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To my grandmother Nazaré (in memory) and my aunt Marielena: thank you so

much for opening the doors of your house and your hearts in different phases of my

life, for all your essential encouragement and support!

A very special thank you to the awesome friends I made here in the past and

current A2SRL lab. Pardon for not citing names; I am afraid to forget someone, as

the list is extensive. But I need to say I am so grateful to have met you guys and

my stay here was so much better because of you. Thank you for the unforgettable

moments we shared and for your valuable friendship.

Finally, I would like to thank the Department of Aerospace Engineering and the

Conselho Nacional de Pesquisa (CNPq) for their financial support.

iii



TABLE OF CONTENTS

Dedication ii

Acknowledgments iii

List of Figures viii

List of Tables xii

List of Appendices xiv

Abstract xv

Chapter

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Propeller-Airframe Interaction for Rigid Configurations . . . . 3
1.2.1.1 Propeller-Wing Interaction . . . . . . . . . . . . . . 3
1.2.1.2 Distributed Propulsion Concepts . . . . . . . . . . . 6
1.2.1.3 Propeller-Aircraft Interaction . . . . . . . . . . . . . 7

1.2.2 Propeller-Airframe Interaction for Flexible Configurations . . 8
1.2.3 Propeller Influence on Flight Dynamics Stability . . . . . . . . 10
1.2.4 Propeller Influence on Aeroelastic Stability . . . . . . . . . . . 12
1.2.5 Traditional Simplified Propeller Aerodynamics . . . . . . . . . 14
1.2.6 Propeller Modeling on Aeroelastic Frameworks for VFA . . . . 16
1.2.7 Summary and Main Conclusions . . . . . . . . . . . . . . . . . 17

1.3 Dissertation Objectives and Outline . . . . . . . . . . . . . . . . . . . 18
1.3.1 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . 19

2 Coupled Nonlinear Aeroelastic-Flight Dynamics Framework with
Propellers 21
2.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 UM/NAST Framework . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Enhancements to Include Propeller Effects . . . . . . . . . . . 25

2.2 Lifting Surfaces Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Vortex Lattice vs. Strip Theory . . . . . . . . . . . . . . . . . 27

iv



2.2.2 Vortex Lattice Method Formulation . . . . . . . . . . . . . . . 29
2.2.2.1 Main Assumptions and Basic Equations . . . . . . . 30
2.2.2.2 Discretization in Vortex Elements and Solution Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2.3 Aerodynamic Loads Calculation . . . . . . . . . . . . 35
2.2.2.4 Wake Modeling . . . . . . . . . . . . . . . . . . . . . 37
2.2.2.5 Viscous Drag Estimation . . . . . . . . . . . . . . . . 39

2.3 Propeller-Blade Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Propeller Blade vs. Lifting Surface Aerodynamics . . . . . . . 39
2.3.2 Lifting Line Formulation . . . . . . . . . . . . . . . . . . . . . 41

2.4 Propeller Wake Aerodynamics . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Viscous Vortex Particle Fundamentals . . . . . . . . . . . . . 46

2.4.1.1 Basic Equation and Assumptions . . . . . . . . . . . 47
2.4.1.2 Vorticity Field Discretization . . . . . . . . . . . . . 47
2.4.1.3 Combining VVPM with Potential Methods . . . . . 49

2.4.2 Singular Particle Representation . . . . . . . . . . . . . . . . . 50
2.4.3 Regularized Particle Representation . . . . . . . . . . . . . . . 51

2.4.3.1 Regularization Functions . . . . . . . . . . . . . . . . 52
2.4.3.2 Regularized Velocity Field . . . . . . . . . . . . . . . 53
2.4.3.3 Overlap Criteria . . . . . . . . . . . . . . . . . . . . 55

2.4.4 Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.4.1 Vortex Stretching Effect . . . . . . . . . . . . . . . . 60
2.4.4.2 Viscous Diffusion Effect . . . . . . . . . . . . . . . . 61

2.4.5 Generating New Particles . . . . . . . . . . . . . . . . . . . . 63
2.4.6 Particle Refinement . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.7 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Propeller Inertial Effects . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5.1 Propeller Inertial Forces . . . . . . . . . . . . . . . . . . . . . 68
2.5.2 Propeller Inertial Moments . . . . . . . . . . . . . . . . . . . . 70
2.5.3 Contribution due to Rotating Masses around the Hub . . . . . 71
2.5.4 Blade Representation with Discrete Masses . . . . . . . . . . . 72
2.5.5 Extending UM/NAST Formulation . . . . . . . . . . . . . . . 73

2.6 Interfacing Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.6.1 Interfacing Structure and Aerodynamics . . . . . . . . . . . . 73
2.6.2 Interfacing Lifting Surfaces and Propeller Aerodynamics . . . 75

3 Numerical Implementation 77
3.1 Numerical Framework Evolution . . . . . . . . . . . . . . . . . . . . . 77
3.2 Integration with UM/NAST 4.0 . . . . . . . . . . . . . . . . . . . . . 79
3.3 New C++ Developments . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Steady/Unsteady Vortex Lattice Library . . . . . . . . . . . . 81
3.3.1.1 Architecture Overview . . . . . . . . . . . . . . . . . 81
3.3.1.2 Initialization Functions . . . . . . . . . . . . . . . . . 84
3.3.1.3 Steady Vortex Lattice Solver . . . . . . . . . . . . . 86
3.3.1.4 Unsteady Vortex Lattice Solver . . . . . . . . . . . . 89

v



3.3.1.5 Steady Vortex Lattice Solver with Propeller . . . . . 91
3.3.1.6 Additional Public Functions . . . . . . . . . . . . . . 93

3.3.2 Lifting Line + Viscous Vortex Particle Propeller Library . . . 94
3.3.2.1 Architecture Overview . . . . . . . . . . . . . . . . . 94
3.3.2.2 Initialization Functions . . . . . . . . . . . . . . . . . 97
3.3.2.3 Propeller Solver . . . . . . . . . . . . . . . . . . . . . 97
3.3.2.4 Additional Public Functions . . . . . . . . . . . . . . 102

3.3.3 Gyroscopic Loads Function . . . . . . . . . . . . . . . . . . . . 103
3.3.4 Propeller and Lifting Surfaces Aerodynamics Interface Library 105

3.3.4.1 Architecture Overview . . . . . . . . . . . . . . . . . 106
3.3.4.2 Propeller and Lifting Surface Interface Workflow . . 108

3.3.5 Interface Class UM/NAST and Vortex Lattice . . . . . . . . . 110
3.3.5.1 Architecture Overview . . . . . . . . . . . . . . . . . 111
3.3.5.2 Initialization Functions . . . . . . . . . . . . . . . . . 112
3.3.5.3 UM/NAST and Vortex Lattice Interface Workflow . 112

4 Stability Analysis of VFA Including Propellers 115
4.1 Alternative Approach to Extract Dynamic Information . . . . . . . . 117

4.1.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . 117
4.1.2 System Identification . . . . . . . . . . . . . . . . . . . . . . . 119
4.1.3 Combining POD and Sys ID for Stability Analysis . . . . . . . 121

4.2 Verification of the Method . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Coupled Nonlinear Aeroelastic-Flight Dynamics Framework Veri-
fication 128
5.1 Integration of UM/NAST and Vortex Lattice . . . . . . . . . . . . . . 128

5.1.1 16-m Wing Comparisons . . . . . . . . . . . . . . . . . . . . . 128
5.1.1.1 16-m Wing Model . . . . . . . . . . . . . . . . . . . 128
5.1.1.2 16-m Wing Static Comparisons . . . . . . . . . . . . 129

5.1.2 X-HALE Comparisons . . . . . . . . . . . . . . . . . . . . . . 131
5.1.2.1 X-HALE Model . . . . . . . . . . . . . . . . . . . . . 131
5.1.2.2 X-HALE Static Results . . . . . . . . . . . . . . . . 132
5.1.2.3 X-HALE Dynamic Results . . . . . . . . . . . . . . . 135

5.2 Propeller Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3 Propeller-Wing Interaction . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Gyroscopic Loads Modeling . . . . . . . . . . . . . . . . . . . . . . . 144

6 Propeller Effects on HALE Aircraft 148
6.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.1 Aeroelastic Models . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.2 Propeller Parameters . . . . . . . . . . . . . . . . . . . . . . . 150
6.1.3 Pre-setting Parameters for the Aeroelastic Simulations . . . . 153

6.1.3.1 Static and Clamped Cases . . . . . . . . . . . . . . . 154
6.1.3.2 Free-Flight Simulations . . . . . . . . . . . . . . . . 155

6.2 Aeroelastic Static Response . . . . . . . . . . . . . . . . . . . . . . . 156

vi



6.2.1 Isolated X-HALE Wing . . . . . . . . . . . . . . . . . . . . . . 157
6.2.2 Complete X-HALE . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3 Aeroelastic Transient Response . . . . . . . . . . . . . . . . . . . . . 163
6.3.1 Clamped Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.2 Free-flight Case . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Propeller Effects on HALE Aircraft Stability . . . . . . . . . . . . . . 170
6.4.1 Propeller Complete Modeling vs. Thrust Only . . . . . . . . . 170
6.4.2 Influence of Increasing Propeller RPM . . . . . . . . . . . . . 172
6.4.3 Contribution of Different Propeller Effect Components . . . . 173
6.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7 Conclusions and Recommendations 179
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 184

Bibliography 186

Appendices 201

vii



LIST OF FIGURES

Figures

1.1 Examples of HALE aircraft: Pathfinder (AeroVironment), Zephyr (Air-
bus), Aquila (Facebook), Helios (AeroVironment) and X-HALE (Uni-
versity of Michigan). Propellers are usually a propulsion choice for
such light and low speed configurations . . . . . . . . . . . . . . . . . 2

1.2 Summary of propeller loads transmitted to aircraft . . . . . . . . . . 3

2.1 Basic UM/NAST reference frames . . . . . . . . . . . . . . . . . . . . 23
2.2 Enhanced coupled aeroelastic-flight dynamics framework with propeller

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 vortex-ring placement over a lifting surface and its wake . . . . . . . 33
2.4 Influence of a straight vortex segment at a generic point P . . . . . . 34
2.5 Blade representation using Lifting Line method . . . . . . . . . . . . 41
2.6 Frontal view of two adjacent propeller wakes, illustrating capability of

VVPM to model complex interaction phenomena, like wake mixing . 48
2.7 Vorticity representation for singular versus regularized particles . . . 52
2.8 Vorticity representation for singular versus regularized particles . . . 55
2.9 Overlap Criteria: σ/h > 1. . . . . . . . . . . . . . . . . . . . . . . . . 56
2.10 Representation of various reference systems used on modeling blade

inertial effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.11 Interface between structural and aerodynamic solvers . . . . . . . . . 74
2.12 uVLM and propeller model integration approach . . . . . . . . . . . . 76

3.1 Overview integration UVLM/propeller module and UM/NAST 4.0 . . 79
3.2 Overview of integrated UM/NAST and UVLM/Propeller module . . 80
3.3 Vortex Lattice library architecture overview . . . . . . . . . . . . . . 82
3.4 Flowchart illustrating Vortex Lattice solver Initialization . . . . . . . 85
3.5 Flowchart illustrating steady Vortex Lattice solver . . . . . . . . . . . 87
3.6 Flowchart illustrating unsteady Vortex Lattice solver . . . . . . . . . 90
3.7 Flowchart illustrating steady Vortex Lattice solver with propeller . . 92
3.8 Lifting Line plus Viscous Vortex Particle Propeller library architecture

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.9 Flowchart illustrating propeller initialization function . . . . . . . . . 98
3.10 Flowchart illustrating VVPM propeller solver . . . . . . . . . . . . . 99
3.11 Flowchart illustrating function that calculates gyroscopic moment . . 104

viii



3.12 Basic idea of a general aerodynamic interface between propellers and
lifting surfaces aerodynamics . . . . . . . . . . . . . . . . . . . . . . . 106

3.13 Propeller and lifting surfaces interface architecture overview . . . . . 107
3.14 Flowchart illustrating interface between lifting surfaces and propeller

aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.15 Interface class UM/NAST and Vortex Lattice architecture overview . 111
3.16 Flowchart illustrating initialization interface between UM/NAST and

Vortex Lattice solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.17 Flowchart illustrating initialization interface between UM/NAST and

Vortex Lattice solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1 POD + Sys ID workflow . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Comparison of mode shapes and natural frequencies for the X-HALE

UAS vehicle about its undeformed configuration . . . . . . . . . . . . 126

5.1 Vortex Lattice representation of the 16-m wing model . . . . . . . . . 129
5.2 Comparison of aeroelastic static results for 16m wing . . . . . . . . . 130
5.3 6-m span X-HALE vehicle in flight . . . . . . . . . . . . . . . . . . . 131
5.4 Undeformed panel model with propellers for the X-HALE UAS vehicle

(units: meters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 Comparison for aeroelastic cases with angle of attack 0, 3 and 5 at

v = 14 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.6 Comparison for clamped X-HALE model under 1-cos gust with differ-

ent lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Comparison between UM/NAST and DLR toolbox for tails maneuver

with frequency of 0.25 Hz and amplitude of 2 degrees (applied during
one cycle only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.8 Comparison between UM/NAST and IC/SHARPy for free-flight sim-
ulation of 1 - gust with maximum velocity of 2.1 m/s and length of 15
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.9 Axial profile velocity at a distance of one radius behind the isolated
propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.10 Axial profile velocity at a distance of one radius behind the isolated
propeller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.11 Comparison of propeller thrust and power coefficients . . . . . . . . . 142
5.12 Circumferential distribution of velocity components at a distance of

one radius from propeller plane and at a radial position of r/R = 0.93
(CT = 0.14 and CP = 0.30). . . . . . . . . . . . . . . . . . . . . . . . 143

5.13 Wing-propeller verification. . . . . . . . . . . . . . . . . . . . . . . . 144
5.14 Global lift coefficient versus angle of attack . . . . . . . . . . . . . . . 145
5.15 Pitching wing with rotating propeller represented by a rigid, massless

rod, with concentrated masses on its ends . . . . . . . . . . . . . . . 145
5.16 Comparison of analytical and numerical calculation of gyroscopic moment147

ix



6.1 View of deformed X-HALE with particles shed up to the cut-off dis-
tance. The propellers on the right wing rotate at opposite orientation
as those on left wing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Parametric study varying (a) time step and (b) blade discretization . 151
6.3 Profiles of axial and vertical velocities at one radius behind the two-

bladed propeller (clockwise or counterclockwise directions are defined
with relation to one looking from behind the propeller). . . . . . . . . 153

6.4 Clamped isolated wing at v = 14 m/s and AoA = 2 degrees . . . . . 157
6.5 Wing of the clamped X-HALE vehicle at v = 14 m/s and AoA = 2

degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.6 Twist distribution along the right wing of clamped X-HALE vehicle at

v = 14 m/s and AoA = 2 degrees . . . . . . . . . . . . . . . . . . . . 161
6.7 Lift distribution for the inboard and outboard tails of the clamped

X-HALE vehicle at v = 14 m/s and AoA = 2 degrees . . . . . . . . . 162
6.8 Response to a continuous sinusoidal tip bending moment signal of am-

plitude 35 Nm and frequency 0.59 Hz at v = 14 m/s and AoA = 2
degrees (clamped model) . . . . . . . . . . . . . . . . . . . . . . . . 164

6.9 Response to a tail step excitation of amplitude 15 degrees at v = 14
m/s and AoA = 2 degrees (clamped model) . . . . . . . . . . . . . . 165

6.10 Wing tip response response to sinusoidal vertical tip bending moment
excitation of amplitude 35 Nm and frequency 0.59 Hz, for free-flight
X-HALE vehicle trimmed at v = 14 m/s. . . . . . . . . . . . . . . . . 166

6.11 Free-flight response to sinusoidal vertical tip bending moment excita-
tion of amplitude 35 Nm and frequency 0.59 Hz, for X-HALE vehicle
trimmed at v = 14 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.12 Wing tip response to a continuous sinusoidal tail excitation of 15 de-
grees and frequency 2.6 Hz, for free-flight X-HALE vehicle trimmed at
v = 14 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.13 Free-flight response to a continuous sinusoidal tail excitation of 15 de-
grees and frequency 2.6 Hz, for X-HALE vehicle trimmed at v = 14
m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.14 Frequencies and dampings at speeds of v = 12.5, v = 13.0 and v = 13.5
m/s extracted from response after perturbation with step loads of 5 N
in vertical and chordwise directions and 1 Nm in torsion (6000 RPM) 173

6.15 Response after perturbation with step loads of 5 N in vertical and
chordwise direction and 1 Nm in torsion (6000 RPM), at speeds v =
12.5, v = 13.0 and v = 13.5 m/s . . . . . . . . . . . . . . . . . . . . . 174

6.16 Wing tip response after perturbation with step loads of 5 N in verti-
cal and chordwise direction and 1 Nm in torsion, including propeller
aerodynamics and gyroscopic effects . . . . . . . . . . . . . . . . . . . 175

6.17 Frequencies, dampings, and response after perturbation with step loads
of 5 N in vertical and chordwise direction and 1 Nm in torsion (7000
RPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1 Vortex Lattice representation of the 16-m wing model (units: meters) 202

x



B.1 Nomenclature followed in the tables describing X-HALE properties [1] 206

C.1 Pitching wing with rotating propeller represented by a rigid, massless
rod, with concentrated masses on its ends . . . . . . . . . . . . . . . 209

xi



LIST OF TABLES

Tables

1.1 Classical Aerodynamic Approaches for Propeller Blades Modelling . . 15
1.2 Classical Aerodynamic Approaches for Propeller Slipstream . . . . . . 16

3.1 Inputs defined in Vortex Lattice XML input file . . . . . . . . . . . . 83
3.2 Inputs defined in propeller XML input file . . . . . . . . . . . . . . . 96

4.1 Comparison of natural frequencies for purely structural case . . . . . 125

5.1 Aerodynamic and structural discretization used in UM/NAST . . . . 134
5.2 Trim results for cruise flight . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 Aerodynamic and structural discretization used in UM/NAST . . . . 136
5.4 Aerodynamic and structural discretization used in UM/NAST . . . . 136
5.5 Three-bladed propeller parameters . . . . . . . . . . . . . . . . . . . 140
5.6 Propeller parameters used for comparison with experiment of Sundar

[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7 Parameters used for the verification of gyroscopic moment . . . . . . 146

6.1 Aerodynamic and structural discretization used in UM/NAST . . . . 149
6.2 Two-bladed APC 11X5.5E propeller parameters . . . . . . . . . . . . 152
6.3 Parameters used for clamped cases . . . . . . . . . . . . . . . . . . . 155
6.4 Straight-level flight trim parameters for X-HALE at v = 14 m/s (with-

out propeller effects other than thrust) . . . . . . . . . . . . . . . . . 156
6.5 Additional forces at the origin of the body frame for initial equilibrium

in free-flight case with propellers . . . . . . . . . . . . . . . . . . . . . 156
6.6 Comparison of cL and cD for the clamped isolated wing at v = 14 m/s

and AoA = 2 degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.7 Comparison of cL and cD for the complete clamped X-HALE vehicle

at v = 14 m/s and AoA = 2 degrees . . . . . . . . . . . . . . . . . . . 160
6.8 Comparison of cL for the inboard and outboard tails of the complete

clamped X-HALE vehicle at v = 14 m/s and AoA = 2 degrees . . . . 161

A.1 Stiffness data for 16-m wing model. Values are for the mid node of
each element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.2 Distributed mass of the 16-m wing model. Values of inertia are for the
starting and ending node of each element. . . . . . . . . . . . . . . . 204

xii



A.3 Lumped mass data. Masses are located on the position of the indicated
structural nodes (model has 32 elements with 3 nodes each, totalizing
65 structural nodes. Node 0 is at the root). . . . . . . . . . . . . . . . 205

A.4 16-m wing aerodynamic model description. . . . . . . . . . . . . . . . 205

B.1 Stiffness data for X-HALE model. . . . . . . . . . . . . . . . . . . . . 207
B.2 Distributed mass of the X-HALE model. Member abbreviations are

defined in Figure B.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
B.3 Lumped mass data. Relative positions are given with respect to the

pod/wing spar intersection node. Frame of reference: x right wing, y
upstream, z up. Member abbreviations are defined in Figure B.1. . . 208

B.4 X-HALE aerodynamic model description. . . . . . . . . . . . . . . . . 208

C.1 Parameters used for the verification of gyroscopic moment . . . . . . 210

xiii



LIST OF APPENDICES

A . Properties of 16-m Wing 202

B . Properties of X-HALE Model Used in This Dissertation 206

C . Analytical Example for Gyroscopic Loads Verification 209

xiv



ABSTRACT

High Altitude Long Endurance aircraft are unmanned air vehicles with the capa-

bility of performing long-duration flights and can be used in many applications, such

as communication and data relay, Earth observation, etc. To achieve their higher

aerodynamic performance, HALE aircraft are typically high-aspect-ratio configura-

tions, resulting in a very flexible structure. Moreover, the typical low cruise speeds

often require a propeller-engine combination for propulsion.

Although many studies have been done in propeller-wing interaction, propeller

effects on very flexible aircraft (VFA) have not received any attention. State-of-the-

art nonlinear aeroelastic frameworks lack complete propeller modeling and, instead,

use concentrated forces to model its thrust.

This work aims to fill this gap by incorporating propeller aerodynamics and iner-

tial effects into a coupled nonlinear aeroelastic-flight dynamics framework. For that,

the University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST)

is enhanced with an Unsteady Vortex Lattice for the lifting surfaces and a Lifting

Line and Viscous Vortex Particle (LL/VVPM) methods to model the propeller aero-

dynamics. Furthermore, inertia effects associated with the rotating rigid blades are

also incorporated.

Verification tests are performed for each of the new components added to the

enhanced framework. Results for static and dynamic aeroelastic analysis with the

coupled UM/NAST and Vortex Lattice model, isolated propeller, propeller-wing in-

teraction, and the gyroscopic loads calculation are compared with results from other

codes or published numerical and experimental data available in the literature.
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Additionally, an approach based on system identification and proper orthogonal

decomposition is introduced and verified for the stability analysis of VFA with pro-

pellers based on a time-series signal. The method is successfully verified against

UM/NAST modal analysis for a purely structural case.

Based on the new developments, investigation of propeller effects on the aeroelastic

response and stability of a VFA is presented and discussed. The results showed that

the presence of propellers can influence the aeroelastic static and dynamic response of

a VFA, as well as modify the aeroelastic modes and affect the flutter onset. Therefore,

the additional propeller effects (besides just the incorporation of thrust) should be

included in aeroelastic simulations.

Although focused on very flexible aircraft applications, it should be noted that the

new enhanced framework can also be used to analyze new propeller-driven aircraft

concepts such as the ones being proposed for Urban Air Mobility and distributed

propulsion configurations.
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CHAPTER 1

Introduction

The first chapter of this dissertation provides an introduction into the propeller-

airframe interaction and how it has been modeled. First, motivation is provided

in Section 1.1. Then, a literature review of selected topics relevant to this work is

presented in Section 1.2, followed by a summary of the main conclusions. Finally, in

Section 1.3, the dissertation objectives and a brief description of its organization are

presented.

1.1 Motivation

In recent decades a new concept of aircraft has received increased attention due

to its low energy consumption and promising applications: High-Altitude Long En-

durance (HALE) aircraft. HALE aircraft is a class of unmanned air vehicle (UAV)

with the capability of performing long-duration flights an can be used in satellite-like

applications, for telecommunication and Earth observation.

In order to achieve their higher aerodynamic performance, HALE aircraft have

high-aspect-ratio configurations and lightweight structures, reducing energy consump-

tion. Therefore, they result in very flexible structural configurations characterized by

large displacements. Such displacements cause a strong coupling between structural,

aerodynamics, and flight dynamics and result in nonlinear behavior. For such very
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flexible configurations, conventional approaches for linear aeroelasticity are no longer

applicable.

1

Pathfinder

(AeroVironment)
X-HALE 

(University of 

Michigan)

Zephyr

(Airbus)
Aquila 

(Facebook)
Helios 

(AeroVironment)

Figure 1.1: Examples of HALE aircraft: Pathfinder (AeroVironment), Zephyr (Air-
bus), Aquila (Facebook), Helios (AeroVironment) and X-HALE (University of Michi-
gan). Propellers are usually a propulsion choice for such light and low speed config-
urations

Due to its high-efficiency goals and typical low cruise flight speeds, a propeller-

engine combination is usually the propulsive solution of choice, as in the HALE air-

craft illustrated in Figure 1.1. The presence of propellers results in different kinds of

loads to an aircraft, as summarized in Figure 1.2:

i) aerodynamics loads, comprising of the resultant loads acting on the propeller

hub (thrust, side and normal forces, torque, and yaw/pitching moments due

to asymmetric blade loading, known as P-factor) and the influence of propeller

slipstream on lift distribution of surfaces behind the propeller, and;

ii) inertial loads, which include the inertial effects due to propeller CG acceleration

and the gyroscopic moments due to the variation of blades angular momentum

when the aircraft performs a yaw or pitch motion.
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LOADS 
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Figure 1.2: Summary of propeller loads transmitted to aircraft

Despite the different loads contribution the propellers add, usually only thrust is

incorporated in aeroelastic simulations of HALE aircraft, modeled as a point load,

as in Jones and Cesnik [3], Ritter et al. [4], Hodges et al. [5], Shearer and Cesnik [6]

and Changchuan et al. [7] and little has been investigated about the influence of the

different propeller effects in the aeroelastic response and stability of such vehicles.

1.2 Literature Review

1.2.1 Propeller-Airframe Interaction for Rigid Configurations

1.2.1.1 Propeller-Wing Interaction

There are several studies that have considered propeller-wing interference for non-

flexible wings. Early investigations on this topic started with the work of Prandtl [8].

Based on experiments exploring different relative positions between propeller and

wing, Prandtl has identified two main kinds of propeller influences on the wing: an

increase in the air velocity magnitude and a change of the velocity direction. Also,
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he noticed that the presence of a lifting surface influences the propeller, increasing or

reducing thrust, depending on their relative position.

Other studies have also investigated the beneficial or detrimental outcomes of

propeller-wing interaction and how different parameters, like geometry and the rel-

ative position between wing/propeller, determine the net effects. In Witkowski et

al. [9] experimental and numerical investigations were performed focusing on the

time-averaged performance of the propeller-wing combination in a tractor configura-

tion. The results for an untapered, semispan wing and a Purdue 2-bladed propeller

model indicated that the influence of the propeller can increase significantly the wing

performance, causing drag reduction and lift augmentation. The numerical methods

employed, a semi-empirical approach and a Vortex Lattice method (VLM) for both

wing and propeller, showed a good ability to calculate performance trends, with more

accurate results when using VLM.

Miranda and Brennan [10] studied how wing-tip-mounted propellers influence the

wing performance. Using an analytical approach based on lifting line theory for wing

and vorticity tube model to represent the propeller slipstream effects, it was identified

that the wing-tip propeller can provide benefits in two ways: reducing the induced

drag, for a propeller mounted in front of the wing (tractor configuration), or by

increasing propeller propulsive efficiency when it is located behind the wing (pusher

configuration). In both ways, the power necessary for a given flight condition is

decreased. Also, it was observed that the direction of the propeller rotation determines

if the interaction with the wing vortical structure is beneficial or detrimental. A

performance benefit was achieved if the rotation of the wing-tip-mounted propeller is

in opposite orientation to the vortices of the wing tip.

Kroo [11] used a generalized version of Munk’s stagger theorem to assess propeller-

wing combinations in inviscid incompressible flow. The lift distribution for maximum

overall efficiency was found to be significantly different from elliptical loading. Also,
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due to swirl recovery caused by the presence of the wing, increments in net propeller

efficiency were observed. This influence of wing on propeller performance was also

studied by Marreta [12]. Using a free-wake analysis (FWA) approach for the propeller

and Prandtl theory for the wing, different wing planforms with a propeller located

in front were analyzed. The results showed a sensitivity of propeller thrust, power,

and efficiency to the inflow condition, blade pitch, and wing planform. For example,

an increase in angle of attack was found to cause an increase in thrust and power

coefficient, with higher variations for a straight wing than for an elliptical one.

A comprehensive study considering the influence of propeller location on the wing

aerodynamic performance is presented by Veldhuis [13]. For that, experimental inves-

tigation and also different numerical modeling approaches for propeller-wing aerody-

namics were employed: empirical momentum theory, Vortex Lattice method coupled

with blade-element propeller model, panel method (PM) with a slipstream envelope

model, and RANS simulations. A swirl recovery factor (SRF) was considered for the

VLM method to consider the reduction of the propeller slipstream velocity due to

the presence of the wing. Also, the influence of both the propeller on the wing and

the wing on the propeller were considered. This coupling was usually neglected by

previous studies. Among the conclusions, it was noticed that propeller inboard-up

rotation is beneficial to increase lift/drag ratio, especially when close to the wing tip.

A negative propeller inclination with relation to the wing smaller than 15 degrees

and high positioned propellers were also proved to be beneficial, although there is an

increase in drag for the latter case.

Ananda et al. [14] studied the influence of wing aspect ratio on the propeller-wing

problem motived by some discrepancies found in previous work in the literature.

Based on the experimental investigation of rectangular flat-plate wings with differ-

ent aspect ratios and at different flow conditions, it was observed a significant stall

delay and maximum lift increase due to the induced effects of the propellers. Those
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improvements were found to be related to propeller diameter over wing span ratio.

In Mishra et al. [15] a study is presented comparing RANS-based computational

fluid dynamics and a low fidelity model based on panel method for wings and an

adaptation of extended blade element theory. The latter needs some parameter cali-

bration that can be conducted based on CFD or experimental results. Comparisons

for wing-vortex interaction on an isolated propeller and on a wing-mounted propeller

showed good qualitative agreement, although some quantitative discrepancies were

found with CFD and experimental data.

In Calabretta [16], a combination of PM for the airframe and actuator disk (a

pseudo-steady model) and Vortex Particle to model the propeller and the propeller

wake was implemented and proposed for early design optimizations. Singh and Fried-

mann [17,18], Thepvongs et al. [19], and He and Zhao [20] also employed Viscous Vor-

tex Particles associated to some other model for the blades to model rotorcraft blades

and/or propellers dynamics. As commented in Willis [21] and He and Zhao [20], some

of the advantages of Viscous Vortex Particles are their formulation in Lagrangian ap-

proach (no need of grid), the possibility to model wake diffusion without problems

with numerical dissipation, and a more natural development of the wake, avoiding

singularities due to intersections between wake and lifting surfaces.

1.2.1.2 Distributed Propulsion Concepts

Based on the potential improvements identified in previous studies on propeller-

wing interaction, recent ones have also investigated the use of distributed electric-

driven propellers for the improvement of wing performance, as in Borer et al. [22],

Borer and Moore [23], Ortun [24], and Fisher and Ortun [25].

In Borer et al. [22] a methodology was developed and used to explore the de-

sign space of a fixed-pitch propeller, focusing on lift augmentation and the ability

to produce significant thrust at takeoff. This methodology was extended by Borer
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and Moore [23], allowing a significant increase in design freedom, and a probabilis-

tic Compromise Ranking approach [26] was used to explore the high-lift propeller

tradespace.

Recently, Ortun [24] developed a methodology to solve the flowfield of wings with

multiple propellers in an intermediate way between low and high fidelity models. For

that, a RANS solution for the airframe was coupled to a lifting line model for the

propeller, whose effects were incorporated in the CFD simulations of the wing by

adding source terms at selected cells inside the volume swept by the rotating blades.

The method was applied in Fisher and Ortun [25] to investigate a wing-tip mounted

propeller and also distributed propeller configurations. Propeller located at leading

edge achieved up to 60% of lift increase and up to 107% for over the wing propellers.

The use of a higher number of propellers showed to result in less power required for

the same condition. Also, counter-rotating propellers were found to be more efficient.

Also recently, Alvarez and Ning [27], investigated the use of viscous vortex particle

method (VVPM) for the interactional aerodynamics in distributed propeller concepts.

They simulated multiple propellers configurations and demonstrated that the VVPM

method is fully able to characterize induced velocities across the entire wake, from

stable region, to instability transition and then unstable region. Propellers/wing

interaction was not investigated.

1.2.1.3 Propeller-Aircraft Interaction

Jamison [28], Chen et al. [29], and He and Rajmohan [30] are examples of studies

considering the effect of propeller in the whole aircraft.

In Jamison [28], flight tests were performed with the E-2C airplane for two dif-

ferent propeller models: Hamilton-Sundstrand model 54460-1 and model NP2000.

The results showed that substituting one propeller by the other, with all other test

conditions kept the same, influences the static longitudinal aircraft stability.
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Using the method of Multiple Reference Frame for the calculation of propeller

effects, Chen et al. [29] studied the slisptream interference of propellers on a rigid

HALE aircraft. The investigation concluded that a higher propeller influence occurs

at taking off, reducing at climbing, and becoming smallest at cruising. The influence

increases with the increase of propeller thrust.

He and Rajmohan [30] studied the mutual interaction between a propeller and

the compound rotorcraft. For that a hybrid method consisting of a CFD applied

at regions near-body was coupled to a Viscous Vortex approch for modeling off-

body wake. Among the conclusions based on the study of a compound rotorcraft, a

reduction of wing lift due to propellers was observed. Also, fuselage blockage on the

rotor wake was found to be significant in low speeds, while fuselage effect on the tail

is less important than those of rotor and wing.

1.2.2 Propeller-Airframe Interaction for Flexible Configura-

tions

Although the problem of propeller-wing interaction itself has been under investi-

gation for some time, as shown above, the same is not true for how the propeller-wing

interaction influences the static and dynamic response and stability of a very flexible

aircraft.

In Jones and Cesnik [3], preliminary experimental results from the X-HALE flight

test were compared with numerical results from the University of Michigan’s Nonlin-

ear Aeroelastic Simulation Toolbox (UM/NAST) framework [6, 31, 32], where thrust

is also modeled as a concentrated follower force. As the results show, some significant

differences were observed (as a soft Dutch-roll-like behavior instead of high ampli-

tudes for roll and pitch predicted by numerical simulations). As pointed out by the

authors, there are many possible explanations for the differences observed, and the

lack of a propeller model may be responsible for some of them.
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Among the works which have considered other propeller effects (besides thrust)

in flexible aircraft one can find the experimental work of Gamble and Reeder [33],

the numerical work of Agostinelli et al. [34], the experimental and numerical work of

Cravana et al. [35], all of them applied for aeroelastic problems in the linear regime.

Gamble and Reeder [33] performed experiments with a flexible wing micro-air-

vehicle and concluded that the relative position between the propeller and the wing

influences yaw and pitch stabilities. In Cravana et al. [35] several configurations of

flexible wing plus engine-propellers were considered in order to investigate the in-

fluence of motor position and spinning propellers on modal frequencies of the wing.

Studies included cases of a clean wing, wing with pods only, and wing with pods plus

spinning propellers (with different numbers of pods/propellers). The study demon-

strated that edge-wise and torsion frequencies are significantly affected by mass/loads

distribution, as well as the number of stores and their spanwise positions.

The study considering propellers used a small radius with a low thrust propeller.

No measurable difference was noticed due to propellers, but as discussed by the

authors, this may be caused due to the small amount of thrust produced by the

propellers. A bending frequency increase was found for configurations of engines

positioned at 20 cm from the wing root. The dynamic seemed to be also conditioned

by the propeller’s thrust, which could possibly cause a coupling effect between torsion

and bending.

Agostinelli et al. [34] proposed a simplified approach for conceptual design using a

pre-determined database (from CFD simulations or experimental results) of sectional

wing aerodynamic coefficients coupled to a blade element theory to model propeller

slipstream and a lifting line approach to propagate the effects along the wing spanwise

direction. A beam finite element model with a linear force-displacement relation was

employed for the structural model. The study focused on the effects of the propeller

on velocity and lift distributions along the wing and the influence on the dynamic
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behavior was not investigated.

1.2.3 Propeller Influence on Flight Dynamics Stability

Early studies associated with the modeling and investigation of propeller effects in

aircraft stability date from the first decades of the twentieth century. In Lanchester

[36], from 1917, a whole appendix is dedicated to notes about the effects of propulsion

on a flying machine. Harris [37] (1918) develops a mathematical formulation for side

forces acting on a propeller as a response to yaw and Glauert [38], [39] (1919 and

1935) extends that formulation to derive other stability derivatives associated with

the propeller.

Following those early investigations, in the work of Katzoff [40] experimental data

obtained on the NACA full-scale wind tunnel for eight different airplane configura-

tions were investigated in terms of the effects of the propeller in longitudinal stability

and control. Among the conclusions, it was noticed that the loss of elevator effective-

ness at high angles of attack can be largely eliminated by the inclusion of propeller.

Also, the rate of increase of effective downwash angle with the angle of attack can

be considerably increased due to the influence of propellers for certain aircraft con-

figurations, as gull-wing and parasol-wing monoplanes. Ribner [41] extended some

previous formulations to determine the side force of propeller due to yaw by incorpo-

rating induction effects and determines an expression for the side forces based on an

analogy with fins, with the effective fin area taken as the lateral projected area of the

propeller plane. It was observed that besides the side force, a single propeller in yaw

also experiences a pitching moment. A dual-rotating propeller develops up to one

third more side force than a single one. Also, the side forces due to angular velocities

of pitch or yaw were found to be negligible for typical angular velocities that can be

realized in maneuvers, with exception of spin.

In Butler et al. the slipstream effects in a v/stol aircraft performance and stabil-
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ity was studied. For that, an analytical investigation was proposed and correlated to

experimental data. Following a performance investigation, a study on the slipstream

influence on stability and control characteristics as well as the feasibility of use slip-

stream for stability augmentation. Preliminary results indicated that slipstream can

be used as a potential solution for improving the dynamic stability of a tilt-wing

aircraft in hovering flight.

Although one century has passed since the early studies, due to the complexity

of the problem and new tools available, the investigation and modeling of propeller

influence on aircraft stability are in continuous progress along recent years. Some

examples of more recent efforts in this topic are the works of Jamison [28], Goraj and

Cichocka [42] and Bouquet [43]. In Jamison [28], flight tests were performed with

the E-2C airplane for two different propeller models, Hamilton-Sundstrand model

54460-1 and model NP2000. The results pointed that substituting one propeller by

the other, with all other test conditions kept the same, influences significantly the

static longitudinal aircraft stability. Goraj and Cichocka [42] studied the influence of

gyroscopic effects on the stability of a light aircraft. Two types of gyroscopic effects

were distinguished: weak gyroscopic effects, corresponding to maneuvers with small

changes in pitch and yaw rates (classical dynamic stability) and strong gyroscopic

effects, corresponding to rapid maneuvers, with substantial pitching and yaw rates.

In this last case, it was found that coupling between lateral and longitudinal degrees

of freedom can be significant, potentially causing loss of control.

The influence of propeller slipstream is investigated in the work of Bouquet [43],

whose focus was developing, implement and validate a prediction method for the

effects of the propeller on longitudinal stability. The implemented method is based

on Obert’s method, which was found to be computationally inexpensive and with

relatively accurate results. It was observed four major effects caused by propeller

slipstream: on the longitudinal stability: an additional normal force at propeller
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disk, the influence of slipstream on the wing, influence in tail-off pitching moment

and change in tail contribution to the pitching moment. In the case of Fokker 50, It

was found a decrease in tail effectiveness due to increase in downwash angle at the

tail with the presence of propellers.

1.2.4 Propeller Influence on Aeroelastic Stability

In the case of very flexible aircraft, previous works like Hodges et al. [5], Feldt

and Herrmann [44] and Quanlong et al. [45] have demonstrated that follower thrust

has an important influence on the aeroelastic stability.

In Hodges et al. [5], the effects of thrust on the bending-torsion flutter of very

flexible wings were investigated. For this purpose, thrust was modeled as a follower

force with a prescribed magnitude. Propeller gyroscopic and slipstream effects were

not included. A nonlinear mixed finite element method was used to the structural

model of the wing, represented by beams, and a finite-state two-dimensional unsteady

aerodynamic approach was used to model wing aerodynamics. Their results suggest

that thrust has either a stabilizing or destabilizing effect depending on the ratio, λ,

of bending stiffness to torsional stiffness. If λ < 5, it was observed that an increase

in thrust, up to a certain value, increases the flutter speed. For λ > 10, thrust

contributes to decrease flutter speed. Differences up to 11% in flutter speed were

observed, pointing to the importance of considering engine thrust influence on wing

flutter of very flexible aircraft. While the thrust as a follower force can be included in

the analysis relatively easily, the lack of propeller aerodynamic and inertial effects on

the free flight of very flexible aircraft may be a potential source of errors in simulations.

In Feldt and Herrmann [44], the bending-torsional flutter of a cantilevered wing

with a lumped mass on its tip was investigated. It was found that the follower forces

contributed to reducing the critical speed, while an increase in the tip mass demon-

strated a stabilizing effect. Quanlong et al. [45] also concluded that the presence of
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thrust, modeled as a follower force, reduces the flutter limit. In the case considered,

a reduction of flutter speed in more than 10% was noted.

Studies of other propeller effects besides thrust on the aeroelastic stability have

been limited to problems involving displacements inside the linear regime, as in Reza-

eian [46], Sui An [47] and Guruswamy [48].

In Rezaeian [46] a numerical investigation of the two main instability phenom-

ena associated to a propeller-nacelle-wing system was performed using the software

ZAERO. The influence of propeller on modal damping was studied, including slip-

stream and gyroscopic modeling, and it was observed that gyroscopic effects have

influenced modal damping of the wind tunnel wing.

The development of a gradient-based aeroelastic optimization considering pro-

peller influence is presented in Sui An [47]. The framework employs Double Lattice

method for surfaces aerodynamics, actuator disk to model the average effects of the

propeller (one-way coupling), and uses the Toolkit for the Analysis of Composite

Structures (TACS) for the structural analysis. Results indicated that despite the

improvement expected for aerodynamic efficiency, an increase in aspect ratio and

in the number of propellers can make the structure more vulnerable to instabilities

and structural failures. The effect back of wing on propellers, gyroscopic moments

and nonlinearities for structure and aerodynamics were not included in that model.

Also, aeroelastic static and dynamic considerations (in terms of elastic and rigid body

displacements) were not the focus of that investigation.

In recent work, Guruswamy [48] investigated the influence of a wingtip mounted

propeller on the aeroelastic stability of a flexible aircraft with aspect ratio five.

The flow-field is simulated based on Navier-Stokes equations, while the structure

is modeled using plate finite elements. Results for the wing model with and with-

out the tip propeller showed that propeller caused destabilizing effects for the same

freestream condition. However, increasing the propeller RPM, a stable response could
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be achieved.

1.2.5 Traditional Simplified Propeller Aerodynamics

Although CFD methods are capable of capturing complex phenomena, they are

still associated with a high computational cost, besides the extra time associated with

the mesh generation. In the context of VFA simulations, involving the simultaneous

solution of multiple disciplines for a model with deforming surface and often multiple

propellers, such high fidelity approaches can be prohibitive.

Alternatively to CFD, simplified approaches have been developed. Methods based

on blade element model are certainly one of the most common. In Gur and Rosen [49],

typical methods based on blade element model, using different approaches for the

calculation of induced velocities, were compared for an isolated propeller: momen-

tum, simplified momentum (traditional actuator disk), lifting-line (prescribed, semi-

prescribed and free-wake) and vortex approach (McCormick and Theodorsen). The

results indicated that for the axial flight of straight blades (or small sweep) propellers,

the simplified-momentum model showed good quality results at a low computational

cost. They also indicate that for cases such as static operation, the induced velocities

due to propeller slipstream are higher than for typical cruise conditions and a more

accurate model may be necessary, as, for example, lifting line model with free-wake.

Abedi et al. [50] also compared different aerodynamics methodologies for an iso-

lated wind turbine: lifting line prescribed wake, lifting surface prescribed wake and

panel method prescribed wake. The methods were compared against results from

GENUVAP, an unsteady flow solver based on vortex blob approximations. Lifting

Line showed to be an advantageous method due to its short computational time and

good agreement with GENUVAP.

Alternatives consisting of variations of the cited methods or their combination are

also available. Khan and Nahon [51], for example, combined analytical and semi-

14



empirical equations, some of them based on marine propellers, to define a slipstream

model which considers both acceleration and diffusion. The method showed good

agreement with experiments but depended on pre-determined coefficients. Wang [52]

et al. proposed a regionalized actuator disk approach, with parameters varying in

radial and circumferential direction along the disk. The new model showed better

performance than classical Actuator Disk [53].

Additionally, empirical methods are also available, as the empirical methods of

Smelt and Davies [54] and Kuhn [55]. Although the low cost and capability of predict

important effects, like viscosity and separation, they are restricted to the limited set

and conditions of experimental data they are based on and do not account for mutual

iterations between the propeller and lifting surfaces.

Table 1.1: Classical Aerodynamic Approaches for Propeller Blades Modelling

Method Main Characteristics

Blade Element (BE) Model [49,56] Blade is divided into segments, which
behave like 2D wings; assumes absence of
interaction between neighbor elements;
aerodynamic coefficients are obtained from
a database.

Lifting Line (LL) [57,58] Blade divided into segments, replaced with
a straight vortex filament with constant
strength located at 1/4 chord; takes into
account mutual influence between different
sections and lift loss at blade tip.

Vortex Lattice method (VLM) [57,58] Blades are modelled as a panelled surface
(thickness neglected) and condition of zero
normal velocity is imposed.

Panel method (PM) [57,58] Similar to VLM, but thickness is taken
into account, with panels defined over the
actual surface.

As the most expensive part of the propeller aerodynamics approaches is usually

the calculation of its wake induced velocities, it is a common practice to associate

different approaches for the blade and the wake. Tables 1 and 2 present examples of
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Table 1.2: Classical Aerodynamic Approaches for Propeller Slipstream

Method Main Characteristics

General Momentum Model [39,49] Based on actuator disk approach; flowfield
is divided into concentric annuli control
volumes.

Simplified Momentum Model [39,49] Classical Actuator Disk; Additional assump-
tions: far wake pressure approximately equal
to the ambient pressure; circumferential
induced velocity right after disk is similar to
the one in the far wake.

Lifting-Line Model [59] Based on Prandtl Lifting Line Theory
(prescribed, semi-prescribed or free-wake).

Vortex Models [60,61] Based on optimal distribution of blade’s
circulation and Kutta-Joukowski theorem
(e.g. Theodorsen, McCormick).

Empirical methods [54,55] Based on a set of experimental data and
accounts for effects like viscosity and
separation; do not account for mutual
aerodynamic iterations.

traditional methodologies for aerodynamic modeling of blades and slipstream.

1.2.6 Propeller Modeling on Aeroelastic Frameworks for VFA

Due to its large deflections under typical loads conditions, VFA is characterized by

nonlinear behavior. However, traditional aeroelastic frameworks make use of linear

theory for structural and aerodynamics formulations, and currently, commercial tools

for the analysis of VFA aircraft are not available [62].

Separate research group efforts have developed aeroelastic framework capable of

taking into account the nonlinear aspects of the VFA behavior. Examples of state

of the art codes in this context cited on literature are UM/NAST [6, 31, 32], from

University of Michigan, SHARPy [63–66] from London Imperial College, ASWING

[67–69], from Massachusetts Institute of Technology, NATASHA [70,71], from Georgia

Institute of Technology, and DLR toolbox [4, 72], from Deutsches Zentrum für Luft-
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und Raumfahrt (DLR). Each of those codes has differences and similarities about the

formulations employed, and the focus here is given on the propeller modeling.

Concerning the modeling of the propeller effects previously described (summarized

in Figure 1.2), usually, the aeroelastic frameworks for VFA consider the thrust effect

only, modeled as a follower punctual force. Exceptions are, from the best of this

author’s knowledge, for ASWING and the current version of UM/NAST (with the

enhancements from the present work). ASWING employs an actuator disk model

and can model thrust, torque and P-factor loads (loads due to asymmetric loading of

blades) [68, 69].

UM/NAST originally also incorporated just thrust to model the propeller effects.

However, developments made by the present work [73–75] made possible the complete

inclusion the propeller effects, as summarized in Figure 1.2.

1.2.7 Summary and Main Conclusions

From the literature review on the topics selected, its possible to conclude that:

• The study of propellers and airframe interaction date from a long time, and

many studies with rigid configurations have demonstrated that propellers can

significantly influence an aircraft aerodynamic performance, free-flight response,

and stability;

• Few studies have been conducted on the effects of propellers on very flexible

aircraft, and usually, just thrust, modeled as a punctual force, is incorporated

in the simulation of such very flexible configurations;

• Aeroelastic studies have indicated that thrust can have a significant impact on

flutter, reducing the predicted critical velocities in about 10% when compared

to a model without thrust. Other propeller effects were not investigated;
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• Concerning the aerodynamic modeling for propellers, high fidelity tools (CFD

simulations) are still too expensive for the required multidisciplinary analysis

and simulation of VFA. Alternative simplified approaches offer quicker evalua-

tion, but many of them assume a pre-determined wake shape, isolated propeller

configuration, and usually capture just averaged effects. Then, their applicabil-

ity to VFA aircraft with several interaction surfaces and propellers may not be

adequate;

• Finally, it was observed a lack of propeller modeling among the state-of-the-art

codes available for the aeroelastic analysis of VFA.

1.3 Dissertation Objectives and Outline

1.3.1 Dissertation Objectives

In view of the lack of complete propeller modeling in nonlinear coupled aeroelastic-

flight dynamics frameworks and the consequently limited investigation of its effects

on VFA, this thesis has the following main goals:

• Develop and verify a coupled nonlinear aeroelastic-flight dynamics framework

capable of taking into account the propeller loads transmitted to a very flexible

aircraft (Figure 1.2);

• Investigate the effects of propellers on the aeroelastic response and stability of

a HALE aircraft, focusing on three aspects:

i) Identify importance and impact of including propeller effects in VFA model-

ing;

ii) Identify the isolated contribution of the different loads transmitted by the

propeller;
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iii) Get an insight about if/how flexibility may change the expected behavior of

the propeller-wing interaction when compared to a rigid case.

In order to accomplish these objectives, the UM/NAST framework was enhanced

by coupling it with an Unsteady Vortex Lattice code for the aircraft lifting surfaces

and a Lifting Line/Viscous Vortex Particle Method for modeling the propeller aero-

dynamics. Gyroscopic effects were derived and incorporated. Each new piece added

was verified against numerical or experimental data. Also, an alternative approach

for stability analysis of very flexible aircraft was developed and verified. The frame-

work was then applied for the investigations of propeller influence on a representative

HALE aircraft.

1.3.2 Dissertation Outline

This dissertation is structured as follows. Chapter 2 presents details of the for-

mulation of the new pieces added to the UM/NAST framework. First, an overview

of the enhancements added to UM/NAST is presented. Next, a discussion about

the motivation and description of theoretical aspects for each aerodynamic method

selected (for lifting surfaces, blades, and propeller wake) is provided. The derivation

of the inertial effects is described, and the interfaces between the different disciplines

are discussed. Chapter 3 details the numerical implementation of the new develop-

ments in terms of architecture and workflow of its different parts. The objective is

to clarify the solution process and provide essential information for future use and

improvements. Chapter 4 presents the motivation and development of an alternative

approach based on a combination of Proper Orthogonal Decomposition and System

Identification for the extraction of dynamic information (frequency, damping, and

modes) from aeroelastic simulations with propellers. Chapter 5 presents verifica-

tion results for each new component added to the coupled aeroelastic-flight dynamics

framework. Then, an investigation of the propeller effects on the aeroelastic response
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and stability of HALE aircraft is presented in Chapter 6. Finally, concluding remarks

and key contributions of this work are summarized in Chapter 7, and ideas for future

steps are provided.
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CHAPTER 2

Coupled Nonlinear Aeroelastic-Flight

Dynamics Framework with Propellers

The presence of propellers can affect the dynamics and stability of an aircraft in

several ways. In the case of very flexible aircraft, most of these effects have been

neglected in coupled aeroelastic-flight dynamic simulations, and only thrust was in-

cluded to represent its effects. The exploration of their importance and impact on

simulations has not been considered.

This chapter describes the theoretical foundations and developments towards a

coupled nonlinear aeroelastic-flight dynamics framework capable of capturing the

missing propeller effects. Section 2.1 introduces the University of Michigan’s Nonlin-

ear Aeroelastic Simulation Toolbox (UM/NAST) [6, 31, 32] used as the basis for this

work and summarizes the enhancements added to it in order to include the propeller

effects. Sections 2.2 to 2.6 describe in more details the various components added into

the UM/NAST framework, describing the formulation for the lifting surface aerody-

namics, propeller blades and wake aerodynamics, propeller inertial effects, and the

interfacing between the different disciplines.

21



2.1 Framework Overview

The coupled nonlinear aeroelastic-flight dynamics framework is based on the Uni-

versity of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST), which

was enhanced by this work to account for the additional propeller effects. A brief

summary about key aspects of UM/NAST formulation and the enhancements added

are described in the following subsections.

2.1.1 UM/NAST Framework

The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/-

NAST) [6, 31, 32] is a multidisciplinary tool developed for the simulation of very

flexible aircraft. It features solutions for the modal characterization about different

steady state conditions, static, trim and nonlinear transient simulations and aeroe-

lastic stability analyses. For that, the equations for structural dynamics, nonlinear

6-DoF vehicle dynamics and aerodynamics are integrated simultaneously using three

different numerical scheme options: trapezoidal, generalized alpha, and forward Euler

schemes.

In order to enable the modeling, different frames of reference are defined [76].

A summary of the most important ones is illustrated in Figure 2.1. First, a global

(inertial) frame G, fixed in the ground, is defined. Then, a body-attached frame B

is built to describe the body position and orientation in inertial frame, with the unit

vectors Bx(t) pointing to the right wing, By(t) pointing forward and Bz(t) given by the

cross product between Bx(t) and By(t). In order to describe the elastic deformations

of each point on the aircraft with relation to body frame, a local beam frame W

is attached to each node along the beam model, with the basis Wx(s, t) pointing

along reference beam axis towards right wing, Wy(s, t) pointing towards leading edge,

and Wz(s, t) is normal to the beam surface. Here s refers to the curvilinear beam

22



coordinate. Finally, a local 2D aerodynamic frame is also defined, with the Ay unit

vector aligned with the chordwise direction of the airfoil, pointing upstream, and the

Az unit vector pointing vertical up. The local aerodynamic and beam frames are

usually aligned, but they can become different in certain situations, as, for example,

when the wing has a sweep angle.

 

Figure 2.1: Basic UM/NAST reference frames

UM/NAST employs a geometrically nonlinear structural formulation using a strain-

based finite element [77]. Within each element, constant strains in extension, twist,

and in- and out-of-plane bending are assumed, resulting in a 4-degree-of-freedom

element:

εe = {εx, κx, κy, κz} (2.1)

The nonlinear equations of motion are solved in terms of those strain values, and
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the related displacements are post-processed. For each node along the beam, the

position and orientation is defined by a vector h with 12 components: the first 3 cor-

responding to the position Pw of the node in body frame and the next 9 corresponding

to the local unit vectors Wx, Wy and Wz also resolved in body frame.

h(s) =
{
Pw(s)T ,Wx(s)

T ,Wy(s)
T ,Wz(s)

T
}

(2.2)

The relation between the strains and displacements is provided by Cesnik and

Brown [78] and given by the equation:

∂h(s)/∂s = A(ε(s))h(s) (2.3)

where A is a matrix which is a function of the strains.

Assuming constant strain for each element, the solution of Eq (2.3) is simplified

to:

h(s) = eG(s)h0 (2.4)

with h0 being the vector containing position and orientation of a prescribed node at

the root of the beam.

Originally, a potential-flow finite-state Peters’ inflow aerodynamic theory [79, 80]

with a correcting factor for 3D effects was implemented in UM/NAST [6, 31, 32].

That theory is based on the assumption of two-dimensional thin airfoil immersed

in an inviscid and incompressible flow. The main advantage of strip theory is the

minimal computational cost, even when compared to other potential methods, as

Vortex Lattice. However, the dependency on an adequate reference lift distribution

provided a priori (in order to correct for 3D effects), and the inability to take into

account mutual influence between different lifting surfaces are the major drawbacks

of the method.
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The resulting system of equations, accounting for structural dynamics, nonlinear

6 DoF vehicle dynamics and aerodynamics, has the following format [6]:

M(ε)q̈ + C(ε, ε̇)q̇ +Kq = R (2.5)

where M , C and K represents the generalized mass properties, damping and stiffness

matrices, respectively; q = (ε, pB,ΘB) is a set of generalized coordinates containing

the strains associated with the flexible vehicle, ε, the body inertial position, pB, and

an arbitrary orientation vector, ΘB, of the body frame of reference; and R represents

generalized forces accounting by aerodynamics loads, gravity, applied loads, etc.

2.1.2 Enhancements to Include Propeller Effects

The original aerodynamic modeling in UM/NAST framework employed a cor-

rected strip theory, whose solution accuracy depends on the proper choice of a lift

distribution provided a priori. Besides that, the corrected strip theory method is not

able to take into account the mutual aerodynamic influence of different lifting sur-

faces. However, in order to capture the interaction of propellers and aircraft lifting

surfaces, a method capable of taking into account that mutual aerodynamic influence

was necessary. For that purpose, the Unsteady Vortex Lattice method (UVLM) was

selected and a UVLM code developed by Ritter [81] was adapted and integrated to

UM/NAST framework, as an additional aerodynamic option. The UVLM code was

originally written in Python with FORTRAN subroutines. In order for the frame-

work to have a common language and more efficient integration of the different parts,

it was later on re-written in C++, improving the performance and facilitating the

integration with UM/NAST, which is written in C++.

As the structural model employs a 1D finite element representation and the UVLM

uses 2D non-planar grid, an interface between the two solvers was implemented in
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order to transfer loads and displacements. As will be discussed in more details in a

dedicated section, such mapping is based on the assumption of rigid behavior in the

chordwise direction and on the principle of equivalence of virtual work between the

forces at panels and forces transferred to beams.

After completing the integration between UVLM and UM/NAST, the aerody-

namic modeling for the propellers, based on Lifting Line (LL) for the blades and

Viscous Vortex Particle (VVPM) method for the wake, was implemented and inte-

grated into the UVLM code. Again, as the UVLM was originally in Python, the

propeller aerodynamic solver was first developed in Python and later on re-written to

C++. A general C++ interface allowing the integration between different possibilities

for the modeling of propeller and lifting surfaces aerodynamics was also developed,

allowing future investigations with other combinations of methods.

Finally, the inertial effects of propellers were also included, incorporating the

effects of propeller CG acceleration and the gyroscopic moments associated with the

angular motion. For this, a derivation based on UM/NAST reference systems was

developed, and the formulation was directly implemented into UM/NAST framework.

Figure 2.2 presents an overview of the enhanced coupled aeroelastic-flight dynam-

ics framework, for the case of dynamic simulation. For each time step, based on

current values of loads and control inputs, the new geometric configuration of the

structure is determined. Beam coordinate deformations are then converted to panel

grid point deformations, and aerodynamic loads are calculated with uVLM coupled to

LL/VVPM. Those loads are then converted to concentrated loads at beam nodes, and

the dynamic process continues until the predetermined simulation time is reached. It

is important to note that the contribution of the elastic deformation of the body in

the effective free-stream speed is considered in both uVLM and LL/VVPMs.

In the next sections, more details are provided about the theoretical aspects of each

enhancement added. The numerical implementation, as well as a detailed verification
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Figure 2.2: Enhanced coupled aeroelastic-flight dynamics framework with propeller
effects

of the different parts of the enhanced framework, will be presented in the next chapter.

2.2 Lifting Surfaces Aerodynamics

2.2.1 Vortex Lattice vs. Strip Theory

As concluded in the investigation performed by Ritter et al. [82], although strip

theory has been a popular method for the aeroelastic simulation of very flexible air-

craft [5,6,31,83–86], its inability to take into account mutual lifting surfaces influence

and other 3D effects limit its accuracy and the possible range of applications.

The reason for its extensive use may be related to the fact that earlier designs

of VFA consisted mostly of high aspect ratio flying wings [82]. For such designs,

3D effects had smaller influence and, with the absence of other lifting surfaces, the

lacking of modeling for mutual aerodynamic surfaces interaction was not affecting

the results. Moreover, the implementation of strip theory is much simpler than other

aerodynamic methods, strips are allowed to translate and rotate almost arbitrarily,

and the computational cost is very low (one of the greatest advantages of strip theory).

Such characteristics make it a very attractive model for the multidisciplinary coupled

aeroelastic-flight dynamics framework.
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For a more complex very flexible aircraft, however, with multiple lifting surfaces

of varying aspect ratios moving with relation to each other, the limitations of strip

theory become more critical. Although the rectangular distribution of lift provided

by strip theory can be corrected by a reference lift distribution, this reference may

not be representative along all the VFA maneuver considered. Also, the lacking of

downwash modeling of the wing on tails, for example, plays an important role in

the aeroelastic behavior of the whole aircraft and correction methods to include the

varying downwash effect become very difficult to be applied in a general way.

Another class of potential method that could take into account the mutual influ-

ence between lifting surfaces and 3D effects are methods based on aerodynamic influ-

ence matrix (AIC), as Double Lattice and Vortex Lattice. While Double Lattice has

been a standard tool for fixed-aircraft aeroelasticity, due to its faster calculation of the

unsteady aerodynamic loads (compared to UVLM) , it is a linear method restricted to

small out-of-plane motions with flat wake, being no longer valid for the novel highly

flexible configurations [63]. Vortex Lattice has the advantage to be capable of model-

ing the aircraft undergoing large translations and rotations and has become a popular

method in aeroelastic frameworks for the simulation of VFA [1,63,82,87–92]. Also, for

conditions within the limitations and assumptions considered in its formulation, Vor-

tex Lattice results demonstrate remarkable agreement with CFD and experimental

data [93–95]. Its range of validity is typically the case of very flexible aircraft, whose

usual velocities are within the incompressible regime, but with high enough Reynolds

number to assume that the viscous effects are confined in a thin boundary layer, and

whose typical sections shape can be considered as thin-airfoil configurations.

Based on the arguments presented above, and given the necessity to include mu-

tual surfaces influence in order to take into account the propeller/lifting surfaces

interaction, the Vortex Lattice method was chosen for the aerodynamic modeling of

the aircraft surfaces, added as an additional option in UM/NAST. The major draw-
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back of Vortex Lattice method is its quadratic dependence on the number of panels

(over the surfaces and their wakes), resulting in a much slower computation than strip

theory (but still much cheaper than unsteady RANS solution). Also, the original for-

mulation does not consider viscous effects, but this can be added by an additional

correction, as will be discussed soon. In the next section, more details about the

formulation of the Vortex Lattice method used in this work are presented.

2.2.2 Vortex Lattice Method Formulation

The Vortex Lattice Method (VLM) is a mid-fidelity approach based on potential

theory [57, 58] that allows the calculation of aerodynamic loads for steady and un-

steady problems. It assumes thin-wing models under low speeds, but with high enough

Reynolds Number to neglect viscous effects, and attached flow conditions [63].

Earlier formulations of the Vortex Lattice Method date from 1931, when Rosen-

head [96] studied the replacement of a two-dimensional vortex-layer by a system of

vortex filaments. In 1943, Falkner [97] introduced the term “Vortex Lattice.” In 1965,

Hedman [98] established the now classical steady Vortex Lattice, based on the place-

ments of horseshoe singularities along a discretized wing. In a tentative to expand

the method to unsteady cases, and assuming a flat wake, Albano and Rodden [99] re-

placed the vortex sheet by equivalent oscillating doublets, creating the Double-Lattice

Method. Later it was demonstrated [100] that a panel with a piecewise constant dou-

ble distribution is equivalent to a vortex ring around its periphery, opening the way

for the extension of VLM to unsteady situations. Initial studies developing Unsteady

Vortex Lattice (UVLM) were carried out by Belotserkovski [101], Rehbach [102] and

groups at Virginia Tech [103,104] and Technion [105,106].

In the next subsections, a summary of the main aspects of the Vortex Lattice

formulation that was applied to this work is presented. Although there are several

references available in the literature, the reader is referred to the book of Katz and
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Plotkin [57], which is one of the current most complete descriptions about the Vortex

Lattice Method (named there as “Lifting-Surface Solution by Vortex Ring Elements”),

for more details.

2.2.2.1 Main Assumptions and Basic Equations

Assuming potential theory, i.e., low speeds such that the flow is incompressible

(Mach < 0.3), but high enough Reynolds Number such that the fluid viscosity can

be neglected and the fluid behaves as irrotational, it is possible to define a potential

scalar function Φ whose gradient corresponds to the velocity field:

~u = ∇Φ (2.6)

Also, for an incompressible fluid, the continuity equation can be written as:

∇ · ~u = 0 (2.7)

Then, substituting Eq. 2.6 into Eq. 2.8, will result in the Laplace equation:

∇ · ~u = ∇ · ∇Φ = ∇2Φ = 0 (2.8)

Laplace equation is an elliptic linear differential equation, and its solution can

be written as a linear combination of functions that are individual solutions of that

equation. Many possible singularity functions are a solution for the Laplace equation

(e.g., vortex, source, doublet). With the additional assumption of thin-lifting surfaces

(such that thickness effects can be neglected), the idea of the Vortex Lattice method

is to represent a thin-wing by its camber surface, discretizing that surface in quadri-

lateral elements (panels) and distributing singularity functions (which are solutions

of Laplace equation) over those panels and over the wake. Such singularity elements

model the effect of vorticity confined in the thin boundary layer near-surface and in

30



the wake sheet.

In the classical, steady approach of Vortex Lattice, horseshoe vortex (composed by

a straight bound vortex segment, which models the lifting properties, and two semi-

infinite trailing vortex that model the wake) are typically used. For unsteady cases,

however, the choice of vortex-ring, quadrilateral elements composed by discrete vortex

segments in a closed-loop, is more appropriate, as both, lifting surfaces and wake can

be discretized using those elements, making wake shedding and, consequently, time-

domain simulation of Vortex Lattice possible [63, 107]. Additionally, the vortex-ring

elements allow for the boundary conditions to be specified at the actual camber

surface, which can have camber and several planform shapes [57]. Then, in this work,

both steady and unsteady solutions are modeled using vortex-ring elements.

Once the solution is written in terms of the added effects of the vortex-ring ele-

ments it is necessary to satisfy the boundary conditions, which, for this case, is the

zero normal flow across the surface (non-penetration condition) and velocity going to

zero at infinity:

∂Φ

∂n
= −~n · ~ub, on body surface (2.9)

∇Φ −→ 0, at infinity (2.10)

It is important to note that Φ is a scalar potential associated with the velocity

field induced by the singularity elements only. Then, in Eq. 2.9, ∂Φ/∂n is the normal

component of velocity induced by the vortex-ring at a given point while ~n · ~ub is

the sum of all other normal components due to other velocity field perturbations

(free-stream, velocity due to surface deformation, influence of lifting surfaces wakes,

velocity induced by external sources, as the presence of propellers, etc.). Then, in

order to satisfy the non-penetration condition, the velocity induced by the vortex-ring
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distribution at a given point on the surface should be equal to negative the sum of

all other normal velocity components.

Additionally, for the solution to be unique, it needs to satisfy Kutta-condition,

which states that the flow should leave a sharp trailing edge of an airfoil smoothly

and with finite velocity, and Kelvin’s Theorem, which says that in order to conserve

angular momentum, the time change of circulation around a curve surrounding both,

airfoil and wake, should remain unchanged [57].

The zero velocity at infinity condition is automatically satisfied by the vortex-ring

elements, as the velocity induced by them is inversely proportional to the square

of the distance to the point considered and goes to zero when the distance goes to

infinity. Also, as will be discussed along next sections, due to the way the vortex-ring

are placed and the vorticity is convected to the wake, the vortex Lattice method

also automatically satisfies the Kutta-condition and Kelvin’s Theorem, without the

necessity to add or modify equations. Then, the problem is reduced to find the

circulations over the surface panels such that the non-penetration boundary condition

is satisfied.

As a final note, it is worthy to observe that no linearization assumption of small

perturbations was considered in the derivation of the method. Then, the Vortex

Lattice method is applicable for arbitrary displacements of the wing, which is a desired

characteristic for aeroelastic simulations of VFA.

2.2.2.2 Discretization in Vortex Elements and Solution Approach

Figure 2.3 illustrates how the vortex-ring elements are distributed over the wing

and its wake. First, the corresponding camber surface is determined and discretized

in a mesh of quadrilateral panels. Each vortex ring is assumed to have a constant

circulation and is placed such that the leading edge of the vortex ring (bound vortex)

is located at 1/4 chord of the panel, the chordwise sides of the vortex-ring (trailing
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vortex) are aligned with the sides of the panels and the remaining 4th vortex segment

is aligned with the quarter-chord line of the adjacent panel in chordwise direction.

The reason for positioning the vortex ring leading edge at the quarter chord line of

the panel is that the 2D Kutta-condition is satisfied along the chord [57]. Collocation

points, where the non-penetration condition will be applied, are located at 3/4 chords

of the panel, which falls in the center of the vortex ring. Geometrical information from

the surface grid such as panels area, panels normal unit vectors, coordinates of control

points as well as quarter points (points in the center of each panel quarter chord line

- corresponding to center of vortex-ring leading edge - where the aerodynamic loads

of each panel are located) need to be determined and updated as the grid deforms.

control point

quarter point

wake elements

bound
elements

Figure 2.3: vortex-ring placement over a lifting surface and its wake

An aerodynamic coefficient matrix (AIC), where each entry aij correlates the

influence of a given panel i on another panel j per unit of circulation, also needs to
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be determined based on the grid. The influence of one vortex ring at a given point

in space is given by the added effect of each of its four vortex line segments and is

calculated based on the Biot-Sarvart law. For each vortex segment, if it points from

point 1 to point 2, as illustrated in Fig 2.4, the velocity uP induced by that segment

at an arbitrary point P is given by:

uP =
Γ

4π

~r1 × ~r2

|~r1 × ~r2|2
~r0 ·
(
~r1

r1

− ~r2

r2

)
(2.11)

where ~r1 and ~r2 are the vectors from points 1 and 2 to point P respectively, ~r0 is

the vector from point 1 to point 2, and Γ is the constant circulation of the vortex

segment.

Figure 2.4: Influence of a straight vortex segment at a generic point P

Then, each coefficient aij of the AIC matrix is calculated by determining the effect

of the four segments of the vortex ring associated with panel i in the control point of

panel j, assuming unitary circulation. If the surfaces considered have N panels, the

AIC matrix has a size of N ×N .

The next step is to determine, for the given static iteration or time step (if the

problem is unsteady), a column matrix containing the normal components un of

all other velocity contributions besides the panels induced velocity at the panels

control points: kinematic velocity (due to onflow and/or rigid body motion of the
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wing), ~ukinematic, induced velocity due to the surfaces wakes, ~uwake, velocity due to

body deformation, ~uelastic, gust perturbation, ~ugust, and other possible contributions

(as presence of propellers, etc). This is, in fact, the way that time dependency

is incorporated in the problem [57] and the normal components are determined by

applying the scalar product of the calculated velocities and the normal unit vector ~ni

at each panel i:

un,i = (~ukinematic,i + ~uwake,i + ~uelastic,i + ~ugust,i) · ~ni (2.12)

Finally, applying the non-penetration boundary condition, the following linear

system is obtained:

[AIC] Γ = −un (2.13)

where Γ is a column matrix containing the circulation of all panels, which are un-

known, the product [AIC] Γ is the velocity induced by the vortex-ring over the panels

at the control points, and, as already commented, un is the sum of all normal com-

ponents of other velocities contributions.

The system is solved for the circulation, Γ. Once the circulation of the panels is

determined, other quantities like loads, pressure, induced velocities at a given set of

points, etc., can be determined and the wake circulation, size, and position can be

updated.

2.2.2.3 Aerodynamic Loads Calculation

The aerodynamic loads over the panels are calculated based on the method pro-

posed by Mauermann [108]. The forces are divided into two contributions, steady

and unsteady:
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~Ftotal = ~Fsteady + ~Funsteady (2.14)

The steady contribution is calculated based on the three-dimensional Kutta-

Jowkowski therorem for vortex lift, resulting in the steady lift force normal to the

panel inflow [108], which, for the i-th panel, is given by:

~Fsteady,i = ρ∞Γeff,i
(
V∞,eff i × ~ri

)
(2.15)

where ρ∞ is the density of the fluid, ~ri is the incremental vortex segment, correspond-

ing to the quarter chord line of the i-th panel, Γeff,i is the effective circulation of

that vortex segment (the bound vortex) and corresponds to the vortex segment cir-

culation itself if the panel is at the surface leading edge or the difference between the

circulation of the i-th panel and the circulation of its neighbor panel in downstream

direction, otherwise; V∞,eff i is the effective onflow velocity at the panel quarter point

(middle of panel quarter-chord line and vortex ring leading edge) i, and corresponds

to the contribution of kinematic velocity, elastic deformation, gust and other possible

contributions not related to the influence of the vortex-ring. Therefore, the induced

velocities due to the surfaces and their wakes singularity elements are not included

in V∞,eff i:

V∞,eff i = ~ukinematic,i + ~uelastic,i + ~ugust,i (2.16)

For the transient cases, the unsteady contribution of the aerodynamic loads is

related to the change of circulation with time and, for a panel i, is calculated as:

~Funsteady,i = ρ∞Ai
∂Γi
∂t
~ni (2.17)

where Ai is the area of the panel i.
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The derivative ∂Γi/∂t can be numerically calculated using some choice of backward

scheme. In this work, a second-order backward scheme was used:

∂Γi
∂t
≈ 3Γni − 4Γn−1

i + Γn−2
i

2∆t
(2.18)

with n an index representing the current time and ∆t the size of the time step.

It is worth to mention here that, as Γ is a function of the surface velocity, as it

is given by the application of the no-penetration boundary condition, the differential

∂Γi/∂t will be a function of the panel acceleration and, therefore, the added mass

effect is indirectly taken into account by the Vortex Lattice formulation.

In the previous load’s expressions, the contribution of the velocities induced by the

vortex-ring distributed over the surfaces, and their wakes were not taken into account.

This implies that the induced drag was not included in those expressions. Following

the approach proposed by Katz and Plotkin [57], the calculation of the induced drag

is done separately, by first determining the contributions of the streamwise segments

of the bound vortex-ring and all the segments of wake vortex-ring into the panels

quarter points, and then applying the following expression:

~Finduced drag,i = ρ∞Γeff,i (~ubodystreamwise,i + ~uwake,i)× ~ri (2.19)

Although Vortex Lattice method assumes inviscid flow, viscous drag estimation is

also added and is briefly described in a following dedicated subsection.

2.2.2.4 Wake Modeling

The wake is updated using a time-stepping approach. At the first time step, no

wake (and then no wake panels) exist. After one time step the wing has moved along

its flight path and each panel at the surfaces trailing edge sheds a wake panel (vortex

ring), whose circulation is equal the circulation of the corresponding trailing edge
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panel in the previous time step (this is because it was released at previous time step,

canceling the trailing edge vortex segment circulation, and then was convected by the

local flow velocity). Following this approach, Kelvin’s condition (stating that total

circulation surrounding the wing and the wake does not change), as well as the three-

dimensional trailing edge condition (stating that the circulation at the surface trailing

edge should vanish) are automatically satisfied by the vortex ring elements [57].

Also, from one time step to the next, the wake panels are convected with the local

flow velocity, allowing for the free development of the wake. In this work, although any

influence on the velocity flow field can be included, just the onflow velocity (velocity

due to rigid body motion and atmospheric perturbation) was considered for the wake

convection. This reduces the computational cost (and possible numerical instabilities

related to wake roll-up) while still retaining enough information to capture wake-

surfaces interaction. Also, it was observed in simulations of representative VFA that

the effects of wake roll-up are usually not significant [109,110].

For static simulations, all the wake panels in chordwise direction would virtually

have the same circulation, due to the steady-state condition. This means that each

column of wake panels (vortex-ring in chordwise direction) are equivalent to one long

wake-panel (a long vortex ring or a horseshoe vortex). Using this information, it is

possible to reduce the computational cost for the steady case by modeling the wake

with fewer long vortex-ring instead of several small vortex-ring [57,81].

Finally, as the influence of the wake is taken into account at the panel control

points and quarter points at each time step and wake increase as time evolves, the

cost of the computation of wake influence can become very high after some time. As

the influence of the vortex-ring at some point decrease with the square of the distance

to that point, it is possible to truncate the wake after it has achieved a long enough

length, limiting the increase of computational cost [81].
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2.2.2.5 Viscous Drag Estimation

In this work, a simple approach was implemented in order to estimate and add

viscous drag effects into the UVLM calculations. First, the local lift coefficient, cl,

of each strip is calculated, based on the sum of the loads and areas of the panels

composing each strip, and the mean dynamic pressure of the strip.

Then, the corresponding drag coefficient, cd, is determined based on a pre-determined

polar table (e.g., XFOIL, CFD, experiment) for a representative Reynolds number,

matching the local value of cl with the corresponding value of cd. Rotation matrices

based on UM/NAST formulation are used to rotate forces from wind axis to body

system for each deformed configuration.

In order to facilitate the transfer of the viscous loads from the surfaces to the

structure, the viscous drag calculated for each strip is uniformly distributed among

the strip panels and added to the previously calculated aerodynamic loads. Although

that distribution may not be uniform, this has minimal effects on the results, as the

moments caused by viscous drag, tangent to the lifting surfaces, are negligible.

2.3 Propeller-Blade Aerodynamics

2.3.1 Propeller Blade vs. Lifting Surface Aerodynamics

As the chord of a propeller blade is typically much smaller than other scales

of a VFA, a detailed prediction of the aerodynamic load distribution over the area

of each blade is not necessary. Instead, the knowledge of the resultant loads as

well as their spanwise distribution over the propeller blades (which will determine

the behavior of the propeller slipstream) are the outputs needed from the propeller

blades aerodynamics model. This means that simpler and less costly methods capable

of providing a good estimation of spanwise loads distribution over the propeller blades
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can be applied.

A typical method used to determine the spanwise load distribution over the pro-

peller blades is the Blade Element (BE) model [49, 50], which is associated with

another independent approach to model the propeller wake induced velocities. In

this method, the blade is divided into segments, each one considered to behave as an

independent wing, and local airfoil polar data is used to determine the loads. The as-

sumption of independent behavior of each wing segment, however, limit the capability

of the method to account for 3D-flow effects as well as the inter-influence between

the different segments and may cause over-prediction of thrust and under-prediction

of torque [111].

An alternative to solve those limitations, yet keeping the simplicity and small

computational cost, is the use of the Lifting Line (LL) method. This method is

similar to the Blade Element method in the sense that the blade is discretized in

segments and local airfoil data is used, but now each segment is modeled as a vortex

segment, and they can influence each other as well as the flow-field around them.

Additionally, based on the spanwise distribution of the circulation, vorticity is shed

from the blade into the wake (more details in a dedicated section) allowing a direct

coupling (and mutual influence) between bound and wake vorticity, such that 3D

effects are taken into account.

The Lifting Line approach was then chosen for the blades aerodynamics in this

work due to its simplicity, small computational cost and good capability to represent

unsteady behavior of blade circulation, as observed in Abedi et al. [50]. It should be

noted that, in this context, LL is applied to model the bound vorticity only and will

be coupled to another approach for the wake model, as will be discussed soon. More

details about the Lifting Line formulation implemented in this work is presented in

the next section.
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2.3.2 Lifting Line Formulation

The Lifting Line method is also based on the potential theory assumption [57].

Following this method, the propeller blades are represented as a vortex line passing

through the 1/4-chord location from leading edge at each airfoil section and discretized

in N segments of constant circulation, Γi, with control points defined in the middle

of each segment, as illustrated in Figure 2.5.

grid point

control point
plane of rotation

Figure 2.5: Blade representation using Lifting Line method

For each section, the local blade twist (β), chord, airfoil type and associated polar

tables (for a range of Reynolds number and angle of attack) are provided. In this

work, data from XFOIL was used to generate the polar tables, but any other data

source, such as experiment or CFD, could be used as well. XFOIL employs the eN

method for transition prediction, which depends on the choice of the parameter Ncrit,

corresponding to the amplification factor of the most amplified frequency that causes

the transition. The default value is 9, and it was applied in this work unless otherwise

stated.
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The grid defining the blade segments and control points, defined in body frame,

moves with the propeller rotation, as well as elastic deformation, and therefore needs

to be updated at each step, as below:

y = yH + rcos(Ωt+ θ0) (2.20)

z = zH + rsin(Ωt+ θ0) (2.21)

where y and z are coordinates defining the plane of rotation of the lifting line, the

subscript H represents the propeller hub coordinates (in body frame), Ω is the angular

propeller velocity, θ0 is the initial angular blade position, and r is the radial position

of each point. The values of hub coordinates are updated at each time step based on

the elastic deformations calculated by the structural solver.

For the initial time no propeller wake is present, and the local velocity at each

control point is determined based on the geometric characteristics of the section,

effective freestream, ~v∞,eff , (due to oncoming onflow velocity and propeller rotation)

and other possible contributions to the velocity flow field, ~vext, as the presence of other

lifting surfaces. For the next time steps, the induced velocity due to the propeller

wake is also included.

~vlocal = ~v∞,eff + ~vpropeller wake + ~vext (2.22)

At each time step, based on the local flow velocity, the sectional Reynolds number

and effective angle of attack, α, are calculated (see Figure 2.5) and used to interpo-

late the local aerodynamic coefficients, cl, cd and cm from the polar tables provided.

The loads at each section are then calculated (using the component of total velocity

aligned with the section) and the resultant loads acting on the propeller hub can

be determined. Those loads are then transferred to the structural nodes where the

propellers are attached.
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The bound vortex segments circulation is calculated from the combination of 2D

Kutta-Jukowski theory and the definition of lift coefficient:

Γ = 1/2cVsectioncl (2.23)

where Γ is the circulation at the considered control point, c is the local chord, Vsection

is the component of total velocity at the control point that is in the plane of airfoil

section considered, and cl is the local lift coefficient.

Based on the new values of the segments circulation, the propeller wake circulation

and position is updated (as will be discussed in a dedicated section) and the influence

of the propeller wake and blades circulation in one another and at other points of

interest, as the UVLM control points, can be determined for the next time step.

2.4 Propeller Wake Aerodynamics

In order to complete the propeller aerodynamics modeling, a propeller slipstream

approach needs to be coupled to the Lifting Line method such that an estimate of

the propeller wake induced velocity can be provided for the assessment of resultant

loads over blades, as well as their spanwise circulation distribution.

Also, considering that the application goal is the aeroelastic simulation of VFA,

where multiple surfaces (and possibly multiple propellers) can be present and moving

with relation to one another, additional characteristics from the method are desired:

• Capability to take into account the mutual influence of propeller-wake and lift-

ing surfaces or propellers that may be present, as well as their wake;

• Capability to easily accomodate wake shape to the dynamically changing air-

craft configuration, avoiding singularity issues due to wakes crossing lifting sur-

faces;
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• Be able to model wake unsteady behavior, instead of just its averaged effects;

• Have a satisfactory balance between computational cost and accuracy, given

that at each time step (or static loop) the coupled aeroelastic-flight dynamics

framework needs to solve a multidisciplinary problem, and it is highly desir-

able that each discipline demands a small computational time (yet providing

sufficient accuracy), allowing design, control, and ideally, real-time applications.

There are many possibilities of propeller wake modeling available on literature,

ranging from high-cost, high-fidelity solutions, as CFD approaches, to low-cost, low-

fidelity solutions, as Momentum Theory, vortex filaments or panels (prescribed and

free-wake), and semi-empirical approaches.

While CFD can be used to capture complex effects, as viscous effects, dynamic stall

and flow separation, and has demonstrated good capability to reproduce experimental

results, it is usually too expensive, in particular in the case of multiple surfaces and

propellers. Besides that, due to numerical discretization, CFD methods inherently

suffer from excessive dissipation, which may cause the tip vortices to appear with

much less intensity than in physical reality. Also, meshing requirements add an

additional layer of complexity to the solution process, and the use of numerical overset

meshes (typical for this kind of application) can introduce numerical errors in the

calculations.

On the other hand, although the lower-fidelity approaches provide a much quicker

evaluation of propeller slipstream velocities, their accuracy is limited: many of them

assume a pre-determined wake shape, isolated propeller configuration, and usually

capture just averaged effects. Although those methods can be enough for some ap-

plications, this is not the case of a dynamically deforming VFA, which may contain

multiple surfaces and propellers. In the case of vortex filaments (or vortex panels),

although there is the possibility to capture unsteady behavior and account for the

mutual interaction with other surfaces, those vortex elements have the disadvantage
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of requiring wake connectivity (making more difficult, for example, the modeling of

propeller wake over a wing or wakes mixing cases) and, due to the potential flow

assumption (therefore no viscous effects on the wake is included), they are just able

to capture first-order effects, having to rely on empirical methods (e.g., vortex decay

factor, vortex core size) to a more realistic representation of the wake [20].

A promising alternative to those methods is the Viscous Vortex Particle method

(VVPM), a mid-fidelity approach that is able to capture unsteady wake behavior,

viscous diffusion, vortex mixing, and decay, as well as complex wake-wake and wake-

lifting surfaces interactions, showing a good correlation with CFD and experimental

results [17,20,112], but at a much smaller cost than CFD, yet higher than low-fidelity

solutions. Instead of applying numerical discretization over the entire flow-field, as is

typically done in CFD formulations, the method directly solves the vorticity-velocity

form of incompressible Navier-Stokes equations with a Lagrangian formulation, result-

ing in a grid free modeling of wake diffusion without problems of artificial numerical

dissipation. Also, due to the vorticity representation of the flow by free vortex par-

ticles, they can move freely with local flow velocity, allowing a natural development

of the wake and avoiding singularities due to intersections between wake and lifting

surfaces.

As with the UVLM method, the VVPM has the disadvantage of being a N-body

problem, such that the computational cost is proportional to the square of the number

N of particles, O(N2). Since the number of particles increases at each step the

calculations may become too slow (yet usually less costly than CFD). However there

are approaches to overcome this problem, by limiting the number of particles or

significantly reducing this cost (e.g Tree-code and Fast Multipole Method (FMM)),

such that it can be proportional to O(Nlog(N)) or O(N).

Therefore, the VVPM satisfies the characteristics desired for the wake modeling in

coupled aeroelastic-flight dynamics framework context. The method is an attractive
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option for the simulation of a very flexible aircraft, involving multiple moving lifting

surfaces and propellers. Therefore, it was selected as the preferred for this work.

Additionally, Viscous Vortex Particle method has been successfully applied in many

studies involving rotors and propellers and their interaction with other lifting surfaces

or propellers [16–21,27].

In this work, the VVPM was implemented and integrated into the UM/NAST

framework, allowing the investigation of its use in the context of VFA applications,

as well as the assessment of propeller slipstream effects. In the next sections, a

summary of the formulation implemented is presented. For more in-depth details

about the VVPM the reader is referred to Winckelmans and Leonard [113].

2.4.1 Viscous Vortex Particle Fundamentals

The basis for the VVPM dates from 1930 when Rosenhead proposed an expression

for desingularised vortex particle [114] and demonstrated a dynamic simulation using

singular point vortex [96]. For a long time, however, the method was limited to 2D

applications. Attempts to extend to three dimensions were done in 1980 [115, 116],

using vortex filament approximations, which had difficulties related to the requirement

of retaining elements connectivity. The first proposition of a 3D numerical method

with disconnected spherical particles was presented by Beale and Majda [117], in

1982. A proof of convergence was provided by Beale [118], given the requirement

that the vortex core radius of a particle is larger than the interparticle spacing. The

first implementation of the 3D method, however, took more years, with the studies

of Beale [119] and Winckelmans and Leonard [120], in 1988 and 1989 respectively.

Since then, it has been applied in several wake dominated contexts, in particular the

cases of coaxial rotors [17,112] and rotorcraft forward flight [121–123].
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2.4.1.1 Basic Equation and Assumptions

In the VVPM, both viscosity and rotational effects are taken into account. The

assumption of incompressible flow, however, is retained.

From the classical Navier-Stokes equations for incompressible flow, the momentum

conservation for a differential fluid element is:

∂~u

∂t
+ (~u · ∇) ~u = −1

ρ
∇p+ ν∇2~u (2.24)

where ~u(~x, t) is the velocity field, ω(~x, t) is the vorticity field, p(~x, t) is the pressure

field and ρ and ν are the fluid density and kinematic viscosity, respectively.

Taking the curl of Eq. 2.24, using the fact that the fluid is incompressible (then,

from continuity equation, ∇ · ~u = 0) and remembering the definition of vorticity,

(ω = ∇× ~u), Eq. 2.24 can be re-written as:

D~ω

dt
= [~ω · ∇]~u+ ν∇2~ω (2.25)

where D()/dt = ∂()/∂t+ ~u · ∇() is the material derivative.

Equation 2.26 is the vorticity-velocity in Lagrangian form and it is the funda-

mental equation for solving the transport of vorticity in the VVPM. The Lagrangian

approach allows for a grid-free representation of vorticity, greatly simplifying the

solution process compared to grid-based methods. Also, different from finite differ-

ence approaches, the convection term is not treated explicitly, avoiding problems of

nonphysical numerical dissipation.

2.4.1.2 Vorticity Field Discretization

The key idea behind the VVPM is that the vorticity field can be discretized into

vortex particles, corresponding to influencing elements characterized by a volume, a

position, and strength. The global vorticity field is then approximated by the sum of
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each particle’s individual vorticity field:

~ω(~x, t) ≈
N∑
i=1

f(~x− ~xi)~αi (2.26)

where ~xi and ~αi are the position and strength (vorticity times volume) of particle

i, and f(~x − ~xi) is the particle vorticity distribution function. Depending on how

particle vorticity is distributed, they are classified as singular or regularized particles.

The particles can be interpreted as a small section of a vortex tube, with the ad-

vantage that the particles are independent in the sense that they do not necessarily

belong to the same vortex filament for all times [113]. This absence of particles con-

nectivity provides the VVPM with an inherent adaptivity to the flow-field, avoiding

intersecting vortex tubes and capability to take into account wake viscous diffusion.

Such capabilities allow the modeling of complex interactions, as the interaction and

mixing of two propellers wakes, illustrated in Figure 2.6, where the blue dots represent

the positions of the particles.

Figure 2.6: Frontal view of two adjacent propeller wakes, illustrating capability of
VVPM to model complex interaction phenomena, like wake mixing
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Based on the vortex particles positions and strengths in a given time, the induced

velocity at any point in the domain can be determined. The particles can translate

with the local flow velocity and change their strength due to the interaction with

other particles and lifting surfaces present.

2.4.1.3 Combining VVPM with Potential Methods

In order to take into account the mutual aerodynamic influence between the air-

craft lifting surfaces and the propellers, we need to combine a potential approach

(UVLM) with an approach that includes both, viscous and rotational effects (VVPM).

For that, as in the studies of Willis [21] and Martin [124], who also combined a po-

tential approach with VVPM, we make use of the Helmholtz decomposition [125],

which assumes that any sufficiently smooth, rapidly decaying vector field, can be

decomposed in the sum of an irrotational (curl-free) vector field and a rotational

(divergence-free) vector field. In the present context, this means that the velocity

field can be represented by the superposition of an irrotational velocity field, ~uΦ, as-

sociated with the UVLM solution and represented by the scalar potential function

Φ and a rotational velocity field, ~uΨ, associated with the LL/VVPM solutions and a

vector potential function ~Ψ and the velocity field can be written as:

~u = ~uΦ + ~uΨ = ∇Φ +∇× ~Ψ (2.27)

In fact, if one applies the divergence operator at the Eq. 2.27, as the divergence of

the rotational velocity is zero, it will result in the Laplace equation, ∇2Φ = 0 which

is the basis for the solution approach in UVLM. By the other hand, if one applies

the curl operator at Eq. 2.27, the vorticity field is obtained, ~ω = −∇2~Ψ, which, as

expected, does not depend on the potential flow solution.

Lastly, the boundary condition in the UVLM method needs to be adapted to ac-

count for the rotational velocity field. This is done simply by adding the propeller
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induced velocities in the non-penetration boundary condition. The boundary con-

dition in the far-field is automatically satisfied, as the induced velocities due to the

particles decrease quadratically with the distance of a given point to them, going to

zero in the infinity.

2.4.2 Singular Particle Representation

In the classical proposition of the Vortex Particle method, the vorticity field is

assumed to be concentrated at discrete points, called singular particle or point vortex

[113,126] and can be written as:

~ω(~x, t) =
N∑
i=1

δ(~x− ~xi)~αi(t) (2.28)

where δ(x) is the 3D δ-function, and ~xi is the particle position and ~αi corresponds to

its strength, which is given by the particle volume times the vorticity, ~αi = ~ωivolp.

Then, in this approach, the region outside of the vortex particles is irrotational.

Detailed mathematical approximation for this choice of particle representation can

be found in [127–129].

As previously discussed, the rotational velocity field is determined from the vor-

ticity field as the curl of a streamfunction (vector potential) ~Ψ which solves:

~ω = −∇2~Ψ (2.29)

The streamfunction can be found in terms of the Green’s s solutions for −∇2,

which in unbounded domain is given by G(~x) = 1/(4π|~x|) [113], resulting in:

~Ψ(~x, t) = G(~x) ~ ~ω(~x, t) =
N∑
i=1

G(~x− ~xi)~αi(t) =
1

4π

N∑
i=1

~αi(t)

|~x− ~xi|
(2.30)
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where ~ stands for the convolution product.

And finally the rotational velocity field can be then obtained by:

~uΨ(~x, t) = ∇× ~Ψ(~x, t) =
N∑
i=1

~K(~x− ~xi)× ~αi(t) (2.31)

where ~K(~x− ~xi) is the Biot-Savart kernel, given by:

~K(~x− ~xi) = − 1

4π

~x− ~xi
|~x− ~xi|3

(2.32)

From a quick examination of the Biot-Savart kernel, one can conclude that it is a

singular function, leading to numerical instabilities when particles move toward each

other. In order to overcome this problem, the concept of “regularized particles” also

known as “vortex blob” was introduced [117] and is widely applied by studies using

VVPM.

2.4.3 Regularized Particle Representation

As illustrated in Figure 2.7, the basic idea of regularized particles is to substi-

tute the 3D δ-function, δ(~x− ~xi), in the vorticity field representation (Eq. 2.28) by a

distribution function (known as regularization function, regularized smoothing kernel

or also cutoff function), ξσ(~x − ~xi), such that the point vortex particles are trans-

formed into vortex “blobs” with a finite core σ. Using this regularization function,

the vorticity field is now written as:

~ωσ(~x, t) = ξσ(~x− ~xi) ~ ~ω(~x, t) =
N∑
i=1

ξσ(~x− ~xi)~αi(t) (2.33)

where ~ωσ(~x, t) is the regularized representation of the vorticity field and ~ω(~x, t) is the

vorticity field represented by the singular particles (Eq. 2.28).
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Figure 2.7: Vorticity representation for singular versus regularized particles

2.4.3.1 Regularization Functions

A function is called smoothing kernel if it is a continuously differentiable C∞

function, ξ(ρ), and satisfies the normalization constraint, which, for three-dimensional

radially symmetric functions, is given by [126]:

∫ ∞
0

ξ(ρ)ρ2dρ =
1

4π
(2.34)

A smoothing kernel is said to be of order r ε N0 if the following moment conditions

are satisfied [126]:

∫ ∞
0

ξ(ρ)ρ2+sdρ = 0, for all 2 ≤ s ≤ r − 1, s even (2.35)

∫ ∞
0

|ξ(ρ)|ρ2+rdρ <∞ (2.36)

Finally, a function with the format:

ξσ(ρ) =
1

σ3
ξ(
ρ

σ
), σ > 0 (2.37)
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is called regularized smoothing kernel with with core size σ, where ξ(ρ) a smoothing

kernel function.

The normalization condition ensures the conservation of the total vorticity and

can be seen as a moment condition of order zero, while the other moment conditions

ensure the conservation of higher momenta, as linear and angular momentum [126].

The order of a kernel is related to the convergence rate (higher order implying faster

convergence rate). This conservation of higher momenta, however, brings a loss of

positivity, causing opposite signs of the smoothed vorticity field, and for positive

smoothing kernels, the order needs to be r ≤ 2 [126].

There are many possibilities for the choice of the regularized function (regularized

smoothing kernel). Examples of two and three-dimensional kernels can be found

in [113, 130–132]. In this work, Gaussian smoothing kernel, with order r = 2, was

used.

ξ(ρ) =
1

(2π)3/2
e−ρ

2/2 (2.38)

Resulting in the regularised smoothing kernel:

ξσ(ρ) =
1

σ3(2π)3/2
e−ρ

2/(2σ2) (2.39)

Gaussian smoothing regularization function is a common choice for regularized

vortex particle, as in [17,20,133–135].

2.4.3.2 Regularized Velocity Field

Similarly as in Eq. 2.29 for the singular particle representation, the regularized

streamfunction, Ψσ is related to the regularized vorticity field ωσ by:

~ωσ = −∇2 ~Ψσ (2.40)

53



Defining G(ρ) in terms of the selected smoothing kernel ξ such that [113]:

− ξ(ρ) = ∇2G(ρ) =
1

ρ

d2

dρ2
((ρ)) (2.41)

The regularized stream function can be determined by:

Ψσ(~x, t) = G(~x) ~ ωσ(~x, t) = Gσ(~x) ~ ω(~x, t) =
N∑
i=1

Gσ(~x− ~xi)~αi(t) (2.42)

where Gσ(~x) is defined as Gσ(~x) = (1/σ)G(|~x|/σ).

Finally, the regularized rotational velocity field can be obtained:

~uΨσ = ∇×Ψσ(~x, t) =
N∑
i=1

∇Gσ(~x− ~xi)× ~αi =
N∑
i=1

Kσ(~x− ~xi)× ~αi(t) (2.43)

Noting that K = ∇G, a formula for the direct calculation of kσ as a function of

the selected smoothing kernel is [126]:

Kσ(~x) =
~x

|~x|3
f

(
|~x|
σ

)
(2.44)

with

f(ρ) =

∫ ρ

0

ξ(s)s2ds (2.45)

For the Gaussian smoothing kernel selected for this work, Eq. 2.38, the derivation

of the regularized Biot-Savart Kernel results in:

Kσ(~x) = −~x
[

1

4π|~x|3
erf

(
|~x|√
2σ

)
− 1

(2π)3/2σ|~x|2
e−|~x|

2/(2σ2)

]
(2.46)

Figure 2.8 shows a comparison between the singular Biot-Savart velocity kernel
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and its regularized version using the selected Gaussian smoothing kernel (Eq. 2.38),

for different values of the core radius σ. While the Biot-Savart function goes to

infinity as the distance of the point of interest tot he particle goes to zero, in the

regularized version the velocity reaches a maximum at a distance about the core

radius and then goes to zero as the distance to the particle further reduces. Also,

as the distance increases (outside the core radius) the regularized and the singular

Biot-Savart Kernel become equal.

0 0.5 1 1.5 2
|x|

0

0.5

1

1.5

2

2.5

3

|K
(x

)|

singular kernel
regularized kernel, < = 0.1
regularized kernel, < = 0.15
regularized kernel, < = 0.2

Figure 2.8: Vorticity representation for singular versus regularized particles

2.4.3.3 Overlap Criteria

Detailed mathematical demonstration for the convergence and stability of the

vorticity field represented by regularized vortex particles has been developed in many

studies [117,118,131,136,137]. It has been shown that, for stability and accuracy, the

particles need to satisfy the overlap criteria, which couples inter-particle distances

and core sizes:
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σ

h
> 1 (2.47)

where h is the typical distance between neighbor particles.

This is illustrated in Figure 2.9, which shows a simple example considering three

smoothed particles with core size σ and distance h. By satisfying the overlap criteria,

the particles core region are forced to overlap, allowing particles to “communicate”

with each other [126,127].

Figure 2.9: Overlap Criteria: σ/h > 1.

This overlap criteria is essential, as the error associated with the representation of

the vorticity field using regularized particles has been demonstrated to be proportional

to (h/σ)m [16,113], where m is related to the number of derivatives that exist for the

chosen smoothing kernel and is usually much greater than one.

Also, as one can observe from Figure 2.8, as the value of the particle core radius

σ increases, the regularised velocity field becomes more and more smooth, and even-

tually will not be representative of the continuous vorticity field anymore. Then, the

core radius, σ, needs to be as small as possible but satisfying the overlap criteria.

The exact relation between σ and h that would provide an ideal representation of

the vorticity field was the object of many studies, and explicit analytical relations were

proposed for some two-dimensional cases [130,138–140]. However, three-dimensional
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cases are often more complicated, and the relation between σ and h depends on the

geometric considerations for each case [126,141,142].

In this work, and unless otherwise stated, the value of the parameter σ is constant

for all the particles and calculated by multiplying a reference length (related to the

distance between neighbor particles), h0, by a factor c, chosen based on the conver-

gence of CT . It should be noted that the convergence of the vortex particle method

was proven for both a uniform smoothing parameter and a varying-size smoothing

parameter [20].

2.4.4 Evolution Equations

Substituting the vorticity representation, given by Eq. 2.33, into the incompress-

ible vorticity-velocity equation in Lagrangian form, Eq. 2.26, results in the evolution

equation for the strength of each particle i, as given by Eq.2.48. Also, vortex particles

are considered fluid elements and, as so, travel with the local flow velocity (taking

into account free-stream, velocity induced by particles, velocity induced by blades and

any other influences in the velocity field), leading to the particle convection equation

(Eq. 2.49).

D~αi
dt

= [~αi · ∇]~u+ ν∇2~αi (2.48)

d~xi
dt

= ~u(~xi, t) (2.49)

Equations 2.48 and 2.49 are the viscous vortex particle evolution equations, gov-

erning the update of particles strength and positions at each time step. The first

term in the right hand side of Eq. 2.48, [~αi ·∇]~u, corresponds to the stretching effect,

corresponding to vortex stretching and rotation due to the velocity field gradient.

The second term in the right hand side of that equation, ν∇2~αi, corresponds to the
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viscous diffusion, corresponding to the vorticity diffusion due to the viscous effects.

More details about the calculation of each of those terms will be provided on the next

sections.

Another important aspect to comment about Eq. 2.48 is about its mathematical

representation, which can have different implications for the numerical implementa-

tion [102,113,126]. The way the strength evolution equation is written in Eq. 2.48 is

called “classical scheme” or “direct scheme.” Making use of ∇·~u = 0 and ~ω = ∇×~u,

Eq. 2.48 can be re-written as:

D~αi
dt

= [~αi · ∇T ]~u+ ν∇2~αi (2.50)

which is called “transposed scheme” or, alternatively, as:

D~αi
dt

= [~αi · (∇+∇T )]~u+ ν∇2~αi (2.51)

which is called “mixed scheme.” It should be noticed that only the stretching term

changes from one form to another.

The three schemes given by equations 2.48, 2.50 and 2.51 would be identical if we

could guarantee that the vorticity field defined by Eq. 2.33 is equal to the velocity

field calculated in Eq. 2.43, i .e., ~ωσ = ∇×~uσ at all times. However, the vorticity field

discretized by vortex particles (both singular or regularized) cannot be guaranteed to

be divergent free for all times [113,126]. This is an inherent drawback of the VVPM

formulation, and while there are still ongoing efforts to address this issue and some

existent approaches to tackle this limitation [127], it is not in the scope of the present

work.

From the curl of the regularised velocity field:
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∇× ~uσ = ∇× (∇× ~Ψσ) = −∇2~Ψσ +∇(∇ · ~Ψσ) = ~ωσ +∇(∇ · ~Ψσ) (2.52)

and, as the vorticity field is not guaranteed to be divergent free, this means that

when (∇ · ~Ψσ 6= 0), then ~ωσ 6= ∇× ~uσ and, consequently, the three different formats

of the strength evolution equation will not be equivalent and may lead to different

numerical results [113].

The transpose scheme was favored by Rehbach [102], as the symmetry of the

deformation tensor would reduce the computational cost. By the other hand, the

transposed scheme was shown by Choquin and Cottet [143] to conserve the total

vorticity, a characteristic that the other two schemes do not share. However, as

noticed by Winckelmans and Leonard [113], for regularized particles, the transposed

scheme does not show superior performance in terms of linear impulse and kinetic

energy conservation when compared to the classical scheme.

Although it is not conservative in terms of total vorticity, the classic scheme was

noted to have the property of not amplifying initial disturbances of the divergence-

free constraint [126,127], such that the following equation holds for the divergence of

the discretized vorticity, ∇ · ~ωσ [127]:

∂(∇ · ~ω)

∂t
+∇ · (~u(∇ · ~ω)) = 0 (2.53)

The transposed and mixed schemes do not share this property. Considering this

advantage over the other schemes, the classical form was chosen for this work. Finally,

in order to calculate the right hand side of Eq. 2.48, each term on the right hand side

will be determined separately, as summarized in the next sections.
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2.4.4.1 Vortex Stretching Effect

The isolated contribution of the stretching effect to the evolution of the particle

strength is given by:

(
D~αi
dt

)
stretching

= [∇~u(~xi, t)] · ~αi (2.54)

In this work, the gradient of the velocity field ~u = ~uφ + ~uΨ was approximated to

the gradient of the rotational velocity field only:

∇~u ≈ ∇~uΨ (2.55)

which means that the stretching effect due to Vortex Lattice panels was not taken

into account. As will be shown later, this approximation resulted in good agreement

for the propeller-wing verification case.

The rotational velocity field is given by Eq. 2.43 and can be re-written in a matrix

form as:

~uΨ(~xi, t) =
N∑
j=1

[α̃j][Kσ(~xi − ~xj)] (2.56)

where [α̃j] is the skew-matrix associated with the vector ~αj.

The gradient of ~uΨ(~xi, t) can be, then, written as:

∇~uΨ(~xi, t) =
N∑
j=1

[α̃j][∇Kσ(~xi − ~xj)] (2.57)

And, for the Gaussian smoothing kernel selected, the kl element of the matrix

[∇Kσ(~xi − ~xj)] (with k and l the row and column index, respectively) is given by:

[∇Kσ(~xi − ~xj)]kl = δklH(ρ)− 1

σ5
F (ρ)(xik − xjk)(xil − xj l) (2.58)
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where H(ρ) and F (ρ) are defined as:

H(ρ) =
1

σ3ρ2

(
1

4πρ
erf(

ρ√
2

)− 1

(2π)3/2
e−ρ

2/2

)
(2.59)

F (ρ) =
3H(ρ)− ξ(ρ)

ρ2
(2.60)

with ρ = |~xi−~xj|/σ and ξ(ρ) corresponding to the Gaussian smoothing kernel defined

by Eq. 2.38.

Finally, substituting Eq. 2.57 into Eq.2.54, the contribution of the stretching effect

in the evolution of particle strength can be determined.

2.4.4.2 Viscous Diffusion Effect

The isolated contribution of the viscous diffusion effects to the evolution of parti-

cles strengths is given by:

(
D~αi
dt

)
viscous

= ν∇2~αi (2.61)

There are many existent approaches for the numerical treatment of the Laplacian

term ∇2, and a comprehensive overview of those approaches applied to viscous vortex

methods can be found in Barba [144] and Barba et. al. [140]. In this work, the

particle strength exchange (PSE) method [127, 145, 146], a widely used scheme with

a consistent convergence statement [126], was applied.

The basic idea of the PSE is to approximate the Laplacian operator by an integral

operator, avoiding the numerical differentiation (which has a poor accuracy compared

to integral operation). The integral operator is then discretized by making use of the

particles representation of the vorticity field.

First, the approximation of the Laplacian of the vorticity by an integral is given

by:
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∇2~ω(~x) ≈ 2

σ2

∫
ησ(~x− ~y)[~ω(~y)− ~ω(~x)]d~y (2.62)

where ησ(~x) is a regularized smoothing kernel satisfying moment conditions very

similar to the ones defined by equations 2.35 and 2.37 (more details in [126]). In this

work this kernel was chosen as the Gaussian distribution defined in Eq.2.38 and also

used for the particles regularization.

The second step is to discretize the integral by applying the midpoint quadrature

over all particles positions, resulting in:

∇2~ω(~x) ≈ 2

σ2

N∑
j=1

ησ(~x− ~yj)[~ωj(~yj)− ~ω(~x)]Vj (2.63)

where Vj is the volume associated with particle j. Now, in order to evaluate the

viscous diffusion term at a particle position ~xi, Eq.2.63 is integrated over the volume

Vi of a particle i:

∫
Vi

∇2~ω(~x)d~x ≈ 2

σ2

N∑
j=1

∫
Vi

ησ(~x− ~yj)[~ωj(~yj)− ~ω(~x)]Vjd~x (2.64)

And applying again the midpoint quadrature and substituting ~αi = ~ωiVi and

~αj = ~ωjVj:

∫
Vi

∇2~ω(~x)d~x ≈ 2

σ2

N∑
j=1

ησ(~xi − ~yj)(Vi~αj − Vj~αi) (2.65)

Finally, from Eq.2.61, the contribution of the viscous diffusion on the particles

strength evolution is given by:

(
D~αi
dt

)
viscous

=
2ν

σ2

N∑
j=1

ησ(~xi − ~yj)(Vi~αj − Vj~αi) (2.66)
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2.4.5 Generating New Particles

After each time step, new particles are generated satisfying the conservation of

vorticity.

~Γwake = −d
~Γ

dt
+ ~ub(∇ · ~Γ) (2.67)

where ~Γwake is the circulation shed into the wake, ~Γ is the bound circulation and ~ub

is the resultant relative velocity between the air flow and the blade.

In the preceding equation, the first term corresponds to the vorticity shed into

the wake due to the time-varying circulation, called shed vorticity (associated with

shedding particles). The second term corresponds to the vorticity shed into the

wake due to the gradient of circulation (in this case, the spanwise distribution of

circulation), and is called trailing vorticity (associated to trailing particles).

In this work, where lifting line is used to model the blades, the shed particle

strength from each segment is calculated as:

(~αshed) =
d~Γ

dt
dt s (2.68)

where ~Γ is the circulation at the given blade segment, dt is the size of the time

step, and s is the length of the blade segment (as shed particles represent vorticity

aligned with blade segment). The derivative of the circulation, d~Γ/dt, is calculated

numerically by a second-order backward scheme, similarly as done in the Vortex

Lattice by using Eq.2.18. The positions of new shed particles are located in the

centroid of the area that each blade segment travels in one time step.

The trailing particle strength is related to the spatial change of circulation from

one segment to the next and is given by:

~αtrailing = (Γi−1 − Γi) ~vb dt (2.69)
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if the propeller generates positive thrust rotating in counterclockwise direction (for

one looking in front of the propeller) and,

~αtrailing = −(Γi−1 − Γi) ~vb dt (2.70)

if the propeller is rotating in clockwise direction, where Γi and Γi−1 are the scalar

values of circulations at adjacent blade segments i − 1 and i with i increasing from

root to tip (for tip it means tip circulation minus zero), and ~vb is the blade velocity

with respect to the flow. Similarly as for shed particles, the position of new trailing

particles are located in the middle of the line given by ~vb dt, representing the line

traveled by each grid points in one time step. The direction of the trailing particles

strength is such that the resultant induced velocity created by the trailing particles

is along the opposite direction of thrust. Then, depending on what is the direction of

rotation of propeller that generates positive thrust, the strength direction may have

the same or opposite orientation to the local flow velocity.

2.4.6 Particle Refinement

Due to the different velocity gradients inside the domain, as the simulation evolves

particles may concentrate in areas of negative gradient and spread in areas with posi-

tive gradient. This may lead to the non-satisfaction of the core overlap condition, re-

sulting in unphysical behavior and numerical instabilities for longer simulation times.

In the simulation of a 2D axisymmetric inviscid vortex patch example presented by

Speck [126], for instance, non-negligible distortions of the vorticity field are noticed

to start at about 10 seconds of simulation.

Then, in order to make the VVPM simulation more robust for longer simulation

times, a method acting on restoring the vortex overlap condition is necessary. This

may be done by refining the locations where the vortex stretching is intense [113].
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While this is still an ongoing research area, there are many approaches available on

literature that aim to avoid the numerical instabilities due to the non-satisfaction of

overlap condition. Among them, it is common the use of grid-based approaches, as

the methods summarized in [127]. Such grid-based approaches create new particles

satisfying the overlap condition located at the grid nodes. However, the use of grid

brings complexity and remove one distinctive advantage of the VVPM Lagrangian

formulation, which is to be a meshless approach.

In this work a simple meshless approach proposed by Winckelmans and Leonard

[113] is used to split particles whenever a particle strength doubles its initial value

|~αi(t)| ≥ 2|~αi(0)|, restoring the overlap initially established. If that condition occurs,

then the particle is split into two particles with vorticity equally distributed:

~αnew =
1

2
~αi (2.71)

And located at positions:

~xnew = ~xi ± crσ
~αi
|~αi|

(2.72)

where cr is a factor chosen such that the new particles smoothly replace the previous

ones (e.g. crσ = h, where h is a typical distance between neighbor particles). In this

work, a value of 1/4 is used for cr, as also done by Singh and Friedmann [17].

As argumented by Winckelmans and Leonard [113] this choice of strength split and

new particles positions ensures the conservation of total vorticity and linear impulse.

2.4.7 Computational Cost

As commented previously, the VVPM behaves as an N-body problem, with a

characteristic speed of O(N2) for a number N of particles. Then, as the number

of particles increases with time evolution, the cost may increase significantly (yet
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less costly than CFD) and some approach to accelerate or at least limit this cost is

necessary, especially when considering the application in aeroelastic simulations.

In this work, a cut-off distance is applied when particles are sufficiently far away

from the region of interest. The sensitivity of the Viscous Vortex Particle simulation

to the choice of cut-off distance was investigated by He and Zhao [20] for a rotor

model. For that case, it was concluded that the influence of the wake cut-off distance

(rcut) on the simulation results is not significant provided that rcut ≥ 2R. Also, code

parallelization was implemented on the most expensive portions in order to reduce

the computational cost of the remaining particles inside the region of interest.

Although it has not been currently implemented in this work, it is worth to

mention that there are acceleration algorithms developed for N -body problems that

could further accelerate the calculations, being a desirable future step. Two com-

monly used methods in the context of Vortex Particle simulations are the TreeCode

method [147, 148] and the Fast Multipole Method (FMM) [149, 150]. Both methods

require the generation of a data structure (usually in the form of an Oct-Tree) and

differ mainly in the way the tree is traveled and the velocities are evaluated [20]. In

the TreeCode the action of a group of particles on a target particle is approximated

through a multipole expansion if the distance between the center of the particles

cluster and the target is larger than a specified critical distance. In the FMM, if two

groups of particles are far away, the influence of the source group at the center of the

target group is first determined by a multipole series expansion, and then the velocity

at each particle inside the target group is determined by a local Taylor expansion. In

general, the TreeCode algorithm can reduce the cost to O(NlogN) while the FMM

can reduce the cost to O(NlogN) or even to O(N), being, however, more complex in

the conceptual and implementation level [27].
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2.5 Propeller Inertial Effects

To derive the inertial loads that a rotating propeller will transfer to the body,

consider the reference system (as presented in Figure 2.10): i) Inertial frame (I): as

the name implies, a fixed inertial global frame; ii) Body frame (B): a frame attached

to the body, that may translate and rotate with relation to the inertial frame; iii)

Local beam frame (W ): a frame attached to a structural beam node and it may

translate and rotate in relation to the body frame due to elastic deformations; iv)

Propeller frame (P ): a frame whose origin is attached at the propeller hub position

and has no rotation or translation with relation to local frame W ; v) Blade frame (b):

a frame that is attached to one of the propeller blades, has the same origin as the

propeller frame, and rotates with relation to it with the propeller angular velocity.

𝐼

𝐵

𝑊

𝑃 𝑏

Ԧ𝑝B

Ԧ𝑝W

Ԧ𝑝P
Ԧ𝑝i 𝑚𝑖

Figure 2.10: Representation of various reference systems used on modeling blade
inertial effects

It is assumed the propeller configuration is such that: i) all blades have the same
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geometry and mass distribution, and ii) the same angle between adjacent blades.

Note that from i) and ii) one has:

Nblades∑
i=1

~rblade CGi = ~0 (2.73)

where Nblades is the number of blades and ~rblade CG,i is the CG position of the i-th

blade relative to the propeller hub, written in any desired frame. Both assumptions

above are reasonable for most practical propellers.

2.5.1 Propeller Inertial Forces

Consider a structural model for the propeller in which each blade is represented

by a rigid, massless rod with a concentrated mass (equal to total blade mass) located

at the blade CG (the distribution of mass along blades is included below). Then,

the position of one of the concentrated masses i defined with relation to the inertial

frame (I) can be written in terms of the body frame (B) as:

~pmi
= ~pB + ~pW + ~pP + ~pi (2.74)

where, as illustrated in Figure 2.10, ~pB is the position of the origin of the body

frame with relation to the inertial frame, ~pW is defined as the position of the origin

of the local frame with relation to the body frame, ~pP is the position of the origin

of the propeller frame with relation to the local frame, and ~pi is the position of the

point mass i with relation to the propeller frame. While this is a vector sum, it is

convenient to write all the quantities in the body frame.

Recalling rigid-body dynamics theory, the time derivatives of a vector ~r expressed

with respect to two different frames, (I) and (B), rotating with respect to each other

is given by:
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I~̇r =B ~̇r +I ~ωB × ~r (2.75)

where I~̇r is the time derivative of ~r in frame I, B~̇r is the time derivative of ~r with

respect to B, and ~IωB is the angular velocity vector of B with relation to I.

Applying Eq. 2.75, the first and second time derivatives of the vector ~pmi can be

expressed as:

I ~̇pmi
=B ~̇pB+ ~IωB× ~pB+B ~̇pW + ~IωB× ~pW +B ~̇pP + ~IωB ×~pP +B ~̇pi+ ~IωB× ~pi (2.76)

I ~̈pmi
=B ~̈pB +B ~̈pW +B ~̈pP + 2 ~IωB × (B ~̇pB +B ~̇pW +B ~̇pP )

+B ~̇IωB × (~pB + ~pW + ~pP ) + ~IωB × ~IωB × (~pB + ~pW + ~pP )

+ (B ~̈pi + 2 ~IωB × B ~̇pi +B ~̇IωB × ~pi + ~IωB × ~IωB × ~pi)

(2.77)

Note that the superindex B is omitted from this point on since all derivatives are

defined in the B frame.

The inertial force that each mass mi transfers to the structure is:

~Fmi
= −mi

I ~̈pmi
(2.78)

With the assumption that each blade has the same mass, the total force acting on

the propeller hub due to inertial effects is:
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~Fhub =mp(~̈pB + ~̈pW + ~̈pP + 2 ~IωB × (~̇pB + ~̇pW + ~̇pP )

+ ~̇IωB × (~pB + ~pW + ~pP ) + ~IωB × ~IωB × (~pB + ~pW + ~pP ))

+mp/Nblades

Nblades∑
i=1

[ ((~̈pi + 2 ~IωB × ~̇pi + ~̇IωB × ~pi + ~IωB × ~IωB × ~pi)) ]

(2.79)

where mp represents total propeller mass.

Also, from Eq. 2.73, the third line in Eq. 2.79 goes to zero, resulting in:

~Fhub =mp (~̈pB + ~̈pW + ~̈pP + 2 I~ωB × (~̇pB + ~̇pW + ~̇pP )

+I ~̇ωB × (~pB + ~pW + ~pP ) +I ~ωB × I~ωB × (~pB + ~pW + ~pP ) )

(2.80)

Note that if one concentrates the mass mp at the propeller hub location and

follows a similar derivation, the same Eq. 2.80 would be obtained. Then, as expected,

the inertial forces acting on the propeller hub are equivalent to the force acting in a

punctual mass mp located at that location.

2.5.2 Propeller Inertial Moments

Now, consider the propeller inertial moments transferred to the body. The ob-

jective is to determine the moment due to the inertial forces acting on each rotating

punctual mass transferred to the local node position, where the origin of the W frame

is situated. The moment of those forces in relation to the origin of the W frame can

be determined by:

~MW =

Nblades∑
i=1

[ (~pP + ~pi)× ~Fmi ] (2.81)
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where Fmi is giving by Eq. 2.78.

As ~pP is independent of the index i and remembering that ~Fhub =
∑Nblades

i=1
~Fmi,

one can re-write Eq. 2.81 as:

~MW = ~pP × ~Fhub +

Nblades∑
i=1

[ ~pi × ~Fmi ] (2.82)

Then, the moment transferred to the origin of the W frame due to the inertial forces

from the rotating masses is equivalent to the moment with relation to the origin of

the W frame due to a concentrated mass mP at the propeller hub plus a contribution

due to the fact that masses are rotating around the hub. In the next section, this

additional term is further addressed.

2.5.3 Contribution due to Rotating Masses around the Hub

Notice from Eq. 2.77 that I ~̈pmi can be written as a contribution of the hub accel-

eration, ~ahub, which does not depend on the indivudual blade (index i), and a term

due to the rotation of the mass i around the hub. Then, the second term on the right

hand side of Eq. 2.82, ~Mrot, can be expressed as:

~Mrot =

Nblades∑
i=1

−mi[ ~pi×( ~ahub+(~̈pi+2 ~IωB× ~̇pi+
~̇IωB× ~pi+ ~IωB× ~IωB× ~pi))] (2.83)

which yields:

~Mrot = −mi(

Nblades∑
i=1

~pi)×~ahub+
Nblades∑
i=1

−mi[ ~pi×(~̈pi+2 ~IωB× ~̇pi+ ~̇IωB× ~pi+ ~IωB× ~IωB× ~pi)]

(2.84)

Invoking Eq. 2.73, the moment equation simplifies to:

~Mrot =

Nblades∑
i=1

−mi[ ~pi × (~̈pi + 2I~ωB × ~̇pi +I ~̇ωB × ~pi +I ~ωB × I~ωB × ~pi)] (2.85)
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The derivatives ~̇pi and ~̈pi are defined in the body frame, B~̇r =
∑3

i=1 dri/dt ûBi,

where ûBi is the set of unit vectors in the B frame, and they also depend on the

propeller angular velocity (Eq. 2.75 applied between the body and the blade frames).

Also, notice that until here no assumption was made about the angular velocity of

propeller.

If one considers constant angular velocity, the derivatives ~̈pi and ~̇pi can be written

in terms of angular velocity of the propeller frame with relation to the body frame,

B~ωP , and angular velocity of blades in relation to the propeller frame, B~ωb, as:

~̇pi = (B~ωP +P ~ωb)× ~pi (2.86)

~̈pi =B ~̇ωP b~pi + (B~ωP +P ~ωb)× (B~ωP +P ~ωb)× ~pi (2.87)

which clearly shows that ~Mrot accounts for gyroscopic effects of the rotating blades.

2.5.4 Blade Representation with Discrete Masses

Modeling propeller blades as a concentrated mass at its CG will neglect the con-

tribution of inertia due to the distributed blade mass in relation to its CG. Since

this term may not be negligible, the formulation presented above can be extended by

modeling the propeller blade in Nseg rigid segments with a concentrated mass at the

middle of each segment, whose distribution is approximated as a function of its radial

position:

mk = mbladec
2
k/(

Nseg∑
k=1

c2
k) (2.88)

where the index k is related to the radial position along the blade, mblade = mp/Nblades

is the mass of one blade, and ck is the chord at radial position k. Notice that the
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propeller mass mP and the distribution of chord sizes along the radial position are

data typically available in propeller databases. This is not the case for the blade

thickness distribution. Then, for simplicity, the distribution of concentrated masses

was calculated just in terms of the chord distribution.

Equation 2.85 is derived considering each blade is modeled as a concentrated

mass at the same distance from the hub. Then, it holds for each set of masses at the

same radial position k along the blade. Therefore, based on this, one can write the

additional moment ~Mrot as:

~Mrot =

Nseg∑
k=1

Nblades∑
i=1

−mk[ ~pi,k×(~̈pi,k+2I~ωB× ~̇pi,k+I ~̇ωB× ~pi,k+I~ωB× I~ωB× ~pi,k)] (2.89)

2.5.5 Extending UM/NAST Formulation

From the previous formulation (see Eqs. 2.80 and 2.82), it is evident that the

inertial loads acting on the propeller are equivalent to the inertial loads acting on a

point mass mp located at the propeller hub plus a moment contribution due to the

fact that the masses are actually rotating around the hub. Based on this, the inertial

propeller loads were modeled by defining a concentrated mass mp at the propeller hub

(which was already available in UM/NAST) and an additional moment term given

by Eqs. 2.85, 2.86, 2.87, and 2.89.

2.6 Interfacing Disciplines

2.6.1 Interfacing Structure and Aerodynamics

Since the structural model employs a 1D finite element representation and the

uVLM uses 2D non-planar grid, an interface between the two solvers is required to

transfer loads and displacements, as summarized in Figure 2.11. Assuming rigid
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behavior in the chordwise direction (no change in local camber), the local beam

coordinates and orientation given by the UM/NAST structural solver are converted

to a non-planar panel grid by re-writing the camber line coordinates of each section

along the span from airfoil coordinates to body coordinates.

1

Re-write from 
airfoil to body 
frame by using 
rotation matrices

i) Panels to beam: 
Equivalence of 
virtual work

ii) Along beam: 1D 
linear transfer

Figure 2.11: Interface between structural and aerodynamic solvers

The transfer of loads from panels to beam structural nodes is accomplished in two

steps:

i) energy-consistent transfer of loads from the panels to the neighboring points

along the beam given by panel discretization:

Assuming negligible deformations in chordwise direction, the displacements of

each panel quarter point (points located at 1/4 of panel chord from panel leading

edge and half-panel span) can be written as a function of the points given by

spanwise discretization along the beam. Then, in order to have the virtual work
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provided by the distribution of generalized forces on aerodynamic grid points

equivalent to the virtual work performed by the distribution of generalized forces

over the beam nodes, one has:

{δua}T {Fa} = {δus}T {Fs} (2.90)

where {Fa} and {Fs} are column vectors containing the generalized aerodynamic

and structural forces on each point (over the aerodynamic grid and structural

nodes, respectively), and {δua} and {δus} are the corresponding virtual dis-

placements. Then, as the displacements of the quarter-chord points and nodes

along the beam are related by the assumption of a rigid chord-wise direction, an

energy-consistent relation to transfer forces from panels to beam nodes can be

determined.

ii) linear transfer of loads from those points to the structural nodes:

The loads at beam nodes given by span-wise discretization may need to be

transferred to the structural nodes, as aerodynamic and structural span-wise

discretizations can be different. For this case, a linear approach to transfer loads

to neighboring structural nodes is employed. This approach is in accordance with

the UM/NAST assumption of constant strains along each beam element.

2.6.2 Interfacing Lifting Surfaces and Propeller Aerodynam-

ics

To integrate the uVLM for lifting surfaces with propeller modeling, the mutual

influence between them needs to be taken into account. Figure 2.12 illustrates how

the process of integration occurs.

At a given time step, the wing panel and wake panel circulations are updated by
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Calculate new 
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Particle induced 
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Panel and wake 
induced velocities      

on particles

Panel and wake 
induced velocities   

on blades

Loads on 
panels

New grid 

uVLM

Lifting Line + VVP

Figure 2.12: uVLM and propeller model integration approach

uVLM considering the induced velocity due to current particle distribution (calculated

in the previous time step) and blade bound circulation. Then, based on the new

wing and wake panel circulations, the new circulation of the blades are calculated,

the existing particles have positions and strength updated, and new particles are

generated, defining new particle distribution for the next time step. It is important

to notice that the time step used in the propeller solver should be smaller than the

propeller period divided by the number of blades. In order to not restrict the time

step of the dynamic solver by the propeller solver requirements, one should consider

the propeller time step smaller than the global dynamic solver time step. In this

work, and unless otherwise stated, the propeller time step was half of the time step

on the dynamic solver.
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CHAPTER 3

Numerical Implementation

This chapter offers an overview of the numerical implementation of the new com-

ponents related to the propeller development, how they relate to each other, and

how they integrate with the UM/NAST framework. Several block diagrams illustrate

the architecture and workflow of each piece and brief explanations about the steps

and involved functions are provided. The goal is to clarify the solution process and

provide basic information in order to facilitate the usage and future improvements of

the code.

3.1 Numerical Framework Evolution

As mentioned previously, the University of Michigan’s Nonlinear Aeroelastic Simu-

lation Toolbox (UM/NAST) [6,31,32] was used as the basis for this coupled nonlinear

aeroelastic-flight dynamics framework, and enhancements were added to capture the

different propeller effects. The numerical framework of UM/NAST has been evolving

by a collaborative effort of several researchers under the guidance of Professor Carlos

E. S. Cesnik. In Su [76], a summary of the initial steps of this framework development

is presented. The first UM/NAST version was written in MATLAB by Brown [151],

followed by major improvements implemented by Shearer [152] and Su [76]. In order

to improve computational efficiency and extensibility, the code was re-written in C++

(Pang [153]) and has continued evolving until the present.
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Due to this dynamic characteristic of the UM/NAST numerical framework, differ-

ent implementations and integrations were performed along this dissertation in order

to incorporate the formulation presented in the previous chapter, and are briefly

summarized as follow:

• The propeller effects were added in the first UM/NAST C++ version (UM/-

NAST version 2) by i) adapting and integrating an existent Vortex Lattice code

developed by Ritter [81] (writing a corresponding wrapper to communicate the

different codes, which were in C++ and Python/FORTRAN, respectively); ii)

developing an interface between UM/NAST structural solver and the Vortex

Lattice solver; iii) developing and integrating the LL/VVPM propeller solver

with the Vortex Lattice and, finally, iv) implementing the derived gyroscopic

loads formulation, as a function call inside UM/NAST loads calculation. De-

tailed verification of this enhanced framework was performed, with comparisons

for each piece of the integration, as will be presented later in this work.

• To improve the performance and facilitate the integration with UM/NAST, the

Python and FORTRAN portions of the codes were re-written in C++, with i)

a C++ library for the propeller solver, ii) a C++ library for the UVLM solver,

iii) a C++ interface class between a general propeller and lifting surface aero-

dynamics, and iv) an interface class between UM/NAST and the UVLM solver

(which, by its turn, was coupled to the propeller). As by the time UM/NAST

version 3 was already developed, those new developments were integrated into

that version and new verification, now against the previous integration, was

performed.

• Finally, recent improvements have been done to UM/NAST and its organiza-

tion, as well as the way aerodynamic solutions are integrated, resulting in a

completely different version, UM/NAST 4.0. Recent integration of the devel-
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oped C++ codes has been performed with this new UM/NAST structure and

it is currently in its final phase of tests.

3.2 Integration with UM/NAST 4.0

In UM/NAST 4.0 the aerodynamic solvers are no more an intrinsic part of UM/-

NAST core structure, but they are treated as external libraries and linked by an

interface class with the UM/NAST kernel. The UM/NAST itself is a library, and

both libraries, UM/NAST and aerodynamics, are linked and called by an external

driver. This process is illustrated in Figure 3.1, where a high-level overview of the

UVLM/Propeller module is also presented.

UM/NAST 
version 4                               

UM/NAST 
library

UVLM/PROP 
libraryExternal driver:                     

- Read model                           
- Call solvers                             

UVLM module Propeller module

- UVLM solver

- UM/NAST and 
UVLM interface

- Propeller solver

- Prop/wing interface

- Gyro moment function

UVLM/Propeller module

Figure 3.1: Overview integration UVLM/propeller module and UM/NAST 4.0

First, UM/NAST is installed, and a library is generated. Then, the UM/NAST

library is called inside the external aerodynamic module, in this case, the UVLM/Pro-

peller module. The link between the codes is done by inheriting from an interface

class defined inside UM/NAST (class AeroSolver). This plugin class has pre-defined

virtual functions which should be defined with the same name in the corresponding
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external aerodynamic solver, according to UM/NAST 4.0 documentation [154]. The

external solver is also installed and generates a UVLM/PROP library. Finally, both

libraries are directly invoked by an external driver, which reads the model geometry,

the case conditions, and call the respective solvers for the desired simulation.

Based on current 
loads/control inputs 
integrate equation of 

motion  and determine 
new deformed 

geometry

UM/NAST

Interface

uVLM / Vortex Particle

Convert beam 
coordinates into 

panels grid

Transfer loads 
from panels to 
beam nodes

Based on current 
geometry 

calculate new 
loads over the 

panels

Applied loads and 
control inputs

Structural and rigid-body 
dynamics

Unsteady aerodynamics

Based on control inputs and resultant 
loads, calculates new beam 

deformation state

Structural Solver

UM/NAST

Transfer loads 
from panels to 

structural nodes

Converts beam 
coordinates into 
lifting surfaces 

grid

beam geometry,    
rotation matrices, 

vel., etc

Aero   
Loads

UM/NAST 
input 

UVLM/Prop module 

Interface

Steady Vortex Lattice sequence

Unsteady Vortex Lattice sequence

Unsteady Vortex Lattice plus 
Propeller sequence

UVLM/PROP 
input 

Aero Solver

Grid
Loads at 
panels

Gyro loads

Figure 3.2: Overview of integrated UM/NAST and UVLM/Propeller module

As shown in Figure 3.1, the UVLM/Propeller module is organized into two sub-

modules: i) UVLM module, containing the UVLM solver and the UM/NAST and

UVLM class interface, and ii) the propeller module, containing propeller solvers (cur-

rently LL/VVPM solver is the only option, but other propeller solvers can be added,

as will be discussed soon), the propeller and lifting surfaces interface and a function

for the gyroscopic moment implementation. An overview of the workflow of the in-

tegrated UM/NAST and UVLM/Propeller module is presented in Figure 3.2. For

each time step (or static iteration) the current beam coordinates are converted by the

UM/NAST and UVLM interface into an UVLM grid. The selected solver is called
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(static or dynamic, with or without propeller) and the loads from panels (as well as

loads from the gyroscopic moments at propeller hubs) are transferred again by the

interface to the nodes of the UVLM structural beam model. Based on the new loads,

the new geometry is determined, and the process continues.

In the next sections, each piece of the UVLM/Propeller module is presented.

3.3 New C++ Developments

3.3.1 Steady/Unsteady Vortex Lattice Library

The vortex Lattice library was written based on the Python/FORTRAN Vortex

Lattice code developed by Ritter [81]. It is a C++ class and can be used for isolated

aerodynamic analysis as well as the coupling with the UM/NAST framework. Also,

propeller influence was incorporated in the calculation of the panels’ loads and cir-

culation and a static Vortex Lattice solver including averaged propeller effects was

developed. More details about the code are presented in the next subsections.

3.3.1.1 Architecture Overview

Figure 3.3 presents an overview of the Vortex Lattice library architecture. It

consists of a C++ class containing private variables and functions, for internal use

of the Vortex Lattice code only, and public functions and variables, accessible from

external code. The public variables are divided into argument variables and out-

put variables, allowing efficient and quick communication between different codes by

directly accessing and modifying those variables.

For the aeroelastic coupling, two input files are expected: i) an input file called

input uvlm.xml containing several Vortex Lattice parameters, as presented in Ta-

ble 3.1; and ii) a txt input file (with a user-defined name) containing the coordinates

of the airfoils involved, given in the format provided by XFOIL. If the solver is run-
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Functions

Private variables:
specific of vortex lattice solver

Public variables:
acessible/modifiable by external codes 

Argument variables:
- flight conditions
- position/orientation body
- dt, number time steps
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- loads over panels
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Private functions:
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Public functions:
acessible by external codes

PUBLIC VARIABLES
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- initialization functions
- VLM/UVLM solver
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Vortex Lattice 
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grid (if aero 
solver only)

Figure 3.3: Vortex Lattice library architecture overview

ning isolated for pure aerodynamic solutions, then a third file called grid.xml and

containing the model grid should be provided (points provided from root to tip, from

trailing edge to leading edge).

Besides the input files, there are input quantities that may need to be updated

at each step for the aeroelastic coupling or directly determined by an external struc-

tural solver. They are defined as public variables (argument variables) and can be

modified by an external code (in this case, the interface between UM/NAST and the

Vortex Lattice solver). Additionally, they may be provided as arguments of the public

functions calls.

The outputs are also provided by using public variables. In the Vortex Lattice

class, they correspond to the loads over the panels, quarter points coordinates and,

if propellers are present, the induced velocities at propellers control points (blades

and particles). Additionally, if desired, there is the option for saving an output .h5

file containing several quantities like lift distribution, panels loads, delta Cp for each

member and global aerodynamic coefficients (in wind and body frame).
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Table 3.1: Inputs defined in Vortex Lattice XML input file

Parameters for each lifting surfaces

chordwise discretization number of panels in chordwise direction
spanwise discretization number of panels in spanwise direction
type of chordwise discret. linear (0) or sine spacing (1)
type of spanwise discret. linear (0) or sine spacing (1)
flag constant airfoil flag to specify if member has constant (1) or variable (0) airfoil
theta 0 spanwise intial angle interval if spanwise sine spacing is selected
theta end spanwise final angle interval if spanwise sine spacing is selected
theta 0 chordwise intial angle interval if chordwise sine spacing is selected
theta end chordwise final angle interval if chordwise sine spacing is selected
flapping panels chordwise If control surface exist: initial and final index of chodwise panels
flapping panels spanwise If control surface exist: initial and final index of spanwise panels
airfoil at each section airfoils names for each section (just 1 string for cte airfoil)

General parameters

flag control surface mode turn on (1) or turn off (0) control surface
flag set symmetry if half of a symmetric model is provided, (1); otherwise, (0)
flag flapping panels indicate existence of control surfaces; (1) if CS exist, (0) otherwise
max number of wake rows maximum number of unsteady wake rows
steady aero residual tolerance used for the steady vortex lattice solver
steady wake extension extension of the panels of the steady wake
flag second order circ diff (1) if 2nd is desired for circulation differentiation, (0) if 1rs order
flag save output h5 (1) to save .h5 output, (0) otherwise

Aerodynamic coefficients parameter

reference area reference area for calculation of aerodynamic coeff.
reference length refence length for calculation of longitudinal moment coeff.
reference length lateral refence length for calculation of lateral moment coeff.

Drag parameters
flag for induced drag (1) to calculate induced drag, (0) otherwise
flag for viscous drag (1) to calculate estimate viscous drag, (0) otherwise

Gust parameters

flag gust on (1) if gust is active, (0) otherwise
gust switch if = 0, gust is on/off based on t start/end; if = 1, based on position pts
flag gust moving (1) if gust is moving with freestream, (0) otherwise
z y’ for lateral gust; ’z’ for vertical gust
string gust type currently: ’1-cos’ or ’1-cos time’ or ’sharp edge’ or ’DARPA’
gust u ds design velocity (max magnitude) of the gust
gust h gust wave length
gust x 0 chordwise position of end of gust region
DARPA gust lambda parameter related to the spanwise wave length of DARPA gust
DARPA gust phi Param. of DARPA gust to vary the disturbance in spanwise direction
t start time gust starts (for ’1-cos time’ gust or gust switch = 0)
t stop time gust ends (for ’1-cos time’ gust or gust switch = 0)

General propeller parameters

flag propeller on (1) if propeller exists, (0) otherwise
propeller solver name Currently one option: ’VVP propeller’
propeller sub steps number of propeller sub time steps per Vortex Lattice time step

Parameters defined for each propeller (if UM/NAST coupling)

reference member index of member to which propeller is attached (reference member)
reference node index of node (inside reference member) where propeller is attached
hub local y y coord. of hub position wrt UM/NAST local coord. at reference node
hub local z z coord. of hub position wrt UM/NAST local coord. at reference node
prop. inclination with local x angle by which the prop frame may be rotated wrt local ref node x-axis
prop. inclination with local y angle by which the prop frame may be rotated wrt local ref node y-axis
prop. inclination with local z angle by which the prop frame may be rotated wrt local ref node z-axis
prop inclination axis order int of 3 digits (1 for x, 2 for y or 3 for z) with order of the rotations
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Finally, external and customized libraries are also used, as indicated in Figure 3.3.

With the exception of Eigen library, all other third party libraries are already included

in the UVLM/Propeller module for convenience and robustness of installation. The

libraries hdf5, hdf5-eigen, szip and zlib are used for the output process of .h5 files just

described, Eigen is used for matrix operations and general linear algebra involved,

and the pugiXML library is necessary for reading the XML input files.

The customized libraries are: i) xml routines.h: used for the reading of XML

input files; it was ported from UM/NAST and slightly adapted to remove dependen-

cies and allow general use for other solvers; ii) math tools.h: contains additional

math tools not available on Eigen. It was also ported from UM/NAST, removing

dependencies for general use, and new functions were added. iii) gust.h: contains

simple functions to calculate the effect of different gust types on a given point and

can be used by different solvers.

3.3.1.2 Initialization Functions

Figure 3.5 illustrates the initialization of the Vortex Lattice solver. A summary

of the steps is given in the execution order:

• Build grid metrics (function BuildGridMetrics): this step calculates and stores

in internal variables metrics associated with the grid, like control points and

quarter points coordinates, panels’ quarter chord line and normal vectors, pan-

els’ areas, among other quantities. Those grid-related quantities are essential

for the calculation of induced velocities and panels’ loads;

• Initialize panels circulation: initializes with zeros the panels’ circulation and

previous circulations (time t−dt, and t−2dt) matrices. The previous circulations

are updated as the simulation evolves and are used in the calculation of unsteady

panels’ loads;
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Build grid metrics
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Initialize wake

Initialize panels' forces

Calculate initial AIC matrix

Calculate initial BIC matrix

Initialize previous grid

End

Figure 3.4: Flowchart illustrating Vortex Lattice solver Initialization

• Initialize wake (function InitializeWake): initializes matrices containing con-

nectivity information of the points defining each vortex ring element of the

wake, initialize long wake panels if the simulation is steady and initialize wake

circulation with zeros;

• Initialize panels’ forces: initializes matrices containing panels’ loads and pre-

vious panels’ loads (previous static iteration) with zeros; the previous panels’

loads are used for the convergence criteria of the steady Vortex Lattice solver;

• Calculate initial AIC matrix (function AICMatrix): calculates the aerodynamic

influence matrix (AIC) used to solve the non-penetration boundary condition

for the panels’ circulations;

• Calculate initial BIC matrix (function BICMatrix): calculates the BIC matrix,
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used to determine the contribution of streamwise segments of bound vortex

rings in the induced drag calculation;

• Initialize previous grids: initializes with zeros matrices that contain previous

grid coordinates (at times t− dt, and t− 2dt). Those matrices will be updated

and used in the case the solver is unsteady for the calculation the deformation

induced velocity on the panels’ control points.

If the aeroelastic coupling is considered, a similar, however shorter version of

this initialization is called at each new time step (or static iterations): function

UpdateMetricsAeroelastic. This function updates the grid metrics, as well as AIC

and BIC matrices, based on the current grid configuration.

3.3.1.3 Steady Vortex Lattice Solver

As discussed in the formulation part, the solution for steady cases makes use of

long wake panels modeling. This is justified by the fact that, for steady conditions,

all the wake panels in chordwise direction would virtually have the same circulation,

behaving as one long panel. Then, this approach provides equivalent results as a

discretized wake model, at a much smaller cost. The workflow of the steady Vortex

Lattice solver is illustrated in Figure 3.5.

First, if the model has control surfaces and they are active, a function to rotate

the normal vectors of the panels corresponding to the control surface region is called

(RotateNormalVectorsControlSurfaces). A loop is then initiated until the panels’

loads converge and the steps described as follow are performed:

• Calculate rigid body velocity contribution (function RigidBodyInducedVelocity):

takes into account contribution of body translational and rotational velocity on

the effective velocity at the panels’ control points;
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Figure 3.5: Flowchart illustrating steady Vortex Lattice solver

• Calculate wake induced velocities (function WakeInducedVelocity): based on

the current wake circulation and control points positions, calculates induced

velocity of wake at the panels’ control points.

87



• Calculate wake boundary condition (function CalculatingBoundaryCondition):

calculates and adds normal components of the velocities due to rigid body mo-

tion and induced by the wake, in order to be used by the non-penetration

condition system;

• Calculate contribution of wake induced velocity on induced drag (function

WakeInducedVelocityInducedDrag): calculates the wake induced velocities at

panels quarter points. This will be added to the induced velocity of streamwise

bound vortex rings segments in order to determine the induced drag;

• Solve for panels circulations (SolveCirculation): solves the linear system

given corresponding to the non-penetration condition;

• Calculate panel forces (CalculatePanelForcesSteady): calculates the aerody-

namic loads due to panels circulations, and, if desired, the induced drag and an

estimation of the viscous drag;

• Update wake circulation (UpdateWakeCirculation): for the steady solver, cor-

responds to the shedding of circulation from the trailing edge panels of all

surfaces to the long wake panels;

• Check convergence criteria (CheckingSteadyAeroConvergence): checks if dif-

ferences between current panels’ loads and panels’ loads on previous iterations

are below a user-defined tolerance. If this is the case, the converged flag will be

set to true, and the loop terminates.

• Update previous panels’ forces: update current panels’ forces for the conver-

gence criteria checking in the next step;

For the aeroelastic coupled solution, the loop described in Figure 3.5 is called as

many times as necessary for the convergence of the deformed geometry (equilibrium

state).
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3.3.1.4 Unsteady Vortex Lattice Solver

The unsteady loop has many similarities with the steady one, but some additional

steps and peculiarities are present. Here, the focus is given to the main differences.

Figure 3.6 presents an overview of the unsteady loop. Now the loop is determined

by the required number of time steps. For the aeroelastic coupling, each call of the

unsteady solver will perform one step (with time provided as an argument for the

loop).

As in the steady solution, if there are active control surfaces in the model, the

corresponding panels’ normals are rotated by the desired angle using the function

RotateNormalVectorsControlSurfaces. The contribution of rigid body motion and

wake induced velocity on the effective velocity at the control points are them deter-

mined by the functions RigidBodyInducedVelocity and WakeInducedVelocity.

Different from the steady solution, however, new velocity contributions are now

considered: the contribution of gust, if active (function GustInducedVelocity) and

the contribution of the deformation of the lifting surfaces, if coupled to the structural

solver (function DeformationInducedVelocity). Also, although not apparent in the

flow chart, propellers induced velocities are taken into account by updating public

variables containing propeller velocity influence. This is done outside the loop, by

the interface between aerodynamic and propellers, as will be presented soon.

Now, function CalculatingBoundaryCondition also incorporates the normal com-

ponents of the additional velocities mentioned. The contribution of the wake panels

induced velocity on induced drag (WakeInducedVelocityInducedDrag) and the solu-

tion of the linear system (SolveCirculation) is performed similarly as for the steady

loop. The next steps have more differences and are listed below:

• Calculate panels loads (function CalculatePanelForces): besides the steady

contribution (calculated based on Kutta-Jowkowski condition, in the same way

as for the steady case) and the possible drag additions, the unsteady contri-
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Figure 3.6: Flowchart illustrating unsteady Vortex Lattice solver
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bution due to variation of circulation with time is taken into account. Also,

the new velocity contributions (gust, deformation velocity, and propeller) are

included in the loads’ calculation, if they are present;

• Update wake position (function UpdateWakePosition): shed new panels into

the wake, updating wake vortex corner points and the wake connectivity ma-

trices;

• Update wake convection (UpdateWakeConvection): wake is convected with the

onflow velocity (contribution due to body translational and rotational veloci-

ties and gust perturbations). Although not incorporated in the current C++

version, other influences on wake convection can be included as well, allowing

wake relaxation. As previously commented, it was observed in simulations of

representative VFA that the effects of wake relaxation are usually not signifi-

cant [109,110] (while it increases the computational cost considerably);

• Update wake circulation (UpdateWakeCirculation): new entries, correspond-

ing to the circulation shedded from the trailing edge panels into the new wake

panels, are added to the wake circulation matrix;

• Update previous grids and panels’ circulation: previous values of grid and cir-

culation (at t− dt and t− 2dt) are updated for next time step.

3.3.1.5 Steady Vortex Lattice Solver with Propeller

In order to consider the averaged effects of the propellers on the static simulation, a

modified steady solver, based on the unsteady solution with propellers, was developed,

as illustrated in Figure 3.7. Although it is a steady Vortex Lattice loop, this process

is actually located inside the interface between lifting surfaces and propellers (more

details soon) and makes use of the Unsteady Vortex Lattice loop just described. The

steps are:
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Steady Vortex Lattice Solver with Propeller

converged = false

step = 0

Initialize panels' average loads matrix

Initialize previous average loads

converged = true or        
steps > max steps? EndYes

t = step * dt

t > 0? Update blades positions

Call unsteady Vortex Lattice loop for time = t

Update matrix of panels' average loads

step is multiple of 
no_steps_to_average?

Calculate differences of 
current and previous average 

panels' loads

differences smaller          
than tolerance?

converged = 
true

step = step + 1

No

Yes

Yes

No

No

Figure 3.7: Flowchart illustrating steady Vortex Lattice solver with propeller
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• Set flag converged to false and number steps to zero;

• Initialize panels’ average loads and previous average loads matrices to zero;

• then, while converged is false, or number of steps is smaller than the maximum,

execute the steps described as follow;

• Update pseudo time step;

• Update blades positions (function UpdateBladesPosition): update blades’ ra-

dial unit vector, grids and control points positions based on the current pseudo

time step;

• Call unsteady Vortex Lattice loop described in Figure 3.6 (UnsteadyVortexLattice)

for the current pseudo time step (just one execution of the loop);

• Update matrix of panels’ average loads: the average is calculated along a user-

defined number of steps, and the arithmetic mean is calculated;

• If the number of steps for averaged is achieved, check convergence: check if the

difference of average loads on panels is smaller than a user-defined tolerance;

• Update number steps and continue until convergence or maximum number os

time steps is achieved;

3.3.1.6 Additional Public Functions

In order to allow the coupling with propellers, additional public functions are

defined and called appropriately inside the interface between lifting surfaces and pro-

peller aerodynamics:

• InducedVelocitiesPanelsOnSpecifiedPoints: calculates the panels induced

velocities over a given set of points (in this case, propeller blades control points

and particles positions);
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• WakeInducedVelocityOnSpecifiedPoints: calculates the lifting surfaces wake

induced velocities over specified points (again, for this case, propeller blades

control points and particles positions);

Also, as previously commented, there is an optional function (SaveOutputH5) that

allows saving several aerodynamic related quantities in a .h5 file, (e.g. lift distribution,

panels loads, delta Cp, global aerodynamic coefficients).

3.3.2 Lifting Line + Viscous Vortex Particle Propeller Li-

brary

The Lifting Line plus Viscous Vortex Particle Propeller library consists of a C++

class and can be used for isolated propellers aerodynamic analysis (single or multiple

propellers) as well as for the coupling with Vortex Lattice (which may also be coupled

to the aeroelastic solver). Its main goal is to calculate the resultant aerodynamic

loads at propeller hub (that is transferred to the structural solver, for the aeroelastic

coupling) and the influence of propeller blades and wake on the velocity flow-field,

affecting the lifting distribution in the surfaces around. More details about the code

are presented in the next subsections.

3.3.2.1 Architecture Overview

An overview of the Lifting Line plus Viscous Vortex Particle Propeller library

architecture is provided in Figure 3.8. Similarly as for the Vortex Lattice library,

it contains private variables and functions, for internal use of this class only, and

public variables and functions, accessible from external code. The use of public

variables (categorized as argument and output variables) allows efficient exchange

of information between this class and external code.

Two input files are expected: i) a file named input VVP.xml, described in Ta-
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Variables

Functions

Private variables:
internal variables specific of propeller solver

Public variables:
acessible/modifiable by external codes 

Argument variables:
- flight conditions
- position/orientation propellers
- dt, number time steps

Output variables:
- induced velocities
- resultant loads at hub

Private functions:
functions for internal use of propeller solver

Public functions:
acessible by external codes

PUBLIC VARIABLES

PUBLIC FUNCTIONS

- constructors /destructor
- initialization functions
- propeller solver
- functions to calculate induced 
velocities at external points

propeller_vvp_class.h

Propeller input 
(xml file)

airfoil polar data 
(xml file)

External libraries: 
eigen, pugixml

Customized 
libraries: 

xml_routines.h            
math_tools.h 

Figure 3.8: Lifting Line plus Viscous Vortex Particle Propeller library architecture
overview

ble 3.2, containing information about propeller geometry and parameters required

for the LL/VVPM, and ii) an XML file (with a user-defined name) containing polar

data of the airfoils used along the blade, for a range of Reynolds number and angle of

attack. If the vectors containing the values of Reynolds numbers (Re) and angle of at-

tack (AoA) have sizes NRe and NAoA, respectively, then matrices with size NRe×NAoA

need to be provided for the drag, lift and moment aerodynamic coefficients.

As for the Vortex Lattice class some input quantities may vary along the simulation

steps (as propeller positions and flight conditions) or are defined in another code, (.g.

time step), and are provided by the use of public argument variables, being directly

accessed and modified by an external code. Additionally, some inputs are provided

as arguments of the public functions calls.

Outputs to other solvers are provided by public output variables, being directly

accessed and read by external code. In this case, they correspond to the induced

velocities at the surfaces and the resultant loads at propeller hub.
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Table 3.2: Inputs defined in propeller XML input file

Parameters for each propeller

hub position initial position of propeller hub in body frame
rotation (RPM) (+) sign if counterclockwise and (-) if clockwise (looking in front of prop)
rotation direction clockwise’ or ’counterclockwise’ (looking in front of prop)
number segments per blades spanwise discretization of blades
number blades quantity blades
blades initial ang. position in degree, defined wrt positive prop frame spanwise direction
properties blades user defined string labelling the blades properties associated
flag constant airfoil flag to specify if blades have constant (1) or variable (0) airfoil
radius propeller radius
mass mass of propeller blades (for gyroscopic function)

Blades properties

twist distribution (beta) angle between blades and plane of rotation for each section (degree)
r R ratio (radial position)/(propeller radius) for each section along the blade
c R ratio (local chord)/(propeller radius) for each section along blade
airfoil table name vector with names of the associated airfoil XML table for each section

General parameters

number sub time steps number of propeller time steps per external aero time step (e.g. uvlm)
flag shed particles included (1) to include shed particles, (0) otherwise
resolution characteristic length associated to typical distance among particles
factor c sigma factor that multiplied by resolution provides particle core radius, sigma
number source seg per blade number of blade segments (from tip to root) that will release particles
cut off distance cut off distance to eliminate particles from calculations

Optional parameters to measure velocity profile behind propeller

flag measurements on (1) to enable measurement of velocity profile, (0) otherwise
line x coordinate x (chordwise) of line of measurement wrt propeller frame
line z coordinate z (vertical) of line of measurement wrt propeller frame
line y min minimum y coordinate of line wrt propeller frame
line y max maximum y coordinate of line wrt propeller frame
number measurements number of points along line of measurements
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Again, external and customized libraries are used. The external libraries Eigen

and pugixml are used for matrix operations/linear algebra and reading the XML files,

respectively; Eigen is supposed to be already installed in the system. The customized

libraries are xml routines.h and math tools.h, as previously described. In the

current C++ version, gust disturbances are not included in the propeller library, but

this can be done similarly as for the Vortex Lattice class.

3.3.2.2 Initialization Functions

There are three public functions involved in the propeller initialization:

i) SetParticleVortexPropeller: this function is used to read the input data

provided in the XML file in the respective class variables;

ii) ProcessParticleVortexPropeller: this function process the XML data read

into other input variables, as the total numbers of propellers, grid points and propeller

segments; the number of particles per time step; the values of blade twist and chord

at control points; the radial position of grid points and length of segments;

iii) Init: after the previous functions attribute the corresponding values to the in-

put variables, this function initializes the propeller solver, as illustrated in Figure 3.9.

It initializes the blades angular position, the grids coordinates and blades control

points in propeller and body frame, and the blade radial unit vector in propeller

frame.

Also, there is a public function named UpdateBladesPosition, that allows an

external solver to update the blades grids, control points and radial unit vectors

(useful, for example, for the interface with Vortex Lattice).

3.3.2.3 Propeller Solver

Figure 3.10 illustrated the workflow of the propeller solver. The following steps

are executed:
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Propeller Initialization

i = 0 

i < number   
props?

Initialize simulation variables

End

j = 0

j < number   
blades?

Initialize blade angular position

Determine blade grid points in propeller frame

Determine blade grid points in body frame

Determine blade control points in body frame

Determine blade control points in propeller frame

Calculate blade radial unit vector

Yes

No

Yes
No

j = j + 1

i = i + 1

Figure 3.9: Flowchart illustrating propeller initialization function

• While time step is smaller than the user-defined number of iterations, a loop

with the steps described in the following items is executed. For the coupling

with lifting surfaces aerodynamics (and the coupled aeroelastic-flight dynamics

framework), each call of the propeller solver will repeat the loop as many times

as the user-defined number of sub time steps (with updated initial time provided

as an argument);
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VVP propeller solver

i_time = 0

i_time < ntime? End
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profile?

Measure velocity profile at specified plane behind propeller

t > 0? 
Calculate induced velocities particles on particles

Calculate induced velocities particles on blades' control points

Calculate rigid body contribution to the velocity on blades' control points

Calculate propeller rotation contribution to the velocity on blades' control points

elastic coupling?
Calculate contribution of velocity hub on blades' control points

Calculate effective angle of attack on each blade's section

Get distribution of aerodynamic coefficients along the blades

t > 0? Update particles' positions

Update particles' strength

Generate new particles

Claculate resultant aerodynamic loads at propeller hub

Update blades' circulation
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Update previous positions hub

i_time = i_time + 1

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Get distribution of circulation along the blades

Figure 3.10: Flowchart illustrating VVPM propeller solver
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• If velocity profile measurement is desired, measure velocity behind propeller by

the function call MeasurementVelocitiesPropellerWake; this function mea-

sures the components of velocity due to propeller along a straight line at a

user-defined distance behind the propeller; although not currently ported to

C++, in the Python version it was also implemented an alternative function to

measure the velocity profile along a circumference behind the propeller;

• If time is greater than zero (and particles already exist), calculate induced veloci-

ties of the particles on themselves (InducedVelocitiesParticlesonParticles).

This function was implemented such that the cost, without parallelization, is

O(N(N + 1)/2), where N is the number of particles; Also, calculate particles

induced velocities on blades InducedVelocitiesParticlesonControlPoints

at control points positions;

• calculate the rigid body motion (translation and rotation) contribution to the

velocity on blades’ control points (function CalculateRigidBodyInducedVelocity);

for the isolated propeller, this corresponds to the freestream velocity;

• Calculate the contribution of the propeller rotation on the velocity of blades’

control points (function CalculatePropellerRotationInducedVelocity);

• If the code is coupled to external elastic solver, calculate the contribution of

hub motion (function CalculateVelocityHubWithRelationBody) to the blades

control points velocity and update previous hubs positions at t− dt and t− 2dt

for the next step. The hub velocity is calculated by the numerical derivative of

its position in body frame, using a second-order backward scheme;

• Calculate effective angle of attack (function CalculateAoaEffective) for each

section: the total velocity at the blades control points due to due to rigid body

motion (or freestream), propeller rotation, particles influence, elastic deforma-
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tion (if aeroelastic coupling) and external induced velocities due to the presence

of lifting surfaces are first calculated. For the latter, a public variable contain-

ing the external induced velocities on blades is updated by an external solver

(propeller and lifting surfaces interface), in this case accounting for the influence

of surfaces panels and wake panels. Then, taking into account the local blade

twist, the local angle of attack at each control point section is determined;

• Get distribution of the aerodynamic coefficients along the blades (function

GetAeroCoeficientsDistribution): calculates lift, drag and moment coef-

ficients at each blade section based on effective local angle of attack, local

Reynolds number and the respective airfoil polar table provided;

• Get circulation distribution (function GetCirculationDistribution): gets

circulation distribution based on local lift coefficient cl and by applying 2D

Kutta-Joukowski theory for each control point;

• If time is greater than zero (particles exist), update particles positions with func-

tion UpdateParticlesPositions: updates particles positions with relation to

body frame for the next step by convecting particles by the local flow velocity.

Takes into account velocity contributions due to body motion (or freestream),

self-influence of particles, the influence of blades and possible external induced

velocities due to the presence of lifting surfaces (again updating the correspon-

dent public variable in an external interface code);

• Also, if particles exist, update particles strength (UpdateParticlesStrength):

updates the particles’ strength for next step taking into account stretching and

viscous effects as described in the formulation;

• Generate new particles (GenerateNewParticles): following the conservation

of vorticity, new particles are generated for the next step, shed particles (due to
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circulation change with time) and trailing particles (due to gradient of circula-

tion along blade spanwise direction). In order to reduce the computational cost,

the following options are available in this function: i) neglecting shed particles

(this can be a choice when shed particles strength are much smaller than trailing

particles strength), ii) controlling number or particles per blade by defining the

of ’number of source segments’ (number of blade segments, from tip to root,

which release particles. Particle at hub is always included), and, finally, iii)

applying a cut off distance criteria to remove particles far away from the region

of interest;

• Calculate resultant aerodynamic loads at hub (CalculatePropellerLoads):

calculate and integrate loads at each blade segment based on the sectional com-

ponent of total local velocity and the distribution of aerodynamics coefficients;

thrust and power coefficients associated to each propeller are also determined;

• Update blades circulation UpdateCirculation: update previous values of blade

circulation at t− dt and t− 2dt for the next step;

• Update blades position (UpdateBladesPosition): updates blades angular po-

sitions, grids, control points and radial unit vectors for the next step;

• Increment time step and continue the process until the number of steps is

achieved (for aeroelastic coupling with aerodynamics or coupled aeroelastic-

flight dynamics framework, this number corresponds to the number of sub time

steps).

3.3.2.4 Additional Public Functions

Similarly as for the Vortex Lattice class, additional public functions are defined

to allow the coupling between the LL/VVPM propeller and another approach for the

lifting surfaces aerodynamics:
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• InducedVelocitiesParticlesonEvaluationPoints: calculates particles in-

duced velocity at a set of points provided as function arguments;

• CalculateInducedVelocitiesBladesonEvaluationPoints: calculate the in-

duced velocity due to blades in a specified set of points.

3.3.3 Gyroscopic Loads Function

The gyroscopic loads function is implemented in C++ in the UM/NAST version

2 and is currently in process of being integrated with UM/NAST 4.0. It was initially

implemented inside UM/NAST code, taking the propeller inputs from the UM/NAST

input itself. In the new configuration, it will be placed in the propeller module, taking

advantage of the input file for the propeller solver, as the propeller data are shared

for both codes. Figure 3.11 presents an overview of the gyroscopic loads function.

For each propeller and each blade, the following steps are performed:

• For this step, and based on Eq. 2.75, the following relation between the trans-

formation matrix from body to local frame MB2W is applied:

d(MB2W )

dt
=B ω̃WMB2W (3.1)

where BωW is the angular velocity of the local frame with relation to the body

frame, and Bω̃W is its associated skew-matrix.

Then, the numerical derivative of the transformation matrix from local to the

body is first determined. Based on the known transformation matrix from local

to body MB2W and its derivative calculated numerically d(MB2W )/dt, the skew-

matrix Bω̃W is calculated and its associated vector, the angular velocity of the

local frame with relation to the body frame, is obtained;
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Gyroscopic Moment Calculation
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Figure 3.11: Flowchart illustrating function that calculates gyroscopic moment
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• Determine derivative of the rotational velocity of the local frame with relation

to body frame: performs numerical derivative of BωW , using a second-order

backward scheme;

• Determine rotational velocity of blade with relation to body frame: determine

the rotational velocity of blade with relation to propeller Pωb and add to the

rotational velocity of local frame with relation to body (remembering that, as

the propeller frame was defined not to rotate with relation to the local frame in

Chapter 2, BωW is the same as BωP ), obtaining the rotational velocity of blade

with relation to body frame Bωb.

• Calculate first and second derivatives of blade radial unit vector: obtained based

on the relations given by Eq. 3.1, using the rotational velocity of the blade with

relation to the body;

• Loop blades segments and calculate and integrate gyroscopic moment based on

Eqs. 2.89, 2.86 and 2.87;

• Finally, after looping all blades for a given propeller, the associated gyroscopic

moment of the considered propeller is transferred to UM/NAST structural node

where the propeller is attached (reference node).

3.3.4 Propeller and Lifting Surfaces Aerodynamics Interface

Library

The propeller and lifting surfaces aerodynamics interface is a C++ class conceived

for the coupling of a general lifting surface aerodynamics solver and a general propeller

aerodynamics solver. The class is templated in terms of an aero object (a C++ class

containing the lifting surface aerodynamic solver) and a prop object (C++ class

containing the propeller aerodynamic solver).
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As illustrated in Figure 3.12, for each solver (propeller or lifting surfaces), control

points are defined (points where induced velocity needs to be calculated) and induced

velocities are provided for the control points of the other solver. For the LL/VVPM

propeller solver, for example, the propeller solver control points are the blades control

points and particles positions. For the Vortex Lattice, in this case, the solver con-

trol points are the panels control points. The interface calls the appropriate solvers

and intermediates the communication by accessing and modifying standard public

variables for each solvers’ control points and induced velocities.

PROPELLER SOLVER
LIFTING SURFACE 

SOLVER

- Propeller control points 
coordinates

- Propeller induced velocities at 
lifting surfaces control points

- Lifting surfaces control points 
coordinates

- Lifting surfaces induced velocities 
at propeller control points

Figure 3.12: Basic idea of a general aerodynamic interface between propellers and
lifting surfaces aerodynamics

If one of the definitions above does not apply for some of the methods, the re-

spective variables are left empty, not influencing (or being influenced) by the other

solver. In the following sections, more details are presented about the propeller and

lifting surfaces interface class.

3.3.4.1 Architecture Overview

Figure 3.13 presents an overview of the propeller and lifting surfaces interface class.

In this case, no input file is directly necessary, but, if applicable, input files need to

be defined for the selected propeller and lifting surfaces aerodynamic solvers. Also,
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as just commented, the propeller and lifting surface solvers are given as arguments

of the interface, provided by an external code, which can be a driver for the isolated

propeller and lifting surfaces aerodynamics or an aeroelastic interface.

Variables

Functions

Private variables:
specific of interface lifting surfaces and prop

Public variables:
acessible/modifiable by external codes 

Argument variables:
- initial and current times
- strings for lif. surf. and prop solvers
- path to lif. surf. and prop inputs
- flags aeroelastic and unsteady

Private functions:
specific of interface lifting surfaces and prop

Public functions:
acessible by external codes

PUBLIC VARIABLES

PUBLIC FUNCTIONS

- constructors /destructor
- interface solver

interface_aero_propeller.h

Customized libraries: 
xml_routines.h            

math_tools.h gust.h  
propeller_vvp_class.h 
vortex_lattice_class.h

Propeller solver 
object

Lifting surface solver 
object

External libraries: 
eigen, hdf5, 

hdf5-eigen, pugixml, 
szip, zlib

Figure 3.13: Propeller and lifting surfaces interface architecture overview

No public output variable is defined, but the outputs are indirectly given by the

public output variables of the propeller and aerodynamic solvers. Argument variables

are defined: path for the possible input files for selected solvers, strings defining

solvers, flags to turn on/off aeroelastic coupling and unsteady simulation, initial time

and current time. Such variables can be accessed and modified by an external code

(in this case, the interface between UM/NAST and Vortex Lattice).

Each option of lifting surface or propeller solver needs to be added as a library in

the interface class and their respective function calls added in the corresponding places

inside the interface private functions. Also, the external and customized libraries

used for each optional solver need to be integrated with this interface. The interface

assumes a standard variable dt for the time step in the lifting surfaces class and

standard variable t start, corresponding to start time of propellers, for the propeller

solver. No other standard name for variables or functions is assumed, as the specific
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functions or variables are accessed under the condition of the type of solver chosen.

3.3.4.2 Propeller and Lifting Surface Interface Workflow

Figure 3.14 illustrates the propeller and lifting surface interface workflow. This

loop is executed until the specified number of time steps is achieved. For the aeroe-

lastic coupling, each call of this interface will perform one step, and the current time

is provided as an argument.

Inside the loop, the following sequence is executed:

• Update blades control points (UpdateBladesControlPoints): attributes con-

trol points stored in public variable of propeller solver to the internal variable of

the interface; this step is done to allow for flexible choice of propeller approach

and flexible nomenclature;

• Calculate induced velocities of surfaces’ wakes on propeller solver control points

(InducedVelocitiesWakeSufacesOnProp): call to calculate wake surfaces in-

fluence is executed, according to the solver selected. For Vortex Lattice and

LL/VVPM coupling, WakeInducedVelocityOnSpecifiedPoints function is called

to calculate the influence of wake surfaces on the blades’ control points and par-

ticles positions;

• Call selected solver for lifting surfaces aerodynamics (AeroSolver): according

to the approach selected, attributes propeller induced velocities at the lifting

surface solver control points (by modifying the corresponding public variables

inside the lifting surface class), and call the respective solution;

• Calculate velocities induced by surfaces (InducedVelocitiesSufacesOnProp):

according to solver selection, call the appropriate public function to calculate the

influence of surfaces on propeller solver control points. For Vortex Lattice and

LL/VVPM coupling, InducedVelocitiesPanelsOnSpecifiedPoints function
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Interface Lifting Surfaces and Propeller Aerodynamics

i_time = 0

i_time < ntime? End

Update blades control points

Calculate induced velocity surfaces wakes on propeller control points

Call selected lifting surface solver

Calculate induced velocities of lifting surfaces on propeller control points 

Call selected propeller solver

Update surfaces control points

Calculate induced velocities of blades on surfaces

Calculate induced velocities propeller wake on surfaces

Yes

No

i_time = i_time + 1

Update propeller wake control points

Figure 3.14: Flowchart illustrating interface between lifting surfaces and propeller
aerodynamics

is called to calculate the influence of surfaces on the blades’ control points and

particles positions;

• Call selected propeller solver (PropSolver): attributes induced velocities of

lifting surfaces on propellers, by modifying the respective public variables and
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call propeller solver;

• Update surfaces control points (UpdateSurfacesControlPoints): attributes

control points stored in the public variable of lifting surfaces solver to the in-

ternal variable of the interface; this step is done to allow for flexible choice of

lifting surfaces aerodynamic approach and flexible nomenclature;

• Calculate blades induced velocities (InducedVelocitiesBladesOnSurfaces):

Call respective propeller function to calculate induced velocities of blades on sur-

faces and its wake. For Vortex Lattice and LL/VVPM coupling, call for the func-

tion InducedVelocitiesParticlesonEvaluationPoints from propeller solver

is executed to calculate the blades induced velocities at panels control points.

• Induced velocities propeller wake (InducedVelocitiesPropWakeOnSurfaces):

Call propeller function that calculates wake induced velocities at specified points.

For the LL/VVPM, function InducedVelocitiesParticlesonEvaluationPoints

is called to calculate propeller slipstream influence at panels control surfaces;

• Update propeller wake control points (UpdatePropWakeControlPoints): at-

tributes wake control points stored in the public variable of propeller solver to

the internal variable of the interface;

3.3.5 Interface Class UM/NAST and Vortex Lattice

Besides interfacing the UM/NAST 1D structural model and the Vortex Lattice

2D non-planar grid, allowing the transferring of loads and displacements between the

two solvers, the interface class for UM/NAST and Vortex Lattice allows the change

of information between data structure specific of each solver. It works as a “glue,”

linking and interfacing the new C++ developments with the UM/NAST framework.

More details are provided in the next sections.
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3.3.5.1 Architecture Overview

An overview of the interface class between UM/NAST and Vortex Lattice is pro-

vided in Figure 3.15. As with the interface between lifting surfaces and propellers,

this class does not have a direct input file, but the respective input files for the solvers

involved need to be defined.

Variables

Functions

Private variables:
specific of interface UM/NAST  and UVLM

Public variables:
acessible/modifiable by external codes 

Argument variables:
- UVLM grid
- path to UVLM 
- if existent, path to prop input
- pointers to UM/NAST data 
- UVLM object

Private functions:
specific of interface UM/NAST  and UVLM

Public functions:
acessible by external codes

PUBLIC VARIABLES

PUBLIC FUNCTIONS

- constructor/destructor
- initialization function
- 'ComputeAeroLoads' solver
- Link functions 

interface_nast_uvlm.h/cpp

Customized libraries: 
xml_routines.h            

math_tools.h gust.h  
propeller_vvp_class.h 
vortex_lattice_class.h 

interface_aero_propeller.h

Output variables:
- UVLM object

AeroSolver 
class 

(UM/NAST)

External libraries: eigen, 
hdf5, hdf5-eigen, pugixml, 

szip, zlib

Figure 3.15: Interface class UM/NAST and Vortex Lattice architecture overview

As commented at the beginning of this chapter, in order to link this interface

with UM/NAST 4.0 data and workflow, this class inherit from the UM/NAST class

AeroSolver, defined inside UM/NAST 4.0, in order to allow the coupling between

this new UM/NAST version with external aerodynamic solvers. Also, standard public

functions defined as virtual functions in the AeroSolver class need to be defined and

implemented in the external aerodynamic solver class. Currently, these virtual func-

tions are i) Initialize, for some necessary initialization of the external solver; ii)

ComputeAeroLoads, where the interface and aerodynamic solver call happens, and iii)

the link functions LinkModel and LinkStructuralSolver, which links UM/NAST

classes containing data about the model and quantities related to the structural/flight

dynamic solver. Also, as a last observation about the coupling, both UM/NAST 4.0
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and the external aerodynamic solver (in this case, named UVLM/Propeller module)

are libraries that need to be installed and called by an external driver, where the

aeroelastic solution finally takes place, as illustrated in Figure 3.1).

As with the other classes presented previously, public argument and output vari-

ables are defined and can be accessed by an external solver (driver). Finally, the

external and customized libraries used for this class are summarized in Figure 3.1).

3.3.5.2 Initialization Functions

Figure 3.16 illustrate the initialization function of the interface between UM/-

NAST and Vortex Lattice/Propeller.

• First, the UVLM input parameters, whose path is in a public variable provided

by the driver, is read and processed.

• Then, if propellers are defined, the corresponding input file for the propeller

solver (currently LL/VVPM is the only option) is read and an object of the

class that interfaces lifting surfaces and propellers is created;

• Propeller grid, as well as root points matrices, are initialized with zeros. The

“root points” the aerodynamic Vortex Lattice grid intersects with structural

beam model representation (determined by Vortex Lattice spanwise discretiza-

tion). They are important for the functions that transfer loads/displacements;

• Finally, airfoils coordinates are processed and the associated camber line deter-

mined.

3.3.5.3 UM/NAST and Vortex Lattice Interface Workflow

A brief overview of the Compute aerodynamic loads function is illustrated in

Figure 3.17:
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Initialize interface UM/NAST and UVLM

Read and process input parameter for UVLM solver

Propellers 
exist?

Read and process input according to propeller 
solver chosen

Create object of interface lifting surfaces/propeller 
and attribute input information

Initialize propeller grid and "root points" matrices

Process airfoil coordinates

End

Yes

No

Figure 3.16: Flowchart illustrating initialization interface between UM/NAST and
Vortex Lattice solver

• First, based on the current model geometric configuration provided by UM/-

NAST, the Vortex Lattice grid is generated (function Beam2Wing): first calcu-

lates coordinates of root points by using UM/NAST formulation (summarized

in Chapter 2); based on the root points positions (in body frame), correspond-

ing local frame orientations and camber line information, and assuming rigid

behavior in chordwise direction, the Vortex Lattice grid is detemined;

• Call appropriate Vortex Lattice solver (CallVortexLattice): steady without

propeller, unsteady without propeller, steady with propeller or unsteady with

propeller; for each case the necessary arguments are obtained and the corre-

sponding solver is called;

• Once calculated, the loads over the panels are transferred to the structural

nodes (Wing2Beam): first the loads are transferred from panels to root points,
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Compute aerodynamic loads

Convert current beam nodes coordinates to Vortex Lattice grid

Call appropriate Vortex Lattice solver 

Convert aerodynamics loads from panels quarter points to structural nodes

Propeller exist?
Transfer resultant loads on the hub to 

associated structural nodes 

Transfer aerodynamics loads to UM/NAST variable

End

Yes

No

Figure 3.17: Flowchart illustrating initialization interface between UM/NAST and
Vortex Lattice solver

considering geometric relations between the quarter points (where loads are

apllied) and the root points (assuming rigid chordwise direction) and making

use of conservation of virtual work; then, the loads are transferred from to

root node to neighboring structural nodes by using a linear interpolation (in

accordance with the fact that strains are assumed constant for each UM/NAST

element);

• If propellers are present, transfer resultant loads from propeller hub to associ-

ated structural nodes;

• Finally, transfer aerodynamic loads to UM/NAST variable.
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CHAPTER 4

Stability Analysis of VFA Including

Propellers

Traditionally, two main approaches are used to extract dynamic information (fre-

quencies, damping, and modes) and perform a stability analysis of an aeroelastic

system: frequency and time-domain methods. The frequency-domain methods are

primarily developed for linear aeroelastic systems, as they assume the superposition

of signals with different constant frequencies. Therefore, they are more suitable for

problems with small deformations. Typical methods for stability analysis based on

frequency domain are the k method [155], p-k method [156] and p method [157].

For very flexible aircraft undergoing large deformations, however, strong nonlin-

earities can arise, and time-domain methods are usually preferred [158]. Examples

of time-domain methods for stability analysis are reviewed in McNamara and Fried-

mann [159]: moving-block approach (MBA) [160], least squares curve-fitting method

(LSCFM) [161] and system identification using the autoregressive moving-average

(ARMA) model [162].

Even for linear systems, the complexity of the problem can make the use of

frequency-domain techniques a cumbersome task, as the equations are not easily ma-

nipulated. In this case, time-domain simulations may also be preferred. In Silva [163],

for example, the dynamic information of a linear transonic aeroelastic problem based

on modal solutions is obtained by the system identification of CFD simulations.
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In UM/NAST, the flutter solution is obtained based on the linearization of the

governing equations of the system. The model is first linearized about its trimmed

condition, and then the dynamic information is extract based on the eigendecompo-

sition of the so-called state matrix A. This was developed by the original UM/NAST

aerodynamic formulation, which used Peters’ inflow theory.

Incorporating the UVLM aerodynamics for the lifting surfaces and LL/VVPM

formulation for the propellers in the UM/NAST linearized formulation would require

an in-depth review of the linearization formulation. Also, while the analytical expres-

sions of Peters’ inflow theory allow a direct coupling with the structural equations,

the same is not the case for the UVLM and LL/VVPM approaches, which are solved

separately from the structural solver at each time step. This option was, then, out

of the scope for the present work. Instead, an alternative approach for the stability

analysis of VFA was proposed and applied [164]. The approach makes use of sys-

tem identification combined with Proper Orthogonal Decomposition (POD) modes

(Sys ID + POD) in order to reduce the number of degrees of freedom (outputs) of

the problem. This is important, as the system identification is not well suited for a

high number of outputs. Another advantage is that a modal structural approach is

not required and the method can be used for deformed configurations far from the

undeformed condition.

This chapter describes how the Sys ID + POD method was applied and presents

verification results for an available purely structural reference.
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4.1 Alternative Approach to Extract Dynamic In-

formation

4.1.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is a powerful method, based on statistical ap-

proaches, used to extract a compact basis representation of a large set of data, typ-

ically a matrix containing several snapshots of the dynamic system states. The two

primary goals for which it is usually applied are the order-reduction of a dynamic

system with large number of states (or, alternatively, a compact representation for an

output-based approach) and the extraction of insightful information about the phys-

ical characteristics associated with the data set [165], as the extraction of dominant

features from experimental data [166]. It has been demonstrated to be a preferred

basis for many applications, becoming widely applied in several different fields of en-

gineering such as imaging processing, signal analysis, chemical engineering, oceanog-

raphy, civil engineering, structural dynamics, and aerodynamics [166].

One fundamental characteristic of the POD method is that it offers an optimal

choice of the compact basis, minimizing the average squared distance between the

original signal and its reduced linear representation [165], often making use a sur-

prisingly few numbers of modes [166]. It is important to note, however, that for the

resulting basis to be a good representation of the real system, the signal provided

needs to be generated in a manner to excite the main dynamic features of the system

main dynamic features. Another important characteristic is that, although the POD

method provides a linear representation of the signal, it makes no assumption about

the linearity of the problem, becoming an attractive approach for non-linear systems.

The POD method was developed independently by different people. Lumley [167]

attributes its origin to the independent investigations of Kosambi (1943), Loéve

(1945), Karhunen (1946), Pougachev (1953) and Obukhov (1954). Although POD
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has been widely employed in different areas, its nomenclature has different interpre-

tations, as discussed in [166]. In some contexts, it is referred to as the Karhunen

Loéve decomposition (KLD) [168]. However, it can also be referred to as the princi-

pal component analysis (PCA) [169] or the singular value decomposition (SVD) [170].

Liang et al. [166] suggests that the POD nomenclature should be interpreted a set of

approaches consisting of the three methods cited above. Although such approaches

have different formulations, they share the common goal of extracting a compact and

optimal representation of a data set, and were demonstrated by Liang et al. [166]

to produce equivalent results when applied to find a general basis representation of

discrete random vectors.

In this work, the POD based on singular value decomposition was used. The SVD

can be seen as an extension of eigenvalue decomposition for non-square matrices.

Considering, for example, a general rectangular complex matrix Mm×n with m rows

and n columns, it can be factorized based on the singular value decomposition as:

Mm×n = Um×m Σm×n V
∗
n×n (4.1)

where:

• Um×m is a real or complex unitary square matrix whose columns are called left

singular vectors of Mm×n and correspond to the orthonormal eigenvectors of

Mm×nM
∗
m×n;

• Σm×n is a rectangular diagonal matrix with non-negative real entries, σi, in its

diagonal. Such values are called singular values and its a common practice to

order them in descending order. They correspond to the square roots of both

Mm×nM
∗
m×n and M∗

m×nMm×n;

• Vn×n is a real or complex unitary square matrix whose columns are called right

singular vectors of Mm×n and correspond to the orthonormal eigenvectors of
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M∗
m×nMm×n;

and matrix M∗
m×n is the conjugate transpose of matrix Mm×n.

The left singular vectors provide a modal basis of the original matrix Mm×n. On

the other hand, the singular values (diagonal values of Σm×n) are associated with

the importance of the POD mode to represent the data given by matrix M . The

higher the value of a singular value σi associated to the i − th left-eigenvalue, the

more important this mode is to represent the system behavior. Based on this fact,

a metric called relative information content (RIC), is typically used to characterize

the importance of a left-eigenvalue (system mode). For the i-th singular value, the

associated RIC is given by:

RICi =
σi∑m
i=1 σi

(4.2)

Then, considering that the singular values are numerated in descending order,

the number p of POD modes can be determined by choosing the first p modes that

provide a cumulative RIC higher than a pre-defined fraction, f , chosen depending on

the problem.

p∑
i=1

RICi =

∑p
i=1 σi∑m
i=1 σi

≥ f (4.3)

Fraction f gives a percentage of how good the selected POD modes will represent

the system, and its choice depends on the accuracy and system reduction desired and

the number of degrees of freedom (d.o.f.) of the problem. Usually, the first few POD

modes already provide a cumulative RIC higher than f = 99%.

4.1.2 System Identification

System identification is a discipline dedicated to building (identifying) a math-

ematical model of a system based on a provided set of inputs and outputs, which
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can be in either the time or frequency domain. It involves: i) the data collection

(e.g., from experiments or simulations); ii) selection of a parameterized mathematical

model, based on the identification goals (e.g., transfer functions, state-space equa-

tions, non-linear functions), iii) selection and application of an estimation method

(to evaluate the adjustable parameters); and iv) evaluation of the estimation quality,

based on the application needs [171].

The term “system identification” was coined by Zadeh [172] in 1956 as part of

control theory [173]. Several approaches were developed since then, and a detailed

review on historical aspects and a discussion about different methods can be found

in Gevers [174] and in Ljung [173].

Given a set of measurements of a real system, represented by the operator G̃, the

goal of the system identification is to obtain a mathematical operator G that approx-

imates the real operator, such that the following condition holds for all input/output

combinations [175]:

||d− d̃|| < tol, d = G(x,m) (4.4)

where ||.|| is some chosen norm definition, d are the outputs obtained from the iden-

tified model G, d̃ are the real system measured outputs, x are the input variables and

m the model parameters.

In the present work, the subspace state-space system identification (N4SID), an

input-output based approach which is available in the MATLAB System Identifica-

tion Toolbox [171], was applied. Based on the inputs/outputs provided, this algo-

rithm finds a state sequence which is associated to outputs of unsteady Kalman filter

banks, and a mathematical representation of the system in state-space form can be

determined:

ẋ(t) = Ax(t) +Bu(t) +Ke(t) (4.5)
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y(t) = Cx(t) +Du(t) + e(t) (4.6)

where A, B, C, and D are the estimated matrices of the state-space model, K a

matrix which accounts for disturbances, u(t) is the input, y(t) is the output and x(t)

is a vector with nx states associated with this mathematical representation. More

details about the N4SID method can be found in Van Overschee and De Moor [176].

4.1.3 Combining POD and Sys ID for Stability Analysis

In order to extract dynamic information (frequencies, damping, and modes) from

the coupled aeroelastic-flight dynamics framework with propellers, it is first necessary

to find a linearized mathematical representation of the system containing all the

coupled structural, flight dynamics, lifting surfaces aerodynamics and propeller effects

(inertial and aerodynamics).

One natural choice for this is to apply system identification and find a state-space

representation of the global system. However, one difficulty in directly applying

system identification in this context is that the VFA model often has a high number

of degrees of freedom (the model considered later, for example, has more than 500

degrees of freedom), resulting in a high number of output states. However, system

identification is not well suited for a high number of outputs, and the prediction

performance is deteriorated.

One option to tackle this problem would be to write the output data as a function

of a linear combination of the aircraft linear modes. This was done, for example, by

Silva [163] and studies for aeroelastic problems involving small deformations. How-

ever, for a VFA, a representation of the deformed equilibrium state with linear modes

is no longer adequate.

Another alternative, used in this work, is to reduce the output matrix dimen-

sion by using POD modes. Then, instead of directly providing the output matrix
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containing the snapshots of displacements, the snapshots containing the coefficients

of a much smaller number of POD modes are provided, and the original degrees of

freedom are later recovered. This has the additional advantage of providing a better

basis representation for an aircraft whose equilibrium state exhibits large deforma-

tion compared to the undeformed shape. Figure 4.1 illustrate how this combination

of POD + Sys ID works.

Figure 4.1: POD + Sys ID workflow

First, the original data snapshots are collected by performing a time simulation

disturbing the aircraft from its equilibrium condition. It is worthwhile to note that, for

the extraction of dynamic information, it suffices to apply small disturbance around

the deformed equilibrium condition, making possible the use of linear system identi-
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fication approaches (as is the case of the selected method, n4sid). Then, the input

matrix consists of the snapshots of the values of loads (disturbances) is applied. The

original output matrix consists of the snapshots of the displacements (in x, y and z

directions) of each structural nodes with relation to an initial equilibrium condition.

Next, the POD modes of the original output need to be determined and selected.

For this, SVD is first applied to the original output matrix M :

Mm×n = Um×m Σm×n V
T
n×n (4.7)

where m is the number of d.o.f., n is the number of snapshots, U and V are orthogonal

matrices containing left-singular vectors and right-singular vectors of M , with the

columns of U corresponding to the POD modes, and Σ is a diagonal matrix of non-

negative real number ordered in descending order. Also, the product Σm×n V
T
n×n is

associated with the coefficients of the POD modes which reconstitute the matrix M .

Usually, the first few POD modes are responsible for more than 99% of the trace

of Matrix Σ. Reducing the number of POD modes to p, one obtains the new output

matrix containing snapshots of the coefficients of the p POD modes which approxi-

mate the matrix M where p << m. For this, a reduced singular value decomposition

representation of M can be found by using just the p POD modes selected as:

Mm×n = Ur,m×p Σr,p×p V
T
r,p×n (4.8)

The new reduced output matrix N to be provided to the system identification is

then given by:

Np×n = Σp×p V
T
p×n (4.9)

Once the reduced output matrix is determined, Sys ID is applied and the matrices

in the equations 4.5 and 4.6 are determined. In this work, the tool n4sid available
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on Matlab [171,176] was used.

Finally, the dynamic information of the system can be found by the eigenvalue

decomposition of matrix A, in Eq. 4.5. As the state-space representation is in a

continuous time domain, the frequencies and damping can be directly obtained from

the eigenvalues λi of A, as:

freq =
Re(λi)

2π
(4.10)

damp =
Imag(λi)

2π
(4.11)

where Re(λi) and Imag(λi) are the real and imaginary parts of λi, respectively.

From the eigenvectors of A, and remembering that they are related to coefficients

of the chosen POD modes, the mode shapes can be obtained. Considering E as the

matrix containing the eigenvectors of A and by equation 4.6, the modes in terms of

displacements at structural nodes can be recovered by:

Np×n = Ur,m×pCp×kEk×k (4.12)

where k is the order chosen for the system identification method.

Due to nonlinearities, non-proportional damping, and possible noise, the modes

obtained by the system identification can be complex. In Rainieri and Fabbro-

cino [177] a discussion of those complex modes from system identification is pre-

sented, and an approach, used in the present work, to convert them to real mode

shapes was proposed. The mode shapes can be obtained by adding the real modes of

displacements with the initial equilibrium condition.

Finally, it was observed that, for better accuracy, the number of frequencies de-

termined should be no more than the number of POD modes selected.
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4.2 Verification of the Method

In order to verify the capability of the POD + Sys ID method to extract frequen-

cies, damping, and modes based on the snapshots generated by the simulation of a

VFA, a purely structural case was used, for which a reference from the UM/NAST

modal solver was available about its undeformed shape. The model used was the

University of Michigan’s X-HALE UAS [178,179] and more details about this model

are provided in Chapter 5 and Appendix B.

For the POD + Sys ID, a time simulation was performed for the clamped X-

HALE model. From the undeformed configuration, the model was disturbed by a

5 Nm torsion moment and a 1 N step force in the vertical and chordwise direction,

all applied at the right wing tip of the clamped model and chosen to excite different

modes. The snapshots were then provided to the POD + Sys ID method, 5 POD

modes were used (contributing for more than 99% of the snapshot energy), and an

order of 18 was chosen for the system identification method based on the fitting

quality of the POD coefficients. As the reference was for the undeformed, undamped

case, no gravity or damping effects were included. Also, as the identification order of

18 provides 9 frequencies, but just 5 POD modes are used (and up to 5 frequencies

can be more accurately identified), the main frequencies were determined by choosing

the five higher norms of the corresponding coefficients identified for the POD modes.

Therefore the frequencies associated with the five columns of Cp×kEk×k with higher

Euclidean norms were kept and shown in Figure 2.

Table 4.1: Comparison of natural frequencies for purely structural case

UM/NAST POD + SysID Error (%) MAC

0.5943 Hz 0.5923 Hz −0.3422 0.9879

2.5747 Hz 2.5299 Hz −1.7407 0.9896

3.6986 Hz 3.6631 Hz −0.9596 0.9922

4.4491 Hz 4.4900 Hz 0.9195 0.9937

6.5696 Hz 6.5286 Hz −0.6241 0.9980

125



1

0

-1

-2

-2.5

-1

-2-2 -1.5 -1 -0.5

0

0 0.5 1

1

1.5 2

2

3

4

(a) 1st bending (UM/NAST): 0.5943 Hz
1

0

-1

-2

-2

-1.5

-2.5 -2 -1.5

-1

-1 -0.5

-0.5

0 0.5 1

0

1.5 2

0.5

2.5

1

1.5

2

2.5

3

(b) 1st bending (POD + SysID): 0.5923 Hz

-1

-0.5

1

0

0.5

1

-2 0
-1

-10
1 -22

(c) 1st torsion (UM/NAST): 2.5747 Hz
1

-1.5

-1

-0.5

0

0

-2

0.5

1

-1 -1
0

1 -2
2

(d) 1st torsion (POD + SysID): 2.5299 Hz

1

-0.5

0

0.5

-2.5 0-2 -1.5 -1 -1-0.5 0 0.5 1 -21.5 2 2.5

(e) 2nd bending (UM/NAST): 3.6986 Hz
1

0
-1.5

-1

-1

-0.5

-2

0

-1 -2

0.5

0

1

1
2

3

(f) 2nd bending (POD + SysID): 3.6631 Hz

1.5

1

0.5

0

-0.5

-1-2.5

-0.5

-2
-1.5 -1.5-1

0

-0.5
-20

0.5

0.5

1 -2.51.5
2

1

2.5

(g) 1st in-plane bending (UM/NAST):
4.4491 hZ

1

0
-1

-1

-2
-1

-20

0

1
2 -3

1

(h) 1st in-plane bending (POD + SysID):
4.4900 Hz

-0.5

1

0

0.5

-2.5
-2 0-1.5

-1
-0.5 -10

0.5
1 -21.5

2
2.5

(i) 2nd torsion (UM/NAST): 6.5696 Hz
1

-1

-2 0
-1

0

-10

1

1
-2

2

2

3

(j) 2nd torsion (POD + SysID): 6.5286 Hz

Figure 4.2: Comparison of mode shapes and natural frequencies for the X-HALE
UAS vehicle about its undeformed configuration
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Table 4.1 presents the comparison between frequencies as well as a comparison

of the corresponding modes by applying Model Assurance Criteria (MAC). For this

purely structural case, one can see the method had an excellent agreement with the

data calculated by the modal solver in UM/NAST with a maximum error in frequency

prediction smaller than 2% and a MAC value of about 0.99 for all five modes.

127



CHAPTER 5

Coupled Nonlinear Aeroelastic-Flight

Dynamics Framework Verification

In this chapter, verification cases are presented for each new piece added to the en-

hanced coupled nonlinear aeroelastic-flight dynamics framework including propellers.

First, in Section 5.1, comparisons are provided for static, trim and dynamic aeroelastic

simulations using the integrated UM/NAST and Vortex Lattice against other codes.

In Section 5.2, the propeller aerodynamics is checked by comparing simulations us-

ing the implemented LL/VVPM code with numerical and experimental results. The

integration between the propeller and lifting surfaces is also evaluated by comparing

against numerical data in Section 5.3. Finally, in Section 5.4, the gyroscopic loads

calculation is verified against an analytical example.

5.1 Integration of UM/NAST and Vortex Lattice

5.1.1 16-m Wing Comparisons

5.1.1.1 16-m Wing Model

The 16-m wing model (Figure 5.1) consists of a rectangular flat wing with 16-

m semi-span and 1-m chord and is a representative model of a slender generic very

flexible wing [72]. Its corresponding structural model consists of a clamped 16-m
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Figure 5.1: Vortex Lattice representation of the 16-m wing model

beam at 35% chord from the LE, with area moments of inertia varying quadratically

along its length. Also, discrete masses with prescribed mass moments of inertia are

attached along the structural model. Such selection of properties was made to provide

bending deformations with constant curvature for typical aerodynamic loadings [72].

More information about its properties is provided in Appendix A.

5.1.1.2 16-m Wing Static Comparisons

As a first verification case, static aeroelastic results for the clamped 16-m wing

model at v = 40 m/s and different angles of attack, with gravity included, were

compared against different codes. These cases were also presented in Ritter et al. [72]

and in Riso et al. [62].

For the results presented here, a Vortex Lattice discretization of 16 panels chord-

wise and 64 panels spanwise was used in UM/NAST + VLM. The structural beam

was discretized in 32 elements (each one with three nodes), resulting in 65 nodes.

This means that, in this example, the aerodynamic spanwise discretization coincides

with the structural discretization. Therefore, just the first step of the transfer of loads

described in Chapter 2, from quarter-chord points to root points (positions along the

beam determined by aerodynamic spanwise discretization), is performed. The exam-

ples presented in the next sections will also excite the second step, which is the linear

transfer along the beam from the root points to the neighboring structural nodes.

Figure 5.2 presents the comparison of the results with two external codes: DLR

toolbox with VLM [4,72] and a code combining MSC.Nastran SOL 400 and VLM [62].

The DLR toolbox is a FEM-based aeroelastic framework that enables the simulation
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Figure 5.2: Comparison of aeroelastic static results for 16m wing

of complex configurations using three different options for the structural part: linear,

reduced-order or fully non-linear formulations [4,72]. For the 16-m wing comparison,

the DLR toolbox solution also used a combination of MSC.Nastran SOL 400 and

VLM. All the three frameworks used the same vortex lattice code, developed by

Ritter [81], but employed different approaches for the aeroelastic coupling: a 6 DOF

splines for the MSC.Nastran SOL 400 plus VLM in [62], radial basis functions for

the DLR toolbox and the approach described in Chapter 2 for UM/NAST (section-

based transfer of loads from quarter points to beam and linear interpolation along the

beam, if aerodynamic and structural spanwise discretization are different). Despite

the differences, and as one can see in Figure 5.2, the results for the three codes show

excellent agreement for all angles of attack considered.
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University of Michigan

Figure 5.3: 6-m span X-HALE vehicle in flight
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Figure 5.4: Undeformed panel model with propellers for the X-HALE UAS vehicle
(units: meters)

5.1.2 X-HALE Comparisons

5.1.2.1 X-HALE Model

The University of Michigan’s X-HALE UAS [178, 179] (Figure 5.3) is a repre-

sentative very flexible aircraft conceived to collect experimental data for validation

of nonlinear aeroelastic-coupled-flight-mechanics solvers. Three configurations with
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wing spans of 8, 6 and 4 meters have been designed. As shown in Figure 5.4 (a), the

X-HALE 6-m configuration has 0.2-m chord, five pods along the wing, five tails (4

horizontal and 1 vertical stabilizers), three fins (vertical surfaces between the wing

and tails) and five electric motor-propeller combinations located in front of each pod

at spanwise locations y = −2/3,−1/3, 0, 1/3, and 2/3 of semispan, where the origin

corresponds to the aircraft centerline. The wing is mounted with an incidence angle

of 5 degrees and has a 10-degree dihedral at its 1-m outer portion. More details about

the properties of the X-HALE model used in this work are provided in Appendix B.

For the comparisons presented in this chapter, propeller modeling was not in-

cluded.

5.1.2.2 X-HALE Static Results

Static simulations

Results for static aeroelastic X-HALE simulations are compared against an exter-

nal aeroelastic framework for v = 14 m/s and angles of attack of 0, 3, and 5 degrees,

with gravity included and the model clamped in the middle of the main wing. These

same cases are also presented in Alfonso et al. [1]. Table 5.1 summarizes the structural

and aerodynamic spanwise discretization and the type of members (elastic or rigid)

used for the UM/NAST simulations in this section. In this case, the structural and

spanwise aerodynamic discretizations in the dihedral region of the wing are different,

exciting also the second step of the loads transfer described in Chapter 2 (linear trans-

fer to the neighboring nodes along the beam, if structural and aerodynamic spanwise

discretization are different).

The external solver in this case is SHARPy [63–66], developed at Imperial Col-

lege London. SHARPy is also based on geometrically-nonlinear composite beam

structures, but uses a displacement-based structural solver, while UM/NAST uses a

strain-based approach. The aerodynamics is also Vortex Lattice, but the VLM code

132



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y / (semispan)

0

0.05

0.1

0.15

0.2

z 
/ (

se
m

is
pa

n)

AoA = 0 (IC/SHARPy)
AoA = 3 (IC/SHARPy)
AoA = 5 (IC/SHARPy)
AoA = 0 (UM/NAST)
AoA = 3 (UM/NAST)
AoA = 5 (UM/NAST)

(a) Normalized displacements in vertical plane

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y / (semispan)

0

2

4

6

8

10

x 
/ (

se
m

is
pa

n)

10-3

AoA = 0 (IC/SHARPy)
AoA = 3 (IC/SHARPy)
AoA = 5 (IC/SHARPy)
AoA = 0 (UM/NAST)
AoA = 3 (UM/NAST)
AoA = 5 (UM/NAST)

(b) Normalized displacements in horizontal plane

Figure 5.5: Comparison for aeroelastic cases with angle of attack 0, 3 and 5 at v = 14
m/s

was developed independently and coupled to the structural part in different ways. In

SHARPy, the aerodynamic and structural models are not completely detached, and

in order to simplify the mapping between them, the spanwise discretization of the

VLM grid needs to match the spanwise discretization of the beam model [1]. An-

other difference is about the fluid-structure interaction (FSI) approach: UM/NAST

+ Vortex Lattice employs a single FSI interaction (weak FSI coupling) approach while

SHARPy involves multiple FSI interactions (strong FSI coupling) for each time step

(which makes the simulation considerably more expensive). As will be shown for the

dynamic cases in the next section, however, this last difference does not play a role
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Table 5.1: Aerodynamic and structural discretization used in UM/NAST

Part Aerod. discretization Structural Information
chord span number elem. type

inner/mid wing segment 8 12 4 elastic
outer wing segment 8 12 8 elastic
tails (inner+outer parts) 8 6 1 rigid
fins 8 2 1 rigid
PODs 8 2 1 rigid
booms - - 1 rigid

Table 5.2: Trim results for cruise flight

Code Tail orientation α [◦] δ [◦] T [N]

IC/SHARPy
Vertical 2.64 1.19 0.223
Horizontal 2.21 0.52 0.213

UM/NAST
Vertical 2.59 1.15 0.179
Horizontal 2.38 0.66 0.179

past a certain level of grid refinement.

Figure 5.5 presents the comparisons of X-HALE deformed equilibrium shape for

vertical and horizontal planes (where x is along the downstream direction, y spanwise

pointing to the right-wing and z vertical up). An excellent agreement can be observed

for all the three angles of attack, with just slight differences in the horizontal plane

for chordwise displacements (which are much smaller than the vertical ones).

Trim simulations

Verification for the trim parameters calculated for each solver was also performed

for two X-HALE configurations: with the center tail vertical and with the center tail

horizontal. The same discretization as in Table 5.1 was applied. Table 5.2 present

the results for longitudinal trim. In general, the agreement is good, with some higher

differences for the thrust, which is related to small differences in the induced drag

prediction between the codes. In this case, no viscous drag was included.
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(b) Vertical wing tip displacement, gust with 10 m, Vmax = 0.5 m/s

Figure 5.6: Comparison for clamped X-HALE model under 1-cos gust with different
lengths

5.1.2.3 X-HALE Dynamic Results

Clamped simulations

In order to check the integration between UM/NAST and unsteady Vortex Lat-

tice method (uVLM) for the transient response, simulations for a clamped X-HALE

model were first performed. In this comparison, the X-HALE model was simpli-

fied: the 5-degree incidence of the wing was removed, and symmetric airfoil sections

are employed for all surfaces. Table 5.3 summarizes the structural and aerodynamic
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Table 5.3: Aerodynamic and structural discretization used in UM/NAST

Part Aerod. discretization Structural Information
chord span number elem. type

inner/mid wing segment 12 12 4 elastic
outer wing segment 12 12 8 elastic
tails (inner+outer parts) 6 12 1 rigid
fins 6 12 1 rigid
pods 6 6 1 rigid
booms - - 1 rigid

spanwise discretization for this case.

Figure 5.6 shows a comparison for a 1 - cos vertical gust encounter (gust is moving

in the direction of the clamped aircraft), also presented in [82]. The gust maximum

disturbance velocity is 0.5 m/s, with a length of 2 m and 10 m. The aircraft is at

zero angle of attack and facing an undisturbed freestream velocity of v = 16 m/s.

Gravity is included. This case was designed for linear deformation regime, allowing

the use of MSC.Nastran SOL 146 (which uses DLM for the aerodynamics) and the

DLR toolbox with a linear modal approach for the structure.

Slight differences are observed in the decay of the gust disturbances for the short

gust, but the agreement is in general very good, especially for the longer gust case,

which excites higher displacements.

Free-flight simulations

Table 5.4: Aerodynamic and structural discretization used in UM/NAST

Part Aerod. discretization Structural Information
chord span number elem. type

inner/mid wing segment 12 12 4 elastic
outer wing segment 12 12 8 elastic
tails (inner+outer parts) 3 6 1 rigid
fins 4 2 1 rigid
pods 2 2 1 rigid
booms - - 1 rigid
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Figure 5.7: Comparison between UM/NAST and DLR toolbox for tails maneuver
with frequency of 0.25 Hz and amplitude of 2 degrees (applied during one cycle only)

For the verification of UM/NAST + uVLM in free-flight simulations, two com-

parisons are presented: a tails maneuver and a 1 - cos vertical gust.

For the tails maneuver, a sinusoidal input with frequency 0.25 Hz and amplitude of

137



0 2 4 6 8 10
time (s)

-0.03

-0.02

-0.01

0

0.01

0.02

W
in

g 
tip

 d
is

pl
ac

em
en

t (
m

)

IC/SHARPy
UM/NAST

(a) Vertical wing tip displacement

0 2 4 6 8 10

time (s)

0

0.2

0.4

0.6

 Z
 bo

dy
 (

m
)

IC/SHARPy
UM/NAST

(b) Body vertical displacement

0 2 4 6 8 10
time (s)

-3

-2

-1

0

1

P
itc

h 
A

ng
le

 (
de

gr
ee

)

IC/SHARPy
UM/NAST

(c) Variation of pitch angle

Figure 5.8: Comparison between UM/NAST and IC/SHARPy for free-flight simula-
tion of 1 - gust with maximum velocity of 2.1 m/s and length of 15 m
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2 degrees was provided simultaneously to the four horizontal tails. Gravity is included.

Table 5.4 summarizes the structural and aerodynamic spanwise discretization for this

case. The results for wing tip displacement, vertical body displacement, and pitch

angle are presented in Figure 5.7 against DLR toolbox results, which in this case

used a nonlinear extended modal approach [72]. An overall good agreement can

be obtained, especially for the free-flight quantities. The small differences can be

attributed to the different formulations for the coupling and structural approaches.

Figure 5.8 shows a comparison for a free-flight simulation at v = 14 m/s passing

through a 1 - cos gust, whose front was initially located at 1 m ahead of the wing

root point. Gravity is included. This case is also presented in [1]. As previously

commented, SHARPy is based on different Vortex Lattice code and has differences in

the structural and coupling approaches. Results are shown for the wing tip displace-

ment, vertical body displacement, and pitch angle. Despite the differences between

the codes, an overall good agreement is observed. The aerodynamic and structural

discretizations used for UM/NAST, in this case, are the same as in Table 5.1.

5.2 Propeller Aerodynamics

As a first check for the implementation of the propeller aerodynamics, a compar-

ison with results from a vortex particle code developed by Singh and Friedmann [17]

was performed. The information about the propeller and conditions used are sum-

marized in Table 5.5. There, the Reynolds number is calculated based on propeller

diameter and free-stream velocity. The thrust coefficient from the reference code

is CT = 0.036 and, for the same conditions, the thrust coefficient with the newly

developed code is CT = 0.039. The axial velocity profile along a line at a distance

of one radius behind the propeller is compared in Figure 5.10. The profiles show

good agreement, with maximum values of axial velocity slightly higher in the case of
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the present code. The minor differences are attributed to the different aerodynamic

models employed for the blades: Lifting Line in the present code and Vortex Panels

for the code of Singh and Friedmann [17].

Table 5.5: Three-bladed propeller parameters

Blade properties APC 11X5.5 E plus 5-degree pitch angle
Airfoil type flat plate
Number of blades 3
Propeller RPM 6000
Reynolds number 3.07× 105

Blade discretization 17 segments
Time step TP/30
Sigma particles 0.045

𝜔

𝑟/𝑅

𝑑 = 𝑅

2𝑅

Figure 5.9: Axial profile velocity at a distance of one radius behind the isolated
propeller

Further verifications were performed against LDV measurements made by Sundar

[2] and numerical results from Cho and Williams [180], who used a frequency domain

panel method and a rigid wake model. The propeller used is a two-bladed Purdue

propeller model whose blades are straight, with a constant chord of 2 in, a diameter

of 12 in, and constant NACA0010 airfoil sections. For this case, the polar tables

were generated using Ncrit = 5 for the eN transition method in XFOIL. More details

about this propeller model and the experiment can be found in Sundar [2] and Usab
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Figure 5.10: Axial profile velocity at a distance of one radius behind the isolated
propeller.

et al. [181]. A summary of the propeller parameters used for this comparison is

presented in Table 5.6. Figure 5.11 presents a comparison of thrust versus power

coefficient. The agreement with experimental results is overall quite good, with some

overprediction near windmill conditions, also observed in the numerical results of Cho

and Williams [180]. Such overprediction can be possibly attributed to inaccuracy

of polar tables for those conditions, which could be related, for example, with the

parameter choice for the transition method in XFOIL.

The effect of the propeller on the velocity field behind it was also compared.

Figure 5.12 shows the circumferential velocity distribution at a distance of one ra-

dius behind the propeller plane and at a radial position of r/R = 0.93, where the

centerbody effects are less important, at the operating condition of CT = 0.14 and

CP = 0.30. Due to lack of more precise information about the angular reference

used, just amplitudes are checked and the peaks of axial velocity for experimental

and numerical results were aligned for the comparison (thus, the phase is not com-
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Table 5.6: Propeller parameters used for comparison with experiment of Sundar [2]

Airfoil type NACA0010
Number of blades 2
Diameter 12 in
Propeller RPM 6000
Reynolds number 1.02× 106 − 1.4× 106

Blade discretization 16 segments
Time step TP/120
Sigma particles 0.0064
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Figure 5.11: Comparison of propeller thrust and power coefficients

pared). One can observe a generally good agreement between the experimental and

numerical results, with the variation of the radial component with angular position

better captured by the present code.

5.3 Propeller-Wing Interaction

In order to verify the wing-loading under propeller effects, a propeller-wing con-

figuration based on the experiment of Witkowski et al. [9] shown in Figure 5.13 (b)

was considered. The propeller parameters are the same used for the comparison with

experiment of Sundar, listed in Table 5.6 and an advance ratio J = V∞/nD = 1.66
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Figure 5.12: Circumferential distribution of velocity components at a distance of one
radius from propeller plane and at a radial position of r/R = 0.93 (CT = 0.14 and
CP = 0.30).

was considered, where n is the revolution per second and D is the propeller diame-

ter. The wing has a rectangular form, with aspect ratio 8.25, constant NACA0010

airfoil section. As experimental data in terms of lift distribution was not available,

the comparison was performed against numerical results of Cho and Williams [180],

who applied a Frequency Domain Panel method. Figure 5.13 (a) shows a comparison

of lift distribution for cases of wing only and wing and propeller. In both cases, the

results showed a good agreement, with slight differences that can be attributed to the

use of totally different numerical approaches.

A comparison was also made against available integral force data in the form of

global lifting surface CL (for the whole wing) versus angle of attack. However, as one

can see in Figure 5.14, the curve for the case without propeller (VLM only) is almost

the same as for the case with the propeller. This is because the variations of local
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Figure 5.13: Wing-propeller verification.

lift on the two sides of the propeller location approximately cancel each other, not

affecting the integral lift significantly.

5.4 Gyroscopic Loads Modeling

In order to verify the implementation of the additional term given by Eq. 2.85,

which accounts for propeller gyroscopic moment, a comparison of the additional mo-

ment was performed against the analytical solution for a simple case of a rigid wing

undergoing a pitching sinusoidal motion with a propeller located in its middle (Figure
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Figure 5.15: Pitching wing with rotating propeller represented by a rigid, massless
rod, with concentrated masses on its ends

5.15). More details and a MATLAB script of this analytical example are provided in

Appendix C, and Table 5.7 summarizes the data for this comparison.

Figure 5.16 shows the agreement between analytical and numerical solutions is

good after few steps and tends to improve as the time step reduces. The differences

at the first time steps are due to some numerical derivatives not being precisely

calculated at the initial time since they are not included as initial conditions. This
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Table 5.7: Parameters used for the verification of gyroscopic moment

Propeller RPM 6000
Propeller mass 0.027 kg
Pitch motion amplitude 30 degrees
Pitch frequency 5 Hz

problem can be avoided by waiting for an accommodation time (about two propeller

revolutions) before transmitting loads to the structure.
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CHAPTER 6

Propeller Effects on HALE Aircraft

In this chapter, investigations of propeller effects on the static and dynamic aeroe-

lastic response, as well as the aeroelastic stability of a representative HALE aircraft

are presented. For this, three models based on the University of Michigan’s X-HALE

UAS are simulated using the newly enhanced coupled nonlinear aeroelastic-flight dy-

namics framework. First, the details of the models, the propeller parameters, and

the simulation settings are described in Section 6.1. Then, in Section 6.2, the effects

of propellers on the static response and aerodynamic coefficients are analyzed and

discussed. Next, the dynamic response of the complete aircraft for clamped and free-

flight cases for different control surface/loads inputs is investigated in Section 6.3.

Finally, investigation of the propeller effects on the aeroelastic stability of a HALE

aircraft is presented in Section 6.4.

6.1 Simulation Details

6.1.1 Aeroelastic Models

For the numerical studies, three models based on the University of Michigan’s

X-HALE UAS are considered:

i) X-HALE complete vehicle: the same model as presented in Chapter 5, with prop-

erties detailed in Appendix B. This model was used for the static and dynamic
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responses investigations;

ii) X-HALE isolated wing: X-HALE wing only, in order to isolate the effects of the

tails and other surfaces on the wing. This model was used for static investigations;

iii) X-HALE UAS with added tip mass: X-HALE model with an added tip mass (in

both wings) of 0.5 kg located 0.36 m behind the wing trailing edge. This tip

mass was added such to lower the occurrence of unstable aeroelastic behavior to

a range of velocities within the aircraft original flight envelope. This model was

used for the aeroelastic stability investigations.
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Figure 6.1: View of deformed X-HALE with particles shed up to the cut-off distance.
The propellers on the right wing rotate at opposite orientation as those on left wing.

Table 6.1: Aerodynamic and structural discretization used in UM/NAST

Part Aerod. Discrcetization Structural Information
chord span number elem. type

inner/mid wing segment 8 12 4 elastic
outer wing segment 8 12 8 elastic
tails (inner + outer parts) 3 6 1 rigid
fins 2 4 1 rigid
pods 2 2 1 rigid
booms - - 1 rigid

For all cases, the propellers are located 20 cm ahead and 2.8 cm below of the

wing leading edge, with a pitch angle of 5 degrees between the propeller axis and the
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X-HALE wing, as the wing has an incidence angle with respect to the pods. In order

to reduce asymmetric loads, the propellers on the right wing have a different direction

of rotation with relation to the propellers on the left wing, as can be seen in Figure

6.1. The two propellers along the right wing rotate in the clockwise direction, and the

remaining propellers rotate in the counterclockwise direction (for one looking from

behind the wing). The aerodynamic and structural discretizations are summarized in

Table 6.1.

6.1.2 Propeller Parameters

To determine the choice of parameters for the propeller solver, seeking a balance

between accuracy and computational cost (with a smaller number of particles until

cut-off distance), a parametric analysis for the blade discretization and the choice of

time step was performed with results obtained for the three-bladed propeller used for

comparison in Figure 5.10. Based on Figure 6.2 and considering that the objective of

this work is to capture the dynamic influence of propellers, the parameters selected

for the simulations are time step dt = Tp/10, and blade discretization of Nseg = 4.

Next, consider a propeller model also based on APC 11x5.5 thin-electric propeller

with geometrical data described in Brandt [182]. Due to the lack of information

about the airfoil type along the blades, a constant typical APC airfoil, NACA 4412,

is assumed. Table 6.2 summarizes the data used for the propeller as well as conditions

and choice of parameters. In this study, the value of the parameter σ, the smoothing

parameter or core radius, is calculated by multiplying a reference length (related

to the minimum distance between particles), h, by a factor c, chosen based on the

convergence of CT . The reference length, in this case, is chosen as the length of the

arc described by the blade root in one time step.

For the following simulations c = 1.5 is used, resulting in σ = 0.0195. For this

value of σ, CT converges to a value of approximately 0.022, resulting in a thrust of
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Figure 6.2: Parametric study varying (a) time step and (b) blade discretization

1.68 N. Also for the cases considered here, shed particles (related to the variation

of bound circulation with time) have a strength about three orders of magnitude

smaller than that of trailing particles. Therefore, their effect is not significant, and

they were not considered for simulations, reducing the number of particles and saving

computational time.

Figure 6.3 presents the profile of axial and vertical velocities for the two-bladed

propeller at one radius behind it. The behavior is in accordance with that described
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Table 6.2: Two-bladed APC 11X5.5E propeller parameters

Blade properties APC 11X5.5 E
Airfoil type NACA 4412
Propeller mass 0.023 kg
Number of blades 2
Propeller RPM 6000
Free-stream velocity 14 m/s
Blade discretization 4 segments
Time step TP/10
Reference length (h) 0.013
Factor sigma (c) 1.5
Sigma particles 0.0195

in the literature, e.g., Veldhuis [13], Khan and Nahon [183], and Agostinelli at al. [34],

with a symmetric pattern for axial velocity and asymmetric distribution of vertical

velocity. Also, the location of the maximum vertical velocity depends on the blade

direction of rotation, with positive vertical velocities at the side where the blade goes

up.

As discussed in Veldhuis [13], the increase in axial velocity (and dynamic pressure)

does not affect the local angle of attack but increases total lift produced. On the other

hand, vertical velocity affects the local angle of attack, which increases in the region

where upwash is generated and decreases in the region of downwash. Then, in the

upwash side, an increase in axial velocity and local angle of attack increases lift with

relation to a configuration without a propeller. On the downwash region, the effects

have contrary trend (increase in dynamic pressure tends to increase lift, but a decrease

in angle of attack tends to reduce lift) and the results are a smaller increase of lift on

that side when compared to the no-powered configuration.
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Figure 6.3: Profiles of axial and vertical velocities at one radius behind the two-bladed
propeller (clockwise or counterclockwise directions are defined with relation to one
looking from behind the propeller).

6.1.3 Pre-setting Parameters for the Aeroelastic Simulations

As stated previously, in the simulations to follow just trailing particles are consid-

ered (magnitude of shed particles is negligible for this case), with five trailing particles

per blade. A cut-off distance of two radii after the end of the X-HALE vertical tails

and three radii after the trailing edge of the isolated wing were applied to the complete
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X-HALE and the isolated wing, respectively. In the aeroelastic solver, a trapezoidal

method was employed to integrate the equations of motion, a stiffness-proportional

damping coefficient of 0.005 s and a time step dt of 0.002 s (for 6000 RPM) and

0.0017 (for 7000 RPM case in Section 6.4) were considered (with a sub-time step of

dt/2 for the propellers). Induced and profile drags were taken into account, and the

loads acting on the propeller hub are transmitted to the wing structure. The dynamic

viscosity is µ = 1.7855 10−5 N.s/m2 and the air density ρ∞ = 1.225 kg/m3. Gravity

effects are also considered.

Finally, in order to investigate the importance of various propeller effects, three

kinds of results were obtained for dynamic simulations, including:

i) propeller equivalent thrust only: just thrust, as a concentrated force at spanwise

locations y = −2/3,−1/3, 0, 1/3, and 2/3 of semispan, is considered;

ii) propeller aerodynamics: considering the effect of slipstream and all resultant

aerodynamic loads at the propeller hub, which are transferred to the wing struc-

ture;

iii) propeller aerodynamics and gyroscopic moments: the same effects as in (ii) plus

the modeling of gyroscopic moments, including all propeller effects.

In the next subsections, additional information for the parameters used for each

category of simulation is provided.

6.1.3.1 Static and Clamped Cases

For the static and clamped dynamic cases, the simulations were performed con-

sidering a centerbody angle of attack of 2 degrees, zero aileron deflection and sideslip

angle and, when applicable to the model, zero tail elevon deflections, as summarized

in Table 6.3. Also, for the cases with thrust only (without including other propeller
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effects), it is modeled as a concentrated force given by the thrust produced by an

isolated propeller at spanwise locations y = −2/3,−1/3, 0, 1/3, and 2/3 of semispan.

A free-stream speed of v = 14 m/s, for the investigations of static and dynamic

response, sections 6.2 and transient results. For the aeroelastic stability investigations,

different values of velocity were consired, as indicated in Section 6.4.

Table 6.3: Parameters used for clamped cases

Centerbody angle of attack (AoA) 2 degrees
Sideslip angle (β) 0 degree
Aileron deflection (δa) 0 degree
Tail elevon deflection (δt) 0 degree
Symmetric thrust (Ts) 1.68 N
Differential thrust (Ta) 0 N

6.1.3.2 Free-Flight Simulations

For the free-flight simulations, the initial conditions for the cases with thrust

only are those for the complete X-HALE vehicle trimmed for straight-level flight at

a free-stream speed of v = 14 m/s and altitude h = 30 m. The trim parameters

are: centerbody angle of attack (AoA), sideslip angle (β), asymmetric aileron de-

flections (δa), symmetric tail elevon deflections (δt), symmetric thrust (Ts) (same

for all motors), and differential thrust (Ta) (asymmetric thrust at motors near wing

tip). Those values were calculated using the trim solver in UM/NAST and are listed

in Table 6.4. The thrust is modeled by a concentrated force at spanwise locations

y = −2/3,−1/3, 0, 1/3, and 2/3 of semispan. Notice the small aileron and differen-

tial thrust (yaw control) that result due to a slight asymmetry on the model (which

corresponds to an actual UAS [178]) in terms of mass distribution.

The initial conditions for the free-flight simulation, including propellers, were de-

termined by:

i) running the static simulation with propellers for the complete vehicle clamped

155



Table 6.4: Straight-level flight trim parameters for X-HALE at v = 14 m/s (without
propeller effects other than thrust)

Centerbody angle of attack (AoA) 2.54 degrees
Sideslip angle (β) 0.044 degrees
Aileron deflection (δa) −0.144 degrees
Tail elevon deflection (δt) 1.03 degrees
Symmetric thrust (Ts) 1.28 N
Differential thrust (Ta) −0.009 N

at the origin of the body frame (centerbody), using parameters from the trim

without other propellers effects than thrust and identifying residual forces at the

clamped point, and;

ii) applying additional forces at the origin to balance residual forces to achieve equi-

librium condition for free flight. The forces to balance the residual are presented

in Table 6.5.

Table 6.5: Additional forces at the origin of the body frame for initial equilibrium in
free-flight case with propellers

Fx Fy Fz Mx My Mz

−0.13 N −2.02 N −4.72 N −0.16 Nm −0.38 Nm 0.008 Nm

6.2 Aeroelastic Static Response

In order to better understand the effects of propellers on the lift distribution of the

flexible aircraft, the static equilibrium condition for the clamped isolated X-HALE

wing and the complete X-HALE vehicle are analyzed for the conditions specified in

Table 6.3.
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Figure 6.4: Clamped isolated wing at v = 14 m/s and AoA = 2 degrees

6.2.1 Isolated X-HALE Wing

In Figure 6.4 (a) a comparison is given for the clamped wing equilibrium state

with all propellers effects and with thrust only, for flexible and rigid configurations

at v = 14 m/s and AoA = 2 degrees. As one can see, there is a slight increase in

wing deflection for the case with all propeller effects when compared to the one with

concentrated thrust only, with an increase in wing-tip displacement (from its unde-

formed configuration) of 8%, corresponding to a displacement of 2% of the semispan.

The wing tip vertical position after deformation in the presence of propeller effects
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corresponds to 35% of the wing semispan.

A comparison of lift distribution for the rigid and flexible cases with all propeller

effects and with thrust only for the same conditions as above is presented in Figure 6.4

(b). In both rigid and flexible cases, the propeller slipstream causes a local increase

in lift close to the propeller locations, with a peak located on the side where the blade

goes up. In general, both flexible cases present a smaller value of lift, indicating a

smaller effective angle of attack in those cases. As can be seen in Table 6.6, when all

propeller effects are included rigid and flexible cases show a similar increase in total

lift (between 3% and 4%) , but a higher increase in total drag (between 5% and 6%),

resulting in a slight decrease of about 2% in the cL/cD ratio.

Table 6.6: Comparison of cL and cD for the clamped isolated wing at v = 14 m/s and
AoA = 2 degrees

Case cL cD cL/cD
Rigid, with all propeller effects 0.7669 0.0185 41.45
Rigid, with thrust only 0.7425 0.0176 42.19
Flexible, with all propeller effects 0.6337 0.0182 34.82
Flexible, with thrust only 0.6108 0.0172 35.51

6.2.2 Complete X-HALE

Similarly as for the isolated wing, Figure 6.5 (a) presents a comparison for the wing

of the clamped X-HALE model in equilibrium state with all propeller effects and with

thrust only, for flexible and rigid configurations at v = 14 m/s and AoA = 2 degrees.

In comparison with the absolute deflections of the isolated wing, there is a more

moderate deflection with wing tip vertical position reaching 14% of wing semispan,

instead of 35% as in the isolated wing case. This smaller deflection is related to the

higher weight of the complete aircraft (about four times the weight of the isolated

wing) and the role of tails and fins in moderating the deflection by counterbalancing

wing loads. However, in terms of relative increase in displacements, the differences
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Figure 6.5: Wing of the clamped X-HALE vehicle at v = 14 m/s and AoA = 2 degrees

with all propeller effects and with thrust only for the complete vehicle are higher than

for the isolated wing, with an increase in wing tip displacement (from its undeformed

configuration) of about 42%, which corresponds to 2.5% of wing semispan.

The corresponding distributions of lift for the X-HALE wing at the same con-

ditions as in Figure 6.5 (a), considering flexible and rigid configurations with all

propeller effects and with thrust only, are compared in Figure 6.5 (b). For this case,

the distributions of lift between flexible and rigid configurations are similar, which

may have to do with the moderate displacements of the wing for the complete aircraft

model. The flexible case has a slightly higher increase in lift due to the inclusion of
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all propeller effects than the rigid one, as it can also be observed in Table 6.7, with

a 3.5% and 4.8% increase of lift for rigid and flexible cases, respectively. As in the

case of the isolated wing, also an increase in drag is observed, although by a smaller

factor (about 1.4% for both, rigid and flexible cases), such that the ratio cL/cD has a

slight increase of about 2% for rigid cases and about 3.5% for flexible cases when all

propeller effects are included.

In Figure 6.5 (b), one can notice that the flexible configuration with all propeller

effects has a slight increase in lift distribution between two propeller locations com-

pared to the case with thrust only, which can be associated with the increase in wing

local angle of attack due to its twist caused by the new tails loading. In fact, as one

can observe in Table 6.8, for the flexible case, the inboard tail shows a reduction

of lift when all propeller effects are included, which causes a positive twist of the

wing, increasing lift. By its turn, the outboard tail shows an increase in the lift when

propellers are present, contributing to reduce the local angle of attack in that region.

The overall effect, however, is the increase in wing local angle of attack, increasing

wing lift, as we can see in Figure 6.6, with an increase in the twist in the inboard tail

region and a decrease in the outboard tail region. This should explain also the higher

peaks for the flexible case considering all propeller effects, as the propellers there are

operating in a higher local angle of attack than the propellers in the rigid case.

Table 6.7: Comparison of cL and cD for the complete clamped X-HALE vehicle at
v = 14 m/s and AoA = 2 degrees

Case cL cD cL/cD
Rigid, with all propeller effects 0.7694 0.0375 20.52
Rigid, with thrust only 0.7433 0.0370 20.09
Flexible, with all propeller effects 0.7601 0.0374 20.32
Flexible, with thrust only 0.7252 0.0369 19.65

Figure 6.7 shows a comparison of the effect of the load distribution on the tails. As

already discussed, we can see a reduction of lift for the inner tail, while the outboard
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Figure 6.6: Twist distribution along the right wing of clamped X-HALE vehicle at
v = 14 m/s and AoA = 2 degrees

one has an increase in lift. The inner tail is situated behind a ventral fin surface and

this may justify the different effects of propeller influence on the inboard tails.

Table 6.8: Comparison of cL for the inboard and outboard tails of the complete
clamped X-HALE vehicle at v = 14 m/s and AoA = 2 degrees

Case cL inboard tail cL outboard tail
Rigid, with all propeller effects −0.1032 −0.1289
Rigid, with thrust only −0.0155 −0.0735
Flexible, with all propeller effects −0.1116 0.0008
Flexible, with thrust only −0.0756 −0.1056

6.2.3 Conclusions

From the static cases investigated, it is concluded that:

• Propellers were found to influence wing equilibrium shape and lift distribution,

with higher impact on a wing-tail aircraft configuration where the tails are also

influenced by the propeller slipstream.
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Figure 6.7: Lift distribution for the inboard and outboard tails of the clamped X-
HALE vehicle at v = 14 m/s and AoA = 2 degrees

• For the wing-tail aircraft configuration, there was a decrease in the tails total

lift for the rigid model with all propeller effects when compared to the same

rigid model with just thrust. The behavior was different for the flexible vehicle

case, with an increase in total lift on the outer tails and a decrease on the inner

tails (possibly due to the presence of fins in the X-HALE case).

• Lift and drag coefficient increases due to the inclusion of all propeller effects

were found in both rigid and flexible X-HALE models, with a slight increase in
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the cL/cD ratio of about 2% and 3.5% for rigid and flexible cases, respectively.

For an isolated wing, this caused a slight reduction in cL/cD ratio of about 2%.

6.3 Aeroelastic Transient Response

6.3.1 Clamped Case

In order to evaluate the response of the aircraft with propellers for a bending exci-

tation a continuous sinusoidal bending moment of amplitude 35 Nm with a frequency

of 0.59 Hz, close to the wing first natural bending frequency, was considered. This

loading amplitude was selected to achieve a wing tip vertical displacement of about

5% of semispan. A comparison of the displacements is presented in Figure 6.8. No

difference is noticed for vertical displacement and just slight differences are observed

for twist displacement, although for very small amplitudes.

To investigate the aeroelastic response of the clamped aircraft to a torsional ex-

citation, a case of a step input of 15 degrees applied simultaneously at all horizontal

tails at t = 0 s was considered. As presented in Figure 6.9, the difference is more

noticeable in both wing tip displacement and twist, with a 13% increase in vertical

displacement and an initial tip twist of about 1.5 times higher for the cases with pro-

pellers. Negligible differences are found between cases with and without gyroscopic

moment.

From the cases considered, propeller seems to affect more the response to a tor-

sional than a bending excitation and the differences in angular displacements are

usually higher than for vertical ones.

6.3.2 Free-flight Case

To check the influence of propellers to a longitudinal (symmetric) disturbance

in free flight, a tip bending excitation similar to the one of the clamped cases is
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Figure 6.8: Response to a continuous sinusoidal tip bending moment signal of ampli-
tude 35 Nm and frequency 0.59 Hz at v = 14 m/s and AoA = 2 degrees (clamped
model)
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Figure 6.9: Response to a tail step excitation of amplitude 15 degrees at v = 14 m/s
and AoA = 2 degrees (clamped model)

considered, but now including rigid body degrees of freedom: a continuous sinusoidal

bending moment of amplitude 35 Nm and frequency of 0.59 Hz.

Figures 6.10 (a) and (b) show the wing tip displacement and twist response. As
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Figure 6.10: Wing tip response response to sinusoidal vertical tip bending moment
excitation of amplitude 35 Nm and frequency 0.59 Hz, for free-flight X-HALE vehicle
trimmed at v = 14 m/s.

in the clamped case, the vertical displacement presents negligible differences, but

now more important differences are noticed for the wing twist, which presents also
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Figure 6.11: Free-flight response to sinusoidal vertical tip bending moment excitation
of amplitude 35 Nm and frequency 0.59 Hz, for X-HALE vehicle trimmed at v = 14
m/s.

a richer frequency content. A remarkable difference can be seen for pitch angle and

body vertical displacement, as shown in Figures 6.11 (a) and (b). The pitch angle

shows a similar trend for cases with other propeller effects and with thrust only,

but with visible differences in amplitude. Also, the aircraft is continuously reducing

altitude for the case with other propeller effects, while it recovers altitude for the
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case with just thrust modeling. A possible explanation for those differences is the

influence of the propeller slipstream on the aircraft surfaces as well as the inclusion

of additional loads at the propeller hub (not only thrust but also moments and forces

in the plane of the propeller). In general, the modeling of gyroscopic effects has

a secondary influence. Due to the symmetric nature of the excitation to a vehicle

with a small c.g. offset along the spanwise direction from its plane of symmetry,

roll and pitch angles undergo very little change (under 2-degree variation) during the

perturbation.

To evaluate the response of the free-flight model to torsional disturbance (still

longitudinal), a continuous tail excitation with an amplitude of 15 degrees and a

frequency of 2.6 Hz is used. From Figures 6.12 (a) and (b) one can observe much

more pronounced relative differences for wing tip vertical and angular displacements

in this case when compared to the bending excitation (Figures 6.11 (a) and (b)). The

differences are also clear in pitch angle and rigid body vertical displacement, as shown

in Figures 6.13 (a) and (b). The variation in pitch has a higher average value for cases

with propellers, which show also smoother variations of body vertical displacement.

Again, negligible differences for propeller models with or without gyroscopic moment

can be observed.

6.3.3 Conclusions

From the dynamic cases investigated, it is concluded that:

• For the cases investigated, the most pronounced propeller effects were for the

free-flight cases and for the clamped cases involving torsional excitation.

• For the X-HALE related cases where the light-weight (0.023 kg) plastic pro-

pellers are used, the gyroscopic moment presented a negligible influence in the

cases investigated. However, the gyroscopic effects are anticipated to be more
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Figure 6.12: Wing tip response to a continuous sinusoidal tail excitation of 15 degrees
and frequency 2.6 Hz, for free-flight X-HALE vehicle trimmed at v = 14 m/s.

important in larger vehicles and/or higher rotational speed.
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Figure 6.13: Free-flight response to a continuous sinusoidal tail excitation of 15 degrees
and frequency 2.6 Hz, for X-HALE vehicle trimmed at v = 14 m/s.

6.4 Propeller Effects on HALE Aircraft Stability

6.4.1 Propeller Complete Modeling vs. Thrust Only

In order to check the additional influence of the propeller slipstream and gyroscopic

effects, besides the influence of thrust, transient solutions for the clamped X-HALE
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model with tip masses (described in Section 6.1.1) were conducted. Beginning from

an equilibrium state and after 1.5 seconds of simulation, a step perturbation of 5

Nm in torsional moment and a 1 N step force in vertical and chordwise directions

were applied. In this case, gravity and a stiffness-proportional damping coefficient of

0.005 s were considered to have a more realistic response. Three cases with different

speeds: 12.5 m/s, 13 m/s and 13.5 m/s were simulated for a model with just thrust

at the propeller location (equivalent to the thrust produced by the isolated propeller

at each speed for the considered RPM) and a complete propeller model, including

thrust (and other loads at hub), slipstream, and gyroscopic effects, with a rotation of

6000 RPM.

First, the same set of parameters determined in the verification case was tried (5

POD modes and Sys ID order of 18), but for the cases with aerodynamic and, for

some of them, gyroscopic moment, the adjusting of the 5th POD coefficient using

the same set of parameters for all cases was hard to get (especially for cases after

the flutter boundary). Then, just 4 POD modes were considered (representing more

than 99% of the snapshot energy), and an order of 18 was again included, improving

the fitting of the first 4 POD coefficients. For the purely structural case the effect of

reducing the POD modes to 4, keeping the same order for the Sys ID, was a reduction

in the accuracy of higher frequencies. But the first four frequencies were kept with

good accuracy (less than 2% error). Then, for the cases in this section, just four

frequencies and modes are compared, corresponding to the most important modes for

the system response. Also, the sensitivity of the results with the number of snapshots

provided before the perturbation starts was found to be higher for cases with higher

numerical perturbations, as in the cases after flutter. All cases use the same set of

parameters and it is expected that the results can capture frequency variations due

to the different effects being modeled.

Figures 6.14 and 6.15 present a comparison of the frequencies, dampings, and
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dynamic responses in terms of wing tip vertical and angular displacements for each

simulated speed. From the dynamic responses, it is possible to see that for this model

and propeller RPM the flutter boundary is about 13 m/s for both cases, i. e., thrust

only, and including complete propeller modeling. However, as one can also observe

from the dynamic responses, increasing differences in phase arise between cases with

thrust only and with all propeller effects for all speeds. For the same set of POD +

Sys ID parameter choice, one can also note differences on frequencies and especially

damping for modes farther away from the stability boundary. Considering that the

variations of frequency and damping are captured, this indicates propellers can affect

dynamic response.

6.4.2 Influence of Increasing Propeller RPM

In order to investigate the effect of propeller RPM in the aeroelastic stability, a

transient solution similar to the one presented in Figure 6.15 was simulated for the

clamped X-HALE model with tip masses at v = 13 m/s and with a higher propeller

rotation of 7000 RPM. Increasing the propeller RPM with all other parameters con-

stant means a higher influence on the velocity flowfield behind the propeller plane of

rotation, as well as a higher thrust and gyroscopic loads. It can be interpreted as the

degree of propeller effects intensity, which could be affected also by other parameters

like propeller mass, geometry, velocity flowfield, etc.

Figure 6.16 presents a comparison of the wing tip dynamic responses. Now, more

noticeable differences can be observed in the stability behavior; while the case with

6000 RPM is yet stable (although close to flutter), the case with 7000 RPM shows

an unstable behavior with increasing amplitudes, then a lower flutter speed. This

destabilizing effect with the increase in RPM is possibly related to the increase of

dynamic pressure proportioned by the propeller slipstream, causing higher lift forces

for the same local angle of attack. This example indicates that depending on the in-
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Figure 6.14: Frequencies and dampings at speeds of v = 12.5, v = 13.0 and v = 13.5
m/s extracted from response after perturbation with step loads of 5 N in vertical and
chordwise directions and 1 Nm in torsion (6000 RPM)

tensity of propeller effects the influence on stability boundary can be more significant.

Damping and frequency were not compared, as the same set of parameters used in

v = 13 m/s for 6000 RPM does not provide a good fitting for the case of 7000 RPM.

6.4.3 Contribution of Different Propeller Effect Components

Figure 6.17 compares the dynamic response as well as frequency and damping

for the same disturbance as in Figure 6.16 for the clamped X-HALE model with tip

masses at v = 13 m/s. This case is already in the unstable regime. Due to more diffi-

culties in find a common set of parameters with good fitting and in order to reduce the
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(f) v = 13.5 m/s

Figure 6.15: Response after perturbation with step loads of 5 N in vertical and
chordwise direction and 1 Nm in torsion (6000 RPM), at speeds v = 12.5, v = 13.0
and v = 13.5 m/s
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Figure 6.16: Wing tip response after perturbation with step loads of 5 N in vertical
and chordwise direction and 1 Nm in torsion, including propeller aerodynamics and
gyroscopic effects

perturbation due to numerical noise, just three POD modes were incorporated (rep-

resenting more than 97% of the snapshot energy), keeping the identification order as
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(c) Wing tip twist

Figure 6.17: Frequencies, dampings, and response after perturbation with step loads
of 5 N in vertical and chordwise direction and 1 Nm in torsion (7000 RPM)

18, and the snapshots were provided with 0.5 second after beginning of perturbations.

In order to observe the isolated propeller effect components (mainly thrust, slip-

stream and gyroscopic moment) three different modeling of propeller effects are con-

sidered:

i) with thrust only (equivalent to thrust produced by isolated propeller at v = 13

m/s and 7000 RPM);

ii) with thrust (and other loads at hub) and slipstream (propeller aero), and;

iii) with thrust (and other loads at hub), slipstream and gyroscopic effects (propeller
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aero + gyro).

From the dynamic response, it is clear that the inclusion of propeller aerodynamic

effects can cause a non-negligible difference in the aeroelastic stability, with the model

including just thrust having a smoother amplitude increase, suggesting a higher flutter

boundary. As previously commented, this destabilizing effect may be related to the

increased dynamic pressure due to the propeller slipstream, causing higher lift (and

consequently higher structural deformations) for same freestream conditions. An

increasing difference of phase with time is also noticeable between the case with

just thrust and other two cases. The inclusion of gyroscopic effects causes negligible

differences for vertical displacements but more visible differences in the amplitude of

angular displacement, which is smaller for the case including gyroscopic effects. This

is in accordance with the root locus, where it is clear that the positive damping for

the unstable modes in the case with slipstream and no gyroscopic effects is higher,

suggesting the gyroscopic effect has a stabilizing effect.

6.4.4 Conclusions

From the analysis of aeroelastic cases and the clamped model considered, it was

observed that:

• The presence of propeller aerodynamic and gyroscopic effects influences the

values of damping and frequencies of some modes and can influence stability

boundary. Moreover, an increase in phase delay and differences in amplitude in

the response to a perturbation close to flutter were shown as compared to the

case with just thrust;

• A reduction of flutter boundary was found by an increase in propeller RPM. This

destabilizing effect may be associated with the impact of slipstream, increasing

the dynamic pressure and local lift;
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• Also, a slight stabilizing effect due to the gyroscopic moment was noticed, sug-

gesting this effect may be more important for cases with higher gyroscopic

moment loads, i.e., higher RPM and propeller mass.
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CHAPTER 7

Conclusions and Recommendations

This chapter summarizes the main contributions and conclusions of the work pre-

sented in this dissertation. Ideas for future related research topics and improvements

are also recommended.

7.1 Summary

High Altitude Long Endurance (HALE) aircraft is a new promising UAV concept,

capable of long-duration flights and satellite-like applications. Its high-efficiency re-

quirements result in a very flexible structure, with a strong coupling of aerodynamics,

structure, and flight dynamics disciplines. For such low-speed vehicles, electric pro-

pellers are often the choice of propulsion.

Although many studies with rigid aircraft configurations have demonstrated that

propellers can impose a significant effect on aircraft performance and stability, few

investigations have been conducted on the effects of propellers on very flexible aircraft.

Moreover, state-of-the-art coupled aeroelastic-flight dynamics frameworks for such

very flexible configurations lack complete modeling of propeller effects, and just thrust

force is usually modeled.

This work addressed those issues by enhancing the UM/NAST framework, a cou-

pled nonlinear aeroelastic-flight dynamics framework developed at the University of

Michigan [6, 31, 32], to take into account various propeller effects (all the resultant
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aerodynamic loads on the hub, the aerodynamic effects of propeller slipstream, and

its inertial effects). The unsteady aerodynamics is based on Lifting Line plus Viscous

Vortex Particle method for the propellers combined with an Unsteady Vortex Lattice

for the lifting surfaces, allowing it to capture propwash effects as well as the inter-

action of the flow among multiple lifting surfaces. Discussion about the selection of

each formulation for this context and its peculiarities are presented in Chapter 2. Also

presented there are the derivation of the inertial effects associated with the rotating

blades and the procedure for the integration of the different involved approaches.

The implementation of the new pieces is presented in details in Chapter 3. The

aerodynamic developments were initially in Python/FORTRAN and then re-written

in C++ (for performance improvement and to facilitate integration into UM/NAST).

Libraries for the Unsteady Vortex Lattice, propeller solver based on Lifting Line and

Viscous Vortex Particle, a general interface between a lifting surface and a propeller

aerodynamics, and an interface class between UM/NAST and Vortex Lattice, as

well as a function for the calculation of gyroscopic moment, were developed and are

presented in Chapter 3. The Vortex Lattice and Propeller libraries can also be used

for isolated aerodynamic analyses.

As discussed in more details in Chapter 4, incorporating the UVLM aerodynamics

for the lifting surfaces and LL/VVPM formulation for the propellers in UM/NAST

linearized formulation would require an in-depth review of the linearization formula-

tion, which was originally done considering Peter’s finite-state inflow theory. Instead,

an alternative approach for extracting the dynamic information (frequency, damping,

and modes) based on the time simulation signal was proposed. Such alternative is

based on system identification and makes use of Proper Orthogonal Decomposition

in order to reduce the degrees of freedom. In this way, it does not assume small dis-

placements (as in the works employing linear modal analysis) and the methodology

can be applied for a structure under large deformations. Moreover, it can be used for
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any time signal, like those from experimental results. Details about the method, its

motivation, and a verification case are presented in Chapter 4.

Next, verification cases are presented for each new piece added to the UM/NAST

aeroelastic framework in Chapter 5. Comparisons for static and dynamic aeroelastic

analysis with the coupled UM/NAST and Vortex Lattice framework, isolated pro-

peller (in terms of resultant loads on the hub and profile velocity of the slipstream),

propeller-wing interaction and the gyroscopic loads calculation are presented against

results from external codes or published numerical and experimental data available

in literature.

After checking the newly added components, the enhanced coupled aeroelastic-

flight dynamics framework is used for numerical investigations of the effects of pro-

pellers on a HALE aircraft, as presented and discussed in Chapter 6. Static and dy-

namic aeroelastic results for the University of Michigan’s X-HALE vehicle [178, 179]

are first investigated, and simulations considering complete and partial propeller mod-

eling are compared, as well as rigid versus flexible cases. Next, the influence of

propellers on aeroelastic stability of a VFA is studied, and the POD plus system

identification method was used to extract the associated dynamic information.

From the numerical investigations, the main conclusions are:

i) Propellers can influence the static and dynamic behavior of a VFA. The differ-

ences were found to be more significant for free-flight and clamped cases with

torsional motion and less significant for bending motion;

ii) They also were found to modify the aeroelastic modes and affect flutter onset,

with important destabilizing role of propeller slipstream, due to the increase of

the dynamic pressure;

iii) For X-HALE, where light-weight (0.023 kg) propellers are employed, gyroscopic

moments presented a negligible influence on the transient response;
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iv) However, slight stabilizing effect due to gyroscopic moment was observed, indi-

cating this effect can be more important for configurations with heavier blades

and/or higher RPM;

v) In summary, results demonstrated that complete propeller effects (beyond just

thrust) should be taken into account in the VFA simulation.

Finally, it is worth to mention that, although the framework with propellers was

developed focusing on very flexible configurations, the enhanced framework is also

capable of being used for the analysis of new propeller-driven aircraft, as Urban Air

Mobility (UAM) [184,185] and distributed propulsion (DP) [22–25,27] concepts.

7.2 Key Contributions

The key contributions of this dissertation can be summarized as follow:

• Development and verification of a coupled nonlinear aeroelastic-flight dynam-

ics framework capable of complete propeller effects modeling. Such effects are

not included in other state-of-the-art coupled nonlinear aeroelastic-flight me-

chanics codes. This goal was achieved by enhancing the UM/NAST aeroelastic

framework, which lead to the following additional contributions:

i) Selection and implementation of a C++ Vortex Lattice library based on an

existent Python/FORTRAN code developed by Ritter [81] for the lifting

surfaces aerodynamics. This Vortex Lattice aerodynamic option allows

taking into account mutual influences among the VFA lifting surfaces as

well as among surfaces and propellers. Additionally, the code can be used

coupled to UM/NAST framework of for isolated aerodynamic analysis;

ii) Development and implementation of a C++ interface between UM/NAST

and the Vortex Lattice code allowing the treatment of each code specific
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variables, as well as the transfer of loads and displacements between the

UM/NAST beam structural model and the non-planar Vortex Lattice grid.

The integrated UM/NAST plus Vortex Lattice framework was verified

against three different external nonlinear aeroelastic codes also employ-

ing Vortex Lattice for the aerodynamics, for a range of static, trim and

dynamic simulations. Excellent agreement was obtained, also providing

benchmark cases for future comparisons;

iii) Implementation (first in Python/FORTRAN, then in C++) of a propeller

aerodynamic solver based on selected approaches for the context of VFA:

Lifting Line method for the propeller blades and Viscous Vortex Particle in

order to model the propeller wakes. Such approaches result in a mid-fidelity

tool, which demonstrated good agreement for comparisons against exper-

imental and numerical results in terms of resultant loads on the blades

and profile velocity behind the propeller. As in the case of Vortex Lat-

tice code, it can be used coupled to UM/NAST framework or for isolated

aerodynamic analysis (with one or multiple propellers);

iv) Development of a C++ general interface between propellers and airframe

aerodynamics: this interface was designed to allow for different combina-

tions of propellers and airframe aerodynamic solvers. For the integration

with UM/NAST framework, a combination of Vortex Lattice for lifting

surfaces and Lifting Line + Viscous Vortex Particle for the propellers was

used. Comparison for a rigid propeller-wing combination was performed

against published numerical results, and excellent agreement was observed;

v) Derivation of the propeller inertial loads and implementation of a C++

function to calculate the missing gyroscopic moments. The derivation took

into account UM/NAST frames and defined new frames for the propeller

and blades. Results for an analytical case of a rigid pitching wing with a
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propeller on its middle were compared against an analytical example, and

excellent agreement was observed;

• Development of an approach, based on a combination of System Identification

and Proper Orthogonal decomposition, for the stability analysis of VFA with

propellers based on a time-series signal. The POD was employed in order to

reduce the number of degrees of freedom, and then the size of the output matrix

provided to the system identification. Results for a purely structural case (a

reference that was available) were compared against UM/NAST results. A

maximum error in frequency prediction smaller than 2% and a MAC value of

about 0.99 were observed for all the modes compared.

• Study of the propeller effects on the aeroelastic response and stability of a

representative HALE aircraft, the University of Michigan’s X-HALE vehicle,

showing the importance of incorporating propeller effects other than thrust for

the adequate assessment of aeroelastic response and stability of Very Flexible

Aircraft. For the cases investigated, aerodynamic effects (in terms of resultant

loads on the blades and propeller wake) have demonstrated to play a major role

when compared to the gyroscopic moments. However, a slight stabilizing effect

was identified due to the gyroscopic moment and can potentially be of more

relevance for models with higher gyroscopic loads (e.g., a combination of higher

diameter, RPM and/or heavier propellers);

7.3 Recommendations for Future Work

During the course of this work, additional topics have been identified for future

studies:

• Acceleration of VVPM and VLM/uVLM methods: as discussed in Chapter 2,

184



both, viscous vortex particle and Vortex Lattice methods are classified as N -

body problems, with N particles (or panels) influencing each other, such that

the calculation of their mutual influence has a computational cost of O(N2).

Then, N -body acceleration algorithms as TreeCode method [147, 148] and the

Fast Multipole Method (FMM) [149, 150] could be applied. A recent work of

Kebbie-Anthony et al. [186] has used for the first time the FMM method to

a nonlinear unsteady aerodynamic simulator based on Vortex Lattice method.

Another option can be the development of reduced-order models (ROM), as

physics-based ROMs based on POD modes;

• Another interesting investigation can be the comparison of simplified propeller

aerodynamic methods for different aeroelastic analysis (static, dynamic response,

stability), evaluating how they compare in terms of cost and accuracy;

• Using the developed enhanced framework (possibly accelerated as described

above), investigate propeller effects for new propeller-driven configurations as

Urban Mobility’s air taxi concepts;

• Comparison of the numerical aeroelastic results with propellers against experi-

mental data for a complete HALE aircraft or a clamped wing with propeller;

• Extend formulation of gyroscopic loads for variable propeller rotation. Equa-

tion 2.85, in Chapter 2 was developed with no assumption about the propeller

angular velocity. However, this assumption was made in the equations 2.86 and

2.87, considering then that the aircraft is flying with a constant angular veloc-

ity and simplifying the calculation and implementation of such derivatives. No

assumption of angular velocity is made for the propeller aerodynamics though,

and if gyroscopic effects are not included, simulations with varying RPM can

be conducted with the current framework;
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• Extend framework applications by modeling blade flexibility.

186



BIBLIOGRAPHY

[1] del Carre, A., Teixeira, P. C., Palacios, R., and Cesnik, C. E. S., “Nonlinear
Response of a Very Flexible Aircraft Under Lateral Gust,” International Forum
on Aeroelasticity and Structural Dynamics, IFASD , Savannah, Georgia, USA,
Jun 2019.

[2] Sundar, R. M., An Experimental Investigation of Propeller Wakes Using a
Laser Doppler Velocimeter , Ph.D. thesis, Purdue University, West Lafayette,
IN, 1985.

[3] Jones, J. R. and Cesnik, C. E. S., “Preliminary Flight Test Correlations of the
X-HALE Aeroelastic Experiment,” The Aeronautical Journal , Vol. 119, No.
1217, 2015, pp. 855–870.

[4] Ritter, M., Jones, J., and Cesnik, C. E. S., “Enhanced Modal Approach for
Free-flight Nonlinear Aeroelastic Simulation of Very Flexible Aircraft,” AIAA
Science and Technology Forum and Exposition (SciTech2016), 15th Dynamics
Specialists Conference, AIAA Paper 2016-1794, January 2016.

[5] Hodges, D. H., Patil, M. J., and Chae, S., “Effect of Thrust on Bending-Torsion
Flutter of Wings,” Journal of Aircraft , Vol. 39, No. 2, 2002, pp. 371–376.

[6] Shearer, C. M. and Cesnik, C. E. S., “Nonlinear Flight Dynamics of Very Flex-
ible Aircraft,” Journal of Aircraft , Vol. 44, No. 5, 2007, pp. 1528–1545.

[7] Changchuan, X., Lan, Y., Yi, L., and Chao, Y., “Stability of Very Flexible
Aircraft with Coupled Nonlinear Aeroelasticity and Flight Dynamics,” Journal
of Aircraft , Vol. 55, No. 2, oct 2017, pp. 862–874.

[8] Prandtl, L., “Mutual Influence of Wings and Propeller,” Tech. rep., NACA
TN-74, December 1921.

[9] Witkowski, D. P., Lee, A. K. H., and P., S. J., “Aerodynamic Interaction Be-
tween Propellers and Wings,” Journal of Aircraft , Vol. 26, No. 9, 1989, pp. 829–
836.

[10] Miranda, L. R. and Brennan, J. E., “Aerodynamic Effects of Wing Tip-mounted
Propellers and Turbines,” 4th Applied Aerodynamics Conference, Fluid Dynam-
ics and Co-located Conferences , 1986, San Diego, California.

187



[11] Kroo, I., “Propeller-Wing Integration for Minimum Induced Loss,” Journal of
Aircraft , Vol. 23, No. 7, 1986, pp. 561–565.

[12] Marreta, R. M. A., “Different Wings Flowfields Interaction on the Wing-
Propeller Coupling,” Journal of Aircraft , Vol. 34, No. 6, 1997, pp. 740–747.

[13] Veldhuis, L., Propeller Wing Aerodynamic Interference, Ph.D. thesis, Delft Uni-
versity of Technology, Delft, 2005.

[14] Ananda, G. K., Deters, R. W., and Selig, M. S., “Propeller-Induced Flow Effects
on Wings of Varying Aspect Ratio at Low Reynolds Numbers,” 32nd AIAA
Applied Aerodynamics Conference, 2014, Atlanta, Georgia, 16 - 20 June.

[15] Mishra, A., Davoudi, B., and Duraisamy, K., “Multiple Fidelity Modeling of
Interactional Aerodynamics,” 35th AIAA Applied Aerodynamics Conference,
2017, 5-9 June 2017, Denver, Colorado.

[16] Calabretta, J. S., A Three Dimensional Vortex Particle-panel Code for Model-
ing Propeller-airframe Interaction, Master’s thesis, California Polytechnic State
University, San Luis Obispo, 2010.

[17] Singh, P. and Friedmann, P. P., “Application of Vortex Methods to Coaxial
Rotor Wake and Load Calculations in Hover,” Journal of Aircraft , Vol. 55,
No. 1, 2017, pp. 373–381.

[18] Singh, P. and Friedmann, P. P., “Dynamic Stall modeling using Viscous Vortex
Particle Method for Coaxial Rotors,” Vertical Flight Society 75th Annual Forum
and Technology Display, Philadelphia, Pennsylvania, May 1316, 2019.

[19] Thepvongs, S., Cesnik, C. E. S., and Voutsinas, S. G., “Aeroelastic and Acous-
tic Analysis for Active Twist Rotors,” 31st European Rotorcraft Forum, 2005,
Florence, Italy, 13-15 September 2005.

[20] He, C. and Zhao, J., “Modeling Rotor Wake Dynamics with Viscous Vortex
Particle Method,” AIAA Journal , Vol. 47, No. 4, 2009, pp. 902–915.

[21] Willis, D. J., An Unsteady, Accelerated, High Order Panel Method with Vor-
tex Particle Wakes , Ph.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, 2006.

[22] Borer, N. K., Moore, M. D., and Turnbull, A. R., “Tradespace Exploration
of Distributed Propulsors for Advanced On-Demand Mobility Concepts,” The
Aviation and Aeronautics Forum and Exposition, 2014, Atlanta, Georgia, 16-20
June.

[23] Borer, N. K. and Moore, M. D., “Integrated Propeller-Wing Design Exploration
for Distributed Propulsion Concepts,” 53rd AIAA Aerospace Sciences Meeting ,
2015, Kissimmee, Florida, 5-9 January.

188



[24] Ortun, B., “A Coupled RANS/lifting-line Analysis for Modeling the Aerody-
namics of Distributed Propulsion,” AHS Technical Conference on Aeromechan-
ics , 2018, San Francisco, California, 16-19 January.

[25] Fischer, J. and Ortun, B., “Simulation and Analysis of the Aerodynamic Inter-
action between Distributed Propulsion and Wings,” AHS Technical Conference
on Aeromechanics , 2018, San Francisco, California, 16-19 January.
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APPENDIX A

Properties of 16-m Wing
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Figure A.1: Vortex Lattice representation of the 16-m wing model (units: meters)

The properties of the 16-m wing model introduced in Chapter 5 are given here

as a reference. The data provided is related to a discretization of the wing in 32

UM/NAST beam elements, with 3 nodes each, totalizing 65 structural nodes evenly

spaced. Table A.1 summarizes data about the stiffness distribution with values given

for the mid node of each element. Table A.2 contains information about the dis-

tributed mass and inertia at the starting and ending node of each element. Table

A.3 contains information about the lumped masses located at the indicated struc-

tural nodes. Finally, Table A.4 contains relevant information for the aerodynamic

modeling.
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Table A.1: Stiffness data for 16-m wing model. Values are for the mid node of each
element.

Element k11 (EA) k22 (GJ) k33 (EIy) k44 (EIz)
1 5.68×108 2.88×106 1.91×106 7.65×106

2 5.68×108 2.70×106 1.80×106 7.19×106

3 5.68×108 2.54×106 1.69×106 6.74×106

4 5.68×108 2.37×106 1.58×106 6.31×106

5 5.68×108 2.22×106 1.47×106 5.90×106

6 5.68×108 2.07×106 1.37×106 5.50×106

7 5.68×108 1.92×106 1.28×106 5.12×106

8 5.68×108 1.79×106 1.19×106 4.75×106

9 5.68×108 1.65×106 1.10×106 4.40×106

10 5.68×108 1.53×106 1.02×106 4.06×106

11 5.68×108 1.41×106 9.36×105 3.74×106

12 5.68×108 1.29×106 8.60×105 3.44×106

13 5.68×108 1.18×106 7.88×105 3.15×106

14 5.68×108 1.08×106 7.19×105 2.88×106

15 5.68×108 9.86×105 6.55×105 2.62×106

16 5.68×108 8.95×105 5.95×105 2.38×106

17 5.68×108 8.10×105 5.39×105 2.15×106

18 5.68×108 7.32×105 4.86×105 1.95×106

19 5.68×108 6.59×105 4.38×105 1.75×106

20 5.68×108 5.92×105 3.93×105 1.57×106

21 5.68×108 5.31×105 3.53×105 1.41×106

22 5.68×108 4.76×105 3.16×105 1.27×106

23 5.68×108 4.27×105 2.84×105 1.13×106

24 5.68×108 3.84×105 2.55×105 1.02×106

25 5.68×108 3.46×105 2.30×105 9.21×105

26 5.68×108 3.15×105 2.09×105 8.37×105

27 5.68×108 2.90×105 1.92×105 7.70×105

28 5.68×108 2.70×105 1.80×105 7.18×105

29 5.68×108 2.57×105 1.71×105 6.82×105

30 5.68×108 2.49×105 1.65×105 6.62×105

31 5.68×108 2.47×105 1.64×105 6.57×105

32 5.68×108 2.51×105 1.67×105 6.69×105
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Table A.2: Distributed mass of the 16-m wing model. Values of inertia are for the
starting and ending node of each element.

Element Mass Ixx (start) Ixx (end) Iyy (start) Iyy (end) Izz (start) Izz (end)
[-] [kg/m] [kgm] [kgm] [kgm] [kgm] [m] [m]
1 6.4 8.88×102 8.36×102 2.22×102 2.09×102 8.88×102 8.36×102

2 6.4 8.36×102 7.84×102 2.09×102 1.96×102 8.36×102 7.84×102

3 6.4 7.84×102 7.35×102 1.96×102 1.84×102 7.84×102 7.35×102

4 6.4 7.35×102 6.87×102 1.84×102 1.72×102 7.35×102 6.87×102

5 6.4 6.87×102 6.42×102 1.72×102 1.60×102 6.87×102 6.42×102

6 6.4 6.42×102 5.98×102 1.60×102 1.49×102 6.42×102 5.98×102

7 6.4 5.98×102 5.55×102 1.49×102 1.39×102 5.98×102 5.55×102

8 6.4 5.55×102 5.15×102 1.39×102 1.29×102 5.55×102 5.15×102

9 6.4 5.15×102 4.76×102 1.29×102 1.19×102 5.15×102 4.76×102

10 6.4 4.76×102 4.39×102 1.19×102 1.10×102 4.76×102 4.39×102

11 6.4 4.39×102 4.04×102 1.10×102 1.01×102 4.39×102 4.04×102

12 6.4 4.04×102 3.71×102 1.01×102 9.27×103 4.04×102 3.71×102

13 6.4 3.71×102 3.39×102 9.27×103 8.48×103 3.71×102 3.39×102

14 6.4 3.39×102 3.09×102 8.48×103 7.73×103 3.39×102 3.09×102

15 6.4 3.09×102 2.81×102 7.73×103 7.03×103 3.09×102 2.81×102

16 6.4 2.81×102 2.55×102 7.03×103 6.38×103 2.81×102 2.55×102

17 6.4 2.55×102 2.31×102 6.38×103 5.76×103 2.55×102 2.31×102

18 6.4 2.31×102 2.08×102 5.76×103 5.20×103 2.31×102 2.08×102

19 6.4 2.08×102 1.87×102 5.20×103 4.67×103 2.08×102 1.87×102

20 6.4 1.87×102 1.68×102 4.67×103 4.19×103 1.87×102 1.68×102

21 6.4 1.68×102 1.50×102 4.19×103 3.76×103 1.68×102 1.50×102

22 6.4 1.50×102 1.35×102 3.76×103 3.37×103 1.50×102 1.35×102

23 6.4 1.35×102 1.21×102 3.37×103 3.02×103 1.35×102 1.21×102

24 6.4 1.21×102 1.09×102 3.02×103 2.72×103 1.21×102 1.09×102

25 6.4 1.09×102 9.86×103 2.72×103 2.47×103 1.09×102 9.86×103

26 6.4 9.86×103 9.01×103 2.47×103 2.25×103 9.86×103 9.01×103

27 6.4 9.01×103 8.34×103 2.25×103 2.08×103 9.01×103 8.34×103

28 6.4 8.34×103 7.84×103 2.08×103 1.96×103 8.34×103 7.84×103

29 6.4 7.84×103 7.53×103 1.96×103 1.88×103 7.84×103 7.53×103

30 6.4 7.53×103 7.39×103 1.88×103 1.85×103 7.53×103 7.39×103

31 6.4 7.39×103 7.43×103 1.85×103 1.86×103 7.39×103 7.43×103

32 6.4 7.43×103 7.64×103 1.86×103 1.91×103 7.43×103 7.64×103
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Table A.3: Lumped mass data. Masses are located on the position of the indicated
structural nodes (model has 32 elements with 3 nodes each, totalizing 65 structural
nodes. Node 0 is at the root).

Node Mass Ixx
[kg] [kgm2]

4 5.000 0.200
7 4.970 0.199
10 4.939 0.198
13 4.909 0.196
16 4.879 0.195
19 4.848 0.194
22 4.818 0.193
25 4.788 0.192
28 4.758 0.190
31 4.727 0.189
34 4.697 0.188
37 4.667 0.187
40 4.636 0.185
43 4.606 0.184
46 4.576 0.183
49 4.545 0.182
52 4.515 0.181
55 4.485 0.179
58 4.455 0.178
61 4.424 0.177
64 4.394 0.176
67 4.364 0.175
70 4.333 0.173
73 4.303 0.172
76 4.273 0.171
79 4.242 0.170
82 4.212 0.168
85 4.182 0.167
88 4.152 0.166
91 4.121 0.165
94 4.091 0.164
96 4.061 0.162

Table A.4: 16-m wing aerodynamic model description.

Span Chord E. Axis Dihedral Incidence Airfoil
[m] [m] [% chord] [deg] [deg] [-]
16 1 35 0 0 FLAT
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APPENDIX B

Properties of X-HALE Model Used in

This Dissertation

Figure B.1: Nomenclature followed in the tables describing X-HALE properties [1]

The properties of the X-HALE model used in this work and introduced in Chapter

5 are given here as a reference. Table B.1 summarizes the data associated with the

stiffness distribution. Table B.2 contains information about each member distributed

mass. Table B.3 contains information about the lumped masses. Finally, Table B.4

contains relevant information for the aerodynamic modeling.

The plastic blade mass (0.023 kg) is incorporated as a lumped mass at the propeller
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hub location. The parts of the aircraft referenced on the tables are illustrated in Figure

B.1.

Table B.1: Stiffness data for X-HALE model.

Member k11 (EA) k22 (GJ) k33 (EIy) k44 (EIz) k14 (axial-IP) k34 (OOP-IP)
[-] [Nm2] [Nm2] [Nm2] [Nm2] [Nm2] [Nm2]

R inner 2.14×106 5.93×101 1.12×102 6.35×103 0 4.63×101

R mid 2.14×106 5.93×101 1.12×102 6.35×103 0 4.63×101

R outer 2.14×106 5.93×101 1.12×102 6.35×103 0 4.63×101

fuselage 5.39×107 5.39×107 5.39×107 5.39×107 0 0
tail 3.21×106 2.14×101 9.10×101 4.27×103 7.44×104 2.26×10−6

fin 5.39×107 5.39×107 5.39×107 5.39×107 0 0

Table B.2: Distributed mass of the X-HALE model. Member abbreviations are de-
fined in Figure B.1.

Member Mass Ixx Iyy Izz Iyz xcg ycg zcg
[-] [kg/m] [kgm] [kgm] [kgm] [kgm] [m] [m] [m]
R inner 3.94×10−1 8.1×10−4 1.22×10−5 7.97×10−4 6.5×10−6 0 2.94×10−2 0
R mid 3.94×10−1 8.1×10−4 1.22×10−5 7.97×10−4 6.5×10−6 0 2.94×10−2 0
R outer 5.0×10−1 8.1×10−4 1.22×10−5 7.97×10−4 6.5×10−6 0 2.14×10−2 0
fuselage 0.0429 2.91×10−9 1.46×10−9 1.46×10−9 0 0 0 0
tail 0.2614 1.6×10−4 2.910×10−6 1.57×10−4 0 0 0.0144 0
pod 1×10−8 2×10−8 1×10−8 1×10−8 0 0 0 0
C fin 0.5092 3.19×10−3 9.34×10−5 3.28×10−3 0 0 0 0
L/R fin 0.3208 8.17×10−4 5.88×10−5 8.76×10−4 0 0 0 0
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Table B.3: Lumped mass data. Relative positions are given with respect to the
pod/wing spar intersection node. Frame of reference: x right wing, y upstream, z up.
Member abbreviations are defined in Figure B.1.

Mass xcg ycg zcg Ixx Ixy Ixz Iyy Iyz Izz
[kg] [m] [m] [m] [kgm2] [kgm2] [kgm2] [kgm2] [kgm2] [kgm2]
C pod
0.3746 0 0.1 0 1.15×10−3 0 0 8.90×10−4 0 8.90×10−4

1.0462 3.97×10−3 0.0612 -0.0168 1.48×10−2 2.32×10−4 2.27×10−5 2.82×10−3 4.50×10−4 2.50×10−4

0.023 0 0.260 -0.023 0 0 0 0 0 0
L pod
0.548 -0.01 0.090 0 1.54×10−3 0 0 8.90×10−4 0 8.90×10−4

0.929 2.14×10−3 0.04 -1.39×10−2 1.13×10−2 -1.21×10−3 1.06×10−5 3.21×10−3 4.60×10−5 8.48×10−3

0.023 0 0.259 -0.023 0 0 0 0 0 0
R pod
0.548 -0.01 0.090 0 1.54×10−3 0 0 8.90×10−4 0 8.90×10−4

0.929 2.14×10−3 0.04 1.39×10−2 1.13×10−2 -1.21×10−3 1.06×10−5 3.21×10−3 4.60×10−5 8.48×10−3

0.023 0 0.259 -0.023 0 0 0 0 0 0
LL pod
0.571 -0.01 0.091 0 1.54×10−3 0 0 8.90×10−4 0 8.90×10−4

0.929 2.14×10−3 0.04 -1.39×10−2 1.13×10−2 -1.21×10−3 1.06×10−5 3.21×10−3 4.60×10−5 8.48×10−3

0.023 0 0.259 -0.023 0 0 0 0 0 0
RR pod
0.571 -0.01 0.091 0 1.54×10−3 0 0 8.90×10−4 0 8.90×10−4

0.929 2.14×10−3 0.04 -1.39×10−2 1.13×10−2 -1.21×10−3 1.06×10−5 3.21×10−3 4.60×10−5 8.48×10−3

0.023 0 0.259 -0.023 0 0 0 0 0 0

Table B.4: X-HALE aerodynamic model description.

Member Span Chord Elastic Axis Dihedral Incidence Airfoil
[-] [m] [m] [% chord] [deg] [deg] [-]
inner/mid wings 1 0.2 28.8 0 5 EMX-07
outer wings 1 0.2 28.8 10 5 EMX-07
c tail 0.385 0.11 32.35 0 0 flat plate
ll/l/r/rr tail 0.48 0.11 32.35 0 0 flat plate
c fin 0.15 0.78 122.56 0 0 flat plate
l/c/r pod 0.184 0.38 60.93 0 0 flat plate
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APPENDIX C

Analytical Example for Gyroscopic Loads

Verification

Figure C.1: Pitching wing with rotating propeller represented by a rigid, massless
rod, with concentrated masses on its ends

In order to verify the implementation of the additional term given by Eq. 2.85,

which accounts for propeller gyroscopic moment, a comparison of the additional mo-

ment was performed against the analytical solution for a simple case of a rigid wing

undergoing a pitching sinusoidal motion with a propeller located in its middle (Figure

C.1). Table C.1 summarizes the data for this comparison. In this case, the propeller

blades are represented as rigid massless rods with concentrated masses on its ends.

The wing is undergoing a pitching motion given by:
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θ = θ0sin(ωpitcht) (C.1)

where θ is the pitching angle, θ0 the angular amplitude of the oscillatory motion and

ωpitch the pitch angular velocity. For this simple example, an analytical solution is

possible, as described next.

Table C.1: Parameters used for the verification of gyroscopic moment

Propeller RPM 6000
Propeller mass 0.027 kg
Pitch motion amplitude 30 degrees
Pitch frequency 5 Hz

In this problem one is interested in the gyroscopic moment of the rotating rod/-

mass body transmitted to the point where the propeller is attached to the wing

structure. Note that this results does not depend on the spanwise position of the

propeller in this rigid wing example. The analytical solution for the gyroscopic mo-

ment was obtained based on the theory presented in Kane and Levinson [187] and

described below.

The central angular momentum ~H of a rigid body B in a reference frame A can

be expressed as:

~H = I1ω1b̂1 + I2ω2b̂2 + I3ω3b̂3 (C.2)

where b̂1, b̂2, b̂3 are a set of mutually perpendicular unit vectors fixed in B, ωj =A ~ωB·b̂j,

and I1, I2, I3 are the central principal moments of inertia of the rigid body B.

The gyroscopic moment acting on the rigid body B is given by the first time

derivative of the central angular momentum H with relation to the inertial frame A,

and can be written in terms of the unit vectors attached to B as:
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Ad ~H

dt
= M1b̂1 +M2b̂2 +M3b̂3 (C.3)

where Mi are values that we want to determine.

Applying identity given by Eq. 2.75, in Chapter 2, one has:

Ad ~H

dt
=

Bd ~H

dt
+A ~ωB × ~H (C.4)

Also, from Eq. C.2:

Bd ~H

dt
= I1ω̇1b̂1 + I2ω̇2b̂2 + I3ω̇3b̂3 (C.5)

and by definition:

A~ωB = ω1b̂1 + ω2b̂2 + ω3b̂3 (C.6)

Then:

A~ωB × ~H = (ω2I3ω3 − ω3I2ω2)b̂1 + ... (C.7)

Substituting (C.5) and (C.7) into (C.4):

Ad ~H

dt
= [I1ω̇1 − (I2 − I3)ω2ω3]b̂1 + ... (C.8)

Finally, comparing (C.8) and (C.3), one has:

M1 = I1ω̇1 − (I2 − I3)ω2ω3 (C.9)

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (C.10)
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M3 = I3ω̇3 − (I1 − I2)ω1ω2 (C.11)

Then, considering A as the inertial frame and B as a frame attached to the

propeller blades (represented by the rigid rod), and remembering that the gyroscopic

moment transmitted to the structural node is the negative of the gyroscopic moment

acting on the rod, the moment transmitted can be finally calculated by:

Mgyro = −
Ad ~H

dt
(C.12)

where
Ad ~H
dt

is given by Eq. C.3.

The following MATLAB script contains the implementation of the analytical so-

lution for this case:

% theoretical test case for propeller inertial loads

%Parameters used:

l = 0.085; % (m); this is the length from the hub to the mass position

mass = 0.027/2; %for two blade, mass of each blade equals (mass prop) / 2

time = 1;

w_prop = 6000 * (2*pi)/60; % propeller angular velocity

theta_0_degree = 30; % pitch angular velocity

w_pitch = 10 * pi; % 2 * pi * f, f = 5 Hz

% Principal moment of inertias of rod with mass at the tips:

I1 = 2 * mass * l^2;

I2 = 2 * mass * l^2;

I3 = 0;
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syms t

theta = theta_0_degree * sin (w_pitch * t) * pi/180;

theta_prop = w_prop * t;

% Here we are considering 3 frames: b -> blade frame;

% moves with relation to prop frame

% p -> prop frame, atatched to prop hub, does not rotate with

% relation to hub

% B -> inertial frame (for this example, will be coincident to body frame

% defined in UM/NAST

Mp2B = [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)];

Mb2p = [cos(theta_prop) 0 sin(theta_prop);

0 1 0;

-sin(theta_prop) 0 cos(theta_prop)];

Mb2B = Mp2B * Mb2p;

%angular velocity of blade frame with relation to propeller frame:

P_omega_b = [0;w_prop;0];

% angular velocity of blade frame with relation to propeller frame,

% written in body frame:

P_omega_b_Bf = Mb2B * P_omega_b;

% angular velocity of propeller frame with relation to body frame:

B_omega_P_Bf = [diff(theta); 0; 0];

213



%Writting blade frame unit vectors in terms of body frame system:

b1_Bf = Mb2B * [1; 0; 0];

b2_Bf = Mb2B * [0; 1; 0];

b3_Bf = Mb2B * [0; 0; 1];

% Calculating w_i's:

w1 = dot(P_omega_b_Bf + B_omega_P_Bf, b1_Bf);

w2 = dot(P_omega_b_Bf + B_omega_P_Bf, b2_Bf);

w3 = dot(P_omega_b_Bf + B_omega_P_Bf, b3_Bf);

% Calculating first derivative w_i's

w1p = diff(w1);

w2p = diff(w2);

w3p = diff(w3);

%Calculating the coefficients M_1, M_2 and M_3:

M1 = I1 * w1p - (I2 - I3) * w2 * w3;

M2 = I2 * w2p - (I3 - I1) * w3 * w1;

M3 = I3 * w3p - (I1 - I2) * w1 * w2;

%Finally, transferring moments to node, remembering the moments transmitted

% are minus the moments acting on the rotating rod:

M = Mb2B * [-M1; -M2; -M3];

clf

figure(1)
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hold on

fplot(M(1),[0,time],'b')

fplot(M(2),[0,time],'r')

fplot(M(3),[0,time],'g')

hold on

xlabel('time (sec)')

ylabel('Gyroscopic Moment (Nm)')

legend('Mx from theoretical','My from theoretical','Mz from theoretical')
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