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ABSTRACT 
 

In recent years, electronic health records (EHR) have been combined with genetic data to 

uncover disease biology and accelerate generation of hypotheses for drug development and 

treatment strategies. The goal of this dissertation is to develop novel statistical models that can 

address the challenges of analyzing ‘imperfect’ EHR data and to propose privacy-preserving 

methods that enable sensitive individual-level data sharing across EHR studies and other large 

genetic studies. 

In Chapter II, we propose a statistical method to address misclassified clinical outcomes, a 

common challenge in EHR data. One essential step of EHR-based genome-wide association 

studies is constructing a cohort of cases and controls for a specific disease from billing codes and 

other clinical or administrative data. Nearly always, a perfect strategy for deriving disease 

phenotypes from billing codes is not available, resulting in some incorrect case/control labels. 

Here, we propose a method to estimate the misclassification of case/control status by examining 

genotype information of dozens of disease associated loci. Through simulation and application to 

the Michigan Genomics Initiative data, we demonstrate that the method enables the evaluation of 

new EHR-based phenotype definition schemes and provides accurate estimates of disease 

association measures when phenotypes are misclassified. 

In Chapters III and IV, we focus on identifying overlapping samples between studies, a common 

challenge when aggregating information across datasets. We particularly focus on identifying 

duplicate or related samples when sharing the underlying individual level genetic data is 

restricted. We propose methods that do not require disclosure of individual identities but 
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that can still identify genetic relatives across datasets. In Chapter III, we show that by grouping 

genotypes into segments and calculating summary statistics within each segment, we are able to 

obscure and encode individual-level genetic information. Relatives can be inferred with the 

coded genotypes using a likelihood model. Simulation and application to the Trans-Omics for 

Precision Medicine (TOPMed) program data demonstrate the utility and security of the method. 

In Chapter IV, we extend the method further, with a strategy that guarantees stronger encryption 

and is expected to work across heterogeneous populations. This secure protocol can infer genetic 

relatives among people of diverse ethnic backgrounds. The method works by combining a 

cryptographic technique, homomorphic encryption, with the robust relationship inference 

method previously described by Manichaikul et al (2010). Through simulations, we show that 

our method's performance is identical to that of implementations that use the original 

unencrypted genotypes. Our protocol scales well in computing time and is protected from several 

possible attacks. The secure protocol was again applied to TOPMed dataset. Securely identifying 

related samples will facilitate combination of results across datasets when there are restrictions to 

sharing the underlying individual level data. 

In conclusion, the methods developed here well enhance use of EHR data and genome data to 

improve accuracy of case/control status as well as decrease inclusion of relatives across studies 

when desired.   
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CHAPTER I 

Introduction 

1.1 Combining EHR with genetic studies  

Combining the clinical data in electronic health records (EHR) with genetic data provides us a 

chance to accelerate the pace of genomic discovery on thousands of traits. The idea of combining 

DNA repositories with EHR raises the possibility that the EHR can be used in genomic research 

to replicate or discover genotype–phenotype associations (Denny et al., 2013; Jensen et al., 2012; 

Bush et al., 2016). Efforts have been devoted to link genetic data to EHR in many research 

programs. For example, the Electronic Medical Records and Genomics (eMERGE) Network has 

been funded by the National Institutes of Health (NIH) since 2007 (McCarty et al., 2011). The 

University of Michigan (UM) established the Michigan Genomics Initiative, which collects 

genotype data and EHR of patients undergoing surgery in the UM hospital. Previously, some 

small-scale EHR studies have demonstrated that EHR-based genome-wide association studies 

(GWAS) or phenome-wide association studies (PheWAS) have the ability to replicate genotype-

phenotype associations as well as to uncover novel associations (Denny et al., 2013; Ritchie et al., 

2013). Large cohorts can be gathered quickly and inexpensively from EHR. This advantage, as 

well as the reduced genotyping costs, has promoted the establishment of large biobanks, like the 

UK Biobank (Sudlow et al., 2015; Bycroft et al., 2018). Combining EHR-based phenotypes with 

the genotype data in the UK Biobank allows us to investigate associations of half a million 
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samples with thousands of diseases (Zhou et al., 2018; Nielsen et al., 2018; Wolford et al., 

2018).  

In addition to being used for GWAS and PheWAS, EHR have also been linked to sequencing 

data, for example, the exome sequencing project of UK Biobank samples funded by Regeneron 

Pharmaceuticals (UK Biobank, 2018).These sequencing data of large cohorts can be used to 

establish the reference dataset that is the critical resource for functional interpretation of putative 

disease-causing variants. Multiple similar reference resources, like dbSNP and ClinVar, or 

custom browsers like gnomAD and BRAVO, are becoming publicly available (Sherry et al., 

2001; Landrum et al., 2017; Taliun et al., 2019; Karczewski et al., 2019). Aggregated 

information from multiple reference resources will help researchers make inference more 

efficiently and comprehensively. However, while the summaries like EHR-based GWAS results 

and allele frequencies (AFs) are often shared between reference datasets, studies are usually 

prohibited from sharing their underlying individual-level data with each other. In order to 

aggregate information, a vital step, then, is to infer the overlapping samples between studies. Due 

to the data sharing barriers, identifying genetic relatives between studies can be challenging. 

Overall, incorporating genetic information into EHR brings both opportunities and challenges in 

many subject areas, including statistics, biology, medical science and computer science, and 

often requires interdisciplinary knowledge to adequately understand the problems and devise 

appropriate solutions. For statisticians, valid statistical analysis for large-scale EHR is one of the 

most important concerns. In this dissertation, we address challenging problems in EHR studies 

related to data misspecification as well as data privacy. Reliable and efficient solutions to some 

of the most important problems related to EHR studies are proposed, solutions which are general 

and therefore applicable to other genetic studies. 
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1.2 Challenges of analyzing EHR data 

EHR data has several problems that may bias results if conventional statistical methods are 

applied. Moreover, conventional methods may not even be useable for certain purposes. In this 

section, we describe several problems that should be considered when dealing with EHR data, 

and for which we will propose methodological solutions in the following chapters. 

1.2.1 Misclassification 

One essential step of EHR-based GWAS is constructing a cohort of cases and controls for a 

specific disease, using EHR billing codes. However, a perfect rule of pooling redundant billing 

codes to phenotype codes is often lacking, leading to incorrect case/control outcome labels. In 

addition, the errors in the billing codes themselves that occur in every step of these codes’ 

assignment also lead to the misclassification (O'malley et al.,2005). Ignoring the misclassified 

phenotypes can bias the association results and mislead drug and treatment research (Neuhaus, 

1999; Copeland et al, 1977). For example, when we conducted preliminary GWAS of ~1500 

diseases using Michigan Genomics Initiative (MGI) data, which is a collaborative study at the 

University of Michigan pairing patients’ EHR and genetics information, we detected potential 

misclassification of several phenotypes like type II diabetes (T2D). 

To correct the estimated effect size and increase the power of the association test in EHR GWAS 

when misclassification is present, several methods have been developed. Magder and Hughes 

(1997) proposed an unsupervised algorithm called iteratively reweighted least square algorithm 

to estimate misclassification rate. This method can estimate the misclassification without the 

identification of gold standard samples. However, due to the flat surface of the likelihood, this 

method cannot guarantee the convergence to the estimation that maximizes the likelihood in 

practice (Hong et al, 2019). Sinnott et al. (2014) also proposed a method that does not require 
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knowledge of the gold standard sample. Algorithms based on this method can calculate a 

sample-specific probability of having the disease. This method was shown to improve the test 

power and odds ratio estimation. However, it has limited generalizability, and the algorithms 

have only been developed for certain diseases like rheumatoid arthritis and Crohn's disease (Liao 

et al., 2010; Carroll et al., 2012; Ananthakrishnan et al., 2013). 

In addition to these unsupervised methods, some supervised or semi-supervised methods have 

been developed (Duffy et al., 2004; Gordon et al, 2004; McDavid et al., 2013; Hong et al, 2019). 

These methods were shown to estimate misclassification with relatively higher accuracy and 

have wider generalizability compared with the unsupervised methods. However, they require 

identifying a set of gold standard samples with correctly specified case and control labels. 

Generating gold standard samples from EHR data, even a small set, requires cumbersome record 

review by doctors and specialists. 

1.2.2 Security 

Communication between different EHR studies and other sequencing studies may allow us to 

aggregate information of more data and conduct more powerful analyses. Inferring genetic 

relatives between studies is one critical step to achieve this goal. Ignoring the closely related 

samples will bias the aggregated information result in inaccurate interpretation of downstream 

analyses. For example, when the overlapping samples are enriched for a rare variants, AF of this 

variant in the joint population will be overestimated if we do not consider the overlapping 

information. In addition, for the meta-analysis of multiple GWAS, ignoring the overlaps among 

studies can lead to inflated type I error and false signals. However, studies are often prohibited 

from sharing individual-level data with each other due to privacy issues.  
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Homer et al. (2008) showed that given an individual’s DNA information we can easily discover 

if he/she is involved in a GWAS. In general, various strategies and technologies have been 

developed to address genetic privacy problem in different areas of genetic studies. One widely 

accepted strategy is the dbGAP access control (Mailman et al., 2007), which protects genetic 

data by placing it in a secure location that is only accessible to people having the permission. 

Another strategy is data anonymization. Differential privacy is a typical method based on this 

idea. It adds reasonable noise to the summary statistic before its release. Several studies have 

shown that the individual information will not be revealed in the released summary statistics 

using the differential privacy technique (Uhlerop et al., 2013; Yu et al., 2014). Moreover, many 

privacy-preserving methods have been developed based on modern cryptographic solutions. For 

example, homomorphic encryption allows people to predict their disease susceptibility on the 

cloud using their encrypted genotype so that they do not need to disclose their true genetic data 

(Ayday et al., 2013). Although potential risks of sharing genetic data as well as techniques to 

protect data privacy have been widely developed, a state-of-the-art solution to deal with this 

specific problem, secure relationship inference, is still lacking. 

1.3 Summary of objectives 

With a focus on these challenges, this dissertation will propose methodologies to achieve the 

following analytical objectives: 

1) Build a model that can estimate misclassified cases/controls in electronic health records; 

2) Develop protocols allowing relationship inference without disclosing individual-level 

genetic data. 
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These two objectives are addressed in the proposed methods in Chapter II (Objective 1) and 

Chapters III and Chapter IV (Objective 2). More details on the background, pertinent literature, 

motivation and methodology development can be found in the introductions of each chapter. 
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CHAPTER II 

Modeling Misclassified Phenotypes in Electronic Health 

Records Using Genotype Information 

2.1 Introduction 

Genome-wide association studies (GWAS) have successfully uncovered relationships between 

genetic factors with thousands of human traits; many of these associations between phenotypes 

and genetic variants require further replication. Since cohorts can be gathered efficiently from 

electronic health records (EHR), by combining genetic data with EHR, researchers have been 

able to accelerate the replication or discovery of genotype–phenotype associations (Jensen et al., 

2012; Denny et al., 2013; Bush et al., 2016; Zhou et al., 2018; Nielsen et al., 2018).  

To perform an EHR-based GWAS, one starts by constructing a collection of cases and controls 

for a specific phenotype from the EHR data. A traditional approach for phenotyping is manual 

chart review, which has been successfully applied to EHR data (Wilke et al, 2005). However, 

this method is time-consuming and cumbersome and cannot generate large cohorts easily. The 

billing codes, International Classification of Disease (ICD-9-CM) codes, in EHR are more 

commonly used to generate cases and controls (Denny et al., 2010; Denny et al., 2013; Ritchie et 

al., 2013). ICD-9-CM codes contain lists of codes corresponding to diagnoses and procedures 

recorded in conjunction with hospital care. ICD-9-CM codes are usually not necessarily direct 

surrogates for a phenotype as several ICD-9-CM codes may describe the same disease. For
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 examples, ICD code 250.00, 250.02 and eight more codes all denote to type II diabetes. 

Moreover, defining the control samples for a certain disease is not straightforward. Therefore, 

well-defined electronic phenotyping algorithms using ICD-9-CM codes, e.g. PheWAS, have 

been developed to dichotomize phenotypes (Denny et al., 2013). By pooling redundant billing 

codes to PheWAS codes, we can increase the sample size of cases as well as define a reliable set 

of controls. 

However, even with these phenotyping algorithms, phenotyping remains challenging. Due to its 

billing purpose, EHR can be too flawed for scientific research. PheWAS phenotypes defined 

using ICD-9-CM codes usually have imperfect sensitivity, because of inherent variations in the 

coding scheme itself and variation in how healthcare providers assign the codes to patients 

(O'malley et al., 2005). Such inaccuracies typically affect the GWAS/PheWAS results by biasing 

results toward the null hypothesis (Neuhaus, 1999; Copeland et al, 1977). In fact, the effect sizes 

for EHR-based associations were typically closer to zero than those found in other large-scale 

GWAS. Even though this phenomenon may be due to the “winner’s curse,” such that the GWAS 

in which the association was first discovered often overestimates the true effect size, it may also 

be evidence of phenotype misclassification in EHR-defined case/control status (Bazerman and 

Samuelson, 1983; Lohmueller et al., 2003). 

We detected such potential misclassification of phenotypes when analyzing Michigan Genomics 

Initiative (MGI) data, which is a collaborative study of the University of Michigan, pairing 

patients’ EHR and genetics information to gain novel biomedical insights. Around 1500 

phenotypes were constructed from ICD-9-CM codes through the PheWAS R package(Carroll et 

al., 2014). Both GWAS and PheWAS analysis were conducted on the enriched information on 

those traits using over 7.7M common genetic variants. The association results are displayed in 
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the PheWeb browser, http://pheweb.sph.umich.edu/. While several well-known genetic 

associations were successfully replicated, we observed thoroughly attenuated effect sizes in some 

traits, which may result from misclassification of the phenotypes, like age-related macular 

degeneration (AMD) and type II diabetes.  

As described in Chapter I, both unsupervised and supervised methods have been developed to 

estimate the misclassification rate and correct the estimated effect size to increase the power of 

the association test in EHR GWAS (Magder and Hughes 1997; Duffy et al., 2004; Gordon et al, 

2004; Liao et al., 2010; Carroll et al., 2012; Ananthakrishnan et al., 2013; McDavid et al., 2013; 

Sinnott et al. 2014; Hong et al, 2019). The unsupervised methods have disadvantages that either 

cannot guarantee the convergence to the maximum likelihood estimates in practice or have 

limited generality. While having better performance of estimating misclassification rates, the 

supervised methods need a time-consuming set of gold standard samples to train the model.    

In this chapter, we propose a method to make inferences of the misclassification rate in the 

phenotype when gold standard samples are not available. Taking advantage of combining genetic 

data with EHR, we construct a maximum likelihood estimator to make inferences of the 

misclassification rate in cases/controls incorporating genotype information. Our approach is 

based on the insight that external GWAS without misclassification having similar ascertainment 

and design as our study can be a gold standard for the EHR GWAS. The effect sizes of genetic 

variants in our study should be similar to those in the external GWAS. Thus, we can estimate the 

misclassification rate by examining genotype information of dozens of disease-associated loci 

found by other large-scale GWAS.  

Through extensive simulation studies and analysis of MGI data, we demonstrate that the 

proposed method can provide estimated misclassification rates with high accuracy under 
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scenarios of different misclassification rates, disease prevalence, and sample sizes. In addition, 

through evaluating different EHR-based case definition schemes, we can provide guidance about 

what is the best scheme to define cases for certain phenotypes. Moreover, knowing the 

misclassification rate in cases/controls will benefit the downstream analysis in many ways. First 

we can correct the effect size estimation with the misclassification rate using the formula derived 

by Neuhaus (1999) or Duffy's approach (2004) or using the iteratively reweighted least square 

algorithm (Magder and Hughes, 1997). In addition, the receiver operating characteristic (ROC) 

curve analysis can also be corrected using the misclassification rate (Zawistowski et al.,2017). 

Thus, combining our method with EHR-based GWAS and PheWAS analysis can help reduce the 

bias in the search across large numbers of phenotypes to broadly replicate and discover GWAS 

associations in EHR-based cohorts and enhance analysis of the genomic basis of human disease.  

2.2 Method 

2.2.1 Likelihood formulation 

We have data of a binary trait and genotypes of n individuals. Let 𝐷𝑖 denote true disease status 

and 𝑮𝒊 denote the vector of genotypes of the ith individual. For each variant j, 𝐺𝑖𝑗 can either be 

genotype taking value {0, 1, 2} or imputed genotype dosage. Here we only consider known risk 

variants that are associated with disease. In other words, 𝑮𝒊 only represents the genotype of 

known independent risk variants that have been discovered by previous large-scale GWAS. Let 

𝑿𝒊 denote a set of covariates (e.g., demographic variables and principal components for ancestry). 

We relate 𝑫 to 𝑮 and 𝑿 through a generalized linear model with logistic link function,  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + ∑ 𝛽𝑗𝐺𝑖𝑗𝑗 + ∑ 𝛾𝑘𝑋𝑖𝑘𝑘  , 

where 𝜋𝑖 = 𝑃𝑟(𝐷𝑖 = 1|𝑮𝒊, 𝑿𝒊). 
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However, we do not observe the true response 𝐷 directly but an error-corrupted response 𝑌. Let 

𝛼0 and 𝛼1 denote the specificity and sensitivity of measurement of 𝑌 respectively.Then 1 − 𝛼0 

and 1 − 𝛼1 correspond to the probabilities of misclassification of the controls and cases in Y. 

Here we assume misclassification does not depend on the genotype and other covariates since the 

construction of the phenotype from EHR does not consider this information. In addition, we 

assume the misclassification is non-differentiable, which means 𝛼0 and 𝛼1 are the same for each 

sample. So that 

 1 − 𝛼0 = 𝑃𝑟(𝑌𝑖 = 1|𝐷𝑖 = 0, 𝑮𝒊, 𝑿𝒊) = 𝑃𝑟(𝑌𝑖 = 1|𝐷𝑖 = 0) 

  1 − 𝛼1 = 𝑃𝑟(𝑌𝑖 = 0|𝐷𝑖 = 1, 𝑮𝒊, 𝑿𝒊) = 𝑃𝑟(𝑌𝑖 = 0|𝐷𝑖 = 1). 

Then the model for the observed phenotype Y can be calculated by taking the integral on the 

underlying true disease status D, 

            𝑃𝑟(𝑌𝑖 = 1|𝑮𝒊, 𝑿𝒊) = ∑ 𝑃𝑟(𝑌𝑖 = 1|𝐷𝑖 = 𝑑, 𝑮𝒊, 𝑿𝒊) ∗𝑑=0,1 𝑃𝑟(𝐷𝑖 = 𝑑|𝑮𝒊, 𝑿𝒊).                 

Assuming the n samples are independent, the likelihood for observed data 𝒀, 𝑮 and 𝑿 should be 

𝐿(𝒀, 𝑮, 𝑿; 𝛼0, 𝛼1, 𝜷, 𝜸)                                                                                                                              

= ∏{𝑃𝑟(𝑌𝑖 = 1|𝑮𝒊, 𝑿𝒊) ∗ 𝑃𝑟(𝑮𝒊, 𝑿𝒊)}𝐼(𝑌𝑖=1) ∗ {𝑃𝑟(𝑌𝑖 = 0|𝑮𝒊, 𝑿𝒊) ∗ 𝑃𝑟(𝑮𝒊, 𝑿𝒊)}𝐼(𝑌𝑖=0)

𝑖

 

∝ ∏ 𝑃𝑟(𝑌𝑖 = 1|𝑮𝒊, 𝑿𝒊)
𝐼(𝑌𝑖=1) ∗ 𝑃𝑟(𝑌𝑖 = 0|𝑮𝒊, 𝑿𝒊)

𝐼(𝑌𝑖=0)

𝑖

. 

Note that as 𝑃𝑟(𝑮𝒊, 𝑿𝒊) does not contain the parameter 𝛼 of interest, it can be factored out.  

In the following analysis, for simplicity, we fix 𝛼1 to be 1, assuming there is no misclassification 

of cases in the control group. We only focus on estimating 𝛼0. One reason is that for most of the 

population-based diseases studies, the case/control ratio is not balanced. Usually, we have many 
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more controls than cases. As a consequence, even a small amount of misclassification in controls 

has a large impact on the association results while the misclassified cases typically have little 

impact. Therefore, we are more interested in the misclassified controls mixed in the cases. 

Then the likelihood becomes 

𝐿(𝒀, 𝑮, 𝑿; 𝛼0, 𝛼1, 𝜷, 𝜸) 

∝ ∏[𝑃𝑟(𝐷𝑖 = 1|𝑮𝒊, 𝑿𝒊) + (1 − 𝛼0) Pr(𝐷𝑖 = 0|𝑮𝒊, 𝑿𝒊)]𝐼(𝑌𝑖=1) ∗ [𝛼0𝑃𝑟(𝐷𝑖 = 0|𝑮𝒊, 𝑿𝒊)]𝐼(𝑌𝑖=0)

𝑖

. 

According to the logit model defined above, we have 

(𝐷𝑖 = 1|𝑮𝒊, 𝑿𝒊) =
exp (𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 )

1+exp (𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 )
 ,  𝑃𝑟(𝐷𝑖 = 0|𝑮𝒊, 𝑿𝒊) =

1

1+exp (𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 )
.  

2.2.2 Incorporation of external GWAS information and parameter estimation 

The model contains parameters, 𝛼0, 𝜷 and 𝜸. Here, we assume the external GWAS with reliable 

phenotype to be the gold standard. Rather than estimating the parameter β, we borrow 

information of the effect sizes from external gold standard GWAS results and fix (𝛽1, 𝛽2, … , 𝛽𝐽)  

as the known effect sizes of the associated variants. By so doing, we are able to reduce the 

dimension of the parameters by the number of associated variants, 𝐽. This is valid under the 

assumption that effect sizes of disease-associated loci in our study are similar to those in the 

external gold standard GWAS.   

The cohort of the external gold standard GWAS should be similar as our EHR study in terms of 

ancestry, gender, age, and other demographic factors. In order to get a reliable list of known 

variants, we suggest applying the following criteria: 1) filtering out ethnicity-specific variants; 2) 

selecting independent variants within each locus; 3) using effect sizes from replication studies 
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rather than discovery studies to avoid the ”winner's curse” (Bazerman and Samuelson, 1983; 

Lohmueller et al., 2003). 

Then parameters can be estimated by maximizing the log-likelihood. This is a smooth nonlinear 

optimization problem. We solve the problem using "Augmented Lagrangian Adaptive Barrier 

Minimization Algorithm," which is implemented in an R package called "alabama." It has been 

shown that this algorithm can guarantee the convergence to the local minimum (Lange, 2004; 

Madsen et al., 2004). In order to increase the chance of achieving the global minimum, we 

randomly pick 10 initial points and choose the estimate that gives the maximum likelihood.    

2.2.3 Inference of specificity 

Once the estimation of the specificity, 𝛼0 is obtained using the above method, we draw the 

inference regarding 𝛼0 by testing for significance of 𝛼0̂. We test the point null hypothesis 𝛼0 = 1, 

which indicates there is no misclassification: 

H0: 𝛼0 = 1 vs. H1: 𝛼0 < 1. 

The likelihood ratio test is chosen because it generally has better power than other tests like the 

Wald test and the score test (Casella and Berger, 2001). Furthermore, the distribution of the test 

statistic under the null hypothesis has been calibrated well when the test is done on the parameter 

space boundary (Self and Liang, 1987). The explicit formula of the log likelihood ratio test 

statistic is as follows:  

Λ = 2 ∗ log (
𝐿(𝜃̂)

𝐿(𝜃𝐻0
̂)

), 

where 𝜃 is MLE of the parameters and 𝜃0̂ is the MLE of the parameters under 𝛼0 = 1 constraint. 
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Since 𝛼0 ∈ [0,1], we are testing a parameter on the boundary of the parameter space. Self and 

Liang (1987) theoretically showed that the above statistic  Λ has an asymptotic mixed chi-square 

distribution under the null hypothesis, 

Λ ~ 0.5𝜒0
2 + 0.5𝜒1

2. 

Finally, the variance/covariance matrix of the parameter estimates can be approximated in a 

standard way using the inverse of the information matrix when the true 𝛼0 is not 0 or 1. This 

matrix can be expressed in a relatively simple formula, which is provided in the Supplementary 

note. 

2.3 Simulation studies 

2.3.1 Estimation accuracy of parameters under scenarios with different sample sizes 

and disease prevalence 

In the first section of the simulation, we examine the estimation accuracy of specificity in 

different settings. Genotypes of 300, 500, 1000 and 5000 samples are generated based on the 

allele frequencies (AFs) of 51 independent variants reported in a large-scale GWAS paper of 

AMD (Fritsche et al., 2016). We exclude one rare variant with extremely large effect size among 

the 52 reported variants (AF = 0.0001, OR = 20.3). A covariate, X, is generated from the normal 

distribution, 𝑁(0,1). Then disease status is generated from a 1-0 Bernoulli distribution with 

probabilities 𝑃𝑟(𝐷𝑖 = 1|𝑮𝒊, 𝑿𝒊) =
exp (𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 )

1+exp (𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 )
. Here, (𝛽1, 𝛽2, … , 𝛽51) are effect 

sizes referring to the same GWAS paper, and we set the effect size for covariate 𝑋, 𝛾, to be 1. 

The intercept, 𝛽0, which represents background disease prevalence, is set to be -2, -3 and -4. The 

exact marginal disease prevalence in the population based on AFs and background prevalence is 

not available. Because there are in total 351 possible combinations of genotypes for 51 variants, 
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𝑃𝑟(𝐷𝑖 = 1) = ∑ 𝑃𝑟(𝐷𝑖 = 1|𝐺𝑖) ∗ 𝑃𝑟(𝐺𝑖)𝐺𝑖∈𝜅 , 

where 𝜅 is set of all combinations of genotypes. Therefore we calculate the empirical marginal 

disease prevalence by taking the mean of percentage of cases among 1000 simulated datasets. 

The marginal disease prevalence is ~4%, ~10% and ~15%, corresponding to background 

prevalence -4, -3 and -2 respectively.  

Once we have data without misclassification, we contaminate the phenotype with 

misclassification rate 1 − 𝛼0 in controls. More specifically, suppose there are 𝑛0 true controls in 

the sample, we randomly draw 𝑛0 phenotype from a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛼0) distribution to replace 

our original phenotype of those true control samples. We set 𝛼0 to be 0.85, 0.9, 0.95 and 1. 

As stated in the previous part, the known effect sizes should be used as external information 

when estimating parameters. The ideal situation is that we know the true effect sizes of the 

variants. In reality, we estimate the effect size from GWAS. To mimic the real situation, we 

generate another independent dataset of 1000 cases and 4000 controls using the same settings as 

above but without contamination in the phenotype. Then effect sizes are estimated based on this 

dataset without misclassification. We apply both true effect sizes and estimated effect sizes to 

our model as the external gold standard information. Finally, we compare the results of using 

estimated effect sizes with the results of using true effect sizes to demonstrate the magnitude of 

bias that the noise in the estimated effect sizes introduces. 

For each setting, we generate 1000 data sets and calculate the bias, variance and root-mean-

square error (RMSE) to evaluate the estimation accuracy of 𝛼0.  

As can be seen from Figure 2.1, in general we get an accurate estimation of 𝛼0 for different 

settings. In terms of RMSE, we have similar accuracy for different levels of specificity. As  
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(a) 

 

(b) 

Figure 2.1(a,b): RMSE for estimation of specificity under different settings; (a) is using 

true effect sizes and (b) is using estimated effect sizes. The panel represents true specificity 

𝛼0. The red, blue and green line represent 15%, 10% and 4% disease prevalence respectively. 
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expected, increased sample size benefits the estimation accuracy. In addition, more accurate 

estimates occur in settings with lower disease prevalence. Moreover, in the comparison between 

applying true effect sizes and estimated effect sizes, we see higher RMSE in the latter settings. 

As Supplementary Table S2.1, the difference in bias explains a large proportion of the difference 

in RMSE. When applying estimated effect sizes in our likelihood, we introduce bias in the MLE 

of specificity and underestimate it. 

In addition to assess the performance of our method, we compare our method with the method 

used in Tsoi et al. in 2017. Their method has a similar idea of using external GWAS as a gold 

standard, which estimates the misclassification rate by examining the median difference of risk 

allele frequencies (RAFs) between EHR data with external cohorts (Tsoi et al., 2017). The 

probability  𝑃𝑟(𝐷𝑖 = 1|𝑌𝑖 = 1) was calculated by 𝑚𝑒𝑑𝑖𝑎𝑛(
𝑅𝐴𝐹𝑐𝑎𝑠𝑒−𝐸𝐻𝑅−𝑅𝐴𝐹𝑐𝑡𝑟𝑙−𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑅𝐴𝐹𝑐𝑎𝑠𝑒−𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙−𝑅𝐴𝐹𝑐𝑡𝑟𝑙−𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
). 

However, they did not provide rigorous discussion and simulation for their method. We want to 

compare this method with our method through simulations. To make the comparison more 

comprehensive, for their method, we estimate 𝑃𝑟(𝐷𝑖 = 1|𝑌𝑖 = 1) not only by examining the 

median difference, but also by examining the mean difference. Then 𝛼0̂ is calculated based on 

Bayes’ rule and compared with the estimation of our method. 

As shown in Figure 2.2, Supplementary Table S2.2 and S2.3, our method outperforms the other 

two methods in all settings. For example, in the setting with 10% disease prevalence, the RMSE 

of our method is 1.5 to 18 times smaller than the other two methods under the same setting. As 

shown in Supplementary Table S2.2(b) and S2.3(b), the difference in RMSE between methods 

can be explained mainly by the discrepancies between the biases of the estimates. Both the mean 

and median method underestimate the parameter and the bias is greater than that of our method 

(Bias-our method = 0.0005 vs. Bias-mean = -0.035 vs. Bias-median = -0.035 for setting n=5000, 
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(a) 

 

(b) 

Figure 2.2(a,b): RMSE for estimation of specificity based on different methods; (a) is using 

true effect sizes and (b) is using estimated effect sizes. Results shown here are for settings with 

disease prevalence 10%. The panel represents true specificity 𝛼0. The green line represents 

results using our method while red line and blue line represent method proposed by Tsoi et al. 

that examines mean and median differences respectively. 
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𝛼0 = 0.9, true effect sizes). 

2.3.2  The effect of the number of associated variants examined on estimation 

accuracy 

In real data analysis, it is not realistic to examine all variants that are associated with the disease. 

For example, the variant discovered by existing GWAS may not be genotyped or imputed in the 

EHR study. In addition, there is always some “missing heritability” that the existing GWAS do 

not have the power to uncover. In this section, we carry out the simulation to evaluate the 

performance of the proposed method when incorporating various amounts of information of the 

associated variants.  

As stated above, fifty one variants are associated with the disease. Then we assume the external 

gold standard GWAS only provide association information of limited amount of those variants. 

Information of 1, 25 and 51 variants is examined in the model to estimate 𝛼0. 

In settings using 1 variant, in order to check if incorporating information of variants with larger 

effect size will benefit our estimation, we estimate 𝛼0 using the variant with the largest effect 

size (effect size = 1.63) and compare the results of using a variant with moderate effect size 

(effect size = 0.17). In settings using 25 variants, the variants are randomly picked and fixed for 

every simulation. The remaining settings are kept the same as in Section 2.3.1. 

Again, for each setting, we generate 1000 data sets. Then we use bias, variance and RMSE to 

evaluate the estimation accuracy of 𝛼0. 

Supplementary Table S2.4 shows the RMSE of estimated specificity when using different 

number of variants. In general, using information from all the 51 variants provides estimates with 

lowest RMSE compared to other settings. As the number of variants used decreases, we are 
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likely to have estimates with larger variance and bias which result in larger RMSE. Figure 2.3 

shows the distribution of estimates when the sample size is 5000 with 10% disease prevalence 

and 0.9 specificity. Using one variant with the largest effect size (RMSE = 1.45E-04) has similar 

performance as using 25 variants (RMSE = 1.17E-04). Both outperform using one variant with a 

moderate effect size (RMSE = 4.84E-04). The RMSE for the latter one is over three times larger 

than using the one variant with the largest effect size. Later in Section 2.5, we will discuss how 

the number of variants examined impacts the estimation of specificity through a real data 

application.   

 

 

Figure 2.3: Distribution of estimated specificity by examining different number of variants. 

The table demonstrates the results under settings of 5000 samples, 0.9 specificity and 0.1 disease 

prevalence. The horizontal black line represents the true specificity, 0.9. 
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2.3.3 Distinguish "misclassified" samples due to the different liability thresholds 

from the truly misclassified ones 

It is possible that due to the different liability threshold used to dichotomize cases and controls in 

the EHR GWAS study and other GWAS studies, a sample classified as a control in one study can 

be classified as a case in another study (Supplementary Figure S2.1). Those samples are not truly 

misclassified, but can bias the association result together with the truly misclassified ones. In this 

section, we mimic this situation to test if our method can distinguish these two set of samples.    

According to the definition of the liability threshold model (Weissbrod et al., 2015), the liability 

of every individual i follows a normal distribution, 𝑙𝑖~𝑁(0,1). We generated the liability 

according to the model, 𝑙𝑖 = 𝑔𝑖 + 𝑒𝑖, where 𝑔𝑖 and 𝑒𝑖 are the genetic and environmental 

components of the liability, respectively. Cases are individuals with 𝑙𝑖 > 𝑡, where 𝑡 is the 

liability cutoff, i.e. the threshold, for a particular trait of interest defined by disease prevalence. If 

disease prevalence is 𝐾, 𝑡 is given by Φ−1(1 − 𝐾), where Φ−1(∙) is the inverse cumulative 

probability density of the standard normal distribution.  

In these simulations, each individual carries 51 causal variants with similar AF as the previous 

simulation and normally distributed effect sizes. Setting heritability to be 0.25, we generate 

environmental components from a normal distribution 𝑁(0, 𝜎𝑒
2), accordingly. Once the liability 

is obtained, case-control status is dichotomized by 𝑡 satisfying disease prevalence 𝐾. Here we 

assume disease prevalence 𝐾𝐸𝑋 is 10% for the external gold standard GWAS from which we 

derived the estimated effect sizes. We assume the disease prevalence for the EHR study, 𝐾𝐸𝐻𝑅, to 

be 5%, 10%, 15% and 20%. The discrepancies between 𝐾𝐸𝑋 and 𝐾𝐸𝐻𝑅 result in the first set of 

“misclassified” samples in the EHR. The second set of “misclassified” samples are generated by 

contaminating the phenotype using the same strategy as in the previous simulation with the 



22 

 

probability, 1-specificity. The specificity is set to be 0.85, 0.9, 0.95 and 1, and the sample size to 

1000 and 5000. In all experiments, 1000 data sets are generated for each unique combination of 

settings. We examine whether our model can distinguish the second set of misclassified samples 

from the first set of by evaluating the estimation of 𝛼0. Note that our method is constructed based 

on the logit model while data for this simulation is based on the liability threshold model. Thus, 

in addition to our main purpose, we can also demonstrate through this simulation whether our 

method is robust to model misspecification. 

In Supplementary Table S2.5, comparing results for settings with no threshold difference, we 

conclude that if the true underlying model is a liability threshold model, we underestimate the 

specificity using our method that is constructed based on a logit model. Our method is sensitive 

to model misspecification. 

If the liability threshold is lower in our EHR study than in the external GWAS where we borrow 

the information, the misclassification rate is overestimated and vice versa. This result implies 

that our model cannot distinguish the truly misclassified samples from those defined by a 

different dichotomizing liability threshold. The lower liability threshold in the EHR study results 

in more samples being classified as cases in EHR, our model treats those sets of samples as 

misclassified samples together with the truly misclassified ones, so that we overestimate the 

misclassification rate (Figure 2.4). When the external GWAS we use is assumed to have a 

different ascertainment than the EHR GWAS, the misclassification we estimate measures the 

total discrepancy in the phenotype between EHR and external GWAS. Thus, the interpretation of 

the estimated misclassification rate should change from “misclassification” to “misclassification 

and the difference of case ascertainments between EHR and external GWAS”.  
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Figure 2.4: Distribution of estimated specificity when there is a liability threshold 

difference between EHR and external GWAS. The table shows the results under settings of 

5000 samples and 0.85 specificity. The horizontal black line represents the true specificity, 0.85. 

 

2.3.4 Type I error and power 

In this section, we conduct extensive simulation studies to evaluate the performance of the 

likelihood ratio test. Data are generated the same way as in Section 2.3.1. Then we evaluate type 

I error in settings having 𝛼0 equals 1 and power in other settings at significance level 𝛼 = 0.01 

and 0.05.  

The empirical type I error is shown in Table 2.1. At both 0.05 and 0.01 significance level, we can 

control the type I error well in all the 24 settings when applying the true effect sizes. However, 

we do suffer from the inconsistency of the estimator, when using estimated effect sizes. The type 

I error is inflated by 2 to 3 fold in those settings. To be more specific, we get more inflated 

results in settings with larger sample sizes, because the bias between true effect sizes and 

estimated effect sizes is amplified.  
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Table 2.1: Empirical type I error for likelihood ratio test testing null hypothesis. The null 

hypothesis refers to no misclassification in controls. 

    alpha=0.05 alpha=0.01 

 
                 Size 

prevalence  
300 500 1000 5000 300 500 1000 5000 

  

True effect 

size 

4% 0.05 0.05 0.04 0.05 0.01 0.01 0.01 0.01 

10% 0.05 0.05 0.05 0.05 0.02 0.01 0.01 0.01 

15% 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01 

Estimate 

effect size 

4% 0.06 0.09 0.08 0.17 0.02 0.03 0.03 0.03 

10% 0.07 0.09 0.10 0.24 0.02 0.02 0.02 0.03 

15% 0.08 0.09 0.13 0.32 0.02 0.03 0.03 0.05 

 

Here the external information of effect sizes is based on a cohort of only 5000 samples. In the 

real up-to-date GWAS, we could expect to get external estimated effect sizes based on a larger 

cohort. Thus we conduct a simulation using odds ratios calculated based on 20,000 samples. The 

type I error is shown in Supplementary Table S2.6. When estimated based on more samples, the 

external gold-standard effect sizes is closer to the truth. As a consequence, the type I error rate is 

better controlled. This simulation suggests that we should consider using effect sizes from larger 

studies that has better approximation to the true effect sizes generally to guarantee the control of 

type I error rate.   

The power of the test is greater than 70% in most settings. Settings using the true or the 

estimated effect sizes perform similarly well, while settings with higher disease prevalence show 

a slight loss in power compared to settings with lower disease prevalence due to the less accurate 

estimation of specificity in the settings with high disease prevalence (Figure 2.5). 

The results of power in the remaining set of simulations for all 48 simulation configurations are 

shown in Supplementary Tables S2.7. 
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(a) 

 

 

(b) 

Figure 2.5 (a,b): Power for likelihood ratio test under settings with specificity = 0.9 at 0.01 

significance level; (a) is using true effect sizes and (b) is using estimated effect sizes. The red, 

blue and green line represent 15%, 10% and 4% disease prevalence respectively. 
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Based on results from Section 2.3.1 and 2.3.4, we conclude that noise in the estimated effect 

sizes does affect our estimation accuracy and the inference. That’s why we emphasize the 

importance of study and risk variant selection in Section 2.2. 

2.4 Application on MGI data 

2.4.1 MGI data set 

The Michigan Genomics Initiative is a collaborative study of the University of Michigan (UM) 

aiming to combine patient EHR with genetic information in order to gain novel biomedical 

insights.  

Patients undergoing surgery at the UM Health System are invited to participate. Patients' 

biospecimens and their health information are collected during the surgical procedural period. 

Consenting patients are genotyped at 270K common variants on a customized Illumina Infinium 

HumanCoreExome-24 v1.0 array (Illumina, 2017). Then genotypes are imputed using the 

Haplotype Reference Consortium reference panel (Haplotype Reference Consortium, 2016). 

Meanwhile, phenotypes are constructed from ICD-9-CM billing based on a scheme implemented 

in the PheWAS R package. In total, there are 1,448 PheWAS codes with at least 20 cases for 

18,267 unrelated European ancestry individuals that can be used for genome-wide association 

analysis in the Phase I MGI study. For more information on MGI, see 

https://precisionhealth.umich.edu/michigangenomics/. 

The enriched information provides us a chance to accelerate the pace of genomic discovery. 

However, for some traits like type II diabetes, the attenuated effect sizes from previous MGI 

GWAS compared to effect sizes from other large-scale GWAS indicate potential 

misclassification in the MGI data (Supplementary Figure S2.2). 
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2.4.2 Estimation of misclassification rate in four phenotypes 

To verify the existence of misclassification in MGI data and quantify it, we estimate the 

misclassification rate by fitting the model specified in the previous section for several traits. 

These traits showing evidence of misclassification in previous MGI GWAS include AMD, type 

II diabetes and psoriasis (Supplementary Figure S2.2(a-c)). We also apply our method to breast 

cancer which has not shown clear evidence of misclassification (Supplementary Figure S2.2(d)). 

As described above, to fit the model, one critical step is to get gold standard information from 

external large GWAS results. Fifty-two independent variants have been previously reported to be 

associated with AMD by the International AMD Genomics Consortium (Fritsche et al., 2016). 

For our estimation, we use 44 variants that were available and passed filters (MAF>0.0001 and 

Rsq>0.3) in MGI data. For breast cancer, we incorporate results of five large-scale GWAS that 

reported 73 independent variants (Turnbull et al., 2010; Fletcher et al., 2011; Michailidou et al., 

2013; Michailidou et al., 2015; Michailidou et al., 2017). For psoriasis, we combine results from 

five large-scale GWAS that reported 41 significant independent variants (Strange et al., 2010; 

Stuart et al., 2010; Tsoi et al., 2012; Tsoi et al., 2015; Yin et al., 2015). For T2D, we use 77 

independent variants based on seven large-scale GWAS (Zeggini et al., 2008; Voight et al., 2010; 

Morris et al., 2012; Saxena et al., 2012; Consortium, Diabetes SAT2D, et al., 2014; Gaulton et 

al., 2015; Scott et al., 2017). Since some traits like AMD are highly correlated with age, we 

adjust for age in our model. The first four PCs are also adjusted in our model. 

Once we estimate specificity, 𝛼0̂, we calculate the posterior misclassification rate, the 

misclassification rate in observed cases, based on the following Bayes' rule: 

𝑃𝑟(𝐷𝑖 = 1|𝑌𝑖 = 1) =
𝑃𝑟(𝑌𝑖=1|𝐷𝑖=1)∗𝑃𝑟(𝐷𝑖=1)

𝑃𝑟(𝑌𝑖=1)
. 



28 

 

Here the marginal probability of observed cases 𝑃𝑟(𝑌𝑖 = 1) is estimated by the moment 

estimator. 𝑃𝑟(𝐷𝑖 = 1) is estimated by the moment estimator derived based on 𝑃𝑟(𝑌𝑖 = 1) =

𝑃𝑟(𝐷𝑖 = 1) + (1 − 𝛼0) ∗ (1 − 𝑃𝑟 (𝐷𝑖 = 1)). 

The estimated misclassification rate in true controls is 0.3%, 1.5%, 0.8%  and 4.8% for AMD, 

breast cancer, psoriasis and T2D resulting in 39.5%, 9.0%, 56.5% and 37.8% misclassified 

samples, respectively, in the observed cases (Table 2.2). The Bonferroni-corrected significance 

threshold is derived as p-value < 0.05/4 = 0.0125 to account for examination of the four traits. 

The results for AMD, T2D and psoriasis are significant (p-valueAMD = 2.10E-10; p-valueT2D = 

4.70E-15; p-valuepsoriasis = 5.63E-15) while the result for breast cancer is not significant (p-

valuebreast cancer = 6.71E-2). This results shows concordance with the effect sizes comparison with 

the external GWAS (Supplementary Figure S2.2(a-d)). We also estimate the specificity by 

examining half of the most significant variants as well as one variant with largest effect size 

(Table 2.4). The impact of variants selection on the estimation and the source of misclassification 

of these diseases will be discussed in Section 2.5.     

Table 2.2: Estimated misclassification rate in 4 traits. 

  Cases Controls Estimated (1-𝜶𝟎) P-value 

Misclassification 

rate in observed 

cases 

AMD 119 16516 0.3% 2.10E-10 39.5% 

Breast cancer 1136 6884 1.5% 6.71E-2 9.0% 

Psoriasis 231 15612 0.8% 5.63E-15 56.5% 

T2D 1974 14848 4.8% 4.70E-15 37.8% 

 

2.4.3 Comparison of different case definition schemes for AMD 

Patients' clinical information is gathered during every hospital visit. Therefore, we usually have 

more than one encounter of each phenotype for the sample. On average, samples had about 20 to 

30 encounters for one trait.  
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The longitudinal feature of the data raises the question of the best way to define a case. In the 

previous MGI GWAS, we defined a case if one had more than 2 encounters. However, this may 

not be the best case definition scheme. Usually, patients with a larger number of encounters are 

more likely to be a true case. So in this section, taking AMD as an example, we try to estimate 

the misclassification rate for different case-definition schemes and to find the best encounter 

cutoff to define a case.  

Table 2.3 and Supplementary Table S2.8 show the estimated misclassification rate in observed 

AMD cases when using 1 to 13 as encounter cutoff to define a case. Here, to guarantee the 

reliability of the estimation, we only examine the encounter cutoffs that define more than 30 

cases. As the cutoff becomes more stringent, we get cohorts of fewer cases with a lower 

misclassification rate. Based on the Holm’s sequential Bonferroni method (1979), we define the 

significance threshold for the sequential tests. The misclassification in the phenotype is not 

significant with encounter cutoff greater than 7 (Supplementary Table S2.8). Multiplying 

observed cases with the 1-misclassification rate, we have the expected number of correctly 

classified cases, which shows how much we gain when using more stringent cutoffs. For 

example, if releasing the criterion from 3 to 2 we get 33 new cases, of which only 13 are 

correctly specified. If we release the criterion from 4 to 3, we get 12 more cases that half of them 

are correctly specified. As the encounter cutoff becomes more stringent, the proportion of 

correctly classified samples in the newly defined samples increases.  

Using the phenotype with less misclassification for GWAS, we expect to get the estimation of 

the effect size with smaller bias. Here we examine the top two common variants with the largest 

effect sizes, rs3750846 around gene ARMS2 and rs10922109 around gene CFH, to check if their 

results are converge to the external GWAS when we use refined phenotype (Fritsche et al., 2016). 
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In terms of the minor allele frequency (MAF) in the cases and the estimated effect size, MGI 

results converge to the external gold-standard as we increase encounter cutoffs (Supplementary 

Table S2.9), which is concordant with the decreasing misclassification rate in the phenotype.  

The results imply that as we use a higher cutoff of encounters to define a case, we have a more 

reliable set of cases. A caveat is that the number of cases also decreases as we refine the 

phenotype, which results in the unbalanced case-control ratios invalidating asymptotic 

assumptions of the logistic regression. Thus using phenotype with small case count, even though 

it is refined, we are not able to achieve the convergence of the effect sizes to the external AMD 

GWAS for the variants having low AFs (Supplementary Figure S2.3). In Section S 2.5, we will 

discuss several possible solutions of how to increase the power of GWAS with refined phenotype 

that has small number of cases and how to correct the effect size estimation directly with the 

misclassification rate that our method provides.  

Table 2.3: Estimated misclassification rate in observed cases when using different 

encounter cutoffs to define an AMD case. 

Cutoff Cases Controls 
Estimated  

(1-𝜶𝟎) 

Misclassification 

rate in observed 

cases 

Average number 

of correctly 

classified 

samples 

≥1 encounter 144 16516 0.40% 47.40% 76 

≥2 encounters 119 16516 0.30% 39.50% 71 

≥3 encounters 86 16516 0.16% 32.30% 58 

≥4 encounters 74 16516 0.12% 28.50% 53 

≥5 encounters 65 16516 0.10% 26.62% 48 

≥6 encounters 55 16516 0.10% 29.49% 39 

≥7 encounters 49 16516 0.06% 20.26% 39 

≥8 encounters 45 16516 0.04% 14.92% 38 

≥9 encounters 44 16516 0.04% 15.50% 37 

≥10 encounters 42 16516 0.04% 16.40% 35 

≥11 encounters 38 16516 0.02% 9.50% 34 

≥12 encounters 37 16516 0.02% 10.60% 33 

≥13 encounters 33 16516 0.02% 8.57% 30 
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2.5 Discussion 

In this chapter, we have developed a method for estimating the misclassification rate of disease 

status using genotype information. The method can provide estimates with high accuracy and has 

the advantage of simplicity that avoids identifying gold standard samples.  

In the comparison with the method proposed by Tsoi et al (2017), our method demonstrates 

higher accuracy in the estimation of specificity. The outperformance of our method is more 

apparent in practice. Our method requires external information of odds ratios or effect sizes 

while Tsoi’s method requires RAFs in cases/controls. However, the background disease 

prevalence is unknown so the exact RAFS cannot be calculated. Instead, they are approximated 

based on odds ratios and population AFs. As our simulation shows, using approximated RAFs 

lead to an even less accurate estimation than using exact RAFs (Supplementary Table S2.4). In 

contrast, odds ratios are generally reported, and thus our method has an obvious advantage 

regarding estimation accuracy when exact RAFs are not available in the real data analysis.     

Our method is easy to apply and useful, although potential failures of the assumptions involved 

should be borne in mind. First, our model is based on the assumption that the effect sizes in the 

EHR GWAS are very similar to those in the external GWAS. As demonstrated in the simulation, 

we get a good estimate when the gold-standard effect sizes we borrow are not far from the true 

effect sizes. Thus, it is necessary to carefully consider the plausibility of this assumption in the 

context of the individual study, especially for a phenotype that is highly correlated with 

demographic factors. For example, AMD is highly correlated with age, and the distribution of 

age in the external GWAS cohorts may be different from the EHR cohort, which may lead to 

different disease-genetic associations. Even though we allow the control for demographic 

covariates in our model, the non-linear relationship between the disease onset and age may still 
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bias the estimation of the specificity when we ignore the cohorts’ demographic discrepancy. To 

avoid this problem, we should always select external GWAS that have similar cohorts as the 

EHR cohort to be the gold standard. Second, we should be careful when selecting the associated 

variants. In our analysis of MGI data, we only borrowed information from reliable large-scale 

GWAS with more than 10k samples. One may consider using a large database like the GWAS 

catalog from which to draw information. However, in this database, results are not well 

harmonized in that GWAS of different phenotypes may be combined into one trait. Therefore we 

suggest using them with a cautious screening of the variants.  

Within these variant inclusion restrictions, the simulation result in Section 2.3.2 suggests that we 

should consider using as many associated variants that pass the filter as possible; and variants 

with larger effect sizes should have higher priority to be included. To examine the consistency of 

the estimated specificity with different number of variants incorporated into the model, we can 

conduct a sensitivity analysis in MGI. When one of the associated variants has an effect size that 

is significantly larger than the others, like AMD, the estimation is consistent, since the effect of 

the other variants may be masked by that variant. When all the associated variants have moderate 

effect sizes, the results are concordant with the conclusion of the previous simulation analysis 

that the specificity will be slightly overestimated when the information of some of the reliable 

associated variants is not examined (Table 2.4). Thus, our method demonstrates the utility for 

diseases whose association with genetic variation has been investigated through large-scale 

GWAS. However, our method is not applicable for diseases that do not have well-established 

GWAS. For those diseases, we may consider first selecting potential associated variants based on 

EHR GWAS, and then using the EM algorithm proposed by Magder and Hughes (1997) to 

estimate the misclassification rate without incorporating external effect sizes.   
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Table 2.4: Estimated specificity in 4 traits by examining different number of variants. 

Specificity is estimated using all associated variants, half of the variants with the largest effect 

sizes and the variant with the largest effect size.  

  All variants Half variants One variant 

AMD 0.3% 0.3% 0.3% 

Breast cancer 1.5% 1.7% 2.0% 

Psoriasis 0.8% 0.9% 1.0% 

T2D 4.8% 4.9% 4.9% 

 

In addition to carefully selecting the variant list, the uncertainty in the estimation of external 

gold-standard effect sizes should be considered. Usually, the effect sizes are reported in multiple 

GWAS that have different sample sizes. We take the average of the effect sizes in multiple 

external GWAS and fix it in our model. In future work, to better address the uncertainty in the 

estimation of effect sizes, we can take the weighted average of effect sizes, by weighting each 

GWAS result based on their sample sizes. In addition, instead of fixing external effect sizes in 

our model, we can estimate these effect sizes together with the specificity and constrain the 

estimation within the confidence intervals in the external gold-standard GWAS. 

Moreover, once we estimate the misclassification rate by examining a reliable set of variants, it 

can be used as a quality metric for refining the phenotype. Typically, the effect size estimation in 

EHR GWAS with the refined phenotype is expected to converge to that in the external gold-

standard GWAS. However, the reduced number of cases and the unbalanced case/control ratios 

of the refined phenotype cause a wider range of uncertainty in the effect size estimation. As a 

consequence, we may not necessarily see the convergence of the refined EHR GWAS to the 

external GWAS, especially for variants with low AF. In order to retain the power of uncovering 

disease-genetic associations, instead of using the traditional logistic regression, we can conduct 

association tests that account for unbalanced case/control ratio in the phenotype (Zhou et al., 

2018). In addition, rather than refining the phenotype, we may consider correcting estimated 
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effect sizes directly with the estimated misclassification rate using the formulas derived by 

Neuhaus (1999) or Duffy (2004), or using the iteratively reweighted least square algorithm 

(Magder and Hughes, 1997). Figure 2.6 shows the estimated effect sizes of the two top 

associated variants, rs3750846 and rs10922109, using different methods. Either using refined 

phenotype (≥ 7 encounters) or correcting effect sizes directly with Duffy’s method provides us 

with results that are closer to the external GWAS than those estimated from a misclassified 

cohort (≥ 2 encounters). 

 

Figure 2.6 Estimated effect sizes in external GWAS and EHR GWAS with refined 

phenotype or with Duffy’s correction. Here two top associated variants, rs3750846 (ARMS2) 

and rs10922109 (CFH), are examined (Fritsche et al., 2016). The red targets represent their effect 

sizes in external GWAS. The blue dots represent estimation using misclassified samples that are 

defined by encounter cutoff = 2. The green dots represent estimation using misclassified samples 

that are defined by encounter cutoff = 7, which have no significant misclassification. The purple 

dots represent effect sizes corrected from the blue dots using Duffy’s method. 

In the application of four traits in MGI data, significant misclassification was detected in AMD, 

psoriasis and T2D while no significant misclassification was detected in breast cancer. The 

misclassification can occur either during the translation from ICD codes to the dichotomized 

phenotypes or during the assignment of ICD codes to patients. First, the ICD codes are typically 
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not surrogates for binary phenotypes; in other words, multiple ICD codes may describe the same 

diagnosis. Thus, the complexity in the translation from ICD codes to phenotypes may lead to the 

potential misclassification. For example, for T2D, we combine 10 different ICD codes having 

“type II diabetes mellitus” in their description into one phenotype. However, some of these ICD 

codes may refer to types of T2D that should be analyzed separately, like “250.10 - Diabetes with 

ketoacidosis” and “250.20 - Diabetes with hyperosmolarity.” In addition, the descriptions of 

some ICD codes are ambiguous. For example, the ICD code 696 for psoriasis has the description, 

“psoriasis and similar disorders,” which may classify patients with diseases other than psoriasis 

as a case. For AMD, the ICD codes do not indicate the stage of the disease, so that patients at 

early or moderate stage of  AMD may be classified as a case in EHR while the external GWAS 

are typically conducted on advanced AMD. Moreover, as discussed by O’Malley et al. (2005), 

errors in ICD code can occur in every step of them being assigned to patients, including the 

communication between patients and clinicians, the clinicians’ knowledge of the disease as well 

as intentional code errors, like upcoding. Upcoding, here, means that codes of higher 

reimbursement value may be assigned due to some reimbursement purpose. It misrepresents the 

true condition of the patient, which may cause controls being misclassified as cases. O’Malley et 

al. also assert that a disease for which tests have high sensitivity will have higher diagnostic 

accuracy and smaller error in the ICD codes. This is why breast cancer typically has higher 

diagnostic accuracy and does not show significant misclassification in the MGI data.  

Ultimately, by using our method we are able to detect misclassification between cases and 

controls and correct biased association analysis in EHR GWAS. However, there are still other 

types of misclassification that limit the usage of EHR. For example, despite the fact that T1D and 

T2D arise from different etiologies, it is hard to distinguish these two diseases based on ICD-9-
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CM codes (Kho et al., 2011; Richesson et al., 2013). Since both diseases are characterized by 

high blood glucose level and share similar treatment, only considering additional information of 

diagnostic lab tests and treatment is not adequate to distinguish them. It should be more useful to 

incorporate genotype information given that these two diseases have different associated variants. 

Future development of methods dealing with misclassification between cases like T1D and T2D 

using genotype information will bring about more powerful genetic discovery research using 

EHR data. 

In conclusion, we have proposed a method that enables the evaluation of new EHR-based case 

definition schemes and the correction of estimates of disease effect sizes and other association 

measures when phenotypes are misclassified. This method has limitations that need further 

investigation, including the inefficient process of risk variants selection and the disregarding of 

the misclassification between different phenotypes. Nevertheless, the method can reduce the bias 

in the search of disease-genetic associations and enhances the power of uncovering novel and 

reliable genomic basis of human diseases. 
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Supplements  

Supplementary note: Estimating the variance of the parameter estimates when true 

specificity is not on the boundary. 

 

When the model is correctly specified and the true parameter is not on the boundary, the 

variance/covariance matrix of the parameter estimates can be approximated by the inverse of the 

observed information matrix. This matrix is the negative of the second derivative of the log 

likelihood function evaluated at the maximum likelihood estimates.  

Recall the log-likelihood has this form , 

𝑙(𝒀, 𝑮, 𝑿; 𝛼0, 𝛼1, 𝜷, 𝜸) 

∝ ∑ 𝑌𝑖 log (
𝑒𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘

1 + 𝑒𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘
+

1 − 𝛼0

1 + 𝑒𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘
)

𝑖

+ (1 − 𝑌𝑖) log (
𝛼0

1 + 𝑒𝛽0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘
) 

Here, we assume (𝛽1, … , 𝛽𝐽) are known parameters indicating effect sizes of the kwon diseased 

associated variants. Then the parameters we estimate are 𝜃 = (𝛼0, 𝛽0, 𝛾1, … , 𝛾𝐾). To simplify the 

notation, we use 𝛾0to represent 𝛽0 and 𝑋𝑖0 = (1, … ,1). So that 𝜃 becomes (𝛼0, 𝛾0, 𝛾1, … , 𝛾𝐾). 

Let 𝑛0 = ∑ (1 − 𝑌𝑖)𝑖 , the second derivatives of the likelihood function regarding the parameters 

are: 

𝜕𝑙

𝜕𝛼0
2 = −

𝑛0

𝛼0
2 − ∑

𝑌𝑖

(𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 + 1 − 𝛼0)
2

𝑖

, 

𝜕𝑙

𝜕𝛼0𝜕𝛾𝑘
= ∑

𝑌𝑖𝑋𝑖𝑗𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘

(𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 + 1 − 𝛼0)2
𝑖

, 
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𝜕𝑙

𝜕𝛾𝑚𝜕𝛾𝑛
= ∑

(1 − 𝛼0)𝑌𝑖𝑋𝑖𝑚𝑋𝑖𝑛𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘

(𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 + 1 − 𝛼0)2
− ∑

𝑋𝑖𝑚𝑋𝑖𝑛𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘

(𝑒𝛾0+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘𝑋𝑖𝑘𝑘 + 1)
2

𝑖

.

𝑖

 

Let 𝜃 = (𝛼0̂, 𝛾0̂, 𝛾1̂, … , 𝛾𝐾̂) be the MLE. Then the observed information matrix is: 

𝐽𝑛 = −
𝜕𝑙2

𝜕𝜃𝜕𝜃′
|𝜃=𝜃̂ = [

𝐴 𝐵𝑇

𝐵 𝐶
] ; 

𝐴 =
𝑛0

𝛼0
2̂

+ ∑
𝑌𝑖

(𝑒𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘 + 1 − 𝛼0̂)
2

𝑖

; 

𝐵 = −𝑋𝑇𝐻, where 𝐻𝑖 =
𝑌𝑖𝑒

𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘

(𝑒
𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘 +1−𝛼0̂)2

; 

𝐶 = 𝑋𝑇𝑉1𝑋 − 𝑋𝑇𝑉2𝑋, where 𝑉1 is a diagonal matrix with diagonal element 

𝑣1𝑖 =
𝑒

𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘

(𝑒
𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘 +1)

2 and 𝑉2 is a diagonal matrix with diagonal element 𝑣2𝑖 =

(1−𝛼0̂)𝑌𝑖𝑒
𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘

(𝑒
𝛾0̂+∑ 𝛽𝑗𝐺𝑖𝑗𝑗 +∑ 𝛾𝑘̂𝑋𝑖𝑘𝑘 +1−𝛼0̂)2

. 

Thus when the true specificity 𝛼0 is not 0 or 1 and the effect sizes of known disease associated 

variants are correctly specified, the variance/covariance matrix of the estimates can be 

approximated by 𝑣𝑎𝑟(𝜃) =  𝐽𝑛
−1. 

 

 

 



39 

 

Supplementary Table S2.1 (a,b): (a) MSE and (b) bias for estimation of specificity under different settings. 

(a) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 9.42E-04 7.05E-04 4.22E-04 4.56E-05 1.30E-03 9.62E-04 6.84E-04 9.24E-05 2.12E-03 1.83E-03 1.00E-03 2.51E-04 

500 5.61E-04 3.77E-04 2.45E-04 1.86E-05 7.45E-04 5.85E-04 3.78E-04 5.08E-05 1.17E-03 1.03E-03 6.65E-04 1.21E-04 

1000 2.47E-04 1.95E-04 1.14E-04 8.52E-06 3.62E-04 2.87E-04 1.86E-04 2.36E-05 5.89E-04 4.90E-04 3.40E-04 5.95E-05 

5000 5.09E-05 3.71E-05 2.46E-05 1.50E-06 7.49E-05 5.61E-05 3.78E-05 3.92E-06 1.25E-04 9.11E-05 7.21E-05 1.24E-05 

Estimate 

effect 

size 

300 8.74E-04 6.58E-04 4.18E-04 6.17E-05 1.35E-03 8.91E-04 6.76E-04 1.49E-04 1.93E-03 1.65E-03 9.87E-04 4.15E-04 

500 5.15E-04 3.88E-04 2.58E-04 3.24E-05 7.61E-04 5.67E-04 3.63E-04 9.59E-05 1.11E-03 1.06E-03 6.94E-04 2.50E-04 

1000 2.62E-04 2.00E-04 1.33E-04 1.74E-05 3.81E-04 3.06E-04 2.01E-04 5.10E-05 6.19E-04 5.57E-04 4.22E-04 1.55E-04 

5000 6.38E-05 4.57E-05 3.16E-05 4.66E-06 9.95E-05 8.24E-05 6.06E-05 1.68E-05 2.05E-04 1.70E-04 1.43E-04 6.07E-05 

(b) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 4.2E-03 2.4E-03 1.5E-03 -3.1E-03 2.6E-03 2.1E-03 8.7E-04 -4.6E-03 2.8E-03 1.7E-03 3.8E-04 -7.7E-03 

500 1.7E-03 6.9E-04 1.8E-03 -2.0E-03 2.6E-03 1.9E-03 4.2E-04 -3.6E-03 1.6E-03 9.2E-04 6.5E-04 -5.5E-03 

1000 7.6E-04 7.6E-04 5.9E-04 -1.4E-03 1.4E-03 3.5E-04 1.5E-03 -2.3E-03 -3.1E-04 1.0E-03 1.3E-03 -4.0E-03 

5000 2.4E-04 1.2E-04 -1.7E-04 -6.3E-04 -9.3E-07 -2.7E-05 -9.2E-05 -1.1E-03 2.0E-04 3.1E-04 1.5E-04 -1.9E-03 

Estimate 

effect 

size 

300 -1.6E-03 -6.1E-04 -1.3E-03 -3.9E-03 5.5E-04 -5.3E-03 -2.7E-03 -6.6E-03 -6.6E-03 -7.6E-03 -6.4E-03 -1.2E-02 

500 -1.1E-03 -1.0E-03 -1.1E-03 -3.0E-03 -3.7E-03 -3.9E-03 -3.5E-03 -5.4E-03 -6.8E-03 -8.5E-03 -7.1E-03 -9.4E-03 

1000 -2.3E-03 -2.3E-03 -2.1E-03 -2.3E-03 -4.1E-03 -4.9E-03 -4.3E-03 -4.4E-03 -7.9E-03 -9.3E-03 -8.5E-03 -8.2E-03 

5000 -2.8E-03 -2.8E-03 -2.6E-03 -1.5E-03 -5.5E-03 -5.1E-03 -4.9E-03 -3.1E-03 -9.5E-03 -9.1E-03 -8.7E-03 -6.2E-03 
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Supplementary Table S2.2 (a,b): (a) MSE and (b) bias for estimation of specificity from the method proposed by Tsoi et al. by 

examining the mean RAFs difference. 

(a) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 1.79E-03 1.64E-03 1.20E-03 6.49E-04 3.15E-03 3.23E-03 2.67E-03 2.22E-03 8.47E-03 8.76E-03 8.78E-03 9.03E-03 

500 1.24E-03 1.03E-03 7.99E-04 4.55E-04 2.51E-03 2.30E-03 2.26E-03 1.88E-03 7.25E-03 8.01E-03 7.93E-03 8.03E-03 

1000 7.73E-04 5.88E-04 4.40E-04 2.86E-04 1.86E-03 1.72E-03 1.64E-03 1.48E-03 6.54E-03 6.79E-03 7.42E-03 7.61E-03 

5000 3.00E-04 2.68E-04 2.06E-04 1.69E-04 1.37E-03 1.33E-03 1.32E-03 1.28E-03 6.01E-03 6.29E-03 6.65E-03 7.06E-03 

Estimate 

effect 

size 

300 2.68E-03 2.37E-03 1.69E-03 1.03E-03 4.23E-03 3.75E-03 3.31E-03 2.57E-03 8.57E-03 9.48E-03 9.02E-03 9.06E-03 

500 1.59E-03 1.42E-03 1.08E-03 5.96E-04 2.85E-03 2.86E-03 2.20E-03 1.76E-03 6.39E-03 6.90E-03 7.78E-03 6.82E-03 

1000 9.38E-04 7.49E-04 5.81E-04 3.09E-04 1.88E-03 1.72E-03 1.53E-03 1.24E-03 5.66E-03 5.63E-03 6.20E-03 6.05E-03 

5000 2.63E-04 2.28E-04 1.73E-04 1.09E-04 1.08E-03 1.08E-03 9.64E-04 8.74E-04 4.73E-03 5.09E-03 5.15E-03 5.29E-03 

(b) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 -1.4E-02 -1.2E-02 -1.0E-02 -1.1E-02 -3.1E-02 -3.4E-02 -3.2E-02 -3.2E-02 -7.2E-02 -7.6E-02 -7.8E-02 -8.1E-02 

500 -1.4E-02 -1.2E-02 -1.2E-02 -1.1E-02 -3.4E-02 -3.4E-02 -3.5E-02 -3.3E-02 -7.4E-02 -7.9E-02 -8.0E-02 -8.1E-02 

1000 -1.3E-02 -1.1E-02 -1.2E-02 -1.1E-02 -3.5E-02 -3.4E-02 -3.4E-02 -3.4E-02 -7.5E-02 -7.7E-02 -8.2E-02 -8.3E-02 

5000 -1.4E-02 -1.3E-02 -1.2E-02 -1.2E-02 -3.5E-02 -3.5E-02 -3.5E-02 -3.5E-02 -7.6E-02 -7.8E-02 -8.1E-02 -8.3E-02 

Estimate 

effect 

size 

300 -8.1E-03 -9.0E-03 -6.6E-03 -6.8E-03 -2.9E-02 -2.8E-02 -2.4E-02 -2.4E-02 -6.0E-02 -6.7E-02 -6.6E-02 -6.9E-02 

500 -9.4E-03 -8.6E-03 -6.4E-03 -6.1E-03 -2.7E-02 -3.0E-02 -2.7E-02 -2.6E-02 -6.0E-02 -6.5E-02 -7.1E-02 -6.5E-02 

1000 -8.6E-03 -9.6E-03 -7.8E-03 -6.6E-03 -3.0E-02 -2.9E-02 -2.7E-02 -2.5E-02 -6.5E-02 -6.5E-02 -6.9E-02 -6.9E-02 

5000 -1.0E-02 -9.5E-03 -8.7E-03 -7.5E-03 -2.9E-02 -3.0E-02 -2.8E-02 -2.8E-02 -6.7E-02 -6.9E-02 -7.0E-02 -7.1E-02 
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Supplementary Table S2.3 (a,b): (a) MSE and (b) bias for estimation of specificity from the method proposed by Tsoi et al. by 

examining the median RAFs difference. 

(a) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 1.87E-03 1.67E-03 1.24E-03 6.07E-04 3.31E-03 3.44E-03 3.01E-03 2.12E-03 8.85E-03 9.00E-03 9.33E-03 9.57E-03 

500 1.16E-03 9.86E-04 8.52E-04 4.13E-04 2.49E-03 2.37E-03 2.32E-03 1.89E-03 7.28E-03 8.16E-03 7.60E-03 8.13E-03 

1000 7.18E-04 5.72E-04 4.56E-04 2.85E-04 1.86E-03 1.71E-03 1.58E-03 1.51E-03 6.54E-03 6.92E-03 7.14E-03 7.25E-03 

5000 2.93E-04 2.68E-04 2.05E-04 1.60E-04 1.38E-03 1.32E-03 1.28E-03 1.26E-03 5.88E-03 6.10E-03 6.53E-03 6.86E-03 

Estimate 

effect 

size 

300 8.85E-03 9.00E-03 9.33E-03 9.57E-03 1.77E-03 1.55E-03 1.09E-03 8.23E-04 3.55E-03 3.74E-03 3.02E-03 2.56E-03 

500 7.28E-03 8.16E-03 7.60E-03 8.13E-03 1.07E-03 1.10E-03 8.38E-04 4.46E-04 2.70E-03 2.73E-03 2.46E-03 2.21E-03 

1000 6.54E-03 6.92E-03 7.14E-03 7.25E-03 6.68E-04 6.17E-04 5.18E-04 3.30E-04 2.14E-03 2.11E-03 1.97E-03 1.81E-03 

5000 5.88E-03 6.10E-03 6.53E-03 6.86E-03 3.35E-04 2.99E-04 2.70E-04 2.25E-04 1.62E-03 1.67E-03 1.65E-03 1.64E-03 

 

(b) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 -1.8E-02 -1.6E-02 -1.2E-02 -1.1E-02 -3.7E-02 -3.9E-02 -3.8E-02 -3.1E-02 -7.8E-02 -8.1E-02 -8.4E-02 -8.5E-02 

500 -1.6E-02 -1.5E-02 -1.5E-02 -1.0E-02 -3.6E-02 -3.7E-02 -3.7E-02 -3.4E-02 -7.5E-02 -8.1E-02 -7.9E-02 -8.2E-02 

1000 -1.5E-02 -1.2E-02 -1.4E-02 -1.1E-02 -3.6E-02 -3.5E-02 -3.4E-02 -3.5E-02 -7.6E-02 -7.8E-02 -8.1E-02 -8.2E-02 

5000 -1.4E-02 -1.4E-02 -1.2E-02 -1.1E-02 -3.6E-02 -3.5E-02 -3.5E-02 -3.5E-02 -7.6E-02 -7.7E-02 -8.0E-02 -8.2E-02 

Estimate 

effect 

size 

300 -1.9E-02 -1.8E-02 -1.5E-02 -1.7E-02 -4.2E-02 -4.5E-02 -4.1E-02 -3.9E-02 -8.4E-02 -8.8E-02 -9.2E-02 -9.2E-02 

500 -1.7E-02 -1.8E-02 -1.6E-02 -1.4E-02 -4.0E-02 -4.3E-02 -4.2E-02 -4.1E-02 -7.9E-02 -8.4E-02 -8.9E-02 -9.1E-02 

1000 -1.5E-02 -1.6E-02 -1.6E-02 -1.4E-02 -4.0E-02 -4.0E-02 -3.9E-02 -3.9E-02 -8.0E-02 -8.3E-02 -8.6E-02 -8.8E-02 

5000 -1.5E-02 -1.5E-02 -1.5E-02 -1.4E-02 -3.9E-02 -4.0E-02 -4.0E-02 -4.0E-02 -8.1E-02 -8.4E-02 -8.7E-02 -9.0E-02 
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Supplementary Table S2.4 (a-d): MSE of estimated specificity when using different number of variants. (a) 51 variants, (b) 25 

variants, (c) 1 variant with the largest effect size (d)1 variant with moderate effect size 

 

(a) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 9.42E-04 7.05E-04 4.22E-04 4.56E-05 1.30E-03 9.62E-04 6.84E-04 9.24E-05 2.12E-03 1.83E-03 1.00E-03 2.51E-04 

500 5.61E-04 3.77E-04 2.45E-04 1.86E-05 7.45E-04 5.85E-04 3.78E-04 5.08E-05 1.17E-03 1.03E-03 6.65E-04 1.21E-04 

1000 2.47E-04 1.95E-04 1.14E-04 8.52E-06 3.62E-04 2.87E-04 1.86E-04 2.36E-05 5.89E-04 4.90E-04 3.40E-04 5.95E-05 

5000 5.09E-05 3.71E-05 2.46E-05 1.50E-06 7.49E-05 5.61E-05 3.78E-05 3.92E-06 1.25E-04 9.11E-05 7.21E-05 1.24E-05 

Estimate 

effect 

size 

300 8.74E-04 6.58E-04 4.18E-04 6.17E-05 1.35E-03 8.91E-04 6.76E-04 1.49E-04 1.93E-03 1.65E-03 9.87E-04 4.15E-04 

500 5.15E-04 3.88E-04 2.58E-04 3.24E-05 7.61E-04 5.67E-04 3.63E-04 9.59E-05 1.11E-03 1.06E-03 6.94E-04 2.50E-04 

1000 2.62E-04 2.00E-04 1.33E-04 1.74E-05 3.81E-04 3.06E-04 2.01E-04 5.10E-05 6.19E-04 5.57E-04 4.22E-04 1.55E-04 

5000 6.38E-05 4.57E-05 3.16E-05 4.66E-06 9.95E-05 8.24E-05 6.06E-05 1.68E-05 2.05E-04 1.70E-04 1.43E-04 6.07E-05 

 

(b) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 1.27E-03 9.99E-04 6.30E-04 1.08E-04 2.06E-03 1.49E-03 1.08E-03 2.85E-04 3.23E-03 2.89E-03 1.85E-03 8.25E-04 

500 7.81E-04 5.85E-04 3.89E-04 5.29E-05 1.15E-03 8.61E-04 5.87E-04 1.67E-04 2.00E-03 1.66E-03 1.21E-03 5.10E-04 

1000 3.65E-04 2.77E-04 1.82E-04 2.36E-05 5.43E-04 4.75E-04 3.09E-04 7.94E-05 9.91E-04 9.23E-04 6.49E-04 3.22E-04 

5000 7.92E-05 6.12E-05 4.12E-05 4.94E-06 1.40E-04 1.17E-04 8.32E-05 2.38E-05 3.35E-04 2.66E-04 2.47E-04 1.20E-04 

Estimate 

effect 

size 

300 1.22E-03 9.34E-04 6.46E-04 1.17E-04 1.96E-03 1.52E-03 1.06E-03 3.28E-04 2.99E-03 2.87E-03 1.85E-03 1.29E-03 

500 7.19E-04 5.91E-04 3.75E-04 7.10E-05 1.13E-03 9.29E-04 5.92E-04 2.31E-04 2.00E-03 1.87E-03 1.38E-03 7.27E-04 

1000 3.61E-04 3.14E-04 1.91E-04 3.90E-05 5.76E-04 5.13E-04 3.77E-04 1.40E-04 1.26E-03 1.15E-03 9.94E-04 5.35E-04 

5000 9.60E-05 7.37E-05 5.46E-05 1.19E-05 2.16E-04 2.00E-04 1.51E-04 5.95E-05 6.51E-04 6.08E-04 5.13E-04 3.07E-04 
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(c) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 1.43E-03 1.21E-03 7.08E-04 1.23E-04 2.38E-03 1.89E-03 1.26E-03 3.81E-04 4.49E-03 3.40E-03 2.28E-03 1.28E-03 

500 8.44E-04 6.91E-04 4.44E-04 7.42E-05 1.29E-03 1.07E-03 7.72E-04 2.31E-04 2.55E-03 2.16E-03 1.64E-03 9.12E-04 

1000 3.90E-04 3.23E-04 2.21E-04 3.68E-05 7.11E-04 5.33E-04 3.99E-04 1.41E-04 1.48E-03 1.23E-03 9.66E-04 5.35E-04 

5000 8.94E-05 6.82E-05 4.57E-05 7.72E-06 1.82E-04 1.45E-04 1.20E-04 3.92E-05 5.20E-04 4.87E-04 3.84E-04 2.40E-04 

Estimate 

effect 

size 

300 1.37E-03 1.09E-03 6.99E-04 1.39E-04 2.17E-03 1.72E-03 1.20E-03 4.44E-04 3.90E-03 3.58E-03 2.37E-03 1.38E-03 

500 8.05E-04 6.48E-04 4.80E-04 1.00E-04 1.26E-03 1.05E-03 7.55E-04 2.40E-04 2.53E-03 2.29E-03 1.74E-03 9.97E-04 

1000 3.83E-04 3.35E-04 2.30E-04 3.82E-05 6.73E-04 5.82E-04 4.00E-04 1.62E-04 1.42E-03 1.42E-03 1.11E-03 6.49E-04 

5000 9.91E-05 7.59E-05 5.37E-05 1.12E-05 2.04E-04 1.78E-04 1.41E-04 5.93E-05 6.45E-04 5.99E-04 5.15E-04 3.44E-04 

(d) 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 1 0.85 0.9 0.95 1 0.85 0.9 0.95 1 

True 

effect 

size 

300 6.43E-03 3.66E-03 1.35E-03 1.63E-04 7.39E-03 4.28E-03 2.00E-03 5.92E-04 9.91E-03 6.57E-03 3.41E-03 1.83E-03 

500 5.62E-03 2.73E-03 1.13E-03 1.06E-04 5.96E-03 3.50E-03 1.45E-03 3.30E-04 7.87E-03 4.89E-03 2.61E-03 9.62E-04 

1000 3.22E-03 1.73E-03 7.33E-04 5.46E-05 3.53E-03 2.26E-03 1.00E-03 1.80E-04 5.26E-03 3.48E-03 1.67E-03 5.48E-04 

5000 4.70E-04 3.10E-04 1.80E-04 7.18E-06 6.20E-04 4.84E-04 3.31E-04 2.45E-05 1.08E-03 9.07E-04 5.98E-04 8.30E-05 

Estimate 

effect 

size 

300 6.98E-03 3.87E-03 1.41E-03 1.64E-04 8.71E-03 4.56E-03 2.11E-03 5.83E-04 1.06E-02 6.71E-03 3.43E-03 1.65E-03 

500 6.13E-03 2.93E-03 1.18E-03 1.07E-04 6.92E-03 3.74E-03 1.53E-03 3.15E-04 8.75E-03 5.43E-03 2.49E-03 9.19E-04 

1000 4.49E-03 2.20E-03 7.93E-04 5.31E-05 4.17E-03 2.78E-03 1.14E-03 1.49E-04 6.14E-03 3.78E-03 1.75E-03 4.91E-04 

5000 8.40E-04 4.28E-04 2.17E-04 8.53E-06 9.25E-04 6.33E-04 4.31E-04 2.21E-05 1.55E-03 1.26E-03 7.76E-04 5.87E-05 
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Supplementary Table S2.5 (a,b): (a) RMSE and (b) bias for estimation of specificity when 

the EHR study uses a different liability threshold compared to external GWAS studies. 

 

 (a) 

sample size 1000 5000 

               delta 

alpha_0 
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1 

0.85 0.016 0.020 0.027 0.037 0.008 0.012 0.021 0.032 

0.9 0.015 0.018 0.025 0.033 0.007 0.011 0.020 0.032 

0.95 0.011 0.016 0.024 0.033 0.005 0.010 0.019 0.030 

1 0.003 0.009 0.017 0.028 0.001 0.006 0.014 0.026 

*delta: 𝐾𝐸𝐻𝑅 − 𝐾𝐸𝑋 

 

 (b) 

sample size 1000 5000 

               delta 

alpha_0 
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1 

0.85 -0.001 -0.005 -0.014 -0.024 0.000 -0.008 -0.018 -0.029 

0.9 0.000 -0.005 -0.013 -0.021 0.000 -0.008 -0.018 -0.030 

0.95 0.001 -0.005 -0.015 -0.022 0.000 -0.007 -0.017 -0.029 

1 -0.001 -0.005 -0.012 -0.021 -0.001 -0.004 -0.013 -0.025 

*delta: 𝐾𝐸𝐻𝑅 − 𝐾𝐸𝑋 

 

 

 

Supplementary Table S2.6: Empirical type I error for testing whether there is 

misspecification by incorporating effect sizes estimated based on 20,000 samples. 

 

 
alpha=0.05 alpha=0.01 

                 Size 

prevalence 
300 500 1000 5000 300 500 1000 5000 

4% 0.05 0.06 0.04 0.06 0.01 0.01 0.01 0.02 

10% 0.05 0.07 0.06 0.08 0.02 0.01 0.02 0.03 

15% 0.06 0.07 0.09 0.11 0.02 0.02 0.01 0.04 
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Supplementary Table S2.7 (a,b):  Power for testing whether there is misspecification under different settings. (a) alpha = 0.05, 

(b) alpha = 0.01. 

(a) alpha = 0.05 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95 

True effect size 

300 1.00 1.00 0.86 1.00 0.96 0.72 0.96 0.84 0.53 

500 1.00 1.00 0.97 1.00 1.00 0.90 1.00 0.97 0.69 

1000 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.91 

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Estimate effect 

size 

300 1.00 0.99 0.92 1.00 0.97 0.83 0.97 0.90 0.64 

500 1.00 1.00 0.99 1.00 1.00 0.94 1.00 0.98 0.81 

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 (b) alpha = 0.01 

    Prevalence=4% Prevalence=10% Prevalence=15% 

    0.85 0.9 0.95 0.85 0.9 0.95 0.85 0.9 0.95 

True effect size 

300 0.99 0.97 0.72 0.98 0.89 0.49 0.88 0.68 0.29 

500 1.00 1.00 0.92 1.00 0.98 0.74 0.98 0.90 0.49 

1000 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.99 0.79 

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Estimate effect 

size 

300 1.00 0.98 0.80 0.99 0.93 0.64 0.91 0.77 0.39 

500 1.00 1.00 0.96 1.00 0.99 0.85 0.99 0.95 0.61 

1000 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.92 

5000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Supplementary Table S2.8: Estimated misclassification rate in observed cases and p-value 

when using different encounter cutoffs to define an AMD case. Holm-Bonferroni method is 

used to control the familywise error rates under 0.05. Numbers in bold represents the results that 

are not significant.  

 

 

Cutoff Cases Controls Estimated (1-𝜶𝟎) p-value 
Holm-Bonferroni 

threshold* 

≥1 encounter 144 16516 0.40% 1.94E-14 3.85E-03 

≥2 encounters 119 16516 0.30% 2.10E-10 4.17E-03 

≥3 encounters 86 16516 0.16% 7.85E-06 4.55E-03 

≥4 encounters 74 16516 0.12% 2.35E-04 5.00E-03 

≥5 encounters 65 16516 0.10% 7.37E-04 5.56E-03 

≥6 encounters 55 16516 0.10% 1.44E-03 6.25E-03 

≥7 encounters 49 16516 0.06% 1.51E-02 7.14E-03 

≥8 encounters 45 16516 0.04% 9.60E-02 8.33E-03 

≥9 encounters 44 16516 0.04% 9.37E-02 1.00E-02 

≥10 encounters 42 16516 0.04% 9.05E-02 1.25E-02 

≥11 encounters 38 16516 0.02% 3.72E-01 1.67E-02 

≥12 encounters 37 16516 0.02% 3.74E-01 2.50E-02 

≥13 encounters 33 16516 0.02% 4.38E-01 5.00E-02 

*Holm-Bonferroni threshold = 0.05/(13 – rank of the test + 1) 
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Supplementary Table S2.9: The estimation of MAFs in cases and effect sizes for AMD with 

samples defined by different encounter cutoffs. Here the top two common variants with 

largest effect sizes are investigated. Results are compared with those in the external GWAS to 

examine whether they are converge to the external gold-standard GWAS when phenotypes are 

refined by more stringent cutoff. The variant, rs3750846, is around gene ARMS2; and 

rs10922109 is around gene CFH.     

 

 

 

  MAF in cases Effect size 

  rs3750846 rs10922109 rs3750846 rs10922109 

≥1 encounter 0.347 0.323 0.634 0.382 

≥2 encounters 0.353 0.315 0.660 0.417 

≥3 encounters 0.384 0.302 0.793 0.477 

≥4 encounters 0.412 0.291 0.912 0.534 

≥5 encounters 0.415 0.277 0.925 0.601 

≥6 encounters 0.400 0.273 0.861 0.622 

≥7 encounters 0.418 0.255 0.938 0.713 

≥8 encounters 0.444 0.233 1.045 0.831 

≥9 encounters 0.455 0.239 1.086 0.802 

≥10 encounters 0.464 0.250 1.126 0.740 

≥11 encounters 0.487 0.237 1.217 0.812 

≥12 encounters 0.500 0.243 1.270 0.777 

≥13 encounters 0.515 0.242 1.330 0.782 

External GWAS 0.436 0.223 1.075 0.673 
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Supplementary Figure S2.1: Illustration of the influence of different case/control 

dichotomization thresholds on case/control distributions in external GWAS and EHR-

based GWAS. Here EHR has less stringent liability threshold to dichotomize cases than external 

GWAS. The blue area represents samples that are classified as controls in both GWAS. The red 

area represents samples that are classified as cases in both GWAS. The green dots represent the 

samples that are truly misclassified. The purple area represents samples that are classified as 

cases in EHR and controls in external GWAS due to the difference in the liability thresholds. 

 

 

 

 

 

 

 

 

 



49 

 

 

 

 

 

 

 

 

 

Supplementary Figure S2.2(a):  Estimated effect sizes in external case-control study and 

EHR GWAS for age-related macular degeneration. Forty variants listed here are reported to 

be significantly associated with AMD by the International AMD Genomics Consortium and have 

association results in MGI EHR (Fritsche et al., 2016). On the y axis, if multiple variants are 

around the same notable gene, gene_* are used to distinguish them.  
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Supplementary Figure S2.2(b):  Estimated effect sizes in external case-control study and 

EHR GWAS for breast cancer. Seventy three variants listed here are reported to be 

significantly associated with breast cancer in external studies (Michailidou et al., 2017; 

Michailidou et al., 2015; Michailidou et al., 2013; Fletcher et al., 2011; Turnbull et al., 2010) and 

have association results in MGI EHR. The external GWAS results are the average of effect sizes 

among those five studies. On the y axis, if multiple variants are around the same notable gene, 

gene_* are used to distinguish them. If no gene is around the variant, its rs ID is shown instead. 

 

 

 

 

 



51 

 

 

 

 

 

 

 

 

Supplementary Figure S2.2(c):  Estimated effect sizes in external case-control study and 

EHR GWAS for psoriasis. Forty one variants listed here are reported to be significantly 

associated with psoriasis in external studies (Tsoi et al., 2015; Yin et al., 2015; Tsoi et al., 2012; 

Strange et al., 2010; Stuart et al., 2010) and have association results in MGI EHR. The external 

GWAS results are the average of effect sizes among those five studies.  

 

 

 

 

 

 

 

 



52 

 

 

 

 

 

 

 
 

Supplementary Figure S2.2(d):  Estimated effect sizes in external case-control study and 

EHR GWAS for type II diabetes. Seventy seven variants listed here are reported to be 

significantly associated with T2D in external studies (Scott et al., 2017; Gaulton et al., 2015; 

Consortium, Diabetes SAT2D, et al., 2014; Morris et al., 2012; Saxena et al., 2012; Voight et al., 

2010; Zeggini et al., 2008) and have association results in MGI EHR. The external GWAS 

results are the average of effect sizes among those seven studies. On the y axis, if no gene is 

around the variant, its rs ID is shown instead. 
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Supplementary Figure S2.3:  Estimated effect sizes in external case-control study and EHR 

GWAS using samples having 7 or more encounters for age-related macular degeneration. 

Thirty six variants listed here are reported to be significantly associated with AMD by the 

International AMD Genomics Consortium and have converged association results in MGI EHR 

(Fritsche et al., 2016). On the y axis, if multiple variants are around the same notable gene, 

gene_* are used to distinguish them. 
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(a) 

 

(b) 

 

Supplementary Figure S2.4(a,b): RMSE for estimation of specificity based on different 

methods; (a) is using true effect sizes and (b) is using estimated effect sizes. Results shown 

here are for settings with disease prevalence 10%. The panel represents true specificity 𝛼0. The 

red line represents results using our method. The blue line and yellow line represent method 

proposed by Tsoi et al. that examines mean differences with exact risk AF and approximate risk 

AF respectively. The green line and purple line represent their method that examines median 

differences with exact risk AF and approximate risk AF respectively.
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CHAPTER III 

Likelihood-based Protocol for Inferring Genetic Relatives 

Securely between Studies 

3.1 Introduction 

The development of next generation sequencing technologies has benefitted many areas of 

genetic research. Based on whole genome or exome sequencing data, reference datasets of 

human genetic variation have been generated (Karczewski et al., 2019; Taliun et al., 2019). They 

are essential resources for functional interpretation of putative disease-causing variants by, for 

example, helping separate genomic positions and regions that are mutation intolerant from others 

where variation is more common. Electronic health records (EHR) has also been linked to 

sequencing data, for example, the exome sequencing project of UK Biobank samples funded by 

Regeneron Pharmaceuticals (UK Biobank, 2018). These sequencing data from large cohorts can 

be used to establish the reference dataset. As more and more reference resources like dbSNP and 

ClinVar, or custom browsers like gnomAD and BRAVO, became publicly available, aggregated 

information from multiple resources will help researchers make inferences more efficiently and 

comprehensively (Sherry et al., 2001; Landrum et al., 2017; Karczewski et al., 2019; Taliun et al., 

2019). The critical step of the combination of different reference datasets is to infer the 

overlapping samples, as ignoring overlapping samples when combining information will bias the
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summary statistics like allele frequency (AF), especially for rare variants. In turn, ignoring 

overlap will be deleterious for functional interpretation of these variants.  

Various methods have been developed to infer genetic relatives based on individual-level genetic 

data (Lynch, 1988; Queller and Goodnight, 1989; Boehnke and Cox, 1997; Broman and Weber, 

1998; Lynch and Ritland, 1999; Epstein et al. 2000; Wang, 2002; Milligan, 2003; Manichaikul, 

2010; Thomas, 2010). However, methods are lacking for a more challenging problem, inferring 

genetic relatives between different studies. An inherent issue that arises in identifying 

overlapping or closely related samples between studies is privacy. While the summary statistics 

are often shared between studies, it is common that studies are prohibited from sharing 

individual-level data most often because of the informed consent used in the studies. Moreover, 

as more and more genetic data are gathered and stored in large databases, they may become a 

resource for people to find their genetic relatives. Privacy-preserving protocols of inferring 

relatives can also be applied when people who are interested in finding their relatives have 

concerns about releasing genetic data to organizations they may not necessarily trust.  

Several methods initially aiming for secure DNA string searching or edit distance calculation 

have been proposed based on different cryptographic techniques. An extension usage of these 

two-party secure protocols is to identify similar samples, i.e. infer duplicates, between two 

studies based on the edit distance. The protocols include private set intersection (De Cristofaro 

and Tsudik, 2012), oblivious transfer- based hamming distance system (Bringer et al., 2013), as 

well as privacy-preserving approximating edit distance (Wang et al., 2015). These methods can 

infer duplicates by calculating the similarity or distance of encrypted genome sequences. 

However, all of these methods are not constructed based on the biological mechanism of 

inheritance and can only infer duplicates. Another type of method deals with this problem based 
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on the ‘fuzzy’ encryption technique. He et al. (2014) showed that with this ‘fuzzy’ encryption 

method, one individual should be able to decrypt the encrypted genome of another individual 

using his own genome only when they are related. The extension of the method proposed by 

Hormozdiari et al (2014) takes advantage of genetic reference panels and can detect more distant 

relationships using rare variants. However, they also have some limitations. One limitation is that 

they use the haplotype information, which requires phasing of the genotype. Second, these 

methods require sharing information of the whole genome between studies. As a consequence, 

they are not only computationally infeasible for large-scale data, but also have a risk of severe 

information leakage when the encryption is attacked. More importantly, these methods, again, 

are based on comparing the similarity of genome sequences directly, but ignoring the mechanism 

of inheritance. In this chapter, we propose a new protocol that allows efficient detection of 

genetic relatives without compromising privacy while only requiring sharing encrypted 

information of a limited number of variants.  

The secure protocol infers the genetic relationship using a likelihood-based model. This method 

was first proposed by Boehnke and Cox in 1997 and improved by Broman and Weber (1998) and 

Epstein et al. (2000) to incorporate genotyping error. The likelihood-based method has excellent 

power of identifying genetic relatives using true individual-level genotype data. Here, we modify 

this method and enable it to identify relatives using encrypted genotype data. The general 

framework of this protocol between two studies is that study A first releases the encrypted code 

of their genotype segments to study B. Then study B, which has access to its own genotype data 

and the encrypted data from study A, can identify relatives by incorporating the likelihood-based 

method. Under this protocol, kinship coefficients can be obtained without disclosing genetic 

information between studies. We demonstrate the utility of our method by applying our 
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technique to infer genetic relatives among samples from the Trans-Omics for Precision Medicine 

(TOPMed) study. We show that our protocol can infer relationship up to second degree in a 

homogenous population with only a limited number of variants. Furthermore, with selected 

variants, our protocol can identify close relatives in a heterogeneous population. The 

computation time of our protocol scales well in practice. Our method is not limited to EHR 

studies, but can be broadly applied to any genetic studies without additional assumptions. 

3.2 Method 

3.2.1 Likelihood-based method of inferring genetic relatives 

To infer relationship based on likelihoods, we have to construct the probability of observing the 

genotype pairs of two samples given a certain relationship (Boehnke and Cox, 1997; Epstein et 

al., 2000). Then the relationship which maximizes the likelihood is inferred to be the relationship 

between these two samples. 

Let 𝐺𝑚 = (𝐺𝑖𝑚, 𝐺𝑗𝑚) denote the genotype of sample pair (i, j) at variant m. If M independent 

variants are selected to infer relationship, 𝐺 = (𝐺1, 𝐺2, … , 𝐺𝑀) should be the genotype pairs of all 

the M variants for a pair of samples i and j. Then we can infer the relationship based on the 

probability of observing the genotype pairs between the samples given a certain relationship, 

𝑃𝑟 (𝐺|𝑅). The relationship we consider here includes MZ twins/duplicates, parent-offspring, full 

siblings, second degree relatives and unrelated pairs. For example, if 𝑃𝑟 (𝐺|𝑓𝑢𝑙𝑙 𝑠𝑖𝑏) is the 

largest likelihood among all relationships, it suggests that this pair of samples may be full 

siblings. 
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To calculate 𝑃𝑟 (𝐺|𝑅), we use the identity-by-descent (IBD) status to link the observed genotype 

pairs G and relationship R. Let  𝐼𝐵𝐷𝑚 ∈ {0,1,2} denote the number of alleles shared by IBD at 

variant m. Then for a pair of variants 𝐺𝑚 of sample i and j, the probability can be calculated as 

𝑃𝑟(𝐺𝑚|𝑅) = ∑ 𝑃𝑟 (𝐺𝑚|𝐼𝐵𝐷𝑚 = 𝑑)𝑑={0,1,2} ∙ 𝑃𝑟(𝐼𝐵𝐷𝑚 = 𝑑| 𝑅).                     (1) 

The first probability in the equation, Pr(Gm|IBD = i), is the conditional probability of genotype 

pairs at variant m given that they share 0,1 or 2 alleles IBD. These probabilities are provided in 

Table 3.1 for autosomal variants (Thompson, 1975; Risch, 1990). Here we only consider bi-

allelic variants.  

Table 3.1:  Probability of ordered autosomal genotype pairs given IBD status 

𝐏𝐫(𝑮𝒎|𝑰𝑩𝑫𝒎 = 𝟎, 𝟏, 𝟐). 

 

Pr(Genotype pairs|IBD) 

Genotype pairs IBD=0 IBD=1 IBD=2 

(aa,aa) 𝑝𝑎
4 𝑝𝑎

3 𝑝𝑎
2 

(aa,ab) 2𝑝𝑎
3𝑝𝑏 𝑝𝑎

2𝑝𝑏 0 

(aa,bb) 𝑝𝑎
2𝑝𝑏

2 0 0 

(ab,ab) 4𝑝𝑎
2𝑝𝑏

2 𝑝𝑎
2𝑝𝑏 + 𝑝𝑎𝑝𝑏

2 2𝑝𝑎𝑝𝑏 

 

Given a relationship, we can construct the probability of having IBD status to be 0, 1 or 2 at that 

variant for autosomal variants. For instance, 𝑃𝑟(𝐼𝐵𝐷𝑚 = 0,1,2|𝐹𝑢𝑙𝑙 𝑠𝑖𝑏𝑠) = (0.25,0.5,0.25). 

Table 3.2 shows these probabilities for different relationships. 

Table 3.2: Probability of IBD status given different relationship 𝐏𝐫(𝑰𝑩𝑫𝒎 = 𝟎, 𝟏, 𝟐|𝑹). 

 Pr(IBD|R) 

Relationship IBD=0 IBD=1 IBD=2 

Duplicates/MZ twins 0 0 1 

Parent-offspring 0 1 0 

Full-sib 0.25 0.5 0.25 

Second-degree relatives 0.5 0.5 0 

First-cousin 0.75 0.25 0 

Unrelated 1 0 0 
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For our protocol, we only select independent variants to infer the relationship. Thus, the joint 

log-likelihood of the genotype pairs of all M variants, given the relationship, should be the log of 

the product of these independent variants,   

          𝑙(𝐺|𝑅) = 𝑙𝑜𝑔 (∏ 𝑃𝑟(𝐺𝑚|𝑅)

𝑀

𝑚=1

) 

= ∑ 𝑙𝑜𝑔 ((∑ 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚 = 𝑑) ∙ 𝑃𝑟(𝐼𝐵𝐷𝑚 = 𝑑|𝑅)𝑑={0,1,2} ))𝑀
𝑚=1 .                         (2) 

3.2.2 Genotyping error 

Broman and Weber (1998) demonstrated that if we did not consider genotype errors in the model, 

there would be many probabilities of value 0 introduced in the model through 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚), 

which reduced the accuracy and flexibility of the model. For example, the probability 

𝑃𝑟(𝐺𝑚 = (𝑎𝑎, 𝑏𝑏)|𝐼𝐵𝐷𝑚 = 1) equals 0 when we ignore genotype errors. However, it is possible 

to get the genotype pair (aa,bb) under IBD = 1 when genotype error is considered. To make the 

model more realistic, they proposed a method considering genotype errors. Suppose each variant 

genotype is wrong with probability 𝜖 and each genotype is correctly determined with probability 

1- 𝜖. The probabilities 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚) becomes the weighted sum of 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚) and 

𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚 = 0). The weights are the probabilities that a pair of variants is correctly 

genotyped, (1 − ε)2, and either variant is randomly generated from the population, (1 −

(1 − ε)2 ). Hence,  𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚) becomes 

𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚 = 𝑑; 𝜀) = (1 − 𝜀)2 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚 = 𝑑; 𝜀 = 0) 

                                                           +(1 − (1 − 𝜀)2 )𝑃𝑟(𝐺𝑚 |𝐼𝐵𝐷𝑚 = 0; 𝜀 = 0).            (3) 
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This equation (3) is plugged into (2) to construct a likelihood which takes genotype error into 

consideration, 

          𝑙(𝐺|𝑅, 𝜀) = ∑ 𝑙𝑜𝑔 ((∑ 𝑃𝑟(𝐺𝑚|𝐼𝐵𝐷𝑚 = 𝑑; 𝜀) ∙ 𝑃𝑟(𝐼𝐵𝐷𝑚 = 𝑑|𝑅)𝑑={0,1,2} ))𝑀
𝑚=1 .         

3.2.3 General secure relationship inference framework 

In the previous section, we demonstrated how to infer genetics relatives using individual-level 

genotypes. To infer relationships between studies when the individual-level genotype is not 

sharable, we need to calculate the likelihood defined above using encrypted genotype data. We 

propose a privacy-preserving framework that allows two studies to infer genetic relatives without 

exposing their individual-level genotype information. Two parties included in this protocol, 

study A and B, should follow these general steps (illustrated in Figure 3.1): 

1) Study A generates encrypted genotype data and sends it to study B. 

2) Study B calculates the likelihood using encrypted genotype from study A and its own 

genotype. Then study B infers the relationship based on the likelihoods. 

 
Figure 3.1: General framework for securely calculating kinship coefficient between studies. 
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3.2.4 Inferring relationships using encrypted genotype by likelihood-based method 

As described in the previous section, to infer relationships securely, the encryption scheme 

should be developed and the likelihood 𝑙(𝐺|𝑅, 𝜀) depending on encrypted genotype should be 

constructed.  

The key concept of encrypting genotypes is to represent true genotype data with summary 

statistics that do not reveal the genotype specifically for each variant, but contains enough 

information to infer relationships. To encrypt genotype data, we first partition an individual’s 

genotype into segments. Each segment contains k number of variants.  Then, we summarize the 

genotypes within each segment as the encrypted code and use them to infer relatives. Let 𝑋𝑖𝑝 

denote the encrypted genotype code for individual i at segment p,  𝑋𝑖𝑝 = ∑ 𝐺𝑖𝑚𝑚∈{𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑝}  . 

One example of the encryption scheme with segment size k=3 is shown in Figure 3.2 and Table 

3.3. In this encryption scheme, since the mappings between the encrypted genotype and the true 

genotype segment are one-to-one for (X = 0, G = (000)) and (X = 6, G = (222)), we set their 

encrypted genotype code to be 1and 5 instead of 0 and 6. In turn, the mappings between 

encrypted genotype and true genotype segment are always one-to-N. The information of the 

genotype segment is compressed from 33 distinct values into 5 distinct values. In other words, 

we cannot infer the exact true genotype from the encrypted genotype code. Details of the 

encryption scheme of segment size k = 5 are shown in Supplementary Table S3.1. With segment 

size equaling 5, the genotype is compressed from 243 distinct values to 9 distinct values. In 

Section 3.3 below, we will compare the utility and the security of these two encryption schemes 

through simulations.  

Based on the likelihood constructed in Section 3.2.1-2 as well as the mappings between 

encrypted genotypes and true genotype segments, the joint log-likelihood of the pair of encrypted 
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Table 3.3: Mapping between true genotype and encrypted genotype code (segment size = 3). 

Genotype segment (𝑮) Encrypted genotype code (𝑿) 

000, 001, 010, 100 1 

011, 101, 110, 002, 020, 200 2 

012, 021, 102, 111, 120, 201, 210 3 

022, 112, 121, 202, 211, 220 4 

122, 212, 221, 222 5 

 

 

 

                       Genotype 𝐺𝑖𝑚                                                                              Encrypted code 𝑋𝑖𝑝 

Individual 1:   011   101   201   221        𝑋𝑖𝑝 = ∑ 𝐺𝑖𝑚𝑚∈{𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑝}             Individual 1:         2    2    3     5 

Individual 2:   111   120   001   001                                                              Individual 2:         3    3    1    1 

Individual 3:   201   000   222   201                                                              Individual 3:         3    0    5    3 

Figure 3.2: Demonstration of encrypting genotype with segment size = 3. 

 

genotype from one study and the true genotype from the other study given relationship R is 

obtained by adding all possible conditions for a given encrypted genotype. Based on our protocol, 

for each comparison between sample i and j, genotypes of only one sample, sample i are 

encrypted. Suppose the sequence of genetic variants is divided into P segments. Each segment 

contains k variants. Let 𝑮𝑖𝑝 denote all the possible genotype segments that can be mapped to the 

encrypted genotype code 𝑋𝑖𝑝 in the pth segment, 𝑋𝑖𝑝 = 𝑒𝑛𝑐(𝑮𝑖𝑝) = ∑ 𝐺𝑖𝑚𝑚∈{𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑝} . Since 

each variant is independent, each segment should be independent also, and each variant within 

one segment should be independent as well, 𝑃𝑟(𝑮𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀) = ∏ 𝑃𝑟(𝐺𝑚|𝑅, 𝜀)𝑚∈{𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑝} . 

Hence, the likelihood becomes 

𝑙(𝑿𝑖, 𝑮𝑗|𝑅, 𝜀) = ∑ 𝑙𝑜𝑔 (𝑃𝑟(𝑋𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀))

𝑝

 

= ∑ 𝑙𝑜𝑔 ( ∑ 𝑃𝑟(𝑮𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀)

𝑮𝒊𝒑∈{𝑒𝑛𝑐(𝑮𝒊𝒑)=𝑋𝑖𝑝}

)

𝑝
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= ∑ 𝑙𝑜𝑔 ( ∑ ∏ 𝑃𝑟(𝐺𝑚|𝑅, 𝜀)

𝑚∈{𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑝}𝑮𝒊𝒑∈{𝑒𝑛𝑐(𝑮𝒊𝒑)=𝑋𝑖𝑝}

) .

𝑝

 

The probability, 𝑃𝑟(𝐺𝑚|𝑅, 𝜀), can be calculated using equation (1) and (3). As in the method 

without encryption, the relationship is inferred by selecting the relationship which maximizes the 

likelihood.  

To deal with missing values, if a genotype is missing for a sample in study A which encrypts the 

genotype, the whole segment corresponding to that variant is coded as missing and 

𝑃𝑟(𝑋𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀) is set to be 1 for that segment. If the genotype is missing in study B which uses 

the true genotypes, we treat that variant as missing and 𝑃𝑟(𝐺𝑚|𝑅, 𝜀) is set to be 1 for that variant 

3.3 Results  

3.3.1 NHLBI TOPMed program 

The performance of this secure relationship inference protocol is evaluated through application 

to infer relationships among the samples of NHLBI TOPMed program Freeze3 data.   

TOPMed is a program that aims to get insight into the genetic basis of human diseases, including 

heart, lung, blood, and sleep disorders, through whole genome sequencing. The ethnic 

background of the participants in TOPMed program is diverse (Taliun et al., 2019). A reference 

dataset of human genetic variation, BRAVO, has been constructed based on the sequencing data 

providing resources for functional interpretation of the variants (Taliun et al., 2019). Inferring 

relationship securely among TOPMed samples and samples from other programs may allow us 

to aggregate information from multiple resources and develop a more comprehensive picture of 

the putative disease-causing variants. 
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3.3.2 Performance of the privacy preserving protocol in homogeneous populations 

In the first simulation, we apply our method to infer relationships among homogeneous 

populations in TOPMed program. The ancestry of each individual is estimated using TRACE 

(Wang et al., 2015). Among 14,572 participants, we identify 3,357 Europeans, 3,437 Africans, 

265 Asian and 54 Native Americans. Then relationships are inferred within each ethnic group. 

Gold-standard relationships among samples are inferred using the robust relationship inference 

method implemented in KING based on ~600,000 variants from the Human Genome Diversity 

Project (HGDP), which are considered to have high genotype quality (Cavalli-Sforza , 2005; 

Manichaikul et al. 2010). Then we conduct the secure inference of relationships using 500, 1000, 

5000 and 10000 independent variants. These variants all have minor allele frequencies (MAF) 

around 0.5 (MAF: 0.4~0.5) in the joint population, which is representative of the most 

informative variants. We set the segment size to 3. Since the variants numbers are not a multiple 

of 3, the inference is actually conducted upon 498, 999, 4998, and 9999 variants. 

To mimic the secure protocol, for each pair of samples, we assume the sample with smaller ID is 

from study A; it follows the protocol by encrypting its genotype of the selected variants. The 

sample with larger ID is from study B; it calculates the likelihood and infers the relationship 

based on encrypted data from study A and its own genotype. The allele frequencies we use for 

calculating the likelihood are based on all samples within each ethnic group.   

We infer the relationships using our secure protocol with encrypted genotypes as well as using 

KING with the same set of unencrypted genotypes. The performance is evaluated by comparing 

the results of both methods to the gold standard. Here, considering that our final purpose of 

implementing the method is to identify overlaps between the 2 studies, our primary concern is 

identifying duplicates and 1
st
 degree relatives. 
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Table 3.4 shows the number of relative pairs inferred totally and inferred correctly with different 

numbers of variants. With both methods, all of the duplicate pairs are correctly inferred using 

500 or more variants.  

For 1
st
 degree relatives, the information we lose due to the encryption does not have a large 

impact on the relationship inference. Our method provides comparable results as KING without 

encryption. For instance, with both methods, we do not get false positives in the Asian and 

Native American populations. For the European and African populations, the number of 

correctly identified relative pairs increases and the false discovery rate (FDR) decreases as we 

use more variants. Our secure protocol recovers 100% of the 1
st
 degree relatives and gets 0.15% 

false-positive pairs using 5000 variants for Europeans while KING without encryption identifies 

100% of the 1
st
 degree relatives with no false-positive pairs. For Africans, our method identifies 

99.93% of the 1
st
 degree relatives and gets 0.14% false-positive pairs using 5000 variants while 

KING without encryption identifies all the true pairs with 0.07% false-positive pairs.  

In addition to 1st degree relatives, when using more than 5000 variants, 2
nd

 degree relatives can 

also be identified with a high true positive rate and a low false discovery rate. The compression 

of information in the encrypted data has a large impact on the 2
nd

 degree relative inference, 

which is mainly reflected in the false discovery rate. Using 10000 variants, our secure method 

detects 98.41% of the 2
nd

 degree relatives in Europeans with 28.76% FDR while KING without 

encryption detects 95.66% of the 2
nd

 degree relatives with 5.07% FDR.  Our method detected 

98.47% of the 2
nd

 degree relatives with 3.28% FDR in Africans while KING without encryption 

detected 98.19% of the 2
nd

 degree relatives with 1.72% FDR. Our method has identical 

performance as KING without encryption in Asian and Americans. Overall, in homogeneous 
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populations, our method does not suffer from the information loss due to the encryption and can 

infer relatives up to 2
nd

 degree with high accuracy.   

Table 3.4: Number of relative pairs inferred with 500, 1000, 5000 and 10000 variants 

within each ethnic group using our method (segment size =3) vs. KING without encryption. 
Data in the bracket represents number of correctly inferred pairs compared with gold-standard. 

Method 
Number of 

variants 
European African Asian American 

Duplicates/MZ twins     

Gold standard  30 30 0 0 

Our method 

500 30(30) 30(30) 0 0 

1000 30(30) 30(30) 0 0 

5000 30(30) 30(30) 0 0 

10000 30(30) 30(30) 0 0 

KING w/o 

encryption 

500 30(30) 30(30) 0 0 

1000 30(30) 30(30) 0 0 

5000 30(30) 30(30) 0 0 

10000 30(30) 30(30) 0 0 

1
st
 degree relatives         

Gold standard  1959 1461 0 0 

Our method 

500 2184(1941) 1522(1448) 0 0 

1000 2070(1956) 1468(1453) 0 0 

5000 1962(1959) 1462(1460) 0 0 

10000 1960(1959) 1461(1461) 0 0 

KING w/o 

encryption 

500 1992(1941) 1475(1451) 0 0 

1000 1972(1951) 1461(1456) 0 0 

5000 1959(1959) 1462(1461) 0 0 

10000 1959(1959) 1461(1461) 0 0 

2
nd

 degree relatives         

Gold standard  2074 1049 1 0 

Our method 

500 68406(1560) 57825(779) 326(1) 5(0) 

1000 9629(1801) 3532(904) 16(1) 0 

5000 3045(2024) 1075(1014) 1(1) 0 

10000 2865(2041) 1068(1033) 1(1) 0 

KING w/o 

encryption 

500 17904(1549) 20306(889) 195(0) 2(0) 

1000 2714(1723) 1638(807) 6(1) 0 

5000 2088(1954) 1045(1020) 1(1) 0 

10000 2090(1984) 1048(1030) 1(1) 0 
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3.3.3 Performance of the privacy preserving protocol in a heterogeneous population 

The calculation of the likelihood, 𝑙(𝑿𝑖, 𝑮𝑗|𝑅, 𝜀) depends on the allele frequencies of the variants, 

which in turn depend on the population background of the samples. In this section, we 

demonstrate the performance of the method in a heterogeneous population and provide a strategy 

about how to improve the performance of our method in this population.  

In this simulation, relationships are identified among all the 7,113 participants in Section 3.3.2. 

The samples having diverse ethnic backgrounds like European, African, Asian and Native 

American are inferred together, assuming the ancestry information is not known. First we 

conduct the inference of relationships on the same set of independent 500, 1000, 5000 and 10000 

variants that we used for the homogenous population application. The AF of some of these 

variants have significant discrepancies across different ancestries. The difference in ethnic-

specific AF can be as large as 0.86 (0.11 for African vs. 0.98 for Asian). However, since we 

assume the participants are inferred without the ancestry information, the differences in AF are 

ignored. The allele frequencies we incorporate in the likelihood model are calculated based on 

the joint population.  

Table 3.5 and Supplementary Table S3.2 show the number of relative pairs inferred totally and 

inferred correctly with different numbers of variants. All duplicate pairs are correctly inferred 

using 500 or more variants.  

For 1
st
 degree relatives, we are able to identify almost 100% of the related pairs with 1,000 or 

more variants. However, in terms of the false-positive pairs, we do suffer from incorporating the 

biased allele frequencies into the model; in other words, the false discovery rate is inflated. With 

500 variants, about 70% of the inferred 1
st
 degree relatives are not true 1

st
 degree relatives. Even 

with 10000 variants, we still get 11.54% false-positive pairs using our method while the FDR is 
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0% using KING. This result implies that the inflated false positive results using our method are 

substantial when dealing with a heterogeneous population. 

Table 3.5: Number of relative pairs inferred in a heterogeneous population using our 

method (segment size =3) with randomly selected variants vs. using KING without 

encryption. Data in the bracket represents number of correctly inferred pairs compared with 

gold-standard. 

 Method Number of variants 
Number of pairs inferred 

(correctly inferred) 

Duplicates/MZ twins (Gold standard = 60)   

Our method w/ randomly selected 

variants 

500 60(60) 

1000 60(60) 

5000 60(60) 

10000 60(60) 

KING w/o encryption 

500 60(60) 

1000 60(60) 

5000 60(60) 

10000 60(60) 

1
st
 degree relatives (Gold standard = 3425)   

Our method w/ randomly selected 

variants 

500 11410(3414) 

1000 8532(3425) 

5000 4084(3425) 

10000 3872(3425) 

KING w/o encryption 

500 3472(3397) 

1000 3443(3412) 

5000 3426(3425) 

10000 3425(3425) 

In order to tackle the inflated false-positive problem, we propose a variant selection strategy. 

Instead of selecting variants randomly, we select variants that have relatively constant allele 

frequencies across different ancestry groups. Variant selection is conducted based on two criteria: 

1) differences of allele frequencies among 4 ancestries are less than 0.1; 2) differences of allele 

frequencies are less than 0.2. In our data, for all independent variants with allele frequency 

ranging from 0.4~0.5, only 789 variants are kept after being filtered by criterion-1. Thus here we 

do not infer the relationship using 1000 or 5000 variants under criterion-1.  
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The false discovery rate in detecting 1
st
 degree relatives decreases significantly when using the 

selected variants compared with using randomly selected variants (Table 3.6, Figure 3.3). For 

instance, with 500 variants, the FDR decreases from 70.08% for randomly selected variants to 

7.21% for criterion-1 based variants and 9.51% for criterion-2 based variants. When the false-

positive result is reduced, the power to infer true related pairs remains the same (99.68% for 

random variants vs. 98.77% for criterion-1 vs. 98.92% for criterion-2). Overall, using more 

variants provides us with more accurate inference. With 5000 variants selected based on 

criterion-2, we are able to detect 99.94% of the 1
st
 degree relatives with a 0.12% FDR. The 

results are almost identical to using KING with the unencrypted genotypes. However, while our 

protocol provides inference of duplicates and 1
st
 degree relatives with high accuracy, the false 

discovery rate of detecting 2
nd

 degree relatives is still not well controlled. The results of detecting 

2
nd

 degree relatives are shown in Supplementary Table S3.3. Unlike for homogenous populations, 

our protocol has a limited utility of inferring 2
nd

 order relatives for heterogeneous populations. 

Table 3.6: Number of relative pairs inferred in a heterogeneous population using our 

method (segment size =3) with variants selected based on different criteria. Data in the 

bracket represents number of correctly inferred pairs compared with gold-standard. 

 Method Number of variants 
Number of pairs inferred 

(correctly inferred) 

Duplicates/MZ twins (Gold standard =60)   

Our method w/ criterion-1 
500 60(60) 

800 60(60) 

Our method w/ criterion-2 

500 60(60) 

1000 60(60) 

5000 60(60) 

1
st
 degree relatives ( Gold standard = 3425)   

Our method w/ criterion-1 
500 3646(3383) 

800 3509(3401) 

Our method w/ criterion-2 

500 3744(3388) 

1000 3500(3412) 

5000 3427(3423) 
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Figure 3.3: False discovery rate of our method (segment size =3) with different variant-

selection criteria vs. KING without encryption. The green and blue dotted line represent 

results using our method with variants selected by AFs and variants randomly selected, 

respectively. The red solid line represents the results using KING without encryption. 

 

3.3.4 Comparison of the encryption schemes with different segment sizes 

In this analysis, we investigate the utility and security of the encryption schemes with different 

segment sizes. Previously, we evaluated the encryption scheme with a segment size of 3 (Table 

3.6). In this section, the genotype is encrypted under another scheme with a segment size of 5. 

We select 500, 1000 and 5000 variants based on criterion-2. Table 3.7 summarizes the relative 

pairs inferred using this scheme.  

Table 3.3 and Supplementary Table S3.1 show the data compression from the original genotype 

segments to the encryption codes for these two schemes. In terms of security, data is compressed 

more in the scheme with a segment size of 5 than 3 (segment size = 3: 27 values to 5 values vs. 
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segment size = 5: 243 values to 9 values). As a consequence, the scheme with segment size of 5 

is more secure.  

In terms of utility, the scheme with segment size of 3 performs better, especially with a smaller 

number of variants, as shown in Figure 3.4. The FDR is 9.51% for inferring 1
st
 degree relatives 

using 500 variants for the scheme with a segment size of 3 while the FDR for the scheme with a 

segment size of 5 is 68.35%. As the number of variants increases, the issue of the inflated false 

discovery rate is resolved in 1
st
 degree relative inference for the scheme with a segment size of 5 

(FDR = 3.50%). However, the inference of 2
nd

 degree relatives still suffers from the compressed 

information for this scheme. The FDR is 92.33% with 5000 variants (Supplementary Table S3.4). 

In other words, the scheme with a segment size of 5 does not have the ability to infer 2
nd

 degree 

relatives with fewer than 5000 variants.   

Table 3.7: Number of relative pairs inferred in a heterogeneous population using our 

method (segment size =5) with variants selected based on criterion-2. Data in the bracket 

represents number of correctly inferred pairs compared with gold-standard. 

Number of variants Number of pairs inferred (correctly inferred) 

Duplicates/MZ twins (Gold standard =60) 

500 60(60) 

1000 60(60) 

5000 60(60) 

1
st
 degree relatives ( Gold standard = 3425) 

500 10498(3323) 

1000 3611(3413) 

5000 3544(3420) 

3.3.5 Two-step computational strategy and computational cost of the protocol 

Recall the form of the log-likelihood,  

𝑙(𝑿𝑖 , 𝑮𝑗|𝑅, 𝜀) = ∑ 𝑙𝑜𝑔 (𝑃𝑟(𝑋𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀))

𝑝

. 
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Here we take the scheme with segment size 3 as an example. The encrypted genotype code 𝑋𝑖𝑝 is 

element in {1, 2, 3, 4, 5, missing}. The genotype segment of 3 variants takes 43= 64 distinct 

values since each genotype in the segment is element in {0, 1, 2, missing}. As a consequence, 

the (𝑋𝑝, 𝑮𝑝) pair takes a value in a limited set that has 384 distinct values. Given a relationship 

and segment p, the probability 𝑃𝑟(𝑋𝑝, 𝑮𝑝|𝑅, 𝜀) for a certain (𝑋𝑝, 𝑮𝑝) pair should be the same no 

matter which 2 samples we compare. In other words, when inferring relationships between large 

cohorts, the same 𝑃𝑟(𝑋𝑝, 𝑮𝑝|𝑅, 𝜀) is used repeatedly. 

 

Figure 3.4: False discovery rate of our method with segment size = 3 vs. segment size = 5. 

The red and green line represent results using our method with segment size equals 3 and 5, 

respectively. 

 

In order to make the protocol more efficient to deal with large cohorts, the calculation of the 

likelihood is conducted in two steps. In step one, we calculate the probability 𝑃𝑟(𝑋𝑝, 𝑮𝑝|𝑅, 𝜀) for 
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all possible (𝑋𝑝, 𝑮𝑝)  pairs, all relationships and all segments. The results are saved with unique 

labels depending on p, R, and values of 𝑋 and 𝐺. Then in step two, we calculate the likelihood 

for each pair of samples i and j, ∑ 𝑙𝑜𝑔 (𝑃𝑟(𝑋𝑖𝑝, 𝑮𝑗𝑝|𝑅, 𝜀))𝑝 , by direct calling the value of 

𝑃𝑟(𝑋𝑝, 𝑮𝑝|𝑅, 𝜀). 

Computational time and memory usage is measured by applying the protocol on the 

heterogeneous population of 7,113 samples using variants selected based on criterion-2. Table 

3.8 shows the computational time of each step in the protocol under different scenarios.  

For study A, the encryption only takes several seconds for 10000 samples (0.8s for 500 variants 

and 10.5s for 5000 variants).  

The step of the inference conducted by study B which contains two steps is more time-

consuming. The computational time of step one does not depend on the number of samples we 

investigate. For scheme1, it scales well in practice, taking less than one minute for 500 variants 

and 1.9 CPU hours for 5000 variants. The computation time grows approximately quadratically 

with the number of variants. For step 2, the computation time of each pair of sample grows 

linearly with the number of variants while the total computation time grows linearly with sample 

sizes in Study A and B. For example, using 500 variants, each comparison takes 0.89ms. Then 

for two studies both having 10000 samples, the total comparison across studies requires 24.7 

CPU hours. Compared with the computing time for step 2, the computational overhead arising 

from step 1 can be ignored. With 500 variants using scheme1, the whole process takes about 25 

CPU hours. 

For scheme 2, since both the encrypted genotype code 𝑋𝑖𝑝 ∈ {1,2, . . ,9, 𝑚𝑖𝑠𝑠𝑖𝑛𝑔} and the true 

genotype sequence (45= 1024) have more distinct values, step 1 is less efficient compared with 
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scheme1, taking 14 minutes for 500 variants and 26.5 CPU hours for 5000 variants. For step 2, it 

is also less efficient. Based on our analysis in Section 3.3.4, with scheme 2, we need 5000 

variants to get a reasonable inference, which will take 8932.5 CPU hours for step 2, with the 

whole process taking 8959 CPU hours for 10000 samples vs. 10000 samples comparison.  

In terms of memory usage, the pre-calculated values in step 1 need to be stored determined by 

the size of the segment and number of variants. For the encryption scheme with a segment size of 

3, on average it requires 1.5MB memory to store the values for 500 variants and 14.6MB for 

5000 variants. For the scheme with segment size of 5, it requires 234.4MB and 2343.8MB 

respectively.   

Table 3.8: Computing time of each step in the protocol and memory usage in Step1 for 

different encryption schemes. 

Scheme 
Number of 

variants 

Encryption 

(per sample) 

Inference-

Step1 

Inference-

Step2  

(per pair) 

Memory usage in 

Step1 

Scheme1- 

size 3 

500 0.08ms 52.68s 0.89ms 1.5MB 

1000 0.17ms 209.19s 1.92ms 2.9MB 

5000 1.05ms 6717.01s 11.90ms 14.6MB 

Scheme2- 

size 5 

500 0.07ms 850.86s 29.78ms 234.4MB 

1000 0.13ms 2938.55s 49.37ms 468.8MB 

5000 0.87ms 95427.43s 321.57ms 2343.8MB 

 

3.4 Discussion 

In this chapter, we have proposed a protocol to infer genetic relatives between studies without 

compromising privacy. The protocol depends on a likelihood-based model to infer relationships 

based on genotype data. It encrypts individual-level genotypes by dividing genotypes into 

segments and using summary statistics to represent the information in each segment.  
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Demonstrated in the real data simulation using TOPMed samples, our novel protocol is able to 

identify most of the 1
st
 degree relatives while controlling the false discovery rate well with 

randomly selected variants in homogenous populations. By applying the two-step strategy for 

likelihood calculation, we show that the secure protocol scales well for large-scale studies. By 

comparing two encryption schemes with different segment sizes, we demonstrate that they both 

have pros and cons in terms of security, utility and computation efficiency.  

The inference of relatedness has been shown to be highly associated with allele frequencies. 

With the development of genotyping technologies, quite a few methods have been proposed to 

infer genetic relationships based on allele frequencies of the genotypes. For example, one kind of 

method infers relationships by calculating relatedness coefficient (Lynch, 1988; Queller and 

Goodnight, 1989; Lynch and Ritland, 1999; Wang, 2002; Milligan, 2003; Thomas, 2010). 

Another kind of method infers relationships more accurately using a likelihood ratio model that 

compared multipoint probability of markers conditional on relationships (Boehnke and Cox, 

1997; Broman and Weber, 1998; Epstein et al. 2000). The inference of relatedness based on all 

of these methods has been shown to be highly correlated with allele frequencies. The methods 

are only consistent or unbiased under the assumption that the allele frequencies are known 

without errors (Lynch and Ritland, 1999; Wang, 2002). Previous studies have shown that when 

biased reference allele frequencies are incorporated in practice, the estimates of relatedness are 

biased, leading to inaccurate relationship inference (Anderson and Weir, 2007; Wang, 2014; 

Wang, 2017). The problem of the inaccurate allele frequency, similarly, leads to the biggest 

limitation of our method about inferring relationships in the population with diverse ethnic 

backgrounds. One essential assumption of our method is that allele frequencies of the variants 

should be the same across all the samples in the study. This assumption is violated in 
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heterogeneous populations where allele frequencies vary across distinct ethnic groups. If 

applying the allele frequencies of the joint population, we will get a biased likelihood, which 

endangers our relationship inference. As a consequence, we are more likely to infer an unrelated 

pair to be relatives. To diminish the effect of population stratification, we introduce a variant 

selection strategy. We select variants that have consistent allele frequencies across different 

ethnic groups to infer the relationships. In this way, we resolve the problem to the extent that we 

can infer the 1
st
 degree relatives with high accuracy and a controlled false discovery rate. 

However, this solution does have limitation in solving real data problems when retrieving the 

ethnic information requires a lot of effort. The variant selection strategy only solves the problem 

under certain scenarios.    

Since more and more reliable reference recourses of human variants have become available in 

database like dbSNP (Sherry et al., 2001), we can also address this problem by applying ethnic-

specific AFs reported in the reference recourses to our model. Such AFs may better represent the 

true AFs of each individual, so that the issue of the inflated false discovery rate will be resolved. 

In order to assign the correct ethnic-specific AFs to each individual, the ancestry information 

should be shared between studies. A caveat is that for an admixed sample, a method to calculate 

his/her AFs accurately based on the AFs within each ethnic group is required.     

Other than assisting our inference in heterogeneous population, the reference allele frequency, on 

the other hand, may also lead to attacks to our encryption scheme. Homer et al. (2008) claimed 

that, under certain conditions, by comparing the MAFs of a specific individual to the distribution 

of MAFs in a reference population, they could use statistical methods to infer the presence of an 

individual with known genotype in a mix of DNA. It raises the concern about the security of 

sharing summary statistics between studies. In our protocol, we encrypt genotypes using the 
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summary statistics. Even though we demonstrate the underlying individual-level genotype 

cannot be disclosed directly from the encrypted code, our protocol still has the risk of 

information leakage when we compare the summary statistic against the reference AFs. For 

example, if a variant has low AF in the reference, some segments with genotype equals 0 for that 

variant may have higher probability than others. As a consequence, the genotype information 

may be disclosed when only one segment has genotype that equals 0 at that position among all 

segments corresponding to a certain encrypted code. Here, we protect our protocol against such 

attack by avoiding using variants with lower AFs. Even with the reference information, we 

cannot guess with confidence of the genotype for a common variant with AF around 0.5. 

Another attack occurs when variants within one segment are in high linkage disequilibrium (LD). 

In this situation, segments having the same genotype at each position, like 000, 111 and 222, 

have much higher probability than others. In our protocol, we address this issue by only 

examining independent variants. In the future, we may protect our scheme against these attacks 

using the differential privacy technique (Uhlerop et al., 2013; Yu et al., 2014). It adds reasonable 

noise to the summary statistic before its release. Then, the likelihood based on the genotype 

summary statistic with noise should be constructed to infer the relationship.  

In conclusion, we propose a privacy preserving protocol that enables the relationship inference 

between studies without disclosing individual-level data. The method has limitations in inferring 

relationships in population with diverse ancestry when the ancestry information is not known. 

Thus, we need further investigation to make the protocol more practical for heterogeneous 

population. In the next chapter, we will propose another privacy preserving method that can infer 

relationships robustly in heterogeneous populations. 
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Supplements  

Supplementary Table S3.1: Mapping between encrypted genotype and true genotype for 

encryption scheme with segment size = 5. Information is compressed from 243 distinct values 

into 9 distinct values. 

Genotype segment (G) 

Encrypted 

genotype 

code (𝑿) 

00000, 00001, 00010, 00100,01000,10000 1 

00011, 00101, 01001,10001,00110,01010,10010,01100,10100,11000, 00002, 

00020, 00200,02000,20000 
2 

12000, 20100, 11100, 02100, 10200, 01200, 20010, 21000, 11010, 02010, 10110, 

01110, 00210, 10020, 01020, 00120, 20001, 11001, 02001, 10101, 01101, 00201, 

10011, 01011, 00111, 00021, 10002, 01002, 00102, 00012  

3 

22000,21100,12100, 20200, 11200, 02200, 21010, 12010, 20110, 11110, 02110, 

10210, 01210, 20020, 11020, 02020, 10120, 01120, 00220, 21001, 12001, 20101, 

11101, 02101, 10201, 01201, 20011, 11011, 02011, 10111, 01111, 00211, 10021, 

01021, 00121, 20002, 11002, 02002, 10102, 01102, 00202, 10012, 01012, 00112, 

00022  

4 

22100, 21200, 12200, 22010, 21110, 12110, 20210, 11210, 02210, 21020, 12020, 

20120, 11120, 02120, 10220, 01220, 22001, 21101, 12101, 20201, 11201, 02201, 

21011, 12011, 20111, 11111, 02111, 10211, 01211, 20021, 11021, 02021, 10121, 

01121, 00221, 21002, 12002, 20102, 11102, 02102, 10202, 01202, 20012, 11012, 

02012, 10112, 01112, 00212, 10022, 01022, 00122 

5 

22200, 22110, 21210, 12210, 22020, 21120, 12120, 20220, 11220, 02220, 22101, 

21201, 12201, 22011, 21111, 12111, 20211, 11211, 02211, 21021, 12021, 20121, 

11121, 02121, 10221, 01221, 22002, 21102, 12102, 20202, 11202, 02202, 21012, 

12012, 20112, 11112, 02112, 10212, 01212, 20022, 11022, 02022, 10122, 01122, 

00222  

6 

22210, 22201, 22111, 21211, 12211, 22120, 21220, 12220, 22021, 21121, 12121, 

20221, 11221, 02221, 22102, 21202, 12202, 22012, 21112, 12112, 20212, 11212, 

02212, 21022, 12022, 20122, 11122, 02122, 10222, 01222 

7 

22220, 22211, 22121, 21221, 12221, 22202, 22112, 21212, 12212, 22022, 21122, 

12122, 20222, 11222, 02222 
8 

12222, 21222, 22122, 22212,22221, 22222 9 
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Supplementary Table S3.2: Number of 2
nd

 degree relative pairs inferred in a heterogeneous 

population using our method (segment size = 3) with randomly selected variants vs. using 

KING without encryption. Data in the bracket represents number of correctly inferred pairs 

compared with gold-standard. The gold standard is 3127 pairs. 

 Method Number of variants 
Number of pairs inferred 

(correctly inferred) 

Our method w/ randomly selected 

variants 

500 915298(2191) 

1000 315272(2586) 

5000 339785(2612) 

10000 216538(2689) 

KING w/o encryption 

500 38698(2355) 

1000 4316(2615) 

5000 3137(2978) 

10000 3142(3018) 

 

Supplementary Table S3.3: Number of 2
nd

 degree relative pairs inferred in a heterogeneous 

population using our method (segment size = 3) with variants selected based on different 

criteria. Data in the bracket represents number of correctly inferred pairs compared with gold-

standard. The gold standard is 3127 pairs. 

Method Number of variants 
Number of pairs inferred 

(correctly inferred) 

Our method w/ criterion 1 
500 257063(2430) 

800 54505(2584) 

Our method w/ criterion 2 

500 287799(2490) 

1000 27546(2810) 

5000 5014(3094) 

 

Supplementary Table S3.4: Number of 2
nd

 degree relative pairs inferred in a heterogeneous 

population using our method (segment size = 5) with variants selected based on criterion 2. 

Data in the bracket represents number of correctly inferred pairs compared with gold-standard. 

The gold standard is 3127 pairs. 

Number of variants 
Number of pairs inferred (correctly 

inferred) 

500 1403761(2028) 

1000 290618(2625) 

5000 37485(2874) 
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CHAPTER IV 

Robust Method for Identifying Genetic Relatives between 

Studies without Compromising Privacy 

4.1 Introduction 

As described in the previous chapter, personal genomics in the setting of electronic health 

records (EHR) studies has gained much interest recently due to the need to infer genetic relatives 

between studies. In Chapter III we proposed a secure protocol that can infer close relatives with 

high accuracy without disclosing individual-level data. However, its performance in dealing with 

a heterogeneous population is deteriorated by the differences in allele frequency among ancestry 

groups. In addition, none of the existing methods mentioned in Chapter III, including the private 

set intersection (De Cristofaro and Tsudik, 2012), oblivious transfer-based hamming distance 

system (Bringer et al., 2013), privacy-preserving approximating edit distance (Wang et al., 2015) 

as well as the “fuzzy” encryption methods, have been evaluated under multi-ethnic scenarios, i.e. 

heterogenous population. In this chapter, we try to overcome this limitation and propose a novel 

protocol that allows detection of genetic relatives among multi-ethnic groups without 

compromising privacy.  

Our protocol securely infers genetic relatives by combining the robust relationship inference 

method previously described by Manichaikul et al. (2010) and an encryption technique called 

homomorphic encryption (Gentry, 2009; Fan and Vercauteren, 2012). It has several advantages.
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First, our protocol only requires the sharing of a limited number of variants so that the 

computation of our protocol scales well in practice. Second, our protocol is robust to population 

stratification. The method proposed by Manichaikul et al. (2010) infers genetic relatives using 

kinship coefficients. It has been shown to have reliable performance even under scenarios where 

population stratification and violation of Hardy-Weinberg equilibrium (HWE) are present. 

Moreover, the security of our protocol is guaranteed theoretically by the rigorous proof for 

homomorphic encryption (Gentry, 2009).    

Homomorphic encryption is a form of encryption that allows one to conduct calculations on 

encrypted data without first decrypting the data where only people with the decryption key can 

decrypt the result. The encrypted result, when decrypted, matches the result of calculations 

performed on the real data. Gentry first constructed the fully homomorphic encryption (FHE) 

scheme which enables one to perform arbitrary computations on encrypted data; however, 

implementations of FHE are generally inefficient (Gentry, 2009).  More recently, a more 

practical scheme called the somewhat homomorphic encryption scheme (SWHE) was proposed 

by Fan and Vercauteren (2012). It allows us to evaluate a limited number of operations, which is 

proved to be sufficient for calculating kinship coefficient in our framework.  

Previously, practical homomorphic encryption schemes have been widely applied to genetic data. 

Much of the work primarily focuses on the problem of pattern matching for genomic sequences. 

For example, Blanton et al. (2012) proposed a method for genome sequencing comparison using 

garbled circuits. Cheon et al. (2015) proposed a method to calculate edit distance on 

homomorphically encrypted data. Later, the efficiency of edit distance calculation and string 

searching were improved by using more efficient homomorphic encryption schemes (Kim and 

Lauter, 2015; Shimizu et al., 2016). On the other hand, homomorphic encryption has also been 
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applies to conduct statistical tests in genetics. One study presented the encryption scheme that 

allowed secure outsourcing of GWAS results to external data center (Kantarcioglu et al., 2008).  

Ayday et al. (2013) showed how to use additive homomorphic encryption to predict disease 

susceptibility securely using genetic information. In addition, Lauter et al. (2014) conducted 

genetic tests for HWE and linkage disequilibrium (LD) securely using the leveled homomorphic 

encryption scheme. Later, by incorporating an honest-but-curious key manager, Ugwuoke et al. 

(2017) improved the efficiency of the test for LD. The method proposed by Kim and Lauter 

(2015) showed the utility of homomorphic encryption in calculating minor allele frequency and 

chi-square statistic in GWAS. Homomorphic encryption has been applied to solve problems in 

multiple fields of genetic studies, however, for our particular purpose of inferring genetic 

relatives, the method based on this technique is still lacking.  

Thus, in this Chapter, we address the problem of relationship inference between studies by 

applying homomorphic encryption in our protocol. Kinship coefficients can be obtained without 

disclosing any genetic information between studies. Through simulations, we show that our 

protocol successfully encrypts genetic data and decrypts kinship coefficient results under 

different scenarios. Our performance is identical to using KING with unencrypted genotypes. 

Furthermore, we demonstrate the utility of our method by applying our technique to infer genetic 

relatives among samples from the Trans-Omics for Precision Medicine (TOPMed) study and the 

Genome Aggregation Dataset (gnomAD) (Karczewski et al., 2019; Taliun et al., 2019). 

4.2 Method 

4.2.1 Robust genetic relative inference in the presence of population structure 
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First, we describe how to infer genetic relatives with unencrypted data in diverse ethnic groups, 

using a robust method proposed by Manichaikul et al. in 2010. It is implemented in the KING 

software. For simplicity, we call this method KING in this chapter.  

Let 𝜙𝑖𝑗 denote the kinship coefficient between sample i and j, which is the probability of two 

alleles randomly selected from two individuals are identical by descent. KING provides a robust 

estimator for 𝜙𝑖𝑗 based on M pairs of variants without missing genotypes in both individual i and 

j. The details of deriving the robust estimator are provided in the Supplementary note 1. 

The robust estimator of the kinship coefficient is 

𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎−2𝑁𝐴𝐴,𝑎𝑎

𝑁𝐴𝑎
(𝑖)

+𝑁𝐴𝑎
(𝑗)  , 

where 𝑁𝐴𝑎
(𝑖)

 is the total number of heterozygotes for the i-th individual among the M variants. 

𝑁𝐴𝑎,𝐴𝑎 is the total numbers of variants at which the individuals of the pair are heterozygous. 

Finallly, 𝑁𝐴𝐴,𝑎𝑎 is the total numbers of variants at which individuals of the pair are homozygous 

of different alleles.  

In the paper by Manichaikul et al, a more robust estimator was proposed to deal with a situation 

when the violation of HWE of some variants results in excessive heterozygosity.  

When the assumption of HWE is violated, the robust estimator for 𝜙𝑖𝑗 is  

𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎

2min (𝑁𝐴𝑎
(𝑖)

, 𝑁𝐴𝑎
(𝑗)

) 
+

1

2
−

1

4

𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

min (𝑁𝐴𝑎
(𝑖)

, 𝑁𝐴𝑎
(𝑗)

) 
. 

Once we get the kinship coefficient, the relationship can be inferred based on the criteria in 

Table 4.1. 
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Table 4.1: Relationship inference criteria for kinship coefficient. 

Relationship 𝝓  Inference criteria 

MZ twin >1/23/2 

Parent-offspring/Full-sib (1/25/2, 1/23/2) 

Second degree (1/27/2, 1/25/2) 

Unrelated <1/29/2 
 

 

 

4.2.2 Procedures of homomorphic encryption and a general secure relationship 

inference framework  

To infer genetic relatives securely, we need to calculate the kinship coefficient defined above 

using encrypted genotype data. The homomorphic encryption technique enables us to perform 

the computation on encrypted data without knowing any decryption information.  The general 

procedure of homomorphic encryption is shown in Figure 4.1. It includes: 

Key-generation: generating public key (pk) and secure keys (sk) based on pre-specified 

parameters; 

Encryption: encrypting plaintext to ciphertext using public key; 

Evaluation: calculating on ciphertext, practical homomorphic encryption schemes only 

support addition and multiplication; 

Decryption: decrypting ciphertext using secure key.  

Based on these procedures, we propose a privacy-preserving framework that allows two studies 

to infer genetic relatives without exposing their individual-level genotype information. Two 

parties included in this protocol have such responsibilities: 

Study A: generates the public and secure keys to encrypt data and decrypts the result. 

Study B: calculates encrypted result using its own data and encrypted data from study A. 
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Figure 4.1: General procedures of homomorphic encryption. Here, pk and sk denote public 

key and security key, respectively; m1 and m2 denote the message before encryption; c1 and c2 

denote the encrypted ciphertext; c_add and c_multi denote the encrypted results of addition or 

multiplication of the ciphertext. 

 

The protocol follows these general steps: 

1) Study A generates keys (pk,sk), encrypts its genotype using pk and sends it to study B.  

2) Study B calculates encrypted kinship coefficients using encrypted genotype from study A 

and its own genotype. Then sends the encrypted result back to study A. 
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3) Study A decrypts the result to get kinship coefficient using sk and makes inference of the 

relationship. 

4.2.3 Somewhat homomorphic encryption 

Given that only a limited number of operations are needed for kinship coefficient calculation, we 

used the somewhat homomorphic encryption scheme proposed by Fan and Vercauteren (FV, 

2012) for the relationship inference. This homomorphic encryption supports both addition and 

multiplication on the encrypted data. The details of this encryption scheme are shown below. 

Notation and parameters  

Our customized FV scheme operates in the ring 𝑅 ≝  ℤ[𝑋]/(𝑋𝑛 + 1), whose elements are 

polynomials with integer coefficients of degree less than n. We call 𝑋𝑛 + 1 the polynomial 

modulus. Usually n is set to be a power of 2. Messages (plaintext), encrypted messages 

(ciphertexts), public and secure keys are elements in the ring R. The notation [a]q  is to denote 

the operation of reducing the coefficients of 𝑎 ∈ 𝑅 modulo q into the set (−
𝑞

2
,

𝑞

2
].  

Suppose the plaintext space is 𝑅𝑡 ≝  ℤ𝑡[𝑋]/(𝑋𝑛 + 1) whose elements are polynomials with 

integer coefficients modulo t. t is called the plaintext modulus. Suppose the ciphertext space is 

𝑅𝑞 ≝  ℤ𝑞[𝑋]/(𝑋𝑛 + 1) whose elements are polynomials with integer coefficients modulo q. q is 

called the coefficient modulus. 

Let 𝒙 ← 𝐷 denotes that 𝒙 is sampled from distribution 𝐷. Two distributions are relevant to our 

scheme, 𝑅𝑞 and  𝜒𝑒𝑟𝑟. Here 𝑅𝑞 is a uniform distribution on the 𝑅𝑞 space. For example, 𝑅3 is the 

uniform distribution of polynomials with coefficients in {-1,0,1}. 𝜒𝑒𝑟𝑟 is the distribution of error 

that we add to encrypt the data. We use discrete Gaussian distribution with mean 0 and standard 

deviation 𝜎 for the distribution 𝜒𝑒𝑟𝑟.  
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Encoding of the message 

Since all operations are done in the ring space, to encrypt an integer 𝜇, we should first encode it 

as a polynomial-plaintext 𝑚 ∈ 𝑅. One general way is to take bit-decomposition of 𝜇 and use bits 

as coefficients of the polynomial. For instance, if we take base of 2, for integer 𝜇 =

∑ 𝜇𝑖2
𝑖

𝑖 (𝜇𝑖 ∈ {0,1}), the corresponding plaintext should be 𝑚 = ∑ 𝜇𝑖𝑋
𝑖

𝑖 . However, in a later 

section we will show that the raw data used in our protocol are 0 and 1 which are already in the 

polynomial-plaintext format. The encoding step is not necessary for our protocol.  

Formal definition of the steps in the encryption scheme 

Then the FV encryption scheme is defined as follows: 

KeyGen(params): sample 𝒔 ← 𝑅3, 𝒂 ← 𝑅𝑞 and 𝒆 ← 𝜒𝑒𝑟𝑟. Then the public key (pk) and secure 

key (sk) should be 

𝑝𝑘 = ([−𝒂 ∙ 𝒔 + 𝒆]𝑞 , 𝒂);     𝑠𝑘 = 𝒔. 

Encrypt(pk,m): let m be the message and 𝒎 ∈ 𝑅𝑡, let 𝒑𝟎 = 𝑝𝑘[0], 𝒑𝟏 = 𝑝𝑘[1], sample 

𝒖 ← 𝑅3, 𝒆𝟏, 𝒆𝟐 ← 𝜒𝑒𝑟𝑟. Then message can be encrypted by 

𝑐𝑡 = ([𝒑𝟎 ∙ 𝒖 + 𝒆𝟏 + ⌊
𝑞

𝑡
⌋ ∙ 𝒎]

𝑞
, [𝒑𝟏 ∙ 𝒖 + 𝒆𝟐]𝑞). 

Here by expanding the public key in the ciphertext, we get 𝑐𝑡[0] = [𝒆 ∙ 𝒖 + 𝒆𝟏 − 𝒂 ∙ 𝒔 ∙ 𝒖 + ⌊
𝑞

𝑡
⌋ ∙

𝒎]
𝑞
. The last term that contains the message is masked by the term 𝒂 ∙ 𝒔 ∙ 𝒖 which has 

equivalently large polynomial degree as ⌊
𝑞

𝑡
⌋ ∙ 𝒎. The second term of the ciphertext 

becomes 𝑐𝑡[1] = [𝒂 ∙ 𝒖 + 𝒆𝟐]𝑞. Therefore if knowing the secure key 𝒔, we can multiply 𝒔 and  

𝑐𝑡[1] and use it to remove the large term in 𝑐𝑡[0] to decrypt the message. 
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Decrypt(sk,m): let 𝒄𝟎 = 𝑐𝑡[0], 𝒄𝟏 = 𝑐𝑡[1]. Then decrypted ciphertext should be 

[⌊
𝑡 ∙ [𝒄𝟎 + 𝒄𝟏 ∙ 𝒔]𝑞

𝑞
⌉]𝑡. 

As shown in the encryption step, [𝒄𝟎 + 𝒄𝟏 ∙ 𝒔]𝑞 gives us [𝒆 ∙ 𝒖 + 𝒆𝟏 + 𝒆𝟐 ∙ 𝒔 + ⌊
𝑞

𝑡
⌋ ∙ 𝒎]

𝑞
, which 

only contains the message and random errors having coefficient much smaller than ⌊
𝑞

𝑡
⌋. If we 

rescale the coefficients of this polynomial back to values in mod t and round them, we can 

remove the errors and recover the message m.  

Add(𝒄𝒕𝟏, 𝒄𝒕𝟐): Given two ciphertext 𝑐𝑡1, 𝑐𝑡2, then the addition of them should be 

𝑐𝑡𝑎𝑑𝑑 ≔ ([𝑐𝑡1[0] + 𝑐𝑡2[0]]
𝑞

, [𝑐𝑡1[1] + 𝑐𝑡2[1]]
𝑞

). 

Since later we show that our protocol does not depend on multiplication of the ciphertexts, 

details of the multiplication step are not provided here. 

For this protocol, the FV encryption scheme is implemented using a C++ library, SEAL v2.3.0 

(Bajard et al., 2016; Chen et al., 2017). 

Selection of parameters 

The utility, security and efficiency of the FV encryption scheme depend on the choice of 

encryption parameters. 

First of all, each ciphertext contains noise, which grows in all homomorphic operations, and 

eventually reaches a maximum value. Once this maximum is reached, the ciphertext cannot be 

decrypted correctly. Thus to achieve the utility of the encryption scheme, the choice of 

parameters should guarantee that the maximum noise boundary is large enough for our 

predetermined operations. 
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In terms of efficiency, the operations on polynomials with smaller degree and smaller 

coefficients are more efficient. Given a certain level of security, it is important to set the 

parameters that can achieve the balance between efficiency and utility.    

As demonstrated above, the encryption scheme contains four main parameters, polynomial 

modulus 𝑋𝑛 + 1, plaintext modulus t, coefficient modulus q and standard deviation 𝜎 of the error 

distribution. 

The polynomial modulus 𝑋𝑛 + 1 mainly affects the security level of the scheme. The larger the n 

is, the more secure the scheme will be. In addition, larger n leads to larger ciphertext sizes and 

consequently slower operations. The coefficient modulus q affects the utility of the scheme. 

Larger q allows more complicated computations. However, a larger q also lowers the security 

level of the scheme. The plaintext modulus t has an opposite effect on the utility. Smaller t 

allows more complicated computations. 

SEAL provides the default value of parameters for different security levels based on security 

level estimates (Chase et al., 2017). Later in our simulation study, we will provide the optimal 

parameter selection for our protocol under different situations.  

4.2.4 Encryption of genetic data and secure relationship inference protocol 

Since only addition and multiplication are supported by the FV encryption scheme, in order to 

calculate kinship coefficient,  𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎−2𝑁𝐴𝐴,𝑎𝑎

𝑁𝐴𝑎
(𝑖)

+𝑁𝐴𝑎
(𝑗) , we have to calculate the denominator and 

numerator separately.  

To calculate the numerator, rather than encrypting directly on genotype {0,1,2}, we compute 3 

ciphertexts for one variant which indicate the genotype equals 0, 1 and 2 respectively. In this 

way, the count numbers, 𝑁𝐴𝑎,𝐴𝑎 and 𝑁𝐴𝐴,𝑎𝑎 can be calculated by summing the corresponding 
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indicator products. To be specific, suppose genotypes are encrypted for sample 𝑖 in study A. Let 

𝑐0
(𝑖,𝑚)

, 𝑐1
(𝑖,𝑚)

, 𝑐2
(𝑖,𝑚)

 denote the ciphertext for individual i at variant m. Let 𝑔
(𝑖,𝑚)

 denote the true 

genotype of sample i at variant m. And 𝐼(𝑔
(𝑖,𝑚)

= 𝑘) is the indicator function of the genotype. 

Then three encrypted values for one variant are encoded as follows: 

𝑐0
(𝑖,𝑚)

= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘, 𝐼(𝑔
(𝑖,𝑚)

= 0)), 

𝑐1
(𝑖,𝑚)

= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘, 𝐼(𝑔
(𝑖,𝑚)

= 1)), 

𝑐2
(𝑖,𝑚)

= 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘, 𝐼(𝑔
(𝑖,𝑚)

= 2)). 

Let 𝑔0
(𝑗,𝑚)

, 𝑔1
(𝑗,𝑚)

, 𝑔2
(𝑗,𝑚)

 denote the true genotype indicator for study B. Then 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎 

for sample i in study A and j in study B can be calculated as follows: 

𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎
̂ (𝑖,𝑗)

= ∑ 𝑐1
(𝑖,𝑚)

𝑔1
(𝑗,𝑚)

− 2 ∗ (∑ 𝑐0
(𝑖,𝑚)

𝑔2
(𝑗,𝑚)

+ ∑ 𝑐2
(𝑖,𝑚)

𝑔0
(𝑗,𝑚)

𝑚 ).𝑚𝑚      (1)                    

Since for study B, 𝑔
(𝑗,𝑚)

 is a known value without encryption, this calculation only requires 

addition of the ciphertexts. 

For the denominator, we treat 𝑁𝐴𝑎
(𝑗)

 as a sharable summary statistic. Study B should send the 

unencrypted heterozygous count 𝑁𝐴𝑎
(𝑗)

 to study A. Therefore study A can calculate 
1

𝑁𝐴𝑎
(𝑖)

+𝑁𝐴𝑎
(𝑗) and 

multiplied it by the statistic (1) to get the kinship coefficient. 

In practice, individuals may have missing genotypes. In the definition of the kinship coefficient, 

all the calculations are done with M pairs of variants without missing genotypes in both 

individuals of a pair. The missing value does not affect the calculation of the numerator that the 

missing genotype results in three indicator values equals 0 so that variants having missing value 

in either individual are not included in the calculation of the numerator automatically. However, 



92 

 

missing information is needed to calculate  𝑁𝐴𝑎
(𝑖)

 and 𝑁𝐴𝑎
(𝑗)

. We assume the missing information is 

not as sensitive as the genotype so it can be shared between studies. Along with the encrypted 

and decrypted information, two studies should share vectors 𝑀𝑖 and 𝑀𝑗 indicating whether 

variants are missing in their data. 

Then, the secure protocol of inferring relationships between two studies follows the following 

steps (illustrated in Figure 4.2): 

1) Two studies share their missing data information for each variant.  

2) Study A generates keys (pk,sk), encrypts their genotype to be 𝐶0, 𝐶1, 𝐶2 using pk and 

calculates heterozygous count 𝑁𝐴𝑎
(𝑖)

 for each sample based on the missing information. 

Then study A sends the encrypted genotype to study B.  

3) Study B uses their genotype 𝐺0, 𝐺1, 𝐺2 and encrypted genotype from study A to calculate 

encrypted numerator of the kinship coefficient. Then calculates 𝑁𝐴𝑎
(𝑗)

 and sends the results 

to study A. 

4) Study A decrypts the numerator using sk and calculates the kinship coefficient. 

 

Figure 4.2: The specific process for securely calculating kinship coefficient between studies. 

Here, (1) denotes 𝑁𝐴𝑎
(𝑖)

; (2) denotes 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎
̂ (𝑖,𝑗)

; (3) denotes  𝑁𝐴𝑎
(𝑗)

.  
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4.2.5 Security 

The security of data of study A is always guaranteed by the security proof of homomorphic 

encryption (Gentry, 2009; Martin et al, 2015). Without knowing the security key, for study B, the 

encrypted genotype of study A is no more than a random value. However, data of study B may 

have the risk of getting disclosed when study A is an untrusted party. Here we demonstrate three 

possible attacks through which study A can disclose genotype of study B and we show how to 

protect data of study B again those attacks. To simplify the notation in this section, we combine 

three indicator vectors, 𝑔0, 𝑔1, 𝑔2 for one sample i into one vector of length 3M, where M is the 

number of variants.  

Attack I: Function privacy 

The homomorphic encryption scheme implemented in SEAL makes no attempt to keep 

information secure from the owner of the secret key (Chen et al., 2017). In other words, the 

owner of the secret key, study A, can distinguish the noise from the output ciphertext, and 

deduce information about the function study B uses to get the output. For example, the highest 

power that is computed can be read from the size of the output ciphertext which may reveal the 

operations study B conducts.   

To protect data of study B from disclosing, we incorporate a modified noise flooding method 

proposed by Gentry (Gentry, 2009). The main idea of this method is to mask the noise in the 

encrypted result that may reveal information of study B by adding encrypted zeros from B side. 

The encrypted zero should have noise that is polynomially equal or larger than the noise in the 

original encrypted result so that the old noise is flooded. To be specific, in our protocol, the noise 

in the encrypted 𝑁𝐴𝑎,𝐴𝑎 and 𝑁𝐴𝐴,𝑎𝑎 is result from 5M or less additions of the ciphertexts. 

Therefore in order to mask the noise in the true encrypted result, we added 5M encrypted zeros 
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to the encrypted result. The new encrypted result is 𝐸𝑛𝑐(𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎) + ∑ 𝐸𝑛𝑐𝑚(0)5𝑀
𝑚=1 . 

Study A is still able to get the true value after decryption. At the same time, the noise in the 

encrypted zeros has similar order of magnitude as the noise in the true encrypted result. As a 

consequence, even with the security key, study A is not able to distinguish the noise of the true 

result from the noise in the zero-added result. Thus they are not able to uncover the data or 

function study B uses.  

Attack II: Artificial genotype 

In this protocol, two studies should share the summary statistic 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎 in order to 

calculate kinship coefficient. The summary statistic will not reveal specific genotype at each 

position if it is calculated based on the true indicator function of the genotype.  

However, by encrypting ‘artificial’ genotypes instead of the indicator 0/1, study A may uncover 

the information of study B through the summary statistics. For example, study A encrypts 

(1, 𝑎 , … , 𝑎𝑀−1,  −0.5𝑎𝑀, … , −0.5𝑎3𝑀−1). Then the summary statistic, 𝑁𝐴𝑎,𝐴𝑎 −

2𝑁𝐴𝐴,𝑎𝑎, becomes ∑ 𝑔1
(𝑗,𝑚+1) ∙ 𝑎𝑚 +𝑀−1

𝑚=0 ∑ 𝑔0
(𝑗,𝑚+1) ∙ 𝑎𝑚 +2𝑀−1

𝑚=𝑀 ∑ 𝑔2
(𝑗,𝑚+1)3𝑀−1

𝑚=2𝑀 ∙ 𝑎𝑚. Getting 

the true genotype of study B from this summary statistic is just converting an integer from base-

10 to base-a. Since study B cannot tell whether study A is cheating from the encrypted data 

without the secure key, we propose a modified protocol guaranteeing that study A can get the 

true value of the summary statistic only when it does not cheat. 

Suppose 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎 is calculated based on M variants, by definition, this summary 

statistic should be an integer in [-2M, M], which contains 3M+1 different integers in total. So 

that if we add a random multiple of the integer 3M+1 to the 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎, then take modulus 

3M+1 and map the value back to [-2M, M], we should be able to get the true value of the 
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summary statistic. However, if study A uses the ‘artificial’ information, 

(1, 𝑎 , … , 𝑎M−1,  −0.5𝑎M, … , −0.5𝑎3M−1), the value of the summary statistic will fall outside the 

range [-2M,M] that cannot be recovered by taking modulus 3M+1. In other words, the 

information will not be disclosed to study A if it uses the ‘artificial’ information. The modified 

steps include: 

1) In step3, study B generates a random integer r from a discrete uniform distribution 

U(0,3M) and adds encrypted r*(3M+1) to the encrypted 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎.  

2) In step4, study A decrypts the result and calculates  𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎 + r*(3M+1) 

mod (3M+1) to get the true value of 𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎. 

Attack III: Aggregating information of multiple queries 

Suppose study A keeps sending queries to get comparisons between its query sample and a 

sample from study B, once it gets enough information for a certain sample j in study B, study A 

is able to disclose the genotype of sample j by solving a linear system (Figure 4.3).  

 

Figure 4.3: Attack on data of study B when study A gets enough information for a certain 

sample in study B. 
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To guard our protocol against this attack, after step 2, study B should generate a random order of 

its samples and send permuted results for each query. Study A is blind to the permuted order. In 

other words, study A cannot match the result of each query for a particular sample in study B. 

Figure 4.4 illustrates the permutation process. In the modified scheme, study B protects its 

genotype from being disclosed while study A can still infer whether its sample has relatives in 

study B.  

 

Figure 4.4: Permutation step when sending encrypted results back. 𝑘𝑖,𝑗 represents the 

kinship coefficient for sample i in study A and sample j in study B. 

 

One concern is the missing information shared between studies may potentially reveal some 

identification information of samples of study B. If the missing pattern is quite unique to each 

individual in study B, study A can use it to arrange the permutated result back to the original 

order.  

In order to tackle this problem, study B should not share their missing information with study A; 

and study A should calculate an approximation of 𝑁𝐴𝑎
(𝑖)

 assuming no missing value in study B. 

Discussion about how ignoring the missing value in study B affects the genetic inference is 

shown in the Supplementary note 2. Through simulations we demonstrate that ignoring the 

missing information of study B will have negligible impact on the relationship inference 
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accuracy. Thus to prevent study A from identifying specific individual of study B in each query, 

we suggest study B not to share its missing information with study A.      

4.3 Results 

We evaluate the performance of this secure relationship inference protocol through several 

simulations. Again, relationship is inferred among the 14,572 samples of NHLBI TOPMed 

program Freeze3 data that we used in Chapter III. As introduced previously, BRAVO is the 

reference datasets of human genetic variation constructed based on TOPMed program (Taliun et 

al., 2019). Later in the data application, we will show how we apply the protocol to help with 

aggregating information of two similar reference datasets, BRAVO and gnomAD. 

4.3.1 Performance of identification of the genetic relatives in homogeneous 

populations 

The first simulation evaluates the protocol of inferring relationships when samples are having the 

same ethnic background. It assesses the number of variants that are needed to infer certain 

genetic relatives for our purpose of finding the overlapping samples between studies. The 

individual we use are exactly the same as Section 3.3.2, 3,357 Europeans, 3,437 Africans, 265 

Asian and 54 Native Americans. Then relationships are inferred within each ethnic group. Gold-

standard relationships among samples are inferred using KING based on ~600,000 HGDP 

variants which are considered to have high genotype quality (Cavalli-Sforza , 2005; Manichaikul 

et al. 2010). 

We select different numbers of variants to infer relationships using our secure protocol and 

compare the performance with the gold-standard. For each pair of samples, we assume the 

sample with smaller ID is from study A; it follows the protocol by encrypting its genotype of the 
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selected variants and decrypting the result to infer the relationship. The sample with larger ID is 

from study B; it calculates the encrypted result using encrypted data from study A and its own 

genotype.  

Analysis is conducted on independent 500, 1000, 5000 and 10000 variants with minor allele 

frequencies (MAFs) between 0.4 to 0.5. Again, to achieve our goal of identifying overlaps 

between the two studies, our primary concern is detecting duplicates and 1
st
 degree relatives.  

First of all, we compare the kinship coefficient calculated under our secure protocol with those 

calculated without encryption. The kinship coefficient obtained through the 

encryption/decryption process is identical as those calculated using the same genotypes without 

encryption. We demonstrate that through this protocol we successfully encrypt genotype data 

then successfully decrypt the results.  

Table 4.2 shows the number of relative pairs inferred totally and inferred correctly with different 

numbers of variants for each group. All of the duplicate pairs are correctly inferred using 500 or 

more variants. For 1
st
 degree relatives, we do not get false positive results in the Asian and 

Native American population. For the European and African population, the number of correctly 

identified relative pairs and the false discovery rate are comparable. For example, using 500 

variants, we are able to identify 99.08% of the 1
st
 degree relatives and get 2.56% false-positive 

pairs for Europeans while identify 99.32% 1
st
 degree relatives with 1.63% false-positive pairs for 

Africans. And we get ideal results that identify all the true 1
st
 degree relatives without any false 

positives using more than 5000 variants. 

When using more than 5000 variants, 2
nd

 degree relatives can also be identified with high 

discovery rate and low false discovery rate. Using 10000 variants, we detect 95.66% of the 2
nd
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degree relatives in Europeans with 5.07% FDR. In addition, we detect 98.19% of the 2
nd

 degree 

relatives in Africans with 1.72% FDR.  

Table 4.2: Number of relative pairs inferred with 500, 1000, 5000 and 10000 variants 

within each ethnic group. Data in the bracket represents number of correctly inferred pairs 

compared with gold-standard. 

 

European(N=3357) African(N=3437) Asian(N=265) American(N=54) 

Duplicates/MZ twins     

Gold standard 30 30 0 0 

500 30(30) 30(30) 0 0 

1000 30(30) 30(30) 0 0 

5000 30(30) 30(30) 0 0 

10000 30(30) 30(30) 0 0 

1
st
 degree relatives         

Gold standard 1959 1461 0 0 

500 1992(1941) 1475(1451) 0 0 

1000 1972(1951) 1461(1456) 0 0 

5000 1959(1959) 1462(1461) 0 0 

10000 1959(1959) 1461(1461) 0 0 

2
nd

 degree relatives       

Gold standard 2074 1049 1 0 

500 17904(1549) 20306(889) 195(0) 2(0) 

1000 2714(1723) 1638(807) 6(1) 0 

5000 2088(1954) 1045(1020) 1(1) 0 

10000 2090(1984) 1048(1030) 1(1) 0 

 

4.3.2 Performance of identification of the genetic relatives in a heterogeneous 

population 

The second simulation evaluates the protocol of inferring relationships securely in heterogeneous 

population. The simulation is conducted on all the 14,572 TOPMed samples with diverse ethnic 

background. In addition to those 7,113 samples with determined ancestry, 7,459 more samples 

are from other or admixed populations. Here, we assume the ancestry information is not known 

when inferring the relatives. Other simulation settings and procedures are the same as the 

previous simulation in homogeneous population. 
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Table 4.3 shows the number of relative pairs inferred in the heterogeneous population with 

different numbers of variants. All of the duplicate pairs are correctly inferred using 500 or more 

variants. For 1
st
 degree relatives, the number of correctly identified relative pairs increases and 

the false discovery rate decreases as we use more variants. We are able to identify 99.24% of the 

1
st
 degree relatives while getting 2.07% false-positive pairs using 500 variants. Using 10000 

variants, we are able to recover almost all of the 1
st
 degree relatives while control the FDR as 

low as 0.04%. When using more than 5000 variants, 2
nd

 degree relatives can also be identified. 

With 5000 variants, 95.70% of the 2
nd

 degree relatives are detected with 4.35% FDR.  With 

10000 variants, 97.35% of the 2
nd

 degree relatives are detected with 2.86% FDR.  

Table 4.3: Number of relative pairs inferred with 500, 1000, 5000 and 10000 variants in a 

heterogeneous population. 

Number  of variants Number of pairs 
Number of overlapping results with 

Gold-standard 

 Duplicates 

Gold-standard 108 108 

500 108 108 

1000 108 108 

5000 108 108 

10000 108 108 

 1
st
 degree relatives 

Gold-standard 8284 8284 

500 8395 8221 

1000 8315 8258 

5000 8285 8279 

10000 8286 8283 

 2
nd

 degree relatives 

Gold-standard 7444 7444 

500 142646 5667 

1000 11282 6320 

5000 7448 7124 

10000 7460 7247 
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4.3.3 Selection of parameters for the encryption scheme 

As described before, the selection of parameters for the encryption scheme determines the utility, 

the security as well as the efficiency of the protocol. We have to define mainly 3 parameters for 

the SWHE scheme; polynomial modulus  𝑋𝑛 + 1, plaintext modulus t and coefficient modulus q. 

A standard deviation 𝜎 of the error distribution is also a parameter and it is fixed to be 3.19 in 

SEAL. In this simulation, we provide guidance about how to set the optimal parameters for the 

encryption scheme to guarantee the security and utility of this protocol and also make the 

protocol scale well in practice.  

The security is determined by both the polynomial modulus 𝑋𝑛 + 1 and the coefficient modulus 

q. The larger the n is, the more secure the scheme will be. On the contrary, the smaller the q is, 

the more secure the scheme will be. In SEAL, coefficient modulus q is composed of a product of 

multiple small primes 𝑞1 × . . . × 𝑞𝑘. SEAL provides the default value of parameters paris (n, q) 

for different security levels based on security level estimates (Chase et al., 2017). For 128-bits of 

security, if n is set to be 1024, q should be any product of those small primes but at most 29 bits 

long. If n is 2048, then q can be larger values of at most 56 bits long. For higher security level 

192-bits, smaller q should be used which is at most 39 bits when n is 2048.  

In terms of the utility of the scheme, we have to set proper q and plaintext modulus t to control 

the noise growth in ciphertext so that it can be decrypted successfully. Here t is set to be a power 

of 2. Bigger q and smaller t allows more complicated computations. In our protocol, inferring 

relationships with more variants requires a higher level of utility. As described previously, we 

have an upper boundary for q for certain security and n. To satisfy the utility demand, we have to 

set t as small as possible. However, t cannot be any small value. It has a lower bound which 

determines the range of the plaintext value. When calculating on more variants, the range of the 
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value of the statistic is larger that requires larger t. Therefore sometimes we have to increase q 

and n accordingly in order to meet the security and utility requirement. 

Larger n results in larger ciphertext sizes and slower operations. Even though there is no harm of 

using larger n in terms of security and utility, smaller n is always preferred in terms of achieving 

proficiency of the scheme. In Table 4.4, we show the optimal sets of parameters for different 

number of variants. Based on the simulation, they are the most efficient combination of 

parameters while also guarantee the security and utility of the encryption scheme. 

Table 4.4: Optimal set of parameters for homomorphic encryption under different security 

levels. 

Number  of variants 128-bits 192-bits 

 n q(bit) t n q(bit) t 

500 1024 29 210~212 2048 39 210~222 

1000 2048 56 212~230 2048 39 212~220 

5000 2048 56 214~230 2048 39 214~218 

10000 2048 56 216~230 2048 39 216~218 

 

4.3.4 Computational cost and bandwidth consumption of the protocol 

Table 4.5 and Supplementary Table S4.3 show the computing time of each primary step in the 

protocol under different scenarios. Results in Supplementary Table S4.3, demonstrate that the 

computing time of the encryption of an individual number is mainly determined by the degree of 

polynomial modulo n (for example, n=1024: 1.26ms vs. n=2048: 2.45ms). In addition, the 

computational time of the decryption of a number is also determined by n (for example, n=1024: 

0.12ms vs. n=2048: 0.24ms). Overall, the computational time of encryption and decryption 

scales relatively well in practice. If we have 10000 samples in study A and study B, for 500 

variants at 128-bits security level, the encryption and decryption take 7.0 CPU hours and 3.3 

CPU hours respectively (Table 4.5). 
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The main cost is the evaluation on the encrypted data. The evaluation conducted by study B 

includes two steps. The first step is to generate a pool of encrypted zeros. For our protocol, we 

set the size of the pool to be 25M. The first step of generating a pool of encrypted zeros is done 

once for all the comparisons. The second step is to calculate 𝐸𝑛𝑐(𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎) +

∑ 𝐸𝑛𝑐𝑚(0)5𝑀
𝑚=1 . For each pair of comparisons, 5M encrypted zeros are randomly selected from 

the pool and added to the result to avoid potential information leakage of study B (illustrated in 

Section 4.2.5). Overall, with the function protection step, the computational time of evaluation 

scales well for 10000 variants. When we infer relationships among large cohorts, the evaluation 

overhead of step one can be neglected compared with the total evaluation time. For the analysis 

between two studies with 10000 samples each, the CPU hours for evaluation are 292.6 hours for 

500 variants and 3232.2 hours for 10000 variants.  

Table 4.5: Computational time of primary steps in the protocol with 128-bits of security. 

Number of 

variants 
Procedure Computational time 

CPU hours for 10000 

vs. 10000 comparison 

500 

Encryption  1.26ms/entry 7.0h 

Evaluation overhead* 16.08s 16.08s 

Evaluation 10.53ms/comparison 292.6h 

Decryption  0.12ms/comparison 3.3h 

1000 

Encryption  2.51ms/entry 27.9h 

Evaluation overhead* 63.57s 63.57s 

Evaluation 21.34ms/comparison 592.8h 

Decryption  0.26ms/comparison 7.2h 

5000 

Encryption  2.55ms/entry 141.7h 

Evaluation overhead* 320.78s 320.78s 

Evaluation 53.89ms/comparison 1497.0h 

Decryption  0.26ms/comparison 7.2h 

10000 

Encryption  2.52ms/entry  280.0h 

Evaluation overhead* 633.49s 633.49s 

Evaluation 116.63ms/comparison 3232.2h 

Decryption  0.18ms/comparison 5.0h 

* This step is to encrypt 25M zeros before the evaluation. Then 5M encrypted zeros are 

randomly selected to be added to the evaluation for function security. This step is only done one 

time by study B for all comparisons. 
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In terms of bandwidth consumption, the size of the encrypted data is determined by polynomial 

modulo parameter n. On average, each ciphertext requires 17kb to store when n equals 1024 and 

33kb to store when n equals 2048. This causes both studies to be burdened with heavy 

communication overhead. This overhead limits the number of samples we can compare within 

each communication. 

4.3.5 Application to combine TOPMed and gnomAD reference datasets 

As mentioned above, TOPMed program aims to provide reference resources of human genetic 

variation through a web browser, BRAVO. On BRAVO, variants summaries like allele 

frequencies (AFs) and quality metrics are shared to help researchers interpret the function of 

disease-causing variants. The current BRAVO browser is built upon 62,748 freeze5 TOPMed 

samples which have diverse backgrounds. 

The Genome Aggregation Database (gnomAD) is also a resource that provides similar summary 

information of variants as TOPMed (Lek et al., 2016). It aggregates and harmonizes both exome 

and genome sequencing data from a variety of large-scale sequencing projects. The data we use 

in this application are data for constructing its web browser which contains 123,136 exome 

sequenced individuals and 15,496 whole-genome sequenced individuals (Lek et al., 2016; 

Karczewski et al., 2019).  

Since BRAVO and gnomAD are designed for similar purposes and have similar content, 

researchers from both programs consent to aggregate information from both sides to construct a 

federated database. Since many studies participate in both programs, the overlapping samples 

may bias the summary statistics if we combine the two datasets directly. Thus in this application 

we want to infer overlapping samples between these two programs which is the first step of their 

federation.  
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Relationships are inferred through the secure protocol we propose using 500 common variants at 

128-bits security level. The parameters we use for the encryption scheme are n = 1024, q = 29 

bits long and t = 210. To avoid the extreme heavy communication overhead of the comparison 

between 200,000 samples, we get the raw genotype of selected 500 common variants from both 

studies. Then the encryption-decryption process is conducted on one side. Overall, the 

encryption, evaluation and decryption procedures take 33 CPU hours, 25k CPU hours and 290 

CPU hours respectively. 

Overall, 5568 pairs of duplicates and 2269 pairs of 1
st
 degree relatives are detected between 

TOPMed and gnomAD. The overlapping samples are mainly from the studies that participate in 

both programs, including 2487 samples from Atrial Fibrillation Genetics Consortium, 1725 

samples from Framingham Heart Study and 1868 samples from Jackson Heart Study. 

4.4 Discussion 

Here, we propose a privacy preserving method in the context of KING and homomorphic 

encryption. This protocol allows us to address the inherent tension of data sharing privacy in 

personal genomics. Under this protocol, we are able to infer genetic relatives without exposing 

individual-level genetic data. The results are robust in the population with diverse ethnic 

background. In addition to the general data-sharing framework of homomorphic encryption, we 

modify the protocol according to the calculation of kinship coefficients and provide protection 

against several major attacks.  

The development of practical homomorphic encryption schemes provides us a chance to 

establish a two-party secure protocol for conducting genetic tests. While previous studies have 

shown its utility in conducting statistical tests for HWE, LD and genetic-disease associations in a 
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GWAS setting, the method to infer relatives based on this technique has not been well 

established. Even though methods that calculate edit distance or perform string search are able to 

find similar patients between studies, they are not scalable for our purpose of finding relatives 

between large-scale studies, since the problems they solve are much more complicated and have 

deeper circuits than the problem we consider here. To the best of our knowledge, the efficient 

method of calculation of the edit distance takes 15 to 100 seconds for a pair of 5000 variants 

(Kim and Lauter, 2015); the string search of a sequence of 25 variants in 2000 genomes takes 10 

seconds (Shimizu et al., 2016). None of these is applicable to our scenarios where both studies 

have more than 10000 samples. In our protocol, instead of comparing DNA sequences, we use a 

simpler summary statistic, kinship coefficient, to infer relatives. Thus, our protocol requires 

much less computing time for each comparison and scales well for large-scale studies. In 

addition, these existing methods can only infer duplicates while our method can infer relatives up 

to 2
nd

 degree. Moreover, these methods only protect data from one side, while we provide several 

layers of protection of the data on both sides.          

Another major asset of our protocol is the reliable performance in heterogeneous populations. 

Compared to the existing methods and the method proposed in Chapter III, our method can infer 

relationships robustly in a heterogeneous population without disclosing ancestry information 

between studies. Through simulations and an application on data from TOPMed and gnomAD 

program in a heterogeneous population, we demonstrate that we are able to recover most of the 

1
st
 degree relatives while controlling the false discovery rate well using a limited number of 

variants. The whole protocol scales well in practice with as many as 10000 variants.  

However, the protocol does suffer from heavy communication overhead. The large size of the 

ciphertext has been a general problem of all the practical methods based on homomorphic 
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encryption. To guarantee the security of the encryption scheme, both the degree of the 

polynomial and the coefficients are quite large and random. An efficient way to store the 

ciphertext may be difficult to develop. Some studies have demonstrated that a hybrid encryption 

scheme of homomorphic encryption and other encryption technique, for example Advanced 

Encryption Standard, may solve this common practical problem in homomorphic encryption 

(Naehrig et al. 2011; Olumide et al. 2015; Alkady et al. 2018). 

In conclusion, we propose a secure protocol that enables the relationship inference between 

studies without sharing individual level data. In the next chapter, we will discuss the limitations 

regarding the communication overhead that need further investigation to make the protocol more 

practical for large-scale studies. 
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Supplements 

Supplementary note 1: Robust relationship inference method previously described by 

Manichaikul et al (2010). 

Let 𝜙𝑖𝑗 denote the kinship coefficient between sample i and j, which is the probability of two 

alleles randomly selected from two individuals to be identical by descent. Let 𝜋0𝑖𝑗, 𝜋1𝑖𝑗, 𝜋2𝑖𝑗 

denote the probability that two individuals share 0,1 and 2 alleles identical by descent (IBD). 

They have the relationship 2𝜙𝑖𝑗 =
𝜋1𝑖𝑗

2
+ 𝜋2𝑖𝑗 . Supplementary Table S4.1 lists the probabilities 

for genotype pairs of bi-allelic variants given their IBD status. Then the marginal probability of 

genotype pairs can be represented by kinship coefficient: 

Pr(𝐴𝑎,  𝐴𝑎) = ∑ Pr(𝐴𝑎, 𝐴𝑎|𝐼𝐵𝐷) ∗ Pr (𝐼𝐵𝐷)𝐼𝐵𝐷=0,1,2 = 4𝑝2𝑞2𝜋0𝑖𝑗 + 4𝑝𝑞𝜙𝑖𝑗                                                                                                        

and Pr(𝐴𝐴,  𝑎𝑎) = 2𝑝2𝑞2𝜋0𝑖𝑗. Therefore, 

𝐸(𝐼𝐴𝑎,𝐴𝑎 − 2𝐼𝐴𝐴,𝑎𝑎) = Pr(𝐴𝑎, 𝐴𝑎) − 2 Pr(𝐴𝐴, 𝑎𝑎) = 4pq𝜙𝑖𝑗 

Supplementary Table S4.1: Probabilities for genotype pairs of bi-allelic variants given their 

IBD status. 

 

Pr(Genotype pairs|IBD) 

Genotype pairs IBD=0 IBD=1 IBD=2 

(aa,aa) 𝑝𝑎
4 𝑝𝑎

3 𝑝𝑎
2 

(aa,ab) 2𝑝𝑎
3𝑝𝑏 𝑝𝑎

2𝑝𝑏  0 

(aa,bb) 𝑝𝑎
2𝑝𝑏

2 0 0 

(ab,ab) 4𝑝𝑎
2𝑝𝑏

2 𝑝𝑎
2𝑝𝑏 + 𝑝𝑎 𝑝𝑏

2 2𝑝𝑎𝑝𝑏 

 

Suppose the genotype score, defined by the number of the reference allele for individuals i, is 

𝑋(𝑖).The absolute value of the genotype difference , |𝑋(𝑖) − 𝑋(𝑗)|, takes three possible values: 2 

with genotype pair (AA, aa), 1 with genotype pairs (AA, Aa) or (Aa, aa), and 0 otherwise. Thus 

we have 
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(𝑋(𝑖) − 𝑋(𝑗))2 = 4𝐼𝐴𝐴,𝑎𝑎 + 𝐼𝐴𝑎,𝑎𝑎 + 𝐼𝐴𝐴,𝐴𝑎 = 4𝐼𝐴𝐴,𝑎𝑎 + 𝐼𝐴𝑎
(𝑖) + 𝐼𝐴𝑎

(𝑗) − 2𝐼𝐴𝑎,𝐴𝑎 

Under the assumption of HWE, we have 𝐸(𝐼𝐴𝑎
(𝑖)

) = Pr(𝐴𝑎) = 2𝑝𝑞. It follows that 

 𝐸(𝑋(𝑖) − 𝑋(𝑗)) 
2

= 4𝑝(1 − 𝑝)(1 − 2𝜙𝑖𝑗). 

 In the presence of population stratification, P may vary across individuals. To construct an 

estimator of kinship coefficient that is robust to population stratification, we assume P is a 

random variable representing AF of a randomly picked variant. P may vary across individuals 

but should follow the same distribution for a particular ancestry. Then the equation becomes 

𝐸(𝑋(𝑖) − 𝑋(𝑗))
2

= 4𝐸(𝑃(1 − 𝑃))(1 − 2𝜙𝑖𝑗). 

Under the assumption of HWE, we havePr(𝐴𝑎|𝑃) = 2𝑃(1 − 𝑃). Then 

𝐸(2𝑃(1 − 𝑃)) = 𝐸(Pr(𝐴𝑎|𝑃)) = 𝐸(𝐸(𝐼𝐴𝑎|𝑃)) = 𝐸(𝐼𝐴𝑎). 

For a pair of individuals, an empirical estimator for 𝐸(2𝑃(1 − 𝑃)) is (𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

)/2𝑀𝑖𝑗, where 

𝑀𝑖𝑗 is the number of variants without missing value in both individuals. 

The robust estimator for 𝜙𝑖𝑗 is  

𝜙𝑖𝑗̂ = 0.5 −
∑ (𝑋𝑚

(𝑖)
− 𝑋𝑚

(𝑗)
)2

𝑚

2(𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

)
=

𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎

𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

 

In the paper, a more robust estimator is proposed to deal with a situation when the violation of 

HWE of some variants results in excessive heterozygosity. Instead of using (𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

)/2𝑀𝑖𝑗, 

they use min (𝑁𝐴𝑎
(𝑖)

/𝑀𝑖𝑗 , 𝑁𝐴𝑎
(𝑗)

/𝑀𝑖𝑗) to estimate 𝐸(2𝑃(1 − 𝑃)). 

When the assumption of HWE is violated, the robust estimator for 𝜙𝑖𝑗 is  
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𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎 − 2𝑁𝐴𝐴,𝑎𝑎

2min (𝑁𝐴𝑎
(𝑖)

, 𝑁𝐴𝑎
(𝑗)

) 
+

1

2
−

1

4

𝑁𝐴𝑎
(𝑖)

+ 𝑁𝐴𝑎
(𝑗)

min (𝑁𝐴𝑎
(𝑖)

, 𝑁𝐴𝑎
(𝑗)

) 
 

Once the kinship coefficient is calculated, relationship can be inferred based on criteria in 

Supplementary Table S4.2. 

Supplementary Table S4.2: Relationship inference criteria for kinship coefficient. 

Relationship 𝝓  Inference criteria 𝝅𝟎 Inference criteria 

MZ twin >1/23/2 <0.1 

Parent-offspring (1/25/2, 1/23/2) <0.1 

Full-sib (1/25/2, 1/23/2) (0.1,0.365) 

Second degree relatives (1/27/2, 1/25/2) (0.365,1-1/23/2) 

Unrelated <1/29/2 >1-1/25/2    
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Supplementary note 2: The influence of ignoring missing value information on the 

estimation of kinship coefficient. 

To prevent study A from aggregating information of certain samples in study B, we proposed the 

strategy of permuting the sample order in each query (illustrated in Section 4.2.5). However, we 

have a concern that the missing information shared between studies may potentially reveal some 

identification information of samples of study B. To add another layer of protection on this 

protocol, study B should consider not sharing their missing information with study A. In other 

words, instead of calculating the kinship coefficient using 𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎−2𝑁𝐴𝐴,𝑎𝑎

𝑁𝐴𝑎
(𝑖)

+𝑁𝐴𝑎
(𝑗) , study A should 

approximate the kinship coefficient by 

𝜙𝑖𝑗̂ =
𝑁𝐴𝑎,𝐴𝑎−2𝑁𝐴𝐴,𝑎𝑎

𝑁𝐴𝑎
(𝑖) ∗

+𝑁𝐴𝑎
(𝑗)

, 

where 𝑁𝐴𝑎
(𝑖)∗

 is calculated assuming study B has no missing value. Later, we call the kinship 

coefficient considering missing value in study B, the exact kinship coefficient; and the kinship 

coefficient ignoring missing value in study B, the approximate kinship coefficient.   

Simulation was conducted on 1,000 selected TOPMed samples. These samples included 117 

samples that consist of all the 108 pairs of duplicates, 400 samples having 1
st
 degree relationship 

and 483 samples having 2
nd

 degree relationship or being unrelated. The set of variants we used 

for relationship inference was exactly the same as the simulation in Section 4.3. The relationship 

was inferred by exact kinship coefficient as well as approximate kinship coefficient. We 

compared their relationship inference accuracy through true predicted value (TPV) and the false 

discovery rate (FDR). The TPV and FDR were calculated by comparing the results with the gold 

standard we described in Section 4.3.   
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Ignoring 0.2% missing value in real data 

We did the simulation first based on the real TOPMed data. The missing rate across the variants 

per sample is about 0.2% for all the settings, 500, 1000, 5000 or 10000 variants.  

The relationship inferred using the exact kinship coefficient is identical to using the approximate 

kinship coefficient under all the setting.  

Ignoring 5% missing value in simulated data     

In the first simulation, we show that not sharing missing value information of study B has no 

negative impact when the missing rate is low. Here we consider a situation where the missing 

rate is high. We simulated data by randomly masking the real data as missing with the 

probability of 0.05. Then relationship was inferred using the exact and approximate kinship 

coefficients. 

Results are shown in Supplementary Table S4.3. The results using approximate kinship 

coefficient are similar as those using exact kinship coefficient. With more than 5000 variants, the 

results are identical using these two kinship coefficients. As illustrated in Supplementary Figure 

S4.1, the approximate kinship coefficient underestimates the kinship coefficient because 𝑁𝐴𝑎
(𝑖)∗

is 

larger than  𝑁𝐴𝑎
(𝑖)

. Relative pairs having kinship coefficient around the 0.354, 0.177 and 0.0884 

cutoff are likely to be misclassified.  

In conclusion, the impact of ignoring missing information of study B is negligible regardless of 

the missing rate. To infer relationship with our secure protocol, study B can keep its missing 

value information secret in order to protect its data from attacks.    
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Supplementary Table S4.3: Inference accuracy using exact kinship coefficient vs. using 

approximated kinship coefficient.   

 
Number of variants TPV* FDR** 

Duplicates 
  

Exact kinship coefficient 

500 100.00% 5.26% 

1000 100.00% 0.00% 

5000 100.00% 0.00% 

10000 100.00% 0.00% 

Approx. kinship coefficient 

500 100.00% 5.26% 

1000 100.00% 0.00% 

5000 100.00% 0.00% 

10000 100.00% 0.00% 

1
st
 degree relatives 

  

Exact kinship coefficient 

500 85.59% 16.53% 

1000 86.36% 13.64% 

5000 84.55% 15.45% 

10000 85.05% 14.95% 

Approx. kinship coefficient 

500 85.59% 15.83% 

1000 86.36% 13.64% 

5000 84.55% 15.45% 

10000 85.05% 14.95% 

2
nd

 degree relatives 
  

Exact kinship coefficient 

500 71.43% 97.90% 

1000 59.57% 82.61% 

5000 68.89% 38.00% 

10000 72.73% 25.58% 

Approx. kinship coefficient 

500 69.39% 97.57% 

1000 59.57% 77.95% 

5000 68.89% 36.73% 

10000 72.73% 25.58% 

*TPV (true predictive value) = number of pairs inferred correctly/number of true pairs 

**FDR(false discovery rate) = number of pairs inferred incorrectly/number of pairs inferred



114 

 

 

 

 

 

 

Supplementary Figure S4.1: Kinship coefficients calculated by considering vs. ignoring missing information of study B. Grid 

corresponding to threshold of defining duplicates, 1
st
 degree relatives and 2

nd
 degree relatives (0.354, 0.177, 0.0884). Red dots are 

misclassified 1
st
 degree relative pairs resulting from ignoring missing value. Green dots are misclassified 2

nd
 degree relative pairs 

resulting from ignoring missing value. 
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Supplementary Table S4.4: Computational time of primary steps in the protocol under different parameter settings. 

 

Number of 

variants 
security n t 

Encrypt/

entry 

Evaluation 

overhead* 

Evaluation/

pair 

Decryption/ 

pair 

Bandwidth/ 

pair 

500 

128 1024 10 1.26ms 16.08s 10.53ms 0.12ms 17kb 

128 1024 12 1.29ms 16.21s 7.21ms 0.14ms 17kb 

192 2048 10 2.45ms 30.73s 11.73ms 0.24ms 33kb 

192 2048 22 2.46ms 31.02s 13.61ms 0.24ms 33kb 

1000 

128 2048 12 2.51ms 63.57s 21.34ms 0.26ms 33kb 

128 2048 30 2.42ms 61.27s 21.05ms 0.25ms 33kb 

192 2048 12 2.34ms 59.50s 20.03ms 0.24ms 33kb 

192 2048 20 2.38ms 60.21s 21.01ms 0.21ms 33kb 

5000 

128 2048 14 2.55ms 320.78s 53.89ms 0.26ms 33kb 

128 2048 30 2.43ms 303.82s 59.06ms 0.23ms 33kb 

192 2048 14 2.15ms 269.02s 52.99ms 0.18ms 33kb 

192 2048 18 2.17ms 271.40s 55.32ms 0.19ms 33kb 

10000 

128 2048 16 2.52ms 633.49s 116.63ms 0.18ms 33kb 

128 2048 30 2.41ms 602.71s 103.00ms 0.18ms 33kb 

192 2048 16 2.26ms 565.98s 110.96ms 0.19ms 33kb 

192 2048 18 2.24ms 561.17s 108.45ms 0.20ms 33kb 

* This step is to encrypt 25M zeros before the evaluation. Then 5M encrypted zeros is randomly selected to be added to the evaluation 

for function security. This step is only done one time by study B for all comparisons. 
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CHAPTER V 

Summary and Future Work 

5.1 Summary 

Motivated by the genetic studies of electronic health records (EHR), this dissertation has focused 

on developing applicable methodologies to deal with the challenges of analyzing large-scale 

EHR data. Since EHR, originally, was not designed for scientific research, one critical drawback 

of using EHR for GWAS is the potential misclassification of phenotypes. Ignoring this 

misclassification will lead to biased association results and have a negative impact on the 

downstream analysis. Driven by this concern, we developed a method in Chapter II that can 

estimate the misclassification by examining external GWAS information. In addition, 

aggregating information between different EHR studies that have data sharing barriers requires 

privacy-preserving methods for relationship inference. This demand motivated the development 

of methods in Chapters III and IV. We proposed two secure protocols that can infer duplicates 

and genetic relatives between studies without sharing individual-level data.We believe these 

newly developed methods and protocols will facilitate analysis of genetic data along with EHR, 

and provide insight into future genetics research. However, each of the methods has both 

advantages and limitations, as will be described in this chapter. Moreover, they can be further 

improved to be more applicable to a broader range of problems. Therefore, we conclude this 

dissertation by pointing out potential directions for future research.
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5.1.1 Modeling misclassification in phenotypes in EHR  

One major challenge in EMR-based GWAS and PheWAS is the difficulty in accurately 

annotating disease phenotypes, which results from the low accuracy of billing codes as well as 

the difficulty of pooling billing codes to binary case/control phenotypes. Previous studies have 

demonstrated that ICD codes often have limited accuracy in predicting the true underlying 

disease status (Bazarian  et al., 2006; Liao et al., 2010). In the analysis of the Michigan Genomic 

Initiative (MGI) data, we detected significant misclassification in age-related macular 

degeneration (AMD), psoriasis and type II diabetes (T2D) while no significant misclassification 

was detected in breast cancer. In Section 2.5, we noted that the misclassification can either occur 

along the translation from ICD codes to the dichotomized phenotypes or the assignment of ICD 

codes to patients. The possible errors in ICD codes introduced by O’Malley et al. (2005), such as 

the ambiguous description of ICD codes, the miscommunication between patients and clinicians, 

and the upcoding of ICD codes, all can explain the high misclassification we observe in MGI 

data. In addition, the observation by O’Malley et al., that a disease for which tests have high 

sensitivity will have higher diagnostic accuracy and smaller error in the ICD codes, explains the 

low misclassification of breast cancer in MGI. Our method provides researchers with guidance in 

tracing the origin of the errors and improving the case definition scheme.  

Other than improving the phenotype construction, the estimation of our model, i.e. the 

misclassification rate, can be used to correct results in downstream analyses directly. First we 

can correct the effect size estimation with the misclassification rate using the formula derived by 

Neuhaus (1999) or Duffy's approach (2004), or using the iteratively reweighted least square 

algorithm (Magder and Hughes, 1997). In Chapter II, we corrected the effect size estimation for 

some variants associated with AMD, using Duffy’s method, and saw the convergence of the 
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corrected results to the external GWAS. In the future, if applying the correction on the whole 

genome, we may recover the power of finding novel signals since the effect sizes are pulling 

against the null hypothesis. In addition, the misclassification rate can also be used to correct the 

receiver operating characteristic (ROC) curve analysis (Zawistowski et al.,2017).   

5.1.2 Two relationship inference protocols 

In Chapters III and IV, we proposed two protocols that can infer genetic relatives without 

compromising privacy. Although the methods were initially motivated by the demand of 

aggregating information between variant browsers, they can be applied to solve a broader range 

of problems when inferring relationships between studies is needed. Another promising direction 

is to use these methods for meta-analyses. Overlapping samples are found in meta-analysis when 

publicly available controls are shared among different studies (Young et al. 2007) or the same 

cohort contributes to different GWAS in a meta-analysis (Bonàs-Guarch et al. 2017). 

Overlapping samples can lead to inflated type I errors and false signals so that in case-control 

studies, the removal of related individuals is a standard quality control step (Voight and Pritchard, 

2005). However, it can be challenging to remove overlapping samples in a meta-analysis, since 

individual-level data cannot be shared. Using our protocol, we will be able to identify the close 

relatives among different GWAS in a meta-analysis, then account for the overlaps using existing 

methods (Lin and Sullivan, 2009).    

While the first protocol uses summary statistics to encrypt genotype data and uses a likelihood 

model to infer relationships, the second protocol uses homomorphic encryption to guarantee the 

security of the data and makes inference based on a robust method implemented in KING. They 

share some similarities in terms of utility. With 500 properly selected variants, both protocols 

have the ability to identify most of the 1
st
 degree relatives with a low false discovery rate. With 
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5000 or more variants, 2
nd

 degree relatives can be inferred potentially with low false discovery 

rate.  

In addition to the similarities, both protocols have pros and cons compared with the other under 

different scenarios (Table 5.1). The first protocol is more computationally efficient. For the 

10000 samples comparison, the first protocol takes less than 25 CPU hours while the best case 

for the second protocol is about 300 CPU hours, ignoring the communication overhead. The first 

protocol also scales well in bandwidth consumption. While the first protocol only requires MB-

level of data communication, the second protocol requires hundreds of GB- or even TB- level of 

data communication overhead between studies. 

However, the second protocol also has some obvious advantages. First of all, it can make robust 

inferences of relationships in a heterogeneous population. Especially when ancestry information 

is not available for selecting variants with consistent allele frequencies (AFs), the first protocol 

will have many false discoveries due to the biased AFs while the second protocol is robust to 

such bias. In addition, the second protocol encrypts genotypes with a higher level of security. 

Homomorphic encryption, as a well-established encryption scheme, has rigorous proof of the 

security level under different settings (Chase et al., 2017). The mapping between the encrypted 

value and the true value is totally random. Given the encrypted value, the corresponding true 

value can be any integers with equal probabilities. For the first protocol, on the other hand, the 

N-to-1 mapping between the encrypted value and the true value is fixed. Therefore given an 

encrypted value, the space to search for the true value is limited, which makes this protocol less 

secure than the second one.  

In conclusion, the two methods are preferred under different scenarios. For inference in the 

homogenous population, one may consider using the method in Chapter III, which is more 
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efficient, while one may consider using the method in Chapter IV for the heterogeneous 

population and when higher level of security is required.  

Table 5.1: Comparison between two relationship inference protocols proposed in Chapters 

III and IV. 

  Chapter III Chapter IV 

Utility (Inference 

accuracy)* 

European: TPV = 99.94%,  

              FDR = 0.11%;  

Het. Pop.**: TPV = 100%, 

                FDR = 0.15%   

European: TPV = 99.93%,  

              FDR = 0.07%;  

Het. Pop.: TPV = 100%,  

           FDR = 0%   

Security  

Summary statistics: fixed N-to-1 

mapping between the value before and 

after encryption 

HE: random mapping between the 

value before and after encryption 

Computation time*** 25h 300h 

Communication 

overhead*** 
6MB from A to B 

324GB from A to B;  

1621GB from B to A 

Performance in 

heterogeneous 

population 

Not robust, need to select variants with 

consistent AF across different 

populations 

Robust 

* Relationship inferred using 5000 variants 

** Using selected 5000 variants based on AF 

*** For 10000 vs. 10000 comparisons with 500 variants   

 

 

5.2 Limitations and future work 

One promising extension of the method in Chapter II is to deal with the misclassification 

between different cases and between cases and controls at the same time. For instance, it is very 

likely that T1D and T2D phenotypes are mixed in EHR because their ICD-9 code are quite 

similar (250.01, 250.03, 250.05, …, 250.93 for T1D and 250.00, 250.02, …, 250.92 for T2D) 

(Kho et al., 2011; Richesson et al., 2013). Other than considering additional information like 
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diagnostic lab tests to distinguish them, we can use a similar idea as what we proposed in 

Chapter II: examining genotype information of disease-associated variants.  We can extend our 

model by incorporating another misclassification rate parameter that quantifies the 

misclassification between these two cases. Future development of methods dealing with 

misclassification between cases like T1D and T2D using genotype information will bring about 

more powerful and reliable genetic research using EHR data. 

As discussed in Chapter II, our model is based on the assumption that the external GWAS is the 

gold-standard for the EHR GWAS. In other words, when the EHR and external GWAS have 

different underlying disease liability thresholds to dichotomize case/controls, those discrepancies 

due to the different threshold are also treated as a misclassification in our model. Taking 

psoriasis as an example, the GWAS of the purpose-built cohorts with dermatologist-diagnosed 

phenotypes usually only dichotomize the severe plaque type psoriasis as the case while the EHR 

GWAS treats patient with all kinds of psoriasis  (Tsoi et al., 2017). Those differences are 

interpreted as misclassification in our model and cannot be separated from the true control-to-

case misclassification. A method that can distinguish these two kinds of misclassification will be 

a promising future direction. It can benefit the interpretation of the results and help researchers to 

trace the source of misclassification.  

Moreover, since the primary goal of Chapter II is to get accurate estimation of misclassification 

rate, we do not focus on the inference of the estimate. The mixed chi-square does not calibrate 

the likelihood ratio test statistic well under certain scenarios. A nonparametric bootstrap test has 

been shown in some research to have better performance than the asymptotic likelihood ratio test 

for testing parameters on the boundary (Cavaliere et al., 2017). In the future, we may consider 
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using this technique to control the inflated type I error and improve the inference of the 

misclassification rate. 

For the two relationship inference protocols in Chapters III and IV, we did not evaluate their 

performance of identifying relatives of higher degrees, since our ultimate objective in this 

dissertation is to find the overlapping samples between studies. The methods, in the future, can 

be extended to infer any degree of relatives so that they can deal with a more general problem. 

Inspired by the method proposed by Epstein in 2000, we can build the likelihood-based protocol 

based on the hidden Markov model (HMM) considering the recombination probability between 

variants so that more precise relationships can be inferred. In addition, the single-nucleotide 

polymorphism microarray and the whole-genome sequencing enable more accurate detection of 

IBD segments and more precise resolution of IBD segment boundaries. Thus, multiple methods 

taking advantage of local IBD segment data have increased the range of detectable relationships 

up to 8
th

 degree (Huff et al., 2011; Li et al., 2014). By developing an encryption method for 

variants with higher density, we may achieve the goal of securely identifying higher degree 

relatives.    

In order to infer higher degree relatives, more variants should be examined. The demand of 

incorporating more variants into the model generates another critical future direction of our 

protocols, improving computational efficacy. Sample sizes of recent research are exploding. For 

example, both the latest TOPMed and gnomAD freeze each have more than 100k samples and 

the UK Biobank, as described before, contains around 500k samples (Bycroft et al., 2018). As 

datasets continue to increase in size, we have to guarantee that our protocol is computationally 

feasible to deal with large-scale data. This can be overcome by taking advantage of the up-to-
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date development of cryptography techniques, such as implementing more efficient 

homomorphic encryption techniques (Wang et al., 2018). 

Last but not least, the protocol based on homomorphic encryption requires excessive 

communication bandwidth for large-scale studies. Both the degree of the polynomial and the 

coefficients are quite large and random for homomorphic encrypted ciphertext. As a 

consequence, an efficient way to store the ciphertext has been hard to develop. That is why there 

has not been much research in this area, even though this problem of homomorphic encryption is 

very common in real life settings. One potential solution is to hybrid homomorphic encryption 

with other encryption techniques that have much smaller ciphertext size, for example Advanced 

Encryption Standard (AES). The idea of the hybrid is that one study encrypts the data with AES 

rather than homomorphic encryption and then encrypts the AES key using homomorphic 

encryption, which means that calculation on the other side can be conducted by first decrypting 

the data from AES with encrypted AES key. Some studies have demonstrated that this strategy 

can solve certain kinds of practical problems in homomorphic encryption (Naehrig et al. 2011; 

Olumide et al. 2015; Alkady et al. 2018). We would like to address this important issue in the 

future by leveraging the knowledge accumulated through the development of this dissertation. 

5.3 Closing remarks 

Over the last decade, electronic health records have proved instrumental to unraveling the 

genetic complexities of disease risks. In particular, EHR-based GWAS and PheWAS are 

increasingly being used for locus replication as well as discovery of novel variants associated 

with complex diseases. The sequencing data being linked to EHR, in addition, expands the usage 

of EHR and helps with the functional interpretation of disease causing variants. One key 

advantage of using EHR is to boost study power by increasing the sample sizes of the association 
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study at low cost. However, challenges like misclassification in the phenotype as well as the 

concern of security when sharing data between studies need to be addressed.   

Based upon this concept, by combining interdisciplinary knowledge of statistics, computer 

science, biology and medical science, my thesis first proposes a method to measure the 

misclassification in EHR-based GWAS and PheWAS analysis in order to reduce the bias in the 

search for disease-genetic associations and enhances the power of the analysis of the genomic 

basis of human disease. Then privacy preserving protocols are proposed to securely infer 

overlapping samples studies. It enables the accurate aggregation of information between studies, 

which not only can make the functional interpretation of putative disease-causing variants more 

precise but also can help avoiding spurious association results in meta-analysis. The continued 

expansion of GWAS, and its integration with the molecular functional interpretation, will be a 

critical asset for the study of gene coding and regulatory mechanisms and how they contribute to 

complex diseases. The subsequent downstream analysis that identifies biological pathways will 

provide information of suitable targets for drug development and repositioning of known 

therapeutics. Continuing steps toward filling the knowledge gap between genetics and disease 

will bring us closer to elucidating disease etiology and contribute to the development of 

preventive and improved treatment strategies. 
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