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Abstract 

Fundamental interactions between buildings and their occupants have a multitude of 

significant impacts. First, built environments critically affect occupants’ health and wellness, 

especially given that people spend more than 90% of time indoors. Among several environmental 

factors, the lack of thermal comfort is a common problem despite nearly half of the building energy 

being consumed by heating, ventilation, and air conditioning (HVAC) systems. Humans, in turn, 

closely influence the sustainable operation of buildings through various occupant energy-use 

behaviors. Recent studies indicate that actions performed or abstained by occupants have a major 

influence on building energy performance and can negate the benefits of investing in energy-

efficient building systems. This dissertation focused on these two primary interplays of human-

building interactions. 

First, uncertainties in occupants’ thermal comfort due to the varying human physiological, 

psychological, and behavioral factors lead to significant thermal dissatisfaction and often result in 

sick building syndrome. A potential solution is the human-in-the-loop approach to sense thermal 

comfort and provide more personalized environments. However, existing comfort assessing 

approaches have several key limitations including the need for continuous human input to adjust 

setpoints, lack of actionable human data in comfort prediction, intrusiveness and privacy concerns, 

and difficulty in integrating within HVAC operations.  

To address these issues, this research first investigated the integration of environmental 

data with human bio-signals collected from wristbands and smartphones for thermal comfort 



 xvii 

prediction and achieved 85% classification accuracy. This approach however required humans to 

provide their information from wearable devices and respond to a polling app. To address these 

limitations, the research further explored low-cost infrared thermal camera networks to non-

intrusively collect facial skin temperature for real-time comfort assessment in both single and 

multi-occupancy spaces. Similar prediction accuracy is achieved without using any personal 

devices. Building on these comfort sensing approaches, this dissertation demonstrates how to 

bridge personal comfort models and physiological predictive models to determine optimum 

setpoints for improved overall satisfaction or reduced energy use while maintaining comfort. The 

proposed sensing and optimization methods can serve as a basis for automated environment control 

to improve human experience and well-being.  

The second part of this research addressed why behavior interventions result in different 

energy reduction rates and identified two important gaps: lack of fundamental understanding of 

behavioral determinants of occupants, and lack of methods to quantitatively describe the varying 

occupant characteristics which affect the effectiveness of interventions. To address these gaps, the 

research developed a conceptual framework which explains occupant behaviors with three 

determining factors - motivation, opportunity, and ability (MOA) incorporating insights from 

building science and social psychology. Based on MOA levels, clustering analysis and agent-based 

modeling were applied to classify occupancy characteristics and evaluate the effectiveness of a 

chosen intervention. The framework was improved by integrating MOA factors with two classical 

behavioral theories to address the challenges in defining and measuring MOA factors. The results 

showed an improved explanatory power over a single theory and suggested that favorable 

behaviors can be promoted by motivating occupants, removing environmental constraints, and 
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improving occupants’ abilities. This framework enables decision-makers to develop effective and 

economical interventions to solicit behavioral change and achieve building efficiency. 

Building upon these two perspectives of human-building interactions, future studies can 

investigate how personalized thermal environments will improve occupant behaviors in interacting 

with HVAC systems and the corresponding impacts on building energy consumption. 
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1)  CHAPTER 1  

Introduction 

This research aims at two important areas that arise from the interconnections between 

buildings and human occupants. First, buildings critically affect human experience via their 

functions of providing healthy, comfortable, and productive built environments, including thermal 

comfort, indoor air quality, lighting, acoustics, among others. On the other hand, human occupants 

in turn closely influence the sustainable design and operation of buildings through various human 

activities and behaviors in relation to energy consumption. As a result, the scientific questions this 

research addressed are how to achieve a robust and continuous interpretation of the indoor 

environmental quality, based on a range of new capabilities that have emerged in recent years, 

including novel data sensing, modeling, communication, and actuation techniques, as well as a 

fundamental understanding of the determinant factors of occupant energy-related behaviors to 

design effective interventions for long-term sustainability. 

1.1 Importance of the Research Activity 

Buildings, as shelters to support various human activities, play an important role in their 

day-to-day interactions with human occupants and also significantly affect the global ecological 

environment. Buildings consume approximately 40% of the energy produced each year and 

account for 28% energy-related carbon dioxide emissions1, and most importantly, 82% of this 

 
1 This percentage only represents the CO2 emissions caused by existing buildings. New building constructions 

account for another 11% of CO2 emissions in each year. 
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energy consumption is supplied by fossil fuels (coal, natural gas, and oil) (EU Commission 2018, 

EIA 2018, UN 2017). In the next few decades, the projected energy use for buildings in developing 

and developed countries will increase by 2.2% and 0.2% per year (Berardi 2015, UN 2017). As a 

result, significant social, environmental, and economic impacts of buildings can be anticipated in 

the near future. 

Among the energy consumption within buildings, the heating, ventilation, and air 

conditioning (HVAC) systems represent the biggest energy end-use, accounting for approximately 

50% of the total energy required to operate residential and commercial buildings (DOE 2017, 

European Commission 2016). However, despite the significant amount of energy consumption 

dedicated to space conditioning, of particular interest to the research community is the commonly 

observed lack of thermal comfort among occupants in the built environments. For example, studies 

revealed that up to 43% of occupants are dissatisfied with the thermal environment in their 

workplace (Karmann et al. 2018). Similar thermally dissatisfied environments have also been 

reported in residential settings (Peeters et al. 2009, Yoshino et al. 2006). 

It is not surprising that thermal comfort is an influential factor on occupants’ satisfaction, 

health, and wellbeing, especially given that people spend more than 90% of their time indoors 

(Klepeis et al. 2001). Several studies have shown that satisfying thermal environments can lead to 

a reduced number of complaints, absenteeism, and improved work productivity (Roulet et al. 2006). 

Other studies reported the sick building syndrome symptoms, such as headaches, eye and throat 

irritation, can be alleviated at low room temperature and humidity (20 °C and 40%) compared to 

higher levels (26 °C and 60%) (Fang et al. 2004). Besides, it is also suggested that warm 

environments (28.6 °C) can result in a relatively higher mental workload, which can cause fatigue 

and even health problems if it occurs over time (Wang et al. 2019a and 2019b). 
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On the other hand, human occupants interact with building environments and systems in 

their daily routines through various occupant behaviors, resulting in significant impacts on the 

energy consumption as more than 80% of building energy is consumed during the occupancy phase 

(UNEP 2010). The importance of occupant behavior has been reflected by many existing studies, 

such as Azar and Menassa (2012, 2014a, 2015), Gandhi and Brager (2016), Hong and Lin (2013), 

Masoso and Grobler (2010). For example, Azar and Menassa (2012) analyzed the impact of nine 

occupant behaviors (e.g., after-hours equipment and light use) on energy use in thirty commercial 

buildings using eQuest and concluded that the combined effect of “actual after-hours equipment 

use” and “occupied heating setpoint” can increase the building energy use by 23.6% compared to 

the default settings defined in standards. Hong and Lin (2013) simulated the energy consumption 

of typical occupant behaviors in private offices (e.g., heating or cooling setpoint) and suggested 

that occupants who are proactive in saving energy can reduce energy use by up to 50% during 

working hours. Klein et al. (2012) highlighted that occupant engagement in building energy 

reduction strategies is critical and can be achieved through interventions of informed feedback and 

suggestions. This study found that adjusting building systems according to occupancy status and 

preference can achieve a 12% reduction in energy consumption and also a 5% improvement in 

occupants’ comfort in a testbed building. In an energy-auditing study, Masoso and Grobler (2010) 

found that more energy (56%) was consumed during non-working hours mainly due to occupant 

behaviors of leaving lights and other equipment on after work. Other studies such as Chen et al. 

(2012), Moezzi et al. (2009), Sanchez et al. (2007), Webber et al. (2006) support these findings 

and emphasize that significant energy reduction can be achieved if building occupants are engaged 

in the process. 
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Considering the importance of these two interrelated areas resulting from the interactions 

between buildings and occupants, this dissertation focuses on two main research themes as 

summarized in Figure 1-1.  

Research theme 1 aims at assessing the impacts of building systems and environments on 

human well-being, with a specific emphasis on thermal comfort, which is one of the most 

important factors of indoor environmental quality. However, existing thermal comfort assessing 

approaches have several key limitations including the need for continuous human input to adjust 

setpoints, lack of actionable human data in comfort prediction, intrusiveness and privacy concerns, 

and difficulty in integrating within HVAC operations. To address these issues, this research first 

investigated the integration of environmental data with human bio-signals collected from 

wristbands and smartphones for thermal comfort prediction and achieved 85% classification 

accuracy. This approach however required humans to provide their information from wearable 

devices and respond to a polling app. To address these limitations, this research further explored 

low-cost infrared thermal camera networks to non-intrusively collect facial skin temperature for 

real-time comfort assessment in both single and multi-occupancy spaces. Similar prediction 

accuracy is achieved without using any personal devices. Building on these comfort sensing 

approaches, this research demonstrates how to bridge personal comfort models and physiological 

predictive models to determine optimum setpoints for improved overall satisfaction or reduced 

energy use while maintaining comfort. The proposed sensing and optimization methods can serve 

as a basis for automated environment control to improve human experience and well-being.  

 Research theme 2, on the other hand, addressed why behavior interventions result in 

different energy reduction rates and identified two important gaps: lack of fundamental 

understanding of behavioral determinants of occupants, and lack of methods to quantitatively 
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describe the varying occupant characteristics which affect the effectiveness of interventions. To 

address these gaps, the research developed a conceptual framework which explains occupant 

behaviors with three determining factors - motivation, opportunity, and ability (MOA) 

incorporating insights from building science and social psychology. Based on MOA levels, 

clustering analysis and agent-based modeling were applied to classify occupancy characteristics 

and evaluate the effectiveness of a chosen intervention. The framework was improved by 

integrating MOA factors with two classical behavioral theories to address the challenges in 

defining and measuring MOA factors. The results showed an improved explanatory power over a 

single theory and suggested that favorable behaviors can be promoted by motivating occupants, 

removing environmental constraints, and improving occupants’ abilities. This framework enables 

decision-makers to develop effective and economical interventions to solicit behavioral change 

and achieve building efficiency. 

 

Figure 1-1 Overview of the Research 



 5 

1.2 Background of the Research 

This section provides an overview of existing studies on the two research themes.  

Limitations of these approaches are discussed at the end of each subsection. 

1.2.1 Theme 1 - Occupants’ Thermal Comfort Modeling and HVAC Control 

Thermal comfort is defined as “the condition of mind which expresses satisfaction with the 

thermal environment and is assessed by subjective evaluation” (ASHRAE 55 2010). The thermal 

comfort is affected by several human factors including physiological (e.g., gender, age), 

psychological (e.g., expectation, stress), and behavioral (e.g., activity level) attributes (Brager and 

De Dear 2000, Karjalainen 2007, Li et al. 2017a, Parsons 2014). As a result, thermal sensation and 

satisfaction have been observed to change over time in a single individual, and also vary from one 

person to another. Even exposed to the same indoor environment, occupants can still have diverse 

thermal sensations and preferences due to variations in their personal factors. To assess occupants’ 

thermal comfort, existing studies have explored the Predicted Mean Vote Model and participatory 

sensing introduced as follows. 

1.2.1.1 The Predicted Mean Vote Model 

The most widely used approach to evaluate occupant’s thermal comfort is the Predicted 

Mean Vote (PMV) model which was proposed in the 1970s (Fanger 1970) and was later adopted 

by the national standards (e.g., ASHRAE-55 2010, ISO-7730 2005). The PMV model was 

developed based on the thermal transfer of the human body and environments. Six parameters are 

considered in the PMV model including four environmental factors - air temperature, relative 

humidity, air velocity, and mean radiant temperature, and two human factors - metabolic rate, and 

clothing level. The output of the PMV model is an index ranged from -3 to 3, which represents 

occupants’ mean thermal sensation from cold to hot. A thermally acceptable indoor environment 
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is defined to maintain the PMV index between −0.5 and 0.5. The Predicted Percent Dissatisfied 

(PPD) model is associated with the PMV model and predicts the percentage of thermally 

dissatisfied occupants in a particular thermal environment. ASHRAE Standards 55 recommends 

maintaining the PPD index at less than 10%. 

Despite the PMV and PPD models have been intensively used in the field of thermal 

comfort assessment, this method suffers from several limitations. First, the PMV model is 

developed based on the mean feedback of a large group of people in laboratory settings. This 

generalization can have a bias towards certain occupants in a given environment. For example, an 

occupant who prefers cold or hot environments may not be well represented by this model. Second, 

the PMV model is originally developed for steady-state conditions in mechanically ventilated 

buildings. The predictions may not hold under transient-state conditions or in naturally ventilated 

environments (de Dear and Brager 2002, Yao et al. 2009). Also, the PMV model assumes the 

human body as a passive recipient of thermal stimuli (Yao et al. 2009). However, occupants can 

perform various adaptive behaviors, e.g., opening windows or putting on an extra layer of cloth, 

to maintain or restore the thermally comfortable state. These adaptive behaviors can result in a 

wider comfort range than predictions of the PMV model (de Dear 2011, de Dear and Brager 2002). 

Third, expensive devices are required to measure parameters such as the mean radiant temperature 

and metabolic rate, which makes the PMV model not suitable in real operational settings. 

1.2.1.2 Participation Oriented Thermal Comfort Assessment 

With the rapid development of wireless sensor network, mobile devices, and ubiquitous 

computing, researchers have explored various approaches to assess and control the indoor climate 

using environmental conditions and the corresponding human feedback (Bermejo et al. 2012, 

Daum et al. 2011, Erickson and Cerpa 2012, Feldmeier and Paradiso 2010, Gao and Keshav 2013, 
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Hang-yat and Wang 2013, Jazizadeh et al. 2013, Lee et al. 2019a and 2019b). This is also known 

as the “human-in-the-loop” approach which brings occupants’ actual thermal sensations into the 

HVAC control loop. As illustrated in Figure 1-2, this approach is typically initiated by the feedback 

received from building occupants using a phone or web application. In each cycle, decision 

algorithms calculate the comfortable setpoint based on environmental conditions and the actual 

thermal votes collected during this period. Finally, the updated setpoint is implemented to adjust 

the thermal environment. 

 

Figure 1-2 Typical Steps of Current “Human-in-the-loop” Approach for HVAC Control 

For example, Feldmeier and Paradiso (2010) collected occupants’ thermal votes (hot, cold 

and neutral) together with the ambient temperature and humidity from a wrist-worn sensor to 

model one’s thermal comfort state under various environmental conditions. The authors trained a 

Fisher Discriminant classifier using two features (room temperature and humidity) to find the 

boundary of hot and cold sensations. Jazizadeh et al. (2013) used a phone application to collect 

thermal preferences and developed fuzzy predictive models which predict the comfort probability 

under different room temperatures. Other studies such as Erickson and Cerpa (2012) and Purdon 

et al. (2013) adopted a similar approach which used occupants’ actual thermal votes from phone 

applications and environmental data from commodity sensors to either directly adjust the HVAC 
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settings or model the comfort state using different statistical methods. In a recent study, Kim et al. 

(2018a) developed machine learning models using occupants’ heating or cooling requests collected 

by a personal comfort chair. This study achieved a 73% accuracy in predicting three-point thermal 

preferences (i.e., warmer, no change, cooler), which significantly outperformed the PMV and 

adaptive models. In the market, commercial products such as Comfy, CrowdComfort, Keen and 

Wally also adopted the idea of continuously collecting occupants' thermal votes and indoor 

conditions to improve thermal comfort in the workplace through the optimization of temperature 

setpoint and air flow. 

Although this direct occupant participation-oriented approach provides a feasible way to 

understand occupants’ thermal comfort in the HVAC control loop, three major limitations should 

be acknowledged.  

First, these aforementioned studies modeled occupants’ thermal comfort based on 

environmental conditions and subjective feedback but failed to consider the influential human 

physiological or behavioral factors which can affect thermal comfort. For example, the same 

individual with different workload can have direct opposite thermal sensations and preferences in 

the same environment. In this case, a direct mapping from the measured environmental conditions 

to a certain thermal comfort level is incapable of producing a robust prediction, not to mention that 

human factors are changing over time. 

Second, in these studies, the human body is assumed as a passive recipient of thermal 

stimuli. Several field studies suggested that occupants’ adaptive behaviors (e.g., wearing a jacket 

when feeling cold) can play an important role in determining thermal comfort. However, this 

behavioral adaptation is not considered in the current voting methods. Developing the capability 
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to capture this behavioral adaptation can result in a more flexible comfortable temperature (de Dear 

and Brager 2002). 

Third and most importantly, this action-required approach heavily relies on continuous 

human feedback to understand occupants’ comfort state over time. This is based on the assumption 

that the human body is the best “comfort sensor” of the thermal environment which can 

periodically, if not always, indicate the need to adjust temperature setpoint through feedback (i.e., 

requests to make the room warmer or cooler). In this case, human feedback is either used as the 

ground truth to rectify the comfort prediction or to directly determine the new temperature setpoint. 

In real-life circumstances, however, this assumption is far from expected as (1) the frequency of 

feedback tends to decrease with time as the novelty and excitement of the system fades away 

(which was observed in the Li et al. 2017a); and (2) the requirement of human effort in the feedback 

can be distracting during regular work time (especially over heavy workload periods or in any 

frustrating situations) and sometimes occupants are unable to vote due to a variety of reasons (e.g., 

the phone is not at hand). 

1.2.2 Theme 2 - Interventions on Occupants’ Energy Use Behaviors 

To reduce building energy consumption, two major categories of approaches have been 

extensively studied. The first category focuses on the application of technical solutions in 

improving the energy performance of buildings, such as upgrading building management systems 

to optimize the mechanical and electrical systems, implementing hybrid ventilation to reduce 

energy demand on space heating or cooling (Dubois and Blomsterberg 2011, Menassa et al. 2013a). 

However, technical solutions are often challenged by high uncertainties in the energy-saving 

outcome (Azar and Menassa 2011a), lack of building information (Martinaitis et al. 2007), high 
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initial or retrofit investment (Yudelson 2010), and reluctant stakeholder commitment due to long 

economic payback period (Menassa 2011).  

Compared to technical solutions, in general, intervention strategies aiming to invoke 

behavioral change that reduces waste of energy have several merits, including low economic costs 

(e.g., campaigns that offer low or non-monetary incentives), high energy-saving potential (e.g., 

McCalley and Midden (2002) reported 21% savings in electricity due to goal setting and feedback), 

and flexible applications in different types of buildings, to name a few (Abrahamse et al. 2005, 

Azar and Menassa 2012, Li et al. 2017b, Staddon et al. 2016). To leverage these benefits, 

intervention strategies can be designed to invoke either voluntary or involuntary behavior changes 

in occupants’ energy consumption (see Figure 1-3). Voluntary behavior changes can include 

education to teach and create awareness about benefits of a particular behavior (Abrahamse et al. 

2005), and persuasion that offers reinforcing incentives or consequences to invite voluntary 

behavior changes at low economic costs. Prior studies have explored different approaches to 

enable voluntary behavior changes, such as information distribution outlets (e.g., posters, videos, 

brochures) (Agha-Hossein et al. 2015, Marans and Edelstein 2010), feedback (e.g., comparing 

current energy use with historical use that provides consumers with personalized evaluation and a 

means to monitor progress) (Timm and Deal 2016, Van Houwelingen and Van Raaij 1989), peer-

comparison (e.g., allowing occupants to acknowledge their energy consumption compared to their 

peers) (Peschiera et al. 2010), incentives (e.g., monetary incentives) (Handgraaf et al. 2013), and 

pledging campaigns to encourage energy conservation behaviors (Whitsett et al. 2013).  

On the other hand, involuntary behavior changes can include penalties that consist of 

negative consequences, which discourage an unfavorable behavior, and technological tools and 

systems (e.g., installing energy-efficient insulation materials) that solve problems without any 
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human involvement (e.g., occupancy and light sensors). In general, interventions at education and 

persuasion level usually deal with posters, emails, or small amount cash incentives which can be 

implemented at low costs. Penalties can incur extra administrative costs of regulations and 

sanctions while technology intervention may require retrofit of existing buildings or installing new 

equipment. The economic and environmental costs associated with these intervention methods 

increase across the spectrum from voluntary to involuntary methods (Li et al. 2017b). 

 

Figure 1-3 Multi-Level Building Energy Use Intervention Strategies 

To invoke voluntary behavioral changes, existing studies have implemented various 

intervention strategies. Abrahamse et al. (2005) reviewed thirty-eight studies and categorized 

intervention strategies in residential settings as commitment (e.g., written pledge to conserve 

energy), goal setting and feedback (e.g., setting a target of reduction and providing feedback for 

occupants to monitor the progress), information distribution outlets (e.g., workshops), modeling 

(e.g., providing recommended behaviors), and rewards (e.g., monetary rewards). Many of these 

strategies can also be applied in office environments but necessary modifications are required due 

to the differences between these two settings (Staddon et al. 2016). In a review study, Staddon et 

al. (2016) summarized nine common intervention strategies adopted in the workplace, such as 

persuasion, training, and coercion.  

Although existing studies on behavioral intervention observed different success rates in 

promoting energy conservation. However, little attention has been drawn to identify the 

determinants of occupants’ energy-saving behaviors (Abrahamse et al. 2005). This is an important 
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research gap as it is unclear why certain intervention will succeed or fail for a particular situation. 

Besides, several studies have suggested the existence of “rebound effect” in behavioral 

interventions that occupants’ energy consumption tends to increase after the intervention is 

removed (Peschiera et al. 2010). Therefore, an understanding of the determinants of energy-saving 

behaviors is much needed as it not only contributes to explaining the effectiveness of certain 

interventions but also helps decision-makers customize intervention strategies that target on the 

constraining factors and enhance them to achieve effective and long-term energy conservation. 

Second, the existing studies assume that occupants react in the same way to interventions 

without the varying characteristics of occupants, which has been suggested to significantly 

influence energy consumption. In this context, the various energy use characteristics of occupants 

represent the heterogeneity in energy use intensity and their likelihood of behavioral change (In 

Azar and Menassa 2013, the characteristics are defined as intensity and variability). For example, 

occupants with extreme energy use behaviors will react differently to interventions as compared 

to others with moderate energy use patterns. Education might be sufficient to reduce the energy 

use of the latter but might need to be supplemented with interventions from higher levels as shown 

in Figure 1-3 to affect the extreme users (Azar and Menassa 2015). As a result, the impact of a 

single intervention strategy can be limited when occupants with different characteristics co-exist 

in the same environment. This emphasizes the need for multi-level intervention strategies targeted 

towards the diverse occupant characteristics to produce and maintain energy savings over time 

(Karatas et al. 2015, Li et al. 2017b). In addition, the social network around occupants also plays 

a key mediation role to induce changes in occupant characteristics and behaviors. For example, 

Azar and Menassa (2015) investigated the existence of extreme energy consumers and their 

impacts on the building overall energy consumption. In this study, the extreme consumers are 
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characterized by a very narrow energy variability, which represents the occupants with strong 

energy use habits who are unlikely to change behaviors than flexible peers. The results showed 

that extreme consumers have an important negative impact on flexible peers (i.e., increased the 

energy use intensity of moderate users), which can contribute to revoke the benefits of energy 

interventions. As a result, decision-makers are challenged with designing and delivering energy 

interventions effectively and efficiently due to high uncertainties in understanding occupants’ 

energy use characteristics, their corresponding behaviors, and the resulting energy savings. 

1.3 Research Objectives 

1.3.1 Theme 1 – Developing a Robust and Non-Intrusive Approach for Thermal Comfort 

Prediction  

The overall objective of this research theme is to investigate methods to replace the current 

“user-initiated” passive and cumbersome thermal comfort feedback and control mechanism with 

a new “non-intrusive and synchronous” approach that can result in a comfortable, data-driven 

thermal environment without encumbering any proactive occupant feedback and empirical inputs 

from facility managers. In particular, this research aims to explore the premise that thermal comfort 

can be measured non-intrusively and reliably in real, operational, multi-occupancy-built 

environments. This will lead to a better understanding of the intricate characteristics of optimum 

setpoints given the inferenced individual comfort levels to improve the overall satisfaction of 

occupant groups. The followings are identified as the specific objectives of this chapter: 

• Evaluate the feasibility of using actionable human and environmental data to predict 

thermal comfort in naturalistic settings. 

• Design a personalized HVAC control framework using heterogeneous human and 

environmental data. 
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• Develop non-intrusive and scalable approaches which can predict human thermal comfort 

in various settings in real-time. 

• Validate the effectiveness of the new methods to improve overall thermal comfort in single 

and multi-occupancy spaces. 

1.3.2 Theme 2 – Developing an Integrated Framework to Identify the Determinants of 

Occupants’ Energy-Saving Behaviors  

The overall objective of this research theme is to identify the determinants of occupants’ 

energy-saving behaviors and occupant characteristics. In particular, a conceptual framework 

incorporating insights from interdisciplinary perspectives including social-psychology and 

building science is proposed. This research will provide insights into understanding the 

characteristics and constraining factors of targeted occupants and help decision-makers design and 

implement effective occupancy-focused energy interventions to reduce energy use. The followings 

are identified as the specific objectives of this chapter: 

• Identify major determinants of behavioral change in social-psychology theories. 

• Adapt the identified determinants into the context of energy use behaviors in buildings. 

• Develop an integrated framework to establish the relationship between the determinants of 

energy use behaviors. 

• Develop an approach to quantitively measure and describe occupant characteristics based 

on the behavioral determinants. 

• Evaluate the proposed framework using survey data. 

• Demonstrate the capabilities of the proposed framework to determine energy reduction 

through a case study. 
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1.4 Dissertation Outline 

This dissertation is a compilation of peer-reviewed scientific manuscripts which includes 

a total of seven chapters including the current chapter. Chapter 1 introduces the research questions 

that arise from the interactions between buildings and their occupants, and subsequently discusses 

the importance of this research effort to the environment, as well as people’s comfort, health, and 

wellness. The rest of chapters in this dissertation are organized into two parts presented as follows. 

Part I – Personalized Thermal Comfort Interpretation with “Human-in-the-loop” 

Part I, including chapters 2, 3, 4, and 5 describes the human-centered and personalized 

HVAC control frameworks using actionable human data (e.g., skin temperature) to dynamically 

interpret occupants’ thermal comfort, as well as their applications in the built environment. Title 

and brief contents of each chapter are summarized as follows. 

Chapter 2 – Thermal Comfort Interpretation through Wearables and Participatory Sensing 

This chapter presents a personalized HVAC control framework which is capable of 

dynamically determining the optimum room conditioning mode (mechanical conditioning or 

natural ventilation) and temperature setpoint in single and multi-occupancy spaces. This control 

strategy is implemented based on the environmental data, as well as the human physiological and 

behavioral data obtained from wearables and smartphone polling apps. The main questions that 

the research addresses are: (1) how to integrate environmental and human data collected from 

various sources to predict occupants’ thermal comfort? (2)  how to optimize the HVAC operation 

based on the individual thermal comfort level to achieve a thermally comfortable environment. 

First, a smartphone application is prototyped to integrate human and environmental data 

collected from wristbands, commodity sensors, thermostat, and weather station. Second, 

personalized comfort models are developed using different machine learning algorithms. Third, a 
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HVAC control algorithm is proposed and evaluated in the multi-occupancy space based on the 

predictions of comfort models.  

This chapter is a compilation of a research paper that has been published in the peer-

reviewed journal: “Li, D., Menassa, C. C., & Kamat, V. R. (2017c). Personalized human comfort 

in indoor building environments under diverse conditioning modes. Building and 

Environment, 126, 304-317.” 

Chapter 3 – Non-Intrusive Thermal Comfort Interpretation through Infrared Thermography 

This chapter presents a novel non-intrusive infrared thermography framework to interpret 

an occupant’s thermal comfort by measuring skin temperature collected from different facial 

regions using low-cost thermal cameras. In particular, this chapter aims to resolve two limitations 

of the research presented in chapter 2: (1) the excessive reliance on cumbersome human feedback; 

and (2) the intrusiveness caused by conventional data collection methods (e.g., wrist-worn sensors).  

The main questions that the research addresses are: (1) is a low-cost thermal camera ($200) capable 

of thermal comfort prediction despite its low radiometric accuracy? (2) how to extract skin 

temperature features of different facial regions from the thermal image? (3) what are the significant 

skin temperature features to predict thermal comfort? 

First, data cleaning and processing approaches are proposed to reduce the measurement 

error of the thermal camera. In particular, continuous thermal videos rather than a single image 

frame are used to extract skin temperature features. Second, facial regions (e.g., forehead) are 

identified through facial geometry and classic face detection algorithms. Third, machine learning 

algorithms are implemented to predict thermal comfort and select significant skin temperature 

features. 
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This chapter is a compilation of a research paper that has been published in the peer-

reviewed journal: “Li, D., Menassa, C. C., & Kamat, V. R. (2018). Non-intrusive interpretation of 

human thermal comfort through analysis of facial infrared thermography. Energy and 

Buildings, 176, 246-261.” 

Chapter 4 – Camera Network for Multi-Occupancy Thermal Comfort Assessment 

This chapter extends the research discussed in Chapter 3 and presents a novel camera 

network for thermal comfort assessment in multi-occupancy scenarios. Of particular interest in 

this chapter is the generic and flexible camera network which can be rapidly reconfigured to adapt 

to various settings and capable of collecting multi-occupancy data at various angles or distances, 

representing real operational built environments. The main questions that the research addresses 

are: (1) how to detect faces and each facial region at a further distance or from a side view such 

that frontal facial contours are not clearly preserved in the thermal images? (2) how to compensate 

for the skin temperature measurements for the distance or angle from camera to occupants? (3) 

how to register thermal images of the same occupant captured by multiple thermal cameras at 

different angles/distances in a network of cameras to produce a robust prediction? 

First, a dual-camera system, which consists of a low-cost thermal camera and an RGB-D 

sensor, is proposed to synergistically implement face detection and skin temperature extraction. 

Second, temperature measurements from the low-cost thermal camera at different distances or 

angles are calibrated by the reference infrared thermometer using linear or polynomial fit. Third, 

the dual-camera systems are registered using the stereo vision model to find point correspondences 

in different camera views. 

This chapter is a compilation of a research paper that has been published in the peer-

reviewed journal: “Li, D., Menassa, C. C., & Kamat, V. R. (2019). Robust non-intrusive 
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interpretation of occupant thermal comfort in built environments with low-cost networked thermal 

cameras. Applied Energy, 251, 113336.” 

Chapter 5 – Optimization of Temperature Setpoint through Personal Comfort Models and 

Physiological Sensing 

This chapter integrates the personalized prediction of thermal comfort into the HVAC 

control loop to improve the overall thermal comfort in multi-occupancy spaces while observing 

their impact on the energy consumption. The main questions that the research addresses are: (1) 

how to integrate the physiological sensing approach into the HVAC systems to achieve a proactive 

control of the temperature setpoint? (2) given each occupant’s skin temperature, how to develop 

personal comfort models which map skin temperature into a thermal comfort probability? (3) how 

to develop a physiological predictive model to interpret occupants’ future thermal comfort when 

the setpoint is increased or decreased considering their asymmetric thermal sensitivities to cold 

and hot stress? (4) how to determine the optimum setpoint that improves the overall thermal 

comfort or reduces the energy use while maintaining comfort given occupants’ comfort profiles? 

First, the multinomial logistic regression is adopted to develop personal comfort models 

using the facial skin temperature of each occupant. Second, linear mixed models are developed to 

predict each occupant’s skin temperature under a new setpoint. Third, three HVAC control 

strategies are introduced to demonstrate the setpoint selection for a given group of occupants. 

Part II – Frameworks to Understand the Determinants of Occupants’ Energy-Saving 

Behaviors 

Part II, including chapters 6 and 7, describes an inter-disciplinary Motivation-Opportunity-

Ability (MOA) framework combining insights from social psychology and building science to 
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quantitively measure the determinants of occupants’ energy-saving behaviors in buildings. The 

title and brief contents of each chapter are summarized as follows: 

Chapter 6 - The Motivation-Opportunity-Ability (MOA) Framework 

This chapter presents a conceptual MOA framework to identify (1) the determinants of 

occupants’ energy-saving behaviors, and (2) occupants’ energy use characteristics. In particular, 

this framework draws an analogy between energy intervention strategies in buildings and 

marketing theories in consumer science. The main questions that the research addresses are: (1) 

How to adapt the original MOA theory to the building context such that all possible factors defined 

in the energy use domain are mapped with the MOA categories? (2) How to quantitively measure 

one’s MOA level and the influence of each factor on energy-saving behaviors? (3) How can 

occupants’ energy use characteristics be classified based on their MOA levels for more effective 

and targeted intervention strategy selection? 

First, a comprehensive literature review is conducted to identify the psychological 

definitions of the MOA factors and their corresponding measures in the building energy domain. 

Second, a structural equation model is developed to investigate the relationships among the MOA 

factors and the energy-saving behaviors of occupants from survey data. Third, clustering analysis 

is performed to group occupants based on their MOA levels, which represent the pre-defined 

energy use characteristics (e.g., prone to change behaviors). Finally, Agent-Based Modeling is 

conducted to demonstrate the energy-saving implications of the MOA framework. 

This chapter is a compilation of a research paper that has been published in the peer-

reviewed journal: “Li, D., Menassa, C. C., & Karatas, A. (2017). Energy use behaviors in buildings: 

Towards an integrated conceptual framework. Energy research & social science, 23, 97-112.” 
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Chapter 7 – A Unified Theory of the Motivation-Opportunity-Ability Framework with Social-

Psychology Models 

This chapter enhances the MOA framework discussed in chapter 6 and presents an 

integrated and improved MOA framework which incorporates social-psychological constructs 

from the Norm Activation Model (NAM) and the Theory of Planned Behavior (TPB). The model 

integration resolves several inherent limitations in each theory. The main questions that the 

research addresses are: (1) How does each construct from social-psychology theories fit into the 

MOA framework? (2) To what extent do these determinants influence energy-saving behaviors? 

First, the NAM and the TPB theories are incorporated in the MOA framework to provide 

meaningful human cognitive (e.g., personal norms) and social contextual (e.g., social norms) 

measures for each MOA factor. Second, the strengthened MOA framework is tested based on a 

large-scale data collection involving multiple office buildings in the U.S. to evaluate the 

hypothesized relationships among each factor. 

This chapter is a compilation of a research paper that has been published in the peer-

reviewed journal: “Li, D., Xu, X., Chen, C. F., & Menassa, C. (2019). Understanding energy-

saving behaviors in the American workplace: A unified theory of motivation, opportunity, and 

ability. Energy Research & Social Science, 51, 198-209.” 

Chapter 8 – Conclusions 

The dissertation concludes with chapter 8, which summarizes the significance and 

contributions of this research, and discusses future work directions.
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2) CHAPTER 2 

 Thermal Comfort Interpretation through Wearables and Participatory Sensing 

2.1 Introduction 

As reviewed in Chapter 1 (Section 1.2.1.2), the current “human-in-the-loop” approach has 

several limitations such as the low comfort prediction accuracy due to lack of human data, 

requirement of continuous human participation, and absence of natural ventilation in the HVAC 

control strategy. To address these limitations, this chapter proposes a personalized HVAC control 

framework which is capable of dynamically determining the optimum conditioning model (i.e., 

mechanical conditioning or natural ventilation) and thermostat setpoint with reduced human 

participation. To achieve this, personalized comfort prediction models are developed based on the 

environmental and human bio-signal data collected from various sources to evaluate each 

occupant's thermal comfort level over time. In the mechanical conditioning mode, occupants' 

overall voting, as well as the predicted preference from comfort models will collectively determine 

the temperature setpoint. On the other hand, if comfort predictions suggest that thermal comfort 

can be maintained in naturally ventilated conditions, occupants will receive a notification to open 

the window and set back the HVAC system. 

The chapter is organized to first provide a review of existing research studies on thermal 

comfort using human bio-signal data, followed by the contributions of this chapter. Then, 

components of the personalized HVAC control framework are explained in detail. Finally, two 
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case studies (i.e., single and multi-occupancy) are presented to demonstrate the feasibility of the 

proposed framework. 

2.2 Related Work 

2.2.1 Thermal Comfort Prediction using Bio-signals 

Human physiological responses, such as vasodilation and increased respiration, have been 

shown to be correlated with thermal sensations and discomfort (Choi and Loftness 2012, Jung and 

Jazizadeh 2017, Liu et al. 2008, Yao et al. 2007). Therefore, detecting these physiological 

responses through bio-signals (e.g., skin temperature, heart rate) provides a way to understand 

occupants’ thermal comfort under different conditions. The benefits of applying bio-signals in the 

thermal comfort assessment are twofold: (1) bio-signals collected from each occupant allow 

researchers to develop personalized comfort models, which can improve the prediction accuracy 

(Li et al. 2017a, Jung and Jazizadeh 2019a); (2) bio-signals contain useful information to interpret 

comfort conditions and thus can reduce the dependence on human participation. 

Among these bio-signals, skin temperature has been intensively investigated in prior 

studies. The human body maintains its core temperature at around 37 °C through the 

thermoregulatory control by the hypothalamus (NCBI 2009). During heat stress, vasodilation 

increases the flow of blood to the skin surface to dissipate excess internal heat while 

vasoconstriction decreases the blood flow to limit heat loss during cold stress (Charkoudian 2003). 

As skin temperature is directly affected by the changes in blood flow, it is often used to estimate 

human thermal sensation and comfort (Choi and Loftness 2012, Wang et al. 2007, Yao et al. 2007). 

For example, Yao et al. (2007) assessed participants' overall and local thermal sensations with 

respect to their mean skin temperature under three environmental conditions (i.e., slightly cool, 

neutral, warm) and found that skin temperature is highly correlated with thermal sensations. This 
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study also developed linear regression models to predict overall and local thermal sensations using 

skin temperature. Choi and Loftness (2012) measured skin temperature of multiple body parts at 

different room temperatures, clothing and activity levels in a climate chamber. The result showed 

that the gradient of temperature on hand, wrist, and upper arm is a good indicator to predict thermal 

sensation. Similarly, as heart rate or heart rate variability is closely related to the metabolic level 

and work intensity (Perini and Veicsteinas 2003, Strath et al. 2000), researchers also investigated 

their role in thermal comfort prediction (Liu et al. 2008, Choi et al. 2012). For example, Liu et al. 

(2008) found that heart rate variability at discomfort conditions is significantly higher than that at 

comfort conditions.  

The aforementioned studies primarily focused on identifying the correlations between 

different bio-signals and thermal sensations, if any. Thus, the experiments are mainly conducted 

in well-controlled laboratory settings using large and cumbersome measuring devices. Therefore, 

the feasibility of bio-signals collected from low-cost wearables as predictors in naturalistic settings 

is still in question and, most importantly, this knowledge has not yet been incorporated into the 

HVAC system to optimize its operation. 

2.2.2 Ventilation Mode and Thermal Comfort 

Prior studies of personalized conditioning discussed in Section 1.2.1.2 mainly focused on 

mechanically conditioned buildings. For buildings with operable windows, natural ventilation is 

an effective approach to maintain indoor thermal comfort and good air quality. Several field studies 

have suggested that the range of comfortable indoor temperature is wider in naturally ventilated 

conditions (Brager and De Dear 2000, De Dear and Brager 2002, Feriadi et al. 2003). For example, 

Feriadi et al. (2003) surveyed 300 households in naturally ventilated buildings and concluded that 

in reality people are more thermally comfortable compared to what the PMV model suggests. In 
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general, natural ventilation at a slightly higher outdoor temperature may still be perceived as 

comfortable due to several reasons, such as occupant's diverse control over the environment, 

behavioral adjustments, increased skin evaporation rate when wind passes the human body, to 

name a few. On the other hand, natural ventilation can produce much higher ventilation rates than 

mechanical ventilation (Chartier and Pessoa-Silva 2009). Several studies investigated the 

concentration of air pollutants in naturally ventilated buildings and suggested that natural 

ventilation plays a significant role in removing indoor air pollutants and improving air quality 

(Santamouris et al. 2008, Hummelgaard et al. 2007). 

However, natural ventilation is often an underutilized approach in practice. According to a 

study carried out by Canada Green Building Council, 69% of respondents revealed they have used 

mechanical conditioning strategies in office buildings compared to only 35% who have adopted 

natural ventilation (CaGBC 2016). Besides the restrictions of building code, an obstacle to the 

adoption of natural ventilation is that engineers often fail to distinguish when the building should 

solely rely on mechanical conditioning, and under what circumstances natural ventilation (or a 

mixed mode) outstands with equal, if not better, indoor environment but less energy consumption 

(Brager and De Dear 2000). 

2.3 Contributions 

Considering the limitations of previous literature and the benefits of natural ventilation, 

this chapter extends the current knowledge of personalized conditioning by incorporating human 

bio-signals and natural ventilation into the control loop which allows the HVAC system to 

dynamically determine the optimum conditioning mode and temperature setpoint based on the 

thermal comfort levels predicted from an integrated dataset, including both environmental data 
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(indoor and outdoor conditions, window state) and human data (skin temperature, heart rate, 

activity, clothing level). The specific contributions of this chapter include: 

• Validate the feasibility of using human and environmental data to predict thermal comfort 

levels in naturalistic settings. 

• Develop a personalized control framework which integrates heterogeneous data into the 

operation of the HVAC system. 

• Demonstrate the capabilities of the developed framework to improve overall thermal 

comfort in single and multi-occupancy spaces. 

2.4 Methodology 

2.4.1 Overview of the Personalized HVAC Control Framework 

The personalized HVAC control framework leverages a range of new capabilities that have 

emerged in recent years such as: (1) portable and wearable health monitoring devices; (2) 

pervasiveness of smart mobile devices continuously available with human occupants; and (3) 

efficient wireless sensing, actuation, and communication networks for distributed decision and 

control. An overview of the operating principle of this framework is shown in Figure 2-1. One of 

the major contributions of this framework that differentiates it from previous studies is the 

integration of human physiological and behavioral data, thermal sensations and preferences with 

environmental data for decision making. This was realized through a smartphone application we 

developed for human-building interaction, which fuses heterogeneous data collected from different 

approaches including (1) wrist-worn health monitoring devices that measure human physiological 

and behavioral factors (e.g., skin temperature, heart rate, and activity level); (2) wireless sensors 

and probes which collect building indoor environment data (e.g., indoor temperature, humidity, 



 26 

CO2 level, window state); (3) weather station to retrieve real-time outdoor conditions (e.g., outdoor 

temperature and humidity). 

 

Figure 2-1 The Operating Principle of the Personalized HVAC Control Framework 

2.4.2 Main Components of the Personalized HVAC Control Framework 

The proposed personalized HVAC control framework has five operating components 

including indoor sensors and wearable devices, phone application, central database, control script, 

and programmable thermostat as shown in Figure 2-2. At the front-end, the phone application is 

paired with wearable health monitoring devices (e.g., Microsoft band) via Bluetooth to collect 

human physiological data (heart rate, skin temperature), behavioral data (clothing, activity level), 

and thermal sensations and preferences. Environmental data that are collected from indoor sensors 

and weather station are fused with human data in the phone application. 

The human and environmental data are stored in the central database which communicates 

the phone application (front-end) and control script (back-end). At the back-end, the control script 

predicts each occupant's comfort level under different conditioning modes and setpoints. In each 
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decision cycle, an adjustment is sent to the programmable thermostat to implement the new control 

strategy. 

The following subsections of this chapter will discuss the details of each component as 

shown in Figure 2-2, including the development of software (phone app, database, control script) 

and the specifications of hardware (sensor, wristband, thermostat). It should be noted that this 

chapter aims to demonstrate a framework for personalized HVAC operation. The hardware 

adopted in this chapter can be replaced by any other suitable devices with similar functionalities. 

 

Figure 2-2 Data Flow within the Personalized HVAC Control Framework 

2.4.2.1 Indoor sensors and wearable devices  

Indoor environment data are collected from a set of sensors and probes as shown in Figure 

2-3. In each room, we installed a Sensorist Wireless Pro temperature and humidity sensor (Figure 

2-3b, temperature accuracy: ± 0.2 °C, humidity accuracy: ± 3%). A COZIR probe (accuracy: ± 50 

ppm, Figure 2-3c) was adopted to measure indoor CO2 level, which is a good indicator of indoor 
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air quality. Operable windows were equipped with contact probes (Figure 2-3d) to monitor their 

states (either open or closed). All sensors and probes uploaded the data to a web server every 

minute through a gateway which is connected to the Internet (Figure 2-3a). 

To collect human physiological and behavioral data, we compared several wearable fitness 

and health monitoring devices available in the market (e.g., Microsoft band 2, Fitbit, AIRO) which 

are popular due to powerful functionalities, affordable prices, and lightweight features. Microsoft 

band 2 (hereinafter “wristband”, see Figure 2-4) was adopted as it embeds multiple sensors and is 

capable of tracking heart rate, skin temperature, light intensity, activity level, sleep quality, etc. 

Also, all sensors in the wristband are accessible via the application programming interface (API). 

Existing studies suggested the photoplethysmography (PPG) sensor in this wristband can achieve 

similar accuracy in heart rate measurement as the medical-grade electrocardiography (ECG) 

sensors for stationary subjects (e.g., Beggiato et al. 2019). 

 

Figure 2-3 Sensors and Probes for Indoor Environment Data Collection (a) Gateway; (b) 

Temperature and humidity sensor; (c) CO2 probe; (d) Window contact probe 
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Figure 2-4 Microsoft Band 2 

2.4.2.2 Phone application  

The center of the proposed framework as shown in Figure 2-2 is a smartphone application 

(hereinafter “app”) which enables human-building interaction. In this study, we developed an iOS 

app which allows users to collect physiological and behavioral data, view room conditions and 

HVAC settings, report actual thermal sensation and preference, check thermal votes from others 

sharing the room, acquire recommendation on the conditioning mode, and visualize their past 

efforts in using natural ventilation. 

Figure 2-5 shows the steps of using this app (user-initiated actions are denoted in bold) and 

Figure 2-6 shows the app interfaces on an iPhone. To obtain a user's location and occupancy state 

(single or multi-occupancy), a marker with an encoded location is strategically placed next to each 

user’s desk in advance (see Figure 2-9). The app will first ask the user to scan this marker to get 

localized in the building. This is an improvement to prior studies where users have to manually 

select their location from a drop-down menu every time (Jazizadeh et al. 2013, Erickson and Cerpa 

2012). This is particularly helpful in large complex buildings as users can frequently move around 

multiple places. 
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Figure 2-5 Steps of Using the Phone App 

Next, the app starts to collect physiological and behavioral data including heart rate, skin 

temperature, activity, and clothing level through the wristband API (Figure 2-6a). Users can switch 

views using the tab bar located at the bottom. In the “sensation” view (Figure 2-6b), users can get 

current room conditions, HVAC settings, and report their actual sensation and preference through 

the segmented control. For the comfort scale, several designs were proposed in previous studies 

(e.g., ASHRAE 5-point sensation scale, McIntyre 3-point preference scale, Bedford comfort scale). 

For example, Jazizadeh et al. (2013) recommended a combined preference and sensation scale 

with 10 intensity levels. However, as the thermal preference is not necessarily associated with a 

certain sensation (e.g., people may consider a cooler sensation as comfortable) (Feriadi et al. 2003, 

Yao et al. 2007) and too many options can be confusing and thus hinder human participation. We 

adopted a 5-point sensation scale (i.e., cold, cool, ok, warm, hot) and a 3-point preference scale 

(i.e., warmer, neutral, cooler) for feedback. 

In the “vote” view (Figure 2-6c), two pie charts demonstrate the collective “opinion” about 

the indoor thermal environment in a multi-occupancy space. This allows users to view the 

unresolved cold or hot requests from their peers, which aims to promote mutual understanding and 

mitigate the conflicts to some extent. 

In the “window” view (Figure 2-6d), a bar chart displays the daily usage of natural 

ventilation. This feedback is anticipated to show users' efforts in adopting natural ventilation to 
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promote long-term conservation. Users are notified by push notifications if there is an automatic 

adjustment of setpoint or natural ventilation is chosen as the optimum conditioning strategy (see 

Figure 2-7). 

 

Figure 2-6 Application Interfaces for (a) Human physiological data; (b) Thermal sensation and 

preference; (c) Collective opinion; (d) Conditioning mode 

 

Figure 2-7 Push Notifications for Two Scenarios (left: setpoint is changed; right: time to use 

natural ventilation) 

2.4.2.3 Database, comfort model and control script  

MongoDB database is used to store and exchange information. In the database, data are 

organized into three main collections. “UserInfo” collection manages each user's information (e.g., 

username, gender). “UserData” collection stores the time-stamped human and environmental data, 

which are used to develop comfort prediction models. “VoteResult” collection updates users' 
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collective thermal votes in each decision cycle. Each time a new decision cycle starts, this 

collection will be reset for any future requests to represent users' dynamic preferences. 

As thermal preferences are categorical values (e.g., cooler and warmer), we adopted four 

common classification algorithms including Logistic Regression, K-nearest Neighbor, Support 

Vector Machine, and Random Forest. Given the data we collected in the case study, Random Forest 

classifier produces the highest classification accuracy. Therefore, only the result of Random Forest 

is discussed in the case study section. Random Forest is an ensemble method which classifies an 

object by averaging a large collection of decision trees and can reduce the overfitting problem 

originated from decision trees (Breiman 2001). 

To quantify thermal comfort levels, we defined the “group comfort score” (denoted as 

group_comft in Table 2-1 and Table 2-2) as “the total number of occupants who are comfortable 

in current conditions”. The intuition of this metric is to find the optimum HVAC strategy that can 

maximize the overall thermal comfort in a multi-occupancy environment. Previous studies have 

proposed several approaches to this question. For example, Zhao et al. (2014) implemented a 

geometrical solution which takes the convex hull of individual complaint regions as the group 

complaint region. Thus, a comfortable environment should be maintained within the complement 

set of the group complaint region. However, this approach will fail if the individual hot and cold 

complaints have a significant overlap (i.e., the comfort state is uncertain in the overlapped region). 

In another study, Purdon et al. (2013) proposed to directly use the net vote to determine the 

temperature setpoint. If more votes of a warmer environment are received, then the setpoint is 

increased by a fixed step and vice versa. However, this approach cannot handle the situation where 

some occupants do not vote because they feel comfortable in the current condition. 
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To overcome these limitations, we evaluated each occupant's comfort level by plugging 

the human and environmental data into the personalized comfort prediction model. If the predicted 

thermal preference is “neutral”, then this occupant is regarded as comfortable. Otherwise (i.e., 

“warmer” or “cooler”), this occupant is regarded as uncomfortable. As occupants are more likely 

to report their uncomfortable states, we assumed that if no feedback is received from an occupant, 

he/she is considered as comfortable in that period or has reached the comfortable state on his/her 

own by performing adaptive behaviors (e.g., put on a jacket). Therefore, we divided the typical 

working hours (from 8 am to 6 pm) into 20 segments with 30 minutes for each interval. This 30-

minute decision interval is also supported by Purdon et al. (2013) and Hang-yat and Wang (2013) 

as occupants may not feel any changes in a shorter duration. If more than one feedback from a 

single occupant is received in a segment, only the last feedback is considered. This assumption 

guarantees that the comfort level of occupants with different feedback frequencies can be 

compared and computed using the same measure. 

A control script was developed in Python to continuously execute decision algorithms to 

enable connections between the cloud data and physical HVAC system. The HVAC control loop 

includes two algorithms, namely the Mode Selection Algorithm and Collective Decision Algorithm. 

The script first executes the Mode Selection Algorithm (see Table 2-1) to choose the optimum 

conditioning mode. In each decision cycle, the Collective Decision Algorithm (see Table 2-2) is 

implemented to evaluate the highest group comfort score (the total number of occupants that are 

comfortable under the optimum setpoint) that can be achieved in mechanical conditioning mode. 

Then the group comfort score is evaluated again in the natural ventilation mode. The Mode 

Selection Algorithm selects natural ventilation as the optimum conditioning mode if it can produce 

a higher group comfort score. Otherwise, if mechanical conditioning produces a higher group 
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comfort score in the current situation or the window is non-operable, pure mechanical conditioning 

is chosen as the optimum strategy and the setpoint will be determined according to Algorithm 2. 

In this case, ventilation is automatically activated when the indoor CO2 level is higher than the 

1000 ppm threshold specified in industry standard (ASHRAE 2010, Menassa et al. 2013b). 

Table 2-1 Algorithm 1 - Pseudocode for the Mode Selection Algorithm 

Algorithm 1 – Pseudo code for mode selection algorithm 
Input: user_vote, human_data, envir_data, occupancy 
Output: mode (MC – mechanical conditioning, NV – natural ventilation) 
 
for every n minutes do 
    if non-operable window 
        run Algorithm_2 
        break 
    end if 
 
    group_comft_NV = 0 
    for each occupant 
        individual_comft_NV = comft_model(human_data, envir_data, NV) 
        // 1- comfortable, 0 – uncomfortable 
        group_comft_NV += individual_comft_NV 
    end for 
    group_comft_MC = run Algorithm_2          // best condition achieved by 
MC 
    if group_comft_NV >= group_comft_MC  
        return Mode_Set(NV) 
    else 
        return Mode_Set(MC) 
    end if 
end for 

Table 2-2 Algorithm 2 - Pseudocode for the Collective Decision Algorithm 

Algorithm 2 – Pseudo code for collective decision algorithm 
Input: user_vote, human_data, envir_data, occupancy, set_point 
Output: HVAC_Command, group_comft 
 
if CO2 > threshold then 
    return HVAC_FanOn() 
else 
    return HVAC_FanOff() 
end if 
 
if occupancy = 1 then     // single occupancy 
    return HVAC_TempSet(user_vote)   
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else if user_vote < 0 (or if user_vote > 0) 
    temp = set_point – 1 (or temp = set_point + 1) 

group_comft_MC = 0 
for each occupant 

        individual_comft_MC = comft_model(temp, human_data, envir_data, 
MC)   
        // 1- comfortable, 0 – uncomfortable 
        group_comft_MC += individual_comft_MC 

end for 
        if group_comft_MC > ½ occupancy 
            HVAC_TempSet(temp) 
        else 

HVAC_TempSet(unchanged) 
        end if 
    reset(user_vote) 
    return group_comft_MC 
end if 

2.4.2.4 Programmable thermostat  

Unlike other studies which manage the HVAC system through the BACnet protocols (Pang 

et al. 2012), we adopted a programmable Wi-Fi enabled thermostat (e.g., Nest) and operable 

window sensors to allow for natural ventilation under certain conditions. By using Nest, we can 

directly control the HVAC system through the Python script we customized for this study without 

involving the details of the system (e.g., make, model). This approach requires no retrofits to the 

existing system, and most importantly, it allows us to develop and test the decision algorithms 

before accessing the physical HVAC system in a building. 

2.4.3 Workflow of the Personalized HVAC Control Framework 

The workflow of the proposed HVAC control framework consists of two stages (see Figure 

2-8): the learning phase and the operation phase. In the learning phase, machine learning methods 

(e.g., Random Forest) are adopted to develop comfort prediction models using human and 

environmental data. In the operation phase, the decision algorithm 1 and 2 are continuously 

executed to determine the optimum conditioning mode and HVAC setpoint (detailed in Section 

2.4.2.3). If natural ventilation is the present optimum strategy, users will be notified to open the 
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window and turn off the HVAC system (if windows are operable). Otherwise, the HVAC system 

stays in the mechanical conditioning mode and adjusts the setpoint by checking users' recent votes 

and comfort predictions. 

 

Figure 2-8 Overview of the Workflow 

2.5 Case Study 

Two case studies were selected to demonstrate the proposed HVAC control framework. 

The first case study was conducted in single occupancy rooms to demonstrate the framework's 

capability of determining conditioning mode. The second case study evaluated the HVAC decision 

algorithm in improving overall comfort in a multi-occupancy space. 

2.5.1 Single-occupancy Study 

The first case study was conducted in three single-occupancy rooms. The testbeds are 

regular residential housing units located in Ann Arbor, Michigan. Each room was equipped with 

operable windows and an individual HVAC unit. All participants have full control over the 
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windows and thermostat. In each room, a set of temperature and CO2 sensor (Figure 2-9) was 

installed near the desk to monitor a participant's work area. A contact probe was placed on the 

window frame to detect the window state. Each participant was assigned a location marker and 

received instructions on how to use the app and wristband before data collection. 

 

Figure 2-9  Temperature and CO2 Sensors (left); Location Marker and Window Sensor (middle); 

Nest Thermostat (right) 

The data collection took place during the cooling season from mid-June through July in 

2016. The average daily highest and lowest temperatures were 28.9 °C and 16.7 °C respectively. 

Each participant was asked to provide feedback through the app under two scenarios several times 

a day: (1) when they feel comfortable with the indoor thermal environment; (2) when they feel 

uncomfortable and are about to take actions to restore the comfortable state (e.g., close the window, 

change the thermostat, put on a jacket). 

To obtain data in the natural ventilation mode, participants were asked to open the window 

(also set back the HVAC system) twice per day when outdoor temperatures were acceptable (once 

in the morning and once in the afternoon). If participants felt uncomfortable in the natural 

ventilation mode, they were allowed to close the window and switch back to mechanical 

conditioning (feedback was provided before switching the mode). Otherwise, the indoor 

environment can stay in natural ventilation until participants no longer felt comfortable. 
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A sample dataset is shown in Table 2-3 in which the data can be categorized into three 

groups: (1) participant's thermal preference, which is the target variable that the comfort model 

will predict; (2) human data, which include clothing level (Clo, which can take L - low, M - 

medium, H - heavy), heart rate (HR, beats/minute), skin temperature (Tskin, °C), activity level 

(Activity, which can take idling, walking, running); and (3) environmental data, which include 

room temperature (Troom, °C), room humidity (Hroom, %), CO2 level (ppm), window state (NV, 0 - 

close, 1 open), outdoor temperature (Tout, °C), and outdoor humidity (Hout, %). A total of 271 valid 

thermal comfort reports were received from the three participants and the frequency of reports for 

each level is shown in Table 2-4. 

Table 2-3 Sample Data Collected in the Learning Phase 

Time Sensation Preference Clo HR Tskin Activity Troom Hroom CO2 NV Tout Hout 
06-24 17:46 Ok Neutral L 60 90 Idling  76 51 622 0 82 65 
06-24 19:08 Hot Cooler L 60 92 Idling  83 54 585 0 86 72 
06-24 20:14 Warm Cooler L 57 90 Idling  82 51 708 0 87 63 
06-25 09:21 Cool Neutral L 70 83 Idling  75 40 1020 0 83 68 
06-25 11:35 Warm Cooler M 80 88 Walking 77 44 827 0 85 75 
06-25 16:18 Cool Warmer L 59 89 Idling  75 62 664 1 77 88 
06-25 17:02 Ok Neutral L 55 89 Idling 76 65 643 1 78 73 
06-26 11:37 Warm Neutral L 62 87 Walking 78 63 711 1 83 58 
06-26 14:35 Hot Neutral L 62 93 Idling  81 54 425 1 90 39 
06-27 10:27 Warm Cooler M 68 91 Idling 77 42 791 0 73 57 

Table 2-4 Frequency of Reports for Each Level in the Single Occupancy Testbed (ME – 

Mechanical conditioning, NV – Natural ventilation) 

Subject 

ID 

Number of Data Points for Each Level - ME Number of Data Points for Each Level - NV 

Cooler Neutral Warmer Cooler Neutral Warmer 

1 14 24 11 6 19 6 

2 22 11 14 14 19 10 

3 14 21 22 16 18 10 

Total 50 56 47 36 56 26 

 

A summary of the reported room temperature and skin temperature is shown in Figure 2-10. 

In this figure, each row represents a participant and the four columns represent a participant's 
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thermal preferences with respect to room temperature in mechanical conditioning, room 

temperature in natural ventilation, skin temperature in mechanical conditioning, and skin 

temperature in natural ventilation, respectively. A participant is considered comfortable if his/her 

preference is neutral. In general, participants tend to have a wider comfortable range in naturally 

ventilated conditions than in mechanically conditioned spaces. This figure also confirms prior 

findings that people can have different preferences under the same room temperature which 

suggests the need for including other factors (such as human factors) when evaluating thermal 

comfort. 

 

Figure 2-10 Three Participants’ Reported Room Temperature and Skin Temperature at Different 

Thermal Preference Levels 
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The personalized comfort prediction models were developed using the Random Forest 

algorithm. Due to the lack of consensus on the appropriate dataset size, parameters were tuned to 

produce the highest cross-validation accuracy (we adopted the Python Scikit-learn package with 

the following parameters: n_estimators = 1000, criterion = “entropy”, max_depth = 10). 

Oversampling of minority classes has been adopted to address the class imbalance problem. Three 

feature sets were compared: the first feature set only contains environmental data (denoted as 

“Envir Only”), i.e., room temperature, room humidity, window state, outdoor temperature, and 

outdoor humidity; the second feature set only contains human data (“Human Only”), i.e., clothing 

level, heart rate, skin temperature, and activity level; the third feature set contains both 

environment and human data (“Envir + Human”). The performance of models with different 

feature sets was compared to determine which feature is influential in the comfort prediction. 

Ten-fold cross-validation was performed to evaluate the classification accuracy of three 

feature sets under six scenarios (see Table 2-5). The third feature set (“Envir + Human”) performed 

the best, which can achieve an approximately 80% accuracy in classifying thermal comfort which 

has three categorical values. Compared to the “Envir Only” and “Human Only” feature sets, the 

“Envir + Human” set improved the classification accuracy by 24% and 39%, respectively, 

indicating that integrating both environmental and human data can significantly improve the 

performance of comfort prediction models. 

Table 2-5 Classification Accuracy of Random Forest Classifier with Different Feature Sets 

Scenarios P1 - ME P1 - NV P2 - ME P2 - NV P3 - ME  P3 - NV 

Envir Only 0.595 0.635 0.700 0.654 0.602 0.667 

Human Only 0.674 0.540 0.694 0.495 0.506 0.565 

Envir + Human 0.805 0.852 0.887 0.792 0.714 0.707 
Note: P1, P2, P3 - Participant ID; ME – Mechanical conditioning, NV – Natural ventilation  

As participants' reports were continuously collected over time, the comfort prediction 

model can also evolve as more reports were received. Figure 2-11 shows the classification accuracy 
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with respect to the size of the training data. Each subplot represents the prediction accuracy when 

60% up to 100% training data were collected. In this case, the training data was segmented in 

chronological order to represent the data collected over time. For scenario (1) (2) and (3), 

classification accuracy improved with the size of the training data, indicating the “learning” ability 

of the comfort model. For scenario (4) (5) and (6), the accuracy of the whole training set was close 

to that when 60% of data were used. Overall, with a relatively small dataset (approximately 50 

samples), the comfort model can achieve an acceptable classification accuracy. This result suggests 

that the proposed HVAC control framework does not heavily rely on human inputs and implies its 

ability to dynamically control the indoor environment without continuous voting from users. 

 

Figure 2-11 Classification Accuracy of Comfort Prediction Models with respect to Data Size (n 

represents the total number of samples in the dataset) 
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2.5.2 Multi-occupancy Study 

Another case study was conducted in an office building located in Madison, Wisconsin 

which aims to evaluate the HVAC decision algorithm in a multi-occupancy space. The case study 

was conducted for three weeks from Nov.14th to Dec 2nd, 2016. The case study building has an 

open office area which accommodates twenty full-time employees (see Figure 2-12). A single 

programmable thermostat controls the thermal environment of this work area. During the test 

period, all windows were kept closed and only mechanical conditioning was considered in the 

decision algorithm. 

 

Figure 2-12 Multi-Occupancy Testbed 

Seven participants joined in the data collection and used the app to report their thermal 

preferences and the corresponding human data. Before data collection, we explained the 

importance of feedback and encouraged participants to vote multiple times per day. A total of 362 

complete reports were collected during the test period and the frequency of reports for each level 

was presented in Table 2-6. Comfort prediction models were trained and evaluated using the 

Random Forest algorithm as discussed in the previous section. The classification accuracy of three 
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feature sets (“Envir Only”, “Human Only”, “Envir + Human”) were shown in Table 2-7. Overall, 

the model can achieve an over 80% accuracy in predicting thermal comfort. 

Table 2-6 Frequency of Reports for Each Level in the Multi-Occupancy Testbed 

Subject ID 1 2 3 4 5 6 7 

Cooler 6 7 10 11 14 9 11 

Neutral 21 12 28 34 30 14 14 

Warmer 16 28 17 19 23 31 7 

Total 43 47 55 64 67 54 32 

Table 2-7 Prediction Accuracy of the Seven Participants in the Multi-Occupancy Testbed 

Subject ID 1 2 3 4 5 6 7 

Envir Only 0.634 0.739 0.655 0.185 0.554 0.529 0.483 

Human Only 0.373 0.434 0.601 0.696 0.712 0.679 0.634 

Envir + Human 0.932 0.964 0.839 0.723 0.744 0.779 0.748 

Figure 2-13 to Figure 2-15 show the room temperature and occupant feedback across three 

weeks. As shown in each figure, the data were trimmed to weekdays from 8 am to 6 pm to represent 

regular working hours. In each day, the bold black curve represents the room temperature over 

time. Participants’ thermal preference “Warmer”, “Cooler”, and “Neutral” are marked using 

vertical red, blue lines, and black dots, respectively. Each line or dot indicates that a participant 

reports his/her thermal sensation and preference at some point in the day. No reports were collected 

during November 23 - 25 due to the Thanksgiving holiday. Room temperature in Figure 2-13 to 

Figure 2-15 can vary by as much as 1.7 °C in a day. The lowest temperature usually occurred in 

the early morning (8 am) and gradually reached the highest value at around 2 pm. The overlap of 

red, blue lines and black dots indicate that participants have diverse thermal preferences in a multi-

occupancy space of the same environmental condition. The frequent cold and hot reports (i.e., 

uncomfortable reports) represent a less than satisfied thermal environment. 
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Figure 2-13 Room Temperature and Participants’ Thermal Preference in Week 1 

 
Figure 2-14 Room Temperature and Participants’ Thermal Preference in Week 2 
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Figure 2-15 Room Temperature and Participants’ Thermal Preference in Week 3 

By interviewing with the participants, we found several reasons that led to the unsatisfied 

thermal comfort. For example, participant 5 commented that “Even though the thermostat is next 

to my table, I never adjust it when I feel uncomfortable as I don't know if my colleagues have the 

same feelings as I do”. Participant 6 commented that “I always feel cold in the room, but I don't 

know how much I should change the setpoint (if I am allowed to do so) to make me feel 

comfortable”. Participant 7 commented that “I think it is a dummy thermostat as nobody ever 

touches it”. Therefore, to improve thermal comfort in a multi-occupancy space, it is particularly 

important to engage building occupants in the control loop and enable the adjustment of setpoint 

based on the evaluation of overall comfort levels instead of the empirical judgment. 

Two scenarios were compared to demonstrate the feasibility of our proposed framework in 

improving thermal comfort (see Table 2-8). The scheduled scenario represents a situation where 

the setpoint of thermostat follows a predefined fixed schedule (as the multi-occupancy office did 

in the data collection). The dynamic scenario represents a situation where the Algorithm 2 – 

Collective Decision Algorithm (discussed in Section 2.4.2.3) has been implemented to dynamically 
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adjust the temperature setpoint. In the dynamic environment, the total number of uncomfortable 

reports (i.e., cooler or warmer reports) were calculated from the personalized comfort models. 

Table 2-8 Descriptions of Scheduled and Dynamic Environments 

Scenario Scheduled Environment Dynamic Environment 

Description 

The total number of uncomfortable 

reports of this office is counted from the 

original reports as shown in Figure 2-13 

to Figure 2-15. 

This scenario represents a scheduled 

environment where the thermostat 

setpoint is fixed and no dynamic 

adjustments are made over time. 

The total number of uncomfortable reports of this 

office is calculated based on the predicted 

responses after implementing the HVAC decision 

algorithm. The responses are predicted using each 

occupant’s comfort model when the setpoint is 

adjusted.  

This scenario represents an environment where 

dynamic adjustments are made according to 

occupants’ reports and comfort predictions. 

The total number of uncomfortable reports of the scheduled and dynamic scenarios are 

shown in Figure 2-16. On average, the total number of uncomfortable reports have been reduced 

by as much as 53.7% after implementing the Collective Decision Algorithm, which indicates the 

improvement of overall thermal comfort in the case study office. 

 

Figure 2-16 Number of Uncomfortable Reports of the Scheduled and Dynamic Environment 
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2.6 Conclusions 

This chapter proposed an HVAC control framework which is capable of determining the 

optimum room conditioning mode (mechanical conditioning or natural ventilation) and HVAC 

settings (temperature setpoint) under different environment and human conditions. First, we 

introduced the major components of the personalized HVAC control framework and demonstrated 

its operating principles. Then, we discussed how various types of human and environmental data 

are integrated in the decision loop, the specifications of supporting hardware (wristband, sensors, 

thermostat) and the development of software (smartphone application, database, control script), as 

well as two HVAC control algorithms (Mode Selection Algorithm and Collective Decision 

Algorithm). Lastly, we demonstrated the prediction accuracy of comfort models developed from 

the case study and evaluated the overall thermal comfort conditions when implementing the 

decision algorithm. The main contribution of this chapter is the integration of human physiological 

and behavioral data in the HVAC control system. These additional human data can significantly 

improve the accuracy of predicting thermal preferences. 

The main conclusions include: First, incorporating human physiological and behavioral 

measurements in the comfort prediction model can significantly improve its accuracy, which can 

be implemented in a human-focused HVAC system that dynamically controls the indoor 

environment. Second, the personal comfort model uses training data collected from each occupant, 

which accounts for the personal variations in evaluating thermal comfort. The benefits of personal 

models have also been discussed in later studies such as Kim et al. (2018b) and Jung and Jazizadeh 

(2019a). In general, personal comfort models demonstrate a better predictive power than the PMV 

and adaptive comfort models as they are highly customized for each occupant (Kim et al. 2018a). 

In addition, understanding personal thermal comfort provides insights into designing the HVAC 
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control algorithms to optimize overall comfort in a multi-occupancy setting and also enables 

personalized comfort zones for each individual (e.g., through local HVAC units). From the 

energy’s perspective, personal comfort models can be incorporated into the building energy 

models or Agent-Based Models for detailed energy simulation and occupant feedback (e.g., Li et 

al. 2017c, Thomas et al. 2017 and 2018). Third, using the identified feature set and the Random 

Forest model, an 80% classification accuracy can be achieved with a relatively small dataset 

(approximately 50 samples), indicating the reduced dependency on human inputs. Fourth, the 

results confirm findings from previous studies that occupants can have different thermal 

preferences in the same environment considering their diverse human factors, as well as the fact 

that occupants' comfort state can change over time due to factors such as metabolic rate and 

workload, making a static setpoint unable to satisfy the conflicting and dynamic thermal 

requirement. As discussed in the case study, the proposed Collective Decision Algorithm can 

reduce the uncomfortable reports by as much as 53.7%. Lastly, room conditioning mode can be 

determined by evaluating human and environmental factors identified in this chapter. The proposed 

mode selection capability in the HVAC control framework reveals the potential to reduce energy 

consumption while maintaining a satisfied indoor environment.
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3) CHAPTER 3 

Non-Intrusive Thermal Comfort Interpretation through Infrared Thermography 

3.1 Introduction 

Chapter 2 presents a personalized HVAC control framework which leverages integrated 

human and environmental data collected from multiple sources including wristbands, smartphone 

polling apps, commodity sensors, and weather station. The results suggest that quantitative human 

data, such as skin temperature and heart rate, can significantly improve the accuracy of thermal 

comfort prediction. However, a major limitation of this framework is the “intrusiveness” caused 

by the collection of human data, including: (1) the requirement of wearing wristband sensors and 

using phone applications which may not always be convenient or feasible in built environments 

(e.g., strain may arise from wearing wristbands for a long time, phone is not at hand to provide 

feedback); and (2) the interruption and distraction caused by the feedback mechanism during 

regular work time, especially over heavy workload periods or in any frustrating situations.  

Therefore, in this chapter, our objective is to investigate methods to replace the “user-

initiated” passive and cumbersome thermal comfort feedback and control mechanism discussed in 

the previous chapter with a new “non-intrusive and synchronous” approach that can result in a 

comfortable, data-driven thermal environment without encumbering any proactive occupant 

feedback. In particular, we aim to explore the premise that thermal comfort can be measured non-

intrusively and reliably in real, operational, multi-occupancy-built environments. This will lead to 
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a better understanding of the intricate characteristics of optimum setpoints given the inferenced 

individual comfort levels to improve the overall satisfaction of occupant groups. 

The hypothesis of the proposed research is that using human facial skin temperature 

collected from non-intrusive low-cost infrared thermal cameras can achieve a robust prediction of 

thermal comfort in real-time and offer the possibility for synchronous control of indoor 

environments with minimal interruption of building occupants. This hypothesis will be tested by 

conducting research experiments to develop a new thermal comfort prediction method using the 

continuously collected facial skin temperature data.  

The rest of this chapter is organized to first provide a detailed review of existing methods 

to collect skin temperature and their limitations, followed by the contributions of this chapter. Then, 

the main challenges of an infrared thermography-based HVAC control framework are introduced 

in the methodology section, including face detection, feature extraction, data cleaning, and model 

training and testing. Finally, the results and findings are discussed. 

3.2 Related Work 

In practice, skin temperature can be measured using thermocouples (Chen et al. 2011, Choi 

and Loftness 2012, Choi and Yeom 2017, Yao et al. 2007), infrared thermometers (Ghahramani et 

al. 2016), and commodity infrared thermal cameras (Abouelenien et al. 2016, Burzo et al. 2014a, 

2014b, De Oliveira et al. 2007, Metzmacher et al. 2018, Ranjan and Scott 2016).  

Among these devices, contact thermocouples are most widely adopted to measure skin 

temperature due to their high accuracy, low-cost, and easy installation. To interpret thermal 

sensation and discomfort, existing studies usually attach the thermocouples to a certain body 

region or multiple body locations and correlate the measured temperature data under different 

environment settings with the local or overall thermal sensation (Chaudhuri et al. 2018, Choi and 
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Loftness 2012, Choi and Yeom 2017, Wang et al. 2007, Yao et al. 2007). For example, Chaudhuri 

et al. (2018) attached thermocouples on the dorsal area of the non-dominant hand and measured 

skin temperature under different thermal conditions (Figure 3-1). Wang et al. (2007) measured 

subjects’ upper extremity skin temperature, including finger, hand, and forearm (Figure 3-1) using 

thermocouples and concluded that skin temperature and its gradient of these regions are correlated 

with the overall body thermal sensation. Similar as the idea introduced in Chapter 2, Liu et al. 

(2019) applied wristbands (Empatica E4 and Polar V800), chest straps (for heart rate), 

accelerometers (for activity level), and thermocouples on the ankle area to measure subjects’ 

physiological signals for comfort prediction (Figure 3-2).  

However, as discussed earlier, this type of contact data collection method is very intrusive 

as the electrodes of thermocouples should be directly attached to the skin surface. This drawback 

limits its applicability in operational residential or office environments as it is not feasible to equip 

all building occupants with contact thermocouples or other wearables without interfering with their 

activities. 

 

Figure 3-1 (left) Thermocouple Attached on the Dorsal Area (adapted from Chaudhuri et al. 

2018); (right) Thermocouple Locations of the Upper Extremity (adapted from Wang et al. 2007) 
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Figure 3-2 Wearable Sensors and Their Locations (adapted from Liu et al. 2019) 

An infrared thermometer is a low-cost temperature sensor that can provide a non-contact 

measurement of skin temperature. However, in order to get an acceptable skin temperature 

measurement, infrared thermometers need to be placed close to the skin surface usually within a 

few centimeters. This is due to the fact that its field-of-view (FOV) becomes increasingly large as 

it moves away from the target. For example, Ghahramani et al. (2016) installed four MLX90614 

infrared thermometers on an eyeglass frame to collect a subject’s skin temperature of the front face, 

cheekbone, nose, and ear (Figure 3-3). The infrared thermometer adopted in this study has a FOV 

of 90° and thus for every 1 cm away from the subject, the sensing area grows by 2 cm (Sparkfun 

2016), which makes the eyeglass frame an ideal (and possibly the only feasible) location to place 

the sensors. This study observed significant variations in skin temperature under cold and heat 

stresses. However, this approach has two major limitations: (1) due to its limited working range, 

infrared thermometers can only measure a fixed predetermined set of locations. It is unknown 

whether these selected sensing points are the most significant locations to measure skin 

temperature; and more importantly (2) this approach is not suitable in a real operational or multi-

occupancy environment as it requires each occupant to wear such devices, which can be 
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inconvenient and lacks scalability in a large space with multiple occupants such as a lounge or a 

conference room. 

 

Figure 3-3 Eyeglass Frame with Infrared Thermometers (adapted from Ghahramani et al. 2016) 

Using thermographic cameras, also known as thermal cameras, is an alternative way to 

collect skin temperature data without contacting the object. Thermal cameras have a longer and 

more flexible working range but usually suffer from a relatively lower accuracy compared to 

thermocouples and infrared thermometers (Table 3-1). However, they are able to provide a full 

image frame of radiometric measurements from which the users can get the temperature reading 

of each pixel location. Prior studies such as Abouelenien et al. (2016), Burzo et al. (2014a, 2014b), 

De Oliveira et al. (2007), Ranjan and Scott (2016) have used commodity thermal cameras (Figure 

3-4) to collect skin temperature and correlated it with thermal sensations using different statistical 

methods. A recent study by Metzmacher et al. (2018) used Microsoft Kinect and a dynamically 

calibrated commodity thermal camera to track human faces and measure the skin temperature of 

different facial regions. The temperature measurements from the thermal camera were validated 

using a reference sensor which was attached to the skin. 
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Figure 3-4 Thermal Camera Models2: (a) FLIR A40; (b) FLIR A655sc; (c) FLIR SC6700; (d) 

FLIR A35; (e) FLIR T450sc; (f) FLIR Lepton 2.5 

Table 3-1 Comparison of Skin Temperature Measurement Devices in Existing Studies3 

Studies Device Accuracy Resolution Cost 

Chen et al. 2011 Corte DermaLab System* ±0.2 °C - ~$1,200 

Choi and Yeom 2017 
STS-BTA Surface 

temperature sensor* 

±0.2°C at 0°C, 

±0.5°C at 100°C 
- 

~$250 

(including the 

hub) 

Ghahramani et al. 

2016 

MLX90614 infrared 

thermometer* 
±0.5°C - 

~$150 

(including the 

Arduino) 

Burzo et al. 2014a FLIR Thermovision A40 
±2°C or ±2% of 

Reading 
320 × 240 ~$6,000 

Ranjan and Scott 2016 
FLIR A655sc 

thermographic camera 

±2°C or ±2% of 

Reading 

 

640 × 480 ~$22,000 

Abouelenien et al. 

2016 

FLIR SC6700 thermal 

camera 

±2°C or ±2% of 

Reading 
640 × 512 ~$15,000 

Metzmacher et al. 

2018 

FLIR A35 thermographic 

camera 

±5°C or ±5% of 

Reading 
320 × 256 ~$5,000 

Reference Camera in 

Section 3.4.2.2 
FLIR T450sc 

±2°C or ±2% of 

Reading 
320 × 240 ~$15,000 

 
2 Images are collected from www.flir.com 
3 Some thermal camera models are discontinued, their costs are an estimation of the market price. 
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This chapter FLIR Lepton 2.5 ±5°C or ±5% of 
Reading 80 × 60 ~$200 for 

camera 

* denotes the intrusive data collection method 

However, three significant limitations of these aforementioned studies using thermal 

cameras should be acknowledged: (1) the thermal camera is used as an independent tool to measure 

human skin temperature which is then analyzed offline in a disconnected way, rather than a built-

in component of the building automation system or HVAC systems which can dynamically 

monitor the indoor thermal environment; (2) as these works are more exploratory studies, thermal 

cameras are required to be placed directly in front of the subject, usually within a fixed distance. 

Again, this significantly limits the applicability of thermal cameras in the real operational settings 

as occupants can move around at will; and (3) the commodity thermal cameras are cost-prohibitive 

(in excess of $5,000, see Table 3-1) and not suitable for large scale applications. It is still unknown 

whether low-cost thermal cameras (at the cost of accuracy) can be used for thermal comfort 

assessment which this chapter aims to investigate. 

3.3 Contributions 

In recent years, thanks to the advancements in infrared thermography, low-cost thermal 

cameras are available in the market and offer an ideal approach due to their capability to non-

intrusively capture infrared signals emitted from the human body, their affordable price and 

compact size, ease of installation, and preservation of occupants’ privacy. To overcome the 

research gaps identified in the existing body of knowledge, this chapter explores a non-intrusive 

and scalable framework which leverages low-cost thermal cameras to predict human thermal 

comfort preferences in various settings in real-time. The specific contributions of this chapter 

include: 
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• Evaluate the feasibly of using a low-cost thermal camera to collect facial skin temperature 

and predict thermal comfort. 

• Demonstrate how to detect different regions of interest in the thermal image and process 

the raw skin temperature extracted from each region. 

• Identify significant facial skin temperature features for comfort prediction. 

• Develop a thermal comfort dataset consisting of facial thermal images, corresponding 

thermal sensations and preferences, and ambient room conditions to enable benchmarking 

of new methods in the future. 

3.4 Methodology 

This chapter leverages a range of techniques to develop an integrated framework for 

comfort assessment using low-cost and off-the-shelf thermal cameras. These techniques include 

(1) computer vision (e.g., Haar cascade object detection) to detect human face and extract region 

of interest (ROI); (2) statistical methods to clean and analyze the raw skin temperature data (e.g., 

smoothing); and (3) machine learning methods to develop personalized comfort prediction models 

and analyze significant facial skin temperature features (e.g., the Random Forest classifier). An 

overview of the operating principle of the proposed non-intrusive thermal comfort assessment 

framework is shown in Figure 3-5. In this framework, facial skin temperature is selected as the 

targeted bio-signal. Human faces have a higher density of blood vessels than other skin surfaces, 

leading to a larger skin temperature variation when the condition of the human body or ambient 

environment changes (Taylor 1997). As a result, facial skin temperature can be used as a 

physiological indicator of an individual’s overall thermal comfort (Ghahramani et al. 2016, Yi and 

Choi 2015). Second, human faces are not covered by clothing and thus the emitted infrared energy 
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can be directly measured by the thermal camera. In addition, human faces allow the computer 

vision algorithms to detect and locate ROIs in the image frame for data analysis. 

 

Figure 3-5 Overview of the Non-Intrusive Thermal Comfort Interpretation Framework 

 The remaining methodology section is organized to first introduce the sensors and devices 

adopted in this chapter. Second, how computer vision is applied to extract skin temperature of the 

ROIs is explained. Finally, the data collection experiment is presented in detail.  

3.4.1 Low-Cost Thermal Camera 

In this study, the FLIR Lepton 2.5 radiometric thermal camera core is used to collect skin 

temperature data (Figure 3-6). FLIR Lepton 2.5 is an uncooled long-wave infrared thermal imaging 

core with a factory-calibrated temperature value. As a result, no ad-hoc radiometric calibration is 

conducted, but a comparative experiment against a high-end FLIR T450SC model is performed to 

evaluate its measurement accuracy (see Section 3.4.2.2). Relevant specifications of Lepton 2.5 can 

be found in Table 3-2 (FLIR 2014).  

 

Figure 3-6 Thermal Image Taken by the FLIR Lepton 2.5 Radiometric Thermal Camera  
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Table 3-2 Specifications of FLIR Lepton 2.5 

Features Descriptions 

Dimensions 8.5 x 11.7 x 5.6 mm 

Resolution 80(h) x 60(v) pixels 

Thermal sensitivity < 50 mK 

Accuracy ±5 ˚C or ±5% of reading in the working range 

Price $199 

As a low-cost thermal camera, the radiometric accuracy of Lepton 2.5 is relatively low in 

its full operational temperature range (-10 °C to 65 °C) compared to the high-end models or 

thermocouples. However, its feasibility is still worth investigation due to four reasons: (1) the 

actual radiometric accuracy can be higher than the nominal accuracy shown in Table 3-2 (± 5% of 

reading) as the measuring objects are human faces whose surface temperatures are not high 

(approximately 35 °C); (2) the room temperature of the experiment is set between 22 °C and 28 °C 

to represent a typical indoor environment rather than the full operational temperature range of the 

camera. As a result, the impact of environmental temperature variations on the measurement 

accuracy should be low (FLIR 2014); (3) continuous thermal videos rather than a single image 

frame are obtained to extract skin temperature. The random measurement errors can follow a 

Gaussian distribution and thus it is possible to reduce the error to an acceptable level for comfort 

interpretation by removing outliers and averaging multiple image frames; and (4) our objective is 

to predict a three-point thermal preference, i.e., warmer, neutral, and cooler. This is considered a 

classification problem rather than a regression problem which calculates a seven-point scale 

thermal sensation (e.g., Zhang et al. 2010). Therefore, the problem setting is more robust to the 

error of measurements. For example, an error of 0.5 °C might lead to a prediction error between 

slightly warm (+1) and warm sensations (+2); however, this error is acceptable since both are 
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categorized into “preferring a cooler environment”. In addition, the three-point preference 

prediction should not be considered as a limitation as the control system can dynamically 

determine whether to increase or decrease the setpoint by continuously predicting one’s 

preferences and adjusting the ambient thermal environment. 

 To evaluate the radiometric accuracy of the low-cost Lepton 2.5, we conduct a comparative 

experiment using a FLIR T450SC thermal camera (accuracy: ±2 °C or ±2% of reading 4 , 

approximate cost: $15,000). Facial skin temperature measurements from these two cameras (i.e., 

FLIR Lepton 2.5 and FLIR T450SC) are compared to evaluate the accuracy of the proposed device 

before conducting the following data collection experiment. Details about the comparative 

validation can be found in Section 3.4.2.2.  

3.4.2 Face Detection and Skin Temperature Feature Extraction 

To extract skin temperature features, the contour of human faces and the interested facial 

regions are first detected in each thermal image frame. The temperature measurements of each 

identified region are then extracted and processed to produce the skin temperature features, which 

are validated in the comparative study. 

3.4.2.1 Face detection from the thermal image 

Although Lepton 2.5 has a lower resolution (80 by 60), the outline of the regions of interest 

(e.g., forehead, nose, cheeks) are clearly preserved in the thermal image (see Figure 3-6, which 

was taken from 1 meter away to represent a non-intrusive distance), which makes the Haar Cascade 

algorithm suitable for this task. Haar Cascade is a fast and effective algorithm for frontal and 

profile face recognition by detecting the existence of certain characteristics in the image, such as 

 
4 FLIR T450SC can achieve better accuracy of ±1 °C or ±1% of reading in a limited range, see 

https://www.flirmedia.com/MMC/THG/Brochures/RND_059/RND_059_US.pdf 
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edges or changes in texture (Viola and Jones 2001). In this study, the Haar Cascade algorithm was 

applied to detect the existence of the facial contour, the eyes, and the nose using the OpenCV 

package (OpenCV 2.4.13.7). Other regions such as forehead, cheeks, ears, mouth, and neck were 

inferenced from their relative locations (facial geometry) to the already known regions (i.e., facial 

contour, eyes, and nose can help identify the location of the cheeks) during the runtime. These 

ROIs were selected based on prior studies such as Ghahramani (2016), Metzmacher et al. (2018), 

and Yi and Choi (2015). The size and location of each inferenced ROI were tuned on several 

subjects prior to data collection experiments to ensure the algorithm can correctly detect all 

features across different subjects. The measurements of each pixel located within the identified 

ROI were averaged to represent the corresponding skin temperature of each facial region (as shown 

in Figure 3-7). In each ROI, pixel values that exceeded certain thresholds (e.g., below 28 °C or 

above 38 °C based on the preliminary results) were filtered out as they were likely to be the 

background or noise, which can interfere the measurements of skin temperature features. For 

example, a close-by light bulb might be detected in the ROIs on faces. If not removed, the resulting 

high measurements can lead to a wrong prediction that the subject is too warm. Using this approach, 

we extracted a total of 26 facial skin temperature features, including the maximum measurement 

of the human face and its gradient, as well as the maximum, minimum, mean, and gradient 

temperature of six facial regions (i.e., forehead, nose, cheeks, ears, mouth, and neck). For the 

gradient temperature, the mean gradient over a five-minute period (e.g., Chaudhuri et al. 2018) 

was calculated using Eq. 3.1 and Eq. 3.2.  

∇"# =
(&'(&')*)

#
,			. = {1, 2, 3, 4, 5}                                             (3.1) 

6"7777 =
8

9
∑ ∇"#
9
#;8                                                              (3.2) 
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Where ∇"# is the gradient temperature for time interval .; "< is the temperature measurement at 

time =; 6"7777 is the mean gradient temperature over five minutes which is selected as a feature. 

After extracting the skin temperature of the six facial regions from each frame, the thermal 

image is immediately discarded to alleviate the privacy concerns. 

 

Figure 3-7 Detection of ROIs and Extraction of Temperature (for demonstration purpose, each 

region was highlighted in a solid rectangle) 

Based on our preliminary experiments, this approach can successfully perform face 

detection within a camera distance of 2 meters, which is a reasonable non-intrusive distance as the 

thermal cameras can be mounted on the wall or a desktop in front of the users at this distance. If 

thermal cameras are placed further away from the subject, this approach may fail as the edges on 

the human face are blurred in the thermal images. To overcome this limitation, we have explored 

the RGB camera guided feature extraction (introduced in Chapter 4), which can achieve a robust 

detection of ROIs from a further distance. The results were promising but beyond the scope of this 

chapter. 
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3.4.2.2 Preliminary Accuracy Evaluation of the Low-cost Thermal Camera 

As mentioned earlier in Section 3.4.1, to evaluate the accuracy of the proposed low-cost 

Lepton 2.5, comparative experiments were conducted in a climate chamber under three 

experimental conditions, i.e., cooling from 28 °C to 22 °C, heating from 22 °C to 28 °C, and 

steady-state condition at 25 °C. Each experiment lasted for 40 minutes and a thermal image was 

taken by the reference FLIR T450SC camera every 5 minutes. Each ROI in the reference image 

was labeled using the FLIR ResearchIR software (see Figure 3-8) which provides the mean 

measurement in each selected region (after removing the outliers). On the other hand, the Lepton 

2.5 camera was placed at 1 meter from the participant.  

We compared the reference measurements from the FLIR T450SC with the temperature 

retrieved from Lepton 2.5 (discussed in Section 3.4.2.1). The results showed that in most cases the 

differences between the two cameras were within 1 °C. A few examples of the steady-state 

experiment were presented in Figure 3-9. However, it should be noted that this comparison was a 

sanity test of the face detection and skin temperature extraction approach as discussed in Section 

3.4.2.1. The temperature deviations highly depend on how each region was labeled in the 

ResearchIR software. For example, the forehead region in Figure 3-7 is larger and contains some 

low temperature pixels (e.g., the eyebrows and pixels close to hairs) compared to the corresponding 

region in Figure 3-8, which can be a major reason of the large difference (about 1 °C). However, 

the nose region in the two images look identical and the difference can be as low as 0.2 - 0.3 °C, 

which is acceptable given it results from a low-cost camera.  
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Figure 3-8 Reference Thermal Image Taken by FLIR T450SC (colored boxes represent the 

manually labeled ROI) 

 

Figure 3-9 Comparison of the Low-Cost Camera with the Reference Camera 

3.4.3 Data Collection Experiments 

We designed an experiment to collect skin temperature data and the participants’ 

corresponding thermal responses under three thermal conditions. The data collection experiment 

was conducted in a research office at the University of Michigan (UM) during the heating season 

from December 2017 to February 2018. During this period, the average high and low outdoor 

temperature was 1.6 °C and -6.7 °C, correspondingly. The data collection experiment has been 

approved by UM Institutional Review Board (IRB) for conducting human subjects research. 
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 In the testbed office, one thermal camera was placed at 1 meter away from the subject 

which monitors the frontal face (see Figure 3-10). The testbed office had two COZIR temperature 

and humidity sensors (humidity accuracy: ±5%; temperature accuracy: ±1 °C) to continuously 

monitor the ambient conditions within the close proximity to the subject during the experiment. 

The two sensors were placed at the waist level (0.65 meters above the floor) which is close to the 

specified height of 0.6 meters for seated occupants in ASHRAE standards 55 (ASHRAE 55-2010). 

The testbed also had a thermostat by which the research team can freely change the indoor 

temperature from 20 °C to 28 °C. In the experiments, the room temperature was set between 22 °C 

and 28 °C, which conforms to typical indoor conditions controlled by the mechanical HVAC 

system (ASHRAE 55-2010). 

 

Figure 3-10 Experiment Setup 

Each subject in this experiment was assigned a reference ID number for data storage and 

analysis. The subjects were all students from UM aged between 22 and 27 and were healthy at the 

time of the data collection. Subjects were asked to wear a sweatshirt and pants and keep the same 
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clothes during the experiment as outlined in Figure 3-11. The experiment started by an interview 

to understand the subject’s interpretation of thermal comfort (e.g., when you feel cold, do you 

focus on overall body sensation or the sensation of specific body parts?). Introductions about the 

devices, research objectives, and other related information have been provided to help subjects 

understand this study. Then, each subject completed an experiment consisting of four phases (see 

Figure 3-11). In the preparation phase, subjects were provided with a designated phone app to 

provide feedback about their thermal sensations (-2 to 2 for cold to hot) and preferences (i.e., 

warmer, cooler, neutral) (see Figure 3-12). 

 

Figure 3-11 Timeline of the Data Collection Experiment 

 

Figure 3-12 Interface of the Phone App to Collect Feedback 
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During the whole data collection experiment, subjects were asked to use the phone app to 

provide thermal feedback every three minutes, which will then be used to develop and evaluate 

comfort prediction models. At the same time, the facial skin temperature and environmental 

conditions were continuously monitored and uploaded to the database. In the 60-min steady-state 

phase, subjects were asked to perform daily office activities such as reading, typing, or browsing. 

In this phase, the room temperature was maintained at 25 °C to represent a neutral steady-state 

condition. Next, the cold stress or heat stress phase started in random order. In the 60-min heat 

stress phase, the room temperature was increased from 22 °C to 28 °C while for the cold stress 

phase, the room temperature was decreased from 28 °C to 22 °C. The two environment sensors 

showed that in both phases the room temperature was approximately changed in a linear manner 

with time (at a rate of ±1°C per 10 minutes). It is worth noting that subjects were not informed 

about the state of the experiment (cooling or heating) to eliminate potential bias towards thermal 

sensation. For example, if a subject knows the current room temperature is decreasing, he/she may 

unconsciously think he/she is getting cold. 

3.5 Results 

3.5.1 Data Cleaning and Processing 

In the proposed approach, the measurement errors of skin temperature mainly came from 

three sources: (1) the thermal camera’s systematic error caused by the temporal drift which 

accumulates over time (FLIR 2014). For example, thermal images appear blotchy due to the 

degrade uniformity which affects the radiometric accuracy; (2) random experiment error which 

may vary from one observation to another. For example, hands are detected as the mouth region 

when subjects drink water during the experiment, which corresponds to a spike in the raw data; 

and (3) random measurement error of the thermal camera which is assumed to follow a Gaussian 
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distribution with a zero mean. For the camera’s systematic error, Lepton 2.5 automatically 

performs a flat-field correction (FFC) every three minutes to compensate for the drift effect. 

During FFC, the camera closes its shutter and recalibrates the sensor based on a uniform thermal 

scene. For the other two random errors, we first averaged the image frames captured in each minute 

and removed outliers by checking the difference between adjacent measurements using Eq. 3.3. 

                           ># = 	 ?
@ABC.DE,									.F	># − >#(8 ≥ 3I

	
J@B	KJ	@ABC.DE,										@BℎDEM.ND

                                         (3.3) 

Where ># and >#(8	are the data collected at time . and . − 1, and I is the standard deviation of 

data collected from time 0 till time .. After removing the outliers, a Gaussian filter was applied to 

smooth the raw data. Different widths of the Gaussian filter have been compared (width = 5, 7 and 

10). Considering the duration of the experiment, we chose the filter width to be 7 as it smoothed 

the data well and also preserved the trend of measurements. For example, Figure 3-13 shows a 

subject’s maximum facial skin temperature in three phases (i.e., heating, cooling, steady-state) 

where the dashed lines represent the raw data collected directly from the thermal camera and the 

thick solid lines represent the processed data after removing outliers and smoothing. Through data 

processing, large measurement errors are removed before applying further analysis. In addition, it 

is easy to observe the increasing and decreasing trend of skin temperature in the heating and 

cooling phases while the measurements are relatively stable in the steady-state phase, which 

indicates that useful information is well preserved after the processing step. 
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Figure 3-13 Raw and Processed Maximum Skin Temperature of a Subject in Three Phases (S: 

steady-state; C: cooling; H: heating) 

3.5.2 Correlation Analysis between Identified Regions 

A total of 12 subjects (7 males and 5 females) participated in the data collection 

experiments. The environmental conditions of the three phases were summarized in Table 3-3. As 

shown in the table, room temperature in the steady-state phase was maintained at around 25 °C 

with a standard deviation of ± 0.2 °C, which was close to the mean temperature of cooling and 

heating phases. Skin moisture level has been suggested to influence the emissivity of the skin 

surface, which affects the accuracy of temperature measurements (FLIR 2016). However, we did 

not observe obvious and excessive sweating for any subject at the high room temperature (around 

28 °C), suggesting the emissivity can be assumed consistent in the experiment given the 

insignificant changes in skin moisture level. This is supported by the work of Owda et al. (2017) 

which compared the emissivity of wet skin sample (taken from a human cadaver and rinsed in 

water) and dry samples (dried for 4.0 hours prior to measurements). Table 3-4 shows a summary 
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of skin temperature feature statistics in the three phases. The mean and standard deviation (SD) of 

each feature were calculated using Eq. 3.4 and Eq. 3.5. 

O̅ =
8

Q
∑ OR
Q
R;8 ,    ST(O̅) = U

8

Q(8
∑ (OR
Q
R;8 − O̅)V                             (3.4) 

N̅ =
8

Q
∑ NR
Q
R;8 ,    ST(N̅) = U

8

Q(8
∑ (NR
Q
R;8 − N̅)V                               (3.5) 

Where O̅ and ST(O̅) are the mean and standard deviation of skin temperature of all subjects in a 

particular phase; N̅  and ST(N̅)	 are the mean and standard deviation of the sample standard 

deviation; J is the number of subjects which is 12 in this study. 

Table 3-3 Summary of Environmental Conditions in Three Phases 

 Cooling  Heating  Steady-State 

 Range Mean S.D.  Range Mean S.D.  Range Mean S.D. 

T (°C) 27.5 - 22.6 25.1 1.4  22.5 - 27.7 25.3 1.5  24.5 - 25.2 24.8 0.2 

RH (%) 20.2 - 33.4 27.7 3.6  32.5 - 21.4 25.8 2.2  20.6 - 26.5 23.2 0.5 

  

In the heating and cooling phases, subjects in general demonstrated all three thermal 

preferences at different times of the experiment. For example, in the heating phase, a subject may 

initially prefer a warmer environment as the room temperature starts from 22 °C; gradually he/she 

feels thermally neutral as the room temperature increases; and finally, he/she may prefer a cooler 

environment as the room temperature exceeds the comfortable range. However, as the room 

temperature is controlled at a constant level in the steady-state phase, subjects usually have the 

same preference throughout this phase. 

Table 3-4 Statistics of Skin Temperature Features in Three Phases 

Features 
Cooling Heating Steady-State 

O̅ ± ST(O̅) (1) N̅ ± ST(N̅) (2) O̅ ± ST(O̅)  (3) N̅ ± ST(N̅) (4) O̅ ± ST(O̅)  (5) N̅ ± ST(N̅) (6) 

maxVal 34.38 ± 0.84 0.31 ± 0.11 34.17 ± 0.93 0.12 ± 0.04 34.52 ± 0.62 0.08 ± 0.03 

∇maxVal -.016 ± .005 .013 ± .006 .004 ± .003 .009 ± .002 -.003 ± .003 .006 ± .003 

forehead_avg 33.55 ± 0.92 0.34 ± 0.15 33.02 ± 1.50 0.19 ± 0.11 33.77 ± 0.73 0.07 ± 0.02 

forehead_max 34.17 ± 0.86 0.33 ± 0.13 34.01 ± 1.08 0.13 ± 0.05 34.49 ± 0.62 0.09 ± 0.03 

forehead_min 30.05 ± 0.72 0.44 ± 0.25 29.58 ± 0.48 0.20 ± 0.17 30.16 ± 0.71 0.10 ± 0.09 

∇forehead -.018 ± .007 .013 ± .005 .006 ± .009 .010 ± .002 -.002 ± .002 .006 ± .003 
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nose_avg 32.46 ± 1.61 0.60 ± 0.25 31.85 ± 0.66 0.77 ± 0.34 32.38 ± 1.54 0.22 ± 0.11 

nose_max 33.33 ± 1.20 0.45 ± 0.17 32.80 ± 0.58 0.46 ± 0.17 33.21 ± 1.07 0.17 ± 0.09 

nose_min 30.87 ± 2.51 0.56 ± 0.20 30.29 ± 1.50 0.81 ± 0.33 31.15 ± 2.05 0.20 ± 0.08 

∇nose -.032 ± .012 .022 ± .009 .032 ± .021 .034 ± .015 -.007 ± .007 .017 ± .012 

cheek_avg 32.35 ± 1.84 0.35 ± 0.15 31.86 ± 1.66 0.31 ± 0.12 32.70 ± 1.46 0.09 ± 0.05 

cheek_max 33.62 ± 1.35 0.28 ± 0.15 33.21 ± 1.16 0.22 ± 0.08 33.73 ± 1.12 0.10 ± 0.04 

cheek_min 29.47 ± 2.40 0.53 ± 0.19 29.05 ± 2.18 0.56 ± 0.23 30.32 ± 1.98 0.11 ± 0.05 

∇cheek -.017 ± .006 .018 ± .005 .016 ± .006 .010 ± .002 -.001 ± .005 .007 ± .003 

mouth_avg 33.42 ± 1.04 0.32 ± 0.13 32.54 ± 1.10 0.17 ± 0.05 33.30 ± 0.90 0.17 ± 0.06 

mouth_max 33.96 ± 0.95 0.28 ± 0.16 33.43 ± 0.81 0.15 ± 0.06 33.88 ± 0.81 0.12 ± 0.04 

mouth_min 32.75 ± 1.28 0.42 ± 0.16 31.69 ± 1.39 0.26 ± 0.13 32.66 ± 1.10 0.20 ± 0.08 

∇mouth -.016 ± .006 .019 ± .010 .004 ± .006 .015 ± .008 .000 ± .007 .013 ± .005 

ear_avg 27.01 ± 1.36 0.67 ± 0.20 26.59 ± 1.47 0.71 ± 0.43 27.61 ± 1.51 0.11 ± 0.05 

ear_max 29.76 ± 1.81 0.62 ± 0.20 29.21 ± 2.02 0.70 ± 0.38 30.35 ± 1.66 0.19 ± 0.08 

ear_min 25.30 ± 1.12 0.66 ± 0.25 24.69 ± 1.21 0.60 ± 0.46 25.67 ± 1.39 0.15 ± 0.10 

∇ear -.035 ± .010 .032 ± .090 .039 ± .024 .021 ± .014 .003 ± .005 .010 ± .004 

neck_avg 32.75 ± 0.83 0.29 ± 0.18 32.35 ± 0.96 0.24 ± 0.11 32.94 ± 0.92 0.12 ± 0.06 

neck_max 33.79 ± 0.61 0.30 ± 0.12 33.55 ± 0.64 0.14 ± 0.05 33.90 ± 0.53 0.07 ± 0.03 

neck_min 29.78 ± 1.09 0.40 ± 0.29 29.50 ± 1.11 0.38 ± 0.31 30.33 ± 1.28 0.28 ± 0.21 

∇neck -.014 ± .009 .018 ± .009 .011 ± .008 .010 ± .001 .000 ± .005 .011 ± .004 

Note: all numbers are in °C 

 

As shown in Table 3-4, the standard deviations of the mean skin temperature range from 

0.62 °C to 1.84 °C (see ST(O̅) shown in bold in columns 1, 3, and 5), which indicate temperature 

variations of each facial region between different subjects. In the cooling and heating phases, the 

cheek region shows the highest skin temperature variation across all subjects (cooling: SD: 1.84 °C, 

heating: SD: 1.66 °C) and the same for the nose region (SD: 1.54 °C) in the steady-state phase. 

The lowest personal variations in the three phases are observed in the neck (cooling SD: 0.83 °C), 

nose region (heating SD: 0.66 °C), and facial maximum (steady-state SD: 0.62 °C), 

correspondingly. In addition, the forehead region has the highest skin temperature measurements 

among all identified regions (cooling: 33.55 ± 0.92 °C, heating: 33.02 ± 1.50 °C, steady-state: 

33.77 ± 0.73 °C) while the ear region has the lowest measurements (cooling: 27.01 ± 1.36 °C, 

heating: 26.59 ± 1.47 °C, steady-state: 27.61 ± 1.51 °C). By examining columns 2, 4, and 6, the 

skin temperature variations in the cooling (column 2) and heating (column 4) phases are much 

larger than those in the steady-state phase (column 6), which implies that facial skin temperature 

is affected by the ambient room temperature.  
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On the other hand, the relatively small skin temperature deviations in the steady-state phase 

(column 6) suggest that the measurements are consistent when the ambient room temperature is 

controlled at a constant level, which also indicates accurate measurements after applying the pre-

processing approach discussed in Section 3.5.1. Moreover, nose and ear region have a larger 

temperature variation compared to other regions in the cooling (nose: 0.60 ± 0.25 °C, ear: 0.67 ± 

0.20 °C) and heating phases (nose: 0.77 ± 0.34 °C, ear: 0.71 ± 0.43 °C). These two identified 

regions are potentially useful features to predict thermal preferences as they are more sensitive to 

the change of ambient environment. As an example, Figure 3-14 shows three thermal images of 

the same subject captured at different time stamps in the heating phase. It is obvious that the nose 

region initially has a lower skin temperature which is shown in black (31.1 °C). This region 

gradually warms up (as shown in light red in the middle panel, 32.0 °C) and finally reaches its 

highest temperature (as shown in yellow in the right panel, 33.5 °C). It should be noted that the 

thermal images are generated based on normalized radiometric measurements to display a better 

temperature distribution in each frame. As a result, the colormap of thermal images is adjusted in 

real-time and the colors do not represent an absolute temperature scale. As shown in Figure 3-14, 

while the face gradually warms up (the range of temperature increases), the glasses remain at an 

almost identical temperature and thus become darker over time (i.e., from grey to black).  

 In Table 3-4, all facial regions have negative mean temperature gradients in the cooling 

phase. On the other hand, all the mean temperature gradients are positive in the heating phase. 

These results are intuitive as during these two phases, human faces are constantly losing/gaining 

heat to/from the ambient environment. However, it is interesting to note that some facial regions 

(facial maximum, forehead, mouth) are more sensitive to cold stress than heat stress. For example, 

in the cooling phase the forehead region has a larger gradient than in the heating phase (|-0.018| > 
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|0.006|) even though these two phases are kind of symmetric in terms of variations in environment 

temperature (see Table 3-3). This finding implies that the significant features to predict thermal 

comfort may not remain the same under hot and cold stress and thus leads to different models 

based on the condition of the ambient environment. 

 

Figure 3-14 Thermal Images of the Same Subject in the Heating Phase at Different Time Stamps 

(absolute temperature measurements are shown in the thermal images) 

To evaluate the relationship between different skin temperature features retrieved from the 

human face, Pearson correlation coefficients of all unique feature pairs in the three phases were 

calculated. Pearson correlation coefficient measures the strength and direction of the linear 

relationship between two variables (range between -1 and 1) where 1 represents perfect positive 

linear correlation and -1 represents perfect negative linear correlation (SPSS 2018). Figure 3-15 to 

Figure 3-17 summarize the mean Pearson correlation coefficients of the 12 subjects in each 

particular phase of the experiment. 

In the cooling phase (see Figure 3-15), both intra-region (features extracted from a single 

facial region, e.g., mean, maximum and minimum of the forehead) and inter-region features 

(features extracted from different facial regions, e.g., features in the forehead and cheeks) are 

highly correlated (minimum coefficient ρ = 0.74). This is due to the fact that different facial regions 
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react in the same way under the cold stress and the corresponding skin temperature features are 

simultaneously decreasing over time.  

 
Figure 3-15 Averaged Pearson Correlation of Different Features in the Cooling Phase 

However, in the heating phase (see Figure 3-16), it is important to note that only about one 

third of features are highly correlated with a coefficient greater than 0.7. After checking the 

correlation coefficients of each subject, we found out that about half of the subjects have the similar 

correlation coefficients as the cooling phase while the remaining have low correlations for some 

features, which indicates that personal variations in skin temperature responses exist in the heating 

phase. In the heating phase, the highly correlated features are mainly intra-region ones (e.g., the 

mean, maximum, minimum of nose, cheeks, and ears) and inter-regions with larger variations or 

gradients in skin temperature (e.g., nose: 0.77 ± 0.34 °C; ears: 0.71 ± 0.43°C; cheeks: 0.31 ± 

0.12 °C, see Table 3-4). This result may be attributed to the lower sensitivity of certain facial 
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regions (e.g., forehead) to the heat stress as discussed above. The skin temperature of these 

insensitive regions only varies in a limited range and may remain constant during a certain period 

of time in the heating phase, which leads to the low correlations. 

 
Figure 3-16 Averaged Pearson Correlation of Different Features in the Heating Phase 

For the steady-state phase (see Figure 3-17) where the room temperature is maintained 

relatively constant, only a few features are highly correlated (this pattern is also similar across 

several subjects). This is due to the same reason as discussed in the heating phase while in this 

case, only the nose and mouth region show some temperature variations. 
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Figure 3-17 Averaged Pearson Correlation of Different Features in the Steady-State Phase 

3.5.3 Thermal Comfort Prediction using the Extracted Features 

Thermal comfort prediction can be translated into a classification problem where the 

subjects’ preferences have three categorical values, i.e., warmer, cooler, and neutral. Thus, the 

comfort prediction model is formulated as "W = 	ℱY"Z[<#[\, ∇Z[<#[\], where "W  is the targeted 

variable thermal comfort. "Z[<#[\, ∇Z[<#[\ are the skin temperature features extracted from each 

facial region and the corresponding gradients. Common machine learning methods including 

Support Vector Machine, Classification Tree, and Random Forest have been investigated to 

classify thermal comfort (Chaudhuri et al. 2018, Kim et al. 2018a and 2018b, Li et al. 2017c, 

2019d). Among these existing methods, Chaudhuri et al. (2018), Li et al. (2017c), and Kim et al. 
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(2018a) suggested that the Random Forest model produces the better prediction results and also 

provides useful interpretations (e.g., which feature is important). 

Random Forest is an ensemble method which classifies an object by averaging a large 

collection of decision trees. This method applies bootstrap aggregating and can reduce the 

overfitting problem originated from decision trees (Breiman 2001). In this chapter, a total of 26 

features (see Table 3-4) are considered for model training. Random Forest is an ideal method to 

randomly sample the training features at each split to reduce the variances in the training data. 

Also, it is worth noting that even though many features selected in this chapter are highly correlated 

(see Figure 3-15 to Figure 3-17), it does not affect the classification accuracy (James et al. 2013). 

Correlated features generally reduce the interpretability of the model and are usually solved by 

feature extraction methods such as Principal Component Analysis. However, this is beyond the 

scope of this chapter. 

 In this chapter, comfort prediction models were developed on each subject’s dataset to 

represent personalized models. The Random Forest model was trained using the Python Scikit-

learn package (Pedregosa et al. 2011). Hyper-parameters were tuned through the grid search to 

exhaustively evaluate the accuracy of each configuration for performance optimization (i.e., 

‘n_estimators’: [300, 500, 700, 1000], ‘max_features’: ['auto', 'sqrt', 'log2'], ‘max_depth’: [2, 3, 4, 

5]). The maximum number of features allowed in the estimators and the maximum tree depth were 

intentionally controlled at a small size to reduce overfitting. Figure 3-18 shows the structure of a 

Random Forest model for a subject which consists of 500 classification trees. In this example, each 

tree is allowed to have a maximum depth of 3 and up to 5 features. 
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Figure 3-18 The Structure of Random Forest Model for an Example Subject 

The optimal hyper-parameters for each subject’s personalized comfort prediction model 

are shown in Table 3-5. For each subject, three prediction models were evaluated, i.e., models for 

the cooling phase (denoted as “cooling” in Table 3-5, which were developed using the data 

collected in the cooling phase); models for the heating phase (denoted as “heating”, which were 

developed using the data collected in the heating phase); and general models (denoted as “general”, 

which were developed using the data from all three phases). Models for the steady-state phase 

were not developed separately as subjects’ thermal preferences generally did not change 

throughout that phase.  

Table 3-5 Optimal Hyper-Parameters for Each Subject 

Subject ID Cooling Heating General 

1 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 500 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

2 

• n_estimators: 500 

• max_depth: 2 

• max_features: sqrt 

• n_estimators: 300 

• max_depth: 2 

• max_features: sqrt 

• n_estimators: 1000 

• max_depth: 2 

• max_features: auto 

3 

• n_estimators: 300 

• max_depth: 4 

• max_features: log2 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 500 

• max_depth: 2 

• max_features: auto 



 78 

4 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 1000 

• max_depth: 3 

• max_features: log2 

5 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: log2 

• n_estimators: 300 

• max_depth: 3 

• max_features: log2 

6 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 500 

• max_depth: 3 

• max_features: sqrt 

7 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 500 

• max_depth: 2 

• max_features: auto 

• n_estimators: 700 

• max_depth: 2 

• max_features: log2 

8 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 700 

• max_depth: 5 

• max_features: log2 

9 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 700 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 5 

• max_features: log2 

10 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 700 

• max_depth: 3 

• max_features: log2 

11 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 300 

• max_depth: 2 

• max_features: auto 

• n_estimators: 700 

• max_depth: 3 

• max_features: sqrt 

12 

• ‘n_estimators: 500 

• max_depth: 3 

• max_features: log2 

• ‘n_estimators: 500 

• max_depth: 3 

• max_features: log2 

• ‘n_estimators: 500 

• max_depth: 3 

• max_features: auto 

 

After tuning the hyper-parameters, ten-fold cross validations were conducted to evaluate 

the prediction accuracy of each subject’s personalized comfort prediction model, which is 

presented in Table 3-6. On average, using the selected facial skin temperature features, the 

personalized methods can achieve an 85.0% accuracy in predicting subjects’ thermal preferences 

and slightly higher accuracy of 91.6% and 92.7% in the cooling and heating phases, respectively. 

Table 3-6 Prediction Accuracy of the Random Forest Model for Each Subject 

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Cooling .935 .825 .875 .921 .935 .947 .921 .946 .942 .921 .943 .882 .916 

Heating .916 .840 .932 .946 .955 .955 .942 .933 .933 .952 .942 .873 .927 

General .730 .801 .829 .921 .900 .878 .859 .854 .830 .885 .906 .812 .850 
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To identify the significant features for thermal comfort prediction, the selected skin 

temperature features were ranked according to their contributions to reducing the loss function. 

The five most important features for each subject are presented in Table 3-7. It can be seen that 

the significant features are subject-dependent. Also, these features are data-driven and may not 

remain identical as more data are collected in further experiments (e.g., in cooling seasons). 

However, features extracted from facial regions with a large skin temperature variation such as 

ears, nose, and cheeks are most likely to be the significant predictors, which indicates the ideal 

facial regions for future studies to analyze and interpret occupant’s thermal preferences. 

Table 3-7 Features Importance of the Random Forest Model for Each Subject 

Subject ID Cooling Heating General 

1 

• 'ear_avg' 

• 'ear_max' 

• 'nose_avg' 

• 'forehead_min' 

• 'ear_min' 

• 'ear_max' 

• 'cheek_max' 

• 'nose_avg' 

• 'forehead_avg' 

• 'cheek_min' 

• 'cheek_min' 

• 'nose_avg' 

• 'nose_max' 

• 'ear_max' 

• 'ear_avg' 

2 

• 'forehead_min' 

• 'forehead_avg' 

• 'nose_min' 

• 'neck_max' 

• 'cheek_max' 

• 'ear_max' 

• 'mouth_min' 

• 'cheek_max' 

• 'neck_min' 

• 'mouth_avg' 

• 'cheek_max' 

• 'cheek_avg’ 

• 'ear_max' 

• 'forehead_min' 

• 'nose_max' 

3 

• 'cheek_max' 

• 'ear_max' 

• 'nose_min' 

• 'nose_max' 

• 'nose_avg' 

• '∇forehead' 

• 'ear_max' 

• 'cheek_max' 

• 'ear_avg' 

• 'nose_min' 

• 'ear_avg' 

• 'ear_min' 

• 'ear_max' 

• 'forehead_avg' 

• 'neck_avg' 

4 

• 'mouth_min' 

• 'mouth_avg' 

• 'cheek_max' 

• 'ear_max' 

• 'nose_avg' 

• 'ear_max' 

• 'cheek_max' 

• 'neck_min' 

• 'cheek_avg' 

• 'ear_avg’ 

• 'ear_max' 

• 'cheek_min' 

• 'forehead_min' 

• 'ear_min' 

• 'ear_avg' 

5 

• 'ear_max' 

• 'nose_min' 

• 'forehead_min’ 

• 'nose_avg' 

• 'mouth_avg' 

• 'cheek_max' 

• 'ear_max' 

• 'nose_avg' 

• 'nose_max' 

• 'neck_avg' 

• 'maxVal' 

• 'forehead_avg' 

• 'forehead_max' 

• 'cheek_min' 

• 'neck_avg' 
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6 

• 'ear_max' 

• 'cheek_max' 

• 'nose_max' 

• 'mouth_avg' 

• 'mouth_min' 

• 'ear_max' 

• 'nose_avg' 

• 'cheek_avg' 

• 'ear_avg' 

• 'nose_max' 

• 'ear_avg' 

• 'ear_max' 

• 'cheek_avg' 

• 'cheek_max' 

• 'mouth_max' 

7 

• 'nose_avg' 

• 'nose_min' 

• 'ear_min' 

• 'forehead_min’ 

• 'mouth_avg' 

• 'ear_max' 

• 'nose_avg' 

• 'nose_max' 

• 'ear_avg' 

• 'cheek_min' 

• 'ear_max' 

• 'mouth_avg' 

• 'forehead_avg' 

• 'mouth_min' 

• 'neck_avg' 

8 

• 'nose_max' 

• 'nose_avg' 

• 'forehead_min' 

• 'forehead_avg' 

• 'ear_avg' 

• 'cheek_max' 

• 'neck_min' 

• 'ear_avg' 

• 'ear_min' 

• 'neck_max' 

• 'nose_avg' 

• 'ear_avg’ 

• 'neck_max' 

• 'nose_min' 

• 'ear_min' 

9 

• 'forehead_min' 

• 'forehead_avg' 

• '∇neck' 

• 'maxVal' 

• 'neck_max' 

• 'ear_max' 

• '∇neck' 

• 'forehead_avg' 

• 'cheek_avg' 

• 'ear_avg' 

• 'nose_max' 

• 'nose_min' 

• 'nose_avg' 

• 'forehead_min' 

• '∇neck' 

10 

• 'cheek_max' 

• 'mouth_min' 

• 'ear_max' 

• 'nose_min' 

• 'nose_avg' 

• 'ear_avg' 

• 'cheek_min' 

• 'ear_min' 

• '∇ear' 

• 'mouth_min' 

• 'mouth_max' 

• 'nose_max' 

• 'mouth_avg' 

• 'mouth_min' 

• 'cheek_max' 

11 

• 'forehead_min' 

• 'nose_max' 

• '∇ear' 

• 'forehead_avg' 

• 'maxVal' 

• 'cheek_max’ 

• 'ear_max' 

• 'nose_avg' 

• 'neck_min' 

• 'mouth_avg' 

• 'nose_max' 

• 'forehead_avg' 

• 'neck_max' 

• 'forehead_min' 

• '∇ear' 

12 

• ‘nose_avg’ 

• ‘cheek_avg’ 

• 'forehead_avg' 

• ‘ear_max’ 

• 'cheek_min' 

• 'ear_avg 

• 'forehead_avg' 

• ‘ear_max’ 

• 'mouth_avg' 

• ‘forehead_max' 

• ‘nose_avg’ 

• 'forehead_avg' 

• 'nose_max' 

• ‘ear_avg’ 

• ‘cheek_avg’ 

3.6 Discussion 

The experimental results confirm that the subject’s facial skin temperature varies with 

respect to the change in environment temperature. Due to the thermoregulatory control of the 

human body, skin temperature tends to increase under heat stress while decrease under cold stress. 
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In the cooling phase, all the selected facial skin temperature features are highly correlated while 

for the heating phase only about one third of these features still show a similar correlation. This 

finding indicates different sensitivities and response behaviors of the selected facial regions in the 

cooling and heating phases, which might be the effect of sweating under heat stress (Parsons 2014). 

Another possible reason for this observation is that room temperature did not increase significantly 

in the heating phase (i.e., in excess of 30 °C) to observe large variations in some facial regions 

(e.g., forehead, nose).   

In the experiments, the ambient room temperature is controlled to vary by about 5 °C 

(cooling phase: 27.5 - 22.6 °C;  heating phase: 22.5 - 27.7 °C) as opposed to existing studies in 

which the room temperature variations can be as high as 10 °C (Chaudhuri et al. 2018, Choi and 

Loftness 2012, Ghahramani et al. 2016). Despite the relatively small changes in room temperature, 

statistically significant variations in skin temperature have been observed. Data from 12 subjects 

suggest that skin temperature of the selected facial regions react in different magnitudes, which 

may due to the different thickness of the subcutaneous fat layer, the density of blood vessels, and 

the amount of skin blood flow (Prendergast 2013). Under the cold stress, ears have the highest skin 

temperature variation, followed by the nose, cheeks, and forehead. Under heat stress, the nose, 

ears, and cheeks tend to have large temperature variations.  

The significant facial regions for comfort prediction vary across subjects (Table 3-7, which 

can be caused by personal variations that some subjects have a relatively stable overall or regional 

skin temperature than others. However, in general, the susceptible facial regions to the change of 

environment temperature are proved to be good predictors in the Random Forest model. Except 

for a few cases (e.g., the general model for id 9 and id 11), temperature gradients are not very 

helpful in the model. This is probably due to the fact that the temperature gradient only implies 
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how skin temperature changes but does not provide additional information about a subject’s 

thermal comfort state. For example, a negative and substantial temperature gradient suggests that 

human body is losing heat to the ambient environment, however, this scenario can happen at any 

time during the cooling phase when the environment temperature is decreasing over time, which 

leads to a negative temperature gradient as observed in the data.  

For the comfort prediction models, increasing the number of trees in the Random Forest 

model by tuning ‘n_estimators’ does not always yield better performance (Table 3-5). In fact, there 

exists an optimal number of trees for each dataset such that more estimators will make the 

prediction worse and also computationally expensive. This is probably because this model 

randomly samples features in each tree. If the number of significant features is small compared to 

the non-significant ones, there is a high chance that the model is built upon non-significant features 

(in other words, the noise) when the number of estimators becomes larger. For the maximum tree 

depth (i.e., the ‘max_depth’ parameter), a smaller depth (e.g., 2 or 3) is generally preferred as a 

deeper tree can cause overfitting.  

In terms of the prediction accuracy, as shown in Table 3-6, models solely trained on the 

cooling and heating dataset demonstrate a higher accuracy compared to the integrated dataset 

which consists of all three experiment phases. This can be attributed to the different thermal 

sensations under cooling, heating, and steady-state conditions even though the selected skin 

temperatures features are numerically close in different phases, which caused seemingly 

“contradictory”. For example, when a subject’s skin temperature increases to 34 °C under heat 

stress, he/she may have a different thermal sensation compared to the scenario when the skin 

temperature decreases to 34 °C under cold stress. In this case, the temperature gradients might be 

a useful predictor because they help to differentiate the cold and heat stress. 
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It is also worth noting that personal comfort models only need to be trained once in the 

data collection experiment. Later, the pre-developed models can be applied to continuously predict 

each subject’s comfort level in a non-intrusive manner. The potential applications of this non-

intrusive comfort interpretation method can be adopted in a variety of thermal comfort related 

applications and contexts such as multi-occupancy offices, cars, trains where a promising approach 

to automatically and dynamically control the HVAC is much needed. During its usage, if more 

data are collected from the subjects (e.g., in different seasons), the prediction models can be 

updated using the newly received data to evolve over time. 

However, this study also has some limitations. First, the single thermal camera is placed in 

front of the occupant, which is not suitable for multi-occupancy spaces due to the camera’s limited 

field of view. Second, the thermal camera alone may fail to detect profile faces or frontal faces at 

a long distance due to its low image resolution. As a result, high resolution RGB cameras are 

incorporated to achieve robust face detection. Third, the thermal camera is placed at a fixed 

distance (1 meter) from the occupant. As an influential factor of the thermal camera’s measurement, 

occupants’ distances to the camera can vary over time in real operational settings. Thus, the 

viewing distance should be accounted for when measuring skin temperature. 

3.7 Conclusions 

This chapter presents a novel framework for real-time thermal comfort interpretation using 

infrared thermography. The main contribution is the proposed data collection and analysis 

framework to non-intrusively and automatically obtain, retrieve, and analyze facial skin 

temperature data and interpret thermal comfort for each occupant in real operational environments. 

The proposed framework leverages interdisciplinary techniques including the thermoregulatory 

theory, computer vision, and machine learning. Results demonstrate that facial skin temperature 
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collected from non-intrusive low-cost infrared thermal cameras can achieve a robust prediction of 

thermal comfort in real-time, and offers the possibility for synchronous control of indoor 

environments with minimal interruption of building occupants. The resulting new knowledge has 

the potential to transition the current building HVAC control from a passive and user-empirical 

process to an automated, user-centric and data-driven mechanism that can simultaneously improve 

occupant satisfaction and well-being in indoor environments. Future research can also investigate 

if the non-intrusive thermography can evaluate occupants’ mental workload and performance in 

different thermal environments (Wang et al. 2019c). 

The main conclusions from this chapter include: first, facial skin temperature is a useful 

bio-signal to analyze subjects’ thermal comfort. In the experiment, a variation of 5 °C in the room 

temperature shows statistically significant impacts on the facial skin temperature. Second, the data 

suggest that facial skin temperature is more sensitive to cold stress than heat stress. A higher 

correlation of facial skin temperature features has been observed in the cooling experiments. Third, 

ears, noses, and cheeks suggest a large skin temperature variation. Features retrieved from these 

regions are the most significant predictors for thermal comfort. Fourth, despite the low-cost 

thermal camera has a lower accuracy compared to the contact thermocouples or infrared 

thermometers adopted in other studies, by incorporating features collected from different facial 

regions, subjects’ thermal comfort can be predicted with an 85% accuracy in the proposed 

framework.
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4) CHAPTER 4 

Camera Network for Multi-Occupancy Thermal Comfort Assessment 

4.1 Introduction 

Chapter 3 presents a “non-intrusive” approach which leverages a low-cost thermal camera 

to assess occupants’ thermal comfort through the skin temperature of six facial regions (e.g., 

forehead, nose). This approach can automatically and continuously detect human faces, measure 

the skin temperature of each facial region, clean and process raw data, and interpret thermal 

comfort using personal comfort models. At the end of Chapter 3, three limitations of this approach 

have been acknowledged, including unsuitable to simultaneously monitor multiple occupants in 

the built environment due to the limited camera FOV, incapable of detecting occupants at a long 

distance (over 2 meters) due to the low camera resolution, and lack of calibration of the camera 

viewing distance which affects the radiometric measurement. In this chapter, we will introduce a 

new approach that addresses these limitations. 

On the other hand, the word “non-intrusiveness” has become a buzzword in thermal 

comfort studies in recent years (e.g., Chaudhuri et al. 2018, Cheng et al. 2017, Cosma and Simha 

2019, Ghahramani et al. 2016, Jazizadeh and Jung 2018, Jung and Jazizadeh 2017, Li et al. 2018, 

2019a, 2019c, Liu 2018, Lu et al. 2019, Metzmacher et al. 2018, van der Valk et al. 2015). 

However, the existing body of knowledge lacks a consistent and comprehensive description of the 

characteristics that a non-intrusive approach should possess. In Chapter 3, the “non-intrusiveness” 

is mainly reflected by the “non-contact” manner in physiological data collection and the reduced 
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human engagement to resolve the dependency on wearables and interruptions caused by the 

frequent human input. These two characters are supported by studies such as Jazizadeh and Jung 

(2018), Cosma and Simha (2019), and Lu et al. (2019). For example, Jazizadeh and Jung (2018) 

adopted a regular RGB camera to analyze color variations (which is a proxy of blood perfusion) 

in facial skin under hot and cold environments. In this study, the camera is mounted on a computer 

display to capture images of the frontal face. However, this approach requires subjects to stay still 

without any body movement for two minutes during the image collection. Otherwise, the color 

information will be corrupted. In this case, the inconvenience may still arise from the claimed 

“non-intrusive” approach. However, existing studies also have different interpretations of “non-

intrusiveness”. For example, Ghahramani et al. (2016) considered an eyeglass frame with mounted 

infrared thermometers is a non-intrusive approach, despite subjects are required to wear it during 

the data collection. Similarly, Liu et al. (2018) treated wearables, such as chest strip and wristband, 

as non-intrusive as they do not disturb subjects for survey input. Chaudhuri et al. (2018) claimed 

using contact thermocouples attached to the skin surface by tapes is also non-intrusive when they 

are attached to the non-dominant hand rather than multiple body locations. Therefore, a 

comprehensive description of a truly “non-intrusiveness” approach for thermal comfort assessment 

is much needed to fill the knowledge gap and promote their applications in real operational 

environments. 

Considering the limitations of each study reviewed in Section 1.2.1.2 Participation 

Oriented Thermal Comfort Assessment  Section 2.2.1 Thermal Comfort Prediction using Bio-

signalsand Section 3.2 Related Work, a truly non-intrusive approach which can be readily adopted 

in real operational multi-occupancy environments should have specific characteristics summarized 

as follows:  
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• The approach should continuously collect human physiological data for real-time and 

robust thermal comfort assessment. Therefore, approaches that require manual data 

collection and offline processing fail this criterion.  

• The collection of human physiological data should not require wearable devices, personal 

equipment, or excessive human feedback, which can cause discomfort, inconvenience or 

interruptions of building occupants.  

• Occupants can have flexible and relaxed postures and possibly move around in the built 

environment. In other words, occupants are not required to remain at a static posture while 

the approach is in operation.  

• The approach should have high scalability potential such that it can be flexibly configured 

to various built environments, especially in multi-occupancy spaces where multiple 

occupants’ thermal comfort can be simultaneously assessed without incurring additional 

adjustments. Typically, studies that require personal equipment fail this criterion due to 

their hardware dependency. For example, each occupant has to wear a wristband or use the 

phone app for data collection, which can be cumbersome in large multi-occupancy spaces. 

If some occupants do not have access to such devices, their comfort preferences are not 

taken into account. 

• The approach should be robust against variations in ambient conditions, such as the lighting 

intensity. Studies that rely on analyzing different channels of RGB images may fail this 

criterion due to their sensitivity to lighting variations. For example, a dimmer room or 

background reflection can substantially change the value of each pixel in an image.  
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These five significant characteristics of a non-intrusive approach for thermal comfort 

assessment are summarized in Table 4-1 and Table 4-2 summarizes the unaddressed characteristics 

of each related study reviewed in previous sections. 

Table 4-1 Characteristics of the Non-Intrusive Thermal Comfort Assessment 

Serial number Characteristics 

1 Continuous collection of human physiological data 

2 Does not require personal devices or human feedback 

3 Flexible postures or body movements 

4 High scalability in multi-occupancy scenarios 

5 Robust against variations in ambient conditions 

 

Table 4-2 Limitations of Existing Studies in Thermal Comfort Assessment 

Sources Devices Input variables 
Unaddressed 

characteristics 

Feldmeier and Paradiso 

(2010) 

Wearable sensor nodes 

(wrist, neck) 

Local temperature and humidity, 

thermal vote 

1, 2, 4 

Erickson and Cerpa 

(2012) 

Phone application Room temperature, thermal vote 

(rectify the PMV model) 

1, 2, 4 

Purdon et al. (2013) Phone application, 

passive infrared sensor, 

environment sensor 

Thermal vote, setpoint 1, 2, 4 

Jazizadeh et al. (2013), 

Hang-yat and Wang 

(2013) 

Phone application, 

environment sensor 

Room temperature and humidity, 

thermal vote 

1, 2, 4 

Gao and Keshav (2013) Infrared thermometer, 

Kinect, environment 

sensor 

Clothing temperature, Room 

temperature and humidity, 

thermal vote (rectify the PMV 

model) 

1, 2, 3, 4 

Kim et al. (2018a)  Personal comfort chair 

equipped with 

environment sensors 

Control behavior, indoor and 

outdoor environmental factors 

1, 2, 4 

Chaudhuri et al. (2018), 

Choi and Loftness (2012), 

Choi and Yeom (2017), 

Thermocouples  Skin temperature of one or 

multiple body regions 

2, 3, 4 
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Wang et al. (2007), Yao 

et al. (2007) 

van der Valk et al. (2015) Wristband sensor, 

environment sensor 

Bio-signals such as heart rate, 

galvanic skin response and 

environmental factors such as 

temperature, humidity, 

illuminance, noise. 

2, 4 

Li et al. (2017a, 2017c) Wristband sensor, phone 

application 

Skin temperature, heart rate, 

activity level, clothing level, 

indoor and outdoor 

environmental factors  

2, 4 

 

Liu et al. (2018) and Liu 

et al. (2019) 

Wristband sensor, 

accelerometers, 

thermocouples 

Skin temperature, heart rate, 

activity level, ambient 

temperature 

2, 4 

Ghahramani et al. (2016)  Infrared thermometers 

on an eyeglass frame 

Skin temperature of the front 

face, cheek, nose, and ears 

2, 4 

Jung et al. (2019) Heat flux sensor Heat exchange rates between the 

human body and ambient 

environment  

2, 4 

Abouelenien et al. (2016), 

Burzo et al. (2014a, 

2014b), De Oliveira et al. 

(2007), Metzmacher et al. 

(2018), Lu et al. (2019) 

Commodity thermal 

cameras  

Skin temperature of one or 

multiple facial regions 

3, 4 

Ranjan and Scott (2016) Commodity thermal 

camera 

Skin temperature of multiple 

body regions (image was 

manually taken by researchers) 

1, 3, 4 

Cosma and Simha (2019)  

 

Low-cost thermal 

camera 

Clothing temperature from the 

arms, torso, and head  

 

3, 4 

Li et al. (2018) 

 

Low-cost thermal 

camera  

Skin temperature of forehead, 

nose, cheeks, mouth, ears, and 

neck.  

3, 4 

Kwon et al. (2012) RGB camera RGB videos to infer heart rate 3, 4, 5 

Cheng et al. (2017), Jung 

and Jazizadeh (2018) 

RGB camera RGB videos to infer blood 

perfusion 

3, 4, 5 

Jung and Jazizadeh 

(2017) 

Doppler radar Chest and abdomen movement 

to infer respiration rate 

3, 4 
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Therefore, the objective of this chapter is to develop a truly non-intrusive physiological 

sensing approach which satisfies the five main requirements as summarized in Table 4-1. To this 

end, this chapter extends the single camera study in Chapter 3 and proposes a camera-occupant 

network. The main challenges of the proposed approach, such as the network formation, camera 

registration, and skin temperature extraction, are detailed in Section 4.3.  

4.2 Contributions 

This chapter explores a camera-occupant network consisting of multiple low-cost thermal 

and RGB-D cameras to achieve good viewing coverage of the environment and simultaneous 

interpretations of thermal comfort in operational multi-occupancy-built environments. The 

specific contributions of this chapter include: 

• Develop a comprehensive description of the characteristics of a non-intrusive thermal 

comfort assessment approach. 

• Design a generic and robust thermal camera network which can be rapidly reconfigured to 

adapt to various settings and has little or no hardware infrastructure dependency. 

• Demonstrate a dual camera system in which skin temperature can be extracted from facial 

regions from a low-resolution thermal camera with the help of an RGB-D sensor.  

• Demonstrate methods to dynamically calibrate skin temperature with respect to the camera 

viewing distance. 

• Demonstrate methods to register occupants from different camera nodes in the network. 

4.3 Methodology 

The networked camera system leverages a range of cutting-edge techniques, such as deep 

neural network to robustly detect multiple occupants from different angles and distances, computer 



 91 

vision to register and track occupants in different camera views and stitch indoor scenes, signal 

and data processing approaches to remove outliers and smooth the data, and machine learning to 

develop personal comfort models using skin temperature data. Figure 4-1 presents an overview of 

the thermal camera network.  

  
Figure 4-1 Overview of the Proposed Thermal Camera Network 

Table 4-3 summarizes the main improvements in the current chapter. Details in the table 

are explained in the following subsections which are organized to first introduce the component of 

the camera network – that is, a single camera node; followed by descriptions of the camera-

occupant network including its graph abstraction, occupant registration, data communication, data 

cleaning, and feature extraction. 
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Table 4-3 Comparisons of the Proposed Thermal Camera Network and the Single Camera 

Approach Introduced in Chapter 3 

Descriptions Prior work (Chapter 3) This Chapter 

Intended application Single occupancy Multi-occupancy 

Type of camera Thermal camera only 
Fusion of thermal and RGB-D 

cameras 

Number of cameras Single camera node Multiple camera nodes 

Face detection 

approach 
Haar cascade algorithm 

Can apply various state-of-the-art 

algorithms 

Camera placement In front of the occupant Flexible camera placement 

Occupant posture and 

body movement 

Refrain from large movements 

(avoid being out of the camera view) 
No constraints 

Camera-occupant 

Distance  
Not considered Compensated for distances 

Feature selection 
Local skin temperature features from 

each facial region 

Global skin temperature features 

from the whole facial area 

 
4.3.1 Thermal and RGB-D Dual Camera System 

The camera network shown in Figure 4-1 consists of multiple camera nodes that are placed 

at different locations in a built environment. Each camera node is a low-cost dual camera system 

comprised of a FLIR Lepton 2.5 thermal camera module and a Microsoft Kinect (an RGB-D 

camera). As shown in Figure 4-2, the thermal camera is rigidly mounted on top of the Kinect. 

 

Figure 4-2 The Dual Camera System 
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 This dual camera system performs a synergistic function where the Kinect implements the 

human detection (by its RGB camera) and provides distance information (by its depth sensor) to 

register the dual camera system and complement temperature measurements taken at different 

distances by the thermal camera. Table 4-4 shows the specifications of these two cameras. 

Table 4-4 Specifications of the Thermal Camera and Microsoft Kinect 

FLIR 

Lepton 2.5 

Dimensions 8.5 x 11.7 x 5.6 mm  

Resolution  80 (h) x 60 (v) pixels 

Thermal sensitivity < 50 mK 

Accuracy ±5 ˚C or ±5% of reading in the working range 

Field of view 51° (h) and 42° (v) 

Price $ 199 

Microsoft 

Kinect 

RGB camera resolution 640 (h) x 480 (v) pixels 

Field of view 57° (h) and 43° (v) 

Effective range of depth sensor  0.8 – 5 m 

Depth accuracy ± 4 cm at the maximum working range (5 meters) 

Price $ 48 

  

4.3.1.1 Kinect face detection 

As introduced previously, the human face is selected as the region of interest as it has a 

higher density of blood vessels where the skin temperature variations due to thermoregulatory 

behaviors are more significant, and the infrared energy emitted by the human face can be directly 

detected as it is not covered by clothing. To detect human faces in thermal images, prior work in 

Chapter 3 tested the Haar Cascade algorithm (Viola and Jones 2001), Histogram of Oriented 

Gradients (Dalal and Triggs 2005), and Eigenfaces (Turk and Pentland 1991) and found that the 

Haar Cascade algorithm to be the only feasible method to detect frontal faces as only certain edges 

(e.g., nose) are preserved in the low-resolution images (80 by 60) (Li et al. 2018). In terms of 

profile faces, however, none of these methods work robustly due to the blurred edges, which limits 
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the application of such single thermal camera system in real built environments as occupants’ 

poses and locations can be very flexible over time. To address this limitation, in this chapter, we 

adopted a Kinect (RGB-D camera) to assist the thermal camera in face detection. Kinect is suitable 

for this task as the high-resolution RGB images (640 by 480) contain more color information than 

thermal images and thus support the state-of-art face detection algorithms. Specifically, we 

adopted the deep neural network (DNN) based face detectors implemented in the OpenCV library 

(OpenCV 3.3). Based on our preliminary test, the DNN detector demonstrates a much higher 

accuracy than the Haar Cascade algorithm in both frontal and profile face detections at distances 

between 0.8 to 5 meters, distances typically encountered in indoor environments. However, other 

algorithms such as the Faster R-CNN and DeepFace (e.g., Jiang and Learned-Miller 2017) can 

also be applied to assist the thermal camera to locate human faces. 

4.3.1.2 Occupant tracking in a single dual camera node 

As more than one occupant can be observed by a single camera node in a multi-occupancy 

environment, we implemented the centroid tracking algorithm to track occupants across image 

frames. This algorithm assumes that centroids of the same object in the two consecutive frames 

will have the closest distance (Rosebrock 2018). In the first frame, the centroid of each face can 

be detected using the face detection algorithm introduced in Section 4.3.1.1. In the subsequent 

frame at time B+1, the Euclidean distances between each pair of centroids in the current frame B+1 

and the previous frame B are calculated and each occupant in frame B+1 is assigned to the ID of its 

closed centroid in the previous frame B (see Eq. 4.1). 

^==A_KJB	`T = argmin
g∈ij

‖lmn8 − o‖                                         (4.1) 
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Where pm is a set of the centroids of all subjects at time B; o is the centroid of one subject 

in the set pm; lmn8 is the centroid of a subject at time B + 1 (which needs to be updated), and ‖∙‖ 

is the s2-norm. This recursive subject tracking process is illustrated in Figure 4-3 with an example 

of two occupants. As shown in Figure 4-3a, at time B + 1	the unknown centroids . and t (denoted 

in triangles) are updated based on their closest Euclidean distances to the centroids at time B 

(denoted in circles). The unknown centroids at time B + 2  (denoted in squares) are updated 

accordingly (Figure 4-3b).   

 

Figure 4-3  The Centroid Tracking Algorithm: (a) Update at Time t+1; (b) Update at Time t+2 

4.3.1.3 Kinect and thermal camera registration 

As the Kinect and thermal camera have different FOV and resolutions, these two cameras 

should be registered to find point correspondences such that face coordinates detected in the RGB 

images can be mapped to thermal images. In this case, both Kinect and thermal camera can be 

modeled as a pinhole camera which projects the 3D world scene into a 2D image plane through 

the perspective transformation shown in Eq. 4.2 (OpenCV 2018). 
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Alternatively, in a more concise form,  

N	o = 	É[Ö|"]p 

Where p is a 4 × 1 vector representing the homogeneous coordinate of a 3D point in the 

world coordinate space; o is a 3 × 1 vector representing the homogeneous coordinate of a 2D 

point in the image coordinate; É is the 3 × 3 intrinsic matrix of the camera consisting of the focal 

lengths (Fy, F{)	and principal points (Wy, W{); [Ö|"] is the 3 × 4 extrinsic matrix consisting of a 

rotation Ö	and a translation "; and N is a scaling factor. 

In the dual camera system, the registration process is to estimate the intrinsic matrix of the 

thermal camera Éàâ , the intrinsic matrix of the RGB camera Éâäã , and the homogeneous 

transformation matrix [Ö|"] between the thermal and RGB cameras (see Figure 4-4). Once these 

three unknown matrices are estimated, the point correspondences in two cameras (e.g., (A8 , 

v8)	and (AV, vV)) can be determined according to the pinhole camera model in Eq. 4.2. In practice, 

such a dual camera system can be calibrated using the stereo vision calibration process. As shown 

in Figure 4-4, the calibration requires both cameras to observe a planner and predefined pattern, 

such as a checkerboard or a square grid, from at least two different orientations to determine the 

unknowns using the maximum likelihood estimation (Zhang 1999). 
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Figure 4-4 Stereo Vision Calibration for Kinect and Thermal Camera Registration 

However, thermal cameras typically cannot detect the regular black-and-white calibration 

patterns printed on the paper as the infrared energy emitted is uniform across the patterns. 

Therefore, we made a special 6 × 7 checkerboard pattern from the aluminum foil (shown in silver) 

and the vinyl polymer (shown in black) (Figure 4-5a). Each black or silver square has a dimension 

of 62.5 mm. Due to the color differences, the checkerboard pattern can be detected by the RGB 

camera to extract corner points (Figure 4-5a and c). On the other hand, as the aluminum foil has a 

higher emissivity, it emits more infrared energy and thus looks brighter in thermal images. As 

shown in Figure 4-5b and d, the checkerboard corner points can be easily observed by a thermal 

camera, especially when the pattern is heated up by a hairdryer. 
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Figure 4-5  Special Checkerboard for the Dual Camera Registration: (a) RGB Image of the 

Checkerboard (b) Thermal Image of the Checkerboard (bright squares have higher infrared 

energy); (c) Corner Detection using the Kinect; (d) Corner Detection using the Thermal Camera 

We captured twenty pairs of RGB and thermal images from different orientations relative 

to the dual camera system and implemented the calibration using the Matlab Stereo Camera 

Calibrator (Mathworks 2016). Although the thermal camera has a low resolution, results showed 

that the re-projected points are close to the detected points (Figure 4-6a), and the mean re-

projection error is 1.02 pixels (Figure 4-6b), which is acceptable for this application. It is also 

worth noting that the three unknown matrices only depend on the intrinsic properties of two 

cameras and their relative pose (how thermal camera is mounted), which are not affected by the 

distance between the camera and the checkerboard pattern. As a result, the registration process 

only needs to be done once when configuring the dual camera system. 

 

Figure 4-6 Dual Camera Registration Results: (a) Detected Corner Points and the Re-projected 

Points after Registration; (b) The Mean Re-projection Error in Pixels 
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Figure 4-7 shows the result of dual camera registration where the face in the thermal image 

(labeled in the bounding box, see Figure 4-7c) is located based on the face coordinates detected in 

the RGB image (Figure 4-7b) and its corresponding depth data from the Kinect (Figure 4-7a). 

 

Figure 4-7 Dual Camera Face Detection: (a) Depth Data from the Kinect; (b) RGB Images from 

the Kinect (for face detection); (c) Thermal Images from the Thermal Camera (bounding box is 

mapped from the RGB image) 

4.3.1.4 Distance calibration of the thermal camera 

The infrared energy reaching the thermal camera is affected by the distance between the 

camera and the object surface (FLIR 2016). Thus, the real-time distance of the camera and each 

occupant should be measured to fuse the skin temperature data collected from multiple camera 

nodes. To calibrate distances, we conducted an experiment using the low-cost thermal camera to 

collect the mean temperature of the frontal face at different distances from 0.8 to 2 meters with a 

step size of 0.05 meters (room temperature: 26.0 °C, relative humidity: 28.5%). The facial mean 

temperature was calculated by averaging the measurements of all pixels that exceed a predefined 

threshold (e.g., measurements below 27 °C were excluded) within the bounding box. The distance 

was calculated from the point cloud produced by the Kinect. The depth measurement of the Kinect 

has an accuracy of ± 4 cm within its working range of 5 meters which is considered sufficient for 

this study (Khoshelham and Elberink 2012). At each distance, three thermal images of a subject’s 
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frontal face were collected and averaged to represent the measurement at that distance. The whole 

experiment is conducted within one minute thus the facial skin temperature can be assumed 

constant during this short period. This calibration experiment was repeated on five different 

subjects to quantify the impact of distances on temperature measurements and the averaged slope 

was retained. It is worth noting that the viewing angle is fixed during the calibration (i.e., 

perpendicular to the face). However, adjusting the angles also affects the facial regions observed 

by the camera, which will lead to different temperature measurements. For example, an image 

capturing the frontal face can have a higher measurement than that of a profile face as the forehead 

region (which has a high temperature) is well captured in the former image. 

As shown in Figure 4-8a, a linear relationship can be observed from the samples (åç =

	−0.50l + 35.02, adjusted R-square = 0.96, RMSE: 0.04), which implies that skin temperature 

measurements will drop by 0.5 °C for every one-meter increase in distance for the low-cost thermal 

camera. Figure 4-8b shows the residual plots of the linear fit. It can be seen that the residuals are 

symmetrically distributed around zero and no clear patterns are observed, which also indicates a 

good fit of the linear model. 
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Figure 4-8 A Linear Fit of Distance and Temperature Measurements: (a) Linear Regression Line; 

(b) Residuals 

4.3.2 The Camera-Occupant Network 

The camera-occupant network is proposed to non-intrusively and simultaneously interpret 

occupants’ thermal comfort in real multi-occupancy spaces. Specifically, this network aims to 

achieve comprehensive coverage of the environment such that all the occupants can not only be 

seen by cameras but also have flexible postures and movements during the data collection. It 

should also be noted that cameras in the network are not placed in front of faces as Chapter 3 and 

the images are discarded immediately after retrieving skin temperature data to address the privacy 

concerns that may arise from any camera systems. This sub-section is organized to first introduce 

the configuration of the camera network, including its graph abstraction, occupant registration of 

different camera views, and the data communication between camera nodes. 
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4.3.2.1 Graph abstraction of the network 

The camera-occupant network is an observation system which contains multiple camera 

nodes to observe one or more occupants from arbitrary angles and distances. This network can be 

represented in a graph abstraction adapted from Feng et al. (2018) consisting of nodes and edges. 

Figure 4-9 is an example network which contains three subjects and two camera nodes. In this 

graph abstraction, there exist three types of nodes including a camera node (denoted as two 

triangles bounded by a rectangle which represent the dual camera system), an occupant node 

(denoted as a square), and a world coordinate node which represents the origin in the 3D world 

(denoted as a circle). In addition, there are two types of edges connecting each pair of nodes 

including observations (denoted as solid lines) and constraints (denoted as dashed lines). The 

observation represents the pose between a camera node and an occupant node which can vary over 

time as occupants change their posture or move around. The observation edges can be estimated 

using the pinhole camera model introduced in Section 4.3.1.3. As shown in Figure 4-9, occupant 

nodes 1 and 2 are both observed by camera nodes 1 and 2, while occupant node 3 is only observed 

by camera node 2.  

On the other hand, the constraint edges represent a known geometric relationship within a 

dual camera system (i.e., the relative pose between the thermal camera and the Kinect) or between 

dual camera systems (i.e., the relative pose between two dual camera systems mounted in an 

environment). The constraints can be determined when the camera network is configured upfront 

through the calibration process introduced in Section 4.3.1.3 and will not be affected by the number, 

poses, and locations of occupants in the environment. In addition, the origin in the 3D world can 

be assigned to the location of a camera node and thus their relationship is also represented as a 

constraint.  
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Figure 4-9 Graph Abstraction of the Camera-Occupant Network 

To scale up the camera-occupant network in a large multi-occupancy space, more camera 

nodes can be added to the network. The camera network will be configured such that any occupant 

node is connected to at least one camera node. Therefore, the skin temperature of each occupant is 

guaranteed to be collected. To achieve this, the camera network can be recursively configured to 

maximize the aggregate observability of facial regions of occupants, which is an optimization 

problem that is subject to a series of constraints such as the number of camera nodes, and distances 

between cameras and occupants. However, this is beyond the scope of this chapter. 

4.3.2.2 Occupant registration among different camera nodes in the network 

In Section 4.3.1.2, we introduced the centroid tracking algorithm (which was implemented 

in a single camera node) to track multiple occupants across video frames. However, in a camera-

occupant network, thermal profiles collected by multiple camera nodes from different viewpoints 

should be associated with the same occupants in the 3D world coordinate system. This process is 

called occupant registration. For example, as shown in Figure 4-9, camera node 1 observes only 

two of three occupants (occupant 3 is outside of the view), while camera node 2 observes all three 

of these three occupants. In this case, the network should correctly associate the two thermal 

profiles in camera node 1 with the two corresponding occupants in camera node 2. Typically, the 
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registration can be achieved by calculating the descriptors of feature points of occupants in 

different viewpoints and then mapping these feature points according to their similarities (Lowe 

2004). However, this feature-based method is not suitable for the camera-occupant network as (1) 

feature points detected from two viewpoints in the network can be very different, e.g., one camera 

node observes the fontal face while another observes a profile face; and (2) calculating the feature 

descriptors can be computationally expensive, which is not optimal for real-time registration.  

Therefore, we implemented the location-based occupant registration using the stereo vision 

and the pinhole camera model introduced in Section 4.3.1.3. In this case, instead of registering a 

thermal camera with an RGB camera (Figure 4-4), each pair of RGB cameras are registered 

through the same stereo vision calibration process to get the transformation matrix [Ö|"] using a 

paper printed checkerboard pattern. Then, the 3D world coordinate	[�	Ä	Å	1]& of each occupant 

with respect to the world origin can be calculated from Eq. 4.2. Finally, the occupant ID in the 

camera node	. can be mapped to that from a different viewpoint t based on the closest distance 

using Eq. 4.3, which is a modified version of Eq. 4.1. 

^==A_KJB	`T = argmin
g∈iè

‖l# − o‖                                         (4.3) 

Where pê is a set of world coordinates of all subjects in the camera node t; o is the world 

coordinate of a subject in the set pê; l# is the world coordinate of a subject in the camera node . 

(which needs to be registered); ‖∙‖ is the s2-norm. Thus, the camera network can recursively 

register all occupants observed by different camera nodes. 

4.3.2.3 Data communication among camera nodes 

In the camera network, camera nodes need to exchange occupants’ world coordinates and 

register the same occupant from different viewpoints. For the scalability purpose, the program was 
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coded for each single camera node such that the network can be quickly configured when adding 

or removing camera nodes. The data communication was implemented using the User Datagram 

Protocol (UDP). UDP has advantages of low latency and loss-tolerating, which are suitable for 

real-time video streaming. 

4.3.3 Data Cleaning and Feature Extraction 

The facial skin temperature collected directly from each bounding box in thermal images 

are the raw data which can contain several types of random noises such as the false detection of 

background as faces, inaccurate face coordinates mapping due to occlusions, and interference of a 

high temperature object in the environment (e.g., hot water cup). These noises are typically shown 

as out-of-range isolated noises in the measurements. As a result, we applied the median filter 

shown in Eq. 4.4 to remove such noises before data analysis. 

å[ë] = oD>.KJ	{l[.], . ∈ M}                                                (4.4) 

Where å[ë] is the ëth value after filtering; M is a neighborhood defined by the user; l[.]		is 

the raw data in the neighborhood M. 

Then, the moving average filter as shown in Eq. 4.5 was applied to further filter out noises 

from fluctuations. 

å[ë] =
8

VQn8
	∑ å[ë + .]#;Q

#;(Q                                                  (4.5) 

Where å[ë] is the ë	th value after filtering; 2J + 1 is the window size of the moving 

average; å[ë + .] is the raw data in the sliding window. 

As images of frontal faces are not guaranteed in the camera network, unlike Chapter 3 

which segmented the frontal face into six local facial regions (e.g., forehead, nose) and extracted 

skin temperature from each local region as the features of personal comfort models, we extracted 
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the skin temperature from the whole facial region which consists of both frontal and profile faces. 

The features collected from the detected facial region are summarized as follows: 

• The mean, first quartile, third quartile, and maximum of all pixels in the detected facial 

region. These features describe the distribution of skin temperature over a facial region. 

• The skin temperature variance of all pixels in the detected facial region. As suggested in 

Chapter 3, the nose, ears, and cheeks regions have larger skin temperature variations than 

other regions when the ambient air temperature changes. Therefore, large skin temperature 

variations over the whole facial region can imply that an individual is experiencing cold 

stress (as some local regions become significantly colder than others). 

• The skin temperature gradients of every minute. As suggested in Chapter 3, the gradients 

can imply the heat or cold stress in the environment which is useful to predict an occupant’s 

thermal comfort state. 

4.3.4 Experimental Setup and Protocol 

The proposed camera network was experimentally tested in a transient heating environment 

to verify its applicability in real operational built environments. The experiment included a 20-

minute preparation phase and a 50-minute data collection phase to collect subjects’ facial skin 

temperature. The experiment was conducted in a research office at the University of Michigan 

(UM) during the heating season in 2018. The experiment office has equipped a thermostat which 

can control the indoor temperature from low (23°C) to high (27 °C) through two HVAC diffusers. 

As shown in Figure 4-10, two dual camera nodes were placed approximately 1.3 meters away from 

a table where subjects sat at during the experiment to represent a simplified camera network. Two 

temperature and humidity sensors (humidity accuracy: ±5%, temperature accuracy: ±1 °C) 

continuously monitored the ambient environmental conditions. The two sensors were placed at the 
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waist level (0.65 meters above the floor) which was close to the specified height of 0.6 meters for 

seated occupants in ASHRAE standards 55. To represent a multi-occupancy scenario, 2 subjects 

were required to participate in the experiment each time. In total, 16 subjects (10 males and 6 

females for a total of 8 experiments) were recruited. All subjects were UM students and were 

healthy at the time of the experiment. The experiment has been approved by the UM Institutional 

Review Board for conducting human subjects research. 

 

Figure 4-10 The Experimental Setup 

Before the experiment started, the room temperature was set at 23 °C to represent a cool 

environment. During the 20-minute preparation phase, subjects were asked to remain seated in the 

testbed to reach steady-state skin temperature. Then, during the following 50-minute data 

collection phase, the thermostat was set at 27 °C to create a transient heating environment (see 

Figure 4-11). During this period, subjects were asked to perform daily office activities such as 

reading, typing, browsing, or chatting with each other while their facial skin temperature was 

extracted by the camera network. To collect the ground truth thermal comfort, subjects were 

required to report their thermal sensations in a five-point scale (from “cold” to “hot”) and 

preferences in a three-point scale (from “prefer warmer” to “prefer cooler”) through a phone 
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application and also wear a wristband sensor (Microsoft Band 2) to record the wrist skin 

temperature, which is only used for comparison. For more details about the phone application and 

the wristband, please refer to Chapter 2. After the experiment, subjects participated in a survey to 

evaluate their experience regarding the user acceptance, privacy concern, and level of intrusiveness 

of the camera network. 

 

Figure 4-11 Room Condition in a Transient Heating Experiment 

It is worth noting that unlike existing experimental studies which typically require subjects 

to stay in the same posture and refrain from body movements during data collection (e.g., Jung 

and Jazizadeh 2018, Metzmacher et al. 2018), subjects in this study were allowed to move their 

body (e.g., stretching), change their postures and facing directions, or even move around in the 

room to represent scenarios in real office settings and also make them feel as comfortable as 

possible (to achieve the least intrusiveness caused by the system). We believe such an experimental 

study verifies the applicability of the proposed system. 

Figure 4-12 shows the image frames collected in the experiment. The two rows of images 

are the views of camera nodes 1 and 2, respectively. The three columns are the depth images, RGB 

images, and thermal images collected from the dual camera nodes. It can be seen that for the right 
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subject (denoted in a green bounding box), camera node 1 detects the profile face at a distance of 

1.11 meters while camera node 2 detects the frontal face at a distance of 1.30 meters. This 

demonstrates the idea of a camera network which observes each subject from different angles and 

distances to overcome the limitations of a single camera. Skin temperature features (discussed in 

Section 4.3.3) are automatically and continuously extracted from the identified facial region and 

compensated by viewing distances (discussed in Section 4.3.1.4) for data analysis. 

 

Figure 4-12 Image Frames Collected in the Experiment (first row: views from camera node 1; 

second row: views from camera node 2) 

4.4 Results and Discussion 

In this section, we presented the statistics of facial skin temperature features and their 

correlations during the thermoregulation process. Correlations between the facial mean skin 

temperature and wrist skin temperature were also evaluated to validate the proposed networked 

camera system. Then, we mapped facial mean skin temperature to each subject’s feedback and 

explored if an individual’s thermal comfort state can be reflected by the facial skin temperature. 
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Finally, a post-experiment survey was conducted to evaluate subjects’ experience with the 

proposed approach. 

4.4.1 Summary of Facial Skin Temperature Features and Gender Differences 

Table 4-5 and Table 4-6 present a summary of skin temperature features collected by 

camera node 1 and 2, correspondingly. The mean (O̅) and standard deviation (N̅) of each feature 

are calculated using Eq. 4.6 and 4.7 as shown below. 

O̅ =
8

Q
∑ OR
Q
R;8 ,   ST(O̅) = U

8

Q(8
∑ (OR
Q
R;8 − O̅)V                                 (4.6) 

N̅ =
8

Q
∑ NR
Q
R;8 ,   ST(N̅) = U

8

Q(8
∑ (NR
Q
R;8 − N̅)V                                   (4.7) 

Where O̅ and ST(O̅) are the mean and standard deviation of skin temperature features; N̅ 

and ST(N̅)	are the mean and standard deviation of the sample standard deviation; J is the number 

of subjects which is 16 in this study. 

Statistics in Table 4-5 and Table 4-6 are divided into three categories: all subjects, all males, 

and all females, respectively. For each category, two statistics O̅  ± ST(O̅)  and N̅  ± ST(N̅)  are 

calculated for each feature: O̅ ± ST(O̅) indicates the mean value of each feature and its variations 

across different subjects, and N̅ ± ST(N̅) reflects how much each feature changes in the experiment 

and its variations across subjects. As shown in Table 4-5 and Table 4-6, the first quartile 

temperature of the facial region has a higher variation (node 1: 0.72 ± 0.16 °C, node 2: 0.63 ± 

0.20 °C) than all other features while the maximum temperature feature has a smaller variation 

(node 1: 0.43 ± 0.10 °C, node 2: 0.41 ± 0.10 °C). This result suggests that as room temperature 

gradually increases in the experiment, a subject’s facial skin temperature increases 

correspondingly due to the thermoregulation, however, gaps between the baseline temperature and 

high temperature regions tend to become narrower over time. This finding is also partially reflected 
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by the facial temperature variances (node 1: 0.40 ± 0.16 °C, node 2: 0.59 ± 0.26 °C) as 9 out of 16 

subjects observe a slight decrease in the variances over time, which is supported by Chapter 3 

where low skin temperature regions such as nose and checks change more significantly than high 

temperature regions like forehead under heat stress. For the rest of subjects who hold steady or 

increasing variances, this may be caused by the frequent changes of their facing directions and 

body movements such that a camera node does not observe the same facial region over time.   

Table 4-5 Statistics of Skin Temperature Features Collected by Camera Node 1 

Features 
All subjects Males Females 

O̅ ± ST(O̅) N̅ ± ST(N̅) O̅ ± ST(O̅) N̅ ± ST(N̅) O̅ ± ST(O̅) N̅ ± ST(N̅) 

Mean 32.76 ± 0.38 0.55 ± 0.12 32.64 ± 0.38 0.51 ± 0.12 32.98 ± 0.31 0.60 ± 0.12 

1st quartile 32.12 ± 0.46 0.72 ± 0.16 31.99 ± 0.45 0.66 ± 0.16 32.35 ± 0.42 0.82 ± 0.10 

3rd quartile 33.86 ± 0.40 0.55 ± 0.15 33.75 ± 0.43 0.53 ± 0.15 34.04 ± 0.29 0.58 ± 0.15 

Max 35.02 ± 0.31 0.43 ± 0.10 34.93 ± 0.31 0.43 ± 0.11 35.18 ± 0.27 0.44 ± 0.11 

Variance   2.53 ± 0.32 0.40 ± 0.16   2.54 ± 0.38 0.39 ± 0.16   2.51 ± 0.23 0.41 ± 0.19 

Note: All numbers are in °C 

Table 4-6 Statistics of Skin Temperature Features Collected by Camera Node 2 

Features 
All subjects Males Females 

O̅ ± ST(O̅)  N̅ ± ST(N̅) O̅ ± ST(O̅) N̅ ± ST(N̅) O̅ ± ST(O̅) N̅ ± ST(N̅) 

Mean 32.16 ± 0.22 0.47 ± 0.16 32.08 ± 0.21 0.45 ± 0.15 32.29 ± 0.16 0.49 ± 0.18 

1st quartile 31.44 ± 0.32 0.63 ± 0.20 31.32 ± 0.29 0.60 ± 0.19 31.65 ± 0.27 0.68 ± 0.22 

3rd quartile 33.17 ± 0.31 0.48 ± 0.13 33.12 ± 0.35 0.47 ± 0.13 33.26 ± 0.22 0.50 ± 0.15 

Max 34.32 ± 0.27 0.41 ± 0.10 34.29 ± 0.33 0.40 ± 0.09 34.37 ± 0.14 0.42 ± 0.13 

Variance   2.24 ± 0.79 0.59 ± 0.26   2.26 ± 0.82 0.58 ± 0.29   2.20 ± 0.81 0.62 ± 0.22 

Note: All numbers are in °C. Grey shading indicates the means of two groups are statistically different. 

As shown in Table 4-5 and Table 4-6, females generally have a slightly higher skin 

temperature and larger variations than males. To evaluate if there exist significant gender 

differences in each feature, the t-test is conducted (two-sided 95% confidence interval). The result 

suggests that except one group (denoted in the light grey shading in Table 4-6), males and females 

do not show significant differences in the selected skin temperature features. 
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By comparing Table 4-5 and Table 4-6, it can be found that the facial skin temperature (O̅) 

and variation (N̅) of each feature collected by the camera node 1 are slightly higher than those by 

the camera node 2. This difference can be caused by the fact that one camera node captures more 

warmer regions than the other in the experiment (i.e., node 1 observes more frames of the frontal 

face which contains the forehead region that is typically warmer than cheeks). However, the trends 

of skin temperature features from the two camera nodes are both increasing over time, which can 

be used to interpret an individual’s comfort state. This will be further discussed in Section 4.4.2 

and 4.4.3. 

4.4.2 Correlation Analysis between Different Skin Temperature Features 

Correlation analysis is conducted to further investigate the relationships between different 

features. As shown in Table 4-7 and Table 4-8 the Pearson correlation coefficients of all features 

except for variances suggest a strong positive correlation between each feature pair (ranged from 

0.63 to 0.94). The weak correlations between variances and other features indicate that variances 

are relatively steady in the experiment compared to others. To reduce the dimensionality of 

features, we adopt the facial mean skin temperature of the whole facial region detected in the 

cameras as the main feature for further analysis because it is representative of other features (due 

to the high correlations) and also more precise than others due to averaging.  

Table 4-7 Correlations between Skin Temperature Features collected by Camera Node 1 

 Mean 1st quartile 3rd quartile Max Var 

Mean 1.00 0.92 0.91 0.88 - 0.00 

1st quartile 0.92 1.00 0.78 0.75 - 0.16 

3rd quartile 0.91 0.78 1.00 0.94 0.15 

Max 0.88 0.75 0.94 1.00 0.19 

Var - 0.00 - 0.16 0.15 0.19 1.00 
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Table 4-8 Correlations between Skin Temperature Features collected by Camera Node 2 

 Mean 1st quartile 3rd quartile Max Var 

Mean 1.00 0.88 0.83 0.82 -0.11 

1st quartile 0.88 1.00 0.63 0.63 -0.35 

3rd quartile 0.83 0.63 1.00 0.94 0.13 

Max 0.82 0.63 0.94 1.00 0.20 

Var -0.11 -0.35 0.13 0.20 1.00 

 

4.4.3 Correlation Analysis between the Facial Mean Skin Temperature and Wrist Skin 

Temperature 

Skin temperature from a wristband sensor is used to validate the proposed camera network. 

The wristband sensor has a resolution of 1 °C and takes a measurement every 30 seconds. Due to 

the differences between the wrist and facial skin temperature and the systematic error of different 

instruments, measurements from these two sources are not directly compared. Instead, we analyze 

their correlations as room temperature increases. As shown in Table 4-9, all coefficients, except 

one (subject 16, node 2), suggest moderate to strong positive correlations between the facial mean 

skin temperature and wrist temperature (ranged from 0.45 to 0.92), which indicates the non-

intrusive camera network can capture the same thermoregulatory responses as the wearables. Also, 

for the same subject, it can be seen that the coefficient from one camera can be much higher than 

that of the other (e.g., subject 10). This finding suggests that despite an occupant can be observed 

by multiple camera nodes, data from different cameras may not be equally important in assessing 

changes in their skin temperature. Therefore, future studies will assign different weights to cameras 

in the comfort assessment according to their viewing distances and angles. 
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Table 4-9 Pearson Correlation Coefficients between the Facial Mean Skin Temperature and 

Wrist Skin Temperature  

Subject ID 1 2 3 4 5 6 7 8 

Node 1 0.78 0.74 0.84 0.71 0.77 0.80 0.62 0.62 

Node 2 0.77 0.77 0.73 0.71 0.75 0.79 0.60 0.64 

Subject ID 9 10 11 12 13 14 15 16 

Node 1 0.47 0.82 0.70 0.64 0.84 0.92 0.77 0.77 

Node 2 0.50 0.52 0.49 0.45 0.65 0.64 0.59 -0.21 

         

4.4.4 Mapping Facial Mean Skin Temperature to Thermal Comfort State 

To visualize the changes of skin temperature in the transient heating experiment, each 

subject’s facial mean skin temperature is fitted using the polynomial regression. Specifically, the 

lower degree of polynomials is selected if the coefficient of determination ÖV does not increase 

significantly with a higher degree of polynomials (we used 5% as a threshold). As shown in Figure 

4-13, each subplot shows the result of an experiment measured by a camera node. In each subplot, 

the two dotted lines denote the processed skin temperature data of two subjects, which are then 

fitted by polynomials of degree ranged from 1 to 3. All fitted curves (denoted in solid lines of the 

corresponding colors) in Figure 4-13, except subject 16, demonstrate an increasing trend of skin 

temperature over time, which implies the increases in skin blood flow under heat stress. 
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Figure 4-13 Polynomial Fit of the Facial Mean Skin Temperature of Each Subject 

To map the thermoregulatory process to thermal comfort state, facial mean skin 

temperature of the first five minutes (denoted as "7ím[ìm) and the last five minutes (denoted as "7îQï) 

in the heating experiment (from 23 °C to 27 °C) are calculated to represent a subject’s starting and 

ending physiological states, respectively. As shown in Table 4-10, a two-tailed t-test shows that 

all 16 subjects have a statistically higher facial skin temperature (_ < .001) as the room temperature 

increases in the experiment. In addition, all subjects reported distinct thermal comfort states (i.e., 
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thermal sensation and preference) at these two stages, which are denoted as "WSím[ìm and "WSîQï 

in Table 4-10. As an example, Figure 4-14 presents a subject’s thermal sensation votes and his/her 

corresponding facial mean skin temperature. Results of the analysis of variance (ANOVA) show 

that the means of different votes are significantly different, which suggests that facial skin 

temperature collected by the proposed camera network can serve as an indicator of subjects’ 

thermal comfort state.  

Table 4-10 t-tests between the Starting and Ending Facial Mean Temperature in the Experiment 

Subject Camera node "7ím[ìm (°C) "7îQï (°C) p-value "WSím[ìm "WSîQï 

E
x
p
. 
1
 Id1 

1 31.6 33.4 <0.001 Cold 

(warmer) 

Warm 

(no change) 2 31.2 32.9 <0.001 

Id2 
1 31.5 33.6 <0.001 Cold 

(warmer) 

Hot 

(cooler) 2 31.4 32.8 <0.001 

E
x
p
. 
2
 Id3 

1 31.8 33.6 <0.001 Cold 

(warmer) 

Warm 

(no change) 2 31.6 32.6 <0.001 

Id4 
1 31.4 33.5 <0.001 Cold 

(warmer) 

Neutral 

(no change) 2 31.7 32.6 <0.001 

E
x
p
. 
3
 Id5 

1 32.1 33.4 <0.001 Cool 

(warmer) 

Warm 

(cooler) 2 31.5 33.5 <0.001 

Id6 
1 32.1 33.2 <0.001 Cool 

(warmer) 

Neutral 

(no change) 2 31.3  32.9 <0.001 

E
x
p
. 
4
 Id7 

1 31.3 32.5 <0.001 Cool 

(no change) 

Warm 

(cooler) 2 31.3 32.3 <0.001 

Id8 
1 31.4 32.5 <0.001 Cold 

(warmer) 

Neutral 

(no change) 2 31.1 32.0 <0.001 

E
x
p
. 
5
 Id9 

1 32.1 33.0 <0.001 Cool 

(warmer) 

Neutral 

(no change) 2 32.0 32.4 <0.001 

Id10 
1 32.1 33.1 <0.001 Neutral 

(no change) 

Warm 

(no change) 2 31.9 32.2 <0.001 

E
x
p
. 
6
 Id11 
1 31.4 32.8 <0.001 Cool 

(warmer) 

Neutral 

(no change) 2 32.0 32.6 <0.001 

Id12 
1 31.6 32.7 <0.001 Neutral 

(no change) 

Warm 

(no change) 2 32.0 32.6 <0.001 

E
x
p
. 
7
 

Id13 
1 31.7 33.6 <0.001 Cold 

(warmer) 

Warm 

(no change) 2 31.7 33.0 <0.001 

Id14 1 31.9 33.7 <0.001 Neutral Neutral 
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2 31.7 32.8 <0.001 (no change) (cooler) 
E

x
p
. 
8
 Id15 

1 31.7 33.8 <0.001 Cool 

(no change) 

Warm 

(cooler) 2 32.2 32.6 <0.001 

Id16 
1 32.1 33.9 <0.001 Neutral 

(no change) 

Hot 

(cooler) 2 32.1 31.9 <0.001 

Note: Subjects’ thermal preferences are shown in the parentheses in the "WS columns. 

 

Figure 4-14 Thermal Sensation Vote and the Corresponding Facial Mean Skin Temperature of an 

Example Subject 

4.4.5 Post-experiment Evaluations of User Experience 

A survey is distributed to all subjects to understand their experience with the camera 

network regarding user acceptance, privacy concerns, and level of intrusiveness caused by the 

system (see Figure 4-15). The feedback suggests that the proposed approach has a high user 

acceptance regarding its application in the built environment (mean: 4.31, see Table 4-11), 

relatively low privacy concern caused by the use of cameras (mean: 3.94), and strong agreement 

in the non-intrusiveness of the approach (Q1 mean: 4.50, Q2 mean: 4.81). 
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Please rate the degree to which you agree or disagree with each of the following 
statements related to the camera network (5 - Strongly agree, 4 - Agree, 3 - 

Neutral, 2 - Disagree, 1 - Strongly disagree): 

User Acceptance – I would recommend such camera network systems to be applied 

in multi-occupancy spaces to assess occupants’ thermal comfort (e.g., classroom, rest 

lounge).  

Privacy Concern – I do NOT have any privacy concern about such camera network 

systems if they are applied in the built environment. 

Level of Intrusiveness Q1 – Based on my experience in the experiment, I think the 

camera network is not intrusive at all. 

Level of Intrusiveness Q2 – Compared to wristband sensors, I prefer using the 

camera network to collect my skin temperature data as it is less interruptive and does 

not cause any pain or strain that may arise from wearables. 

 

Figure 4-15 Post-Experiment Survey Questions 

Table 4-11 Subjects’ Post-Experiment Evaluation 

Subject ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean 

User Acceptance 4 4 4 5 4 5 5 4 4 3 4 5 5 4 4 5 4.31 

Privacy Concern 4 4 4 3 4 3 5 4 4 4 4 4 4 4 4 4 3.94 

Intrusiveness Q1 4 4 4 3 5 5 5 4 5 4 5 5 5 5 4 5 4.50 

Intrusiveness Q2 5 5 5 4 5 5 5 4 5 5 5 5 5 5 4 5 4.81 

 

However, limitations of this study should be acknowledged. First, the skin temperature 

collected from the frontal and profile faces is not differentiated in the current approach, which can 

be a reason for the fluctuations in the measurements. As a result, future studies can keep the frontal 

and profile faces (or possibly different facing directions) as separate datasets when evaluating 

subjects’ thermal comfort. Second, the proposed camera network is tested in a simplified multi-

occupancy environment with two subjects. Several challenges may arise from a larger space with 

more subjects, such as occlusions, increased viewing distance, and occupant registration. Thus, 

future research can fully explore the scalability potential of the proposed approach. 
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4.5 Conclusions 

This chapter introduced the main characteristics of the non-intrusive detection of thermal 

comfort and proposed a low-cost networked camera system to non-intrusively measure occupants’ 

facial skin temperature for real-time thermal comfort assessment in multi-occupancy environments. 

Each camera node in the network fuses the RGB-D and thermal images collected from a Kinect 

and a low-cost thermal camera. The experimental results from 16 subjects suggest that the 

variations in low temperature facial regions are more significant than high temperature regions 

under heat stress, as well as moderate to strong positive correlations between the skin temperature 

collected by the camera network and wearables (ranged from 0.45 to 0.92). Moreover, subjects’ 

facial skin temperature has observed statistically significant increases when the room temperature 

changes from 23 °C to 27 °C. Results of ANOVA support our assumption that facial skin 

temperature can serve as an indicator of one’s thermal comfort state. Finally, subjects have 

expressed positive evaluation regarding the usefulness, privacy issues, and the non-intrusiveness 

of the proposed approach. 

Knowledge gained from this chapter has the potential to transition the current human 

physiological sensing from an intrusive and wearable device-based approach to a truly non-

intrusive and scalable approach such that skin temperature can be automatically measured without 

any constraints on occupants’ activities or participation. The proposed camera network can be 

incorporated into the building HVAC systems for energy control and thermal comfort management. 

For example, a real-time interpretation of thermal comfort allows the HVAC systems to 

dynamically adjust its setpoint and airflow and also select the optimum settings to maximize the 

overall comfort. If the indoor environment is equipped with personal heating/cooling devices or 

HVAC zoning systems, personalized conditioning can be delivered to the corresponding location 
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if conflicts of thermal preference exist in the shared space. The proposed approach is particularly 

promising in multi-occupancy environments, such as offices, conference rooms, rest lounges as 

personal and wearable devices may not be available for everyone. This approach can also be 

applied to other critical built environments, including the transportation systems, health facilities, 

and extreme working environments where occupants’ thermal comfort and satisfaction are much 

needed.
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5) CHAPTER 5 

Optimization of Temperature Setpoint through Personal Comfort Models and 

Physiological Sensing 

5.1 Introduction 

The preceding Chapters 2, 3 and 4 present novel thermal comfort sensing approaches using 

human physiological data including wrist skin temperature, facial skin temperature, heart rate, etc. 

These approaches can be applied in both single and multi-occupancy spaces to achieve real-time 

prediction of thermal comfort of occupant(s) using personal comfort models. Once the overall 

thermal comfort in a built environment is evaluated, a closely related question can be raised, i.e., 

how to adjust the HVAC settings to improve the overall thermal comfort and satisfaction? This is 

a particularly interesting question in multi-occupancy environments where the thermal preference 

of each occupant not only can change over time but also may vary from one person to another (Li 

et al. 2017a). Therefore, a static setpoint according to industry guidelines (e.g., ASHRAE) can 

hardly provide an optimum thermal environment, i.e., an environment that keeps as many 

occupants comfortable as possible, if not all, in a multi-occupancy space. In fact, the ASHRAE 

standard 55 - Thermal Environmental Conditions for Human Occupancy specifies that thermal 

environments should be maintained to make at least 80% of the occupants comfortable, which 

suggests the challenges in achieving an unanimously satisfied condition. 
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To adjust and improve the thermal environment, existing literature has proposed various 

comfort modeling and HVAC control strategies (e.g., Daum et al. 2011, Erickson and Cerpa 2012, 

Feldmeier and Paradiso, Jazizadeh et al. 2013, Jung and Jazizadeh 2019b, Li et al. 2017c, Purdon 

et al. 2013). The main approach adopted in these studies is adjusting the thermostat setpoint to 

increase or decrease the room temperature. This is because the room temperature directly and 

significantly affects the perceived thermal comfort, and can be easily controlled compared to other 

environmental factors such as the relative humidity (Ghahramani et al. 2015). Also, studies 

observed that variations in relative humidity are a byproduct when adjusting the thermostat 

setpoint in real operational environments where relative humidity shows a negative correlation 

with the room temperature (Jung et al. 2019, Li et al. 2019a). As a result, only the temperature 

setpoint is considered as an independent variable in the comfort analysis.  

In general, existing studies which aim to adjust the setpoint for improved thermal comfort 

can be divided into two categories: (1) a passive and iterative control process which implements a 

corrective temperature in each step, and (2) a closed-form adjustment that attempts to achieve the 

optimum setpoint in one step. 

Studies in the former category typically leverage the feedback (or thermal vote) from 

occupants over time. For example, Erickson and Cerpa (2012) calculated the corrective 

temperature using the PMV model to offset discomfort votes received in each decision cycle, 

which is set at 10 minutes. This corrective temperature then updates the current setpoint to provide 

additional heating or cooling to restore a thermally neutral state. Purdon et al. (2013) also leveraged 

this voting mechanism (e.g., -1 for cooler, 1 for warmer) where the net vote, i.e., the sum of votes 

from all occupants, was calculated in each cycle. The room temperature will decrease by a fixed 

step of 1 °C for a negative net vote, which means a lower temperature is preferred, and vice versa. 
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In Li et al. (2017c), occupants’ personal comfort models were applied in the HVAC control loop 

to update the setpoint. If a negative or positive net thermal vote was collected in a decision cycle 

(i.e., every 30 minutes), the control algorithm will evaluate the new setpoint (i.e., the previous 

setpoint ±1 °C) using each occupant’s comfort model. A corrective temperature will be 

implemented if more occupants were predicted comfortable under the new setpoint. As discussed 

in these three example studies, this HVAC control schema is an iterative process as continuous 

corrective steps are needed when occupants provide new thermal votes; and this is also a passive 

process as it is unable to proactively determine the optimum setpoint for the future decision cycle. 

As a result, this schema may lead to longer discomfort time due to its trial-and-error adjustments 

and also make the setpoints oscillate over time, which may damage the HVAC systems. 

Another category of the HVAC control strategy uses personal comfort models to find a 

closed-form solution for the optimum setpoint. In this schema, thermal comfort is generally 

modeled as a function of environmental parameters (e.g., room temperature). For example, 

Feldmeier and Paradiso (2010) built a linear model using room temperature and humidity to 

classify uncomfortably hot and cold events. Daum et al. (2011) developed occupants’ comfort 

models using logistic regression, which represents the probability of different thermal preferences 

at different room temperature. This study also suggested the template comfort model can quickly 

converge to the actual personalized model using around fifty thermal votes. Similarly, Jazizadeh 

et al. (2013) developed fuzzy models that predict an occupant’s probability of different thermal 

sensations at given room temperature. As personal comfort models adopted in these studies 

directly associate the room temperature with thermal comfort, a closed-form solution, which 

outputs the optimum setpoint that maximizes an objective function (e.g., the number of 

comfortable occupants), can be directly calculated. For example, Jung and Jazizadeh (2019b) 
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compared three HVAC control strategies in determining the optimum setpoint. In this study, 

personal comfort models, which measure the probability of being comfortable (i.e., comfort 

probability) as a function of room temperature (see Figure 5-1), are developed using the Gaussian 

distribution. Specifically, this study introduced the concept of thermal sensitivity, i.e., the 

increased or decreased comfort probability caused by the variations in room temperature. Using 

this metric, the optimum setpoint can be selected to maximize the sum of the comfort probability 

of all occupants. This study provides useful insights into the HVAC control by addressing the 

optimization question in a probabilistic view and considering occupants’ different responses to hot 

and cold stimuli (i.e., thermal sensitivity). 

 

Figure 5-1 Thermal Profile and HVAC Control Strategies in Jung and Jazizadeh (2019b) 

(adapted from Jung and Jazizadeh 2019b) 

However, the one-step HVAC optimization strategies proposed in Jung and Jazizadeh 

(2019b) cannot directly integrate with human physiological sensing-based comfort models. This 
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type of model maps real-time human physiological data, such as skin temperature, heat flux, and 

heart rate collected from human body, into a prediction of thermal comfort and has gained a lot of 

attention in recent years (e.g., Chaudhuri et al. 2018, Jung et al. 2019, Jung and Jazizadeh 2018, 

Li et al. 2018 and 2019a, Liu et al. 2019). Studies such as Jung and Jazizadeh (2019a), Li et al. 

(2017c) and (2019a) suggested that physiological sensing-based comfort models can achieve better 

prediction accuracy than models which only consider the environmental data; and have the 

potential to reduce the intrusiveness caused by thermal vote. However, a major challenge should 

be addressed before this model can be integrated into the HVAC control, that is, the uncertainties 

in occupants’ thermal comfort under the new setpoint, which result from the unknown effect of 

updated thermal environments on human physiological parameters. For example, in a scenario 

where skin temperature is used for comfort prediction, the model can continuously predict one’s 

thermal preference or its probability as long as a new measurement is collected. If the model 

predicts “prefer warmer” and the setpoint is increased accordingly, it is unknown how much 

people’s skin temperature will be affected by the new setpoint, and thus it is still in question 

whether this occupant will feel more comfortable. In other words, the physiological sensing-based 

models only predict the current thermal comfort state but cannot make predictions into the future. 

Therefore, it only works with the iterative and passive HVAC control process introduced above.  

Figure 5-2 illustrates this problem and the potential outcomes in a built environment due 

to uncertainties in predicting future thermal comfort using physiological data. In this example, the 

setpoint is initially set at 24 °C at time B in a room occup ied by three occupants (denoted as id1, 

id2, and id3). Occupants’ physiological data at time B are collected (denoted as "#ï8
m

, "#ïV
m

, "#ï}
m

), 

and predictions show that two of them prefer a warmer environment and one prefers a cooler 

environment. As a result, the control increases the setpoint by 1 °C, which will be implemented at 
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time B + 1. However, as the impact of this adjustment on the physiological parameter is unknown 

at time B, this control has no knowledge about occupants’ future physiological conditions at time 

B + 1 (denoted as "#ï8
mn8

, "#ïV
mn8

, "#ï}
mn8

), and thus fails to predict the future thermal comfort states. 

Therefore, three possible outcomes of this control (i.e., increase the setpoint by 1 °C) can be 

encountered at time B + 1 including an insignificant control (the majority still prefer warmer), a 

promising control (the majority now feel comfortable), and an overshoot control (the majority start 

to prefer cooler). If either the insignificant or overshoot control occurs, then a new adjustment 

should be implemented and its corresponding impact is unclear until time B + 2. 

 

Figure 5-2 The HVAC Control Steps When Using Physiological Sensing Approaches 

 Therefore, to address this limitation and achieve a proactive HVAC control, it is important 

to understand the impact of room temperature variations (or other environmental variables if 

applicable) on the physiological parameters considered in the comfort model. To this end, this 

chapter presents an approach to predict occupants’ physiological parameters and demonstrates how 
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to integrate it with personal comfort models to determine the optimum setpoint. The contributions 

of this research and the methodology are presented as follows. 

5.2 Contributions 

This chapter leverages the merits of physiological comfort sensing approaches in preceding 

chapters and fills an important gap that prevents its integration in the HVAC control strategies. 

The resulting knowledge closes the loop of occupancy-focused HVAC control systems which 

evaluate each occupant’s comfort through physiological sensing and proactively determine the 

optimum setpoint of a group of occupants. The specific contributions of this chapter include: 

• Demonstrate how to integrate the physiological predictive model and personal comfort 

model to evaluate an occupant’s comfort (i.e., thermal comfort zone or comfort probability) 

under a new setpoint, particularly when the physiological sensing is adopted.  

• Develop a modeling approach to interpret human physiological states (e.g., skin 

temperature) under different environmental conditions (e.g., room temperature). 

• Demonstrate how HVAC control strategies can optimize thermal comfort and energy 

consumption in a multi-occupancy environment using each occupant’s thermal comfort 

zone and comfort probability.  

5.3 Methodology 

This chapter will use the facial skin temperature and room temperature as the human 

physiological and environmental parameters respectively to demonstrate the integration of 

physiological sensing into the HVAC control process. This process can be decomposed into two 

steps including (1) occupants’ thermal comfort prediction using facial skin temperature (i.e., the 

“sensing” step); and (2) determination of the optimum setpoint based on the overall comfort 

prediction (i.e., the “control” step). The former sensing step can be represented by a model  F 
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which maps an occupant’s skin temperature 	"íR#Q into his/her thermal comfort state "W (Eq. 5.1), 

which can be a regression (e.g., thermal sensation with numerical scales), classification (e.g., 

thermal preference with categorical scales), or a probability distribution (e.g., probability of being 

comfortable). The model ñ, on the other hand, is the missing physiological predictive component 

that bridges the new setpoint "ìóóg which is a possible control strategy and the projected skin 

temperature 	"íR#Q under this new setpoint (Eq. 5.2). By chaining these two models F and ñ, an 

occupant’s thermal comfort under a new setpoint can be predicted with the physiological sensing 

as an intermediate step (Eq. 5.3). The approaches to develop each model are presented in the 

following subsections. 

F: 		"íR#Q → "W                                                                  (5.1) 

ñ: 		"ìóóg → 		"íR#Q                                                              (5.2) 

F(ñ): 		"ìóóg → "W                                                              (5.3) 

5.3.1 Personal Thermal Comfort Models 

 Thermal comfort prediction is generally considered as a classification problem, which 

predicts an occupant’s thermal sensation or preference at different conditions. As a result, personal 

comfort models (i.e., model F) can be trained using various classification algorithms including the 

Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Classification 

Tree (Ctree) (e.g., Chaudhuri et al. 2018, Daum 2011, Jung et al. 2019, Kim et al. 2018a, Li et al. 

2017c, Li et al. 2019d). Among these approaches, studies such as Li et al. (2019d) and Kim et al. 

(2018a) suggested that the RF algorithm generally produces better comfort prediction accuracy 

than others. RF trains a collected of bagged decision trees using a random subset of features on 

each split and is robust to outliers and high dimensional datasets. However, one major drawback 

of RF is the low interpretability (Breiman 2001). On the other hand, thermal comfort can also be 
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represented in a probabilistic distribution using LR, Fuzzy Logic models, or Bayesian Networks 

when the number of features is small (Daum et al. 2011, Ghahramani et al. 2015, Jazizadeh et al. 

2013, Jung and Jazizadeh 2019b). This approach offers significant model interpretability as 

changes in thermal comfort probability, which is a useful metric to determine the optimum setpoint, 

can be easily associated with the variations in features (typically room temperature). As a result, 

this chapter adopts LR to develop personal comfort models. However, other modeling approaches 

can also be adopted without impairing the implications of this work. 

 LR uses a logistic function to predict the probability (_) that an event happens. The basic 

form of LR is shown in Eq. 5.4 where the log-odds of an event, log ú
ù

8(ù
û, is modeled as a linear 

combination of input variables l, and the coefficients üN are estimated from the input data. LR is 

typically used to predict a binary class (e.g., an event happens or not) and an event is classified as 

1 (an event happens) if the probability _ is greater than 0.5 (James et al. 2013).  

log ú
ù

8(ù
û = 	ü† +	ü8 ∙ l8 + ⋯+	üQ ∙ lQ                                    (5.4) 

 LR can also be generalized to predict events that have multiple classes, which is also known 

as the multinomial logistic regression. In this chapter, the input variable is occupants’ facial skin 

temperature, and the output variable is the corresponding thermal comfort which has three 

categorical values including uncomfortably hot, comfortable, and uncomfortably cold.  

To develop personal comfort models, we used the data collected from an experiment 

introduced in Chapter 3 in which a thermal camera continuously measures an occupant’s facial 

skin temperature from six regions including forehead, cheeks, nose, mouth, ears, and neck, under 

heating, cooling, and steady-state scenarios. During the experiment, occupant’s thermal votes (e.g., 

prefer warmer, cooler, or neutral) are recorded. In this chapter, cheek skin temperature is selected 

in the personal comfort model as Chapter 3 suggests the cheek temperature is indicative of one’s 
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thermal comfort. However, other skin temperature features can also be used without losing the 

implications of this approach.  

Figure 5-3 shows the thermal votes from ten participants while their cheek temperature is 

collected. In this figure, “+1” denotes uncomfortably cold (or prefer warmer), “0” denotes being 

comfortable, and “-1” denotes uncomfortably hot. It can be observed that subjects generally feel 

cold when their cheek temperature is low, and vice versa. However, a few exceptions exist in 

subjects 6, 7 and 8 where the cheek temperature has some “vacuum regions”. For example, for 

subject 6, the cheek temperature between 31 and 32 °C is not observed. This is because the dataset 

of each occupant consists of three scenarios (i.e., heating, cooling, and steady-state). Despite 

similar skin temperature and thermal vote patterns exist in each scenario; when the data from three 

scenarios are combined, the skin temperature might not be continuous in its full range. This 

observation can be caused by breaks between two experimental scenarios (heating to cooling) 

when subjects’ skin temperature changes significantly. This phenomenon can cause a problem 

when using LR for comfort profiling, which will be discussed later in this section. 



 131 

 

Figure 5-3 Thermal Votes of Each Subject and the Corresponding Cheek Temperature 

 Using the data presented in Figure 5-3, thermal comfort models can be developed using 

LR, which are shown in Figure 5-4. In this figure, the green, blue, and red curves represent an 

occupant’s probability of being comfortable, uncomfortably cold, and uncomfortably hot at 

different cheek temperature. In this probabilistic representation, an occupant is predicted as being 

comfortable if the corresponding comfort probability is greater than the other two conditions. 
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Accordingly, the range of skin temperature that is associated with the comfortable state can be 

obtained, which is highlighted in a yellow region in Figure 5-4. In this figure, subjects have 

different comfort ranges in cheek temperature. For example, subjects 3 and 8 have a much wider 

range than the subject 4, which indicate they have a higher tolerance over the variations in room 

temperature. 

 

Figure 5-4 Thermal Comfort Model for Each Subject (yellow region denotes the range of cheek 

temperature when a subject feels comfortable) 
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 As shown in Figure 5-4, comfort models for subjects 6 and 7 do not indicate a comfort 

range while that of subject 8 does not have a lower bound. This results from the discontinuous 

cheek temperature data as discussed above. A possible solution to this problem is to use the skin 

temperature of other facial regions in comfort profiling. For example, Figure 5-5 shows subject 

8’s comfort models using six different regions. It can be seen that models of both ear and neck 

regions indicate a comfort range, which can be used to substitute the cheek region. For subject 5, 

due to the imbalanced feedback that fewer comfort votes are received than discomfort votes, as 

well as the significant overlap between the cheek temperature in different comfort conditions, the 

probability of being comfortable is always lower than the other two conditions. In other words, the 

LR model using a single feature is not suitable for this subject, and more complex models like 

ensemble models (e.g., RF, XGBoost) should be considered instead. 

 

Figure 5-5 Thermal Comfort Models of Six Facial Regions for Subject 8 



 134 

5.3.2 Physiological Predictive Models 

The physiological predictive model (i.e., model ñ) predicts the resulting skin temperature 

(or other physiological parameters) under different room temperature, which enables comfort 

models to evaluate the impact of a new setpoint. In this model, the output variable skin temperature 

is affected by multiple factors, such as the room temperature (the direct input variable of interest), 

personal variations (skin temperature variations across different subjects), and the conditioning 

mode (i.e., under heating or cooling states) due to subjects’ different thermal sensitivities to the 

hot and cold stress. 

The linear mixed model (LMM), also known as the hierarchical model, is adopted to 

develop physiological predictive models. Unlike ordinary linear regression, LMM not only 

considers variations that are explained by the input variables of interest, i.e., fixed effects, but also 

variations resulting from the random samples from the population, which are called random effects. 

A matrix form of the LMM is shown in Eq. 5.5. 

å = �ü + ÅA + ¢                                                            (5.5) 

A	~	§(0, •) 

Where å  is a vector of responses, ü  is the unknown vector of fixed effects,  A  is the 

unknown vector of random effects which is assumed to follow a Gaussian distribution, � and Z 

are the design matrices corresponding to ü and A, ¢ is a vector of error terms, • is the variance-

covariance matrix of random effects.  

In statistical studies, “human subject” is often used as a random effect as responses from 

the same subject cannot be considered as independent; and introducing this random effect accounts 

for the individual differences between subjects (Winter 2013). In this study, LMM lies between 

the ordinary linear regression, which uses the aggregated sample data to train a single model (i.e., 
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assuming each data point is independent and develop one model using all subjects’ data) and the 

fully personalized model, which develops a model for each subject using only the personal data. 

In the former case, the assumption of sample independence is violated as multiple samples from 

the same subject share similarities. For the latter, however, one’s personalized model does not use 

the information from other subjects, which can result in less robust models if the sample size of 

each subject is small. LMM addresses these two problems by acknowledging the dependence 

between data within each subject as well as the commonality between subjects (Winter 2013). As 

a result, for physiological predictive models, LMM is adopted considering that subjects share 

similarities in skin temperature variations under heating or cooling scenarios; while for the thermal 

comfort prediction, personal models are developed as thermal votes are subjective which may vary 

significantly across subjects. 

 The form of LMM for skin temperature is shown in Eq. 5.6 in which the human subject is 

considered as a random effect. 

"íR#Q = 	ü† +	ü8 ∙ Öm +	üV ∙ Sm +	ü} ∙ ÖmSm +	¶† +	¶8 ∙ Öm +	¶V ∙ ÖmSm               (5.6) 

 Where "íR#Q is a subject’s corresponding skin temperature under a new setpoint Öm, Sm is 

the conditioning mode which is a binary variable (1 for cooling, 0 for heating), ü† to ü} represent 

the coefficients of fixed effects, and ¶† to ¶V represent the coefficients of random effects, which 

include both random slopes and a random intercept. 

 The LMM models are developed using the R package (version 1.2.1335). Subjects’ cheek 

temperature from the heating and cooling scenarios is used for model training as the skin 

temperature in these two scenarios varies with respect to the room temperature.  The results are 

shown in Figure 5-6 and Figure 5-7, representing the cooling and heating scenarios respectively. 

The model summary is presented in Table 5-1 to Table 5-3. As subjects 5 to 8’s comfort models 
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are less indicative (Section 5.3.1), physiological models of the rest six subjects are retained in 

Figure 5-6 and Figure 5-7. It can be observed that subjects have different skin temperature 

responses to the setpoint changes. For example, subject 3 is most susceptible to cold stress and 

will decrease cheek temperature by 0.35 °C for every 1 °C drop in room temperature; while 

subjects 1 and 9 have a smaller temperature gradient of 0.19 °C. As indicated by the slopes, the 

skin temperature sensitivity is different in cooling and heating scenarios even for the same subject. 

The skin temperature in this experiment changes more rapidly when the room is cooling down as 

larger gradients are observed. This finding has also been discussed in Chapter 3 that the skin 

temperature varies in a smaller range in the heating scenario, which might be caused by the slower 

response time of the HVAC system in the testbed. However, it should be noted that physiological 

models are only defined when the room temperature is between 22 and 28 °C (which is the range 

of the data collection experiment). These models may not be accurate when extrapolated to room 

temperature which is outside of this range. 

 

Figure 5-6 Linear Mixed Model for Cheek Temperature in the Cooling Scenario (the x-axis is 

reversed to represent the decreasing room temperature) 
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Figure 5-7 Linear Mixed Model for Cheek Temperature in the Heating Scenario 

Table 5-1 Estimates of the Fixed Effects 

Fixed effects Estimate Std. Error t value 

Intercept 26.62 0.64 41.31 

Öm 0.21 0.02 11.52 

Sm - 0.32 0.16 -2.0 

Öm ∙ Sm 0.03 0.02 1.70 

Table 5-2 Correlations of the Fixed Effects 

Correlation of fixed effects Intercept Öm Sm 
Öm -0.690   

Sm -0.115 0.162  

Öm ∙ Sm 0.051 -0.311 -0.368 

 

Table 5-3 Statistics of the Random Effects 

Groups Name Std. Dev. 

Subject Intercept 2.11 

 Öm 0.06 

 Öm ∙ Sm 0.05 

Residual  0.16 
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5.4 Thermal Comfort Optimization Strategies 

As subjects’ personal comfort models and physiological predictive models are developed 

in the previous sections. Chaining these two models enables the prediction of a particular subject’s 

thermal comfort at different setpoints including (1) thermal comfort zone, i.e., the range of 

setpoints that a particular subject is predicted as being comfortable; and (2) thermal comfort 

probability, i.e., the probability distribution that a particular subject is comfortable across the 

feasible setpoints. Based on these two metrics, three comfort optimization strategies are proposed: 

Strategy 1: The optimum setpoint should maximize the number of comfortable occupants 

in the environment, as shown in Eq. 5.7: 

SDB_@.JB∗ = argmax
âj	

∑ W@oF@EB#(Öm)#                                 (5.7) 

Where SDB_@.JB∗ is the optimum setpoint, Öm is the feasible setpoints of a particular room, 

W@oF@EB#(Öm) is a binary comfort state of subject ., which is 1 if subject . is comfortable at Öm, 

and 0 otherwise. 

Strategy 2: If there is a tie in the results of strategy 1, the optimum setpoint should also 

maximize the overall thermal comfort probability in the environment, as shown in Eq. 5.8: 

SDB_@.JB∗ = argmax
âj
∗

∑ ©E@¶#(Öm
∗)#                                     (5.8) 

Where Öm
∗ is the selections of strategy 1, i.e., the range of setpoints that can make most 

subjects comfortable in the shared environment, ©E@¶#(Öm
∗) is the thermal comfort probability of 

subject . at room temperature Öm
∗.  

Strategy 3: The optimum setpoint should maximize the overall thermal comfort probability 

in strategy 2 with constraints in the HVAC energy consumption, as shown in Eq. 5.9: 

SDB_@.JB∗ = argmax
âj
∗

	{a ∙ W@oF@EB_N=@ED − (1 − a) ∙ ´JDEñå_N=@ED}            (5.9) 
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W@oF@EB_N=@ED = 	
∑ ©E@¶#(Öm

∗)#

max
âj	¨	âj

∗
∑ ©E@¶#(Öm)#

 

´JDEñå_N=@ED = 	 |
Ö≠[íî − Öm

∗

ÖÆ − Ö\	
| 

Where a is the weight of thermal comfort, which ranges from 0 to 1. A larger a implies 

more importance is given to the thermal comfort than energy consumption. If a = 1, strategy 3 

only focuses on maximizing the overall comfort probability, which will yield the same result as 

strategy 2; on the contrary, if a = 0, strategy 3 focuses on making most subjects comfortable with 

the least energy use, which will choose the setpoint in Öm
∗ that is close to the baseline setpoints 

Ö≠[íî. In this chapter, we used 22 °C as the baseline for heating seasons and 28 °C for cooling 

seasons to represent the lowest energy consumption situations. By tuning a, a trade-off can be 

found between the thermal comfort and energy consumption. ÖÆ and Ö\ are the upper and lower 

bound of the feasible setpoints, which are 28 °C and 22 °C, respectively, | ∙ | is the absolute value. 

5.4.1 Thermal Comfort Optimization using Strategy 1 

To determine the optimum setpoint, we first assume the room temperature is originally set 

at 25 °C according to conventional settings (which is the median of our experimental temperature 

between 22 °C and 28 °C) in a multi-occupancy environment. All feasible setpoints are then 

searched from 25 °C to 28 °C (i.e., heating scenario) and from 25 °C to 22 °C (i.e., cooling scenario) 

at a step size of 0.1 °C. Despite the actual HVAC systems may not allow a 0.1 °C adjustment, this 

implementation does not lose implications in real situations as thermal comfort conditions at two 

adjacent integer setpoints can be compared to choose the optimum and feasible setpoint. 

When applying strategy 1, the thermal comfort zone of each subject is calculated, which is 

shown in the horizontal bar in Figure 5-8. Each subject’s comfort zone is determined by first 

finding the corresponding skin temperature at a given setpoint using the physiological predictive 
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models; and then evaluating the categorical thermal comfort states (i.e., uncomfortably hot, 

comfortable, and uncomfortably cold) through personal comfort models. If the probability of being 

comfortable is the highest, then the corresponding setpoint is added into this subject’s comfort 

zone. Therefore, the optimum setpoint should pass as many subjects’ comfort zones as possible if 

they share the same environment. As shown in Figure 5-8, for the six subjects in our experiment, 

25.3 °C and 25.4 °C are selected as all subjects are comfortable at these two setpoints. 

 

Figure 5-8 Optimum Setpoint Selection Using Strategy 1 (maximize the number of comfortable 

occupants) 

5.4.2 Thermal Comfort Optimization using Strategy 2 

When applying strategy 2, besides thermal comfort zones, comfort probability distributions 

(i.e., the probability of being comfortable) are also calculated, which are shown as the bell curves 

in Figure 5-9. The average comfort probability can then be obtained by averaging the probability 

distributions of all subjects (denoted in the black dash-dotted line). As strategy 1 suggests both 

25.3 °C and 25.4 °C (i.e., Öm
∗) yield the same number of comfortable subjects, the overall comfort 
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probability at these two setpoints are then compared. As 25.4 °C yields a higher overall comfort 

probability than 25.3°C, it is chosen as the optimum setpoint for these six subjects. 

 

Figure 5-9 Optimum Setpoint Selection Using Strategy 2 (maximize the overall comfort 

probability when multiple setpoints yield the same number of comfortable occupants) 

5.4.3 Thermal Comfort Optimization using Strategy 3 

When applying strategy 3, two components should be calculated including a comfort score 

and an energy score. The comfort score (W@oF@EB_N=@ED), which ranges from 0 to 1, is the overall 

comfort probability at the current setpoint over the highest comfort probability that can be achieved 

in the range Öm
∗. The energy score (´JDEñå_N=@ED), which also ranges from 0 to 1, is the absolute 

value of the setpoint deviation from the baseline over the range of setpoint options.  

As Öm
∗ for all six subjects only includes two possible setpoints, i.e., 25.3 °C and 25.4 °C, a 

subset consisting of three subjects (id 1, 2, and 3) is chosen as an example to demonstrate strategy 

3 as a wider common comfort zone can be obtained. Figure 5-10 shows the overall comfort zone 
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(i.e., Öm
∗ ∈ [24.2, 26.4], denoted in yellow) and comfort probability of these three example subjects. 

Using strategy 1, any setpoint within the comfort zone can be selected as the three subjects are all 

comfortable in this range. More specifically, the lower bound 24.2 °C is optimum in heating 

seasons due to its lower HVAC energy consumption, and vice versa for cooling seasons. When 

using strategy 2, 25.5 °C is the optimum setpoint as it achieves the highest comfort probability 

without considering the energy consumption.  

 

Figure 5-10 The Comfort Zone and Probability for a Shared Room with Subjects 1, 2, and 3 

Assuming it is in heating seasons, for strategy 3, the comfort score and energy score of 

different setpoints in Öm
∗ are calculated, which are shown in Table 5-4. Only setpoints between 

24.2 °C and 25.5 °C are presented as setpoints higher than 25.5 °C will lead to a reduced comfort 

probability yet increase the energy use. The weighted comfort and energy score S (Eq. 5.9) with 

three example a values (i.e., 0.3, 0.5, and 0.7) are presented in Table 5-5. As the result suggests, 
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24.2 °C, 24.2 °C and 24.7 °C are chosen as the optimum setpoints for a = 0.3, 0.5 and 0.7, 

respectively. 

Table 5-4 The Comfort Score and Energy Score at Different Setpoints with Subjects 1, 2, and 3 

∞±
∗ 24.2 24.3 24.4 24.5 24.6 24.7 24.8 

≤©E@¶#(Öm
∗)

#
/J 0.51 0.52 0.53 0.54 0.55 0.56 0.56 

W@oF@EB_N=@ED		(1) 0.88 0.90 0.92 0.93 0.94 0.96 0.97 

Ö≠[íî − Öm
∗ -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8 

´JDEñå_N=@ED  (2) 0.37 0.38 0.40 0.42 0.43 0.45 0.47 

∞±
∗ 24.9 25.0 25.1 25.2 25.3 25.4 25.5 

≤©E@¶#(Öm
∗)

#
/J 0.57 0.57 0.57 0.58 0.58 0.58 0.58 

W@oF@EB_N=@ED (1) 0.98 0.98 0.98 0.99 0.99 1.00 1.00 

Ö≠[íî − Öm
∗ -2.9 -3 -3.1 -3.2 -3.3 -3.4 -3.5 

´JDEñå_N=@ED (2) 0.48 0.50 0.52 0.53 0.55 0.57 0.58 

 

Table 5-5 Optimum Setpoint Selection Using Strategy 3 (for a = 0.3, 0.5, and 0.7) 

Öm
∗ 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 25.0 25.1 25.2 25.3 25.4 25.5 

S 

(a	 = 0.3) 
.01 .00 .00 -.01 -.02 -.03 -.04 -.04 -.06 -.07 -.08 -.09 -.10 -.11 

S 

(a	 = 0.5) 
.26 .26 .26 .26 .25 .26 .25 .25 .24 .23 .23 .22 .22 .21 

S 

(a	 = 0.7) 
.51 .52 .52 .53 .53 .54 .54 .54 .54 .53 .53 .53 .53 .53 

Note: The bold number is the highest score for each a value, the corresponding Öm
∗	is the optimum setpoint.	

 

5.5 Discussion 

In Section 5.3, personal comfort models and physiological predictive models are developed 

using multinomial logistic regression and linear mixed model, respectively. However, as explained 

earlier, the main contribution of this chapter is the integration of these two models to address the 

limitations in physiological sensing-based HVAC control methods. These two components, which 

form a subject’s thermal profile, can be substituted by other modeling approaches. For example, 
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personal comfort models can also be developed using multinomial mixed-effects logistic 

regression or Random Forest. 

Section 5.4 demonstrates the optimum setpoint selection using three different strategies 

considering occupants’ thermal comfort and energy consumption. Specifically, optimum setpoints 

in strategies 2 and 3 come from the candidate range Öm
∗ determined by strategy 1. In other words, 

optimum setpoints in all strategies will always be selected on the premise that most subjects will 

feel comfortable. However, if the domain of strategy 2 is the operational range of 22 °C to 28 °C 

instead of the narrowed range Öm
∗, setpoints with the highest overall comfort probability may not 

yield the largest possible number of comfortable subjects. This scenario is illustrated in Figure 

5-11 where two subjects share the same environment. The overlap of two subjects’ comfort zones, 

i.e., the common comfort zone (denoted in yellow), represents Öm
∗. The result shows that setpoints 

corresponding to the highest overall comfort probability, in these two scenarios, are outside of Öm
∗. 

In this case, subject 4 no longer feels comfortable even though the overall comfort probability is 

maximized. 

 

Figure 5-11 The Comfort Zone and Probability for a Shared Room with Two Subjects (left: 

subjects 4 and 10; right: subjects 3 and 4) 
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 The optimum setpoints can be updated based on the presence of subjects. For example, as 

shown in Figure 5-11, the optimum setpoint for subjects 1 and 2 is 24.9 °C. If subject 3 joins, the 

setpoint should increase to 25.5 °C to accommodate the newcomer’s preference for warm 

environments while not reducing the overall comfort. This approach has implications in shared 

environments, such as conference rooms and offices where an optimum solution can be found 

given different combinations of thermal profiles (personal comfort models and physiological 

predictive models). Thermal profiles can be carried by occupants as they move around places using 

approaches introduced in this dissertation. For example, thermal profiles saved in the smartphones 

can be retrieved when occupants scan a QRcode when entering a room or connect to a nearby Wifi 

router (Li et al. 2017c). Motion sensors or thermal cameras can also determine the presence of 

occupants if they have dedicated working areas (Li et al. 2019a). For occupants who are outside 

of the common comfort zones, adaptive behaviors (e.g., putting on a jacket) or personal devices 

(e.g., portable heater) can be adopted to restore personal comfort without affecting others. 

 

Figure 5-12 The Comfort Zone and Probability for a Shared Room When a New Subject Joins 

(left: subjects 1 and 2; right: subject 3 joins) 
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As subjects’ skin temperature has different sensitivities in heating and cooling scenarios as 

shown in Figure 5-6 and Figure 5-7, thermal comfort zones and comfort probabilities can be 

slightly different when the room is preset at a low temperature versus a high temperature (subjects 

reached the steady-state conditions). This scenario is demonstrated in Figure 5-13 and Figure 5-14, 

which show the differences in thermal comfort zones and probabilities when room temperature 

starts from the high and low baseline setpoints, especially for subjects 1 and 4 whose comfort 

zones and probabilities can shift by over 1 °C. These differences are mainly caused by the 

psychological process in which the reference points that people compare with in the transient 

environment have changed. Subjects’ evaluation of thermal sensation is relative to their initial 

thermal states at the high or low setpoints instead of the absolute air temperature. 

 

Figure 5-13 Optimum Setpoint Selection Using Strategy 1 When Room Temperature Starts from 

the Baseline (Left: starting from a high setpoint; Right: starting from a low setpoint) 
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Figure 5-14 Optimum Setpoint Selection Using Strategy 2 When Room Temperature Starts from 

the Baseline (Left: starting from a high setpoint; Right: starting from a low setpoint) 

The main contribution of this chapter is to propose an approach for proactive HVAC 

control using human physiological sensing. The proposed methodology, as opposed to the iterative 

and trial-and-error process, can directly determine the optimum setpoint for a given group of 

subjects which maximizes thermal comfort with constraints in energy consumption. This chapter 

is not meant to suggest a specific setpoint for buildings as industry standards as the optimum 

setpoints can be different for other human subjects, built environments and HVAC systems, 

seasons, locations, etc. However, the proposed methodology can be adopted by researchers and 

HVAC engineers to develop their own thermal profiles and determine the optimum setpoint in a 

specific setting accordingly.  

However, one limitation should be acknowledged. In the experiment, the skin temperature 

data are collected from sedentary subjects with a low workload level. As a result, the physiological 

predictive model may not be valid when extrapolated to subjects in high workload or metabolic 

rate situations. In future studies, if subjects’ skin temperature data at different workload conditions 
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are collected, the proposed approach can not only select the optimum setpoint for a given group of 

subjects but also dynamically determine the setpoint over time according to subjects’ workload. 

5.6 Conclusions 

This chapter proposes a temperature setpoint optimization approach which aims to 

overcome the limitations in existing HVAC control schema, and directly determine the optimum 

setpoint of a given multi-occupancy environment using the thermal profiles. To this end, the 

proposed approach integrates personal comfort models and physiological predictive models to 

predict the overall thermal comfort at different setpoints. The thermal comfort can be represented 

in two forms, i.e., thermal comfort zone and comfort probability distribution. Based on these two 

metrics, three HVAC control strategies are introduced to demonstrate the selection of setpoints for 

improved overall thermal satisfaction or reduced energy use while maintaining comfort.  

This chapter provides insights into proactively determining the optimum setpoint in the 

physiological sensing-based HVAC control and has the merits of reducing the discomfort time and 

oscillation of setpoints. After the initial setpoint is optimized using the proposed approach, if 

physiological sensing or thermal votes from occupants indicate that further adjustments are needed, 

the setpoint can be updated following the human-in-the-loop schema introduced in Section 5.1 to 

fine-tune the thermal environment. The proposed setpoint optimization approach, when coupling 

with the sensing approaches introduced in Chapters 2 to 4, can serve as a basis for automated 

environment control to improve the human experience, well-being, and building energy efficiency. 
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6) CHAPTER 6 

An Integrated Framework to Understand Energy Use behaviors in Buildings 

6.1 Introduction 

In Chapter 1, we introduced the significant role that occupants play in affecting building 

energy consumption, and also identified two major knowledge gaps in existing studies – the lack 

of (1) fundamental research to understand behavioral determinants of energy-saving behaviors, 

and (2) methods to describe and quantitively measure occupants’ energy use characteristics, which 

can affect their behaviors in buildings. To fill these two gaps, in this chapter, we propose an 

integrated framework to understand occupants’ energy use behaviors in buildings. 

The rest of this chapter is organized to first provide a detailed review of existing human 

behavior models and their relations to energy use behaviors in the building context. Then, we 

present the Motivation-Opportunity-Ability (MOA) framework, the measures of each factor, and 

our research hypotheses. The new framework and hypotheses are tested through a Structural 

Equation Model (SEM) using the survey data. Finally, the results and findings are discussed at the 

end of this chapter. 

6.2 Related Work 

Existing studies have proposed several behavior models to understand the influential 

factors of human behavior and behavior change (Ajzen 2005, Fishbein et al. 2000, Fogg 2009, 

Hong et al. 2015, Michie et al. 2011). For example, Fishbein et al. (2000) identified three factors: 
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strong intention, absence of environmental constraints, and necessary skills as the prerequisites to 

generate behavior. Michie et al. (2011) reviewed existing literature of behavior change 

interventions and proposed the Behavior Change Wheel (BCW) framework to guide the design of 

interventions. The BCW aims to strengthen the identified weak components in motivation, 

opportunity, and capability to enhance the effectiveness of interventions. In Fogg’s behavior model 

(Fogg 2009), an effective persuasive intervention should possess three necessary driving factors - 

sufficient motivation, required ability, and appropriate trigger in order to elicit a targeted behavior. 

In relation to energy-saving behaviors, some of the aforementioned models and principles have 

been introduced in the building domain to design and implement intervention strategies (Bang et 

al. 2006, Geelen et al 2013, Petkov et al. 2012, Staddon et al. 2016, Wilson and Marselle 2016). 

For example, to assess the comprehensiveness of the BCW framework in explaining energy 

behaviors, Wilson and Marselle (2016) mapped the BCW framework to four energy behavior 

change guidance documents. The result indicates that energy-relevant behavioral determinants can 

be generalized into motivation, opportunity and ability (MOA) categories and the most frequently 

occurring determinants in the documents are reflective motivation, psychological capability, 

physical and social opportunities. Other studies like Petkov et al. (2012) and Bang et al. (2006) 

incorporated the persuasive techniques introduced in Fogg’s model and developed applications 

which aim to raise the awareness of energy-related issues and encourage efficient lifestyle.  

 On the other hand, researchers also applied social psychology approaches for 

understanding and promoting pro-environmental behaviors (Abraham and Michie 2008, DEFRA 

2008, Stephenson et al. 2010, ThØgersen 1995, Vlek 2000), such as Defra 4Es framework, i.e., 

enable, encourage, engage, and exemplify, which aimed at promoting sustainable behaviors in 

accordance with social marketing principles (DEFRA 2008), the needs-opportunities-abilities 
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(NOAs) framework for analyzing the determinants of consumer’s environmental behaviors (Vlek 

2000), taxonomy of behavior change techniques in intervention (Abraham and Michie 2008). 

 However, the aforementioned models and frameworks are generic behavioral models 

developed in the field of psychology. None of them demonstrates a way to measure occupants’ 

characteristics in the energy use domain and analyze their impact on occupant behaviors. To fill 

this gap, we adapt the motivation, opportunity, and ability (MOA) model which is widely applied 

to study consumers’ purchasing behaviors (e.g., buying products from one brand vs. another) to 

analyze occupants’ energy-saving behaviors. The MOA model has traditionally been used to 

understand consumers’ attention and comprehension processes to brand information, and other 

significant factors motivating consumers to purchase certain products on a regular basis (Buurma 

2001, Celsi and Olson 1988, Machleit et al. 1990, MacInnis et al. 1991, Moorman 1990, Polonsky 

et al. 2004, Rothschild 1999). 

Several studies emphasized that customers’ MOA characteristics play a significant role in 

their purchasing behaviors. For example, Hastak et al. (2001) highlighted the importance of the 

MOA model to determine the communication effectiveness of advertisements. This study found 

that consumers with loyalty to a particular product have higher MOA levels which facilitate the 

adoption of the product. MacInnis et al. (1991) used the MOA model to investigate the influential 

factors such as the extent of brand information processing from advertisements. This model 

proposed that consumers’ MOA levels have major impacts on the brand information processing 

stage during and/or after exposure to advertisements. Bigné et al. (2010) implemented the MOA 

model for online airline ticket purchases reported that the MOA model accounts for 55 percent of 

the variations in predicting consumers’ ticket purchasing intentions. 
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6.3 Contributions 

This chapter presents a theoretical framework, i.e., the Motivation-Opportunity-Ability 

(MOA) framework, to identify the determinants of energy-saving/use behaviors. The three factors, 

i.e., M, O, and A are also used to describe an occupant’s characteristics. The proposed model aims 

to help decision-makers design occupancy-focused interventions to achieve building sustainability. 

The specific contributions of this chapter include: 

• Identify the influential factors of human behavior in existing studies and adapt them into 

the context of energy savings (e.g., what are the definitions and measures of each factor). 

• Develop an integrated framework that establishes the relationship between the identified 

factors (e.g., mediation effect, direct effect).  

• Validate the proposed model using survey data. 

• Demonstrate the use case of the proposed framework for energy intervention and occupants’ 

characterization.  

6.4 Methodology 

In this chapter, we draw on the analogy between the MOA characteristics of customers to 

process brand information and pick up certain products in marketing and the MOA levels of 

building occupants to interpret energy reduction interventions and adopt energy-saving behaviors 

(e.g., adjusting the thermostat to save energy). The definition of each factor (i.e., M, O, and A) in 

psychology, consumer science, and its adapted interpretation in energy efficiency are detailed in 

Table 6-1 and additionally described in subsequent paragraphs. 
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6.4.1 The Motivation, Opportunity and Ability Characteristics 

6.4.1.1 Motivation (M) 

The psychological definition of motivation is the brain processes that energize and direct 

human behavior toward goals (Gruen et al. 2005, Hoyer and MacInnis 1997, Michie et al. 2011). 

More specifically, in consumer science, motivation is defined as the goal-directed arousal to 

engage consumers in a desired behavior to process brand information in the advertisement and 

perform the corresponding purchasing behavior (Celsi and Olson 1988, MacInnis et al. 1991, 

Moorman and Matulich 1993, Rothschild 1999, Steg and Vlek 2009, Zaichkowsky 1985) (See 

Table 6-1). Motivation measures the perceived personal relevance of people and their level of 

involvement/interest with particular information (Richins and Bloch 1986, Steg and Vlek 2009, 

Zaichkowsky 1985). For example, Parra-Lopez et al. (2012) analyzed key factors in human 

intentions to use social media to organize holiday travels. This study highlighted that consumers’ 

motivation is based on the functional, social, and hedonic benefits of social media. Moorman and 

Matulich (1993) highlighted that motivation independently influences consumers’ preventive 

health behaviors and moderates the impact of ability and opportunity on adopting desired 

behaviors through encouraging consumers to put their knowledge, skills, or resources into practice. 

In this chapter, we define the motivation as an occupant’s readiness, willingness, interest, 

and desire to process energy-saving information provided through intervention strategies and 

subsequently adopt the stipulated saving behaviors. Thus, the motivation (M) of occupants 

measures their perceived personal relevance and the level of involvements with the information 

presented in the energy reduction strategies (see Table 6-2). For example, occupants with a high 

motivation level can volunteer to attend workshops or receive emails about energy saving tips. As 

shown in Table 6-2, motivation metrics are divided into internal and external stimuli that 
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interventions should improve to achieve efficiency. For example, improving the awareness of 

energy use and desire to receive information on energy reduction approaches. 

Table 6-1 Application of the MOA Model in Energy Use Characteristics 

 

 

 

 

 

Psychological definitions 

(Blumberg and Pringle 

1982, Gruen et al. 2005, 

Hoyer and MacInnis 

1997, Michie et al. 2011) 

Definitions in consumer science 

(Celsi and Olson 1988, MacInnis et 

al. 1991, Moorman and Matulich 

1993, Rothschild 1999) 

Proposed framework with adapted 

MOA factors in energy efficiency 

Motivation is defined as 

the brain processes that 

energize and direct 

human behavior toward 

goals 

Motivation is defined as consumers’ 

interest, desire, and readiness to 

engage in processing the brand 

information in an ad and the 

willingness to perform purchasing 

behaviors. E.g., high motivation 

consumer is willing to pay attention 

to the advertised message 

Motivation measures an 

occupant’s needs, goals, and 

values (self-related knowledge), 

and the level of involvement with 

energy use information, whether 

an occupant is concerned about 

the personal energy consumption 

and looking for ways to save 

energy from various sources 

Opportunity is defined as 

the external factors (i.e., 

lie outside of the 

individual) that make the 

behavior possible or 

prompt it 

Opportunity is defined as the 

environmental factors (e.g., 

distraction, lack of conditions, limited 

exposure time) which affect 

consumer’s attention to brand 

information in an ad. E.g., Consumers 

who are unfamiliar with a brand may 

choose other competitive products 

Opportunity measures an 

occupant’s availability and 

accessibility to the energy-saving 

information and energy control 

system, as well as some 

environmental and interpersonal 

factors that may affect occupants 

processing the information in the 

environment (both physical and 

social opportunities) 

Ability is defined as the 

necessary psychological 

and physical capabilities 

to make an outcome 

happen 

Ability is defined as consumers’ 

resources, skills, or proficiencies in 

interpreting brand information and 

performing the purchasing behavior. 

E.g., high ability consumer is able to 

search desired items online and 

compared with different brands 

Ability is a knowledge-based 

measure which affects how an 

occupant interprets and processes 

the energy-saving information. 

Ability implicates an occupant’s 

prior knowledge about energy 

use, its impact, and consequences, 

as well as knowledge about 

possible saving strategies 
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Table 6-2 Metrics for Occupants’ MOA Level 

Metrics of Construct Measures 

Motivation (M) 
Self-related Knowledge (Internal 

Stimuli) 

• Needs 

• Goals 

• Values 

Energy Use Knowledge (External 

Stimuli) 

• Level of Energy Use 

• Impact and Consequences 

Assess self-awareness about the importance of Energy Use 

Knowledge 

Measure the desire to receive Energy Use Knowledge 

Detect norms of avoiding Energy Use Knowledge (e.g., 

not interested in attending workshops or receiving emails) 

Opportunity (O) 
Ease of implementation 

Amount of Information 

Information Format 

Modality 

Rate of Exposure to Information 

Determine the number of times: 

 Accessible and easy to use controls (e.g., thermostat, 

lighting, shading) 

 Attend awareness seminars 

 Read information on general advertisement boards (self-

reported) 

 Read emails (ask for responses with a blank email) 

 Discuss with peers (self-reported) 

Ability (A) 
Energy Use Prior Knowledge 

•  Impact 

•  Consequences 

•  Conservation Strategies 

Measure the extent conservation strategies are used (e.g., 

estimate number of times someone consciously turns off 

lights when leaving) 

Measure the subjective knowledge of energy use relative 

to the average person 

Measure actual knowledge (i.e., factual information): 

• Terminology 

• Possible impacts/consequences 

• Criteria to evaluate impacts/consequences 

• Perceived effectiveness of intervention strategy to 

reduce impacts/consequences 

6.4.1.2 Opportunity (O) 

The psychological definition of opportunity is the external factors that make the behavior 

possible or prompt it (Gruen et al. 2005, Michie et al. 2011). Similarly, in consumer science, it is 

defined as the environmental factors (e.g., exposure time to ads) that are not in the control of 

consumers to enable desired actions (Bigné et al. 2010, Hallahan 2001, MacInnis et al. 1991, 

Rothschild 1999) (See Table 6-1). Opportunity level is directly related to the immediate 
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environment of the people and how that affects the availability, accessibility, and time allocated 

for the comprehension of the brand information (Celsi and Olson 1988, Maclnnis et al. 1991, 

Rothschild 1999). Other studies described opportunity level as the extent to which circumstances 

evidenced during advertisement exposure are favorable for brand processing (Govindaraju et al. 

2013, MacInnis et al. 1991, Rothschild 1999). For example, Govindaraju et al. (2013) studied key 

drivers for physicians to adopt electronic medical records (EMR), and defined “opportunity” as 

the “access to EMR system” and “access to information” which refer to physicians’ opportunity 

to get in contact with any information media and other sources. 

In this research, opportunity (O) refers to the surrounding environmental factors 

influencing occupants’ attention and comprehension processes in adopting energy-saving 

behaviors. As shown in Table 6-2, when occupants have easily accessible building controls, 

opportunity metrics can be improved during an intervention by focusing on the amount, format, 

modality, and rate of exposure to the information. Thus, opportunity measures how favorable 

conditions and limited time of exposure affect an occupant’s attention to the information presented 

in interventions. 

6.4.1.3 Ability (A) 

The psychological definition of ability is the necessary psychological and physical 

capabilities to engage in a targeted behavior or make an outcome happen (Blumberg and Pringle 

1982, Gruen et al. 2005, Michie et al. 2011). In consumer science, the definition of ability is 

modified to focus more on the psychological aspect and it is defined as consumers’ self-perceived 

knowledge capacity of the brand information, and how they interpret this information to create 

new knowledge structures (Bigné et al. 2010, Celsi and Olson 1988, MacInnis et al. 1991, Parra-

Lopez et al. 2012) (See Table 6-1). As Wilson and Marselle (2016) suggested that physical 
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capability is the least frequently occurring determinant in behavior change guidance documents. 

They argue that the need for physical capability might be more common in the health field 

compared to the building domain. Therefore, the physical capability is excluded in the ability 

factor (E.g., light switches are set too high for a wheelchair user to reach it). 

Ability level is largely dependent on a consumer’s prior knowledge about brand 

information typically acquired through experience, as well as a consumer’s skills in interpreting 

brand information in an advertisement (Celsi and Olson 1988, Rothschild 1999). For example, 

Bigné et al. (2010) defined the ability level as individuals’ perception of their capacity to search 

for information about flights on the Internet and to carry out online purchases of airline tickets. 

Results show that customers’ Internet ability positively influences their intentions for online 

purchasing.  

In this research, ability (A) level measures a given occupant’s proficiencies in interpreting 

energy use knowledge. The ability (A) is largely dependent on an occupant’s prior knowledge 

about energy use, its impact and consequences, as well as knowledge about possible conservation 

strategies (see Table 6-2). The type and quality of this pre-existing knowledge will in turn 

determine if energy use information can be cognitively and immediately retrieved in a given 

situation (e.g., occupants turn off lights before leaving their offices). 

6.4.2 Framework for Measuring MOA Levels of Building Occupants 

Previous studies (e.g., medical field, ticket purchasing website) found that motivation is 

directly associated with most behaviors (Bigné et al. 2010, Moorman 1990). However, opportunity 

and ability affect behaviors only when motivation is present, which means these two factors 

moderate the impact of motivation on behaviors. Therefore, we propose the motivation as a 

precondition of successful implementation of energy-saving behaviors with opportunity and ability 
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as moderating factors and design the framework described in the following section accordingly. 

The proposed framework is developed by stating a set of research hypotheses and their relevant 

measures to investigate occupants’ energy use characteristics through assessing their MOA levels 

on adopting energy-saving behaviors. These hypotheses are designed based on the extended 

context of the MOA levels of occupants and incorporated with a set of measures that are identified 

based on a comprehensive literature review, as shown in Figure 6-1. These measures are utilized 

to demonstrate the link among each motivation, opportunity, and ability levels of occupants, their 

related research hypotheses, and their intended energy use behaviors. 

 

Figure 6-1  Measures of Occupants’ MOA Levels in Energy-Use Behaviors 

6.4.2.1 Identifying Measures for Occupants’ Motivation Characteristic 

As mentioned earlier, motivation level (M) refers to a particular occupant’s perceived 

personal relevance in terms of needs, goals and values, and the level of involvement with the 

information (e.g., external stimuli) presented in the energy intervention. Therefore, occupants’ 
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concern and desire for energy conservation are investigated as the measure of their motivation. 

Motivation level independently affects occupants’ energy use behaviors, how often they look for 

ways to conserve energy, and which factors are important for them to conserve energy, as shown 

in Figure 6-1. Accordingly, the related hypothesis is stated as follows: 

H1: Occupants with higher energy conservation motivation levels will perform more energy 

conservation behaviors than occupants with lower motivation levels. 

6.4.2.2 Identifying Measures for Occupants’ Opportunity Characteristic 

In this research, occupants’ opportunity (O) level is directly related to their immediate 

environment and how that affects the availability and accessibility for comprehension of the energy 

use knowledge. Adopting Moorman and Matulich’s (1993) approach, we assume that occupants’ 

opportunity level moderates the effect of motivation on energy-saving behaviors. For example, 

highly motivated occupants are not able to present energy-saving behaviors in their offices such 

as adjusting temperature setpoint, if they do not have any control over the thermostat. Studies have 

shown that people have more tendency to make permanent changes in their energy use behaviors 

when they have available resources and if the new behaviors are easy and convenient to perform 

(McMakin et al. 2002). Therefore, opportunity level of occupants is measured by investigating: (1) 

the availability of energy conservation control systems (e.g., if the occupant has any individual 

control over the climate control system); (2) the satisfaction level of the indoor environment (e.g., 

overall quality of artificial lighting in the office); and (3) exposure to information and peer-pressure 

about environmental concerns through interventions (e.g., having energy conservation information 

available for occupants on bulletin boards and often discuss environmental conservation strategies 

with colleagues). (see Figure 6-1) Accordingly, the corresponding hypotheses are stated as follows: 
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H2: When energy conservation motivation is high, occupants with higher control over their indoor 

environment will perform more energy conservation behaviors. 

H3: When energy conservation motivation is high, occupants who are satisfied with their indoor 

environment will perform more energy conservation behaviors. 

H4: When energy conservation motivation is high, occupants with more exposure to information 

about the environmental impacts of their behaviors will perform more energy conservation 

behaviors. 

6.4.2.3 Identifying Measures for Occupants’ Ability Characteristic 

Ability (A) level measures each occupant’s proficiency in interpreting energy use 

knowledge. Ability is largely dependent on two major factors – an occupant’s perception of the 

energy consumption level, and prior knowledge about energy use facts. A set of studies has shown 

that people need to have sufficient ability (e.g., self-efficacy) before they can actively take 

environmentally responsible actions that benefit others (Eccles et al. 2005, Geller 1981, Southwell 

and Torres 2006, Wilson and Dowlatabadi 2007). These studies highlighted that occupants’ ability 

level also moderates the effect of motivation on adopting certain behaviors. Abrahamse and Steg 

(2009) concluded that occupants with higher perceived energy conservation knowledge (e.g., “I 

know how to reduce the cooling load in summer”) and knowledge on energy consumption facts 

(e.g., what a kWh unit means) are more likely to save energy than occupants with lower energy 

use knowledge. On the other hand, previous studies also show that higher ability levels may reduce 

consumers’ acquisition of information if they feel less need for more information (Moorman 1990). 

Therefore, it is also important to ensure that knowledgeable occupants are also highly motivated 

to maintain their saving behaviors. Based on Abrahamse and Steg (2009), occupants’ knowledge-

based ability level is measured by (1) the perceived energy conservation knowledge (we assume 
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their self-claimed knowledge is correct), and (2) level of knowledge on energy consumption facts, 

as shown in Figure 6-1. Accordingly, related hypotheses are stated as follows: 

H5: When energy conservation motivation is high, occupants with higher perceived energy 

conservation knowledge will perform more energy conservation behaviors. 

H6: When energy conservation motivation is high, occupants with better knowledge of energy 

consumption facts will perform more energy conservation behaviors. 

6.4.3 Framework Implementation 

The proposed framework is implemented in four phases as shown in Figure 6-2: (1) survey 

phase that involves designing an online survey to test the stated hypotheses, (2) reliability analysis 

phase that evaluates the validity of each measure using the survey data, (3) structural equation 

modeling (SEM) phase that investigates the relations among motivation, opportunity, ability, and 

intentional energy use behaviors of occupants, and (4) data output phase that proposes energy 

interventions for the occupants given their characteristics and predicts the expected energy savings. 

The following paragraphs provide detailed explanations of each phase of the research. 

 

Figure 6-2 Framework Implementation 

6.4.3.1 Survey Design Phase 

An online survey is developed to collect data for testing the stated hypotheses and identify 

occupants’ MOA level and their corresponding behaviors. The survey is designed to be flexible 

for both residential and commercial settings. To test and validate Hypothesis 1 (i.e., H1), two 
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measures are identified as: (1) occupants’ concern level on their personal energy consumption (e.g., 

how often are you concerned about your personal energy consumption at your office?), and (2) 

factors deciding whether to conserve energy (e.g., how important are the following factors to you 

in deciding whether to conserve energy?). 

Hypothesis 2 - 4 (H2, H3, and H4) are tested through measures presented in Figure 6-1. 

H2 measures if occupants’ energy use control levels have an impact on their behaviors when they 

have motivation to conserve energy. In the survey, measures of H2 are identified as the availability 

of lighting control, thermostat control, and office equipment (e.g., printer) plug load control. H3 

predicts that office (or residence) environment satisfaction levels have an effect on occupant 

behaviors in the presence of energy conservation motivation. The measures of H3 are designed as 

occupants’ satisfaction with the lighting quality (e.g., how would you describe the quality of 

artificial lighting in your typical work area?), thermal comfort, and indoor air quality in their 

offices. H4 studies whether occupants exposed to environmental conservation information changes 

their behaviors when they have motivations. This hypothesis is tested using the measures of 

occupants’ exposure level to environmental concern through a company’s (or landlord) actions 

(e.g., my company provides all employers with strategies to help us save energy), and peer-

pressure among co-workers (or neighbors) (e.g., my close friends in the company always use 

strategies to save energy). 

Finally, the last two hypotheses about the ability level, Hypothesis 5 and 6 (H5 and H6), 

are tested through measures presented in Figure 6-1. H5 studies if the occupants’ perceived energy 

conservation knowledge level would affect their behaviors when they are motivated. H5 is tested 

using the measure of occupants’ self-assessed knowledge level (e.g., I know methods to reduce 

the heating load in my office). On the other hand, H6 determines if occupants’ knowledge level of 
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energy consumption facts would have an impact on behaviors with high motivation. The measures 

for H6 are designed as six test questions asking occupants about their knowledge on energy 

consumption facts (e.g., which lighting choice saves the most energy assuming the same amount 

of light delivered?). 

6.4.3.2 Reliability Analysis Phase 

Reliability analysis is conducted to check the internal consistency of multiple measures. 

Through reliability analysis, highly correlated constructs are combined as one composite construct 

to reduce the multicollinearity and make the multi-item integration intensity scale to be 

unidimensional (Ray et al. 2005, Rosenzweig et al. 2003). In this research, the reliability analysis 

is evaluated based on the recommended threshold of Cronbach α with a value of α = 0.70 (Nunnally 

1978) and inter-item correlation with a value of 0.30 (Hair 2010). Questions with Cronbach α 

greater than 0.70 and inter-item correlation greater than 0.30 are combined into a single construct. 

For example, plug load control, as a construct of opportunity, can encompass four correlated 

equipment questions (i.e., printer, fax, fridge, and microwave oven). 

6.4.3.3 Structural Equation Modeling Phase 

Structural equation modeling (SEM) phase is implemented to test the stated hypotheses. 

SEM is a confirmatory multivariate analysis methodology for hypotheses testing, which has the 

capability of constructing variables that explain the major part of the unobserved heterogeneity in 

the model (Bollen and Long 1993). In social science and marketing field, several research studies 

implemented SEM models to investigate the influential factors on consumers’ characteristics and 

their behaviors (Al-Maghrabi et al. 2011, Bigné et al. 2010, Bruner and Kumar 2005, Childers et 

al. 2002, Govindaraju et al. 2013, Van der Heijden et al. 2003). Childers et al. (2002) studied the 

dominant factors in customers’ online retail shopping behavior using SEM. Results indicated that 
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hedonic aspects of the new media play at least an equal role as instrumental aspects in predicting 

online attitudes. Van der Heijden et al. (2003) used SEM to explore factors that influence 

consumer’s purchasing behavior on an electronic commerce website and found a strong positive 

relationship exists between attitude towards online purchasing and the corresponding purchasing 

intention. This study also suggested that the perceived risk and ease of use are antecedents of 

attitude towards online purchasing.   

In this research, SEM is implemented using the Stata (2015) where exogenous variables 

(e.g., quality of artificial lighting in the working zone) are computed as factors affecting the 

endogenous outcome (i.e., turning off the monitor when not in use). A detailed description of the 

model structure and interpretation is presented in the case study section. 

6.4.3.4 Results and Energy Implication Phase 

This phase helps decision-makers analyze the identified influential factors on occupants’ 

characteristics and their behaviors to design effective occupancy-focused interventions. The 

proposed MOA model can not only help decision-makers monitor the effectiveness of 

interventions (e.g., the effect of peer pressure, resulted energy savings) but also identify the weak 

components in occupants’ MOA characteristics and modify their interventions accordingly over 

time. 

To this end, the K-means clustering analysis is conducted using the Matlab to cluster 

occupants with similar MOA characteristics into the same groups (MacQueen 1967). According 

to the individual MOA level and the MOA distribution within the building clusters, an occupant 

can be categorized as prone, mildly unable, unable, mildly resistant, or resistant to change their 

behavior (Karatas et al. 2016). The resulted clusters are then integrated with the Agent-Based 

Model (ABM) which studies how occupants interact and respond to interventions. The resulting 
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knowledge will provide an initial prediction of the effectiveness of the chosen intervention. Details 

about ABM and its functionalities can be found in Azar and Menassa (2011b, 2014b, 2015). 

At the agent initialization phase, each agent (i.e., an occupant in our context) is associated 

with two variables: (1) energy intensity (EI) in kWh/person, which defines the energy use intensity 

of an agent, and (2) energy variability (Var), which refers to an agent’s openness to adopt new 

energy use characteristics (Azar and Menassa 2015). In the implementation, EI can be obtained 

from the actual building energy consumption or from databases such as the Commercial Building 

Energy Consumption Survey (CBECS) published by the Energy Information Administration (EIA 

2003). Occupants’ MOA characteristics (i.e., prone, mildly unable, unable, mildly resistant, 

resistant) can be mapped by the Var parameter, where occupants who are prone to change 

behaviors tend to have a high Var (i.e., flexible habits) while those with resistant MOA 

characteristics tend to have a low Var (i.e., rigid habits). As a result, agents which are initialized 

by the MOA levels can reflect the real occupancy characteristics in a building. 

6.5 Case Study 

A total of 177 occupants from a 32-story building in Chicago, IL, responded to the online. 

The case study building is a multifunctional university building which contains classrooms, student 

dorms, administrative offices. Participants are mainly from offices located on floors 6 to 10 

representing administrative staff in a typical office environment. In total, 205 people routinely 

occupy the surveyed floors (survey response rate is 86%). The case study building is equipped 

with a building automation system (BAS) with centralized monitoring and control of building 

environment to maintain the operational performance of the facility and the comfort of building 

occupants. This BAS system provides occupants with different levels of control over the built 

environment. For example, some occupants, especially those in single occupancy rooms, are able 
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to change the thermostat settings, shading, and lighting. But occupants in multi-occupancy rooms 

do not have much control, which may lead to different energy use behaviors in the same building. 

The demographic information of the respondents are as follows: (1) 65% are female and 

35% are male, (2) 9% are between the age of 20-30 years, 43% are between the age of 30-49, and 

48% are older than 49 years, and (3) 8% have high school degree, 26% have college degree, 66% 

have a graduate level degree of Master’s and/or PhD. The survey results are reviewed for 

completeness and result in a total of 130 completed surveys which were subsequently used for the 

reliability and SEM analysis. 

Through reliability analysis, some highly correlated constructs in the survey are combined 

into simple constructs (see Table 6-3). As shown in Table 6-3, the Cronbach a for some listed 

constructs is greater than the recommended cut-off value of 0.7 and thus can be combined into a 

single construct. Other constructs with low Cronbach a (e.g., availability of the lighting control) 

are used directly in the SEM model. Some measures are reported as “not applicable” by all the 

respondents (e.g., availability of the space heater) and thus are removed. 

Table 6-3 Constructs for Occupants’ MOA Levels through the Reliability Analysis 

Constructs that can be combined into a single construct 

Construct Highly Correlated Constructs Cronbach 
α 

Single 
Construct 

Opportunity 

(Control systems) 

Availability of the office equipment as follows: 

(1) printer 

(2) fax 

(3) fridge 

(4) microwave oven 

0.812 Plug load 

Opportunity 

(Expose to 

information) 

My company performs the actions as follows: 

(1) taking energy conservation very seriously 

(2) encouraging all staff to conserve energy 

(3) providing all staff with strategies to 

conserve energy 

0.868 
Company’s 

actions 
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Opportunity 

(Expose to peer 

pressure) 

I would feel comfortable explaining to (1) my 

close friends; (2) other colleagues in the 

company how they can conserve energy.  

My (3) close friends; (4) other colleagues in the 

company always use strategies to conserve 

energy. 

0.839 Peer pressure 

Motivation 

(1) How concerned are you about your personal 

energy consumption at your office? 

(2) How often do you look for ways to conserve 

energy at your office?  

(3) How important are the following factors to 

you in deciding whether to conserve energy? 

(e.g., it is morally the right thing to do) 

0.760 Motivation 

Ability 

(Perceived energy 

conservation 

knowledge) 

I know methods to reduce the power load as 

follows: 

(1) lighting 

(2) cooling 

(3) heating 

(4) plug load 

0.861 

Perceived 

energy 

conservation 

knowledge 

Constructs that exist individually 

MOA Category Construct Description Single Construct 
Opportunity 

(Control systems) 

Availability of the lighting control Lighting control 

Availability of the thermostat control Thermostat control 

Opportunity 

(Environment 

satisfaction) 

How do you describe the quality of artificial 

light in your work area? 
Lighting quality 

How do you describe the quality of thermal 

comfort in your work area? 
Thermal comfort 

How do you describe the indoor air quality in 

your work area? 
Indoor air quality 

Ability 

(Knowledge of 

energy 

consumption facts) 

Questions aiming to test occupants’ knowledge 

about energy consumption facts (e.g., Which of 

the following energy resources is not 

renewable?) 

Knowledge of energy 

consumption facts 

Constructs that are removed due to non-applicability 

MOA Category Construct Description Removed Construct 

Opportunity 

(Control systems) 

Availability of the task lighting Control of task lighting 

Availability of the space heater Control of space heater 

Availability of the coffee machine Control of coffee machine 

Opportunity 

(Environment 

satisfaction) 

How do you describe the quality of natural 

lighting in your work area? 
Quality level of natural 

lighting 

How do you describe the glare comfort in your 

work area? Quality of glare comfort 
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The distribution of occupants’ MOA level and behaviors are shown in Figure 6-3 and 

Figure 6-4, respectively. Figure 6-3 shows that around 30% of occupants (36 out of 130) are highly 

motivated, and around 14% (18 out of 130) possess high ability level. However, the opportunity 

level is relatively low (77 out of 130 possess low or medium-low opportunity level) compared to 

the other two characteristics, with only 5 occupants having a high opportunity. This might be a 

direct result of the limited ability placed on the occupants by the existing BAS, which reduces 

occupants’ potential to contribute to energy saving. 

Figure 6-4 shows the number of occupants who performs well for different behaviors. 

Occupants report several poor energy use behaviors, such as Behavior 4 (i.e., B4: turn off the 

monitor when not in use), Behavior 5 (i.e., B5: turn off the computer when not in use), Behavior 

6 (i.e., B6: adjust shades to reduce glare), Behavior 7 (i.e., B7: adjust shades to increase 

daylighting), Behavior 8 (i.e., B8: adjust shades to reduce heat gain from the sun), and Behavior 9 

(i.e., B9: turn off the light when there is enough daylight). For B4, B5, and B9, occupants fail to 

show better behaviors even though most of them have control to the equipment (lighting and 

computer), that is they have a high opportunity to perform these actions. The low action rate of B6, 

B7, and B8 is because many occupants (52 out of 130) reported that they have no control to the 

shading system, which indicates a strong correlation between opportunity and the behavior.  

 

Figure 6-3 Occupants’ MOA Level: (left) Motivation, (middle) Opportunity, (right) Ability  
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Figure 6-4 Number of Occupants who Perform Better Energy Use Behaviors 

 In SEM, models are illustrated in a path diagram. The rectangles represent observed 

variables (or indicators) that are observed from the data. These variables are measured directly 

from the survey (e.g., lighting quality). The ellipses are unobserved latent variables that are 

measured by a number of observed variables (e.g., occupant’s exposure to information is measured 

by the company’s action and peer pressure). Single head arrows, called paths, connect variables in 

the path diagram. When a path points from one variable to another, it means that the first variable 

affects the second (e.g., the arrow between motivation and behaviors represents that motivation is 

a predictor of behaviors). According to the measures for the MOA level discussed in Figure 6-1, 

an SEM model is developed to test the hypotheses (see Figure 6-5). For example, to test H2 

“occupants with higher control over their indoor environment will perform more energy 
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conservation behaviors when motivation is high”. Latent variable “Control level” is indicated by 

three observed variables: lighting, thermostat, and plug load control. Then the “Control level”, 

Motivation, and Behaviors are connected using paths to represent their proposed relationship. The 

best four behaviors shown in Figure 6-4 (i.e., Behavior 1 - 4) are selected to represent occupants’ 

intentional energy use behaviors. However, the above-mentioned structure of the SEM model 

depends on the data. Several structures are evaluated in Stata and the best fit model is shown in 

Figure 6-5. It should be noted that the SEM model might look different in other buildings (e.g., M, 

O, and A are distinct precursors of behaviors and are parallel to each other) but the framework 

presented here can be adopted to achieve the best fit model.  

The model fit statistics obtained from the survey show an ÖVof 0.174. However, it can be 

insufficient to evaluate the model fit only using R2, especially considering that people are fairly 

unpredictable (Minitab 2014). Therefore, we also adopt the root mean squared error of 

approximation (RMSEA) to evaluate the model fit. The RMSEA of the developed model is 0.05, 

which is equal to the ideal standard of “less than or equal to 0.05” (Acock 2013, MacCallum et al. 

1996). Also, the Normalized Chi-Squared value �V/>F is 0.80, which also suggests a good model 

fit (Kline and Santor 1999). Therefore, the model shown in Figure 6-5 is retained for further 

analysis. 
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Figure 6-5 SEM Model for the Case Study Building 

The SEM results are presented in Table 6-4. ü is the coefficient of the observed variable 

and the latent variable. For each unit of change in the observed variable, the latent variable will 

change by ü units while holding all other observed variables constant (Stata 2013). Statistically 

significant coefficient is highlighted with a label (“*” for p < 0.1, “**” for p < 0.05). The following 

subsections present the implication of these results. 

5.5.1 Test of the Hypothesized Relationships 

H1 predicts that energy conservation motivation will positively affect all the intended 

energy-saving behaviors. The results show that motivation level has a positive effect on some 

behaviors like turning off the office lights (ü = 0.34, _ < 0.05), and computer monitors when not 

in use (ü = 0.24, _ < 0.05). However, there is no significant relationship (abbreviated as “ns”) 

between occupants’ motivation and behaviors when the office is: (1) too chilly/cold (e.g., wearing 
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a jacket, using space heater) (ü = −0.02, JN), and (2) too warm/hot (e.g., wearing a thin layer of 

clothing, using an electric fan) (ü = −0.03, JN). These findings indicate mixed support for H1. 

Table 6-4 Results from the Structural Equation Model  

  Outcome   Coeff. (∑) 
Behavior     

  
  
  
  
  

Motivation à Behavior (H1) 
   Motivation Level à Turning off the office room lights when not in use    0.34 ** 

   Motivation Level à Turning off the office monitor when not in use    0.24 ** 

   Motivation Level à Energy conservation behavior when the office is too 

chilly/cold 

 - 0.02 

   Motivation Level à Energy conservation behavior when the office is too 

warm/hot 

 - 0.03 

Motivation      

  Opportunity  à Motivation   

  H2 à H1   

   Control on Lighting à  Motivation Level - 0.11 

   Control on Thermostat Settings à  Motivation Level - 0.32 * 

   Control on Office Equipment Plug Load à Motivation Level   0.13 

  H3 à H1   

   Indoor Lighting Comfort Level  à  Motivation Level - 0.06 

   Thermal Comfort Level  à  Motivation Level   0.16 * 

   Indoor Air Quality Level  à  Motivation Level - 0.09 

  H4 à H1   

   Exposed to Information  à  Motivation Level - 0.01 

   Peer Pressure  à  Motivation Level   0.19 * 

Ability à Motivation   

  H5 à H1  

   Perceived Self-Knowledge on Energy Conservation à  Motivation Level     0.23 ** 

  H6 à H1   

   Knowledge on Energy Use Facts à  Motivation Level    0.16 

*p < 0.1, **p < 0.05 

 

H2 focuses on whether energy use control levels affect behaviors in the presence of 

motivation. The results indicate that having thermostat control to adjust the indoor climate 

conditions is negatively and significantly correlated with occupants’ motivation (ü = −0.32, _ <

0.1). This result indicates that for the case study building, even some occupants do not have control 

over the thermostat, they still have high motivations to conserve energy. Moreover, there is no 

significant impact of the control level over office plug load (e.g., printer, microwave oven) (ü =

0.13, JN)	and lighting (ü = −0.11, JN) on the motivation. These results do not support H2. 
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H3 studies if higher office environment satisfaction levels will affect behaviors in the 

presence of motivation. For example, occupants with higher thermal comfort tend to perform more 

energy-saving behaviors than uncomfortable occupants when their motivation is high. The results 

indicate that there is no significant correlation between occupants’ motivation and their lighting 

comfort (ü = −0.06, JN), and indoor air quality (ü = −0.09, JN). However, occupants’ thermal 

comfort is positively and significantly correlated with the motivation to save energy (ü =

0.16, _ < 0.1). This finding can be interpreted as providing higher thermal comfort in the office 

will increase the motivation for energy savings. Accordingly, these results present mixed support 

for H3. 

H4 studies if higher exposure to ambient conservation information will positively affect 

behaviors in the presence of motivation. This hypothesis is tested under two conditions, occupants’ 

exposure to information through (1) company’s energy-saving actions, and (2) peer-pressure from 

co-workers. The results show that peer-pressure is positively and significantly correlated with the 

motivation (ü = 0.19, _ < 0.1) , which indicates if an occupant observes his/her co-workers 

always use strategies to conserve energy, he/she will also be highly motivated to do so. The direct 

exposure to energy conservation-related information, however, does not have any effect on the 

motivation (ü = −0.01, JN). These results also indicate mixed support for H4. 

H5 evaluates if the perceived energy conservation knowledge has a positive impact on 

behaviors in the presence of motivation. The results indicate that there is a positive and significant 

correlation between the perceived knowledge of energy conservation and the motivation to 

conserve energy ( ü = 0.23, _ < 0.05) . This result indicates that higher perceived energy 

conservation knowledge results in higher motivation. These findings indicate support for H5. 



 174 

H6 determines if a higher knowledge level of energy consumption facts would lead to more 

energy-saving behaviors, such that more knowledgeable occupants would perform better than less 

knowledgeable occupants when motivation is high. The results indicate that there is no significant 

correlation between the knowledge level on energy consumption facts and motivation (ü =

0.16, JN). Therefore, these results do not support H6.  

6.5.2 Discussion of SEM Analysis Results 

Based on the results obtained from the previous section, higher occupants’ motivation level 

(e.g., looking for ways to save energy in the office) can lead to some energy-saving behaviors. 

Therefore, occupancy interventions aiming at better behaviors can focus on improving the 

motivation level. Moreover, we identified two factors of the opportunity characteristic and one 

factor of the ability characteristic which demonstrate strong correlations with occupants’ 

motivation. These three factors are the major influential factors of occupants’ behavior in this 

particular building. Therefore, to promote energy-saving behaviors, occupancy interventions can 

be designed to: (1) provide occupants with thermal comfort conditions, (2) increase the peer-

pressure among the co-workers, and (3) enhance occupants’ self-assessed knowledge on energy 

conservation to promote their motivation level. For example, facility managers of can install a 

thermostat in each office room to improve the indoor thermal comfort, and also send regular emails 

to occupants presenting their personal energy usage with a comparison of the energy consumption 

among colleagues, as well as some tips on energy savings. 

Findings from the case study also support existing studies conducted by Agha-Hossein et 

al. 2014, Dolan and Metcalfe 2013, Hayes and Cone 1977, He et al. 2010, Klein et al. 2012, Marans 

and Edelstein 2010, Peschiera and Taylor 2012, Peschiera et al. 2010, Pieters et al. 1998. Agha-

Hossein et al. (2014), Dolan and Metcalfe (2013), and Hayes and Cone (1977) suggested that 
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information distribution of energy consumption facts and reduction guidelines do not appear to 

effectively influence occupants. Moreover, He et al. (2010) and Marans and Edelstein (2010) 

demonstrated that feedback and peer-comparison are the most effective education methods to 

influence occupants’ energy-saving behaviors. Klein et al. (2012) highlighted that occupant 

engagement in building energy reduction strategies is critical and can be achieved through 

informed feedback and suggestions. Peschiera and Taylor (2012) and Peschiera et al. (2010) 

argued that feedback which monitors and reports the energy use of peers is very effective in 

promoting energy reduction. Additionally, the finding of thermal comfort as an influential factor 

of energy-saving behaviors also conforms to Maslow’s hierarchy of needs (Maslow 1987). 

Occupants are willing to take energy-saving actions and make contributions to the environment 

(self-actualization) only when their fundamental needs (e.g., physiological needs of thermal 

comfort) have been satisfied. 

However, it should be noted that these findings depend on the data collected from the case 

study building. The major influential factors identified here may not remain the same for other 

buildings. For the non-influential factors, further investigations in the workplace can be conducted 

to identify the reason why these factors fail to show a strong impact on behaviors. Also, it might 

seem counterintuitive that people with control of lighting and office plug loads fail to perform 

better. However, there can be several reasons leading to such situations. For example, some office 

equipment is public appliances (e.g., printer, microwave oven) which are not managed by a single 

person. It is also likely that occupants may not turn off the light in a multi-occupancy room even 

if there is enough daylight, because the switch is next to an overbearing colleague. Moreover, 

company’s eco-promotion efforts may fail if the posters are not noticeable to the employees, or 

the proposal is difficult to perform. 
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6.5.3 Energy-saving Implications 

This section explains how the results obtained from the MOA and SEM analyses can be 

used to predict potential energy savings from a chosen intervention strategy. First, K-means 

clustering is conducted to group the occupants in five categories (as shown in Figure 6-6) based 

on each occupant’s MOA level measured in a scale of 0 to 100. The centroid of each cluster is 

calculated (see Table 6-5) and then mapped to the five MOA characteristics. For example, 

occupants in the prone category have the highest motivation (80) and relatively high opportunity 

(51) and ability level (61), while occupants in the resistant category can have the lowest motivation 

(20), opportunity (30) and ability level (21). More details about the occupants clustering can be 

found in Aslihan et al. (2016). For the case study building, the number of occupants in each 

category (from prone to resistant) is 29, 30, 29, 37, and 5, correspondingly. 

As shown in Figure 6-5, peer pressure is one of the factors that affect the opportunity level, 

which thus has a positive influence on motivation. Therefore, peer pressure in the ABM is selected 

to study the potential impact of this intervention on reducing energy. The occupants are assumed 

to form a single small-world network, and their energy intensity (EI) is initialized using log-normal 

distribution (µ=1.626, s=0.875, min=0.272), emulating the energy consumption of a typical office 

building in the U.S. based on the CBECS data. However, the energy variability (Var) and the 

corresponding number of people are decided based on the MOA characteristics of this study. 

Occupants in the prone category have the largest Var, followed by mildly unable category, unable 

category, and so on. During the simulation, occupant’s EI and Var will evolve due to the presence 

of peer pressure. When the model converges, results show that 95 out of 130 occupants have 

reduced their EI. The average EI decreases from 6.93 to 4.19 kWh/m2/person/year. Figure 6-7 

shows the number of occupants in each category before the intervention and also the number of 
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occupants who have reduced the energy consumption after the intervention. These results support 

the conclusions from the SEM analysis that peer pressure can enhance the opportunity level, which 

then improves motivation and behaviors. However, if the building has a large number of people in 

each cluster (or in a multi-tenanted building), different interventions can be considered for each 

cluster. The choice of multi-intervention is beyond the scope of this chapter and is part of our 

future research efforts to map building occupancy clusters obtained from the MOA model to 

different interventions. 

Table 6-5 Centroid of Each Category for the Case Study Building 

Number of 
Occupants 

Occupancy 
Characteristics M O A 

29 Prone 80 51 61 

30 Mildly Unable 56 43 32 

29 Unable 53 40 66 

37 Mildly Resistant 52 61 53 

5 Resistant 20 30 21 

     

 

Figure 6-6 K-means Clustering Analysis for Occupants in the Case Study Building 

 



 178 

 

Figure 6-7 Distribution of Occupants who Reduced Energy Consumption 

6.6 Limitations 

A few limitations of this study should be acknowledged. First, when evaluating the ability 

level, occupants’ perceived knowledge is assumed correct, which might not always be true. 

Occupants’ wrong assumption about energy-saving actions might turn out to be counterproductive. 

Second, the proposed framework mainly focuses on individual’s MOA level to determine energy 

use characteristics. However, other social factors (e.g., education, religion, economic status, 

lifestyle) may also collectively affect an occupant’s behavior. Third, the motivation level is treated 

as an overall measure of an occupant’s concern and desire for energy conservation. However, in 

reality, people may have a mixed level of motivation for different behaviors. For example, people 

may be more motivated to turn off the light than to adjust the thermostat. Fourth, the proposed 

framework is only tested in commercial buildings. In residential settings, utility bill can become a 

key factor of energy use. Future studies will take it into consideration when investigating the 

influential factors in residential buildings. 



 179 

6.7 Conclusion and Policy Implications 

This chapter presents an integrated MOA framework which draws an analogy between 

consumers’ purchasing behaviors and occupants’ energy use behaviors. Based on this analogy, a 

set of research hypotheses are tested using the survey data to identify the determinants of energy 

use behaviors and occupant characteristics. The results suggest a direct impact of motivation and 

moderating effect of opportunity and ability on energy use behaviors. ABM is then conducted to 

estimate the impact of a chosen intervention on energy reduction.  

The contribution of this chapter is the flexible MOA framework to identify behavioral 

determinants and occupant characteristics. This framework can be modified according to the actual 

situation of a given building, including different building types, weather zones, occupancy states 

(multi-tenanted vs single company) to name a few. Decision-makers can first identify the 

behavioral determinants and occupant characteristics of a particular building, and then use the 

resulting information to design occupancy-focused energy reduction interventions. For example, 

if a building has a high percentage of occupants who are identified as “prone” to change behaviors, 

the intervention can focus on knowledge-based approaches such as education (see Figure 6-8). For 

buildings which show diverse occupant characteristics, multi-level interventions can be adopted 

to account for different groups. Given the results from the ABM, great saving potentials can be 

expected from the proposed framework. In particular, policy makers can implement this 

framework to obtain an understanding of the population perspective in city blocks, urban 

environments, or residential neighborhoods. They can then use the results to determine which of 

the M, O or A factors needs to be supplemented or addressed by the intervention to achieve large 

scale and effective energy reductions. 
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Figure 6-8 Steps for Designing Occupancy-focused Intervention Strategies 

Analyze
occupants' energy 

use characteristics

•(e.g., high percentage of 
"prone" occupants)

Choose the type

of intervention 

strategy

•(e.g., education is cheapest and 
can be implemented 

immediately)

Aim at identified 
factors

•(e.g., enhance perceived 
energy-saving knowledge)
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7) CHAPTER 7 

A Unified Theory of the Motivation-Opportunity-Ability Framework with Social-

Psychology Models 

7.1 Introduction 

Chapter 6 presents the MOA framework to understand occupants’ energy use 

characteristics and behaviors. However, several limitations of this framework should be 

acknowledged: First, the rather vague measures failed to capture additional dimensions of 

motivation, such as values and cognitive processes underlying the decision making. For example, 

the motivation was a direct measure of the concern and desire about energy conservation (e.g., 

how concerned are you about your personal energy consumption in your office?) without catching 

broader dimensions of motivation in the energy context such as perceived consequence and 

responsibility. Second, for the measures of opportunity, peer pressure was used as a mixed measure 

of descriptive norms (e.g., other colleagues always use strategies to save energy) and perceived 

ease of interaction with co-workers (e.g., I would feel comfortable explaining to others how they 

can save energy) to describe the interpersonal factors influencing energy behaviors. The subjective 

norms from the Theory of Planned Behavior (TPB), however, were overlooked. Subjective norms 

can affect an individual’s behaviors as he/she tends to perform a particular behavior in the 

workplace if it is approved by the colleagues. In this case, one’s perception of what behavior is 

approved or disapproved by others becomes the external factor influencing behavioral intention 

which falls in the category of opportunity). Third, as for the measure of ability, it was considered 
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only as a knowledge-based factor measuring one’s interpretation, comprehension, and reasoning 

about energy use information. This is mainly due to the fact that physical difficulties are 

uncommon in the built environment (Wilson and Marselle 2016). However, certain behaviors do 

require occupants to possess physical abilities (e.g., the vinyl window is hard to open and close). 

Thus, an additional measure is needed to broaden the concept of ability. Fourth, the previous MOA 

framework was only tested on a small dataset consisting of 177 responses from a single office 

building. A large-scale dataset involving additional contextual measures from social science 

theories to capture diverse energy behaviors is much needed in evaluating the applicability of the 

MOA framework in various office settings. Importantly, clear definitions and valid measurements 

for the latent components in the MOA framework require further investigation. 

Therefore, the main objective of this chapter is to enhance the previous MOA framework 

through the integration of social-psychology models. Specifically, variables from the Norm 

Activation Model (NAM) and the Theory of Planned Behavior (TPB) are adopted. These proposed 

variables are not only proven predictors of energy-saving behaviors but also inherently supplement 

the motivation, opportunity, and ability factors by definition. In sum, the NAM is adopted to 

strengthen the broader implications of energy behaviors, while the TPB can be used to reflect the 

cognitive deliberation process of certain energy behaviors.  

7.2 Interdisciplinary Approach and Integrated Framework  

There is great potential in using interdisciplinary research approaches to understand the 

interactions of human occupants and building energy systems (Pellegrino and Musy 2017). As 

Sovacool (2014) suggested that “a broader pool of expertise is needed to understand how human 

behavior affects energy demand and the uptake of technologies.” (p.529). Knowledge gained from 

this field can provide insights into the drivers of energy-saving behaviors, especially in the office 
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environment where workplace norms and social interactions exist. The office environment is an 

interesting research setting as employees may lack interest in saving energy because they are not 

responsible for utility bills. To fill these gaps, researchers have investigated energy behaviors from 

social-psychological and interdisciplinary perspectives in the context of office workers. For 

example, Chen and Knight (2014) found that injunctive norms and perceived behavioral control 

(PBC) fully mediated the effect of energy concerns on workplace energy-saving intentions and 

that injunctive norms had the strongest direct effect on energy-saving intentions. Greaves et al. 

(2013) investigated the intentions of pro-environmental behaviors in the workplace and suggested 

TPB can explain between 46% and 61% variance in behavioral intentions. Li et al. (2017b) 

proposed an adapted MOA framework to reason the factors influencing energy-saving behaviors. 

In this study, building occupants were categorized into five categories (i.e., prone, mildly unable, 

unable, mildly resistant, resistant to behavioral change) based on their MOA characteristics; which 

provided useful information for decision-makers to design interventions for energy reduction in 

office buildings. However, since the MOA framework requires more detailed components and 

measurements to explain the occupant behaviors, it needs to incorporate clear operationalization 

of concepts and enriched dimensions suitable for the organization or group setting. One approach 

to achieve this is to investigate the integration of the MOA framework with constructs from well-

established theories in human behavior and decision-making. 

To address the complexity of human behaviors, researchers have recently stressed the 

importance of integrating different theories to perform synergistic studies (Bamberg and Moser 

2007, Chan and Bishop 2013, D’Oca et al. 2017, Han 2015, Shi et al. 2017, Wolske et al. 2017). 

In general, model integration can address the inherent limitations of each theory by integrating 

meaningful measures from various social-psychological perspectives and empirical evidence. The 
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resulting new framework can broaden and deepen the understanding of behaviors and achieve an 

enhanced predictive power over a single theory. For example, D’Oca et al. (2017) developed an 

interdisciplinary framework by integrating building physics and multiple theories from social 

psychology including social cognitive theory and the TPB to investigate building-user interaction 

in offices, which improved the understanding of the impact of social and contextual factors on 

occupant behavioral control of building technology in office settings. Chan and Bishop (2013) 

used both the TPB model and the value-belief-norm (VBN) framework to explain recycling 

behavioral intention and found that moral norms, subjective norms, and PBC were the most 

influential predictors. Shi et al. (2017) integrated the norm activation model (NAM) with the TPB 

in explaining behavioral intention to reduce particulate matter (PM) 2.5 and reported that 

environmental concerns and moral norms contributed to the behavioral intention to address severe 

haze pollution beyond the TPB variables. Furthermore, PBC moderated the effect of moral norms 

on the intention to reduce PM 2.5. Han (2015) proposed a theoretical model comprising VBN and 

TPB to predict travelers’ intention of staying in “green” hotels and suggested that awareness of 

consequences and normative variables significantly affected the behavioral intention.  

7.3 Contributions 

In order to promote energy-saving behaviors in office buildings, the following research 

question should be carefully examined: what are the determinants of energy-saving behaviors in 

the organizational context? Answering this question can help supplement the existing body of 

literature with a more systematic approach to identify the influential factors of behavioral change, 

as well as the capability to quantitatively measure their impacts. Implications of this research 

question can improve the effectiveness of energy interventions as decision-makers can tailor 
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strategies in accordance with the characteristics of occupants in a particular setting. In summary, 

the specific contributions of this chapter include: 

• Present an integrated framework to strengthen the current MOA framework by 

incorporating constructs from the TPB and the NAM. 

• Conduct a large-scale survey in office buildings and test the improved framework to 

identify the important factors influencing energy-saving behaviors in the workplace. 

7.4 Theoretical Framework and Hypotheses  

This section presents a review of relevant theoretical frameworks and their applications 

leading to the integrated framework, including the MOA, the NAM, and the TPB models. The 

model integration and research hypotheses are discussed at the end of this section. 

7.4.1 The Motivation-Opportunity-Ability Framework 

The MOA framework was originally developed and applied to understand consumer 

engagement in processing brand information and corresponding purchasing behaviors (Bigné et al. 

2010, Gruen et al. 2005, Hastak et al. 2001, MacInnis et al. 1991, Moorman and Matulich 1993, 

ThØgersen 1995). The MOA framework posits that consumers’ processing of information from 

advertisements and purchasing behaviors are affected by three factors: motivation (i.e., one’s 

interest and desire to process the advertisements), opportunity (i.e., favorable conditions or time 

availability that affect one’s attention), and ability (i.e., one’s skills and proficiencies to interpret 

brand information) (Hoyer and MacInnis 1997, MacInnis et al. 1991). Similarly, Fishbein 

suggested the three necessary factors for any volitional behavior to occur as “the strong positive 

intention to perform the behavior”, “the skills necessary to carry out the behavior”, and “the 

context of opportunity provided by the environment, or be free of constraints” (p.5) (Fishbein et 

al. 2000). 
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The MOA framework has been successfully adopted in existing studies to explain various 

types of behaviors. For example, Moorman and Matulich’s study (1993) suggested that consumers’ 

health motivation directly affected the health-related behaviors (e.g., improving dietary intake) 

while the effect of health ability was moderated by health motivation. Bigné et al.’s study (2010) 

indicated that consumers’ online purchasing intentions of airline tickets were affected by the 

convenience and financial advantages of online purchases (motivation factors), and consumers’ 

Internet proficiency and capabilities to search flight information (ability factors). Opportunity, 

however, did not show a strong influence on the purchasing intention due to the perceived ease of 

use of the online ticketing website (e.g., do not request excess information for the transaction). 

Recently, the MOA framework has also been applied to investigate energy behaviors. For 

example, Li et al. (2017b) adapted the MOA framework to analyze factors influencing energy-

saving behaviors in office buildings (see Figure 7-1). In Li et al. (2017b), the MOA factors were 

defined as follows: motivation measures an individual’s concern and involvement in energy 

conservation, which directly affects his/her energy-saving behaviors and moderates the effect of 

opportunity and ability; opportunity defines the surrounding environmental (e.g., organizational 

support) and interpersonal (e.g., peer pressure) factors facilitating one’s energy-saving intention; 

ability measures one’s prior knowledge in energy-savings and proficiencies in interpreting 

information received from behavioral interventions. Through the SEM analysis, Li et al.’s study 

confirmed the proposed effects of the MOA factors on an individual’s energy-saving behaviors 

and identified three influential factors in promoting occupants’ motivation, namely satisfaction 

about the thermal environment, peer-pressure from co-workers, and perceived knowledge on 

energy conservation.  
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Figure 7-1 The MOA Framework Applied in Energy-Saving Behaviors 

7.4.2 The Norm Activation Model 

This chapter adopts the NAM to extend several important psychological measurements to 

capture the essential aspects of motivation (see Figure 7-2). The NAM was developed by Schwartz 

(1977) to explain altruistic behaviors such as recycling (Park and Ha 2014), volunteering 

(Schwartz and Fleishman 1982), and other pro-social behaviors such as driving and traveling style 

(Onwezen et al. 2013, Ünal et al. 2017), environment protection (van Riper and Kyle 2014), and 

energy-saving behaviors (Black et al. 1985, van der Werff and Steg 2015, Zhang et al. 2013). The 

NAM argues that altruistic intention and behaviors are largely driven by one’s moral 

considerations, which are activated by three key components: awareness of consequence, 

ascription of responsibility, and personal norms. Most closely, behaviors are influenced by 

“expectations, obligations, and sanctions anchored in the self,” termed “personal norms” 

(Schwartz 1977, p.223). Moreover, awareness of consequence, defined as being aware of the 

consequences of actions, and ascription of responsibility, defined as feeling responsible for taking 

actions, are two important antecedent variables contributing to personal norms (De Groot and Steg 
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2009). The NAM is a pro-social theory which argues that people will perform altruistic behaviors 

for the benefits of the society/environment even though the behaviors can sometimes go against 

their self-interest (De Groot and Steg 2009). In the context of office buildings in this study, for 

example, employees may increase the thermostat set point in summer to reduce the cooling load 

and save energy despite their thermal comfort.  

 

Figure 7-2 Norm Activation Model (Schwartz 1977) 

7.4.3 The Theory of Planned Behavior 

This chapter adopts the TPB to strengthen the MOA framework by clearly capturing the 

rational aspects of energy behaviors (see Figure 7-3). The TPB is an extension of the theory of 

reasoned action (Fishbein and Ajzen 1975). The TPB proposes that behavioral intention is 

determined by three constructs: attitude towards a behavior, subjective norms (i.e., perceived 

social pressure to engage or not engage in the behavior) (Ajzen 1991), and perceived behavioral 

control (PBC, i.e., perceived ease/difficulty to perform the behavior). Recent studies also extended 

the TPB by adding descriptive norms (i.e., perceptions of important other’s opinions and behaviors) 

to capture the additional social influence and suggested increased explanatory power of behavioral 

intention (Ajzen 2002, Forward 2009, Rivis and Sheeran 2003). Particularly, descriptive norms 

play an influential role in adopting a behavior for low PBC individuals (Rai and Beck 2015). As 
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opposed to the NAM, the TPB is a self-interest theory such that the behavior is a rational choice 

of individual benefits (Ajzen 1991). The TPB has been demonstrated as an effective framework to 

predict a variety of behaviors, including opinions toward wind farm development (Read et al. 

2013), adoption of residential solar photovoltaic (Rai and Beck 2015), online trade (Gopi and 

Ramayah 2007), voting choice (Netemeyer and Burton 1990), driving violation (Forward 2009), 

and energy-saving behaviors (Kaiser and Gutscher 2003, Scherbaum et al. 2008), to name a few. 

 

Figure 7-3 Theory of Planned Behavior (Ajzen 1991) 

7.4.4 Integrated MOA Framework and Research Hypotheses 

This chapter proposes an integrated MOA framework to analyze the determinants of 

energy-saving behaviors and characteristics in the office environment by considering the 

disciplines of building science and social psychology. In the MOA framework, the three main 

factors, i.e., motivation, opportunity, and ability, are high-level abstractions of antecedents of 

behaviors. In general, the MOA factors are not directly observed from the survey but are rather 

inferred from other variables. To provide clearly defined and measurable components for each 

MOA factor, we adopt constructs from the NAM and the TPB models, as well as other constructs 

which have been identified as the dimensions of the MOA factors in existing models (see Figure 

7-4). As each MOA factor encompasses several constructs, it has a broader conceptual scope than 
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individual constructs in the existing models. This hierarchical framework also has the benefits of 

abstraction of concepts and alleviation of multicollinearity (Koufteros et al. 2009). For example, 

representing motivation as a high-level factor can address the difficulties of defining and 

measuring motivation in behavior studies (Ambrose and Kulik 1999, Siemsen et al. 2008). Specific 

factors in the integrated MOA framework are described as follows.  

 

Figure 7-4 Overview of the Integrated MOA Framework 

Motivation: Motivation is defined as the goal-directed arousal to engage in desired 

behaviors (MacInnis et al. 1991, Michie et al. 2011). In the context of energy behaviors, it captures 

an employee’s needs, values, concerns, and involvements in performing a behavior in the 

workplace (Li et al. 2017b). In order to capture the social-psychological factors in motivation, we 

adopt the three main NAM constructs - awareness of consequence, ascription of responsibility, 

and personal norms, as well as a construct from the TPB theory - attitude as the fourth dimension. 

In relation to motivation, both awareness of consequence and ascription of responsibility 

play important roles in cognitive choice-based motivation theories (Kanfer 1990). Those theories 

emphasize the cognitive processes involved in decision making; people usually undergo a series 
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of cognitive processing before deciding whether to initiate, maintain, or cancel efforts. In particular, 

awareness of consequence resembles the key construct, expectancy, in the expectancy-value theory, 

which asserts that expectancy drives behaviors (Wigfield and Eccles 2000). The ascription of 

responsibility is also an important cognitive component for motivation (Wilson and Marselle 2016). 

Personal norms, on the other hand, relate to the need-motive-value theories of motivation. Personal 

norms are usually value-driven and act as an internalized need to commit to pro-social or pro-

environmental behaviors. Stronger impact of personal norms on behavior has been observed as the 

decision process progresses from intention to action (Rai and Beck 2015). In summary, these 

theories emphasize the impact of stable dispositions on behaviors. Additionally, the cognitive, 

affective, and behavioral components of attitude (Eagly and Chaiken 1993) align well with the 

conceptualization of motivation - brain processes that direct and energize behaviors (Michie et al. 

2011). In fact, Thøgersen (1995) identified attitudes as one of the motivational factors in 

determining behavioral intentions. 

The four specified dimensions define the formation of motives to engage in energy-savings, 

i.e., if an employee is aware of the consequences of a behavior (e.g., saving electricity can reduce 

environmental impact and also reduce the utility cost of my company), he/she may feel responsible 

to perform this behavior (e.g., it is my responsibility to protect the environment and do something 

good for my company). The awareness and perceived responsibility are considered as relating to 

one’s personal norms (e.g., I feel guilty if I use a lot of electricity). As an essential psychological 

aspect, attitude captures one’s favorable or unfavorable evaluation of certain behaviors by 

weighing the associated benefits and costs (Ajzen 1991). Thus, the more an employee’s positive 

attitude towards energy-savings, the more likely he/she is motivated to perform that behavior. 
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Opportunity: Opportunity is defined as the external factors lying outside of the individual 

that enable or inhibit a behavior (Michie et al. 2011, Siemsen et al. 2008). In the context of energy 

behaviors, it includes both environmental and interpersonal factors in the workplace that facilitate 

or constrain energy behaviors (Li et al. 2017b). Under the construct of opportunity, we measure 

five factors including subjective norms from the TPB theory, and another four important social-

psychological factors identified in existing studies - accessibility to control, time availability, 

organizational support, and descriptive norms. 

First, accessibility to control (Li et al. 2017b) and time availability (Siemsen et al. 2008) 

capture the physical-temporal constraints in an office environment. Accessibility to control 

measures one’s degree of actual controllability over the building systems (e.g., whether the 

thermostat is adjustable) which may not be accurately reflected by the PBC. Time availability has 

been previously used as a proxy of opportunity (Siemsen et al. 2008). It captures the necessary 

slack time during working hours to enact a behavior. An employee may not be able to save energy 

if he/she does not have control or is overwhelmed by the work. Organizational support is another 

construct reflecting the level of commitment or encouragement of a company in promoting energy 

-saving behaviors (e.g., the company rewards employees for saving energy). Studies have shown 

that employees’ engagement in pro-environmental behaviors is positively associated with the 

support from their company (Ramus and Steger 2000, Thøgersen 2014, Xu et al. 2017).  

On the other hand, normative factors capture the social influences that are prevalent in the 

office environment. The social influence can prompt or inhibit a behavior; thus it is a situational 

condition which is beyond the control of an individual. Therefore, they are ascribed as the 

constructs of opportunity. This study considers two social norms. First, descriptive norms capture 

the perceptions of others’ actual behaviors; for example, the perception of colleagues’ actual 
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wasting or saving electricity behaviors. Descriptive norms reflect the impact of social influences. 

Second, subjective norms (a type of injunctive norms) reflect the expectation of significant others 

towards a behavior; for example, the majority of colleagues expect an employee to turn off lights 

when leaving the office. Descriptive and subjective norms are found positively correlated and are 

both important in influencing individual behaviors (Ajzen 2002, Rivis and Sheeran 2003). Thus, 

we posit that positive social norms will lead to enhanced perceived opportunity through social 

interaction with peers. This is particularly the case in a multi-occupancy office where occupants 

share device controls. For example, an employee may not feel comfortable to adjust the thermostat 

due to an overbearing colleague who is unwilling to save energy at the price of decreased personal 

comfort. In this case, one’s opportunity to save energy is constrained by negative social norms. It 

is also worth noting that in the recent iterations of the TPB theory (e.g., integrative model of 

behavioral prediction), researchers adopted the concept of environmental constraints – “factors 

other than those underlying the intention to perform the behavior” (p.6) (Fishbein and Cappella 

2006) as a different factor from the subjective and descriptive norms. However, the scope of 

environmental constraints does not seem to be clearly defined (e.g., Fishbein 2000, Yzer 2012). In 

this study, the opportunity component broadly involves all the environmental and interpersonal 

factors that lie outside of an individual and thus we include the subjective and descriptive norms 

as its constructs. From another perspective, norms can be conceptualized as the belief to accept the 

common rules, which are “opportunities” leading to social rewards. In this case, if the employees 

are anticipating social rewards from abiding by the social norms, the social norms should be 

considered as an opportunity. 

Ability: Ability is defined as the necessary psychological and physical capabilities to make 

an outcome happen (Michie et al. 2011). In the context of energy behaviors, three constructs are 
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adopted to capture one’s ability, including the perceived knowledge, actual knowledge, and PBC 

from the TPB theory.  

The two knowledge-based constructs, perceived knowledge and actual knowledge, capture 

one’s mental capabilities to perform a behavior. Perceived knowledge refers to one’s perception 

of his/her knowledge about energy conservation (e.g., whether an individual knows methods to 

reduce the cooling load). Perceived knowledge reflects the necessary prior knowledge to achieve 

the desired outcome. Actual knowledge is another factor that has been used in existing studies to 

measure one’s mental capabilities. This factor measures the understanding of energy-related facts, 

such as “LED light uses less electricity than CFL light assuming the same amount of light 

delivered.” Abrahamse and colleagues described such questions as “energy quizzes” and suggested 

that a higher level of actual knowledge can contribute to energy-savings (Abrahamse et al. 2007). 

The two knowledge factors are both constructs of ability because one’s perceived knowledge is 

not always accurate and also is often subject to personal judgment. Thus, a universally correct and 

consistent measure (i.e., actual knowledge) is included. In addition, PBC complements one’s 

ability by including the components of physical capability and perceived ease to enact a behavior. 

In an office environment, an employee may be reluctant to save energy if the behavior requires 

much physical effort (e.g., removing furniture blocking the air return vents) or causes 

inconvenience (e.g., turning off the printer after use requires future booting when needed). 

 Based on previous literature and integrated framework, we propose the hypotheses for the 

constructs of MOA factors (H1, H2, H3) and the effects of MOA factors on energy behaviors (H4, 

H5, H6) as listed in Table 7-1. 

Relationships between the specified constructs in the MOA framework have also been 

evaluated in previous studies. For example, PBC, an ability component, has been suggested to be 
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positively related to feelings of responsibility and attitude towards energy-savings (which are the 

dimensions of motivation) (Abrahamse and Steg 2009). Moreover, the effect of descriptive and 

social norms on behavioral intention is mediated through personal norms (also a specified 

dimension in motivation) (Thøgersen 2014). Therefore, in addition to the proposed direct effects, 

we also hypothesize that opportunity and ability are expected to affect energy-saving behaviors 

through motivation. Opportunity and ability will matter the most if they can internalize into one’s 

motivation, which manifests the mediating effect of motivation on behaviors suggested by 

literature (e.g., energy-saving behaviors, Li et al. 2017b; preventive health behaviors, Moorman 

and Matulich 1993; pro-environmental behaviors, Thøgersen 1995; behavior change model, 

Michie et al. 2011). Therefore, we propose the hypotheses for the mediating effects of motivation 

(H7 and H8) as listed in Table 7-1. 

Table 7-1 Summary of Research Hypotheses 

Hypothesized constructs of MOA factors 
H1 Motivation consists of the following constructs: a) attitude, b) awareness of consequence, c) 

ascription of responsibility, and d) personal norms. Statistically speaking, the four constructs 

each shares a significant portion of variance with motivation. 

H2 Opportunity consists of the following constructs: a) subjective norms, b) descriptive norms, c) 

organizational support, d) accessibility to control, and e) time availability. 

H3 Ability consists of the following constructs: a) PBC, b) perceived knowledge, and c) actual 

knowledge. 

Hypothesized direct effects of MOA factors 
H4 Motivation has a positive and direct effect on energy-saving behaviors. 

H5 Opportunity has a positive and direct effect on energy-saving behaviors. 

H6 Ability has a positive and direct effect on energy-saving behaviors. 

Hypothesized mediating effects of motivation 
H7 The effect of opportunity on energy-saving behaviors will be mediated by motivation. 

H8 The effect of ability on energy-saving behaviors will be mediated by motivation. 
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7.5 Methodology 

7.5.1 Participants 

 The research hypotheses are tested through the SEM analysis using data collected from an 

Internet-based survey, which targets at full-time office employees (40 hours or over) located in the 

U.S. Specifically, the data collection was carried out across several office buildings to identify the 

common drivers of energy behaviors among employees. The survey was distributed in October 

2017 through Qualtrics Paid Panel Service - a frequently used online data collection platform by 

researchers - to collect responses from office workers in organizations that have 200 or more 

employees. A total of 1161 responses were collected. In the data cleaning process, responses with 

missing values in energy behaviors were removed. As a result, 612 responses were retained for the 

SEM analysis. 

Among our samples, the age ranged from 18 to 64 years (Mean = 44.3). The majority of 

the participants were Caucasians (76.6%), followed by Asian and African American comprising 

10.2% and 4.9%, respectively. 89.9% of the participants indicated that they had at least some 

college or university education. Quotas were set so that the distribution of gender was similar to 

that of the U.S. population and that about half of the participants were sharing the office with 

others while the other half were not. 

7.5.2 Survey Structure and Measures 

The survey consisted of three sections. The first section included screening and quota 

questions (i.e., employment status, organization size, office sharing status, and gender). The 

second section included socio-demographics (e.g., age, ethnicity, education, and occupation) 

questions. Lastly, the third section included major measures of this study in the following order: 

(1) behavioral measures (e.g., turning off office appliances when not in use, see Table 7-2), (2) 
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motivation measures (i.e., awareness of consequence, ascription of responsibility, personal norms, 

and attitudes, see Table 7-3), (3) opportunities measures (i.e., accessibility to control, subjective 

norms, descriptive norms, organizational support, and time availability, see Table 7-4), and (4) 

ability measures (i.e., PBC, perceived knowledge, and actual knowledge, see Table 7-5). The 

measures were adopted from previous literature such as Abrahamse and Steg (2009), Carrico and 

Riemer (2011), Jansson et al. (2011), Li et al. (2017b), Ramus and Steger (2000), Siemsen et al. 

(2008), Steg et al. (2014), Zhang et al. (2013). All variables were measured on 5-point Likert-like 

scales, with a minimum of 1 and a maximum of 5. Table 7-2 toTable 7-5 show the detailed 

descriptions of measures, means and standard deviations (SD), factor loadings, Average Variance 

Extracted (AVE), and Composite Reliability (CR). 
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Table 7-2 Main Variables and Associated Survey Questions for Energy-Saving Behaviors 

Construct Description M(SD) Loading AVE CR 
Energy-saving 
Behaviors 

How often do you turn off the following devices when not in use to save energy:  
Ceiling light 

3.19 (1.63) .72 .53 .87 

Desk light 3.27 (1.54) .82 
Portable space heater or personal fan 3.31 (1.50) .79 
Computers (off or sleep mode) 3.44 (1.52)  
Air conditioner (A/C) 2.70 (1.52) .73 
Heating 2.80 (1.49) .75 
Set point (adjust) 2.41 (1.41) .49 

Note: Gray shading indicates the items that were later taken out due to low loadings in the test of the measurement model. 
 

Table 7-3 Main Variables and Associated Survey Questions for Motivation 
Construct Description M(SD) Loading AVE CR 
Attitude (AT) Reducing electricity use at work: Not good at all – Very good 3.86 (1.04) .71 .70 .87 

Not important at all – Very important  3.93 (1.00) .90 
Not beneficial at all – Very beneficial 4.00 (1.00) .89 

Awareness of 
Consequence 
(AC) 

When I reduce electricity use in my workplace, I cut down the cost for my company 3.81 (1.12) .90 .68 .89 
When I reduce electricity use in my workplace, I do something good for my company 3.85 (1.08) .94 
When I reduce electricity use in my workplace, I reduce the carbon emissions 3.78 (1.08) .71 
When I reduce electricity use in my workplace, I do something good for the environment 4.00 (1.02) .72 

Ascription of 
Responsibility 
(AR) 

I feel jointly responsible for the energy use at work 3.32 (1.24) .86 .74 .90 
Because my personal contribution would be negligible, I do not feel responsible for the 
energy use at work 

3.09 (1.29)  

Our company, not me, is responsible for the energy use at work 2.96 (1.29)  
I feel responsible for reducing energy use at work 3.32 (1.18) .88 
Because I use energy during work, at least somewhat, I am responsible for energy use at work  3.54 (1.10) .84 

Personal Norms 
(PN) 

I feel personally obliged to save energy at work 3.42 (1.18) .90 .72 .88 
Regardless of what others do, I feel morally obligated to save energy at work  3.53 (1.16) .90 
I feel good about myself when I do not use a lot of energy 3.72 (1.04) .73 
I feel guilty when I use a lot of energy at work 3.17 (1.17)  

 
Table 7-4 Main Variables and Associated Survey Questions for Opportunity 

Construct Description M(SD) Loading AVE CR 
Accessibility to 
Control (CN) 

How conveniently can you control the following options: Ceiling light 3.57 (1.46) .69 .52 .76 
Thermostat (heating and cooling) 3.17 (1.51) .75 
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Windows (i.e. open and close) 2.77 (1.58)  
Window blinds and shades 3.66 (1.43) .72 

Descriptive 
Norms (DN) 

My coworkers are concerned about using too much energy 2.57 (1.18) .89 .85 .94 
My coworkers pay attention to their energy use 2.61 (1.20) .92 
Many of my coworkers are trying to reduce their energy use 2.65 (1.18) .95 

Subjective 
Norms (SN) 
 

Most of my coworkers expect me to turn off the computer/monitor when leaving  2.79 (1.36) .67 .60 .86 
Most of my coworkers expect me to turn off the lights when leaving 2.93 (1.40) .73 
Most of my coworkers expect me to shut down or change the A/C and heater thermostat 
settings 

2.42 (1.32) .78 

Most of my coworkers expect me to save energy at work in general  2.69 (1.24) .91 
Organizational 
Support (OS) 

My company encourages employees to save energy 3.06 (1.28) .81 .80 .92 
My company rewards employees (either financially or socially) for saving energy 2.16 (1.23)  
My company highly values saving energy  2.90 (1.25) .93 
My company is committed to saving energy 2.96 (1.26) .94 

Time 
Availability 
(TA) 

I have little time to pay attention to saving energy at work 3.04 (1.19) .82 .74 .89 
I usually have a lot of work to do during the workday, and cannot make extra efforts to save 
energy at work 

2.99 (1.16) .88 

I don’t have extra time during the weekday to think about ways to save energy at work  3.05 (1.16) .87 
 

Table 7-5 Main Variables and Associated Survey Questions for Ability 

Construct Description M(SD) Loading AVE CR 
Perceived 
Behavioral 
Control (PBC) 

Whether or not I save energy at work is completely up to me 3.26 (1.29) .81 .71 .88 
Adopting energy-saving practices in my workplace is entirely within my control 3.13 (1.32) .90 
I am confident that if I want, I can save energy at work 3.55 (1.20) .81 

Perceived 
Knowledge 
(PK) 

I know methods to reduce the lighting load in my office space 3.33 (1.33) .72 .73 .91 
I know methods to reduce the plug load in my office space  3.25 (1.33) .77 
I know methods to reduce the cooling load in my office space 3.12 (1.34) .96 
I know methods to reduce the heating load in my office space 3.14 (1.37) .94 

Actual 
Knowledge 
(AK) 

Please rate the degree to which you think the following statements are true or not true: LED 
light bulbs save more energy than CFL (compact fluorescent light) bulbs assuming the same 
amount of light delivered 

4.14 (0.96) .59 .40 .66 

The amount of energy consumed by an electrical appliance is calculated by the voltage of the 
appliance multiplied by the current 

2.37 (0.92) .64 

A photocopier left on overnight uses enough energy to produce over 1000 copies 3.37 (0.95)  
Heating and cooling use the most amount of energy in an office building, compared with 
lighting, ventilation, and office equipment 

3.81 (0.98) .66 
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7.5.3 Analytical Approach  

The SEM is adopted to test our hypotheses. Specifically, we use the maximum likelihood 

estimation method for analysis in the IBM SPSS Amos software. The SEM models are represented 

in a path diagram in which rectangles represent the indicators (e.g., how often do you turn off the 

ceiling light) and ellipses represent the latent factors which are inferred from the indicators (e.g., 

attitudes toward energy-savings). In this study, we adopt the second-order SEM model in which 

each second-order factor (i.e., motivation, opportunity, and ability) is a composite of several first-

order factors (e.g., attitude, awareness of consequences, personal norms; the construct column 

shown in Table 7-3 toTable 7-5). Compared to the first-order model, the second-order model is 

more parsimonious and can capture the unique variance of each first-order factor (Byrne 2005). In 

this hierarchical structure, first-order factors can be considered as the various dimensions of the 

second-order factors, and thus help understand which particular facet (i.e., the first-order factor) 

contributes to the motivation, opportunity, and ability (Koufteros et al. 2009). The behavior is also 

a latent factor which encompasses several specific behaviors discussed in Table 7-2 to represent a 

general measure of energy-saving behaviors. Single-headed arrows connecting second-order 

factors and behaviors (e.g., motivation → behavior) represent the hypothesized direct effects of 

one factor on another. The two-headed arrows represent the covariance between the second-order 

factors.  

There has been considerable debate over the measures of goodness of fit. Generally, a 

combination of model fit indices is adopted by researchers as each index reflects some facet of the 

model (Hooper et al. 2008). If the hypothesized model satisfies all fit indices, it is then retained 

for interpretation. In this study, the following fit indices are examined: chi-square (χ2), the root 

mean square error of approximation (RMSEA) (Steiger 1990), the comparative fit index (CFI) 
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(Bentler 1990), and the standardized root mean square residual (SRMR) (Hu and Bentler 1999). 

In general, a good fit of the model has χ2/df < 3 (Schreiber et al. 2006), RMSEA ≤ 0.05 (with the 

lower bound of 90% confidence interval ≤ 0.05 and upper bound ≤ 0.10) (Kline 2011), CFI ≥ 0.90 

(Hopper et al. 2008), and SRMR ≤ 0.08 (Kline 2011, Schreiber et al. 2006). 

7.6 Results 

7.6.1 Confirmatory Factor Analysis  

Hierarchical confirmatory factor analysis is conducted to evaluate (1) convergent and 

discriminant validity of each first-order factor, as indicated by AVE and CR, and (2) whether each 

first-order factor meaningfully contributes to the second-order factor (i.e., motivation, opportunity, 

or ability), which is supposed to affiliate with, as hypothesized by H1, H2, and H3. Indicators and 

first-order factors with low factor loadings are considered to be removed from the hypothesized 

model (Kline 2011).  

Results indicate that the measurement model has a decent global fit: χ2/df = 2.295 (χ2 = 

1308.231, df = 570), RMSEA = 0.046 (90% confidence interval = 0.043 - 0.049), CFI = 0.957, 

SRMR = 0.050. In the test for convergent validity, the AVEs for almost all first-order factors 

(range from 0.52 to 0.85, see Table 7-3Table 7-5) are greater than the suggested threshold of 0.5 

(Kline 2011), indicating that each first-order factor accounts for a significant portion of the 

variance in its measures. The only exception is the actual knowledge (AVE = .40, Table 7-5). 

However, as the questions for actual knowledge cover different aspects of energy use from light 

bulb efficiency to the mathematical calculation of energy consumption, it is reasonable for one to 

be well-informed in some aspects but know little about others, resulting in a relatively low AVE 

score. Therefore, we keep actual knowledge as a first-order factor. 
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The CRs are satisfactory for all first-order factors (range from 0.66 to 0.94, see Table 

7-3Table 7-5), which further support the convergent validity. Moreover, the patterns among first-

order factor loadings are as expected: each item loads highly on its corresponding factor and no 

cross-loadings are significant. The discriminant validity is also supported in that the square roots 

of AVEs (see the diagonal in Table 7-6) are greater than the correlations between each pair of first-

order factors (shown as the lower triangle in Table 7-6), passing the Fornell and Larcker (1981) 

testing system.  

Table 7-6 Means, Standard Deviations, and Correlations of First-Order Factors 

 Mean SD AT AC AR PN SN DN OS CN TA PBC PK AK 
AT 3.93 .90 .84            

AC 3.86 .95 .61 .82           

AR 3.39 1.06 .60 .66 .86          

PN 3.46 .97 .64 .64 .82 .85         

SN 2.71 1.11 .34 .35 .59 .59 .78        

DN 2.61 1.12 .30 .26 .53 .55 .76 .92       

OS 2.97 1.17 .37 .42 .56 .57 .68 .73 .90      

CN 3.47 1.21 .20 .23 .44 .37 .52 .44 .42 .72     

TA 3.03 1.06 -.21 -.21 -.31 -.32 -.13 -.11 -.13 -.07 .86    

PBC 3.31 1.14 .40 .32 .63 .57 .56 .51 .52 .51 -.25 .84   

PK 3.23 1.21 .32 .29 .50 .47 .44 .44 .42 .45 -.13 .59 .85  

AK 3.44 0.47 .43 .44 .42 .46 .14 .20 .27 .22 -.01 .35 .27 .63 
Note: Numbers on the diagonal (in bold) are the square roots of AVEs. 

In the test of the structure between the first-order and the second-order factors, AT, AC, 

AR, and PN all share a significant portion of variance with their higher-order factors - motivation, 

exceeding the threshold suggested by Kline (2011) (CR > 0.6, AVE > 0.5, see Table 7-7). 

Therefore, H1a-d are supported. H2a-d are supported in that SN, DN, OS, and CN share a 

significant portion of variance with their higher-order factor - opportunity. TA (H2e) does not 

contribute much to opportunity (loading: 0.11) and thus is removed from the model. Lastly, due to 
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the independence of actual knowledge questions, the AVE for ability is slightly lower than 0.5 

while the CR is acceptable. Thus, H3a-c are also supported. 

Table 7-7 CR and AVE for Each Second-Order Factor 

Second-order factor First-order factor Loading CR (above 0.6) AVE (above 0.5) 

Motivation 

AT .66 

0.89 0.68 AC .68 
AR .96 
PN .95 

Opportunity 

SN .85 

0.86 0.62 DN .86 
OS .82 
CN .58 

Ability 
PBC .84 

0.72 0.48 PK .69 
AK .50 

 

7.6.2 Structural Equation Models  

Two competing SEM models, including the direct effect model and the mediating effect 

model, are tested to investigate how motivation, opportunity, and ability affected energy-saving 

behaviors, particularly if opportunity and ability affect behaviors through motivation. 

7.6.2.1 Direct Effect Model on Behaviors  

Figure 7-5 presents our first hypothesized MOA model (Model 1) testing the direct effects 

of motivation, opportunity, and ability on energy-saving behaviors (i.e., H4, H5, and H6); the 

standardized path coefficients are shown along the hypothesized paths. In this model, all three 

second-order factors, i.e., motivation, opportunity, and ability, are set to covary with each other 

and directly affect the behavior. All model fit indices indicate a good global fit of the proposed 

model:  χ2/df = 2.250 (χ2 = 2076.727, df = 923), RMSEA = .045 (90% confidence interval = .043 

- .048), CFI = .942, SRMR = .066. 
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Figure 7-5 Structural Paths of the Direct Effects MOA Model (*p < .05; **p < .001) 

The results report the R2 of behavior as 22.8%; showing that both motivation (β = .17, p 

= .031) and opportunity (β = .17, p = .042) have statistically significant effects on energy-saving 

behaviors. Specifically, a one standard deviation (SD) increase in motivation is associated with a 

0.17 SD increase in energy-saving behaviors, holding opportunity and ability constant, supporting 

H4. Likewise, a one SD increase in opportunity is associated with a 0.17 SD increase in energy-

saving behaviors, controlling for motivation and ability, supporting H5. However, there is no 

significant direct correlation between ability and behavior (p = .070) with motivation and 

opportunity hold constant, which fails to support H6. This finding can be interpreted as increasing 

one’s ability level (e.g., educational interventions through emails containing energy-saving tips) 

will not directly affect an individual’s energy-saving behaviors. 
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7.6.2.2 Mediating Effect Model on Behaviors 

To test the mediating effects of the motivation factor (H7 and H8), we develop the 

competing MOA model (Model 2) based on Model 1. As shown in Figure 7-6, in addition to the 

direct effects, two indirect paths are added, i.e., opportunity → motivation → behavior, and ability 

→ motivation → behavior. In this model, motivation is affected by the opportunity and ability and 

mediates their effects on behavior. All model fit indices indicate a good global fit of the mediating 

effect model: χ2/df = 2.301 (χ2 = 2126.087, df = 924), RMSEA = 0.046 (90% CI = .044 - .049), 

CFI = .939, SRMR = .065. 

 

Figure 7-6 Structural Paths of the Mediating Effects MOA Model (*p < .05; **p < .001) 

The results report the R2 of behavior as 23.1%. Table 7-8 presents both the direct and 

indirect effects of the MOA factors. The results demonstrate a similar direct effect of MOA factors 

on energy behaviors, suggesting statistically significant effects of motivation (β = .16, p = .040) 

and opportunity (β = .19, p = .023) on energy-saving behaviors, while there is no significant effect 
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of ability on behaviors (p = .095). Additionally, both of the added paths for mediation - opportunity 

to motivation (β = .26, p < .001) and ability to motivation (β = .56, p < .001) - are significant, 

indicating that opportunity and ability both affect behavior through motivation, supporting H7 and 

H8.  

Table 7-8 Path Coefficients of Mediating Effects SEM Model 

Exogenous 
variable (X) Mediator (M) Endogenous 

variable (Y) 
Coeff. β  
(X → M, a) 

Coeff. β  
(M → Y, b) Effect (a × b) 

Opportunity Motivation Behavior .26** .16* .04* (indirect) 
Opportunity  Behavior   .19* (direct) 
Ability Motivation Behavior .56** .16* .09* (indirect) 
Ability  Behavior   .18   (direct) 

*p < .05; ** p < .001 

7.6.2.3 Comparisons among the theoretical models 

The intention of this section is to compare the integrated MOA framework, the NAM, and 

the TPB model based on their ability to explain energy behaviors in the workplace. For the TPB 

model, two questions are used as the proxy of behavioral intention - “I always think about ways to 

save energy at work” and “I am motivated to save energy at work.” The model fit indices of both 

NAM and TPB models indicate a good model fit (NAM model: χ2/df = 2.814, 90% CI of RMSEA 

= .047 - .062, CFI = .975, SRMR = .047; TPB model: χ2/df = 2.865, 90% CI of RMSEA = .050 

- .061; CFI = .962; SRMR = .068) The path coefficients are presented in Table 7-9 and Table 7-10.  

The NAM and TPB models report the R2 of behavior as 16.7% and 17.0%, respectively, 

which are lower than the integrated MOA framework (R2 = 22.8% and 23.1%) presented above. 

Table 7-9 Path Coefficients of the NAM Model5 

Independent variable (X) Dependent variable (Y) Coeff. β 
AC AR .67** 
AR PN .92** 
PN Behavior .41** 

*p < .05; ** p < .001 
 

 
5 We tested the mediation model in De Groot and Steg (2009) 
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Table 7-10 Path Coefficients of the TPB model 

Exogenous 
variable (X) Mediator (M) Endogenous 

variable (Y) 
Coeff. β  
(X → M, a) 

Coeff. β  
(M → Y, b) Effect (a × b) 

AT Intention Behavior .40** .29** .12** (indirect) 
SN Intention Behavior .27** .29** .08** (indirect) 
DN Intention Behavior .16* .29** .05*   (indirect) 
PBC Intention Behavior .12* .29** .03*   (indirect) 
PBC  Behavior   .17** (direct) 

*p < .05; ** p < .001  

7.7 Discussion 

Promoting energy-saving behaviors has significant potential to reduce energy consumption. 

This chapter expands the MOA framework to study energy-saving behaviors in office buildings 

across the U.S. by incorporating important social-psychological concepts from the NAM and the 

TPB theories. Results indicate that the integrated MOA framework explained significantly more 

variances than the NAM and TPB models. Although the predictive power of the proposed 

framework is close to the NAM model reported in van der Werff and Steg (2015), it should be 

noted that the dependent variable in the referred study is the behavioral intention instead of the 

actual behavior adopted here. As suggested by Dixon et al. (2015), the variance explained by the 

model drops from 45% to 6% when replacing behavior intention by actual behavior, indicating 

that the explanatory power of the model can vary depending on the selection of the dependent 

variable. 

The measurement model confirms that awareness of consequence, ascription of 

responsibility, personal norms, and attitude all contribute to motivation; subjective norms, 

descriptive norms, organizational support, and accessibility to control contribute to opportunity; 

perceived behavioral control, perceived knowledge and actual knowledge contribute to ability. 

Time availability fails to emerge as a dimension of opportunity to affect energy-saving behaviors. 

We propose two possible reasons: (1) most energy-saving behaviors (e.g., turning off the light) do 
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not require much time. Thus, employees always have time to perform those behaviors even over 

heavy workload periods; (2) the effect of time availability might already be accounted for by the 

PBC because employees may perceive higher behavioral control if they have time to do it. The 

model fit indices of the two proposed structures, the direct effect model and the mediating effect 

model, are almost identical; however, the mediating effect model explains slightly more variances 

in energy behaviors and the hypothesized mediating effects of opportunity and ability to behavior 

via motivation are also significant. Therefore, the mediating effect model is retained for discussion. 

Results of the SEM indicate that motivation and opportunity have a positive direct effect 

on one’s energy-saving behaviors, however, the direct effect of ability is not significant. In addition, 

motivation partially mediates the effect of opportunity on energy behaviors and fully mediates the 

effect of ability. Among the three factors in the MOA framework, opportunity shows the strongest 

effect on behavior with both direct and indirect effects combined, followed by motivation and 

ability. The demonstrated role of opportunity suggests that interventions for energy conservation 

in offices can primarily focus on creating a favorable organizational and interpersonal environment 

which supports energy-saving behaviors. Ability, however, only shows a weak effect on behaviors 

through motivation. We reason that this is due to the type of behaviors we focused on in this study: 

saving energy in offices requires no specific or complicated knowledge beyond common sense 

(e.g., knowing standby equipment still consumes electricity is sufficient for employees to reduce 

the plug load) and it also requires little effort to perform the behavior (e.g., unplugging the monitor 

is an easy task). This is in contrast with other behaviors such as body weight control for which 

people need to have adequate knowledge (e.g., knowing how to pair food) and high PBC (e.g., 

feeling comfortable to limit food intake) in order to succeed in the desired behaviors (Conner and 

Norman 1996). However, interestingly, the indirect effect of ability on behaviors suggests that if 
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an individual’s ability level is improved, he/she will be more motivated and perform energy-saving 

behaviors. As a result, the informational campaign towards energy saving can be conducted to 

solicit knowledge gains to improve (1) one’s ability level through the enhanced perceived 

knowledge (i.e., knows how to save energy), and (2) motivation level through the awareness of 

consequence (i.e., knows why save energy) and induced positive attitude (Bettinghaus 1986).  

The integrated MOA framework also has energy implications which set the basis for future 

studies on energy-saving interventions. With the clearly defined variables in each MOA factor, 

this framework can be used as a diagnostic tool to identify the constraining factors of energy 

behaviors in a particular building, and thus help decision-makers develop efficient and more 

targeted interventions to promote behavior change. For example, the surveyed buildings observed 

a relatively strong motivation (attitude, mean: 3.93; personal norms, mean: 3.46) but weak social 

norms (subjective norms, mean: 2.71; descriptive norms, mean: 2.61), which can be explained as 

employees believe themselves to be proactive in saving energy; however, they do not observe their 

colleagues putting efforts or caring about energy-savings. In this case, opportunity becomes a 

constraining factor in this particular office environment. This could be due to the fact that (1) 

behavioral intention is weakly correlated with the actual behavior as suggested by several studies 

(Conner and Norman 1996, Dixon et al. 2015, Sejwacz et al. 1980). Thus, having behavioral 

intentions does not necessarily lead to actual behaviors; and (2) peer effects among co-workers are 

not well-manifested leading to perceived lack of organizational norms in energy-savings. To 

improve the opportunity level, interventions may specifically focus on leveraging the beneficial 

normative influences in the organization to enhance social norms (e.g., setting a good example).  

Similarly, in this survey sample, the level of organizational support is not different from 

the neutral point, which implies that the majority of respondents do not believe their 
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company/employer has provided adequate support to encourage energy-savings in the workplace. 

As a result, providing financial and social rewards can be useful strategies to improve employees’ 

perceived opportunities, which in turn boosts motivation and energy-saving behaviors. This 

supports the original purpose of the MOA framework which is identifying information processing 

potential. Our main argument in this context is that if we can measure the current MOA levels 

(pre-intervention), we can design appropriate information delivery approaches to implement 

interventions targeting the constraining factors in a particular setting (Beck et al. 2017, Siemsen et 

al. 2008), then use the same approach to measure changes in MOA levels (post-intervention) and 

thus the effectiveness of the intervention implementation.  

The MOA framework is also a flexible and extensible framework which can be adapted to 

various contexts to understand the characteristics of occupants in a certain department, an office 

building or a large city district. Although this study was conducted in the U.S., researchers from 

other countries may also find this framework useful and worth further exploration. In addition, the 

MOA framework can also be applied to investigate occupants in other settings by updating the 

most relevant constructs for each MOA factor. For example, in residential housing, utility costs 

become an important motivational factor for energy savings. Moreover, the federal/state/local 

incentives (e.g., tax rebates for energy efficient purchases and improvements) can be a substitute 

for the organizational support, and the access to control can be replaced by the access to energy 

consumption information (Ueno et al. 2006) as occupants should have better actual control at home. 

Three limitations of this study should be acknowledged. First, despite that second-order 

models have conceptual and methodological advantages (Koufteros et al. 2009), it is only possible 

to get the path coefficients among the second-order factors (i.e., motivation, opportunity, and 

ability) and the outcome factor (i.e., behaviors). Therefore, it is unclear which first-order factor 
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has the most significant contribution to the energy-saving behaviors. Second, although the 

inclusion of AR and PN has been used in many existing studies (e.g., De Groot and Steg 2009, 

Onwezen et al. 2013), exploratory factor analysis in this study suggests that AR and PN load on 

the same factor. In future studies, it might be helpful to consider outcome efficacy as a substitute 

for AR (van der Werff and Steg 2015). 

7.8 Conclusions 

This chapter presents an integrated MOA framework which incorporates insights from 

interdisciplinary perspectives including social-psychology and building science. The new 

framework integrates constructs from the TPB and the NAM theories to define theoretically-sound 

and measurable dimensions under the three components of the MOA framework. The integrated 

framework provides researchers with a systematic approach to investigate the determinants of 

energy-saving behaviors in the office environment. The integrated framework also has policy 

implications in terms of understanding the barriers and opportunities within office building 

occupants in varied organizational contexts. As a result, behavioral interventions designed to 

reduce energy consumption can focus on the constraining factors identified with the integrated 

MOA framework.  
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8) CHAPTER 8 

Conclusions 

8.1 Significance of Research 

This research focuses on two important themes that arise from the daily interactions 

between buildings and human occupants. Due to the critical health and wellness impacts of thermal 

environments on their occupants, the first research theme aims to create a robust and scalable non-

intrusive HVAC control framework for thermal comfort optimization in various indoor contexts. 

This goal is achieved by first exploring novel “human-in-the-loop” thermal comfort sensing 

approaches including (1) personalized thermal comfort prediction through wearable health 

monitoring devices and smartphone polling applications (Chapter 2), (2) non-intrusive comfort 

prediction using a low-cost thermal camera (Chapter 3), and (3) robust multi-occupancy comfort 

sensing via a network of coupled thermal and RGB-D cameras (Chapter 4). These approaches 

leverage the insights from human thermoregulatory theories, machine learning models, computer 

vision techniques, and signal processing approaches; and have addressed several limitations in 

existing studies including (1) the interruption due to continuous human inputs during regular work 

time, (2) inaccurate thermal comfort prediction without human physiological data, and (3) 

intrusiveness and lack of scalability caused by personal sensing devices. The novel sensing 

approaches presented in this research demonstrate an 85% accuracy in predicting thermal 

preferences without encumbering any proactive occupant feedback or dependency on personal 

devices. The resulted real-time prediction of thermal comfort is then integrated into the HVAC 
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control loop to determine the optimum temperature setpoint for improved overall satisfaction or 

energy reduction while maintaining comfort (Chapter 5). This research theme advances knowledge 

related to the adaptive and personalized thermal comfort and has the potential to transition the 

building HVAC control from a passive and user-empirical process to an automated, user-centric, 

and data-driven mechanism that can simultaneously improve occupant satisfaction in indoor 

environments while reducing energy consumption. Importantly, the resulting new knowledge has 

a broader impact and a variety of applications, including susceptible communities in hospitals, 

transportation systems (e.g., cars, buses), and extreme working environments (e.g., construction 

sites in summer) where a promising approach for improved human thermal comfort is much 

needed. 

The second research theme addresses the knowledge gap in behavior intervention studies 

which aim to leverage the significant energy-saving potentials of occupant behaviors to achieve 

building efficiency. Two interrelated research questions are investigated in this research theme 

including (1) the determinants of occupant behaviors, and (2) methods to quantitively represent 

occupant characteristics. These are two important questions as answers to the former can help 

decision-makers identify the constraints of favorable behaviors in a certain context and design 

targeted intervention strategies to enhance these constraining factors and make a behavioral change 

happen. However, a single intervention strategy (e.g., education) may not be effective in achieving 

large-scale energy reduction if occupants face diverse constraints in behavioral change, which can 

occur in large office buildings or communities where heterogeneity exists in the targeted 

population. This problem emphasizes the importance to answer the second question – ways to 

describe occupant characteristics, i.e., their varying energy use intensity and the likelihood of 

behavioral change, such that customized intervention strategies can be delivered to occupant 
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groups with different characteristics. To address these questions, the second research theme first 

draws an analogy between consumers’ purchasing behavior and occupants’ energy-saving 

behavior and adapts the original Motivation-Opportunity-Ability (MOA) framework in consumer 

science research to the building energy domain (Chapter 6). In this framework, three factors, i.e., 

M, O, and A are identified as the behavioral determinants, which can be measured from a set of 

survey questions in relation to human behaviors in the building. This MOA framework is later 

integrated with the Norm Activation Model and the Theory of Planned Behavior (Chapter 7) to 

address the complexities in defining and measuring MOA factors in behavior studies. This leads 

to the integrated MOA model in which motivation is measured by the awareness of consequence, 

ascription of responsibility, personal norms, and attitude; opportunity is measured by the 

subjective norm, descriptive norm, organization support and accessibility to control; and ability is 

measured by the perceived behavioral control, perceived knowledge, and actual knowledge. The 

proposed framework is evaluated using a large-scale online survey which involves multiple office 

buildings across the U.S. The results suggest that both motivation and opportunity have a direct 

and positive effect on occupant behavior, as well as the mediating effect of opportunity and ability 

factors. In terms of the strength of the effect, opportunity shows the strongest effect on occupant 

behavior, followed by motivation and ability. 

To determine occupant characteristics, clustering analysis can be conducted based on the 

MOA levels of each occupant. Occupants with similar MOA levels are clustered into the same 

group. In this research, five predefined groups, including prone, mildly unable, unable, mildly 

resistant, resistant, are chosen to describe occupants in the case study. Based on the characteristics 

of each group, customized inventions can be delivered to solicit behavioral changes. For example, 

for the “unable” group, decision-makers may consider removing the environmental barriers or 
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promoting social norms to improve the opportunity level after diagnosing the specific constraints 

in the environment (e.g., low accessibility to control versus unfavorable subjective norm).  

It is worth noting that the proposed MOA framework is very flexible and can be adapted 

to different contexts (e.g., type of occupancy, culture, building type) and scales (office, building, 

community, city). In this research, the office environment is investigated considering that office 

workers may lack interest in energy savings due to the lack of economic incentives. However, this 

framework can also be applied in residential settings by updating the constructs that measure the 

MOA factors. For example, the organization support and accessibility to control can be removed 

from the opportunity while the utility cost can be added as a motivation factor in residential settings. 

Also, the number of occupant characteristics (i.e., number of clusters) can be adjusted based on 

the actual scenario of the research object without losing the implications in energy intervention. 

8.2 Research Contributions 

 This research contributes to the optimized and sustainable operation of built environments 

by improving the indoor thermal comfort and building energy efficiency. First, this research 

develops three novel “human-in-the-loop” comfort sensing approaches for non-intrusive and real-

time thermal comfort prediction in both single and multi-occupancy spaces. The comfort sensing 

techniques enable the HVAC systems to adjust its temperature setpoint and choose optimum 

conditioning mode to improve occupants’ satisfaction, health, and wellness. This research also 

develops an integrated MOA framework which not only provides researchers with a scientific and 

systematic approach to understand the behavioral determinants but also allows for quantitative 

analyses of occupant characteristics for a given built environment. The resulting knowledge can 

help decision-makers develop effective, sustainable, and economical energy intervention strategies 

to reduce energy consumption. These two research themes, thermal comfort and human behavior, 
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are interrelated in nature. Occupants’ interaction with the building HVAC systems is one of the 

main behaviors that affect building energy performance, especially when occupants’ adaptive 

behaviors to achieve thermal comfort focus on continuously adjusting the HVAC setpoint. Thus, 

the MOA framework coupled with personalized thermal comfort has the potential to improve 

building efficiency and performance while reducing human discomfort and complaints. 

In summary, the specific contributions of this research are as follows. 

• A personalized HVAC control framework integrating heterogenous human and 

environmental data to determine the optimum setpoint and conditioning mode is developed 

and tested in single and multi-occupancy environments. This approach demonstrates the 

importance of including human data in comfort prediction. 

• A non-intrusive thermal comfort sensing approach using a low-cost infrared thermal 

camera is developed. This approach identifies significant facial skin temperature features 

for comfort prediction.  

• A robust thermal and RGB-D camera network for scalable and non-intrusive comfort 

prediction is developed. This approach has the highest flexibility compared to the existing 

and preceding approaches and can be applied in multi-occupancy environments. 

• An HVAC control algorithm based on occupants’ personal thermal profile and comfort 

predictive model is developed. This algorithm demonstrates how to integrate the preceding 

comfort sensing approaches into the HVAC control loop. 

• An integrated MOA framework for identifying the determinants of energy-saving 

behaviors in a given context is proposed. The framework allows for designing targeted 

energy interventions to address the identified constraints in behavioral change. 
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• A clustering approach to quantitatively describe occupant characteristics in a given context 

based on individual MOA levels is proposed. This approach allows customized and multi-

level interventions to be designed and delivered to occupants with different characteristics. 

8.3 Directions for Future research 

8.3.1 Validating the Comfort Sensing and Control Approaches in a Real Testbed 

This research will build upon the non-intrusive comfort sensing and control approaches 

introduced in Chapter 2 to 5. A system prototype will be deployed in a real operational built 

environment (e.g., a shared office) to analyze its comfort performance and energy efficiency 

through a multi-day experiment. Several research questions will be investigated, such as Will 

occupants’ experience of discomfort be reduced considering the response time of the HVAC 

system? Will occupants experience thermal oscillation due to this time lag? How is the energy 

consumed in the building affected by the proposed method compared to the conventional static 

setpoint strategy? 

8.3.2 Investigating Thermal Comfort Sensing Approaches in Other Related Domains 

This research will explore the non-intrusive approach to assess thermal comfort in other 

related domains, such as the thermal condition of nurses, construction workers, and truck drivers, 

to disseminate the research findings in thermal comfort and human wellness to a broader audience. 

In addition, a publicly available thermal comfort dataset consisting of facial thermal images, heart 

rate, occupants’ thermal sensations and preferences, and ambient room conditions will be 

established to enable consistent evaluation and benchmarking of new methods in the future. This 

will significantly advance the current practice of thermal comfort prediction from an intrusive, 

intermittent approach to a non-intrusive and continuous method. 
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8.3.3 Exploring Methods to Assess and Improve Overall Indoor Environmental Quality  

This research will extend the focus of satisfying and healthy built environments by 

exploring new methods to assess and control other indoor environmental quality factors beyond 

thermal comfort, such as healthy indoor air quality, pleasant lighting and acoustic conditions, and 

aesthetic indoor views. This research will explore the premise that human occupants can serve as 

the “sensors” to assess their surrounding environment and provide positive or negative feedback 

through different physiological signals. Therefore, other “human-in-the-loop” sensing approaches 

will be investigated to achieve a holistic evaluation of the indoor built environment.  

8.3.4 Investigating the Interactions between Thermal Comfort and Occupant Behaviors 

This research will investigate the interplays between personalized thermal comfort and 

occupants’ behaviors in adjusting the HVAC setpoints. Occupants may abstain from their control 

behaviors if thermal satisfaction is improved through personalized thermal comfort, which will 

further affect the building energy performance. To understand this interactive mechanism, human 

thermal comfort-related actions, indoor thermal comfort analysis, and building energy simulation 

can be coupled to explore the influence of each component on the rest of the system (Thomas et 

al. 2016 and 2017). 

8.3.5 Evaluating the Effectiveness of Occupancy-focused Interventions in Real Situations 

This research will investigate the MOA framework in designing occupancy-focused 

energy-saving strategies (e.g., posters, non-cash incentives) and evaluate how building occupants 

with different characteristics (e.g., prone or resistant to change) react to these interventions in real 

situations. Specifically, the pre- and post-intervention MOA levels of the target occupancy clusters 

and their social networks within the building will be analyzed and compared. A longitudinal study 
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will be conducted to assess the short-term and long-term intervention outcomes based on the 

energy reduction effect.  
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