to Γ. The results for the

other three BVPs are very similar. For the convergence in all four cases we refer to

Table 2.1 which shows the worst-case error over target points lying on a square grid

covering [−1.5, 1.5]2 with grid spacing 0.01 (some of these target points lie exactly

on nodes; the closest other ones are distance 3 × 10−4 from a node). High-order

convergence is apparent from this table, with the interior schemes converging slightly

faster in N than the exterior ones.

Remark 6. Our test curve is chosen to be the same as the interior Dirichlet BVP

test in [31, Fig. 2–4], enabling a comparison of our scheme against their panel-based

version. When we use data from their solution, u(x) = Re 1/(z− 1.5− 1.5i) + 1/(z+

0.25 − 1.5i) + 1/(z + .5 + 1.5i), we achieve uniform 14-digit accuracy by N = 320;

from [31, Fig. 4] the panel-based version requires N = 480. So the periodic trapezoid

rule is a factor 1.5 times more efficient in terms of unknowns, which is close to the

expected factor π/2 [26].

We use MATLAB (R2012a) for this implementation (and others in this paper),

and achieve around 107 source-target pairs per second on a 2.6 GHz i7 laptop.

2.5 Stokes close evaluation scheme and numerical results

We are at last in a position to describe how we evaluate Stokes potentials, given

samples {σj}Nj=1 of the vector density σ at N trapezoid rule nodes {yj}Nj=1 defining a
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closed curve Γ. Throughout we generate all other geometric data (normals, curvature,

etc) at the nodes using spectral differentiation via the N -point FFT.

For the SLP we use (3.16), where for each of the three Laplace SLPs we use the

samples of the density (y ·σ, σ1 or σ2) at the same N nodes, fed into the new Laplace

evaluation scheme of Sec. 2.4.2 (which itself relies on Sec. 2.3 for Step 2). For the

DLP we similarly use (3.18), with the last three terms using samples at the given

N nodes fed into the (Ioakimidis/Helsing) scheme of Sec. 2.4.1. However, for the

first term in (3.18), we need the complex-valued densities τ1 and τ2 in (2.11); notice

that the scheme of Sec. 2.4.1 works perfectly well when fed a complex τ , producing

(2.4) rather than (2.3). We have found that this first term converges slower than the

others,4 so to preserve overall accuracy we use FFT interpolation to upsample σ by

a factor β > 1 when computing τ1 and τ2. Thus this first term (and its two Laplace

DLP evaluations) are done with densities sampled on βN nodes. We have found that

β = 2.2 is sufficient to recover similar accuracy to the other terms.5 This increases

the effective cost of the Stokes DLP from 5 to about 7 Laplace DLPs.

We now test the performance of our Stokes close evaluation scheme in settings

relevant for vesicle simulations. We consider four examples: the first two study

the effect of proximity of the target and complexity of the geometry on the error.

In the last two, similar to the Laplace case, we set up BVPs with boundary data

corresponding to known analytic solutions and compare against numerical solutions

obtained through integral equation solves. The fourth example is special in that we

also use the evaluation scheme to apply the Nyström matrix in the solve, given a

boundary with close-to-touching components.

Example 1. Consider two identical bubbles separated by a small distance δ

as shown in Fig. 2.4(a). Assuming unit surface tension, the interfacial force f on

4We suspect this is because the two appearances of the normal function in (2.11) cause a more
oscillatory integrand.

5We note that panel-based schemes also need upsampling from 16 to 32 nodes per panel for full
accuracy [31].
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Figure 2.4: Performance of proposed globally compensated Stokes SLP quadrature in
evaluating the hydrodynamic interaction force (2.43) between two elliptical bubbles
parametrized as translations of (cos θ, 2 sin θ). δ is the minimum distance between the
two interfaces; we plot the l∞-norm error against the number of nodes N for δ = 0.1,
0.01 and 0.001. (b) Convergence of new globally compensated scheme. (c) Native
quadrature (trapezoidal rule), showing very poor convergence for small δ values.

each bubble is given by f(y) = κ(y)ny where κ is the curvature and ny is the unit

outward normal at a point y on the interface Γ. The hydrodynamic interaction force

F experienced at target x on one bubble due to the presence of the other is simply

the Stokes SLP with interfacial force as the density, that is,

F (x) = (Sf)(x) =
1

4π

∫
Γ

(
log

1

ρ
I +

r ⊗ r
ρ2

)
κny dsy . (2.43)

If δ is large, the integrand in (2.43) is smooth and the native trapezoidal rule will yield

superalgebraic convergence. When δ is small, this convergence rate is proportional

to δ, due to the nearly singular integral; hence the N required scales like 1/δ, and is

unacceptably large as shown in Fig. 2.4(c). Yet our new scheme achieves 13 digits

with only N = 64 nodes, as shown in Fig. 2.4(b).

Example 2. We consider elliptical bubbles of aspect ratios 2, 4, and 8, and

evaluate (Sf)(x) for a target point x a distance δ = 10−3 from the highest-curvature

point of the ellipse. This can be interpreted as the disturbance velocity at x induced

by the nearby bubble. Fig. 2.5(b) shows the rapid exponential convergence of our

SLP scheme. For aspect ratio 2, by N = 128 it has converged to 13 digits, and for
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Figure 2.5: Absolute errors in computing the Stokes SLP at a fixed distance δ = 0.001
away from the boundary of three different geometries with varying complexity: ellipses
with aspect ratios 2, 4, and 8. (a) Shows ellipses and target point x (case δ = 0.1 is
shown to make the separation visible). (b) Results for our proposed scheme. In all
cases, the errors decay exponentially with discretization size although, as expected,
the absolute errors are higher for higher aspect ratio geometries. Therefore, in the
case of our scheme, the given data (boundary, density) dictates the overall accuracy.
(c) Results for native quadrature. In this case, convergence rate decreases but more
striking is the fact the errors are almost the same for a particular number of points.
This clearly implies that the near singular integral evaluation dominates the overall
error.

higher aspect ratios the N required grows in proportion to the aspect ratio. This is as

expected, since the density data (κny) changes more rapidly at the extreme point of

the ellipse as its aspect ratio grows, thus requires a larger N to accurately interpolate.

Thus the errors are limited by resolving the data, not by the close-evaluation scheme.

In contrast, errors using the native scheme are unacceptable, and dominated by the

small δ.

N ext Dirichlet int Dirichlet ext Neumann int Neumann
100 2.3e-05 3.6e-05 2.7e-04 1.8e-04
150 2.3e-07 9.9e-08 6.1e-08 1.4e-08
200 5.0e-09 1.9e-09 3.7e-12 4.0e-11
250 2.8e-10 1.4e-11 3.6e-13 1.2e-12
300 2.3e-11 8.3e-14 6.7e-13 2.0e-13
350 2.0e-12 4.9e-14 4.3e-13 1.1e-13

Table 2.2: Convergence of velocity error (max over the evaluation grid) for the solu-
tions of the four types of Stokes BVPs, on the curve shown in Fig. 2.6. The Nyström
method is used to find the density, then the new close evaluation scheme is used, as
described in Sec. 2.5.
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Figure 2.6: (a) Streamlines of the velocity field generated by Stokeslets shown in the
interior, for testing the exterior BVPs in Example 3 of Sec. 2.5. The boundary Γ
is given by the polar function f(θ) = 1 + 0.3 cos 5θ. (b) log10 of absolute error in
computing the velocity (on a grid of spacing 0.02) for the exterior Neumann Stokes
BVP, using N = 250 discretization points on the boundary for both the Nyström
solve and the evaluation as in Example 3 of Sec. 2.5.

Example 3. We solve all four types (interior/exterior, Dirichlet/Neumann) of

Stokes BVP on the star-shaped geometry introduced in Section 2.3.5 using a standard

Nyström method, and test the velocity field evaluation error with the new scheme.

Denoting the pressure by p and the boundary vector data by g, the (unit viscosity)

Stokes BVPs are [34, Sec. 2.3.2]

−∆u+∇p = 0 in Ωc (exterior) , or in Ω (interior) , (2.44)

∇ · u = 0 in Ωc (exterior) , or in Ω (interior) , (2.45)

u = g on Γ (Dirichlet), or T (u, p) = g on Γ (Neumann),(2.46)

u(x) = Σ log ρ+O(1) as ρ := |x| → ∞ (exterior only) , (2.47)

where the traction at y ∈ Γ is defined by T (u, p) := −pny +
(
∇u+ (∇u)T

)
⊗ ny, and

Σ is some constant vector. For the Dirichlet case g is the boundary velocity, for the

Neumann case the boundary traction.

We use standard representations as follows. Let S and D denote the boundary

integral operators with the Stokes SLP and DLP kernels, with D taken in the principal
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value sense (these are analogous to S and D in the Laplace case). Then for the

Neumann BVPs we use u = Sσ, giving the integral equation (DT ∓ 1
2)σ = g (−

exterior case, + interior case), just as in (2.42). For the interior Dirichlet BVP we

use u = Dσ, giving (D − 1
2)σ = g. For the exterior Dirichlet, since we wish to solve

data g for which Σ 6= 0, we use the combined representation u = (D + S)σ [60,

page 128], giving (D + S + 1
2)σ = g. This also eliminates the 1-dimensional nullspace

in this case.6 All four integral equations are consistent, but the interior Dirichlet

and exterior Neumann have 1-dimensional nullspaces which only affect the pressure

solution p, and the interior Neumann integral equation has a 3-dimensional nullspace

corresponding to rigid motions in the plane [34, Sec. 2.3.2]. In the last case we match

these three components to those of the reference solution before computing the errors.

We use the boundary Γ shown in Fig. 2.6 for all four BVP tests. A simple exterior

reference solution (u∗, p∗) is constructed via Stokeslets placed at random locations in

the interior. At any exterior point x, the velocity and pressure are then given by

u∗(x) =
1

4π

q∑
k=1

(
log

1

|x− yk|

)
fk +

(x− yk) · fk
|x− yk|2

(x− yk) (2.48)

p∗(x) =
1

2π

q∑
k=1

(x− yk) · fk
|x− yk|2

(2.49)

The number of Stokeslets q is set to 5 and their chosen locations {yk} and strengths

{fk} are displayed in Fig. 2.6(a). For the interior cases the Stokeslets are moved to

the exterior of Γ at a radius of 2. Then either the Dirichlet data g(x) = u∗(x), x ∈ Γ

or the Neumann data g(x) = T (u∗, p∗)(x), x ∈ Γ is used. The sup norm of this data

is always in the range 0.1 to 1.

The numerical velocity solution u(x) is obtained by solving the integral equation

for σ using the standard Nyström method, then using the new Stokes close evaluation

6Traditionally, a combination of Stokeslets and rotlets are used to eliminate this nullspace in the
context of Stokes BVPs. A more general procedure for handling nullspaces is recently given in [77].
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Figure 2.7: Test of exterior Dirichlet BVP for the 20 elliptical vesicles of Example 4,
using the scheme of Sec. 2.5. (a) Streamlines of the velocity field in the exterior of
vesicles. (b) log10 of error in velocity field using the Nyström method (with GMRES)
to solve the density, using the close evaluation scheme for vesicle-vesicle interactions
and for final flow evaluation, with N = 150 nodes per vesicle. (c) convergence of the
sup norm of error in the velocity field over the grid of values plotted in (b).

schemes for the SLP and/or DLP to evaluate the representation for u. We note

that for the exterior Dirichlet case, the logarithmically-singular operator S must be

discretized; for this we use 16th-order Alpert corrections [3] as explained in [27, Sec. 4].

For the exterior Neumann case, the resulting error is plotted on a grid of spacing 0.02

in Fig. 2.6(b). The convergence of worst-case errors on this grid for all four BVPs is

given in Table 2.2. It is superalgebraic, and clear that 12-digit accuracy results for N

in the range 250 to 300, apart from the exterior Dirichlet case when 350 is needed.7

Away from a thin boundary layer the errors improve by at least 2 digits. Note that

it is not very meaningful to do a direct comparison against the Laplace case since the

smoothness of the data (i.e. distance away of the sources yk) has a large effect on the

convergence rate.

Example 4. We now focus on the exterior Dirichlet Stokes BVP, using the same

combined representation u = (D + S)σ as before, with a more complicated bound-

ary Γ comprising 20 elliptical vesicles that come very close to each other, shown in

Fig. 2.7(a). Their minimum separation is 2× 10−4. This geometry is taken from [98,

7We verified that it was the Alpert correction for S that caused this slightly slower convergence
rate.
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Table 4]. The number of quadrature nodes for each vesicle is the same, N . To resolve

the Nyström matrix for the solution of σ one would need very high N when using

the standard Nyström quadrature formulae, due to interacting vesicles. Therefore in

this example we use an iterative solver (GMRES), using the new global close evalu-

ation scheme for the SLP and DLP to apply all vesicle-vesicle interaction blocks of

the system matrix. (The self-interactions of each vesicle are done by the standard

Nyström formulae, with 8th-order Alpert corrections.) The number of GMRES iter-

ations needed was high (around 600); however, our point is merely to demonstrate

that our close evaluation scheme can be used to solve a close-to-touching geometry

with a small N per vesicle.

The reference solution is the flow field due to a single Stokeslet of random strength

at the center of each ellipse. We believe that this test case is crudely representative of

the types of vesicle flows occurring in applications, with non-singular velocities where

vesicles approach each other (this contrasts the case of approaching rigid bodies). The

solution error for u is evaluated on a grid of spacing 0.016 for N = 150 in Fig. 2.7(b),

and the convergence tested with respect to N in Fig. 2.7(c). Convergence is again

superalgebraic, reaching 13 digits by N = 150. By comparison, the recent tests of

[98] achieve only around 3 digits at this N .

Example 5. In our final example, we solve a more difficult Stokes Dirichlet

problem with the same geometry as in Example 4. Consider 20 fixed elliptical rigid

particles submerged in a linear shear flow with no-slip boundary conditions:

u∞(x) := lim
|x|→∞

u(x) = (x2, 0), u(x) = 0 for x ∈ Γ . (2.50)

Here we actually solve for the difference flow u−u∞ which obeys the exterior Dirich-

let version of (2.44)–(2.47) with boundary data g = −u∞|Γ. For this we use the

same boundary integral representation as in Example 4. The exact solution is not
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Figure 2.8: Example 5: Exterior Stokes Dirichlet BVP for 20 close rigid ellipses with
no-slip boundary condition, driven by a shear flow u∞, using the scheme of Sec. 2.5.
(a) Streamlines of the velocity field (blue lines with arrows), with magnitude of density
σ indicated on the boundaries (color scale on right). (b) log10 of error in velocity
field using the Nyström method (with GMRES) to solve the density, using the close
evaluation scheme for vesicle-vesicle interactions and for final flow evaluation, with
N = 300 nodes per vesicle. (c) Convergence of the sup norm of error in the velocity
field over the grid of values plotted in (b).

analytically known. In Fig. 2.8 we show the resulting numerical flow u and compare

it against a reference solution obtained with N = 500 points per particle. Panel (b)

shows the u error relative to this reference at N = 300; we achieve 9 digits uniformly,

and 13 digits away from a very narrow boundary layer. Panel (c) demonstrates ex-

ponential convergence, as in Example 4, but with a slower rate. 12 digits of uniform

accuracy are reached at N = 430. We believe that this slower convergence is due to

the stronger singularities that may occur with close-to-touching rigid bodies discussed

in the introduction, and we expect that in deformable particle flow applications the

performance will be closer to that in Example 4.

2.6 Conclusions and discussion

We have presented a simple new scheme for evaluating the classical Stokes layer

potentials on smooth closed curves with rapid spectral convergence in the number

of quadrature nodes N , independent of the distance from the curve. We expect

this to find applications in Stokes flow simulations with large numbers of close-to-

touching vesicles. This builds upon Laplace layer potentials—including a new scheme
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for single-layer potentials of independent interest—which in turn rely on barycentric-

type quadratures for Cauchy’s formula. The underlying global periodic trapezoid rule,

being simpler and potentially more efficient than panel-based schemes (see Remark 6),

is the most common in vesicle applications. Thus our work complements recent panel-

based Stokes quadratures [56].

We performed systematic tests, solving all eight boundary value problems (Laplace/

Stokes, Dirichlet/Neumann, interior/exterior) via integral equations, and reach close

to machine error in the solution with a small N that is essentially the same as that

needed for the Nyström method itself. We also showed that our evaluator can be

used to apply the operator in an iterative solution with close-to-touching boundaries

(Example 4).

To evaluate at M targets the effort is O(N(N +M)), although this would be easy

to improve to O(N + M), by using the Cauchy FMM in the barycentric evaluations

(2.16) and (2.19) and the Laplace Step 1 (splitting the sums in (2.26)–(2.27)), and a

complex logarithmic FMM in (2.36) and (2.39). In vesicle applications N is small, so

we leave this for future work.

In terms of future work, there are several variants that could be benchmarked,

such as whether derivatives are best moved from Step 2 to Step 1, and alternatives in

Remarks 2 and 3. However, given the results we presented, there is not much room

for improvement in accuracy. For optimal speed, a Fortran/C/OpenMP library is cer-

tainly needed. Since the Cauchy formula quadratures of Sec. 2.3 (due to Ioakimidis)

generalize barycentric interpolation to the complex plane, this connection is worth

analyzing further (along these lines see [5]). Finally, we do not know of any way to

extend the complex-analytic methods presented to 3D. For surfaces in 3D one cannot

yet say which of the many existing schemes is to be preferred.

We provide documented MATLAB codes for the close evaluation of 2D Laplace

and Stokes layer potentials, and driver codes to generate the tables and several figures
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from this paper, at the following URL:

https://users.flatironinstitute.org/∼ahb/software/lsc2d.tgz
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CHAPTER III

Solution of Stokes Flow in Complex Nonsmooth

2D Geometries via a Linear-Scaling High-Order

Adaptive Integral Equation Scheme

Preamble. We continue to present accurate close evaluation schemes for 2D

Stokes layer potentials. The global scheme in the previous chapter has uniform res-

olution on a smooth closed curve, so it is most suitable for problems like vesicles

and liquid drops. However, for problems with non-smooth geometries, such as fluid

channels and microfluidic chips, a panel-based and adaptive quadrature is much more

efficient and often necessary – this will be the focus of the current chapter. The panel

scheme of this chapter first rewrite the Stokes layer potentials as a sum of contour

integrals following the exact same procedure as in the global scheme, then contour

integrals are accurately evaluated using polynomial approximations and recursive in-

tegration formulae. This is a joint work with Hai Zhu, Alex Barnett and Shravan

Veerapaneni, which has been recently submitted.

3.1 Introduction

Since the pioneering work of Youngren and Acrivos [100, 99], boundary integral

equation (BIE) methods have been widely used for studying various particulate Stokes
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flow systems including drops, bubbles, capsules, vesicles, red blood cells and swim-

mers (e.g., see recent works [78, 66, 15] and references therein). BIE methods exploit

the linearity of Stokes equations and offer several advantages such as reduction in

dimensionality, exact satisfaction of far-field boundary conditions, and ease of han-

dling moving geometries. Development of fast algorithms such as the fast multipole

methods (FMMs) [24, 96, 91, 81, 21, 49], Ewald summation methods [71, 47, 46, 1]

and others tailored to Stokes equations [74, 104, 93, 92], further extended their scope

for solving problems in physically-realistic parameter regimes. Consequently, they

are being used to investigate problems in a wide range of physical scales: from mi-

crohydrodynamics of isolated particles to large-scale flows generated by suspensions

of particles (e.g., see [65, 54, 95]).

Despite their success, many numerical challenges still remain open for BIEs as

applied to particulate Stokes flow problems. Prominent among them is the accurate

handling of hydrodynamic interactions between surfaces that are almost in contact.

For example, in dense suspension flows, the constituent particles often approach very

close to each other or to the walls of the enclosing geometries (e.g., see Figure 3.1). To

prevent artificial instabilities in this setting, numerical methods often require adaptive

spatial discretizations, accurate nearly-singular integral evaluation schemes (note that

while this issue is specific to BIEs, it manifests itself in other forms for other numerical

methods) and accurate time-stepping schemes. The primary focus of this paper is

addressing the first two issues for two-dimensional problems.

In this work, we introduce specialized panel quadrature schemes that can accu-

rately evaluate layer potentials defined on a smooth open curve and for target points

arbitrarily close to or on the curve. This helps the efficient tackling of dense par-

ticulate flows constrained in large multiply-connected domains such as in Figure 3.1.

In addition, we formulate a set of rules for refining (or coarsening) the panels used

to represent the boundaries, so that a user-specified error tolerance can be achieved
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Figure 3.1: Snapshot from a simulation of bacterial supension flow in a microfluidic
chip geometry, which is inspired from the design proposed in [36]. A squirmer model
[38] is used for modeling the bacteria, which treats them as rigid bodies with a
prescribed slip at the fluid-structure interface. Thereby, we solve the Stokes equations
with a no-slip boundary condition on the microfluidic chip geometry, a prescribed
tangential velocity on the squirmer boundaries and an imposed parabolic flow profile
at the inlet and outlet. We used 730, 080 discretization points for the chip boundary,
resulting in 1, 460, 160 degrees of freedom, and 128 discretization points at each of
the 120 squirmers. GMRES took about 10 hours to reach a relative residual of
5.6 × 10−8, using an 8-core 3.6 GHz Intel Core i7 processor with 128 GB of RAM.
Color indicates the magnitude of fluid velocity. The estimated PDE relative L2−norm
error is 2× 10−5.

automatically. One of the advantages of this adaptive panel refinement procedure is

that it can handle geometries with corners (as in Figure 3.2) or nearly self-touching

geometries using the same quadrature schemes for weakly- and nearly-singular inte-

grals.

Our work is closely related to two recent efforts, that of Barnett et al. [8] and

Ojala–Tornberg [56], both of which, in turn, are extensions to Stokes potentials of

the Laplace work of Helsing–Ojala [31]. In [8], three of the co-authors developed high-

order global quadrature schemes based on the periodic trapezoidal rule (PTR) for the

evaluation of Laplace and Stokes layer potentials defined on a smooth closed planar

curve, which achieved spectral accuracy for particles arbitrarily close to each other.

Nevertheless, a key limitation of these close evaluation schemes is that they only work

for closed curves and have uniform resolution on any part of a curve. Thereby, while
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they are well-suited for moving rigid and deformable particles immersed in Stokes

flow, new machinery is needed for the constraining complex geometries such as those

in Figures 3.1 and 3.2.

On the other hand, Ojala–Tornberg [56] developed a panel quadrature scheme

as done in this work. The main distinction is that [56] uses the BIE framework of

Kropinski [45], converting Stokes equations into a biharmonic equation, then tailors it

to a specific application (droplet hydrodynamics), whereas our scheme directly tackles

all the Stokes layer potentials using physical variables (single-layer, double-layer and

their associated pressure and traction kernels). Thereby, it can be integrated with

existing BIE methods developed for various physical problems (colloids, drops, vesi-

cles, squirmers and other suspensions) and flow conditions (imposed flow, pressure-,

electrically- or magnetically-driven flows, etc) more naturally. We note that resolving

nearly-singular integrals is an active area of research owing to its importance in solv-

ing several other linear elliptic partial differential equations (PDEs), such as Laplace,

Helmholtz and biharmonic equations, via BIEs; other recent works that considered

two-dimensional problems include [41, 9, 16, 64, 2, 58].

The predominant class of algorithms for adaptive meshing found in the Stokes BIE

literature are the reparameterization schemes (also called the resampling techniques)

that are dedicated to resolving boundary mesh distortions arising in deformable par-

ticle flow simulations (see [86] for a review on this topic). The primary focus of this

work, on the other hand, is to determine an optimal distribution of boundary panels

on a given domain so that a user-prescribed tolerance is met when computing the

solution. Prior work in this area has mostly been restricted to low-order boundary

element methods (BEMs); see [40] for a review. In the last 20 years, high-order

hp-variants of BEM have been tested for Laplace and Helmholtz problems on poly-

gons (for example [32, 6]). However, we are not aware of any Nyström hp-BIEs for

the Stokes equations capable of handling arbitrary complex geometries. The recent
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research of Rachh–Serkh [63] exploits a power-law basis resulting from analysis of

the wedge problem to solve Stokes corner problems via a BIE. Here, we take a more

pedestrian approach to handling corner singularities via the use of graded meshes. A

prototypical example is shown in Figure 3.2.

The paper is organized as follows. In Section 3.2, we define the boundary integral

operators and state the integral equation formulations for the viscous flow problems

considered here. In Section 3.3, we present the panel quadrature rules for evaluating

the Stokes layer potentials. We summarize our algorithm for adaptively discretizing

a given geometry in Section 3.4. We consider several test cases and present results on

the performance of our algorithms in Section 4.3, followed by conclusions in Section

3.6.
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Figure 3.2: Solution of the Stokes equation in a nonsmooth circular vascular network
with Dirichlet boundary condition. We apply no-slip boundary condition at all branch
walls, and it is driven by a uniform flow from inner to outer circle. Color here indicates
log of the magnitude of fluid velocity. We used automatically generated panels for
both smooth boundaries and 378 corners, resulting in 356, 580 degrees of freedom.
GMRES took about 1 hour to reach a relative residual of 7.61 × 10−11 on an 8-core
4.0 GHz Intel Core i7 desktop. The PDE solution has a relative L2−norm error of
1 × 10−9. Three high-resolution log10 error plots that correspond to different user-
requested tolerance ε near the same reentrant corner are shown on the left; here the
short normal lines show panel endpoints, and the black dots quadrature nodes.

3.2 Mathematical preliminaries

In this section, we first state the PDE formulation for the example shown in Figure

3.2, reformulate it as a BIE and then discuss the evaluation of the resulting boundary

integral operators.

46



3.2.1 Boundary value problem and integral equation formulation

The fluid domain Ω in Figure 3.2 is a multiply-connected region bounded by NΓ

closed curves, {Γi, i = 1, . . . , NΓ}. Without loss of generality, let Γ1 be the all-

enclosing boundary—i.e., the outer circle in Figure 3.2—and let Γ = ∪iΓi. Denoting

the fluid viscosity by µ, the velocity by u and the pressure by p, the governing

boundary-value problem, in the vanishing Reynolds number limit, is

−µ∆u+∇p = 0 and ∇ · u = 0 in Ω, (3.1a)

u = g on Γ. (3.1b)

The Dirichlet data g must satisfy the consistency condition
∫

Γ
g · nds = 0, where n

is the normal to Γ. For example, in Figure 3.2, the flow is driven by an outward flow

condition at the inner circle and an inward flow condition at the outer circle. Their

magnitude is chosen such that the consistency condition is respected. On the rest of

the curves, a no-slip (g = 0) boundary condition is enforced.

While there are many approaches for reformulating the Dirichlet problem (3.1)

as a BIE [60, 34], for simplicity, we use an indirect, combined-field BIE formulation

that leads to a well-conditioned and non-rank-deficient linear system. We make the

following ansatz:

u(x) =

NΓ∑
i=1

(Siσ)(x) + (Diσ)(x) := (Sσ)(x) + (Dσ)(x) , x ∈ Ω, (3.2)

where σ is an unknown vector “density” function to be determined, Si is the velocity

Stokes single layer potential (SLP) and Di is the double layer potential (DLP), defined

47



by

(Siσ)(x) =
1

4πµ

∫
Γi

(
I log

1

ρ
+
r ⊗ r
ρ2

)
σ(y) dsy, x ∈ Ω, (3.3)

(Diσ)(x) =
1

π

∫
Γi

(
r · ny
ρ2

r ⊗ r
ρ2

)
σ(y) dsy, x ∈ Ω. (3.4)

Here, I is the 2-by-2 identity tensor, r = x − y, ρ = ‖r‖2, and dsy is the arc length

element on Γ. As (3.2) indicates, we use S or D to denote the sum of layer potentials

due to all source curves. When combined with their associated pressure kernels (given

in the Appendix), the convolution kernels above are fundamental solutions to the

Stokes equations (3.1a); therefore, all that is left to ensure that the ansatz (3.2) solves

the boundary-value problem is to enforce the velocity boundary condition (3.1b).

We introduce the operator block notation Sijσ = (Sjσ)(Γi), and similarly Dij for

the double layer potential, i.e., the layer velocity potential restricted to the target

curve Γi, using the source curve Γj. By taking the limit as x approaches Γ (from the

interior for Γ1, and exterior for the rest of the curves), the standard jump relations for

the single and double layer potentials [60, 34] give the interior case of the following

NΓ ×NΓ BIE system:



I/2 0 . . .

0 I/2 . . .

...
...

. . .

+


η(S11 + D11) S12 + D12 . . .

η(S21 + D21) S22 + D22 . . .

...
...

. . .




ησ(Γ1)

σ(Γ2)

...

 =


f(Γ1)

f(Γ2)

...

 ,

where η =

 −1, interior case,

+1, exterior case.

(3.5)

The admixture of SLP and DLP in (3.2) insures that (3.5) is of Fredholm second kind,

and that interior curves Γi, i = 2, 3, . . . introduce no null-spaces [28, Thm. 2.1] [60,

p.128]. Note that the negation of the density for the outer curve (first block column)
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results in all positive identity blocks. Once we obtain the unknown density function

σ on Γ, by solving (3.5), we can evaluate the velocity at any point in the fluid domain

by using 3.2.

We also consider the exterior boundary-value problem, which can be thought of

taking the above outer curve Γ1 to infinity, removing it from the problem. The fluid

domain Ω becomes the entire plane minus the closed interiors of the other curves; these

curves we may relabel as Γ = ∪NΓ
i=1Γi. There is also now a given imposed background

flow u∞(x), which in applications is commonly a uniform, shear, or extensional flow.

The decay condition u(x) − u∞(x) = Σ log ‖x‖ + O(1), for some Σ ∈ R2, must be

appended to (3.5) to give a well-posed BVP [34]. The representation (3.2) of the

physical velocity is now

u(x) = u∞(x) + (Dσ + Sσ)(x) . (3.6)

The resulting BIE is given as the second case of (3.5). In the simplest case of physical

no-slip boundary conditions, the data in (3.5) is now f = −u∞|Γ, which one may check

cancels the velocity on all boundaries.

The close-evaluation schemes of Helsing–Ojala [31] enable efficient and accurate

evaluation of certain complex contour integrals arbitrarily close to the boundary, in

the case where high order panel-based discretization is used. Thus, a route to evaluate

the needed Stokes layer potentials close to the boundary, as in (3.5) and (3.2), is to

express them in terms of Laplace potentials, which are in turn expressed via contour

integrals. The rest of this section presents these formulae.

3.2.2 Fundamental contour integrals

Let τ be a given, possibly complex, scalar density function on Γ. We associate

R2 with the complex plane C. Let ny be the outward-pointing unit vector at y ∈ Γ,
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expressed as a complex number. Given a target point x ∈ Ω, we define the potentials

IL = (ILτ)(x) :=

∫
Γ

log |x− y|τ(y)|dy| =
∫
Γ

log |x− y|τ(y)

iny
dy , (real logarithmic)

(3.7)

IC = (ICτ)(x) :=

∫
Γ

τ(y)

y − x
dy , (Cauchy)

(3.8)

IH = (IHτ)(x) :=

∫
Γ

τ(y)

(y − x)2
dy , (Hadamard)

(3.9)

IS = (ISτ)(x) :=

∫
Γ

τ(y)

(y − x)3
dy . (supersingular)

(3.10)

Note that, as functions of target point x, IC , IH and IS are holomorphic functions

in Ω, that (d/dx)(ICτ)(x) = (IHτ)(x), and (d/dx)(IHτ)(x) = 2(ISτ)(x). In contrast,

IL is not generally holomorphic; yet, for τ real, IL is the real part of a holomorphic

function.

3.2.3 Laplace layer potentials

Now, let τ be a real, scalar, density function on Γ. The Laplace single- and

double-layer potentials are defined, respectively, by

(Sτ)(x) :=
1

2π

∫
Γ

(
log

1

ρ

)
τ(y)dsy, x ∈ Ω, (3.11)

(Dτ)(x) :=
1

2π

∫
Γ

(
∂

∂ny
log

1

ρ

)
τ(y)dsy =

1

2π

∫
Γ

(
r · ny
ρ2

)
τ(y)dsy, x ∈ Ω.

(3.12)
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In terms of the contour integrals (3.7) and (3.8), using dsy = |dy| = dy/iny, and the

restriction to τ real, we can rewrite the SLP and DLP as

(Sτ)(x) =
−1

2π
(ILτ)(x) and (Dτ)(x) = Re

i

2π
(ICτ)(x), x ∈ Ω. (3.13)

We will also need the gradients and Hessians of Laplace layer potentials. The

gradient of the SLP has components

∂

∂x1

(Sτ)(x) =
1

2π
Re (IC [τ/iny])(x),

∂

∂x2

(Sτ)(x) =
−1

2π
Im (IC [τ/iny])(x) .

(3.14)

The gradient of the DLP requires the Hadamard kernel, and has components

∂

∂x1

(Dτ)(x) =
−1

2π
Im (IHτ)(x),

∂

∂x2

(Dτ)(x) =
−1

2π
Re (IHτ)(x) . (3.15)

The Hessians, which also require IS, are discussed in Appendix A.

3.2.4 Stokes velocity layer potentials

As in [8], we rewrite the Stokes SLP in terms of Laplace potentials, and the DLP

in terms of Laplace and Cauchy potentials. Using the identity

r ⊗ r
ρ2

σ =
r

ρ2
(r · σ) = (r · σ)∇x log ρ,

we can rewrite the Stokes SLP in terms of the Laplace SLP (3.11) as

(Sσ)(x) =
1

4πµ

{∫
Γ

(
log

1

ρ

)
σdsy +∇

∫
Γ

(
log

1

ρ

)
(y · σ)dsy

− x1∇
∫
Γ

(
log

1

ρ

)
σ1dsy − x2∇

∫
Γ

(
log

1

ρ

)
σ2dsy

}
,

(3.16)
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where ∇ = ∇x is assumed from now on. Therefore, three Laplace potentials (and

their first derivatives) with real scalar density functions y · σ, σ1, and σ2 need to be

computed to evaluate the Stokes SLP. Similarly, using the identity

∇
(
r · ny
ρ2

)
=
ny
ρ2
− (r · ny)

2r

ρ4
, (3.17)

the Stokes DLP can be written as

(Dσ)(x) =
1

2π

∫
Γ

ny
ρ2

(r · σ)dsy +
1

2π
∇
∫
Γ

r · ny
ρ2

(y · σ)dsy

− 1

2π
x1∇

∫
Γ

r · ny
ρ2

σ1dsy −
1

2π
x2∇

∫
Γ

r · ny
ρ2

σ2dsy .

(3.18)

While the last three terms are gradients of Laplace DLPs, the first term requires a

Cauchy integral. More concisely, we can write (3.16) and (3.18) as

(Sσ)(x) =
1

2µ

(
(Sσ1,Sσ2) +∇S[y · σ]− x1∇Sσ1 − x2∇Sσ2

)
(x), x ∈ Ω,

(3.19)

(Dσ)(x) =
( 1

2π
Re
(
IC(τ1), IC(τ2)

)
+∇D[y · σ]− x1∇Dσ1 − x2∇Dσ2

)
(x), x ∈ Ω,

(3.20)

where, as above, a pair (·, ·) indicates two vector components, and a short calculation

verifies that the complex scalar density functions τ1 and τ2

τ1 = (σ1 + iσ2)
Reny
ny

, τ2 = (σ1 + iσ2)
Imny
ny

, (3.21)

where ny is interpreted as a complex number, makes the identity hold (i.e. the first

term in (3.20) equals the first term in (3.18)).

In summary, the procedure discussed in this section enables us to express the

velocity field anywhere in the fluid domain, represented by (3.2), in terms of funda-
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mental contour integrals. Similar formulae exist for the fluid pressure and hydrody-

namic stresses, which are commonly needed in several applications; we present these

in Appendix A.

3.3 Nyström discretization and evaluation of layer potentials

3.3.1 Overview: discretization and the plain Nyström formula

Firstly, we need to specify a numerical approximation of the density function

σ. For simplicity, consider the case of an exterior BVP on a single closed curve Γ

parameterized by Z : [0, 2π) → R2, such that Γ = Z([0, 2π)). The Stokes BIE (3.5)

is then

(I/2 + K)σ = f, K := D + S , (3.22)

where σ and f are 2-component vector functions on Γ.

Given the user requested tolerance ε, the boundary is split into nΛ disjoint panels

Λi, i = 1, . . . , nΛ using the adaptive algorithm to be described in Section 3.4. Each

panel will have p nodes, giving N = pnΛ nodes in total, hence 2N density unknowns.

The ith panel is Λi = Z([ai−1, ai]), where ai, i = 0, . . . , nΛ are the parameter break-

points of all panels (where anΛ
≡ a0(mod 2π)). Let the p-point Gauss–Legendre

nodes and weights on the parameter interval [ai−1, ai] be t
(i)
j and w

(i)
j respectively, for

j = 1, . . . , p. Then, for smooth functions f on Γ, the quadrature rule

∫
Γ

f(y)dsy =

2π∫
0

f(Z(t)) |Z ′(t)| dt ≈
nΛ∑
i=1

p∑
j=1

f(Z(t
(i)
j )) |Z ′(t(i)j )|w(i)

j

=:
N∑
`=1

f(y`) |Z ′(t`)|w`

(3.23)

holds to high-order accuracy. In the last formula above {t`}N`=1 denotes the entire set

of parameter nodes, y` = Z(t`) their images on Γ, and w` their corresponding weights.
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The Nyström method [44, Sec. 12.2] is then used to approximately solve the BIE

(3.22). Broadly speaking, this involves substituting the quadrature rule (3.23) for

the integral implicit in the BIE, then enforcing the equation at the quadrature nodes

themselves. The result is the 2N -by-2N linear system,

Aσ = f (3.24)

where f := {f(t`)}N`=1 is the vector of 2-component values of the right-hand side f

at the N nodes, and σ := {σ`}N`=1 is the vector of 2-component densities at the N

nodes. A = {Aij}i,j=1,...,nΛ
is a nΛ×nΛ block matrix, where each block Aij is a 2p×2p

submatrix that represents the interaction from source panel Λj to target panel Λi.

For targets that are “far” (in a sense discussed below) from a given source panel, the

formula for filling corresponding elements of A is simple. Letting the index be ` for

such a target node, and `′ for a source lying in such a panel, using the smooth rule

(3.23) gives the matrix element

A`,`′ = K(y`, y`′) |Z ′(t`′)|w`′ , (Nyström rule for y` “far” from panel containing y`′)

(3.25)

where K(x, y) = S(x, y) + D(x, y), the latter being the kernels appearing in (3.3)–

(3.4). Recall that each element in (3.25) is a 2×2 tensor, since K is. This defines the

plain (smooth) rule for matrix elements (note that we need not include the diagonal

I/2 from (3.22) since ` = `′ is never a “far” interaction).

Sections 3.3.2–3.3.4 will be devoted to defining “close” vs “far” and explaining

how “close” matrix elements are filled. Assuming for now that this has been done,

the result is a dense matrix A that is well-conditioned independent of N , because

the underlying integral equation is of Fredholm second kind. Then an iterative solver

for (3.24), such as GMRES, will converge rapidly. The result is the vector σ ap-

proximating the density at the nodes. Assuming that (3.24) has been solved exactly,
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there is still a discretization error, whose convergence rate is known to inherit that of

the quadrature scheme applied to the kernel [44, Sec. 12.2]. Given this, the density

function may be evaluated at any point y ∈ Γ using either the Nyström interpolant

(which is global and hence inconvenient), or local pth-order Lagrange interpolation

from just the points on the panel in which y lies. When needed, we will use the latter.

The generalization of the above Nyström method to multiple closed curves is clear.

Remark III.1. When the problem size is large, the matrix-vector multiplication in

(3.24), which requires O(N2) time, can be rapidly computed using the fast multipole

methods (FMM) in only O(N) time. This is because all but O(N) of the matrix

elements involve the plain rule (3.25), for which applying the matrix is equivalent

to evaluation of a potential with weighted source strengths. In our large examples

(Figures 3.1 and 3.2), we use an OpenMP-parallelized Stokes FMM code due to

Rachh, built upon the Goursat representation of the biharmonic kernel [62, 23].

Finally, once σ has been solved for, the evaluation of the velocity u(x) at arbitrary

targets x ∈ Ω is possible, by approximating the representation (3.2) or (3.6), as

appropriate. By linearity, this breaks into a sum of contributions from each source

panel on each curve, which may then be handled separately. Thus a given target x ∈ Ω

may, again, fall “far” or “close” to a given source panel (denoted by Λ = Z([a, b])).

If it is “far” (according to the same criterion as for matrix elements), then a simple

plain rule is used. Letting uΛ be the contribution to u from source panel Λ, this rule

arises, as with (3.25), simply by substituting (3.23) into the representation, giving

uΛ(x) =

∫
Λ

K(x, y)σ(y)dsy

≈
p∑
j=1

K(x, yj) |Z ′(tj)|wjσj , (evaluation rule for x “far” from Λ)

(3.26)

where yj := Z(tj) are the nodes, and σj := σ(yj) the 2-component density values,

belonging to Λ. For large N , the FMM is ideal for the task of evaluating u at many
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targets, using this plain rule. An identical quadrature rule may be applied to the

representations in the Appendix to evaluate pressure and traction at x.

3.3.2 Close-evaluation and self-evaluation corrections

If a target (on-surface node or off-surface evaluation point) is close enough to a

source panel that (3.25) is inaccurate, a new close-evaluation formula is needed. A

special case is when the target is a node from the source panel itself, which we call

self-evaluation. The integrand is nearly singular for close-evaluation and singular for

self-evaluation; in the latter case, the integral is understood as an improper integral

(SLP) or a principal value integral (DLP). Conveniently, we will use the same rule

for self-evaluation as both on-surface and off-surface close-evaluation (this contrasts

much prior work, where the self-evaluation used another set of tailored high-order

integration schemes; see, e.g., [27]).

We quantify “close” and “far” as follows. Given a panel Λj = Z([a, b]), a target

point x is close to Λj if it lies inside the ellipse

|z − Z(a)|+ |z − Z(b)| = C S, (3.27)

otherwise x is far from Λj. A panel Λi is close to Λj if any point z ∈ Λi lies inside

the ellipse (3.27), otherwise Λi is far from Λj. (Note that Λj is close to itself.) In

(3.27), S is the arc length of Λj and C > 1 is a constant. For the numerical examples

in Section 4.3 we have picked C = 2.5, which is large enough to include all of both

neighboring panels of Λj most of the time.

The rationale for the above heuristic is based upon the accuracy of the plain rule

(3.26) (and its corresponding matrix element rule (3.25)). Examining (3.23), if the

integrand f(Z(t))|Z ′(t)| is analytic with respect to t within a Bernstein ellipse (for

the parameter domain [aj−1, aj] for this panel) of size parameter % > 1, then the error
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convergence for the Gauss–Legendre rule for this panel is O(%−2p), i.e. exponential in

the panel degree p [84, Theorem 19.3]. Since in our case f(Z(t)) = K(x, Z(t))σ(Z(t)),

and K(x, y) is analytic for x 6= y, for such analyticity of the integrand, x must be

outside the image of this Bernstein ellipse under Z. In the case where the panel

is approximately flat, this image is approximated by the ellipse with foci Z(a) and

Z(b), which gives the above geometric “far” criterion. The choice of C is empirically

made to achieve an exponential error convergence rate in p no worse than that due to

the next-neighboring panels discussed in Stage 1 of Section 3.4, in the case of panel

shapes produced by the procedure in that section. Note that σ(Z(t)) must also be

assumed to be analytic in the ellipse; we expect this to hold again because the panels

will be sufficiently refined. For a more detailed error analysis of the plain panel rule

using the Bernstein ellipse, see [2, Sect. 3.1].

So far we have presented (only in the “far” case) formulae for both filling Nyström

matrix elements (3.25), and for evaluation of the resulting velocity potential (3.26).

We now make the point that, in both the “far” and “close” cases, these are essentially

the same task.

Remark III.2 (Matrix-filling is potential evaluation). The matrix element formula

(3.25) is just a special case of the evaluation formula (3.26) for the on-surface target

x = y`, and with a Kronecker-delta density σj = δj,`′ . I.e., one can compute (the “far”

contributions to) Aσ from σ, as needed for each iteration in the solution of (3.24),

simply via the evaluation formula (3.26) with targets x as the set of nodes {y`}. This

will also apply to the special “close” formulae presented below. Henceforth we now

present only formulae for evaluation; the corresponding matrix element formulae are

easy to extract (see Section 3.3.4)

Note that the diagonal blocksAii when computed using the special close-evaluation

quadratures will implicitly include the I/2 jump relation appearing in (3.22).

Finally, to accelerate the computation, the close- and self-evaluations can be pre-
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computed as matrices (see Section 3.3.4) from which the (inaccurate) matrices involv-

ing the plain rule (3.25) are subtracted. The resulting “correction matrix” blocks are

assembled and stored as a 2N -by-2N sparse matrix. The entire application of A to

the density vector is then performed using the FMM with the plain rule (3.25), plus

the action of this sparse matrix to replace the “close” interactions with their accurate

values. This application is used to solve the whole linear system iteratively. We do

this for our large-scale examples in Section 4.3.

3.3.3 Close-evaluation of potentials

Since we will perform all Nyström matrix filling using the same formulae as for

close-evaluation of potentials (on- or off-surface), we now present formulae for the

close-evaluation task. As before, we consider a single target point x ∈ Ω which is

“close” to the single source panel Λ = Z([a, b]), on which a density σj is known at

the nodes j = 1, . . . , p. Recall that the p-point Gauss–Legendre nodes and weights

for the parameter interval [a, b] are tj and wj.

We adapt special panel quadratures proposed for the Laplace case by Helsing and

Ojala [31]. They use high-order polynomial interpolation in the complex planhels-

ing2008evaluatione to approximate the density function, then apply a recursion to

exactly evaluate the near-singular integral for each monomial basis function. In Sec-

tion 3.2 we showed that all the needed Stokes potentials may be written in terms

of IL(x), IC(x), IH(x) and IS(x) from (3.7)–(3.10), involving scalar Cauchy densities

τ derived from the given Stokes density σ. Thus in the following subsections we

need only cover close-evaluation of each contour integral in turn. Although much of

this is known [31], there are certain implementation details and choices that make a

complete distillation valuable.

It turns out that the Helsing–Ojala polynomial approximation is most stable when

assuming that Z(a) = 1 and Z(b) = −1, i.e. the panel endpoints are ±1 in the
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complex plane. Thus we start by making this assumption, then in Sec. 3.3.3.4 show

how to correct the results for a panel with general endpoints.

Recall that σ, hence the derived scalar functions τ needed in the contour inte-

grands, is available only at the p nodes of Λ. In order to improve the accuracy of the

complex approximation for bent panels, firstly an upsampling is performed to m > p

“fine” nodes, using Lagrange interpolation in the parameter t ∈ [a, b] from the p nodes

to the m fine nodes. We find that m = 2p is beneficial without incurring significant

extra cost. Let τ̃j, j = 1, . . . ,m denote the fine density values, and zj = Z(t̃j) ∈ Λ be

the fine nodes, where t̃j and w̃j are the m-point Gauss–Legendre nodes and weights

respectively for [a, b]. The following schemes now will use only the fine values and

nodes.

3.3.3.1 Close evaluation of the Cauchy potential

We approximate τ on the panel Λ in the complex variable by the degree m − 1

polynomial

τ(y) ≈
m∑
k=1

aky
k−1, y ∈ Λ . (3.28)

The vector of coefficients a := {ak}mk=1 is most conveniently found by using a dense

direct solve of the square Vandermonde system

V a = τ̃ , (3.29)

with elements Vjk = zk−1
j , j, k = 1, . . . ,m, and right hand side τ̃ := {τ̃j}mj=1. It is

known that, for any arrangement of nodes zj other than those very close to the roots

of unity, the condition number of V grows exponentially with m [57]. However, as

discussed in [31, App. A], at least for m < 50, despite the extreme ill-conditioning,

backward stability of the linear solver insures that the resulting polynomial matches

the values at the nodes to close to machine precision. For this we use MATLAB
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mldivide which employs standard partially-pivoted Gaussian elimination.

The remaining step is to compute the contour integral of each monomial,

pk = pk(x) :=

1∫
−1

yk−1

y − x
dy, k = 1, . . . ,m , (3.30)

which are, recalling (3.8), then combined using (3.28) to get

IC ≈
m∑
k=1

akpk . (3.31)

By design, since the monomials are with respect to y in the complex plane (as opposed

to, say, the parameter t), Cauchy’s theorem implies that each pk is independent of the

curve Λ and depends only on the end-points. Specifically, for k = 1 we may integrate

analytically by deforming Λ to the real interval [−1, 1], so

p1 :=

1∫
−1

1

y − x
dy = log(1− x)− log(−1− x)± 2πiNx (3.32)

where Nx ∈ Z is an integer winding number that depends on the choice of branch cut

of the log function. For the standard cut on the negative real axis then Nx = 0 when x

is outside the domain enclosed by the oriented curve composed of Λ traversed forwards

plus [−1, 1] traversed backwards, Nx = +1 (−1) when x is inside a region enclosed

counterclockwise (clockwise) [31]. However, since it is inconvenient and error-prone

to decide Nx for points on or very close to Λ and [−1, 1], we prefer to combine the

two logs then effectively rotate its branch cut by a phase φ ∈ R, by using

p1 = iφ+ log
1− x

eiφ(−1− x)
, (3.33)

where φ = −π/4 when the upwards normal of the panel points into Ω (as for an

interior curve), or φ = π/4 otherwise. This has the effect of pushing the branch cut
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“behind” the panel (away from Ω; see Fig. 3.3), with the cut meeting ±1 at an angle

φ from the real axis. The potential is correct in the closure of Ω, including on the

panel itself, without any topological tests needed (hence the unified handling of close

and self evaluations in Sec. 3.3.2). This can fail if a panel is very curved (such a panel

would be inaccurate anyway), or if a piece of Ω approaches close to the back side

of the panel (which can be prevented by adaptive refinement as in Section 3.4). In

practice we find that this is robust. However, we will mention one special situation

where (3.33) could fail and therefore careful adjustment of the branch cut is critical;

see Remark III.3 below.

The following 2-term recurrence is easy to check by adding and subtracting xyk−1

from the numerator of the formula (3.30) for pk+1:

pk+1 = xpk + (1− (−1)k)/k . (3.34)

For |x| < 1.1 we find that the recurrence is sufficiently stable to use upwards from the

value p1 computed by (3.33), to get p2, . . . , pm. However, for targets outside this close

disc, especially for larger m, the upwards direction is unstable. Thus, here instead

we use numerical quadrature on (3.30) to get

pm ≈
m∑
j=1

zm−1
j

zj − x
Z ′(t̃j)w̃j , (3.35)

then apply (3.34) downwards to compute pm−1, . . . , p2, and as before use p1 from

(3.33). Outside of the disc, no branch cut issues arise.

Remark III.3 (branch cuts at corners). When a panel Λ is directly touching a corner,

directly applying (3.33) can fail no matter how much the panels are refined. In Figure

3.3a, the panel on the opposite side of the corner, Λ′, is always behind Λ and lying

across the branch cut associated to Λ. Consequently, the close evaluation from Λ to

Λ′ results in completely wrong values, also leading to ill-conditioning of the whole
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(a) (b)
panel endpoints

source

target

branch cut

panel endpoints

source

target

branch cut (flipped)

Figure 3.3: Special handling of close evaluation branch cut when the panel is touching
a reentrant corner. (a) The target panel Λ′ is crossing the branch cut of the source
panel Λ defined by (3.33), resulting in wrong close evaluation values. (b) Changing
the sign of φ in (3.33) flips the branch cut to the other side; close evaluation at the
targets are now correct.

system (3.24). Instead, one can simply change the sign of φ in (3.33) to flip the

branch cut to accommodate the targets on Λ′ (Figure 3.3b). In practice, we find that

this is robust for corners of arbitrary angles.

3.3.3.2 Close evaluation of the logarithmic potential

For τ real, we can write the final form in (3.7) as

IL = Re

∫
Λ

log(y − x)
τ(y)

iny
dy, (3.36)

which shows that the quantity to approximate on Λ as a complex polynomial is

τ(y)/iny. Thus we find the coefficients in

τ(y)

iny
≈

m∑
k=1

bky
k−1, y ∈ Λ , (3.37)

by solving (3.29) but with modified right hand side {τ̃j/inzj}mj=1. Defining

qk :=

1∫
−1

yk−1 log(y − x)dy, k = 1, . . . ,m (3.38)
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then (3.37) gives
1∫

−1

log(y − x)
τ(y)

iny
dy ≈

m∑
k=1

bkqk , (3.39)

whose real part is IL. Each qk is computed from pk of (3.30) as evaluated in

Sec. 3.3.3.1, via a formula easily proven by integration by parts,

qk =
−pk+1 + log(1− x)− (−1)k log(1 + x)

k

=


(
−pk+1 + iφ+ log 1−x

eiφ(−1−x)

)
/k , k even ,(

−pk+1 + log[(1− x)(−1− x)]
)
/k , k odd ,

(3.40)

where the latter form is that used in the code, needed to match the branch cut rotation

used for pk in (3.33). The final evaluation of IL is then via

IL ≈ Re
m∑
k=1

bkqk . (3.41)

3.3.3.3 Close evaluation of the Hadamard and supersingular potentials

The double-layer Stokes velocity requires gradients of Laplace potentials (3.15),

which require IH . Also, the traction of the Stokes single-layer (A.5) involves IH

applied to τ(y)/iny, and the traction of the Stokes double-layer further involves IS

(Appendix A).

Using the complex monomial expansion (3.28), we have

IH ≈
m∑
k=1

akrk, IS ≈
m∑
k=1

aksk, (3.42)

where

rk :=

1∫
−1

yk−1

(y − x)2
dy, sk :=

1∫
−1

yk−1

(y − x)3
dy, k = 1, . . . ,m . (3.43)
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The following formulae can be shown by integration by parts, and enable rk and sk

to be found,

rk = (k − 1)pk−1 +
(−1)k−1

−1− x
− 1

1− x
, sk =

k − 1

2
rk−1 +

(−1)k−1

2(−1− x)2
− 1

2(1− x)2
,

(3.44)

using pk from (3.30) as computed in Sec. 3.3.3.1, and p0 = 0.

3.3.3.4 Transforming for general panel endpoints

To apply close-evaluation methods in the above three sections to a general panel

Λ = Z([a, b]), define the complex scale factor s0 := (Z(b) − Z(a))/2 and origin

x0 = (Z(b) + Z(a))/2. Then the affine map

x = s(x̃) :=
x̃− x0

s0

takes any target x̃ to its scaled version x. Likewise, the fine nodes are scaled by

zj = s(Z(t̃j)), and the factor Z ′ in (3.35) is replaced by Z ′/s0. Following Sec. 3.3.3.1

using these scaled target and fine nodes, no change in the result IC is needed. However,

the value of IH computed in Sec. 3.3.3.3 must afterwards be divided by s0, and the

value of IS divided by s2
0. The value of IL computed in Sec. 3.3.3.2 must be multiplied

by |s0|, and then have |Z ′(t̃j)wj/s0| log |s0| subtracted.

3.3.4 Computation of close-evaluation matrix blocks

The above described how to evaluate (ILτ)(x), (ICτ)(x), (IHτ)(x) and (ISτ)(x)

given known samples τ̃j at a panel’s fine nodes. In practice it is useful to instead

precompute a matrix block A which takes any density values at a panel’s original p

nodes yj to a set of n target values of the contour integral. Consider the case of the

Cauchy kernel, and let A denote this n-by-p matrix. Let L be the m-by-p Lagrange

interpolation matrix from the nodes tj to fine nodes t̃j, which need be filled once and
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for all. Let P be the n-by-m matrix with entries Pik = pk(xi), given by (3.30), where

{xi}ni=1 is the set of desired targets. In exact arithmetic one has

A = PV −1L .

However, since V is very ill-conditioned, filling V −1 and using it to multply to the

right is numerically unstable. Instead an adjoint method is used: one first solves the

matrix equation V >X = P>, where > indicates non-conjugate transpose, then forms

the product

A = X>L .

The matrix solve is done in a backward stable fashion via MATLAB’s mldivide. A

further advantage of the adjoint approach is that if n is small, the solve is faster than

computing V −1.

The formulae for the logarithmic, Hadamard and supersingular kernels are anal-

ogous.

3.4 Adaptive panel refinement

In order to solve a BIE to high accuracy, it is necessary to set up panels such

that the given complex geometry is correctly resolved. In this section, we describe a

procedure that adaptively refine the panels based solely on the geometric properties.

Specifically, our refinement algorithms take into account the accuracy of geometric

representations (including arc length and curvature), the location of corners, and the

distance between boundary components. It necessarily has some ad-hoc aspects, yet

we find it quite robust in practice.

Suppose that for a user-prescribed tolerance ε, the goal is to find a partition

Γ =
nΛ⋃
i=1

Λi such that the error, ε, of evaluating boundary integral operators such as

(3.22) satisfies ε / ε. To this end, we describe our adaptive refinement scheme which
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proceeds with three stages. In what follows, we again assume that the panel under

consideration Λ = Z([a, b]) is rescaled such that its two endpoints are ±1.

Stage 1: Choice of overall p. Given tolerance ε, the goal is to determine a number

of quadrature points, p, applied to all panels, such that the relative quadrature error

on any panel isO(ε). As mentioned above, the p-point Gauss–Legendre quadrature on

[−1, 1] has O(%−2p) error if the integrand can be analytically extended to a Bernstein

ellipse of parameter % > 1, where the semi-major axis of this ellipse is (%+%−1)/2 [84,

Thm. 19.3]. Therefore, making %−2p ≤ ε we obtain the first term of the right-hand

side in

p ≥
⌈

log10(1/ε)

2 log10 %

⌉
+ c, (3.45)

where the second term accounts for unknown prefactors. Empirically we set c = 1.

To determine %, we require that the Bernstein %-ellipse of each panel encloses

both its immediate neighboring panels. This insures that, when applying the smooth

quadrature rule (3.23) between the nearest non-neighboring (“far”) panels that do not

touch a corner, the integrand continues to a function analytic inside the %-ellipse, so,

by the above discussion, the relative error is no worse than ε. (This will not apply to

panels touching a corner, but they are small enough to have negligible contributions.)

Stages 2–3 below will place an upper bound of λ on the ratio of the lengths (with

respect to parameter) of neighboring panels. Combining these two relations gives

%+ %−1

2
= 1 +

2

λ
. (3.46)

One then solves (3.46) for % and substitutes it into (3.45) to obtain a lower bound

for p. For example, λ ≤ 3 holds in our examples, so % = 3, and therefore we have as

sufficient the simple rule p = dlog10(1/ε) + 1e.
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Stage 2: Local geometric refinement. In this stage, panels are split based on

local geometric properties:

1. Corner refinement. Panels near a corner are refined geometrically so that each

panel is a factor λ shorter in parameter than its neighbor (see lines 8–11 of

Algorithm 1).

To each corner is associated a factor λ ≥ 2. A rule of thumb is to use λ = 2

for sharper corners (e.g. whose angle θ is close to 0 or 2π) which are harder to

resolve, and use λ > 2 for “flatter” corners (e.g. θ closer to π) to reduce the

number of panels without affecting the overall achieved accuracy. In practice,

we use λ = 3 for corners π/2 ≤ θ ≤ 3π/2; for a problem with many flat corners,

this can reduce the total number of unknowns by a factor of about 2/3 (or about

log3 2).

Near a corner, refinement stops when the panels touching the corner are shorter

than εα, where α is an empirical power parameter chosen for each corner. Recent

theoretical results for the plain double-layer formulation for the Stokes Dirichlet

BVP state that the density is a constant plus a bounded singular function whose

power exceeds 1/2 for any corner angle in (0, 2π) [63]; this is similar to the

Laplace case [101]. For our D + S formulation we observe a density behavior

consistent with this. This might suggest choosing α = 1 for any corner angle. In

fact, for small (non-reentrant) angles we are able to reduce α somewhat without

loss of accuracy, hence do so, to reduce the number of panels.

2. Bent panel refinement. Panels away from any corners are refined based on how

well the smooth geometric properties are represented by the interpolants on

their p Legendre nodes. We measure the accuracy of geometric representations

by the interpolation errors of a set of test functions on a set of test points. First,

we define the set of test functions G = {g1, g2, g3, . . .} to be approximated on
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the panel Λ. The following list of functions are included in G whenever the

necessary derivatives are available:

• g1(t) = Z(t), which resolves the geometry representation.

• g2(t) = |Z ′(t)|, which resolves arc length, recalling that arc length is

S =

∫
Λ

ds =

b∫
a

|Z ′(t)| dt

• g3(t) = |Im (Z′′(t)/Z′(t))|2
|Z′(t)| , which resolves bending, since bending energy is

E =

∫
Λ

κ2ds =

b∫
a

∣∣∣∣Z ′(t)× Z ′′(t)|Z ′(t)|3

∣∣∣∣2 |Z ′(t)| dt =

b∫
a

{Im (Z ′′(t)/Z ′(t))}2

|Z ′(t)|
dt

Next, we define the test points to be the m equally spaced points on [a, b],

denoted t̃Λj , j = 1, . . . ,m, and let tΛj , j = 1, . . . , p be the Legendre nodes. Then

for each i = 1, 2, 3, the relative error of approximating gi is

εi =
‖g̃i −M · gi‖
‖gi‖

,

where g̃i := (gi(t̃
Λ
1 ), . . . , gi(t̃

Λ
m)), gi := (gi(t

Λ
1 ), . . . , gi(t

Λ
p )), and M is the m × p

interpolation matrix from the Legendre nodes to the test points. The panels

are refined until maxi εi < εβ, where β > 0 is another power parameter, with

default value β = 1.

The corner and bent panel refinement rules are applied to all panels recursively.

The complete procedure is summarized in Algorithm 1.

Stage 3: Global closeness refinement. At this final stage, panels are further

refined if they are (relatively) too close to any non-neighboring panels. Specifically,
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Algorithm 1 Local geometric refinement

Require: The current panel Λ = Z([a, b]); tolerance ε; corner information C =
{tcj, λj, αj}kj=1; test function(s) G = {g1, g2, g3, . . .}; β is the tolerance exponent for
the test functions, default to be 1.

1: function Refine(Z([a, b]), ε, C,G, β)
2: Panel parametric length L = b− a
3: Panel arc length S =

∫ b
a
|Z ′|

4: if geometry has corners then
5: Let tci be the corner closest to [a, b]
6: if L < εαi or S < εαi then
7: return {a, b} . panel length reached lower limit, do not split

8: if tci is close enough to the panel [a, b] then
9: if a < tci < b then s = tci . split right at the corner

10: else if tci < a then s = a+ L/λi . split towards the corner

11: else if tci > b then s = b− L/λi . split towards the corner

12: if split point s is not defined then
13: gi = gi values at quadrature points
14: g̃i = gi values at test points
15: M = interpolation matrix from quadrature points to test points
16: ε = max

gi∈G
‖g̃i −M · gi‖/‖gi‖ . interpolation error of test function(s)

17: if ε > εβ then
18: s = (a+ b)/2 . split in half

19: if split point s is defined then
20: t1 = Refine(Z([a, s]), ε, C,G, β)
21: t2 = Refine(Z([s, b]), ε, C,G, β)
22: return t1 ∪ t2 . recursively refine panel

23: return {a, b} . do not split

let Λleft and Λright be the two immediate neighboring panels of Λ, and define Γfar :=

Γ\ (Λleft∪Λ∪Λright) as all non-neighboring panels of Λ. Then the panel Λ is refined if

d(Λ,Γfar), its distance from Γfar, is shorter than its arc length by a factor of 3 (see Line

4-10 of Algorithm 2); see Remark III.5 for an alternative, less restrictive, refinement

criterion.

In practice, the distance d(Λ,Γfar) can be approximated by mini,j |yi − yj|, where

the minimum is searched among all pairs of nodes yi ∈ Λ and yj ∈ Γfar. A kd-tree

algorithm [79] is used to accelerate this process for our large examples in Section 4.3, in

which case the elliptical close neighborhood (3.27) is also replaced by
⋃p
i=1B(Zi, C S),
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Algorithm 2 Global closeness refinement

Require: The refined panels Γ =
⋃
k Λk from Stage 2 (local geometric refinement).

1: function CloseRefine(Γ)
2: Initialize the output set t = ∅, which will contain the final panel endpoints
3: Initialize the set of new endpoints tnew = {endpoints of Γ =

⋃
k Λk}

4: while tnew 6= ∅ do . repeat until no further splitting

5: t = t ∪ tnew

6: tnew = ∅
7: Update panels Γ =

⋃
k Λk based on t . ready for a new round of refinement

8: for each panel Z([a, b]) ⊂ Γ do
9: Locate Λleft and Λright, the two immediate neighboring panels of Z([a, b])

10: Define Γfar = Γ \ (Λleft ∪ Z([a, b]) ∪ Λright)
11: Compute the distance d = d(Z([a, b]),Γfar)
12: Calculate S = arc length of Z([a, b])
13: if 1

3
S > d then

14: tnew = tnew ∪ {a+b
2
} . split in half

15: return final panel endpoints t

the union of disks around each node on Λ, for convenience.

The above refinement process is applied to each panel from the output of the

previous stage and repeats until no further splitting. The algorithm for this stage

is summarized in Algorithm 2. We note that since our algorithm is panel-based, it

is agnostic of whether two touching panels belong to the same boundary component

or not. Hence this algorithm handles two situations simultanteously: the case of

close-touching between different boundary components, as well as the case of “self-

touching” where a boundary component is almost touching itself.

Remark III.4 (Expected convergence rate with corners). The above three stages in-

volve two quantities—the panel order p, and a resulting number of panels per corner—

both of which grow linearly with log 1/ε. However, N is the product of these two quan-

tities, thus, in the presence of corners, one expects asymptotically N = O(log2 1/ε) as

ε→ 0. In other words, the error converges root exponentially in N , i.e. as O(e−c
√
N).

This matches the theoretical convergence rate for hp-BEM on polygons by Heuer–

Stephan [32]. This rate has also recently been observed and proven for a geometrically
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graded “method of fundamental solutions” approach to polygons by Gopal–Trefethen

[22].

3.5 Numerical results and discussion

In what follows, numerical examples will be presented to test the overall solution

scheme presented so far. In each example, we solve a Dirichlet problem in the domain

exterior to the given geometries. The BIE formulation of the problem is (1
2
+S+D)σ =

f as described in Section 3.2.1.

The solution procedure is to first adaptively refine the representation of the geom-

etry using our refinement scheme (Section 3.4), then the BIE is discretized using the

special quadrature (Section 3.3) and solved for the density σ, and finally the solution

u = u∞+(S+D)σ is evaluated everywhere in the exterior domain on a grid of spacing

∆x = 0.02.

We mention that our solution scheme has been tested on boundary value problems

with inhomogeneous boundary data extracted from an analytically known smooth flow

u, and, as expected, achieves superalgebraic convergence. However, in the presence

of corners, such smooth test problems do not involve the corner singularities that

generically arise in physical problems. For this reason, we only present results on

physical flows such as imposed uniform or linear shear flows. In all the examples, the

exact solution is not known analytically; therefore, we use the finest grid solution as

the reference solution.

Example 1. Smooth domain. This example tests our scheme on a linear shear

flow around a smooth starfish-shaped island defined by the polar function r(θ) =

1 + 0.3 cos 5θ, with no-slip boundary condition u|Γ = 0 and u∞(x1, x2) = (−x2, 0)

as |x| → ∞. We have used β = 0.8 (Line 17 of Algorithm 1) for this problem to

reduce N . In addition to the velocity field, we have also investigated the convergence
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Figure 3.4: (a) Linear shear flow past a starfish-shaped island. Streamlines of the
flow and panel endpoints (small segments) are shown. Color represents the log10

error of the velocity computed under tolerance ε = 10−12 (resulted in 2N = 2184
degrees of freedom). (b) Convergence of the maximum relative error εmax versus
requested tolerance ε, where the traction field is computed along the (1, 2)-direction.
(c) Convergence of the maximum error εmax versus the square root of the number of
nodes.

of the pressure field and the traction field in the (1, 2)-direction, both of which are

obtained using our close evaluation scheme (Section 3.3.3 and Appendix A). Our

scheme achieved accuracies that are matching the requested tolerance (Figure 3.4b).

All the solution fields converge super-algebraically with respect to the problem size

(Figure 3.4c).

Example 2. Domain with corners. The smooth geometry in Example 1 is now

replaced with a non-convex polygon. Figure 3.5 shows a linear shear flow around a

“shuriken” domain with eight corners, the outer four of which are reentrant (with

respect to Ω) corners of angle θ = 1.74π. With α = 0.5 for the flatter corners and

α = 1.1 for the sharper ones, our scheme achieved accuracies that are matching

the requested tolerance (Figure 3.5b). Note that the convergence with respect to

problem size is super-algebraic (Figure 3.5c), and consistent with root-exponential

convergence, as expected for problems with corner singularities (see Remark III.4).

We used the numerical solution obtained using ε = 10−10 as the reference solution.
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Figure 3.5: (a) Linear shear flow around a shuriken-shaped island with 8 corners.
Streamlines of the flow and panel endpoints (small segments) are shown. Color repre-
sents the log10 error of the velocity computed under tolerance ε = 10−10 (resulted in
2N = 6640 degrees of freedom). (b) Convergence of the maximum error εmax versus
requested tolerance ε. (c) Convergence of the maximum error εmax versus the square
root of the number of nodes; root-exponential convergence would result in a straight
line.

Example 3. Multiple polygonal islands. This example models a porous media

flow through a collection of non-smooth, non-convex and closely packed boundaries:

we set up 50 polygonal islands with a total number of 253 corners (Figure 3.6). The

computational domain has width ≈ 8 and the closest distance between the polygons

is about 10−2. The background flow is the same as in the previous examples. With

α = 0.75 and λ = 2 for all corners, the convergence (Figure 3.6c) is similar to the

single-polygon island example (Figure 3.5b–c), achieving more than 8 digits using

approximately 800 degrees of freedom per corner. This demonstrates the robustness

of our adaptive scheme, that is, the performance is as good for a more complex

example as for a simple one.

Example 4. Artificial vascular network. We now turn to the example shown in

Figure 3.2. We construct an artificial vascular network (with 378 corners) that mimics

those observed in an eye of a zebra fish [4]. The flow in this network is driven by a

uniform influx from the circular wall at the center and a uniform outflux at the outer

circular wall, such that the overall volume is conserved; all other boundaries have

a no-slip condition. We solve the BIE for this problem using GMRES with a block
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Figure 3.6: (a) Streamlines of a shear flow past 50 randomly generated polygonal
islands with a total number of 253 corners. Color on the polygon boundaries indicate
the magnitude of density σ. (b) log10 of absolute error of the velocity, computed
using 2N = 222140 degrees of freedom. Error is measured on a 1000 × 1000 grid
(spacing ∆x ≈ 8.3 × 10−3) by comparing to the solution obtained with ε = 10−10.
(c) Convergence of the maximum error εmax versus the square root of the number of
nodes.

diagonal preconditioner consisting of the diagonal panel-wise blocks of the BIE system

itself (i.e., the self-evaluation blocks for each panel). The FMM is used for applying

the matrix and for final flow evaluations; see Remark III.1. The sparse correction

matrix (see Section 3.3.2) is applied via MATLAB’s single-threaded built-in matrix-

vector multiplication; its rows have been precomputed as described in Section 3.3.4.

All computations are done on an 8-core 4.0 GHz Intel Core i7 desktop.

Table 3.1 shows, for various tolerance ε, the relative L2-error εL2 , the relative

maximum error in velocity εmax, the total number of panels used nΛ, the number of

degrees of freedom 2N , memory (RAM) usage, the number of GMRES iterations and

time used, the setup time for precomputing the close-correction matrices, and the

percentage time for applying Stokes FMM during GMRES. Several observations are

in order:

1) Both εL2 and εmax decay super-algebraically with the number of degrees of freedom;

this data is plotted in Figure 3.7a. The closeness between εL2 and εmax shows that

our scheme has achieved high accuracies near the sharper reentrant corners (hard)

that are similar to those near the smooth edges (easy). This error analysis remains
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Figure 3.7: Error and timing of solving the vascular network BVP. (a) Convergence
of errors in log-linear scale. (b) Log-log scale plot of the total CPU time per GMRES
iteration, which consists of the FMM time, shown in (c), and the close correction
time, shown in (d).

valid even in the zoomed-in high-resolution error plots in Figure 3.2. Furthermore,

the convergence performance of this example is the same as the previous two

examples—we achieved more than 8 digits, with a ratio degrees of freedom
#corners

≈ 943,

which is similar to the ratios in Example 2 (830) and Example 3 (878). This once

again demonstrates the robustness of our overall scheme to problem complexity.

2) The number of GMRES iterations increases only because we have requested smaller

tolerance. Each additional digit needs about 100 more iterations. The GMRES

convergence rate is stable, which demonstrates that our second kind BIE formu-

lation is well-conditioned even in the presence of corners.

3) The fact that the Stokes FMM time is the main cost shows that our algorithm

has achieved close to optimal efficiency. The slight decrease of the percentage

FMM times at smaller ε is due to the fact that the FMM time grows only linearly

with N , while the close evaluation matrix-vector multiplication time grows like

O(N3/2). The latter estimate is obtained as follows. The number of matrix-vector

multiplications grows like O(nΛ) = O(log 1/ε) = O(p), where each matrix-vector

product takes O(p2) time. Note that N = nΛ × p = O(p2), so the total close

evaluation time grows as O(p3) = O(N3/2). (See Figure 3.7b–d.)
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ε εL2 εmax npan 2N RAM
used
(gb)

GM-
RES
itera-
tion

GM-
RES
time
(s)

setup
time
(s)

%
FMM
time

1e-03 4.34e-04 5.43e-03 6549 52392 2.3 796 248 48 78.50
1e-04 2.20e-05 4.58e-04 8281 82810 2.9 919 458 63 77.86
1e-05 3.55e-06 7.21e-05 10301 123612 3.7 1091 759 84 75.92
1e-06 1.26e-06 7.15e-06 12061 168854 5.0 1282 1197 106 72.69
1e-07 2.53e-07 1.51e-06 14079 225264 6.9 1390 1670 135 70.91
1e-08 6.01e-09 1.58e-07 15839 285102 9.0 1501 2433 164 68.77
1e-09 1.44e-09 5.34e-08 17829 356580 12 1597 3195 204 66.16

Table 3.1: Results and statistics of solving the BVP in the vascular network in Figure
3.2 for various tolerance ε. Errors εmax and εL2 are measured on a 2160× 2160 grid
(spacing ≈ 2.5 × 10−3) by comparing to the solution obtained from ε = 10−10. CPU
time and RAM used are measured using [7].

Example 5. Uniform versus adaptive for close-to-touching curves. Finally,

to demonstrate the advantage of using an adaptive scheme over a uniform discretiza-

tion, let us consider a uniform flow past two close-to-touching disks (Figure 3.8). The

background flow is a constant u∞ = (1, 0), the separation is d = 10−6, and the radii

1 and 0.1. For the uniform-resolution scheme we use a global periodic trapezoid grid

on each circle, where, in order to have similar node spacings, the larger circle has 9

times as many points as the smaller one. Here, global close-evaluation is done using

the spectrally accurate quadrature from [8]. On the other hand, the adaptive quadra-

ture uses a grid that is determined by our adaptive refinement scheme of Section 3.4,

with one modification that improves the scaling in the number of refined panels (see

Remark III.5). We observe that, for more than 4 accurate digits, the number of

unknowns required by the adaptive scheme is much less than that of the uniform-

resolution scheme (Figure 3.8). The smoothness of the density function discussed in

the remark below suggests that, at fixed ε, the uniform scheme (and also the original

refinement scheme) needs N = O(1/
√
d) unknowns, whereas the modified adaptive

scheme needs only N = O(log(1/d)). The latter is close to optimal, and is what we

recommend for closely-interacting curves. (See also Examples 4 and 6 in [10] for a
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Figure 3.8: Convergence of a uniform flow past two touching disks that are d = 10−6

apart, and whose radii are 1 and 0.1. The required number of unknowns in the
adaptive scheme is much less than the global scheme with uniform resolution; see
Example 5.

“globally adaptive” variant.)

Remark III.5 (Refinement at close-to-touching smooth surfaces). For viscous flow in

the region between two smooth curves separated by a small distance d, asymptotic

analysis gives that the width of the “bump” in fluid force scales as O(
√
d) [73]. By

dimensional analysis, if the sum of the two curvatures of the surfaces near the contact

point is κ, then the width in fact scales as O(
√
d/κ). Assuming that this also applies

to the density σ, this suggests a looser criterion for refinement: panels should be

refined only when they are longer than this width scale. This allows panels to come

much closer than their length, without being refined. In the case of close smooth

curves, the test in line 13 of Algorithm 2 can thus be modified to (c′
√
κS)2 > d. We

find that the constant c′ = 0.7 achieves the requested tolerance. The resulting N can

be estimated as follows. Setting κ = 1 for simplicity, a generic local model of the

separation is h(t) ≈ d+ t2 as a function of parameter t, and nΛ = O
(∫ 1

−1
dt/S(h(t))

)
where S(h) is the local panel size as a function of separation. The original refinement

scheme, S(h) = O(h), thus gives nΛ = O(d−1/2), whereas the modified S(h) = O(
√
h)

gives nΛ = O(log(1/d)).
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3.6 Conclusions

We have presented a set of panel quadrature rules for accurate evaluation of single-

and double-layer Stokes potentials and their associated pressure and traction bound-

ary integrals. They can be used for targets that are either on or off the boundary, and

can be located arbitrarily close to it. In addition, we formulated an adaptive panel

refinement procedure that sets the length of panels on the boundary (“h-adaptivity”)

and the overall degree of approximation p (“p-adaptivity”) required to achieve a user-

prescribed tolerance. We demonstrated via numerical experiments that our algorithm

achieves super-algebraic convergence even for complex geometries with corners, and

that the CPU time grows linearly with problem size, and is dominated by the cost

of FMMs for large-scale problems. More sophisticated quadratures and techniques

designed for corner singularities, such as the RCIP [29, 30] (or the work of [63]), are

expected to further improve the performance of our BIE solver. It is also expected

that adapting p on a per-panel basis (i.e. full hp-adaptivity) would reduce the total

number of degrees of freedom needed, although only by a factor less than two. Appli-

cations of our work include providing design tools for rapid prototyping of microfluidic

chips (for cell sorting, mixing or other manipulations e.g., [39]), shape optimization

(e.g., [14]) and simulating cellular-level blood flow in microvasculature.

We envision building a fast 2D particulate flow software library by utilizing the

algorithms developed in this work for the fixed complex geometries (such as microflu-

idic chips or vascular networks) and our global close evaluation schemes developed

in [8] for the moving rigid or deformable particles (such as colloids, drops or vesi-

cles). Another key ingredient would be a fast direct solver for solving the BIEs on

the fixed geometries, similar to that developed in [50], wherein the boundary inte-

gral operators were compressed by exploiting their low-rank structures, inverted as a

precomputation step, and applied at an optimal O(N) cost at every time-step of the

particulate flow simulation as particles move through the fixed geometry. One open
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research question in this context is: Can we update the compressed representations

as the boundary panels are refined (or coarsened) without rebuilding them? A similar

question was recently investigated in [103], where the authors report a 3× speedup

when locally perturbing the geometry. We plan to explore their approach and report

its performance in the context of our adaptive panel refinement procedure.
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CHAPTER IV

Electrohydrodynamics of Deflated Vesicles:

Budding, Rheology and Pairwise Interactions

Preamble. In this chapter, we will present one specific scientific application –

vesicle electrohydrodynamics (EHD), which studies how vesicles react and interact

with each other under the influence of electric signals. Electric stresses often drive

vesicles to come very close to each other or near the wall boundaries, therefore close

evaluation schemes such as those in Chapter II and III are essential for any robust

EHD simulations. This chapter focuses on the vesicle EHD in an open domain, for

which the global scheme (Chapter II) is effective and sufficient. The adaptive scheme

(Chapter III) will be used in the future for studies with more complex boundary

conditions. This is a joint work with Shravan Veerapaneni that is published in [94].

4.1 Introduction

Understanding the electrohydrodynamics (EHD) of the so-called giant unilamellar

vesicles (GUVs) has received much attention in the recent past [59, 89]. Vesicles share

the same structural component of a biological cell, the bilipid membrane, and hence

their EHD has been a paradigm for understanding how general biological cells behave

under an electric field. The dynamics of this system is characterized by a competition
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between viscous, elastic, and electric stresses on the individual membranes and the

nonlocal hydrodynamic interactions. Studying the microstructural response of iso-

lated vesicles and vesicle pairs subjected to electric fields can bring insights into the

macroscopic properties of vesicle suspensions. Several recent theoretical and numer-

ical works have focused on isolated, nearly spherical (or circular) vesicles; however,

the dynamics of highly deformable deflated vesicles as well as the pair-wise dynamics

of vesicle suspensions remains largely unexplored. The primary focus of this work is

to develop a robust numerical scheme to enable study of these dynamics.

Theoretical investigation of vesicle EHD has been done via small deformation

theory [90, 76] and semi-analytic studies using spheroidal models [102, 55]. Numer-

ical solution of the coupled electric, elastic and hydrodynamic governing equations

were computed using the boundary integral equation (BIE) methods [51, 72, 87] and

immersed interface or immersed boundary methods [42, 35]. Advantages of BIE meth-

ods are well-known—exact satisfaction of far-field boundary conditions eliminating

the need for artificial boundary conditions, reduction in dimensionality leading to

reduced problem sizes, and well-conditioned linear systems through carefully chosen

integral representations.

All of the aforementioned works, however, considered EHD of a single vesicle only.

Vesicles are known to segregate when subjected to electric fields [69], thereby, pose

significant challenges for direct numerical simulations. In the case of BIE methods,

for instance, the integral representations of the hydrodynamic and electric interaction

forces become nearly-singular, requiring specialized quadratures. Domain discretiza-

tion methods, on the other hand, require finer meshes (locally, in the case of adaptive

methods), worsening the conditioning issue of linear systems and increasing the over-

all computational expense.

Leveraging on our recently developed spectrally-accurate algorithm for evalu-

ating nearly singular integrals [8] and the second-kind BIE formulation for three-
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dimensional vesicle EHD [87], we develop a BIE method for simulating multiple vesicle

EHD in this work. We apply it to analyze the pairwise interactions in a monodisperse

suspension. We provide the integral equation formulation and the description of our

numerical method in §4.2, followed by analysis and discussion of the results in §4.3.

4.2 Problem formulation

4.2.1 Governing equations

Let us first consider a single vesicle suspended in a two-dimensional unbounded

viscous fluid domain, subjected to an imposed flow v∞(x), for any x ∈ R2. The vesicle

membrane is denoted by γ. Assume that the fluids interior and exterior to γ have

the same viscosity µ and the same dielectric permittivity ε while their conductivities

differ, given by σi and σe, respectively. In the vanishing Reynolds number limit, the

governing equations for the ambient fluid can then be written as:

−∇p+ µ4v = 0 in R2 \ γ, (4.1a)

∇ · v = 0 in R2 \ γ, (4.1b)

v(x)→ v∞(x) as ‖x‖ → ∞. (4.1c)

The fluid motion is coupled to the membrane motion via the kinematic boundary

condition ẋ = v on γ, where x is a material point on the membrane. Using the

boundary integral equation formulation, we can now write the membrane evolution

equation by combining the kinematic condition with the governing equation (4.1) as

[88],

ẋ = v∞(x) +

∫
γ

Gs(x− y)fhd(y) dγ(y), ∇γ · ẋ = 0, (4.2)
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where fhd is the hydrodynamic traction jump across the membrane and Gs is the

free-space Green’s function for the Stokes equations, given by

Gs(x− y) =
1

4πµ

(
− log‖x− y‖ I +

(x− y)⊗ (x− y)

‖x− y‖2

)
. (4.3)

The second equation in (4.2) expresses the local inextensibility constraint on the

membrane.

For a given vesicle configuration, fhd can be evaluated by performing a force bal-

ance at the membrane. The elastic forces acting on the membrane are comprised of

the bending and the tension forces, defined respectively as

fb = κB

(
κss +

κ3

2

)
n, fλ = (λxs)s, (4.4)

where κB is the bending modulus, κ is the curvature, s is the arclength parameter, n is

the outward normal to γ and the tension λ acts as a Lagrange multiplier to enforce the

inextensibility constraint. A force balance at the membrane yields fhd = fb + fλ − fel,

where fel is the electric force that is determined by solving for the electric potential.

In the leaky–dielectric model, the electric charges are assumed to be present only

at the interface and not in the bulk. Let φ(x) be the electric potential at x, so that

E = −∇φ. Assuming that the vesicle membrane is charge-free and has a conductivity

Gm, a capacitance Cm, the boundary value problem for the electric potential can be

summarized as [76]:

−4φ = 0 in R2 \ γ, (4.5a)

−∇φ(x)→ E∞(x) as ‖x‖ → ∞, [[n · (σ∇φ)]]γ = 0, [[φ]]γ = Vm, (4.5b)

CmV̇m +GmVm = −n · (σi∇φi) on γ. (4.5c)

Here, E∞ is the imposed electric field, [[·]]γ denotes the jump across the interface
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(e.g., [[σ]]γ = σi − σe) and Vm is the transmembrane potential. The electric force on

the membrane is then defined by fel =
[[

n · Σel
]]
γ
, where the Maxwell stress tensor,

Σel = εE⊗ E− 1
2
ε‖E‖2 I. Therefore, we need to determine the electric field on both

sides of the membrane by solving (4.5) to evaluate fel.

Since we are only interested in interfacial variables and (4.5) is a linear partial

differential equation, we can recast it as a BIE with the unknowns residing only on

the interface. We will employ an indirect integral equation formulation to solve for

the electric potential φ. Assume that the electric potential in the domain interior and

exterior of the membrane is given by [87],

φ(x) = φ∞(x) + S[q](x)−D[Vm](x) (4.6)

where the membrane charge density, q = [[∂φ/∂n]]γ and the Laplace single and double

layer integral operators are defined by

S[q](x) =

∫
γ

G(x− y)q(y) dγ(y) and D[Vm](x) =

∫
γ

∂G(x− y)

∂n(y)
Vm(y) dγ(y),

(4.7)

respectively. Here G(·) is the Laplace fundamental solution in the free space.

Note that, by construction, equation (4.6) implies [[φ]]γ = Vm since the single

layer potential is continuous across γ. Applying the current continuity condition and

using the standard jump conditions for the Laplace layer potentials, we arrive at the

second-kind integral equation for the unknown q:

(
1

2
+ η S ′

)
q = ηE∞ · n + ηD′[Vm], (4.8)

where η = (σi − σe)/(σi + σe), S ′ and D′ denote the normal derivatives of the sin-

gle and double layer potentials respectively. Furthermore, the interfacial conditions
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[[∂φ/∂n]]γ = q and [[σ∂φ/∂n]]γ = 0 imply that −n · (σi∇φi) = (σiσe/(σi − σe))q.

Substituting this result in (4.5c) and using (4.8), we arrive at the following integro-

differential equation for the evolution of Vm:

CmV̇m +GmVm =
σiσe
σi + σe

(
1

2
+ η S ′

)−1

(E∞ · n +D′[Vm]). (4.9)

The steps involved within a time-stepping procedure for the electric problem for a

given vesicle shape can now be summarized as follows: update Vm using (4.9), which

also gives q since the right-hand side of (4.9) is just (σiσe/(σi − σe))q, then evaluate

the membrane electric force fel by computing Ei and Ee using (4.6).

Finally, the formulation generalizes to the two- (or multiple-) vesicle case in a

trivial manner. Let γ now denote the union of the vesicle membranes i.e., γ =
⋃2
i=1 γi,

where γi is the boundary of the i-th vesicle. Then, the definition of the boundary

integral operators introduced earlier hold as is; for example,

S[q](x) =

∫
γ

G(x− y)q(y) dγ(y) :=
2∑
j=1

∫
γj

G(x− y)q(y) dγj(y). (4.10)

4.2.2 Numerical Method

We now describe a numerical scheme to solve the coupled integro-differential equa-

tions for the evolution of vesicle position (4.2) and its transmembrane potential (4.9).

It directly follows from ideas introduced in [88], [8] and [87]. Each vesicle boundary

is parametrized by a Lagrangian variable α ∈ [0, 2π] and a uniform discretization in

α is employed. Derivatives of functions defined on the boundary are then computed

using spectral differentiation in the Fourier domain, accelerated by the fast Fourier

transform.

Evaluating boundary integrals. We use the standard periodic trapezoidal rule

for computing boundary integrals that are smooth (e.g., the double-layer potential
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defined in (4.7)), which yields spectral accuracy. On the other hand, we discretize

the weakly singular operators such as the single-layer potential defined in (4.7) using

a spectrally-accurate Nyström method (with periodic Kress corrections for the log

singularity, ([44], Sec. 12.3)). The same method is also applied for computing the

Stokes single-layer potential (4.2).

The operator D′[·] requires special attention as its kernel is hyper-singular. We

employ the following standard transformation ([34]) to turn it into a weakly singular

integral:

D′[Vm](x) =
∂

∂n(x)

∫
γ

∂G(x− y)

∂n(y)
Vm(y) dγ

=
∂

∂s(x)

∫
γ

G(x− y)
∂Vm(y)

∂s(y)
dγ

 ∀x ∈ γ.
(4.11)

The surface gradients, ∂/∂s(x) and ∂/∂s(y), are computed via spectral differentia-

tion.

Lastly, when the vesicles are located arbitrarily close to each other, the bound-

ary integrals evaluating the interaction forces becomes nearly-singular. For example,

consider the integral,

∫
γ1

G(x− y)q(y) dγ1(y), where x ∈ γ2. (4.12)

The periodic trapezoidal rule loses its uniform spectral convergence in evaluating this

integral as x approaches γ1; moreover, the singular quadrature rule is also ineffective

for this integral. These inaccuracies, in turn, may lead to numerical instabilities

and breakdown of the simulation. To remedy this problem, we employ the recently

developed close evaluation scheme of [8] whenever vesicles are located closer than a

cutoff distance (which is heuristically chosen to be five times the minimum spacing

between the nodes, the so-called “5h-rule”). This scheme achieves spectral accuracy

in evaluating (4.11), regardless of the distance of x from γ1. We use this scheme to
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accurately evaluate the Stokes layer potential in (4.2) as well.

Time-stepping scheme. The numerical stiffness associated with the bending force

on the vesicle membranes is overcome by using the semi-implicit scheme proposed in

[88] to discretize (4.2) in time. Following [51] and [87], we treat the electric force

on the membrane explicitly, thereby, decoupling the evolution equations (4.2) and

(4.9). Then, we use a semi-implicit scheme to evolve the transmembrane potential

independently, which we describe next.

Let ∆t be the time-step size, V n
m(x) be the transmembrane potential at time n∆t

at a point x on the membrane. Our semi-implicit time-stepping scheme for (4.9) is

given by

Cm
V n+1
m − V n

m

∆t
+GmV

n+1
m =

σiσe
σi + σe

(
1

2
+ η S ′

)−1

(E∞ · n +D′V n+1
m ), (4.13)

where the boundary integral operators are treated explicitly i.e., evaluated using the

boundary position at n∆t. This linear system for the unknown V n+1
m is solved using

an iterative method (GMRES).

4.3 Results and discussions

We now turn to analyzing the simulation results obtained using the numerical

method outlined above. We first compare our results on single vesicle EHD with

those obtained in prior studies as well as present some new insights on dynamics

and rheology of dilute suspensions, followed by analysis of pairwise dynamics. Let A

and L denote the area and perimeter of the vesicle. Setting the characteristic length

scale as a = L/2π, we characterize our results on the following six nondimensional

parameters,

reduced volume: ∆ = 4πA/L2,
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(a)

(b)

Figure 4.1: Snapshots from two different simulations of a single vesicle subjected to an
external electric field, with Λ = 0.1, G = 0, Ca = 0 and (a) ∆ = 0.9, β = 3.2 and (b)
∆ = 0.5, β = 12.8. While the vesicle undergoes a prolate-oblate-prolate transition,
the transient “square-like” shapes observed here (in (a)) and in prior numerical studies
cannot be observed when the reduced volume is lowered. Instead, to sustain the
electric compression forces, the vesicle forms buds as it undergoes the POP transition
(more details on this phase are shown in Figure 4.2).

conductivity ratio: Λ = σi/σe,

membrane conductivity: G = aGm/σe,

electric field strength: β = ε|E∞|2aCm/µσe,

capillary number: Ca = µγ̇a3/κB,

bending rigidity: χ = CmκB/σeµa
2,

where γ̇ is the shear rate e.g., for imposed linear shear flow, we have v∞(x) = (γ̇x2, 0).

In all the simulations, the time is non-dimensionalized by the bending relaxation

timescale tκB = µa3/κB and the bending rigidity, χ ≈ 0.08.

4.3.1 Isolated vesicle EHD: transition from squaring to budding in POP

When an arbitrarily shaped vesicle is subjected to uniform electric field, it is

known to transform into either a prolate shape or an oblate shape at equilibrium

[68, 70]. Since ours is a 2D construct, we refer to ellipses whose major axis aligns with

the electric field direction as “prolates”; similarly, those whose minor axis aligns as
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“oblates”. A classical observation in vesicle EHD studies is the prolate-oblate-prolate

(POP) transition that arises in certain parameter regimes. Figure 4.1(a) illustrates

the POP transition simulated using our numerical method.

Three conditions are generally required for a vesicle to undergo POP transition:

1) G is very small so that the vesicle membrane acts more like a capacitor than a

conductor, 2) Λ is less than one and 3) β is strong enough. Since Λ < 1, charges

accumulate faster on the membrane exterior initially, thereby, the vesicle appears to

be negatively charged at the top and positively charged at the bottom, leading to a

compressional force from the applied electric field and the vesicle transitions from a

prolate to an oblate shape. At longer times, once the membrane, acting as a capacitor,

is fully charged, the apparent charge becomes zero and the vesicle transforms back

into a prolate shape, which minimizes the electrostatic energy [52].

A notable feature of the POP transition is the squaring effect—a transient shape

of the vesicle with four smoothed corners (as can be observed in Figure 4.1(a))—which

attracted attention of researchers due to its implications on electroporation. Since

the reduced volume of a square is around 0.785, a question naturally arises: What

transient shapes would a vesicle with much lower reduced volume assume? In Figure

4.1(b), we illustrate the POP transition of a vesicle with ∆ = 0.5. Since the fluid

incompressibility acts to preserve its enclosed area, the vesicle forms small protrusions

or “buds” to sustain the electrical compression forces. Figure 4.2 shows more details

of this bud formation phase. The tension becomes negative, as expected, in the neck

region of the buds. These intermediary shapes are reminiscent of those obtained by

growing microtubules within the vesicles [20]; the notable feature here, however, is

that only body forces are applied as opposed to local microtubule-membrane forces.

We further characterize the POP mechanism in Figure 4.3 for different reduced

volumes. In all the cases, we observe that there exists some critical field strength β0

for POP transition to happen (e.g., from the figure, for G = 0, β0 ≈ {1.9, 2.6, 5.1}
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Figure 4.2: Streamlines (left) and electric field lines (middle) plotted at the moment
when the vesicle with ∆ = 0.5 shown in Figure 4.1(b) forms buds while undergoing
POP transition. In the left figure, the membrane color indicates the magnitude of
tension while on the middle figure, it indicates the magnitude of the transmembrane
potential. The right figure gives a closer look at the narrowest buds formed under
different β’s, where the times correspond to this state for β = 9.6, 12.8 and 16 are
t = 0.253, 0.216 and 0.184, respectively. The neck of the buds becomes narrower as
β increases.

corresponding to ∆ = {0.9, 0.8, 0.6} respectively). On the other hand, when the field

strength is weak, the vesicle remains a prolate and when the membrane conductivity

is high, it transitions to an equilibrium oblate shape. These results are in qualitative

agreement with [52], where similar phase diagrams were presented but only for higher

reduced volume vesicles. Thus the phase diagrams in Figure 4.3 show that the POP

mechanism works consistently for different ∆.

Finally, in the case when Λ > 1, the EHD forces act to extend the vesicle and it

remains a prolate throughout the simulation.

4.3.2 Electro-rheology in the dilute limit

We next look at the combined effect of an imposed shear flow and a DC electric

field on a single vesicle. In the presence of both fields, the dynamics is characterized

by a competition between the electrical and hydrodynamical shear stresses and the

migration of electric charges along the vesicle membrane.

Figure 4.4 shows the rheological properties of a vesicle subjected to an applied lin-

ear shear and an applied uniform electric field. In this case, where the membrane has
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Figure 4.3: Phase diagrams of vesicle dynamics for different reduced volumes as a
function of the membrane conductivity G and electric field strength β. Here, the
different phases of the dynamics are indicated by O when the vesicle remains oblate
for all times or P when it remains prolate or POP when it transitions from prolate
to oblate to prolate shapes. For all the cases, the conductivity ratio Λ is set to 0.1,
Ca = 0.

non-zero G, we observe that the vesicles with different reduced volumes all stabilize

into a tank-treading motion and that the tank-treading speed and angle of inclination

are affected nonlinearly by the conductivity ratio Λ. Note that as Λ is increased, the

vesicle tries to align with the electric field direction and away from the direction of

shear, presenting higher resistance to the imposed flow and hence leading to higher

effective viscosity. Here, the effective viscosity [µ] is computed using the usual formula

[67]:

[µ] :=
1

γ̇µ(Te − Ti)

Te∫
Ti

〈σp12〉dt, where 〈σp〉 =
1

A

∫
γ

(fb + fλ − fel)⊗ x ds, (4.14)

A is the area of the vesicle and σp represents the perturbation in the stress due to

membrane forces. After the vesicle reaches a steady-state, the effective viscosity is

measured over an arbitrary time interval [Ti, Te].

We further characterize the rheology in Figure 4.5 by plotting the effective vis-

cosity as ∆ is varied. Highly deflated vesicles prominently display shear-rate and

β-dependent rheology since their shapes at equilibrium tank-treading dynamics are

different, thereby, presenting varied resistance to applied shear.
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Figure 4.4: Single vesicle rheology when G = 4, β = 6.4 and Ca = 10. Plots of
the effective viscosity (left), angle of inclination (middle) and the tangential velocity
(right) when a vesicle is suspended in a linear shear flow as a function of the conduc-
tivity ratio. We can observe that the inclination angle increases as Λ is increased i.e.,
the vesicle tries to align with the electric field direction and away from the direction
of shear. Thereby, it presents more resistance to imposed flow, leading to higher
effective viscosity. One remarkable effect of low reduced volume, as is evident from
the right panel, is that the vesicle tank-treads in the opposite direction compared to
high reduced volume vesicles when Λ is small.

In the case when G is set to zero, the rheological behavior becomes much more

complex, primarily because of the tendency of vesicles to undergo a POP transition

while at the same time tank-tread due to the applied shear. For different values of

Λ and ∆, we observed various behaviors such as tumbling, staggering (tank-treading

with periodically varying inclination angles), “mirrored” tank-treading (tank-treading

in the opposite direction and with inclination against the applied shear direction), and

even chaotic staggering. A detailed analysis and characterization of these dynamics

are currently being investigated and will be reported at a later date.

4.3.3 Two-body EHD interactions

Next we present results from simulation of two-body vesicle interactions in applied

electric field and in the absence of imposed flow. As before, we assume that the

viscosity and permittivity of the interior and exterior fluids are the same. We set

the initial shape of both the vesicles to be identical and their initial location not
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Figure 4.5: Dependence of effective viscosity [µ] on β and ∆. Conductivity G = 4
and Ca = 10 (top row) or Ca = 50 (bottom row). We note that (i) [µ] is higher
whenever the equilibrium angle at which the vesicle tank-treads is away from the
direction of shear and (ii) when ∆ is close to 1 (vesicle closer to a circle), [µ] is nearly
β-independent and shear-independent (as can be expected).

symmetric with respect to the electric field direction1. We apply a DC electric field,

pointing upwards, strong enough to cause the POP transition when Λ = 0.1 (i.e.,

β > β0). Under these conditions, the different representative classes of dynamics

observed are summarized in Figure 4.6.

The complex nature of these pairwise interactions can be understood from three

predominant, competing mechanisms: (i) The electrically-driven vesicle alignment

due to one vesicle appearing as a dipole (to leading order) in the far-field electrical

1When they are aligned along E∞, they simply attract each other (after transient shape changes)
and when aligned in the perpendicular direction, they simply repel each other—both results are
consequences of one vesicle appearing to the other as a dipole with same orientation.
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Figure 4.6: A summary of pairwise vesicle EHD interactions (∆ = 0.9, β = 3.2,
Ca = 0)

disturbance produced by the second vesicle. The two vesicles always tend to form

a chain along the direction of dipole orientation; (ii) The EHD flow induced by the

tangential electrical stresses at the fluid-vesicle interfaces, driving the vesicles to rotate

about each other; (iii) The prolate-oblate deformation mentioned in Section 4.3.1,

generating extensional flows around each vesicle.

First, let us consider the case of G = 0 i.e., the vesicle membranes are impermeable

to charges. Three different types of dynamics can be observed from Figure 4.6.

The first is chain formation, observed when Λ is small enough, wherein, pronounced

deformation, due to mechanism (iii), induces flows that dominate the circulatory flow

of mechanism (ii). Thereby, it completely halts the tank-treading motion. At the end

of their POP cycle, both vesicles become almost vertically-aligned. Then, mechanism

(i) slowly drives them to form a stable chain. From our numerical experiments, we

noticed that the thin layer of fluid between the vesicles gets continuously drained

albeit at a very slow pace (distance between them decays exponentially with time).

The second type is a circulatory motion, observed when Λ is large enough, wherein,

mechanism (iii) becomes negligible. As the two vesicles move to form a chain, mech-

anism (ii) causes both of them to tank-tread. Consequently, the induced disturbance
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Figure 4.7: Snapshots from a simulation of two vesicles undergoing circulatory motion
described in Figure 4.6 with G = 0 and Λ = 0.5. Here, one of the vesicles is colored
by the magnitude of Vm (yellow indicates positive and blue indicates negative values
respectively). We can observe that each vesicle undergoes tank-treading motion on its
own (as indicated by the streamlines), they rotate about each other and the vesicles
viewed as dipoles are always tilted with respect to the applied field direction.

flow on each vesicle becomes dominant and they start to rotate about each other.

The tank-treading motion also causes the vesicles to appear as tilted dipoles, so they

tend to form a tilted chain. The circulatory motion is periodically reinforced by the

tilted-chain formation process. The direction of rotation depends on the net torque

on each vesicle, which has opposite orientations for Λ > 1 and Λ ≤ 1.

The last type is an oscillatory motion, where the two vesicles form an unstable

chain and oscillate about each other. This is a transitional situation between the first

two types, observed when Λ is between the values of those types. In this case, nei-

ther the circulatory flow of mechanism (ii) is strong enough to keep vesicles rotating

about each other nor the deformational flow of mechanism (iii) is strong enough to

completely halt the rotations. The two vesicles tend to form a chain that is periodi-

cally tilted one way or the other; each time the vesicles passing a tilted-chain position,

tank-treading slows down and the dipole orientation oscillates back. Therefore, mech-

anisms (i) and (ii) collaborate to keep the vesicles oscillating near the vertical chain

position.

On the other hand, the dynamics are much simpler when the membrane is per-

meable to charges i.e., G � 0. After a very short period of initial charging, the

electric stresses become almost normal to the surface of each vesicle, so mechanism

(ii) doesn’t arise at all. By mechanism (iii) the vesicles eventually become oblate
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Figure 4.8: Insensitivity of the EHD pairwise interactions to the initial offset from
the aligned position. θ measures the angular offset of the two vesicles relative to
the horizontally aligned position. (a) Chain formation. (b) Oscillatory motion. (c)
Circulatory motion. In each case, the same pattern is observed regardless of the initial
θ > 0.

when Λ < 1 (with strong enough β) and become prolate when Λ > 1, and mechanism

(i) drives the vesicles to form a vertical chain.

Sensitivity to positions and shapes. Note that all of the aforementioned

dynamics are insensitive to the initial offset or shapes of the vesicles. In Figure 4.8,

we demonstrate that for different initial angular offsets from the aligned position, the

vesicles undergo the same type of pairwise interaction that corresponds to the given Λ

and G. Furthermore, Figure 4.9 shows that the similar kind of dynamics are observed

for vesicles with different reduced volumes, therefore, the pairwise EHD interaction

mechanisms appear to be consistent for highly-deflated or close-to-circular vesicles.

Continuous transition. Finally, we note that the dynamics transitioning from

G = 0 to G > 0, as shown in Figure 4.6, are not abrupt. To illustrate this, we

show in Figure 4.10 the pairwise dynamics of vesicles with Λ = 0.1, demonstrating

a continuous transition from a chain of prolates (G = 0) to a chain of oblates (G �

0); for certain intermediate values of G, one can even observe interesting kidney-

like shapes as well as decaying oscillations of the vesicles as they settle into their

equilibrium shapes.
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Figure 4.9: Pairwise interactions for G = 0 vesicles of reduced volumes ∆ = 0.7
(with β = 4.8) and ∆ = 0.99 (with β = 2.4). Ca = 0. The behaviors (e.g. chain
formation, oscillatory motion, circulatory motion) are the same as in the ∆ = 0.9
case (Fig. 4.6), showing that the mechanism of pairwise interactions is insensitive
to the reduced volume. Note that the bud formation also happens with the case of
∆ = 0.7,Λ = 0.1.

4.4 Conclusions

We presented a well-conditioned boundary integral equation formulation for solv-

ing the leaky-dielectric model describing the EHD of deformable vesicles. A collection

of numerical advances—semi-implicit time-stepping, spectrally-accurate evaluation

of weakly-singular, nearly-singular and hyper-singular integrals—enabled us to shed

light onto the mechanics of highly deflated vesicles, study their rheology and pair-

wise dynamics in DC electric fields. We showed that much richer set of pairwise

interactions can be observed when the membranes are impermeable to charges. This

is somewhat unique to vesicle EHD compared to other systems such as drops [11],

driven mainly by the capacitative nature of the membranes. However, we explored

only a small fraction of the possible dynamics; relaxing our simplifying assumptions—

varying the viscosity and permittivity contrasts, imposing an AC electric field, ac-
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Figure 4.10: Top figure: final configurations of eight separate simulations, each cor-
responding to a different membrane conductivity G. There is a continuous transition
from a chain of prolates (G ≈ 0) to a chain of oblates (G � 0). For certain in-
termediate value of G (e.g. G = 0.096, 0.144, 0.192) the chain formation process is
accompanied with decaying oscillatory motions (lower left figure), while for more ex-
treme values of G the vesicles directly form a chain without oscillations (lower right
figure). For all simulations β = 3.2, Λ = 0.9, and Ca = 0.

counting for charge convection along the membrane—is expected to enrich the space

much further. We are currently exploring these as well as analyzing the collective dy-

namics of dense suspensions in periodic domains using the periodization techniques

developed recently in [50] and [10]. Another important direction we are currently

pursuing is to extend our numerical scheme to handle more general EHD models such

as those discussed in the recent work of [53].
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CHAPTER V

Summary

In this thesis, we first presented two spectrally-accurate quadrature schemes for

the close evaluation of 2D Stokes layer potentials. The global quadrature scheme

in Chapter II is effective for smooth closed curves and converge exponentially in the

number of quadrature node for a target point arbitrarily close to the source curve. The

panel quadrature scheme further extends the close evaluation capacity to arbitrary

geometries that could be non-smooth, and can handle both targets that are on and

off the boundary equally well, achieving super-algebraic convergence in the number

of unknowns. Further more, an adaptive panel refinement procedure is proposed that

can efficiently assign panels to achieve a user-requested tolerance for any complex

geometry.

The global quadrature scheme is excellent for the particle-particle close interac-

tions, hence is used in Chapter IV for the study of vesicle EHD. In this study, we have

developed a new scheme that can handle the EHD interaction between vesicles as well

as when the vesicles are deflated. We observed and analyzed new EHD phenomena

including the “budding” phenomenon of a deflated vesicle and a rich set of pairwise

interactions between vesicles.

There are many possible future directions.

In terms of numerical improvements, we expect to further improve the performance
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of our panel quadrature scheme by incorporating more sophisticated quadratures

designed for corner singularities, such as the RCIP [29] and the recent work of [63].

In terms of software developments, we envision building a fast 2D particulate

flow software library that includes the following components. (1) Use the two close

evaluation schemes developed in this thesis to efficiently handle the particle-particle

and particle-wall interactions as well as the complex geometries. (2) Incorporate the

periodization schemes in [50] and [10] to enable periodic particulate flow simulations.

(3) Develop fast direct solvers similar to those in [50] to allow massive simulations.

In terms of applications, the vesicle EHD has much more rich dynamics to be

explored. For example, one can further investigate the vesicle EHD by varying key

parameters in addition to the fluid conductivity contrasts, imposing an AC electric

field, or exploring the effect of charge convection along the membrane. The collective

EHD dynamics of dense suspensions may also be analyzed in periodic domains using

the techniques in [10].

Finally, it is unclear how the 2D schemes in this thesis can be generalized for prob-

lems in 3D since our 2D schemes required complex analysis, whose higher-dimensional

analogs are not as well behaved. What would be the optimal close evaluation scheme

for 3D surfaces is still an open question.
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APPENDIX A

Stokes pressure and traction in terms of contour

integrals

Here, we give formulae for the traction vector T induced at a target point with

given surface normal, and the associated pressure field p, when the velocity field is

represented by a Stokes single or double layer potential. The goal is to write the

traction and pressure in terms of the four contour integrals of Sec. 3.2.2, to which

close-evaluation methods of Sec. 3.3.3 may then be applied. This enables uniformly

accurate force calculations on bodies, or solution of traction BVPs. We use the

notation of Sec. 3.2: recall that r = x − y, nx and ny are the normal vectors at the

target x and source y respectively, ρ = |r|, and I denotes the 2× 2 identity operator.

We first consider the single layer potential (3.3). Its traction is

(TSσ)(x) = − 1

π

∫
Γ

r · nx
ρ2

r ⊗ r
ρ2

σ(y) dsy, (A.1)

which turns out to be the negative of the Stokes DLP (3.4) with ny replaced by nx.
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While (3.17) is no longer useful in this case, we can instead write the traction as

(TSσ)(x) = − 1

π

∫
Γ

(r · σ(y))
r

ρ4
(r · nx) dsy (A.2)

and use the slightly different identity

∇x

(
r · σ
ρ2

)
=

σ

ρ2
− (r · σ)

2r

ρ4
(A.3)

to write the traction kernel as

(TSσ)(x) =
−1

2π

∫
Γ

r · nx
ρ2

σ dsy +
1

2π
(x · nx)∇

∫
Γ

r · σ
ρ2

dsy

− 1

2π
nx,1∇

∫
Γ

r · σ
ρ2

y1 dsy −
1

2π
nx,2∇

∫
Γ

r · σ
ρ2

y2 dsy ,

(A.4)

where (nx,1, nx,2) =: nx are the two components of nx. As did in the case of velocity

potentials, we can concisely write (A.4) as

TSσ =
(
(Sσ1)n+i(Sσ2)n

)
+

1

2π

(
Re(x/nx)IH(σ/ny)− nx,1IH(σy1/ny)− nx,2IH(σy2/ny)

)
,

(A.5)

where all the R2 vectors are now understood as complex numbers in C, the over line

in IH(·) denotes the complex conjugate of IH(·) and the dot product x·nx = Re(x/nx)

is due to the fact that 1 = |nx|2 = nxnx.

The single layer pressure associated to (3.3) is

(P Sσ)(x) =
1

2π

∫
Γ

r · σ
ρ2

dsy , (A.6)

which again in the complex plane can be written as

P Sσ = Re
i

2π
IC(σ/ny). (A.7)
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We now turn to the Stokes double layer potential (3.4). The traction kernel and

its associated pressure kernel are given by [48, (5.27)] [10, (3.37)],

(TDσ)(x) =
µ

π

∫
Γ

(
−8

r ⊗ r
ρ6

(r · nx)(r · ny) +
r ⊗ nx
ρ4

(r · ny) +
r ⊗ r
ρ4

(nx · ny)

+I
1

ρ4
(r · nx)(r · ny) +

ny ⊗ r
ρ4

(r · nx) +
nx ⊗ ny
ρ2

)
σ(y) dsy

(PDσ)(x) =
µ

π

∫
Γ

(
−ny · σ(y)

ρ2
+ 2

r · σ(y)

ρ4
(r · ny)

)
dsy.

(A.8)

The corresponding boundary integral operators (TDσ)(x) and (PDσ)(x) are hyper-

singular. We can easily derive the following equation expressing this operator in terms

of the Laplace double layer potential:

1

µ
TDσ =− 2 (x · nx∇∇D[σ]− nx,1∇∇D[y1σ]− nx,2∇∇[y2σ])

+ 3I(nx · ∇D)[σ]− (nx ⊗∇D)[σ]− (∇D ⊗ nx)[σ]

+

1

−1

 (nx · ∇D + nx ⊗∇D −∇D ⊗ nx)
[
n̄y
ny
σ

]
,

PDσ =− 2µ

(
∂

∂x1

D[σ1] +
∂

∂x2

D[σ2]

)

=
µ

π
(Im (IH(σ1)) + Re (IH(σ2))) .

(A.9)

Here n̄y
ny
σ = [ n̄y

ny
σ1,

n̄y
ny
σ2]T , ∇ is short for ∇x, and ∇∇ is the Hessian tensor. The

gradients of Laplace double-layer potentials needed above are expressed in terms of

Hadamard integrals using (3.15). The Hessians are given in terms of supersingular
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integrals as follows:

∇∇D[σ](x) =

 Re i
π

(IS(σ1)) (x) −Im i
π

(IS(σ2)) (x)

−Im i
π

(IS(σ1)) (x) −Re i
π

(IS(σ2)) (x)

 . (A.10)

The close evaluation formulae for these are in Sec. 3.3.3.3.

To validate the above formulae, we include in Fig. 3.4(b–c) the convergence of the

maximum error in pressure and traction for the smooth domain of Example 1 from

Sec. 4.3. The convergence rate is very similar to that of velocity albeit a loss of 1–2

digits, which is expected due to the extra derivatives.
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