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ABSTRACT

This dissertation describes experiments performed at the Omega-60 laser facility

to investigate the nonlinear growth stage of the Rayleigh-Taylor instability (RTI) at

a low-density-contrast embedded interface initialized with 2D and 3D single-mode

sinusoidal perturbations. RTI occurs at the interface between two fluids of different

densities when the lower-density fluid pushes the higher-density fluid. Such a system

is energetically unstable: a small-amplitude perturbation at the interface evolves into

features described as “bubbles” (parcels of light-fluid rising upward) and “spikes”

(regions of heavy-fluid falling downward). Bubbles and spikes interpenetrate across the

interface, forming a mixed-fluid region which continues to grow, thereby lowering the

potential energy of system. This fundamental hydrodynamic instability is encountered

throughout nature and engineered systems. In the realm of high-energy-density (HED)

physics, RTI occurs in astrophysical phenomena such as supernovae explosions and in

the laboratory during implosion of inertial confinement fusion (ICF) capsules. The

ability to model and predict the evolution of RTI has important consequences for

fundamental scientific understanding and engineering applications.

Theoretical approaches to RTI consider three separate cases: single-mode, multi-

mode, and turbulent mixing, which evolve differently. Analytical models successfully

predict macroscopic growth rates of the mixed-fluid layer for these three cases under

certain conditions, but neglect the small-scale mixing dynamics, which are essential

to describing transitional states. To develop reliable predictive capabilities, we must

understand how the seed spectrum, density contrast of the two fluids, miscibility,

xxiv



acceleration history, and Reynolds number affect the evolution of RTI. Experiments

with well-controlled initial conditions enable us to isolate and study particular aspects of

the problem. Recent classical fluids experiments and numerical simulations investigate

the late-nonlinear growth stage of single-mode RTI and dependence on density contrast.

At low-density-contrast, single-mode RTI growth appears to reaccelerate, beyond the

terminal velocity predicted by potential-flow models. In the late-nonlinear stage,

secondary instabilities arise which modify the internal mixing dynamics and growth

rate. No existing models describe this stage of RTI growth, where the mixed-fluid

region is partially coherent, partially chaotic, but not fully turbulent. The work

presented here investigates this regime in a high-energy-density system relevant to

astrophysics and ICF.

In this dissertation, I describe experiments performed at Omega-60, a 10-kJ-

class laser facility. In this experimental platform, a blast wave drives RTI growth

at an embedded interface inside a shock tube. Using dual-axis X-ray radiography,

we observed the evolution of the mixed-fluid region from 17-47 ns. Experimentally

measured spike- and bubble-front positions are compared with buoyancy-drag models

and radiation-hydrodynamics simulations. The experiments at Omega-60 did not

sustain acceleration for long enough to drive RTI into the desired regime, but provided

valuable information to inform the design of future experiments at the National

Ignition Facility, a MJ-class laser facility.

xxv



CHAPTER I

Introduction

1.1 High-Energy-Density Physics, Inertial Confinement Fu-

sion, and Laboratory Facilities

Figure 1.1: Regimes of high-energy-density physics, modified from figure by R.P.
Drake [1].

High-energy-density (HED) refers to systems with pressure exceeding 1 Mbar (one

million times atmospheric pressure on Earth) [1]. This corresponds to temperatures

1



high enough to ionize solid-density materials, creating a plasma state too dense

to be described by traditional plasma physics. These conditions naturally exist in

astrophysical phenomena, such as stars, giant planets, and supernovae, and can be

created by human engineering. The first such demonstration was the detonation of a

nuclear weapon at the Trinity test site in 1945. At present, the United States nuclear

stockpile consists of approximately 4,000 weapons, most of which were built in the

1950s and 1960s. Scientists trained in high-energy-density physics must ensure that

this aging stockpile remains safe, secure, and reliable. Modern laboratory facilities can

safely create HED conditions on a microscopic scale, where experiments are performed

to study the physical phenomena of interest and validate the results of radiation-

hydrodynamics simulations, thereby sustaining expertise needed for national security

and advancing fundamental scientific knowledge. Research into inertial confinement

fusion (ICF) directly supports these goals.

Figure 1.2: National Ignition Facility at Lawrence Livermore National Laboratory [2]

In the United States, there are two large laser facilities designed for ICF. The
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Figure 1.3: Omega-60 Laser Facility at the University of Rochester Laboratory for
Laser Energetics [3]

Omega laser facility at the Laboratory for Laser Energetics (LLE) in Rochester,

NY enables direct-drive research (Figure 1.3). The National Ignition Facility (NIF),

located at the Lawrence Livermore National Laboratory in Livermore, CA, pursues an

indirect-drive approach (Figure 1.2). The experiments for this dissertation work were

performed in the Omega-60 target chamber at LLE (Figure 1.3). At the center of a

spherical chamber, sixty laser beams can focus up to 30 kJ of energy onto a target

that measures less than one millimeter in diameter in approximately one billionth of

a second. The NIF is an even more energetic facility, with 192 beams delivering 1.8

MJ of laser energy, divided between two beam clusters at opposite poles of the target

chamber.

The basic concept of laser-driven ICF is illustrated in Figure 1.4. The spherical

capsule consists of a deuterium or tritium fuel core surrounded by a low-atomic-number

material shell. High-intensity laser beams (direct drive) or X-rays emitted from a

laser-driven hohlraum (indirect drive) irradiate the surface of the shell, rapidly heating

it and causing it to explode outward. (This process is also known as “ablation.”) In

reaction to this force, the remaining capsule material implodes, creating a shock wave

that travels inward, thereby compressing and heating the fuel. As it travels through
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more mass, the shock wave decelerates and stagnates. The goal is to symmetrically

implode the capsule and reach a compression ratio sufficient to ignite a central “hot

spot,” where nuclear fusion occurs. Thermonuclear chain reactions propagate the burn

to the surrounding (cooler) fuel, at a rate much faster than the capsule can expand

outward. The hot, dense plasma is confined by the inertia of its own mass.

Figure 1.4: Conceptual illustration of the two versions of laser-driven ICF (figure
from [4]). (a) For indirect drive, the capsule is positioned in the center a
hollow, gold cylinder called a hohlraum. Laser beams enter through both
ends of the cylinder and irradiate the interior walls of the hohlraum. The
gold material absorbs the laser energy and emits X-rays, which irradiate
the capsule from all sides. This is in contrast to direct drive (b), where laser
beams configured in a spherical geometry directly irradiate the capsule.

In addition to ICF research, these facilities have enabled “laboratory astrophysics”

[5]. Experiments with well-controlled initial conditions allow us to isolate and study

physical processes and material properties in astrophysical phenomena. Appropriate

temporal and spatial scaling enables comparisons between laboratory results and

astrophysical observations [6] [7].

1.2 Notation and Units

Throughout this text, I will use the subscripts 1 and 2 to denote the denser and

less-dense fluids, respectively. Subscripts i, e, R represent ions, electrons, and the
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radiation field, respectively. For example, Ti is the temperature of the ions and pR

is the radiation pressure. The subscript T denotes turbulent quantities, such as eddy

viscosity, νT . Variables without these subscripts {i, e, R , T} describe bulk-fluid or

generalized field properties. I will use italicized text for scalars (and in some cases,

for unidirectional vectors where the direction is implied by the context), italic-bold

for vectors, and italic-bold-underscore for tensors (rank ≥ 2). Sometimes it is more

useful to express tensors in Cartesian coordinates with index notation. For example,

σ and σij both refer to the viscous stress tensor (and in this case, the subscript i is

an index and does not refer to ions).

The HED community uses a hybrid system of units because such extreme physical

conditions don’t translate well to ordinary scales and colloquial language. Numerical

computations are typically performed in the centimeter-gram-second (cgs) system

of units. Many radiation-hydrodynamics codes specify input/output parameters in

cgs units for everything except temperature, which is given in eV. For any system

of units, the Boltzmann constant kB describes the relationship between energy and

temperature: E = kB T , where kB = 8.61733× 10−5 eV/K. As a rough approximation,

1 eV ≈ 104 Kelvin. For purposes of scientific communication (in conversations, text

and figures), pressure and energy density are often given in Mbar or GBar: 1 Mbar

= 1011 Pa (SI) = 1012 Ba (cgs). Spatial and temporal scales are converted to units

appropriate for the context (laboratory or astrophysics). For laboratory experiments,

we typically use µm and ns. To put this into perspective: 1µm/ns = 1 km/s. Electro-

magnetic radiation in the infrared (IR) to ultraviolet (UV) spectrum is described in

terms of wavelength, with units of either µm or nm. In the X-ray spectrum, photon

energy is given in units of eV. Laser irradiance is typically given in units of W/cm2.
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1.3 Fluid Description of the HED Plasma

At Omega-60, laser beams (or X-rays emitted from a laser-driven hohlraum) deposit

energy in a ∼ 1 ns pulse on the surface of a solid target, generating a peak ablation

pressure of 10-50 Mbar and launching a strong shock into the target. The post-shock

material is a hot (1 − 100 eV ≈ 104 − 106 K), dense (∼ 0.1 − 10 g/cm3), ionized

plasma which behaves as a compressible fluid. The material may be in a state of

partial or complete ionization, depending on its atomic composition.

The Navier-Stokes Equations (1.1a, 1.1b, 1.1c) describe the relationship between

density, pressure, and internal energy of a moving fluid, and its interaction with

external forces. This set of three equations expresses conservation of mass density,

momentum density, and energy density. In the non-relativistic limit, the HED plasma

can be described by single-fluid equations, where the atomic and ionic species and

the electrons move at the same bulk velocity u. Further, we assume the material is

isotropic, so that it can be described by a scalar pressure p (the total pressure exerted by

the ions and the electrons). A more physically accurate picture (which is implemented

in the radiation-hydrodynamics code CRASH) uses single-fluid equations for mass

and momentum density, but solves separate energy-density equations for electrons,

ions, and radiation (using a multi-group diffusive radiation transport model) [8]. For

simplicity, here I use a single-fluid energy-density equation and assume the ions and

electrons are in local thermodynamic equilibrium (LTE) so that Ti = Te = T :

Mass:
∂ρ

∂t
+∇ · ρu = 0 (1.1a)

Momentum: ρ
(∂u
∂t

+ u · ∇u
)

+∇(p+ pR)−∇ · σ + FEM + Fother = 0 (1.1b)

Energy:
∂

∂t

(
ρε+

ρu2

2
+ ER

)
+∇ ·

(
ρu (ε+

u2

2
+ pu)

)
+ ...

∇ ·
(
FR + (pR + ER) u+Q− σ · u

)
+ Fother · u = 0 (1.1c)
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where ρ is mass density, ε is specific internal energy, pR is radiation pressure, ER is

radiation energy density, FEM is force density due to interaction of charged particles

with an electro-magnetic (EM) field, FR is radiative energy flux, Q is energy flux

from heat conduction, σ is the viscous stress tensor, and Fother encompasses all other

forces acting on the system. (As a relevant example, Fother may include ρg, where g

is gravity).

For the class of experiments considered here, there is no externally applied magnetic

field and the plasma is strongly collisional. By design (choice of materials and laser

drive parameters), the post-shock fluid temperature is low enough so that material

energy flux greatly exceeds energy flow by heat conduction and radiation flux. Under

these conditions, classical hydrodyanmic behavior dominates [7]. The Euler Equations

(1.2a, 1.2b, 1.2c) constitute a simplified version of the Navier-Stokes equations for the

case where viscosity and thermal conductivity are negligible:

∂ρ

∂t
+∇ · ρu = 0 (1.2a)

ρ
(∂u
∂t

+ u · ∇u
)

+∇p = 0 (1.2b)

∂

∂t

(
ρε+

ρu2

2

)
+∇ ·

(
ρu (ε+

u2

2
+ pu)

)
= 0 (1.2c)

From here, we can see that a closure problem exists: three equations with four

state variables (ρ,u, p, ε). The equation of state (EOS) describes the thermodynamic

relationship between these variables and provides closure to the Euler Equations.
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1.3.1 Equation of State

For simple analytic calculations and conceptual understanding, an HED plasma

can be modeled as ideal polytropic gas with EOS:

p =
ρ(1 + Z)kBT

Matmp

(1.3)

ε =
n

2

(1 + Z)kBT

Matmp

=
p

ρ(γ − 1)
(1.4)

c2
s =

(∂p
∂ρ

)
s

= γ
p

ρ
, where the derivatitive is taken at constant entropy (1.5)

Here, Mat is the average atomic mass (of the ions), Z is the average level of ionization,

mp is the proton mass, n is the number of degrees of freedom, cs is the sound speed,

and the adiabatic index γ is the ratio of specific heat capacities:

γ ≡ Cp
Cv

=

∂ε
∂T

∣∣
p

∂ε
∂T

∣∣
v

= 1 +
2

n
(1.6)

where Cp, Cv are the specific heat capacities at constant pressure and volume, respec-

tively. In the simplest approximation, γ is constant. For an ideal gas, γ = 5/3 and

for a radiation-dominated plasma γ = 4/3 [1]. In reality, the polytropic gas EOS is a

poor approximation to describe a partially ionized HED plasma. A more physically

accurate model might involve other physical effects, such as Coulomb energy correc-

tions, degenerate electrons, pressure ionization, continuum lowering, and the impact

of bound electrons [1]. The situation becomes even more complicated in dynamic

HED systems, where the materials transition through many different states.

Radiation-hydrodynamics simulations employ material-specific tabular equations of

state. An EOS table specifies two of the thermodynamic variables (ρ, p, ε, T ) in terms

of the other two, for a discrete set of values. A computer algorithm then interpolates

between the tabulated values to calculate the state of the system throughout the
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simulation. Each EOS table is the product of extensive research efforts, incorporating

limited experimental data, physics models, and molecular dynamics simulations. A

given EOS only applies for a specific range of conditions (ρ, p, ε, T ). When merging

models that cover adjacent regimes, it can be difficult to maintain thermodynamic

consistency (not violate the first law of thermodynamics). For many materials, no

data exists and the EOS for a different material is applied.

1.3.2 Viscosity

Viscosity is the property of a fluid which characterizes its resistance to deformation.

Conceptually, if adjacent layers within a fluid are in relative motion, a frictional force

arises between the layers which resists their relative motion. Viscosity measures the

strength of this internal force. Figure 1.5 illustrates the simple case of planar parallel

flow of a Newtonian fluid. Here, the relative motion of the fluid layers is along the

x-direction (u = ux). The dynamic viscosity µ is defined by Equation 1.7, which is

known as Newton’s law of viscosity:

σ = µ
∂ux
∂y

(1.7)

where σ is the shear stress and ∂ux/∂y is the local shear velocity (or strain rate).

More generally, viscous stresses occur in all directions, resulting from the relative

motions of different fluid particles throughout the fluid. The viscous stress tensor σ

expresses the generalized form of Newton’s law of viscosity:

σ = µ[∇u+ (∇u)†]− (
2

3
µ− µvol)(∇ · u)δ (1.8)

where δ is the unit tensor, the symbol † represents the transpose operator, the

dynamic viscosity µ is the same scalar quantity as above, and µvol is the bulk (or

volume) viscosity. The bulk viscosity represents a type of internal friction which resists
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Figure 1.5: Illustration of Newton’s law of viscosity in planar parallel flow (modified
from figure by [9]).

non-shear compression or expansion. For example, µvol can be significant during

shock-compression of a fluid. In classical fluids, this term can often be neglected. For

a monoatomic gas, µvol = 0. For an incompressible fluid, ∇·u = 0, so the second term

in Equation 1.8 drops out. Expressed in Cartesian coordinates with index notation,

the viscous stress tensor (Equation 1.8) for an incompressible fluid becomes:

σij = µ
(∂ui
∂xj

+
∂uj
∂xi

)
(1.9)

The kinematic viscosity is defined as:

ν ≡ µ

ρ
(1.10)

Dynamic viscosity µ has units of [pressure · time] and kinematic viscosity ν has units

of [area/time].

Viscosity can also be viewed from the perspective of kinematic transport theory: ν

is the fluid property which measures momentum transport. Shear stress σ has units of

pressure, which is equivalent to the units of momentum flux. In gases, viscosity arises

primarily from molecular diffusion, which transports momentum within the flow. For
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a low-density gas [10]:

ν ≈ λmfp

√
2kBT

πMmol

(1.11)

where λmfp is the mean-free path of the molecules and Mmol is the average molecular

mass.

In an HED plasma, the kinematic viscosity is usually small and can be ignored in

many applications. However, the physical mechanism of viscous dissipation stabilizes

small-scale fluctuations in a boundary-layer flow. As will be explained in Chapter II,

this situation relates to the late-stage growth of RTI, where a boundary layer develops

between adjacent spikes and bubbles. A transition from laminar to turbulent flow

is only possible above a critical Reynolds number, which corresponds to very small

kinematic viscosity. To predict this regime, we require a model for kinematic viscosity.

Braginskii’s formula is often used due to its simplicity. This model applies to

unmagnetized, low density, high temperature, single-ion-species plasmas with weak

ionic coupling [11]:

ν [cm2/s] = 3.3× 10−5 M
1/2
at T

5/2
i [eV]

ln Λ Z4 ρ [g/cm3]
(1.12)

where Mat is the average atomic mass of the ions, Z is the average level of ionization,

and ln Λ is the Coulomb logarithm. Unlike a classical fluid, the level of ionization

strongly influences the kinematic viscosity. The more complicated model of Clérouin

et al. (found in [12]) provides a more accurate estimate of kinematic viscosity for

denser plasmas with mixing between two ionic species. Irrespective of the choice

of model, the plasma parameter inputs cannot be measured experimentally and are

predicted from numerical simulations. Therefore, uncertainty in the EOS compounds

uncertainty in the kinematic viscosity.
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(a)

(b) (c)

Figure 1.6: Examples of vortices found in nature: (a) Tornadoes [13]; (b) Whirlpools
on the surface of the ocean [14]; (c) Flow structures created by the passage
of an airplane wing (in this image, revealed by colored smoke) [15]

1.4 Vorticies and Turbulence

In this section, I wish to clarify the terminology and what is meant by “vorticity,”

“circulation,” “a vortex”, and “an eddy.” All four terms describe circular motion

within a flow. Vorticity and circulation have specific mathematical definitions; whereas

vortices and eddies are conceptual descriptions of rotational structures and the distinc-

tion between them is subtle. The eddy description arises primarily in the context of

turbulence. A detailed discussion of turbulence is beyond the scope of this dissertation.

I will merely introduce the concepts of eddy viscosity and turbulence models, so that

their meanings are clear in subsequent chapters.
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1.4.1 Vorticity and Circulation

Vorticity is the curl of the velocity field:

ω ≡ ∇× u (1.13)

The circulation Γ quantifies the amount of fluid rotation within a closed curve C:

Γ ≡
∮
C

u d · s =

∫
A

ω · n dA (1.14)

where ds is a differential line element along C, A is the surface bounded by the curve

C, and n is the unit vector perpendicular to A. The second equality follows from

Stokes’ theorem and the definition of vorticity.

Baroclinicity quantifies the alignment between the pressure gradient and the density

gradient in a stratified fluid:

1

ρ2
∇ρ×∇p (1.15)

In a barotropic fluid, the surfaces of constant density and the surfaces of constant

pressure coincide (baroclinicity equals zero). In a baroclinic fluid, these surfaces

intersect [16]. Kelvin’s theorem states that in a flow with conservative body forces

and inviscid, barotropic fluids, the circulation around a closed curve moving with the

fluid is constant:

DΓ/Dt = 0 (1.16)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. The converse of Kelvin’s

theorem is also true, revealing the three ways to create or destroy vorticity in a

flow [17]:

1. Non-conservative body forces. The Coriolis acceleration (which occurs in rotating

frames of reference) is an example of a non-conservative force that generates
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vorticity. Dissipative forces (such as friction) destroy vorticity.

2. A non-barotropic pressure-density relationship. This is the source of vorticity in

the Richtmyer-Meshkov instability.

3. Non-zero net viscous torques. This is the source of vorticity in the Kelvin-

Helmholtz instability.

1.4.2 Vortices

A vortex is a flow which revolves around a line axis. The region of the flow where

the vorticity is non-zero is called a vortex tube, which is similar to a stream tube,

illustrated in Figure 1.7. The strength of the vortex tube is the circulation, calculated

along a closed-curve C which lies on the surface of the tube and encircles it just once.

Figure 1.7: Figure 5.1 from Kundu et al. [17] illustrates a vortex tube and provides
an analogy with a stream tube.

Figure 1.8 shows two different types of steady flows with circular streamlines, which

are both vortices. The first type of stationary vortex (Figure 1.8(a)) is rigid-body

rotator. Each fluid element (located at radial distance r) spins about its own center

at the same rate that it revolves around the origin. The fluid elements (bounded by

the regions ABCD and A′B′C′D′) do not deform and their relative positions remain
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(a) (b)

Figure 1.8: Two types of steady vortex flows with circular streamlines, illustrated in
figures from Kundu et al. [17] (a) Rigid-body rotator (Figure 3.16); (b)
Irrotational line vortex (Figure 3.17)

constant. In cylindrical coordinates, the fluid velocity is u(r, θ, z). Streamlines lie in

the (r, θ) plane and are given by:

ur = 0

uθ = ω0r

(1.17)

where ω0 is a constant equal to the angular velocity of a particle about the origin.

The vorticity component in the z-direction is:

ωz =
1

r

∂

∂r
(ruθ)−

1

r

∂ur
∂θ

(1.18)

Substitution of Equation 1.17 into Equation 1.18 yields ωz = 2ω0 = constant. The

circulation of the rigid-body rotator increases in proportion to the surface area bounded

by the curve:

Γ =

∮
C

u · ds =

2π∫
0

uθrdθ = 2πruθ = 2πr2ω0 (1.19)

Within the Rayleigh-Taylor literature, sometimes ω0 is also called “the vorticity” in

the context of theoretical models based on a rigid-body rotator description, such as

Equation 4.1.
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The second type of flow (Figure 1.8(b)) is an irrotational vortex. The streamlines

are also circular, but the θ-component of the fluid velocity is inversely proportional to

the radial distance:

ur = 0

uθ =
B

r
, where B is a constant

(1.20)

Velocity shear causes deformation of the fluid elements, but the fluid elements do

not spin. Evaluating Equation 1.18, one finds that the flow is irrotational (ωz = 0)

everywhere except at the origin (r = 0), where the vorticity is infinite. The circulation

is non-zero, finite, and independent of radius:

Γ =

2π∫
0

uθrdθ = 2πruθ = 2πB (1.21)

Examples of vortices encountered in nature include tornadoes, whirlpools, and the

flow structure created in the air by passage of an airplane wing, shown in Figure 1.6.

Real-world vortices do not fit the description of either type of ideal mathematical

vortex discussed above. Near the center of rotation, the flow resembles a rigid-body

rotator, but at sufficient radial distance, the flow is nearly irrotational. Two common

idealizations of the this behavior are the Rankine vortex (Equation 1.22) and the

Gaussian vortex (Equation 1.23), where the core-size parameter r0 specifies the radius

of the vortex tube, which is the distance at which the behavior transitions from

rigid-rotator to irrotational vortex.
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Rankine vortex:

ωz(r) =


Γ/(πr2

0) for r ≤ r0

0 for r > r0

uθ(r) =


Γr/(2πr2

0) for r ≤ r0

Γ/(2πr) for r > r0

(1.22)

Gaussian vortex:

ωz(r) =
Γ

πr2
0

exp(−r2/r20)

uθ(r) =
Γ

2πr

(
1− exp(−r2/r20)

) (1.23)

The axis of rotation need not be a straight line; it can also be a curve. Moreover, this

curve can move and change shape, as is the case with tornadoes. Helmholtz’s theorem

applies to flows in an inertial reference frame where all body forces are conservative,

there are no viscous forces along C, and the fluid is barotropic. Helmholtz’s theorem

states that [17]:

1. Vortex lines move with the fluid.

2. The strength of a vortex tube is constant along its length.

3. A vortex tube cannot end within the fluid. It must either end at a boundary or

form a closed loop within the fluid.

4. The strength of a vortex tube remains constant in time.

An important consequence of Helmholtz’s theorem is that a moving vortex carries

with it the fluid contained inside the vortex tube. Therefore, vortices can transport
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mass, momentum, and energy over considerable distances (much larger than their

size).

Vortices located close to each other interact through their mutually induced

velocities, generating complex flow patterns. An example of this is the von Kármán

vortex street, shown in Figure 1.9. This atmospheric phenomenon can occur when

low-altitude air flow deflects around an obstacle (in this case, the island of Guadalupe

in the Pacific Ocean), forming a double-row of alternating vortices in the wake.

Hydrodynamic instabilities generate smaller-scale vortices, which interact and lead to

turbulence.

Figure 1.9: A type of turbulent atmospheric flow pattern known as the von Kármán
vortex street. The alternating double row of vortices forms in the wake of
an obstacle, in this case, the island of Guadalupe in the Pacific Ocean [18].

1.4.3 Eddies and Turbulence

Many people use the terms “vortex” and “eddy” synonymously. In my view, a

semantic distinction exists. A vortex is an actual physical structure, within which the

velocity field can be determined (at least in principle) at all length scales, from the

outer size of the vortex tube, down to the molecular scale where viscous dissipation

18



occurs. An eddy is an approximation of a vortex, which models the macroscopic

motion and interaction of the structure with the surrounding flow. The velocity field

of an eddy is not resolved at the molecular scale.

The eddy description arises primarily in the context of turbulence, where the

flow exhibits random fluctuations in the field observables (velocity, pressure, density,

temperature, etc.) and strong nonlinearity in the equations of motion. The instanta-

neous Navier-Stokes (NS) Equations (1.1), plus an equation of state, are a complex

system of nonlinear partial differential equations, which are impossible to solve ana-

lytically and extremely challenging to compute numerically. The Reynolds-averaged

Navier-Stokes (RANS) Equations are a time-averaged version of the equations of

motion, in which each flow-field quantity is decomposed into its mean value and a

term representing the fluctuations about the mean:

ũi ≡ Ui + u′i, p̃ ≡ P + p′, ρ̃ ≡ ρ+ ρ′, T̃ ≡ T + T ′ (1.24a)

ũi = Ui, p̃ = P, ρ̃ = ρ, T̃ = T (1.24b)

u′i = 0, p′ = 0, ρ′ = 0, T ′ = 0 (1.24c)

Here, the tilde symbol ( ˜ ) denotes the complete quantities, the prime symbol (′)

denotes the fluctuating terms, and the over-line denotes the time-averaged quantities.

Substitution of Equations 1.24 into the instantaneous NS Equations (1.1) yields the

RANS equations. As an example, compare the momentum equations (NS versus

RANS) for turbulent flow of an incompressible fluid with an EOS such that the density

fluctuations depend only on temperature fluctuations, and the only external body
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force is gravity (oriented along the x3 direction) [17]:

NS: (1.25)

ρ
(∂ũ
∂t

+ ũ · ∇ũ
)

+ ∇p̃ − ρ̃g − ∇ · σ = 0

RANS: (1.26)

ρ
(∂Ui
∂t

+ Uj
∂Ui
∂xj

) +
∂P

∂xj
δij − ρg3 f(ρ, T )δi3 − ∂σij

∂xj
+ ρu′iu

′
j = 0

where σij = µ
(
∂Ui

∂xj
+

∂Uj

∂xi

)
is the mean viscous stress tensor and f(ρ, T ) is an explicit

function provided by the EOS, which depends only on mean-flow quantities. The

final term on the left-hand-side of the RANS momentum equation (1.26) is the

cross-correlation between velocity fluctuations:

u′iu
′
j = u′i(x1, t1)u′j(x1, t1) ≡ lim

N→∞

1

N

N∑
n=1

u′i(x1, t1 : n) u′j(x1, t1 : n)

where u′i, u
′
j are measured at the same position x1 and same moment in time t1 for

each realization n, and the ensemble-average is calculated over a large number of

randomly-seeded realizations of the turbulent flow field.

The term ρu′iu
′
j is known as the Reynolds stress tensor, for which there is no

counterpart in the instantaneous NS momentum equation. The Reynolds stress tensor

describes the average rate of momentum transfer in the mean flow due to turbulent

velocity fluctuations. In the RANS energy equation (not shown here), a new term

arises which represents the turbulent heat flux: ρCpu′jT
′. The full derivation of these

equations is provided in [17]. The main point of this example is to show that in each of

the equations of motion, we have introduced an additional turbulent quantity, which

is not specified in terms of the mean-flow quantities. Inherently, the RANS equations

are not closed and cannot be solved without some sort of model for turbulence.

Vortices transport mass, momentum and energy. The simplest model of turbulence
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Figure 1.10: Conceptual illustration of the mixing-length model for turbulence (Figure
12.26 from Kundu et al. [17]). In this picture, U(y) is the mean flow
velocity and an eddy is characterized by a length scale lT and turbulent
velocity uT .

is based on the eddy mixing-length concept, first introduced by Taylor in 1915 [19].

Illustrated in Figure 1.10, an eddy of size lT experiences a local shear rate of dU/dy

and produces a turbulent velocity fluctuation uT ∼ lT (dU/dy). The time scale of the

velocity fluctuation is the “eddy turnover time,” tT ∼ lT/uT . In this picture, the

correspondence between the Reynolds stress tensor and the viscous stress tensor is

clear:

−u′xu′y = νT
dU

dy
∼ lTuT

dU

dy
∼ lT

(
lT
dU

dy

)dU
dy

= l2T

(dU
dy

)2

(1.27)

where νT is the eddy viscosity (or turbulent viscosity).

In analogy to the kinematic transport theory of molecular motion, Prandtl [20]

and von Kármán [21] developed an approach to turbulence modeling in which eddies

possess the properties of turbulent viscosity νT , turbulent thermal conductivity ηQT,

and turbulent mass diffusivity ηm. These properties are defined by constitutive

relations similar to Newton’s law of viscosity, Fourier’s law of heat transport via a

temperature gradient, and Fick’s law of mass diffusion. These relations express the

turbulent quantities in terms of the mean-flow quantities and provide closure to the

RANS equations.

21



Large Eddy Simulations (LES) solve the RANS equations. Smagorinsky proposed

the first formula for eddy viscosity in terms of numerical simulation quantities [22]:

νT = ∆x∆y

√(∂ux
∂x

)2

+
(∂uy
∂y

)2

+
1

2

(∂ux
∂y

+
∂uy
∂x

)2

(1.28)

Here, ∆x,∆y are the local grid sizes and the other quantities in the Equation 1.28 are

the local derivatives of the velocity field. Different LES codes may use different models

of turbulence or different numerical methods. However, all LES codes implement some

sort of non-physical model for turbulence. These simulations predict the approximate

behavior of turbulent flows, but they do not calculate the exact solution to the NS

equations. If the models do not accurately capture all the relevant physical processes

in a flow, the simulations may yield misleading results.

1.5 Hydrodynamic Instabilities

Many HED systems evolve from initially stratified fluid-like layers. If the interface

between two layers is energetically unstable, the fluids interpenetrate and mix. Several

different types of hydrodynamic instabilities exist (where different physical interactions

drive the mixing). The focus of this thesis is the Rayleigh-Taylor instability (RTI). In

this section, I will introduce RTI and examples of where it occurs in HED systems.

Chapter II provides a detailed mathematical description of RTI. In blast-wave-driven

experiments of RTI, two other hydrodynamic instabilities occur: Richtmyer-Meshkov

instability (RMI) and Kelvin-Helmholtz instability (KHI). A detailed explanation of

RMI and KHI is beyond the scope of this work. Here, I provide only a brief description

of these other instabilities and their linear-stage growth rates, so that they can be

understood in the context of subsequent chapters.
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Figure 1.11: Examples of RTI in every-day life and in HED systems. Left: A liquid-
soap dispenser filled with two layers of different densities demonstrates
the formation of quintessential RTI “bubbles and spikes” [23]. Center:
Crab nebula supernova remnant shows features characteristic of RTI [24].
Right: Simulation of ICF capsule implosion, where perturbations on the
outer surface seed RTI growth [25].

1.5.1 The Rayleigh-Taylor Instability

Most people are familiar with the Rayleigh-Taylor instability, although they might

not know it by that name. This phenomenon occurs when a heavier fluid is suspended

on top of a lighter fluid, and the two layers begin to interact under the force of gravity.

Consider a container filled half-way up with water, then topped off with oil. Since

oil is lighter than water, the two fluids will remain in this stable state. On the other

hand, if the container is filled in opposite order, so that the water is on top of the

oil, the configuration is unstable. A tiny disturbance will seed a run-away process:

oil bubbles begin to form and rise upward, as equal volumes of water fall downward.

The two fluids continue to interpenetrate and mix, lowering the potential energy of

the system until a steady state is achieved. This phenomenon was first studied by

Lord Rayleigh (J.W. Strutt) in 1883 [26]. In more general terms, this hydrodynamic

instability occurs wherever two fluids of different densities are separated at an interface

and there exists a pressure gradient in opposition to the density gradient. The force

applying the pressure need not be the Earth’s gravity. In 1950, G.I. Taylor recognized

that the same behavior occurs at an accelerating interface [27]. In honor of their
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contributions, this hydrodynamic instability is now called Rayleigh-Taylor.

Hydrodynamic instabilities, including RTI, play a major role in many HED sys-

tems of interest. Extensive research efforts (laboratory experiments and numerical

simulations) have investigated how mixing due to RTI may affect the evolution of

core-collapse supernovae and ICF capsule explosions. In a star, atomic elements are

stratified in concentric layers, increasing in density towards the core. When the star

becomes sufficiently massive, it collapses under its own gravity and explodes, launching

a blast wave that expels the stellar matter out into space. The interfaces between

interior layers, as well as the outer-most interface between the stellar ejecta and the

less-dense circumstellar matter, are Rayleigh-Taylor unstable. Far away on Earth, we

observe light from the supernova explosion. Each atomic element emits EM radiation

at characteristic frequencies. The arrival times and Doppler broadening of these

EM signatures inform our understanding of the physical processes which occurred

during the supernova explosion and test explosion models (relevant to national security

applications, in addition to astrophysics).

In 1987, observations of a core-collapse supernova (SN 1987A) indicated that

denser material had penetrated farther into the outer layers and traveled at a higher

velocity than predicted by spherically-symmetric explosion models [28]. This suggests

that significant material mixing due to hydrodynamic instabilities may have occurred,

creating complex three-dimensional (3D) structures which one-dimensional (1D) and

two-dimensional (2D) models do not accurately describe.

In ICF, increased material mixing due to RTI can thwart ignition at two stages

of the implosion process. First, target imperfections on the outer surface of the shell

and non-uniform irradiation create perturbations which grow due to RTI during the

ablative acceleration stage. These perturbations can then “feed through” to the

ablator-fuel interface, which becomes RT-unstable when this interface decelerates

during the stagnation phase [29]. Additional imperfections may also exist in the target
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interior and provide the seed for RTI growth during this second stage. Thus we seek

to understand RTI, how to predict the extent of material mixing, and how to suppress

it by engineering design.

1.5.2 The Richtmyer-Meshkov Instability

Figure 1.12: Conceptual illustration of the Richtmyer-Meshkov instability. Figure
from Morgan et al. [30]

The Richtmyer-Meshkov instability arises from the deposition of baroclinic vorticity

[30]:

ρ
D

Dt

(ω
ρ

)
=

1

ρ2
∇ρ×∇p (1.29)

This situation occurs when a perturbed interface between two fluids of different

densities is impulsively accelerated. In HED systems, such an impulsive acceleration

is caused by a shock wave. From this perspective, RMI closely resembles the Rayleigh-

Taylor instability (which occurs under continuous acceleration). However, RTI only

occurs when the lighter fluid is pushing the heavier fluid (∇p · ∇ρ < 0). In the case of

RMI, the perturbation amplitude h(t) grows for both light-to-heavy (∇p · ∇ρ < 0)

and heavy-to-light (∇p · ∇ρ > 0) cases.
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For incompressible fluids, the linear RMI growth rate can be derived in a similar

fashion to RTI (Chapter II, Section 2.1.1) by inserting an g = (du) δ(t) into Equation

2.15. Here, (du) is the velocity induced at the interface and δ(t) is the Dirac delta

function. The result of this is:

∂2h(t)

∂t2
= Ak (du) δ(t) a (1.30a)

∂h(t)

∂t
= u

RM
= Ak (du) a (1.30b)

h(t) = u
RM
t+ a (1.30c)

where a and k are the initial amplitude and wavenumber of seed perturbation. A is

the Atwood number, as defined in Equation 2.12. This linear growth rate applies in

the small-amplitude regime, where (hk � 1).

When the impulsive acceleration is caused by a shock wave crossing the interface,

one must consider the pre- and post-shock fluid states. I will use the asterisk symbol (*)

to denote post-shock quantities. In 1960, R.D. Richtmyer first studied the interaction

of a shock wave crossing a light-to-heavy interface (∇p · ∇ρ < 0) [31] and modified

Equation 1.30b to:

u
RM

= A∗ k (du) a∗ (1.31)

In 1969, E.E. Meshkov performed experiments with the shock wave traveling from

heavy-to-light fluid regions (∇p · ∇ρ > 0) [32]. In this case, the initial perturbation

amplitude a is compressed and inverted (phase reversal) to post-shock amplitude

a∗, and then increases. Meyer and Blewett performed 2D simulations of Meshkov’s

experiments and found better agreement with their simulation data and the following

formula for the instability growth (as opposed to the formula of Richtmyer, Equation
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1.31) [33]:

u
RM

= A∗ k (du)
(a∗ + a

2

)
(1.32)

The Meyer-Blewett formula is most commonly used for the linear growth rate.

1.5.3 The Kelvin-Helmholtz Instability

(a) (b)

Figure 1.13: The Kelvin Helmholtz instability can create visually-stunning spiral pat-
terns in stratified planetary atmospheres. (a) In the Earth’s atmosphere,
optically opaque clouds in the denser, slower-moving layer make the
interface structure visible in this photo [34]; (b) In Jupiter’s atmosphere,
complex vortical flows, including the giant storm known as “the Great
Red Spot,” result from KHI. This image is from NASA’s Voyager 1 space
probe [35].

This hydrodynamic instability is named after Lord Kelvin (William Thomson) [36]

and Hermann von Helmholtz [37]. Velocity shear in a stratified fluid (or a velocity

difference across the interface between two fluids) generates vorticity, causing the

interface to roll up, forming a mixing layer. KHI can create visually-stunning spiral

patterns in stratified planetary atmospheres, including the Earth’s and Jupiter’s,

shown in Figure 1.13.

Figure 1.14 illustrates the case where KHI is seeded by a single-mode sinusoidal

perturbation with wavelength λ
KH

at the interface between two fluids moving at

different velocities, u1 and u2. For subsonic, incompressible flows, the linear growth

rate for KHI at an interface where there is a density jump in addition to a velocity
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jump is given by [38]:

γ
KH

=
π|u2 − u1|

λ
KH

√
ρ1ρ2

ρ1 + ρ2

=
π|u2 − u1|

λ
KH

√
1− A2 (1.33)

Figure 1.14: Conceptual illustration (modified from figure by [39]) of the linear growth
stage of the Kelvin-Helmholtz instability seeded by a single-mode si-
nusoidal perturbation. Velocity shear generates vorticity, causing the
interface to roll up.

In the linear growth stage, individual vortices increase in size. When they become

large enough to interact with each other, adjacent vortices couple into vortex-pairs,

which then merge and form a larger vortex structure with wavelength 2λ
KH

. Figure

1.15 illustrates the processes of vortex pairing and merger.

Figure 1.15: Plots of the spanwise vorticity field from 3D simulations by Martinez et
al. [40] illustrate the temporal evolution of single-mode KHI growth and
the processes of vortex pairing and merger. Non-dimensional times: (a)
9.52; (b) 19.03; (c) 28.55; (d) 38.07.
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1.6 Summary of Chapters

Chapter II provides an overview of theoretical models of RTI and metrics for

quantifying the different growth stages. Chapter III summarizes the results of published

simulation studies of single-mode RTI at low-Atwood-number, which specifically

motivated this work. Chapter IV reviews prior work in classical fluids and HED

experiments. Chapter V describes the experimental implementation of the target

and diagnostics. Chapter VI discusses the experimental results, including sources of

error and uncertainty, and compares the experimental data with CRASH simulations

and buoyancy-drag models. Chapter VII concludes with remarks on the outlook for

extending these experiments to the NIF. The appendices provide detailed information

on image post-processing methods using Matlab, target metrology, and a log of all

shot days and the data obtained.

1.7 Collaborators and Individual Contributions

In 2015, Professor Carolyn Kuranz at the University of Michigan and Dr. Guy

Malamud at Nuclear Research Center, Negev, Isael proposed Omega-60 experiments

of the late-nonlinear growth stage of single-mode Rayleigh-Taylor instability. The

project was funded by Lawrence Livermore National Laboratory (LLNL) under a

grant from the U.S. Department of Energy, National Nuclear Security Administration.

At LLNL, Dr. Channing Huntington was the principal collaborator. In addition to

Carolyn and myself, the team at the University of Michigan included Dr. Timothy

Handy, Dr. Rachel Young, Matt Trantham, and Sallee Klein. The experimental

campaign at Omega-60 consisted of four shot days over the course of three years:

October 6, 2016, April 6, 2017, April 19 2018, and July 18, 2018. Sallee was the target

fabrication engineer, whose contributions included mechanical drawings of individual

target components and the complete target packages, parts procurement, and manual
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assembly of all the targets. Sallee and Carolyn also provided logistical support during

all shot days.

Throughout this dissertation, I will reference two different types of radiation-

hydrodynamics simulations: Hyades (1D) and CRASH (1D and 2D). Hyades is a

Lagrangian code which implements simplistic physics models and requires minimal

computational resources [41]. A Hyades simulation takes about an hour to run on

my laptop. For the Hyades simulations, I personally configured the input decks,

executed the simulations, and wrote Matlab code to parse the output files for the

desired variables at the desired times, and then plot and display the data. This

enabled me to rapidly assess the impact of various design changes, such as the material

composition and thickness of the target components. These simulations provided

qualitative insights and rough estimates of physical variables, but not quantitatively

accurate predictions for the real physical system. After the preliminary design phase

with Hyades, I communicated the detailed target design and laser drive parameters to

the computational specialists on our team (Tim, Matt, and Rachel), who performed

the CRASH simulations.

CRASH is an Eulerian code which features adaptive mesh refinement, self-consistent

equations-of-state and opacities, multi-group diffusive radiation transport, electron

physics and flux-limited electron heat conduction, and a laser package with 2D ray-

tracing capabilities [8]. A 2D CRASH simulation with moderate spatial resolution

takes approximately one week to run on a parallel computing cluster with 60 cores

and generates over 50 GB of binary data output files, which must then be converted to

a user-friendly format. During a post-doctoral appointment spanning 2015-2017, Tim

created the original input deck for the CRASH simulations, including specification of

the physics models and numerical methods implemented in the simulations. Following

Tim’s departure, Guy completed the analysis of Tim’s work and published these

results [42]. This preliminary design is discussed in Chapter V. After completion
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of the experiments, Rachel and Matt performed simulations of the final design and

provided the simulation data for my analysis, presented in Chapter VI.

My role in the project was to lead the experiments and interpret the results. This

work included:

• Design of the main target and backlighter targets, in consideration of the

theoretical physics and experimental goals, facility limitations and requirements,

target fabrication and metrology capabilities, and project schedule and budget

• Design of the experimental configuration at Omega-60, including specification

of laser beam parameters, target positioning and alignment, and diagnostic

configuration

• Development of metrology procedures for pre-shot characterization of the targets,

performing the metrology, and analyzing the results

• Serving as Principal Investigator for the experiments, which included direct

communication with the staff at Omega-60, planning and supervising execution

of the shot days, and real-time trouble-shooting of issues that arose during shot

days

• Processing the raw image data. This involved writing Matlab code to read the

data files and apply image-processing algorithms for noise filtering and contrast

enhancement, including determination of the actual spatial resolution

• Analysis of the experimental data and comparison with theory and simulations

• Interpretation of the experimental outcome and relevance to the broader scientific

community and recommendations for future work
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CHAPTER II

Mathematical Description of the Rayleigh-Taylor

Instability

This chapter provides the mathematical description of RTI, introduces metrics for

quantifying the different growth stages, and reviews analytical models for single-mode,

multi-mode, and turbulent cases.

2.1 Single-Mode RTI

Analytical models of single-mode RTI predict the growth rate of the mixed-fluid

layer in two stages of its evolution. The first stage is described by linear stability

theory; the second (“nonlinear”) stage is described by potential-flow models. Figure

2.1 illustrates how the shape of the interface changes from the linear stage to the

nonlinear stage.
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linear (τ = 3) early nonlinear (τ = 6) late nonlinear (τ = 13)

Figure 2.1: Density plots of the interface show the evolution of the spike (dark gray)
and the bubble (light gray) in the linear (τ = 3), early nonlinear (τ = 6),
and late-nonlinear (τ = 13) growth stages. These plots are from a 2D
CRASH simulation by Tim Handy of single-mode RTI with constant
acceleration and classical, incompressible, immiscible fluids at low-Atwood-
number (A = 0.15). The horizontal domain of the simulation spans one
wavelength with periodic boundary conditions.

2.1.1 Early Growth Stage: Linear Stability Theory

The initial problem setup is illustrated in Figure 2.2. The Rayleigh-Taylor unstable

system consists of two semi-infinite, homogeneous fluids of different densities, meeting

at a contact surface (the interface). The heavier fluid is on top (ρ1, z > 0), the lighter

fluid is on bottom (ρ2, z < 0), and the acceleration force g is downward (negative

z-direction). This creates a pressure gradient in opposition to the density gradient

across the interface: ∇p · ∇ρ < 0.

For simplicity, I will derive the linear Rayleigh-Taylor growth rate for a 2D system,

assuming the fluids to be inviscid, incompressible, and irrotational. Mathematically,

the system is described in the reference frame where the interface is at rest. On either

side of the interface, each fluid obeys Laplace’s Equation (2.1a), Bernoulli’s Equation

(2.1b), and a kinematic boundary condition stating that the interface moves with the
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Figure 2.2: Illustration of initial problem set-up for single-mode RTI. The denser
fluid is on top (dark gray), the lighter fluid is on bottom (light gray),
and acceleration g is downward. For readability, the initial perturbation
amplitude a is greatly exaggerated with respect to the wavelength λ. In
actuality, a/λ� 1.

fluids on either side (2.1c):

∇2φ = 0 (2.1a)

∂φ

∂t
+

1

2
u2 + gz +

p

ρ
= const. (2.1b)

∂φ

∂z
− ∂φ

∂x

∂ζ(x, t)

∂x
=
∂ζ(x, t)

∂t
(2.1c)

where φ is the velocity potential (u = ∇φ). At time t = 0, there exists a seed

perturbation at the interface of the form ζ(x, t = 0) = a cos(kx), where the initial

amplitude is very small with respect to the wavelength (a/λ� 1). We seek to predict

the temporal evolution of this perturbation, i.e., to solve for the amplitude h(t), where:

ζ(x, t) = h(t) cos(kx) (2.2)

Equations 2.1 can be solved using a perturbation-theory expansion, where each

physical quantity q = q0 + ε1q + ε2q2 + ... (Here ε represents the expansion coefficient,

not the specific internal energy.) In the linear stage, we keep only first-order terms
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and Equation 2.1b simplifies to:

∂φ1

∂t
+ gz +

p1

ρ1

= c1

∂φ2

∂t
+ gz +

p2

ρ2

= c2,

(2.3)

where c1, c2 are arbitrary constants. Multiplying Equation 2.3 by the fluid density

gives:

ρ1 (
∂φ1

∂t
+ gz) = ρ1c1 − p1

ρ2 (
∂φ2

∂t
+ gz) = ρ2c2 − p2

(2.4)

Constants are chosen so that (ρ1c1 − p1) = (ρ2c2 − p2) and therefore:

ρ1 (
∂φ1

∂t
+ gz) = ρ2 (

∂φ2

∂t
+ gz) (2.5)

The velocity potentials that satisfy the Bernoulli Equation (2.3) are:

φ1(x, z, t) = B1(t) ekz cos(kx), z ≥ 0

φ2(x, z, t) = B2(t) e−kz cos(kx), z ≤ 0

(2.6)

where B1(t) and B2(t) are some yet-to-be-determined coefficients. Differentiating

these velocity potentials with respect to time, evaluating at z = 0, and substituting

the results into Equation 2.5 yields:

ρ1

(∂B1

∂t
+ g h(t)

)
cos(kx) = ρ2

(∂B2

∂t
+ g h(t)

)
cos(kx) (2.7)

From the kinematic boundary condition (2.1c), the interface velocity must equal

the flow velocity in the vertical direction:

∂ζ

∂t
= uz =

∂φ

∂z
(2.8)
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On the right-hand-side of Equation 2.8, substitution of the velocity potentials (2.6),

differentiated with respect to z and evaluated at z = 0, gives:

∂φ1

∂z
= k B1(t) cos(kx)

∂φ2

∂z
= −k B2(t) cos(kx)

(2.9)

Therefore, the coefficients simplify to B(t) = B1(t) = −B2(t) and Equation 2.9

becomes:

∂φ

∂z
= k B(t) cos(kx) (2.10)

Substituting Equation 2.10 into Equation 2.5, evaluated at z = 0, provides:

∂B

∂t
= Ag h(t) (2.11)

where the Atwood number, A, quantifies the density contrast of the two fluids:

A ≡ ρ1 − ρ2

ρ1 + ρ2

(2.12)

Low-Atwood-number (A→ 0) corresponds to the interface between two fluids with

nearly equal densities (ρ1 ' ρ2), whereas the high-Atwood-number limit (A = 1)

corresponds to the interface between a finite-density fluid (ρ1 > 0) and vacuum

(ρ2 = 0).

Returning to Equation 2.8, the left-hand-side is solved by taking the time derivative

of the interface Equation (2.2):

∂ζ

∂t
=
∂h(t)

∂t
cos(kx). (2.13)
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Combining Equations 2.8, 2.10, and 2.13 provides:

B(t) =
1

k

∂h

∂t
(2.14)

Finally, by differentiating Equation 2.14 with respect to time and equating the result

with Equation 2.11, one obtains:

∂2h(t)

∂t2
= Akg h(t) (2.15)

The solution to this second-order differential equation is:

h(t) = a exp(γ
RT
t), where

γ
RT

=
√
Akg (2.16)

The math follows similarly in three dimensions. The main take-away is that, in

the linear stage where h/λ� 1, the perturbation grows exponentially, with symmetric

growth in the heavy- and light-fluid regions:

2D: ζ(x, t) = h(t) cos(kx)

3D: ζ(x, y, t) = h(t) cos(kx) cos(ky)

h(t) = a exp(γ
RT
t)

Dimensionless length and time scales quantify the different stages of RTI growth

(shown in Figure 2.1). In the spatial domain, the logical choice is the ratio of vertical to

horizontal length scales, h/λ. In the temporal domain, we use the number of e-foldings

for linear RTI growth, generalized for time-varying densities and acceleration:

τ =

t∫
0

γ
RT
dt′ =

t∫
0

√
2π

λ
A(t′)g(t′) dt′. (2.17)
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2.1.2 Nonlinear Growth Stage: Potential-Flow Theory and Buoyancy-

Drag Models

The nonlinear growth stage begins when h/λ ' 0.1. Expanding the 2D perturbation

theory solution to second and third order yields [43]:

ζ(x, t) = h1(t) cos(kx)

− 1

2
Ak h1(t)2cos(2kx)

+ A2k2 h1(t)3
[1

8
(4A2 − 1) cos(3kx)− 1

16
(1 + 3A2) cos(kx)

]
where h1(t) = a exp(γ

RT
t) (2.18)

Higher-order harmonic modes emerge and break the symmetry across the interface.

The regions of light fluid rising upward are centered about peaks located at kx = (2m)π,

and the regions of heavy fluid falling downward have peaks at kx = (2m+ 1)π, where

m is an integer. In the light-fluid regions, the higher-order harmonic modes are out-of-

phase with the fundamental. As these higher-order terms increase in magnitude, the

light-fluid peaks broaden and decelerate, forming shapes described as “bubbles.” In

the heavy-fluid regions, the higher-order terms remain in-phase with the fundamental,

thereby narrowing and accelerating the growth of features called “spikes.” KHI arises

due to the velocity shear between bubbles and spikes, which causes the interface to

roll up and form the characteristic “mushroom cap” shapes. Initially, a coherent array

of vortices forms along the interface where it intersects the z = 0 plane; the size of the

vortices increases with time. (In 3D, this corresponds to an array of vortex rings.) At

this point, analytic solutions for the shape of the interface and its detailed structure

become intractable. Without solving for the internal dynamics of the mixed-fluid layer,

potential-flow-theory models predict the height of the bubble (or spike) at its vertex,

by assuming that the flow there is irrotational and can be described by a velocity

potential: uB = ∇φ, where uB is the velocity at the tip of the bubble and φ is a scalar
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function. As long as the vortices remain localized near z = 0, the flow near the tip of

the bubble is unaffected. Various potential-flow-theory models exist, which assume

different forms of the velocity potential. For classical, incompressible fluids, these

models predict that bubbles and spikes asymptotically approach terminal velocities

(with slightly different values, depending on the choice of velocity potential).

In 1955, Layzer developed the first potential-flow-theory model for nonlinear 2D

bubble growth for the A = 1, constant acceleration, incompressible fluid case [44].

This work was later extended to arbitrary Atwood number (0 < A ≤ 1) and 3D

geometries by Goncharov in 2002 [45], and time-varying acceleration by Srebro et al.

in 2003 [46]. Summarizing these results:

Bubble:([
C1EB(t) + 1

]
ρ2 +

[
C1 + EB(t)

]
ρ1

)
u̇B =

[
1− EB(t)

](
ρ1 − ρ2

)
g(t)− C2kρ1u

2
B

Spike:([
C1ES(t) + 1

]
ρ1 +

[
C1 + ES(t)

]
ρ2

)
u̇S =

[
1− ES(t)

](
ρ1 − ρ2

)
g(t)− C2kρ2u

2
S

where EB,S(t) = exp[−C3k hB,S(t)], uB,S = ḣB,S (for either bubble or spike)

and constants [C1, C2, C3] =


[2, 3, 3] for 2D

[1, 1, 2] for 3D

(2.19)

The notation ḣ denotes the temporal derivative ∂h/∂t. The bubble height, hB(t),

is defined as the distance between the tip of the bubble and the z = 0 plane (and

similarly for spikes). The total mixed-layer width is h(t) = hB(t) + hS(t). In the late-

nonlinear stage (h/λ� 1, E → 0), Equation 2.19 can be expressed as a force-balance
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equation [47] [48]:

inertia + added mass = buoyancy - drag

Bubble: (ρ2 + C1ρ1) u̇B = (ρ1 − ρ2) g(t)− C2kρ1u
2
B

Spike: (ρ1 + C1ρ2) u̇S = (ρ1 − ρ2) g(t)− C2kρ2u
2
S

(2.20)

We expect more rapid growth in a 3D flow. The dimensional dependence reflects the

geometrical shape of the bubble, which experiences less drag in 3D.

In traditional fluid mechanics, the Froude number characterizes the relative strength

of the inertial and gravity forces: Fr = U/
√
gL, where U,L are the velocity and length

scale of the flow. Ramaprabhu et al. defined an RT Froude number [49]:

FrB,S ≡
uB,S√
Agλ
1+A

(2.21)

The RT Froude number is commonly used as a non-dimensional velocity, which

compares instantaneous velocity at the bubble or spike tip to the steady-state solution

predicted by buoyancy-drag models. In the asymptotic limit (t → ∞), buoyancy

equals drag, so that the right-hand-side of Equation 2.20 is zero. Therefore, bubbles

and spikes approach terminal velocities and constant Froude numbers:

Bubble: uB =

√
Agλ

Cπ(1 + A)
, F rB =

√
1

Cπ

Spike: uS =

√
Agλ

Cπ(1− A)
, F rS =

√
1

Cπ

A+ 1

A− 1

where C=[3, 1] for [2D, 3D] flows.

(2.22)

This buoyancy-drag model converges to the linear and early nonlinear perturbation-

theory solution (Equation 2.18). In the late-nonlinear stage, Equations 2.22 predict

the correct qualitative trend: for all Atwood number, spikes grow more rapidly
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than bubbles, and this asymmetry increases with Atwood number. However, as

the density contrast of the two fluids increases, the terminal velocity predicted for

spikes fails. In the zero-drag limit (A = 1, ρ2 = 0), spikes should exhibit free-fall

behavior (hS = 1
2
gt2, uS = gt). Numerous other potential-flow models (e.g. Sohn [50],

Abarzhi et al. [51]) and heuristic/interpolation models (e.g. Mikaelian [52]) have been

developed, which work more or less well for particular cases. For a comprehensive

review, the reader is referred to Zhou’s 2017 publications [53] [54].

2.2 Multi-Mode RTI

Figure 2.3: 2D simulation of multi-mode RTI, showing self-similar evolution of the
mixed-fluid region. The horizontal length scale L grows in proportion
to the vertical length scale h. Figure modified from Nourgaliev and
Theofanous [55].

Now consider the case where RTI growth is initially seeded with a multi-mode
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perturbation spectrum. Early in time, each mode evolves independently, first growing

exponentially and then reaching a nonlinear saturation amplitude, after which it grows

at a constant velocity [56]. In the linear stage, short-wavelength modes grow fastest

(Equation 2.16), but saturate sooner, as compared to longer-wavelength modes. This

leads to a peak the velocity spectrum, where mid-wavelength modes have the largest

growth factor. However, in the nonlinear growth stage, modes interact with each

other. Statistical models of bubble competition and merger describe the collective

behavior of a coherent ensemble of bubbles with a time-dependent size distribution

[57] [58] [59] [60] [61] [62]. Larger bubbles experience less drag per unit volume, as

compared to their smaller neighbors. Therefore, successively larger horizontal scales

are generated as larger bubbles overtake and assimilate their smaller neighbors, then

expand laterally to fill the space. Bubble competition and merger processes drive the

system to a longer-wavelength dominate mode 〈λ〉 and characteristic horizontal length

scale L = 〈λ〉. This leads to a coherent array of bubbles, or “bubble front,” which

grows self-similarly, where hB(t) ∝ L(t):

hB(t) = αBAgt
2 ∝ L(t) (2.23)

where αB > 0 is a constant whose value depends on the definition of the bubble height

(or mixed-layer width).

For multi-mode RTI, several definitions exist for bubble and spike height and total

mixed-layer-width [63]. As one example, Youngs defines bubble and spike heights

in terms of volume fractions [64]. For each fluid (j = 1, 2), the volume-fraction fvj
is

calculated from the mass-fraction fmj
as follows:

fvj
=
(fmj

ρj

) 1

fm1/ρ1 + fm2/ρ2

(2.24)

The average value over the xy-plane is 〈fvj
〉. Bubble and spike heights are defined as
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the z-distance where:

hB : 〈fv1〉 = 0.99

hS : 〈fv1〉 = 0.01

(2.25)

Careful consideration should be given to the equivalence between the mixed-layer

width computed from numerical simulations and what is measured experimentally.

A more fundamental issue is that measurements of spike- and bubble-front position

(or velocity and acceleration at the front) are insufficient to distinguish between the

late-stage growth of broad-spectrum, multi-mode RTI and turbulent RTI, discussed

next in Section 2.3. In both cases, the mixed-fluid layer grows self-similarly. Young’s

molecular-mix parameter1 characterizes the total degree of mixing:

Θ =

hB∫
−hS

〈fv1fv2〉
〈fv1〉〈fv2〉

dz (2.26)

where Θ = 0 for two regions of pure, unmixed fluids and Θ = 1 for a homogeneous

mixture of the two fluids. In the case of multi-mode RTI, the mixing predominately

occurs at larger scales (illustrated in Figure 2.3); whereas turbulent RTI is characterized

by a high degree of fine-scale mixing (illustrated in Figure 2.4). In addition to the

degree of mixing, the kinetic energy spectrum can also distinguish between single-mode,

multi-mode and turbulent mixing.

2.3 Turbulent RTI

The generally accepted belief is that a high-Reynolds-number, RT-unstable flow

with sufficiently strong, sustained acceleration will lose memory of its initial seed

spectrum and evolve to a fully-turbulent state, characterized by a broad kinetic energy

1More generally, the mix parameter characterizes mixing at the finest scale: molecular mixing for
classical fluids or atomic mixing for HED plasmas.
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Figure 2.4: 3D simulations of turbulent RTI by Cabot and Cook [65]. Gravity is
directed downward. In this color-map, red is the heavy fluid, blue is
the light fluid, and other colors represent mixed-fluid regions of various
compositions. For illustrative purposes, the pure-fluid regions on the top
and bottom are not shown.

spectrum, high degree of molecular mixing (Θ), and self-similar growth:

h(t) = αAgt2 + 2
√
αAgh0 t+ h0 (2.27)

Here, h0 is a virtual origin, corresponding to the mixed-layer width at the time

when the growth becomes self-similar [66] [67]. Numerous experiments and numerical

simulations seeded with multi-mode perturbations or random noise have observed

quasi-self-similar turbulent growth, but with differences in the measured growth

parameter α [68]. Much work has been devoted to understanding discrepancies

between the values of α predicted by theoretical models, numerical simulations, and

experiments. The development of turbulence depends, in some complicated way, on

the acceleration history, Atwood number, and seed perturbation spectrum. Recent

research also explores the effect of miscibility, which may lead to a lower effective

44



Atwood number [69].

For various types of stationary flows (shear layers, jets, and other flows), Dimotakis

demonstrated that there exists a universal critical Reynolds number, Re ' 2x104, at

which the flow abruptly transitions from laminar to turbulent [70]. The Reynolds

number is a dimensionless quantity which relates the strength of the inertial forces to

the viscous forces within a flow:

Re =
ρUL

µ
=
LU

ν
(2.28)

Here, L is the outer scale length (representing the driving scale or size of the flow), U

is the flow velocity, µ is the dynamic viscosity [mass/(distance·time)], and ν is the

kinematic viscosity [area/time]. Laminar flow occurs at low Reynolds number, when

viscous forces dominate. At high Reynolds number, inertial forces dominate.

Turbulent mixing requires a broad inertial range in the kinetic energy spectrum,

preventing direct coupling between modes in the driven range and modes in the

dissipative range. The smallest physical length scale is the Kolmogorov microscale,

λK , where kinetic energy is converted to heat by viscous dissipation. The Taylor

microscale, λT , represents the largest length scale (eddy size) at which turbulent

kinetic energy is dissipated. The Kolmogorov and Taylor microscales are related to

the Reynolds number by [71]:

λK = (ν3/εT )1/4 = LRe−3/4

λT = LRe−1/2

(2.29)

where εT is the turbulent kinetic energy dissipation rate (with units of [area/time]).
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Dimotakis defines two additional turbulent length scales:

Liepmann-Taylor scale: λLT ≡ 5λT

Inner-viscous scale: λν ≡ 50λK

(2.30)

The Liepmann-Taylor scale represents the longest-wavelength mode which is decou-

pled from the driven modes. The inner-viscous scale represents the shortest-wavelength

mode which is unaffected by viscous dissipation. The transition to turbulence corre-

sponds to the appearance of an inertial range bounded from above by the Liepmann-

Taylor scale and from below by the inner-viscous scale:

λν ≤ λinertial ≤ λLT (2.31)

Zhou et al. provide an excellent plot (Figure 2.5) of the various turbulent length

scales and a conceptual illustration of the energy cascade that drives the transition to

turbulence (Figure 2.6).

In the case of RTI, the flow is not stationary and the turbulent length scales

are time-dependent. Furthermore, for a system initially seeded with a single-mode

perturbation, the transition to turbulence requires time for nonlinear interactions to

generate higher-order harmonics and a broad inertial range. Zhou et al. modified the

steady-state mixing transition criteria of Dimotakis to include the temporal evolution

of the inertial range [72]. Along the sides of the bubble/spike, a laminar boundary

layer forms, whose thickness, λD, corresponds to the upper bound of the viscous length

scale:

λD = 5(νt)1/2 (2.32)

The time-dependent Kolmogorov and Taylor microscales (and thus λLT and λν) are

calculated from the outer-scale Reynolds number (Equation 2.28), using the total
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Figure 2.5: Plot of turbulent length scales versus Reynolds number, modified from
Zhou et al. [72]. Text labels describe the dominate physical processes in
the shaded regions bounded by the various length scales. At sufficiently
large Reynolds number, an inertial range develops (unshaded region),
which corresponds to the onset of turbulence.

mixed-layer height L = h(t) and velocity U = ḣ. A mixing transition occurs when:

λmin(t) > λν(t), where λmin = min{λD, λLT} (2.33)

Unlike the stationary flows studied by Dimotakis, the onset of RTI turbulence is not an

abrupt phase transition. The system requires further time to generate the full kinetic

energy spectrum and mixing dynamics relevant to extremely high Reynolds-number

astrophysical flows. For this, Zhou proposes the concept of a “minimum state” and a

critical Reynolds number, Re = 1.6x105, which corresponds to [73]:

λ∗min = min{λD, λLT} ≥ 2λν (2.34)
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Figure 2.6: Conceptual illustration of the energy cascade that drives the transition to
turbulence, showing the correspondence between eddy size distribution
and turbulent length scales. Figure from Zhou et al. [72].

However, this method of predicting the onset of turbulence and minimum state requires

knowledge of spike and bubble velocities from early to late times. Lacking accurate

analytical models for the late-nonlinear stage, we rely on numerical simulations.
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CHAPTER III

Simulation Studies of Single-Mode RTI at Low

Atwood Number

Even with state-of-the-art (2019) supercomputers, it is typically infeasible to run

3D simulations which resolve all physical scales in high-Reynolds-number RTI flows,

from the driven scale down to the dissipative scale, for long enough times to observe all

stages of RTI, from single-mode linear growth to fully turbulent mixing. The transient

nature of turbulence and rapid velocity fluctuations further increase the computational

burden. Considerable debate surrounds the choice of numerical methods and their

validity for solving particular problems [74]. Different hydrodynamics codes can yield

different results for the same physical problem. Two main types of simulations exist

for modeling turbulent flows: direct numerical simulations (DNS) and large eddy

simulations (LES). DNS are so-named because they “directly” solve the Navier-Stokes

equations, including the effects of physical viscosity and diffusion. This requires grid

size at the Kolmogorov microscale (Equation 2.29). LES solve the RANS equations

using comparatively large grid size and implement either an explicit or implicit model

for turbulence and sub-grid-scale dissipation. Additionally, finite grid size creates
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numerical viscosity and lower effective Reynolds number [49]:

νnum ∝
√
Ag∆3 > ν, where ∆ is the grid size

Re =
LU

νnum

(3.1)

Previous simulation studies have shown that LES and less-than-fully-resolved DNS

adequately model the evolution of RTI in two regimes: a) single-mode RTI through

the early-nonlinear and asymptoptic growth stages, and b) fully-turbulent RTI [74].

However, these simulations may not accurately capture the physical processes which

strongly influence the transitional behavior between single-mode and turbulent mixing

at very high Reynolds number.

Another common approach to reduce computational time while resolving fine

scales is to run a 2D simulation, rather than the full-scale 3D system. However, the

physical nature of turbulence is fundamentally different in 2D versus 3D. Classical

turbulence is inherently a 3D phenomenon, charactered by a forward energy cascade

via the mechanism of vortex-ring stretching [71]. In 2D, vortex pairing and merger

processes drive a forward enstrophy cascade and an inverse energy cascade [75]. Recent

classical fluids experiments by Morgan et al. (discussed in Chapter IV) showed that

systems initialized with 2D perturbations developed 3D secondary instabilities prior

to turbulent mixing [76]. Therefore, 2D simulations are of limited utility for predicting

the evolution of 3D physical systems.

3.1 3D LES by Ramaprabhu et al.

In 2012, Ramaprabhu et al. performed a 3D simulation study of single-mode

RTI in the nonlinear stage and dependence on Atwood number [49]. They com-

pared the results of two different LES codes (RTI 3D and PPM), simulating an

RT-unstable system consisting of classical, incompressible fluids, initial perturbation
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Figure 3.1: A = 0.15 simulations by Ramaprabhu et al. with experimental data from
experiments by Wilkinson and Jacobs. The figures shown here are from
Ramaprabhu et al. [49]. Froude numbers for bubble (a) and spike (b)
are plotted versus the normalized feature height, h/λ. The horizontal
green-dashed lines indicate the terminal limits predicted by the potential
flow model of Goncharov. In each figure, the blue and red curves are
measured from simulation data from two different codes, RTI 3D (blue)
and PPM (red). These plots also include data (black markers) from
classical fluids experiments by Wilkinson and Jacobs. In the left figure
(bubble), the black-dashed curve labeled “Eq. (9)” is calculated from the
simulation data and the modified potential flow model (Equation 3.4b in
this dissertation).

h(x, y) = h0

(
cos(kx) + cos(ky)

)
, constant scaled acceleration, Ag, and scaled viscosity,

νSCL ∼ ν/
√
Agλ3 ≈ 10−4, for numerous Atwood numbers, ranging from A = 0.005− 0.9.

Detailed analysis focused on two representative cases: A = 0.9 and A = 0.15 (similar

to the experiments of Wilkinson and Jacobs [77], discussed in Chapter IV). Although

the two codes generated slightly different results (in terms of the spike and bubble

velocities, interface shape, and small-scale mixing), they predicted the same qualitative

behavior. Spikes do not reach a terminal velocity at any Atwood number, and in the

high-A limit, spikes approach free-fall. At high-Atwood-number, bubbles do reach

a terminal velocity and constant Froude number, consistent with the potential-flow

model of Goncharov [45]. The behavior is very different for low-Atwood-number

bubbles, which evolve through four distinct stages:
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I. Exponential growth (described by linear stability theory)

II. Saturation to terminal velocity (described by potential-flow theory)

III. Reacceleration to a higher Froude number (after plateauing at the terminal

velocity of stage II)

IV. Chaotic mixing

The A = 0.15 simulations showed excellent agreement with the experiments of

Wilkinson and Jacobs, in terms of bubble and spike Froude numbers, shown in Figure

3.1. However, Wilkinson and Jacobs experiments did not drive RTI growth beyond

hB/λ ' 1.5 (corresponding to τ ' 9), which is just at the onset of the reacceleration

stage (9 < τ < 12). The authors attribute the reacceleration to the emergence of

secondary KHI, which manifests as a vortex ring traveling towards the bubble tip.

This reacceleration only occurs at low-Atwood-number. At high-Atwood-number, KHI

is inertially suppressed (Equation 1.33).

To describe the bubble reacceleration, Ramaprabhu et al. adopt a potential-flow

model modified with a vorticity term:

(ρ1 − ρ2) g + ρ2
ω2

0r

4
= kρ1u

2
B (3.2)

where r = λ/2 is the bubble radius. This is based on the Layzer potential-flow model

(Equation 2.20) with the drag coefficient C2 = 1 (for the 3D case) and u̇B = 0 (the

terminal velocity limit), plus a rigid-body rotator model (Equation 1.17) for the KHI

vortex ring. This model was originally developed by Betti and Sanz [78] for the case of

ablative RTI (discussed in Chapter IV). Figure 4.3 provides a conceptual illustration

of the rigid rotator model, showing accumulation of vorticity in the bubble and how

the direction of rotation induces a net velocity in the positive z-direction at the tip of

the bubble. In this picture, the angular velocity of the rigid-rotator is ω0/2 and the
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centrifugal force per unit volume is:

ρ2u
2
θ

r
=
ρ2

r

(ω0

2
r
)2

= ρ2
ω2

0r

4
(3.3)

Equation 3.2 predicts higher values for the terminal velocity and Froude, as compared

to the classical potential flow model of Goncharov (Equation 2.22):

uB =

√
2Agλ

(1 + A)k
+
ρ2

ρ1

ω2
0

4k2
(3.4a)

FrB =

√
1

π
+

ρ2/ρ1

1− ρ2/ρ1

+
ω2

0

4πkg
(3.4b)

However, Ramaprabhu et al. do not assume a constant value of ω0. Instead, they

calculate the quantity ω0(t) at each time step in the numerical simulation by spatially

averaging the vorticity field over a region inside the bubble tip. This region is bounded

by the horizontal half-plane of the bubble (bisected through the vertex) and vertical

extent of the KH vortex ring, λKH .

In the simulation, the reacceleration stage ends at τ ' 12, when single-mode struc-

ture breaks down, symmetry is lost, and the chaotic mixing stage begins. Ramaprabhu

et al. characterize “chaotic mixing” in a manner which resembles turbulence: increase

in atomic mixing Θ due to small-scale, incoherent structures inside the bubble and

corresponding decrease in Froude number associated with the fundamental mode. At

the latest simulation time (corresponding to τ = 16), the long-term trend for bubble

growth is unclear.

Ramaprabhu et al. also performed a resolution study with λ/∆ = {8, 16, 32, 64, 128}.

The authors conclude that λ/∆ = 64 is sufficient to predict the overall dynamics in

stages I-III, where large-scale coherent features dominate. In the chaotic mixing stage,

significant variability was observed at higher resolutions, corresponding to velocity
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fluctuations caused by small-scale features. To quantify the uncertainty related to

grid-size effects, they performed an ensemble of 10− 25 simulations (at each of the

highest resolutions, λ/∆ = 64, 128) with the ensemble generated by small perturbations

in the scaled viscosity (around the nominal value of 10−4). As a metric, they plotted

single-mode spike- and bubble-Froude number versus τ for the ensemble-average with

error bars indicating the standard deviation. In the early growth stages the error was

small, but the later growth stages exhibited large stochastic fluctuations.

3.2 2D DNS by Wei and Livescu

Later in 2012, Wei and Livescu published the results of 2D, high-resolution DNS

of single-mode RTI at low-Atwood-number, A = 0.04 [79]. (The authors also ran one

simulation at A = 0.15 and found good agreement with the 2D experiments of Waddell

et al. [80], discussed in Chapter IV. However, in those experiments, RTI was not driven

beyond the potential-flow stage.) The A = 0.04 simulations investigated dependence

on resolution, Reynolds number, and initial perturbation shape (wavelength, amplitude

and thickness of the initial diffusion layer). The interface was initialized with the

density profile: ρ(x, z) = 1
2
{1 + erf[Y z + h(x)]}(ρ1 − ρ2) + ρ2, where h(x) = a sin(kx)

and Y is a slope coefficient. (The initial perturbation amplitude of the density profile

is a/Y .) Simulation parameters included constant acceleration, unity Schmidt number

(Sc = ν/D, where D is the mass diffusion coefficient), horizontal resolution λ/∆x =

256-2048 and vertical resolution ∆z = 0.8∆x.

For bubbles, they identify five growth stages:

I. Diffusive growth (described by the solution to the heat equation)

II. Exponential growth (described by linear stability theory)

III. Potential flow growth

54



IV. Reacceleration

V. Chaotic development

Evolution through these stages is determined by the perturbation Reynolds number,

which they define as:

Rep ≡
λ

ν

√
Agλ

1 + A
(3.5)

where U =
√

Agλ
1+A

reflects the asymptotic terminal velocity of potential-flow models.

At low perturbation Reynolds number (Rep . 200), the system does not evolve

beyond the potential-flow stage. At higher Reynolds number (Rep & 300), a transition

between potential-flow and reaccleration stages occurs. Chaotic development begins

at Rep ≈ 2, 000, but fully chaotic growth only occurs above a critical perturbation

Reynolds number, Rep ≈ 104.

At sufficiently high Rep, bubbles reaccelerate beyond the velocity plateau predicted

by potential-flow theory. This reacceleration is driven by secondary KHI, which begins

when vortices (formed in the early nonlinear growth stage) become large enough

to interact with their neighbors. The initial vortices split and form coherent pairs

of counter-rotating vortices (with one vortex on either side of the bubble/spike).

Along the interface, secondary KHI continues to generate complex, small-scale vortical

interactions. The first generation of vortex-pairs self-propels towards the spike and

bubble tips, inducing a net-increase in velocity along the vertical direction. This

acceleration must end when the vortices reach the spike and bubble tips, as the velocity

can no longer increase. The reacceleration stages of Ramaprabhu et al. and Wei and

Livescu arise from analogous physical processes in two- and three-dimensions. In 3D,

reacceleration is caused by the formation of a secondary set of vortex rings which

travel towards the spike/bubble tip, producing an effect similar to the counter-rotating

vortex-pairs in 2D.

However, the mixing dynamics are very different in the “chaotic development”

55



stage of Wei and Livescu and the “chaotic mixing” stage of Ramaprabhu et al. In

the simulations of Wei and Livescu, symmetry is preserved at all times1 and the

flow structures are coherent. The flow never evolves to turbulent mixing. “Chaotic”

refers to seemingly-random velocity fluctuations at the bubble tip caused by complex,

small-scale vortical interactions. At very high Reynolds number (Rep & 104), bubble

acceleration eventually becomes “stationary” and the growth is “fully chaotic.” In

other words: acceleration at the bubble tip fluctuates chaotically about a constant,

positive mean-value: ḧB/(2Ag) = αB. For bubble height defined at the 1 % density

level, αB ≈ 0.035. The authors claim that mean-quadratic growth shows “there is no

fundamental difference between single-mode and multi-mode RTI.”

Wei and Livescu also investigated the role of the initial perturbation amplitude and

diffusion-layer thickness, using various combinations of a and Y . These simulations

were performed at the highest resolution (Rep = 20, 000) to ensure that the flow would

evolve through all five growth stages. Their results showed a strong dependence on

initial conditions in the early growth stages (I and II) and time-of-transition between

growth stages. In the potential-flow stage, the asymptotic velocity was unaffected

by the initial conditions. In the later growth stages (especially the chaotic stage),

differences in initial conditions seeded secondary instabilities which caused large

differences in the instantaneous bubble acceleration, but at sufficiently late times,

there was no difference in the mean-acceleration.

1The flow preserves mirror symmetry about the vertical axis bisecting the bubble. The interface
is not symmetric about the horizontal plane.
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CHAPTER IV

Previous Experiments of Single-Mode RTI

4.1 Classical Fluids Experiments

Figure 4.1: Classical fluids experiments of 3D single-mode RTI by Wilkinson and
Jacobs [77]. In the laboratory frame of reference, the less-dense fluid is on
the top (dark color) and the denser fluid is on the bottom (light color).
PLIF imaging captures the detailed structure of the interface throughout
the duration of the flow. Times shown: (a) -26.7 ms (seed perturbation);
(b) 40 ms; (c) 106.7 ms; (d) 173.3 ms; (e) 240 ms; (f) 306.7 ms; (g) 373.3
ms; (h) 440 ms; (i) 506.7 ms; (j) 573.3 ms; (k) 640 ms; (l) 706.7 ms.
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Advantages of classical fluids experiments include diagnostics with high spatial and

temporal resolution relative to the size and speed of the flow, and well-known equations-

of-state and kinematic viscosities for a wide variety of liquid and gas combinations.

Additionally, chemical dopants and nano/micro-scale engineered particles may be

added to the fluids to enable measurements of the degree of molecular mixing and

kinetic energy spectrum of turbulent velocity fluctuations [81], [82]. Typical flow

durations are on the order of hundreds of milliseconds to several seconds for flow

sizes ranging from tens to hundreds of millimeters. Optically transparent fluids with

mass-densities in the range of 10−4 − 1 g/cm3 enable the use of sophisticated imaging

techniques, such as particle-image velocimetry (PIV), planar laser-induced fluorescence

(PLIF) imaging, and Mie scattering. Compatible detectors include CMOS cameras

with micron-scale pixels, large array sizes (thousands of pixels in each linear dimension),

single-photon sensitivity, and frame rates >10 kHz.

In 2010, Andrews and Dalziel published a review of classical fluids experiments

of RTI turbulence at low-Atwood-number, describing advances in experimental ap-

paratus and diagnostic techniques over the previous 20-year period [83]. In all these

experiments, turbulent RTI mixing resulted from uncontrolled multi-mode initial

conditions. It is much more difficult to drive single-mode RTI deep into the nonlinear

growth stage and observe the transition to turbulence. Challenges include creating

strong, sustained acceleration, achieving very high Reynolds number (Re > 104),

creating a true single-mode seed perturbation unaffected by surface tension and

wall interactions, and resolving the spatial and temporal dynamics. To reach late τ

(Equation 2.17), a low-Atwood-number experiment requires more acceleration than a

high-Atwood-number experiment of the same wavelength.
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4.1.1 Incompressible, Miscible Fluids Experiments at Low Atwood Num-

ber

In 2001, Waddell et al. performed liquid-phase experiments of 2D single-mode RTI

with at low-Atwood-number (A = 0.15) [80]. In 2007, Wilkinson and Jacobs extended

this platform to create 3D perturbations and published the first experimental study of

3D single-mode RTI growth at low-Atwood-number [77]. The experimental apparatus

consisted of a Plexiglass tank accelerated downward on a vertical rail. Inside the tank,

the lighter fluid (solution of isopropyl alcohol and water) was suspended on top of the

heavier fluid (solution of calcium nitrate and water, doped with a fluorescent dye).

Oscillating the tank about its diagonal created a standing-wave initial perturbation

of the form z0(x, y) = a sin(kx)sin(ky) with 1.5, 2.5 or 4.5 wavelengths spanning

the tank. A weight-and-pulley system accelerated the tank downward for a travel

time of 300-500 ms, while accelerometers measured g(t) at a sampling rate of 15 kHz.

A planar laser-induced fluorescence imaging system with a video camera recorded

the mixed-fluid region at a frame rate of 60 Hz. RTI growth was driven well into

the nonlinear stage, but not to turbulence. Spike and bubble growth appeared to

saturate at the terminal velocity predicted by Goncharov (Equation 2.22), but then

unexpectedly began to reaccelerated at latest measurement times. Wilkinson and

Jacobs attribute this late-time re-acceleration to the formation of vortex rings, which

impart a net velocity in the z-direction. For each bubble-spike pair, they observed

two vortex rings, one propagating towards the bubble tip and the other towards the

spike tip. These experiments motivated the 2012 simulation study by Ramaprabhu et

al. [49].
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4.1.2 Compressible, Miscible Fluids Experiments at Moderate-to-High

Atwood Number

During 2016-2018, Morgan et al. published in two installments the results of

rarefaction-driven, gas-phase experiments of 2D and 3D single-mode RTI initiated

at a diffuse interface [84] [76]. Different gas-pairings produced a variety of Atwood

numbers (A = 0.49− 0.94). The first publication provides a detailed description of

the experimental apparatus, measurement techniques, and compares experimental

results with a model based on diffuse-interface linear stability theory. The second

publication explores the nonlinear regime, comparing experimental results with the

variable-density potential-flow model of Mikaelian [85] and numerical simulations

with two different codes: Miranda and Ares. Miranda is a compressible LES code

with 2D or 3D Cartesian grids. The transverse domain of the Miranda simulations

spanned one wavelength with fixed resolution (λ/∆x,y = 256) and periodic boundary

conditions. Resolution in the vertical direction depended on the wavelength of the

experiment. Ares is an axi-symmetric arbitrary Lagrangian-Eulerian (ALE) code

with cylindrical coordinates and constant properties in the azimuthal direction. For

the Ares simulations, the transverse domain spanned one-half wavelength with the

axis of symmetry through the center of either the spike or bubble and 1D reflecting

conditions at the opposite boundary. In the transverse direction, adaptive mesh

refinement resulted in λ/∆r = 400 − 500. Vertical resolution was fixed with 1350

points along the entire length of the rarefaction tube (equivalent to approximately

λ/∆z = 150). Miranda simulations were performed for all Atwood-number cases,

whereas Ares simulations were performed only for the A = 0.63 case.

For each gas-pairing, the Atwood number remained nearly constant over the dura-

tion of the experiment (7 seconds), decreasing slightly over time. Outer-scale Reynolds

numbers ranged from 1x105 − 9x105 and perturbation Reynolds numbers ranged

from 9x104 − 6x105, exceeding the critical values of both Zhou and Wei and Livescu.
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Rocking the gas-filled tube side-to-side created 2D standing-wave perturbations of the

form z0(x) = a cos(2π
λ
x) with 1.5 waves for A = {0.49, 0.63, 0.82, 0.94}, 2.5 waves for

A = {0.49, 0.63}, or 3.5 waves for A = 0.49. 3D perturbations were generated by a

different mechanism: a loud speaker vertically oscillated the column of gas, producing

perturbations of the form z0(x, y) = a
2

(
cos(2π

λ
x) + cos(2π

λ
y)
)

with only one wavelength

spanning the tube. The 3D experiments were performed at two different Atwood

numbers, A = {0.49, 0.63}. Separate 3D experiments were conducted with either the

bubble or the spike centered in the tube. A 12 kHz frame rate, high-resolution imaging

system based on laser-illuminated Mie scattering recorded a planar projection of the

interface shape and enabled measurement of instantaneous velocities at the spike and

bubble tips. A separate shadowgraph imaging system captured the three-dimensional

structure of the interface.

2D simulations and experiments showed spike and bubble growth approached a

velocity plateau in the nonlinear stage. In the linear and early nonlinear growth

stages, simulations, experiments, and the Mikaelian model produced similar values for

spike and bubble velocities and Froude numbers. However, experimentally measured

spike amplitude greatly exceeded the values from simulations (bubble amplitudes

were accurately predicted by simulations). In the late-nonlinear stage, significant

differences emerged between experiments and simulations, corresponding to the onset

of secondary instabilities. In the 2D, 3.5-wave, A = 0.49 experiment, spike and

bubble growth reaccelerated beyond the velocity plateau, then individual spikes and

bubbles broke up, followed by turbulent mixing. Mie scattering clearly showed the

development of secondary KHI along the thin arms of the spikes and also at the spike

tips. Shadowgraphy revealed that the initially-2D interface developed 3D structure.

The simulations generated symmetric, large-scale 2D vortices along the spike arms,

but no vorticity at the tips. In the simulations, the interface structure remained

symmetric and predominately single-mode.
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3D spike experiments showed the development of secondary KHI at the spike tip,

in addition to along the arms of the spike. In the 3D bubble experiments, pronounced

secondary RTI formed at the bubble tip and rapidly engulfed the entire bubble. 3D

Miranda simulations generated larger-scale, symmetry-preserving vortices along the

edges of the spike/bubble, but failed to produce the secondary instabilities at the spike

and bubble tips. Miranda and axi-symmetric Ares simulations produced similar values

for spike amplitude, in good agreement with the experimental data at all measurement

times. However, the two types of simulations greatly differed in terms of bubble

amplitude, with the Ares simulations closer to the experimental result, but also failing

to match experiments in the late-nonlinear stage. In contrast to the Wilkinson and

Jacobs experiments, the 3D experiments of Morgan et al. produced a single vortex

ring, traveling towards the spike tip. Boundary-layer effects at the tube walls (not

included in simulations) significantly affected the evolution of the 2D, 1.5-wave and

3D, one-wave experiments.

4.2 High-Energy-Density Experiments of RTI

For the class of high-energy-density experiments considered here, typical flow

durations range from 5-50 ns with fluid velocities of 10− 100 µm/ns [86] [87] [88] [89]

[90] [91] [29] [92] [78] [93] [94]. Diagnostic capabilities for HED experiments are crude

in comparison to classical fluids experiments and considerable uncertainty may exist

in the EOS and kinematic viscosity. One advantage is that initially-solid materials can

be machined (or otherwise fabricated) for precise control of the seed perturbation. It is

possible to create 2D and 3D single-mode sinusoidal patterns on a planar surface with

many waves (20-50+ λ) spanning the transverse domain. Additionally, a wide variety

of interface structures and geometries are possible, enabling experimental studies of

multi-mode RTI and bubble-merger processes [62], dependence on spectral content

and phase [95] [96] [97] [75], symmetry and pattern formation [98], and RTI growth
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at spherical [99] and cylindrical surfaces. Experiments of RTI growth at a planar

surface enable more straightforward interpretation of the data and direct comparisons

with classical fluids experiments. These capabilities of HED experiments enable

progress towards the fundamental understanding of RTI, in addition to studying the

interaction of hydrodynamic instabilities with other physical processes unique to HED

environments [100], [101], [87]. HED experiments of RTI investigate three different

regimes where the instability evolves: 1) at an ablation surface, 2) at a light-to-heavy

embedded interface which is shocked and then accelerated, and 3) at a heavy-to-light

embedded interface which is shocked and then decelerated by a blast wave.

4.2.1 Ablative RTI

Figure 4.2: Conceptual illustration of RTI at an ablation surface.

Ablative RTI is primarily of interest to the ICF community. In the linear stage,

mass ablation suppresses RTI, compared with the classical growth rate γ
RT

. For

ablative RTI, the linear growth rate is [91]:

γabl = α

√
Akg

1 + kL
− βkVa (4.1)

where L = ρ/∇ρ is the density gradient length scale (here ρ is the peak density),

Va = 1
ρ
dma

dt
is the ablation velocity, ma is the areal mass density, and α, β are fitting

parameters. In the nonlinear stage, Betti and Sanz showed that mass ablation causes

vorticity convection [78]. Vorticity accumulates inside the bubble at the tip, increasing
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the net velocity in the z-direction. Figure 4.3 provides a conceptual illustration of this

model, with the relevant length scales and direction of the flow. In the late-nonlinear

stage, the ablative growth rate exceeds the classical asymptotic limit:

Uabl
B =

√
2Ag

k(1 + A)
+
ρ2

ρ1

ω2
0

4k2
(4.2)

where first term is the terminal velocity from the Layzer-type potential flow model

(Equation 2.22) and ω0 ∼ kVa
ρ1
ρ2

corresponds to the vorticity convected inside the

bubble. Ramaprabhu et al. applied this theory to explain the reacceleration observed

in their non-ablative, incompressible fluids simulations, although the mechanism for

vorticity transport is different [49].

Figure 4.3: Conceptual illustration by Betti and Sanz [78], showing accumulation of
vorticity inside the bubble, which resembles a rigid rotator and induces a
net velocity in the positive z-direction at the bubble tip.
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4.2.2 RTI at an Embedded Interface: Accelerating Thin-Foil Experi-

ments

Figure 4.4: Conceptual illustration of RTI at an embedded interface on a thin foil.

In 1996, Budil et al. performed the first experiments comparing ablative RTI

with classical RTI at an embedded interface [90]. These planar, embedded-interface

targets consisted of a Bromine-doped polystyrene (C50H47Br3) ablator pressed against

a thin Ti foil with a 2D single-mode sinusoidal perturbation at the material interface.

Face-on radiography enabled the use of very short perturbation wavelengths: λ =

{10, 20, 50, 100 µm} with a = 0.5µm for λ = 10µm and a = 1µm for the longer

wavelengths. The CHBr ablator had a thickness of 50-60 µm and a density of ρ2 =

1.26 g/cm3. The Ti foil was 15µm-thick with a density of ρ1 = 4.5 g/cm3. The flat,

exterior surface of the ablator was coupled to a hohlraum driven by a 3 ns laser pulse,

launching a shock into the target. RTI growth occurs after the drive pulse ends and

the shock breaks out at the rear surface of the target.

The Richtmyer-Meshkov instability occurs when a shock wave crosses a rippled

interface between two materials of different densities. In the case where the shock

travels from a less-dense material into a denser material, the perturbation amplitude

immediately begins to grow, increasing linearly with time. If RMI growth is not driven

beyond the linear stage, the interface retains a predominately single-mode sinusoidal

shape. RTI growth begins when the shock wave breaks out at the rear surface of the
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target, creating a rarefaction which accelerates the interface. In the experiments of

Budil et al., the shock-wave crossed the embedded interface at t=2.7 ns and broke out

at the rear surface of the Ti foil at t=2.9 ns, accelerating the target for approximately

2 ns.

Face-on X-ray radiography with a backlighter source of 6.7 keV photons and a

gated detector captured data at a few discrete time steps during the RTI growth phase.

In the radiography data, image intensity corresponds to:

I(x, y, t) = I0(x, y)e−κρa , where ρa(x, y, t) =

∫
ρ(x, y, t) dz (4.3)

where I0 is the backlighter source distribution, κ is the average X-ray opacity, and

ρa is the areal density. The variation in areal density between bubbles and spikes

modulates the image intensity. The RT growth factor is calculated from the Fourier

transform of I(x, y, t) and comparing the peak-to-valley contrast of the fundamental

mode. Face-on radiography only requires spatial resolution < λ. The limitation of

this diagnostic method is that the perturbation amplitude can only be calculated

accurately in the linear growth stage, before the formation of KH roll-ups [87].

4.2.3 RTI at an Embedded Interface: Blast-Wave-Driven Experiments

Figure 4.5: Conceptual illustration of blast-wave-driven RTI.

In this case, the ablator is the denser material. When the drive pulse ends, a

rarefaction wave forms at the front surface of the ablator. The head of the rarefaction
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travels faster than the shock front, forming a blast wave prior to shock break-out at the

interface. During the RMI phase (when the shock front crosses the ripped interface),

the initial perturbation amplitude is compressed and inverted, then increases. A strong

shock travels forward into the lower-density material and a weak shock is reflected

back into the ablator. At the interface, the pressure on the side of the lower-density

material now exceeds the pressure on the side of the ablator (∇p · ∇ρ < 0), the

interface decelerates, and the RTI growth phase begins. The blast wave continues

to travel in the lower-density material (which is very thick) for tens of nanoseconds,

driving RTI growth. The temporal dynamics of the blast wave and time-dependent

acceleration/deceleration at the interface are a critical part of the experimental design,

discussed in Chapter V.

Side-on radiography measures the peak-to-valley amplitude of the mixed-fluid layer.

For radiography through the y-axis:

I(x, z, t) = I0(x, z)e−κρa , where ρa(x, z, t) =

∫
ρ(x, y, z, t) dy (4.4)

To resolve the spikes and bubbles, this radiography configuration requires spatial

resolution ≤ λ/4. The target materials and X-ray energy of the backlighter source are

chosen for large opacity-contrast between spikes and bubbles.

This blast-wave-driven platform was originally developed by Kane et al. as a

laboratory testbed for studying the evolution of hydrodynamic instabilities under

conditions relevant to supernovae [28] [102]. Early indirect-drive experiments were

performed at the Nova laser facility, formerly located at Lawrence Livermore National

Laboratory and decommissioned in 1999. The Nova targets consisted of two planar

layers: a copper ablator (ρ1 = 8.9 g/cm3, 85µm thick) backed by polyethylene plastic

(CH2, ρ2 = 0.95 g/cm3, 500µm thick) with a 2D single-mode sinusoidal perturbation

at the interface (λ = 200µm, a = 20µm).
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In 2001, Robey et al. extended the supernova platform to direct-drive experiments

at the Omega laser facility [103]. Innovations to the design included packaging the

target inside a shock tube, which laterally confines the flow and improves planarity,

and a plastic ablator with a density-matched tracer strip, which enhances radiography

contrast near the central axis of the target. (Chapter V provides a more detailed

explanation of the tracer strip.) The lower-density material was carbonized resorcinol-

formaldehyde, C1000O48H65 (CRF), a type of organic aerogel, commonly referred to

simply as “foam” in the HED community. Although many different types of foams exist,

CRF is a popular material for HED experiments because of its widely tunable density

range (0.01− 0.4 g/cm3), determined by the porosity of the material) and because it

is comprised of mostly carbon atoms. CRF has the lowest-atomic-number chemical

composition of all porous materials currently available [104]. Applications in ICF seek

to eliminate high-atomic-number contaminants. For HED experiments involving X-ray

radiography, CRF is highly desirably because it is relatively transparent in its “pure”

form, but can be doped with higher-atomic-number elements if desired.

Subsequent experiments based on this supernova platform specifically investigated

the nonlinear growth stage of RTI (at later times than is possible with thin-foil

targets), including 2D single-mode and multi-mode perturbations [105] [106] and

3D single-mode perturbations [107]. Miles et al. investigated the dependence on

initial conditions and transition to turbulence with various seed spectra in 2D [95]

and 3D [75]. Kuranz et al. demonstrated dual, orthogonal side-on radiography [108].

All of these experiments were in the high-Atwood-number regime (ablator density

ρ1 = 1.4 g/cm3, foam density ρ2 = 0.05 − 0.1 g/cm3, corresponding to post-shock

A ≥ 0.6). Several of these high-Atwood-number experiments demonstrated anomalous

spike morphology and faster spike growth than predicted by buoyancy-drag models and

simulations [107] [109] [110] [111]. Possible explanations include the interaction with

other physical processes in the HED system, experimental uncertainties, or the failure
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of analytical models and numerical simulations to accurately predict the late-nonlinear

stage of classical RTI.

For a high-Atwood-number target with a single-mode seed perturbation (λ =

50µm), Robey et al. estimate the time-dependent kinematic viscosity and Reynolds

number [112]. For the kinematic viscosity, they evaluate the formulas of Braginskii and

Clérouin et al. (Section 1.3.2) with plasma parameters from a 1D Hyades simulation.

(However, they do not specify which equations of state were implemented in the

simulation or how well the simulation matched the experimental data.) Both models

agreed within a factor of two and predicted nearly constant post-shock values of

ν1 ∼ 0.1 and ν2 ∼ 0.04 cm2/s for the plastic and foam, respectively. The experimental

data set was small: mixed-layer width measured at just three moments in time during

the nonlinear growth stage. From this, they calculate L = h(t) and U = ḣ from a linear

fit to the data. Using kinematic viscosity from the Clérouin model, they calculate

the Reynolds number and show that it exceeds the critical threshold of Dimotakis

(Re > 2 × 104); however, calculation of the time-dependent turbulent length scales

(Equations 2.30-2.32) show that additonal time is required to achieve the minimum

state of Zhou (Equation 2.34). In the experiments, the mixing remained predominately

single-mode at the latest measurement time (∼ 15 ns).
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CHAPTER V

Experimental Design

The experimental configuration at Omega-60 (shown in Figure 5.1) involves of

three targets: the main target and two “backlighter” targets (which generate X-ray

sources for radiography). The main target consists of a plastic ablator abutted to a

lower-density foam inside a shock-tube. A one-nanosecond laser pulse incident on the

outer surface of the ablator creates a blast wave, which drives RTI growth for tens of

nanoseconds at the embedded material interface. The blast wave propagates in the

z-direction. A sinusoidal ripple pattern is machined on the surface of the ablator in

contact with the foam, creating a single-mode seed perturbation. X-ray radiography

probes the target along two orthogonal axes, aligned to the x, y axes of the sine-wave

pattern. For each target shot, two radiography images (one per axis) are obtained,

either at the same moment in time or two different times. To measure the growth

rate of the mixed-fluid region from early to late times, we must shoot several identical

targets and build a time-series of radiography images. Unless otherwise stated, time

is referenced to the start of the laser drive pulse and position is measured relative to

the laser-irradiated surface of the ablator.
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Figure 5.1: Visrad model of experimental configuration with main target and two
backlighter targets.

5.1 Experimental Goals

This work represents the first experimental investigation of the late-nonlinear

growth stage of single-mode RTI in a low-Atwood-number HED system. Experimental

campaigns of this nature often involve several design iterations over the course of

many years. The long-term experimental objectives are to: 1) drive single-mode RTI

growth to the late-nonlinear stage in a low-Atwood-number system; 2) measure the

growth of the mixed-fluid region throughout the nonlinear stage; 3) observe whether

the system transitions to turbulent mixing; and 4) compare the evolution of 2D versus

3D single-mode RTI in otherwise identical systems.

Based on the results of the first shot day (October 6, 2016), we calibrated numerical

simulations to the experimental data and refined the target design. 2D CRASH

simulations of the new design predicted that the Omega-60 platform was unlikely to

provide enough deceleration during the RTI growth phase to reach the late-nonlinear
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regime of interest. These simulation results were published by Tim Handy and Guy

Malamud [42]. However, a higher energy laser facility, such as the National Ignition

Facility (NIF), could potentially drive RTI growth to later times. For the Omega-60

experiments presented here, our goals were to: 1) demonstrate a design which achieves

post-shock Atwood number A ' 0.2 utilizing existing target fabrication and diagnostic

capabilities; and 2) identify potential issues with the experimental design and/or target

fabrication methods which must be addressed in order to extend these experiments to

the NIF.

5.2 Evolution of the Target Design

The experimental campaign at Omega-60 consisted of four shot days: October

6, 2016, April 6, 2017, April 19, 2018, and July 18, 2018. In addition to the low-

Atwood-number targets, we also designed, built, and shot several high-Atwood-number

targets. The low- and high-A targets were identical, except for the density of the CRF

foam. (For the high-A targets, the foam density was ρ2 = 0.05 g/cm3.) The purpose

of the high-A targets was to provide data for validation of numerical simulations

and comparisons with prior experiments. The high-A data is not discussed in this

dissertation, but is included in the shot log for reference (Appendix C).

The experimental design is based on the blast-wave-driven platform discussed

in Section 4.2.3. Previous high-Atwood-number targets featured low-density (ρ2 =

0.05− 0.1 g/cm3) CRF foam, a “top hat” shape ablator, and a cylindrical polyimide

(PI) shock tube with inner diameter ∼ 900µm and 25µm wall thickness. The first

shot day fielded the cylindrical shock tube design, shown in Figure 5.2. For the low-A

targets, the higher pressure inside the shock tube caused the PI walls to breach. This

motivated a new shock tube design, which features 200µm-thick Beryllium (Be) walls.

The increased wall thickness improves lateral confinement of the flow. As compared

to PI, Be is much more transparent in the soft-X-ray spectrum of the backlighters.
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Figure 5.2: CAD model by Sallee Klein of first-generation target design with cylindrical
shock tube and “top hat” style ablator.

At 7.8 keV, the net transmission through 200µm Be is comparable to 25µm PI. Our

collaborators at LLNL also recommended a change to a rectangular shock tube design,

similar to targets used at NIF [113].

The simulations shown in this chapter guided the preliminary design, but do not

represent a quantitatively accurate model of the final design. 1D Hyades simulations

illustrate conceptual aspects of the target design and provide crude, qualitative

comparisons (for example, for the purpose of selecting the X-ray energies of the

backlighters). In the first-generation CRASH simulations (performed by Tim Handy

and published by Malamud et al. [42]), the laser energy was scaled to fit shock front

position measurements from previous experiments at high-Atwood-number. The

physical justification for the this laser-energy scaling is discussed in Section 6.4.1.

Additionally, the initial perturbation amplitude in 2D CRASH simulations of the

preliminary design (a = 4µm) is a factor of two larger than that of the final target

design (a = 2µm). After the ablators delivered for the first two shot days failed to

meet specifications, the perturbation amplitude was subsequently reduced in order to

improve the fabrication quality, discussed in Section 5.4.3. New CRASH simulations

were performed by Rachel Young and Matt Trantham, using the final target design

parameters, actual densities (as reported by the manufacturers) for the ablator and

foam materials, and the laser-energy tuned to fit the low-Atwood-number experimental
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data. The new simulation results are presented in Section 6.4.1.

5.3 Physics-Based Design Considerations

To achieve the experimental goals, the design must:

• Create a blast wave whose acceleration/deceleration profile at the interface g(t)

maximizes RTI growth and does not bring the system into a regime where RMI

growth dominates. The 1D dynamics of the blast wave formation are discussed

in Section 5.3.1.

• Ensure that wall interactions do not affect the mixing dynamics near the central

axis of the shock tube throughout the duration of the experiment. This is

discussed in Section 5.3.2.

• Provide sufficient X-ray transmission and opacity contrast for radiography of

the mixed-fluid region. This is discussed in Section 5.3.3.

• Ensure that preheat does not significantly affect the interface dynamics. Preheat

refers to energy deposited in the target in advance of the shock wave, either

by X-ray photons (emitted from the ablator when it is heated by the laser)

or suprathermal electrons generated by laser-plasma interactions [114]. From

CRASH simulations of the experimental design, Tim Handy and Guy Malamud

concluded that the effects of preheat are negligible. This analysis is described in

a journal publication about the experimental design [42].

5.3.1 Blast-Wave Dynamics

The essential dynamics of the blast-wave-driven system are as follows:

1. Intense UV laser beams (> 1014 W/cm2 in a 1 ns pulse) irradiate the front

surface of the plastic ablator, creating a plasma which expands outward. Below
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the critical density, laser light is absorbed. Heat transport by electrons then

carries energy into a region of higher density. The material ablates outward, and

in reaction to the ablation pressure, a shock wave is launched forward. Figure

5.3 (reproduced from [1] by R.P. Drake) shows the electron density profile and

the regions where these physical processes occur.

2. When the laser pulse ends, a rarefaction forms at the front surface of the ablator.

The head of the rarefaction wave travels faster than the shock front. When the

rarefaction wave overtakes the shock wave, a blast wave is formed. The thickness

of the ablator must be optimized so that the rarefaction wave catches up to the

shock front just prior to breakout at the plastic-foam interface. A 1D Hyades

simulation of the experimental design shows the formation of the blast wave in

the ablator (Figure 5.4).

3. As the shock front crosses the rippled interface and travels from a denser material

into a less-dense material, there is a brief phase of RMI growth, during which

the initial perturbation amplitude is compressed, inverted, and then increases.

This process is illustrated conceptually in Figure 5.5. In the early growth stage

of RMI, the amplitude increases linearly with time (Equation 1.32).

4. The blast wave travels forward in the foam. On the foam-side, mass piles up

behind the shock front, which decelerates the flow in the plastic and creates a

weak reverse shock. At the interface, the pressure on the foam-side exceeds the

pressure on the plastic-side (∇p · ∇ρ < 0), establishing the conditions necessary

to drive RTI growth. Figure 5.6 shows the density and pressure profiles across

the interface at t = 4 ns, approximately 1.5 ns after shock breakout.

5. As the blast wave continues to travel in the foam and sweep up mass, the interface

continues to slow down (shown in Figure 5.7). When the blast wave has swept

up a mass of foam equal to the total mass of the plastic ablator, the deceleration
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at the interface, and consequently RTI growth, are negligible. However, the

materials continue to decompress and the mixed-layer width increases due to

the material expansion.

6. Although the materials decompress, the post-shock Atwood number across

the interface remains nearly constant. CRASH simulations implement a more

realistic EOS (as compared to Hyades) and more accurately predict the material

properties and Atwood number. Preliminary 1D CRASH simulations predicted

post-shock Atwood number A ' 0.15, shown in Figure 5.8.

Figure 5.3: This figure by R.P. Drake shows the electron density profile from a com-
puter simulation of a similar system (laser wavelength λL = 0.35µm and
intensity IL = 1015 W/cm2) and the regions corresponding to expansion,
absorption of laser energy, electron heat transport, ablation, and the shock
launched forward in reaction to the ablation pressure. (Figure 9.7 from [1])
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Figure 5.4: 1D dynamics of blast wave formation, illustrated by a time-series of density
profiles (ρ(x)) from a Hyades simulation. The laser pulse ends at 1 ns and
blast wave forms in ablator prior to shock breakout at interface (t = 2.7
ns).

Figure 5.5: Conceptual illustration of the interaction of the shock wave with the
rippled interface. When the shock wave travels from a denser material into
a less-dense material, the initial perturbation amplitude is compressed
and inverted.
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Figure 5.6: Shortly after shock-breakout, the density on the foam-side of the interface
exceeds the density on the plastic-side. A weak reverse shock travels
backward in the plastic. The interface decelerates and drives RTI growth.
Density (blue) and pressure (red) profiles from a 1D Hyades simulation at
t = 4 ns (approximately 1.5 ns after shock breakout) illustrate this stage
of the experiment.
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Figure 5.7: As the blast wave continues to travel in the foam, it slows down, illustrated
by a time-series of density profiles from a 1D Hyades simulation from early
to late times (10-40 ns).

Figure 5.8: The post-shock Atwood number remains almost constant throughout the
duration of the experiment. The Atwood number A(t) is evaluated using
the peak density in the ablator ρ1(t) and the minimum density in the
shocked foam ρ2(t). 2D CRASH simulations by Tim Handy predicted
post-shock Atwood number A ≈ 0.15 [42].
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5.3.2 Wall Interactions

Figure 5.9: 2D CRASH simulations by Tim Handy predicted the interaction of the
shock wave with the tube wall [42]. Left: Divergence of the velocity field
(∇ · u) for the low-A design at 30 ns, demonstrating transverse waves
propagating towards the center of the tube (x = 0). The color map denotes
compression (orange) and expansion (blue) about zero (green). Black
contours identify the RT-unstable interface. Right: Radial position of the
transverse wavefront versus time, for both low- and high-A designs. The
transverse distance scale is normalized to the perturbation wavelength in
both left (x/λ) and right (r/λ) figures.

The interaction of the shock wave with the tube wall creates a triple-point, from

which an acoustic wave travels radially inward towards the center of the tube. We

must predict the trajectory of this acoustic wave and ensure that it does not affect

RTI growth and the mixing dynamics within the central region of the target where the

tracer strip is located. Analysis of the preliminary CRASH simulation data indicated

that the cross-sectional area of the target needed to be increased (from the original

cylidrical tube design) in order to delay the interaction of the transverse waves with
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RT spikes and bubbles in the tracer strip region at the latest observation times. The

inner diameter of the shock tube was increased from the 900 to 1100µm in the final

design, shown in Section 5.4. The gold base (Figure 5.11) also serves as a “shock

blocker” to reduce the strength of the shock in the tube walls.

5.3.3 Radiography Contrast

To select the backlighter source which provides the best opacity contrast, I cal-

culated the net transmission through the target (along each radiography axis) as a

function of X-ray energy at axial positions corresponding to the peak density in the

ablator (spike front), the minimum density in the post-shocked foam (bubble front),

and either side of the shock front in the foam. To estimate the time-varying densities

in the ablator and foam, I used density profiles from 1D Hyades simulations from early

to late times (10-40 ns), shown in Figure 5.7. Using the known atomic composition

and thickness of each material layer (along the radiography axis), I calculated the net

X-ray transmission through the target:

Tx(E) = exp
(
−
∑
j

κj ρj lj

)
(5.1)

where κj(E) is the mass-attenuation coefficient at X-ray photon energy E, ρj is the

mass-density, and lj is the thickness of each material layer j. Target materials included

the Beryllium shock tube, PAI ablator, CHI tracer strip, and CRF foam (Figure

5.11). Mass-attenuation coefficients were obtained from a Matlab script originally

published by Jarek Tuszynski, which includes values reported by the National Institute

of Standards and Technology (NIST) [115]. Figure 5.10 shows the result of these

calculations along the primary and secondary radiography axes at 10 ns and 30 ns.

Vertical lines indicate X-ray energies emitted by commonly used backlighter materials

(Fe, Ni, Zn). From these plots, I determined that Ni (7.8 keV) provides the best overall
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opacity contrast at the spike, bubble, and shock fronts.

(a) (b)

(c) (d)

Figure 5.10: Net transmission in different regions of the target as a function of X-ray
energy: (a) Primary radiography axis at 10 ns; (b) Secondary radiography
axis at 10 ns; (c) Primary radiography axis at 30 ns; (d) Secondary
radiography axis at 30 ns. Vertical lines correspond to the energies
emitted by three potential backlighter materials (Fe, Ni, Zn).

5.4 Main Target

5.4.1 Physics Package

Critical components (shown in Figure 5.11) include the polyamide-imide, C22H14N2O4

(PAI) ablator, Iodine-doped polystyrene, C50H47I3 (CHI) tracer strip, carbonized

resorcinol-formaldehyde (CRF) foam, Beryllium shock tube, and gold base, which

is coated with polyimide, C22H10N2O5 (PI) on the driven side. The ablator is 150
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µm thick with a cross-sectional area of 1100 x 1100 µm2. The tracer strip enhances

radiography contrast of the RT spikes and bubbles near the central axis of the shock-

tube, where the drive pressure is uniform and the flow is unaffected by interaction with

the walls. The CHI material is density-matched (and assumed to be hydrodynamically

equivalent) to the surrounding PAI material, but more opaque in the X-ray spectrum

used for radiography. The tracer strip measures 240 µm wide x 1100µm long x 80µm

thick. The CRF foam (1100µm× 1100µm× 3000µm) fills the entire shock-tube, from

the ablator interface to the open end of the tube. At the latest observational time,

the shock front will have traveled approximately half the length of the tube.

No. Component Material Density (g/cm3)
1 Ablator PAI (C22H14N2O4) 1.43
2 Tracer strip CHI (C50H47I3) 1.43
3 Foam CRF (C1000O48H65) 0.38
4 Shock-tube Beryllium (Be) 1.85
5 Base Gold (Au) 19.3
6 Coating PI (C22H10N2O5) 1.4

Figure 5.11: Critical target components and materials (modified from a figure by Tim
Handy [42]). For illustrative purposes, the front half of the foam, as well
as the front and top sides of the base and shock tube walls, have been
clipped to reveal interior features.

83



5.4.2 Mechanical Design and Shielding

The shock tube consists of four discrete Beryllium walls, each 200µm thick. The

shock tube is mounted on a 25µm-thick gold base with an additional 25µm-thick

polyimide coating on the laser-irradiated side. A square hole in the center of the base

exposes the ablator surface to the laser drive. The entire physics package is mounted

inside a large acrylic cone (Figure 5.12). On the outside of the cone, a 50µm-thick

gold foil shields detectors from the laser drive beams and secondary X-ray emission at

the drive surface. On the two exterior shock tube walls facing the detectors, fiducial

grids (64µm pitch) provide absolute spatial references for radiography measurements.

Figure 5.12: Complete target assembly. Left: CAD model by Sallee Klein. Right:
metrology photo of an actual target. The longer bottom wall of the shock
tube serves as a reticle for positioning and alignment inside the target
chamber.

5.4.3 Seed Perturbation Pattern

There are three target variations: perturbed-interface targets with 2D or 3D

single-mode sinusoidal ripple patterns (Equation 5.2) and flat-interface targets. Single-

mode RTI growth is seeded with perturbation wavelength λ = 40µm and amplitude

a = 2µm. For the 3D pattern, we use a sum-of-cosines function similar to the
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numerical simulations of Ramaprabhu et al. [49] and the gas-phase rarefaction-driven

experiments of Morgan et al. [76]. The peak-to-valley amplitude aPTV = 2a = 4µm is

the same for 2D and 3D perturbation patterns.

2D target: ∆z(x) = a cos(
2π

λ
x)

3D target: ∆z(x, y) =
a

2

(
cos(

2π

λ
x) + cos(

2π

λ
y)
) (5.2)

To reach the nonlinear growth stage as early as possible (in terms of non-dimensional

time, τ), we desire a short-wavelength seed perturbation (Equation 2.17). This con-

sideration is balanced with spatial resolution requirements of the imaging system,

discussed in Section 5.6. The fabrication methods also influence the choice of wave-

length and initial amplitude. The process must write a uniform pattern across the

composite surface of the ablator (PAI and CHI materials). Lithography is ill-suited to

this application. Best results are achieved with micro-machining by diamond-turning

lathe; however, tool-tip clearance limits the aspect ratio to a/λ ≤ 0.1 for an ideal

sine-wave. At larger aspect ratios, the pattern shape becomes scalloped or saw-tooth,

introducing asymmetry which could affect the evolution of RTI [98]. The ablator

fabrication process involves the following steps:

1. The PAI material is machined to size (1100µm× 1100µm× 150µm thick)

2. The bottom surface of the PAI is polished flat (this becomes the drive surface)

3. On the top surface of the PAI, a notch is milled out for the tracer strip

4. The CHI material is cut to size (240µm× 1100µm× 80µm thick) and inserted

into the notch in the PAI. A thin layer (< 3µm) of adhesive bonds the two parts

5. The perturbation pattern is machined on the composite PAI-CHI surface using

a diamond-turning lathe. (Or in the case of the flat-interface targets, the surface

is polished to ≤ 1µm roughness)

85



6. The 3D topology of the patterned surface is measured using a white-light

interferometer (WLI) (Figure 5.13)

Figure 5.13: Color-map visualization of white-light interferometer scans of ablator
surfaces (actual parts). Left: top view of entire part with 2D pattern.
Center: close-up, perspective view of 2D pattern. Right: close-up,
perspective view of 3D pattern.

The CRF foam is machined to the shape of a rectangular prism with the interior

dimensions of the shock tube (1100µm× 1100µm× 3000µm). The surface in contact

with the ablator is flat, due to the increased difficulty and expense required to machine

the foam to match the ablator. Numerous experiments at high-Atwood-number

(ρ2 = 0.04 − 0.1 g/cm3) have claimed equivalence of targets with a rippled ablator

abutted to flat foam and targets with the foam match-machined to the ablator ripple

pattern [116] [107] [113].

5.5 Laser Drive

At Omega-60, ten laser beams (λlaser = 351 nm) focus onto the planar surface

of the ablator and deliver a total energy of 4.5 kJ in a 1 ns pulse.1 Each of these

beam paths utilizes 2D-SSD (smoothing by spectral dispersion) and eighth-order

super-Gaussian phase plates. Visrad is a computer model of the laser target chambers

at Omega and NIF, which is used to specify the experimental configuration, including

1Due to the arrangement of laser beam ports at Omega-60, only 10 of the 60 beams can be pointed
to ≤ 50o from normal incidence of a planar surface.
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laser beam parameters (energy, pointing, focus), CAD model of target components

and their positions within the chamber, and pointing of diagnostics. The program also

simulates laser energy deposition on target surfaces and thermal radiation transfer.

For the combined laser irradiance, Visrad predicts a circular laser spot with peak

irradiance I0 = 700 TW/cm2 at the center of the ablator with FWHM = 880µm and

97% of the total laser power incident on the surface of the ablator (Figure 5.14). In

2D CRASH simulations, the laser spot is modeled as a super-Gaussian function fit to

the Visrad laser spot profile: I(x) = I0 exp
(
− (x2/2r2)q

)
, with r = 345µm, q=2.

Figure 5.14: Laser Drive. Left: Temporal pulse shape of laser drive. Right: Spatial
profile of laser irradiance on target from Visrad model with line-outs
along the y-axis (red curve) and x-axis (blue curve) and super-Gaussian
fit (black curve). The green-shaded regions indicate the area beneath the
shock tube walls.

5.6 Radiography Diagnostics

The primary radiography axis (along the y-direction) integrates across the narrow

dimension of the tracer strip, enabling measurement of shock-, spike-, and bubble-front

positions near the central axis of the shock tube (Figure 5.15, left). The secondary

radiography axis (along the x-direction) integrates across the wide dimension of the

tracer strip (Figure 5.15, right). In this view, we can obtain measurements of shock-

and spike-front positions, but the fully opaque tracer strip obscures the bubble-front.
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Figure 5.15: Radiography examples in primary and secondary views, both of 3D
targets at 20 ns. Left: RID90385 (primary radiography axis). Right:
RID90387 (secondary radiography axis). Images have been cropped and
filtered to enhance contrast. Fiducial grid pitch is 64µm/square in each
linear dimension.

5.6.1 Point-Projection Pinhole Imager

Along each radiography axis, a point-projection pinhole backlighter provides the

X-ray source and imaging system (Figure 5.16). Spatial resolution at the image

plane is determined by the pinhole diameter, D. Similar experiments at high-Atwood-

number involved longer perturbation wavelengths and less-dense (more transparent)

foam materials. This imposed less stringent requirements for spatial resolution and

permitted lower-energy backlighter sources (∼ 4-5 keV, emitted by materials such

as Ti, Sc, V). For this low-Atwood-number design with perturbation wavelength

λ = 40µm, we require spatial resolution of ±5µm (D = 10µm). Because the X-ray

source flux scales in proportion to D2, a smaller diameter pinhole greatly reduces

the signal strength. Additionally, the denser foam necessitates a high-photon-energy

source, generated from a higher-atomic-number material, with significantly lower X-ray

photon conversion efficiency [117].

Therefore, signal-to-noise ratio (SNR) was a challenge for this experiment. After

post-processing the raw radiography data, image contrast was sufficient to measure

shock-, spike-, and bubble-front positions. However, the signal dynamic range was too

88



Imaging system properties:
Source to object distance: 11.5 mm
Object to image distance: 228.6 mm
Magnification at image plane: 21x
Field-of-view (FOV) in object plane: Ø1.85 mm

Figure 5.16: Conceptual illustration of point-projection pinhole imaging system. Along
each radiography axis, the object plane is defined as the normal plane
bisecting the target.

low for accurate measurements of densities. Post-shock densities and Atwood-number

are calculated from numerical simulations calibrated to the experimental data.

5.6.2 Backlighter Targets

Each backlighter is driven by four Omega-60 laser beams (λlaser = 351 nm, 1 ns

pulse, 0.45 J/beam). These beams focus to a circular spot (1/e radius = 360µm, peak

irradiance = 4.5× 1011 W/cm2) on the surface of the Ni foil (4x4 mm2 square, 5µm

thick), centered above the pinhole. The X-ray emission spectrum of Ni is strongly

peaked at 7.8 keV, corresponding to Li+He-like K-shell transitions [118]. A point-

source is created by a pinhole in a 7x7 mm2 square, 50µm-thick Tungsten substrate,

positioned 500µm behind the Ni foil. The foil is suspended above the substrate
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with plastic stand-offs at the corners, outside the laser focal spot. The Ni foil emits

isotropic X-ray radiation, which ablates the substrate and leads to pinhole closure.

Often, backlighters are designed with a plastic tamper between the irradiated foil and

pinhole substrate, which can reduce pinhole closure [119]. However, other studies have

shown that hot-electron emission from the plastic generates hard-X-ray (> 10 keV)

background noise, which cannot be filtered [120]. Since SNR is a primary concern, I

elected not to use a plastic tamper. Instead, pinhole closure is mitigated by tapering

from a larger entrance-hole diameter (irradiated side) to a smaller exit-hole diameter

(target-facing side). I tested two taper designs with entrance-to-exit hole diameters

of 50-20 and 20-10 µm. For the 50-20 µm design, I measured spatial resolution

D ≈ 10µm (which indicates partial pinhole closure). Appendix A explains the method

used to measure the spatial resolution. In the experimental data presented in Chapter

VI, both pinhole sizes were used. The larger pinhole yielded better results, with

adequate spatial resolution and higher SNR (as compared to the smaller pinhole size).

After the pinhole substrate ablates, it begins to break apart, creating high-velocity

shrapnel, which can damage the detectors [121]. For debris mitigation, the substrate

normal is tilted 30 degrees off-axis from the diagnostic line-of-sight. The pinhole is

laser-drilled at a 30 degree angle through the substrate, so that the pinhole axis is

aligned with the radiography axis. Figure 5.17 shows the mechanical design of the

backlighter target with the tapered pinhole.
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Figure 5.17: Backlighter mechanical design. CAD drawings from Sallee Klein. Left:
top view of the backlighter target, showing the laser-irradiated surface
of the Ni foil above the pinhole. Center: side-view of the complete
backlighter target. Right: side-view of the pinhole substrate, showing
the direction of tapered pinhole.

5.6.3 Detectors

In addition to the 60 target chamber ports for laser beam lines, there are numerous

other ports dedicated for experimental diagnostics, target positioners, and various

other monitors for operations. Many of these port positions are fixed. A limited set

of diagnostics are mounted in the ten-inch manipulator (TIM) platform, which is

compatible with multiple target chamber ports and may be extracted, reconfigured,

and re-inserted between shots without opening the target chamber. For versatility, I

used TIM-based diagnostics along two orthogonal lines of sight. The primary detector

in each TIM is a single-strip X-ray framing camera (XRFC). As a contingency, the

XRFC may be replaced with a film pack (consisting of two layers of Agfa D7 film [122]

inside a light-tight 25µm-thick black PI envelope). XRFCs have numerous advantages,

including electronic triggering, temporal gating (0.2-0.5 ns), and in-situ read-out of

image data available within one shot cycle. However, spectral responsivity and gain

(a function of bias voltage and electronic pulse-forming module) are uncalibrated

and differ significantly among individual cameras. Signal fidelity may be degraded

by electronic noise and non-uniform gain across the detector area. Additionally,

inconsistent performance between shot days (several months apart) should be expected

at a user facility. Film has the advantage of consistent performance and higher signal
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flux (at the expense of temporal resolution). The film is un-gated, so the signal is

integrated over the backlighter pulse duration (1 ns). Unfortunately, the film is also

exposed during the main laser drive. Shielding is provided by target mechanical design

(main target cone and backlighter substrate), a nose cone in front the detector (Figure

5.18), and two filter packs (Table 5.1). The blast-shield filter at the front of the nose

cone is inspected and, if necessary, replaced after each shot. The rear filter pack

provides spectral filtering in the visible and soft-X-ray spectrum to improve SNR. Net

signal transmission through the filter stack is 64% (Figure 5.19).

Figure 5.18: TIM-based diagnostic platform with 9 mm aperture nose cone, showing
the location of the detector and two filter packs. Drawing provided by
the Omega facility.

Blast shield
(target-facing)
Polyimide (75µm)
Beryllium (500µm)

Rear filters
Beryllium (250µm)
Ni (5µm)
(Detector-facing)

Table 5.1: Detector filter packs
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Figure 5.19: Backlighter signal transmission through the various filter components.
The net transmission through the complete filter stack is 64%.
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CHAPTER VI

Experimental Results

Figure 6.1: Lasers shooting a target at Omega-60: Visible Light Camera (Port P2)
image of RID90385. Image provided by Eugene Kowaluk at LLE.

The data set includes measurements in both radiography views of 17 targets total

from two shot days at Omega-60 (April 19 and July 18, 2018) with three target

variations: 3D targets (Qty. 5), 2D targets (Qty. 9), flat targets (Qty. 3). We

captured radiography images at a variety of times, measuring shock-front position
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from 17-47 ns, spike-front position from 17-47 ns, and bubble-front position from 20-39

ns. At earlier times, the mixed-fluid region was obscured by the gold shielding on

the target. In the secondary radiography view (which integrates through the wide

dimension of the tracer strip), only shock- and spike-front positions can be measured

due to the opacity contrast and low SNR. Therefore, the number of data points for

spike-front position exceeds the number of data points for bubble-front position. For

the flat targets, the spike front corresponds to the steepest intensity gradient at the

CHI-foam interface (pink squares labeled “flat spike” in Figure 6.2). There are no “flat

bubble” data points because gold shielding obscured the bubble front in the primary

radiography view for the three flat targets shot.

Figure 6.2 shows three principal results, which will be discussed in turn:

1) There is large shot-to-shot variation in the data.

2) Power-law fits to data indicate that growth of mixed-fluid region is dominated

by material decompression after 22 ns (the equal-mass time).

3) Contrary to expectations, there is no measurable difference in the data for 2D,

3D, and flat-interface targets.
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Figure 6.2: Experimentally measured shock-front, spike-front, and bubble-front po-
sitions versus time and power-law fits to the data. Distances measured
relative to the drive surface of the ablator. For readability, error bars
are not shown on individual data points. Systematic measurement errors
(typical for all shots) are summarized in Table 6.1.

6.1 Shot-to-Shot variations in the Data

Systematic uncertainties include diagnostic resolution (±5µm) and absolute po-

sition of the fiducial reference (±13µm). Additional error may arise from motion-

blurring caused by integration of signal intensity over the diagnostic gate time. As a

conservative upper-estimate, this translates to +9/-0 µm in shock-front position and

+7/-0 µm in spike- and bubble-front positions. In the temporal domain, uncertainty

of the absolute timing of the backlighter beams relative to the main drive beams is

(at most) ±0.2 ns. Ablation pressure (Pabl) scales with laser intensity (IL) and shock

velocity (ush) as: Pabl ∼ I
2/3
L and Pabl ∼ u2

sh → ush ∼ I
1/3
L [1]. Intensity of the laser

drive varied by less than 10%, which results in ≤ 3% variation in initial shock velocity,

and no significant difference in shock-front position at later times.

Table 6.1 summarizes the maximum systematic error expected in the experimental
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data. Of note, the shot-to-shot variation in the data is a factor of two larger than

the systematic measurement error. For example, Table 6.2 compares measurements

at 20 ns of two nominally identical 3D targets (RIDs 90385, 90387, shown in Figure

5.15). For the entire data set, the shot-to-shot variation in measured position (shock-,

spike- and bubble-fronts) appears comparable to (and in many cases, smaller than)

published results of similar blast-wave-driven experiments at high-Atwood-number

( [110] [107] [106] [96], among others).

Measurement Error (µm )
Shock-front position: +27/-18 (range 45)
Spike-front position: +25/-18 (range 43)
Bubble-front position: +25/-18 (range 43)

Table 6.1: Total systematic measurement error

Position (µm ): Shock Spike Bubble
RID 90385: 853 685 488
RID 90387: 757 558 385
range (µm ): 96 127 103

Table 6.2: Shot-to-shot variation in measurements of 3D targets at 20 ns

Shot-to-shot variations in excess of systematic measurement error result from

differences in target construction and positioning/alignment inside the target chamber.

Pre-shot metrology of components and fully-assembled targets revealed irregularities

in target materials and fabrication (see Appendix B for details). These internal target

defects may have seeded RTI growth with uncontrolled initial conditions or modify

the shock velocity in the foam. Target misalignment manifests as asymmetry in the

radiography data. Ideally, peak laser irradiance occurs at the center of the ablator and

a normal-incidence shock wave is driven into the target. In both radiography views,

we expect the target interior to exhibit mirror symmetry about the central axis of the

shock tube. In 7 out of 17 shots, we observed asymmetry in the radiography data

characteristic of target misalignment. An extreme example is shown in Figure 6.3.

For all shots, shock, spike, and bubble positions were measured along a line through
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the vertex of the curved front (which may or may not coincide with the central axis of

the shock tube). Two types of target misalignment are possible: translational and

Tube wall

Jet of shocked-
CHI material

Central axis of tube

Vertex of shock-front

Gap between
wall and foam

Figure 6.3: Example of target with translational misalignment and gap between the
foam and upper shock-tube wall. (RID89390, 2D target at 35 ns.) The
vertex of the shock-front is located 200 µm above the central axis of the
tube. A jet of shocked-CHI material extends into the wall-gap.

rotational. In the former case, the target is translated in the xy plane. Peak laser

irradiance is displaced from the center of the ablator, but a normal-incidence shock

is still driven into the target. Interaction with the shock-tube wall occurs earlier in

time, both because the region-of-interest is located closer to the wall and because a

stronger shock is driven into the wall, and alters the mixing dynamics. Additionally, if

there existed a gap between the foam and the tube wall (which was the case for some

targets, observed in metrology at the target-assembly level), shocked-plastic material

would jet into the gap and affect measurement of spike-front position in the secondary

radiography view. For these shots, this data was excluded from the measurement set.

In the case of rotational misalignment, the peak laser irradiance occurs at the center

of the ablator, but the drive surface is tilted, launching an oblique shock into the

target. The effect of rotational misalignment is to decrease the normal component

of the shock velocity and increase vorticity deposition at the interface, which could

significantly alter the mixing dynamics.
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6.2 Power-Law Fits to Shock, Spike, and Bubble Positions

and Calculation of the Equal-Mass Time

The shock-front trajectory in the foam should fit a power-law function, character-

istic of the self-similar evolution of a blast wave [123]:

Rshock(t) = R0 τ
α +R0, where τ =

t− t0
ts − t0

(6.1)

R0 = 150 µm is the ablator thickness, which is the initial interface position relative the

drive surface. The shock breakout time, ts = 2.5 ns, is when the shock front reaches

the ablator-foam interface. This value of ts is provided by 2D flat-interface CRASH

simulations tuned to the experimental data (discussed in Section 6.4.1). A nonlinear

regression fit to the shock-front position data, constrained by R0 and ts, gives exponent

α = 0.60 and t0 = 0.91 ns. The shift in temporal origin, t0, accounts for uncertainty in

the shock breakout time and the different temporal dynamics during the brief interval

as the shock front crosses the material interface (Richtmyer-Meskhkov phase). The

actual value of t0 has no physical significance.

The characteristic length scale is the equal-mass distance, Rm, which is the distance

traveled by the blast wave in the foam when it has swept up mass equal to the total

mass of the plastic ablator. This can be readily calculated: ρ1R0 = ρ2(Rm −R0), where

ρ1 = 1.43, ρ2 = 0.38 g/cm3 are the initial densities of the plastic and foam, respectively.

Note that here, Rm = 714µm is the distance traveled within the foam, so that the

distance relative to the drive surface (plotted in Figure 6.2) is Rm + R0 = 864µm.

Solving Equation 6.1 for Rshock(t = tm) = 864 µm gives the equal-mass time, tm = 22

ns.

After the equal-mass time, we expect deceleration at the interface to rapidly decay.

For t > tm, growth of the mixed-fluid region is dominated by material decompression

and the contribution from RTI is small. Using the equal-mass time as a constraint, I fit
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power-law functions to the experimentally measured spike- and bubble-front positions:

Rspike(t) = R1 τ
α1
1 +R0, where τ1 =

t− t1
tm − t1

(6.2a)

Rbubble(t) = R2 τ
α2
2 +R0, where τ2 =

t− t2
tm − t2

(6.2b)

For spikes, the data set includes 3D, 2D, and flat targets, yielding α1 = 0.59,

R1 = 492µm, t1 = 5.46 ns. For bubbles, the data set includes 3D and 2D targets,

yielding α2 = 0.22, R2 = 334µm, t2 = 17.93 ns.

6.2.1 Amplitude-Compression During Shock Transit

As the shock-wave crosses the interface, there is a brief stage of Richtmyer-

Meshkov instability growth, during which the peak-to-valley amplitude of the initial

perturbation, aPTV, is inverted and compressed to a post-shock amplitude, a∗PTV , where

|a∗PTV| < |aPTV| (conceptually illustrated in Figure 5.5). For my sign convention,

aPTV = 4µm > 0 and a∗PTV < 0.

In similar experiments at high-Atwood-number by Drake [110], initial shock ve-

locities in the plastic (ush1) and foam (ush2) and the shock transit time across the

interface (∆t) were estimated as:

ush1 '
R0

ts
(6.3)

ush2 ' Ṙshock

∣∣∣
t=ts

=
αR0

(ts − t0)
(6.4)

∆t ' aPTV/ush1 (6.5)

The post-shock peak-to-valley amplitude of the perturbation was then estimated:

a∗PTV ' aPTV − ush2 ∆t (6.6)
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This method provides a rough estimate for the post-shock amplitude, but is not

intended as a quantitatively accurate calculation. The precise value of ts depends

strongly on the EOS of the plastic and modeling of the laser drive. All other parameters

in Equations 6.3, 6.4, 6.5 and 6.6 are calculated by assuming a particular value for

ts. In fitting the shock-front position in the foam to the experimentally measured

data (Equation 6.1 for Rshock), the parameter t0 compensates for inaccuracy in the

shock breakout time. Consequently, the uncertainty in ts has little effect on tm and

Rspike, Rbubble. However, estimates for the initial shock velocity in the plastic and

the post-shock perturbation amplitude are strongly affected by the uncertainty in

ts. In Table 6.3, I compare the result of these calculations for various values of ts.

Highlighted in red, ts = 2.5 ns corresponds to the shock breakout time predicted

by 2D CRASH simulations, which yields non-physical results. We expect a higher

shock velocity in the lower-density material (ush2 > ush1) and inversion of the initial

perturbation pattern (a∗PTV < 0).

ts (ns) t0 (ns) α ush1 (µm/ns) ush2 (µm/ns) a∗PTV (µm)
2.4 0.7871 0.6034 62.5 56.11 0.4087
2.5 0.9141 0.6008 60 56.83 0.2116
2.6 1.041 0.5982 57.69 57.55 0.0098
2.7 1.167 0.5957 55.56 58.29 -0.1969
2.8 1.2932 0.5931 53.57 59.05 -0.4087

Table 6.3: Estimates of the initial shock velocities in the plastic (ush1) and the foam
(ush2) and the post-shock perturbation amplitude (a∗PTV) for various values
of the shock breaktout time (ts). Here, t0, α are the power-law coefficients
in Equation 6.1. The row highlighted in red corresponds to the value
predicted by 2D CRASH simulations, ts = 2.5 ns.
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6.3 Analysis of Spike- and Bubble-Front Measurements for

2D, 3D, and Flat Targets

There are two possible explanations for why we observed no difference in mixed-

zone width for 2D, 3D, and flat interface targets: 1) the system has evolved to chaotic

mixing and lost memory of the initial conditions; or 2) the system remains single-mode,

but experimental errors exceed the difference in spike or bubble height (2D versus 3D)

for single-mode RTI growth. As discussed in Section 6.2, deceleration at the interface

is not sustained for long enough to drive single-mode RTI growth to chaotic mixing.

Internal target imperfections or external target misalignment may have resulted in

chaotic mixing for some shots. However, after 22 ns, growth of the mixed-fluid layer

is dominated by material decompression. The contribution from RTI may have been

small enough that the difference between single-mode and chaotic growth is likely

imperceptible in the mixed-zone width data. The analysis in Section 6.4.2 supports

this conclusion.

In principle, the radiography images should distinguish between single-mode and

chaotic mixing. There is clear single-mode structure in some shots (Figure 5.15), yet

not in others where there was no evidence of target misalignment (Figure 6.4). Lack

of single-mode structure in the radiography data does not necessarily imply chaotic

mixing. Because radiography integrates through the target, a slight angular offset

between the perturbation pattern axis and the imaging axis would “smear out” the

single-mode structure, even when the target is externally well aligned. The rectangular

target design and tolerance stack-up of multiple components in the assembly makes

the pattern axis diffult to align to the required accuracy (≤ 1◦). From white-light

interferometry scans of the ablator patterned surface, I measured the angle between

the pattern axis and the edge of the part. After the ablator was mounted inside

the gold base, I measured the angle between the edge of the ablator and a distal
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alignment feature on the gold base, which registers the physics package inside the

shield cone. Then, the angle of stalk (mounted to the outside of the cone) was manually

adjusted to align the pattern axis to the imaging axis. For a complete target assembly,

the uncertainty in angular alignment ranges from 1 − 2.5◦. (This does not include

additional alignment error from target positioning). In the radiography image, angular

misalignment of 2.5◦ corresponds to averaging the signal over 0.26λ across the tracer

strip (240 µm in the primary view) and 1.2λ across the entire target (1100 µm ).

Figure 6.4: Radiography examples of well-aligned targets without clear single-mode
structure. Left: RID90382, 3D target at 30 ns, film detector. Right:
RID90393, 2D target at 30 ns, XRFC detector.

6.4 Comparison with Simulations and Buoyancy-Drag Mod-

els

2D CRASH simulations incorporate the temporal and spatial profile of the laser

drive (Figure 5.14), but not a physically accurate model of laser-plasma interactions and

energy conversion processes. To compensate for loss at the critical surface, a common

approach is to reduce the simulation laser energy by a linear scale factor [106] [101] [42].

Typically, the scale factor is tuned so that the shock front position “best fits” the
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experimental data. However, the scaled energy which best fits the shock front position

may not be the best fit to the interface position. Miles et al. explored some of the

factors which contribute to this discrepancy, which include: inaccurate equations-

of-state, numerical methods implemented in the simulations, and differences in the

curvature of the shock front in simulations versus experiment (which can artificially

increase or decrease the normal component of the velocity in the simulation) [105].

6.4.1 2D CRASH Simulations: Laser-Energy Tuning

Since our publication of the low-Atwood number experimental design [42], the

CRASH simulations have been updated. In the earlier design, the initial perturbation

amplitude (a = 4µm) was twice that used in the final experimental design (a = 2µm).

This change has no impact on the 1D dynamics and qualitative interpretation of

the simulation results. Of greater importance, the new simulations incorporated a

more accurate model of the 2D spatial profile of the laser drive, which resulted in

significant, qualitative differences in the simulations and fit to the experimental data.

The physical laser drive in the experiments has not changed and is similar to previous

experiments at high-Atwood-number.

Previous work approximated the laser spot as a super-Gaussian function fit to the

focal spot of a single drive beam at normal incidence with intensity multiplied by 10x

(for the ten drive beams). The new CRASH simulations use a super-Gaussian function

fit to the spatial distribution of the laser energy deposited on the drive surface. This

spatial distribution is output from a Visrad simulation of the experimental design,

which combines 10 drive beams at oblique angles of incidence. The beam angles range

from 10-50 degrees, relative to normal incidence. None of the beams are actually at

normal incidence to the drive surface. Figure 6.5 compares the two different spatial

profiles, which have the same total energy in the laser spot, Etotal =
∫∞

0
I(r)dr ≈ 4.6 kJ

(in the 1 ns pulse). In the subsequent discussion, I will refer to these two spatial
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profiles as the “one-beam” and “ten-beam” models.

For 2D CRASH simulations with the one-beam model, laser-energy scale factors

of 60-70% produced excellent fits to shock front position and qualitative agreement

in terms of the interface position for high-Atwood-number experiments [106]. In our

one-beam simulations with 70% laser energy (for both high-A and low-A designs), the

shock breakout time is 2.7 ns, which agrees with the results reported in numerous

publications of high-Atwood number experiments and simulations. Referring back

to the power-law fit to shock-front position in our low-Atwood-number experiments,

ts = 2.7 ns also yields qualitatively correct predictions for the initial shock velocity in

the foam and post-shock perturbation amplitude (calculated in Table 6.3).

Figure 6.6 compares the low-Atwood-number experimental data with shock-front

and mean-interface positions measured from 2D CRASH simulations of a flat-interface

target at various laser-energy scalings with the ten-beam model of the laser drive. At

40% scaling, the simulation shock position (light-blue solid-line) agrees well with the

experimental data, and the simulation interface position (green solid-line) agrees well

with the CHI front measured for flat-interface targets, although that data set is small.

In the ten-beam simulation at 40% laser-energy, the shock breakout time is 2.5 ns. In

Figure 6.7, spike- and bubble-front positions are measured from a perturbed-interface

simulation at 40% laser-energy and compared with the experimental data. On the

same plot, shock and interface positions are included from the flat-interface simulation.

The more accurate model of the laser drive has revealed significant inaccuracies

in the EOS for both the plastic and the foam. For these materials, the CRASH

simulations used equations of state produced by PrOpacEOS [124], a proprietary

program for which limited public documentation exists. Alternative EOS for the

ablator and foam may provide better agreement with the experimental data.
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Figure 6.5: 2D CRASH simulations of the final experimental design incorporated a
more accurate spatial profile of the laser drive (blue curve), which models
the net irradiance from 10 drive beams at oblique angles of incidence.
Previous simulations (red curve) modeled the laser spot as a single drive
beam at normal incidence with peak irradiance scaled to match the total
energy with 10 beams.
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Figure 6.6: Shock and interface positions from 2D CRASH simulations with laser-
energy scale factors of 30, 40, and 50 % are compared with the experimental
data.
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Figure 6.7: 2D CRASH simulations at 40% laser-energy scaling. The spike (orange)
and bubble (light blue) positions are measured from a perturbed-interface
simulation. The interface (green) and shock (black) positions are measured
from a flat-interface simulation. Although the simulations agree with the
experimental data in terms of shock and spike positions, the simulation
greatly over-predicts the bubble-front position and under-estimates the
total mixed-layer height.
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6.4.2 Spike and Bubble Height Predicted by the Buoyancy-Drag Model

In Section 6.3, I hypothesized that the experimental platform at Omega 60 did not

sustain deceleration for long enough to distinguish between growth rates for 2D and

3D classical, incompressible RTI. To solve the Srebro buoyancy-drag model (Equation

2.19), we need the temporal history of the interface acceleration and densities on either

side of the interface. Flat-interface 2D CRASH simulations with 40% laser-energy

scaling provide ρ1(t), ρ2(t), A(t), and g(t), plotted in Figure 6.8.

(a) (b)

Figure 6.8: Time-varying parameters measured from flat-interface 2D CRASH simula-
tion at 40% laser energy. (a) densities and Atwood number; (b) interface
acceleration.

The CRASH simulations wrote data to output files at 0.1 ns time steps. To

calculate time-dependent quantities for the Srebro model, at each time step the

simulation data was averaged along the x-axis over a transverse domain spanning

three wavelengths: 0 ≤ x ≤ 120µm. Within this domain, ρ1 is the maximum density

to the left of the interface. Similarly, ρ2 is the minimum density in the region to

the right of the interface and the left of the shock front. The peak-finding algorithm

gives erroneous results prior to shock breakout (ts = 2.5 ns). For t < ts, I set

g = 0, ρ1 = 1.43 g/cm3, ρ2 = 0.38 g/cm3 and the interface position, zint = 150µm.

The interface acceleration, g(t) = d2

dt2
(zint), is calculated by numerical differentiation
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of the measured interface position.

The RTI growth phase begins at t = 3.1 ns, after which g(t) increases monotonically

from its peak negative value of g(t = 3.1 ns) = −8.83µm/ns2. (In Figure 6.8 (b), the

data point g(t = 2.8 ns) = −22.6µm/ns2 is non-phyiscal and results from numerical

noise.) Initial conditions for the Srebro model correspond to the height and velocity

of the spike and bubble in the previous time step (t = 3.0 ns). The initial heights are

calculated as:

hS,0 = zspike(t = 3.0 ns)− zint(t = 3.0 ns) = 0.5µm

hB,0 = zint(t = 3.0 ns)− zbubble(t = 3.0 ns) = 1.5µm

(6.7)

However, it is not possible to resolve the initial spike and bubble velocities from the

simulation data. As an estimate, I use the Meyer-Blewett formula (Equation 1.32) for

the velocity during the Richtmyer-Meshkov growth phase:

uS,0 = A∗ k (du)
(a+ hS,0

2

)
= 2.15µm/ns

uB,0 = A∗ k (du)
(a+ hB,0

2

)
= 3.01µm/ns

(6.8)

The post-shock Atwood number A∗ = 0.22 is measured at t = 3.1 ns, when it

reaches a steady value. The velocity induced at the interface is approximated as

du = uint(t = 3.0 ns). Here, a = 2µm is the pre-shock perturbation amplitude for

both spike and bubble.

Each buoyancy-drag equation (bubble or spike) constitutes a second-order ordinary

differential equation (ODE), which I solve numerically as a system of first-order

ODEs in Matlab. The time-dependent quantities ρ1(t), ρ2(t), g(t) measured from the

simulation data are passed as discrete numerical arrays to symbolic ODE functions.

Within the ODE functions, piece-wise linear interpolants are fit to the simulation

data, which are then evaluated at the time steps used by the ODE solver. The
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buoyancy-drag model is solved using the initial conditions from Equations 6.7 and 6.8

and coefficients for both 2D and 3D geometries, shown in Figure 6.9. At the latest

time in the experiment, the difference in mixed-layer width for 2D versus 3D RTI is

58µm, which is significantly smaller than the shot-to-shot variation (115µm). This

result explains why we observed no difference in spike- and bubble-front positions for

2D, 3D, and flat targets.

(a) (b)

Figure 6.9: Solution to Srebro buoyancy-drag model for 2D and 3D geometries with
time-varying densities and interface acceleration from 2D CRASH simula-
tions tuned to the experimental data. (a) Spike and bubble heights; (b)
Total mixed-layer height.

6.4.3 Spike and Bubble Heights Measured in the Perturbed-Interface

Simulation

In this blast-wave-driven system, both RTI and material decompression contribute

to the measured growth of the mixed-fluid region. If spike and bubble velocities

are sufficiently subsonic (relative to the sound speed in the surrounding post-shock

fluid region), compressibility does not significantly affect RTI growth and material

expansion can be treated as an independent term [110]. This approximation was valid

for previous experiments at high-Atwood-number [106]. Expansion-corrected spike
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and bubble heights are calculated as follows:

hS(t) =
[
zspike(t)− zint(t)

]
−

t∫
0

[
u
(
zspike(t

′)
)
− u
(
zint(t

′)
)]
dt′

hB(t) =
[
zint(t)− zbubble(t)

]
−

t∫
0

[
u
(
zint(t

′)
)
− u
(
zbubble(t

′)
)]
dt′

(6.9)

The first term represents the total feature height relative to the flat-interface

position and the second term accounts for material decompression. Inputs to Equation

6.9 are:

zspike(t), zbubble(t) spike- and bubble-tip positions from the perturbed-interface

simulation

zint(t) mean-interface position from the flat-interface simulation

u
(
zint(t

′)
)

instantaneous fluid velocity from the flat-interface simulation,

measured at zint(t
′)

u
(
zspike(t

′)
)

instantaneous fluid velocity from the flat-interface simulation,

measured at the position corresponding to zspike(t
′)

u
(
zbubble(t

′)
)

instantaneous fluid velocity from the flat-interface simulation,

measured at the position corresponding to zbubble(t
′)

Figure 6.10 compares the expansion-corrected spike and bubble heights with the 2D

buoyancy-drag model. Initially, the spike amplitude is compressed by its proximity to

the shock front. This effect is included in the initial conditions for the buoyancy-drag

model. However, this model is fundamentally incompressible and predicts faster

growth for spikes, as compared to bubbles, in the nonlinear stage. In the model,

spike height overtakes bubble height at approximately t = 11 ns. In the simulation,

numerical noise creates a discontinuity in the expansion-corrected bubble height at

t ≈ 9.5 ns, where the bubble height jumps to a slightly lower value which happens to
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Figure 6.10: Expansion-corrected spike and bubble heights from the 2D CRASH
simulation, compared with the 2D buoyancy-drag model.

coincide with the spike height at the same moment in time. This is a non-physical

numerical artifact; the bubble continues to grow at a faster rate than the spike in the

simulation until the equal-mass time (tm ≈ 22 ns), after which the bubble and spike

grow at approximately the same rate.

Overall, Figure 6.10 demonstrates that this method for calculating expansion-

corrected spike and bubble heights is not valid for the low-Atwood-number design.

There are several incorrect assumptions embedded in the calculations:

1. Material compressibility does not significantly affect RTI growth

2. Constant post-shock Atwood number

3. Accuracy of the EOS
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In reality, material compressibility reduces spike growth at early times, when the spike

front is in close proximity to the shock front. However, it is difficult to quantify this

effect due to the lack of experimental data at early times and mis-match between

the simulations and the experimental data. Additionally, the post-shock Atwood

number defined by our numerical methods may not accurately represent the local

Atwood numbers at the spike- and bubble-fronts. More sophisticated post-processing

of the simulation data is required. Inaccuracy of the EOS leads to a large discrepancy

between the bubble-front position (and total mixed-layer height) in the simulation and

the experimental data. The EOS problem also propagates to the buoyancy-drag model,

which incorporates the interface acceleration g(t) and compressibility (reflected in the

Atwood number) measured from the simulations. The simulations greatly over-predict

the interface position, and consequently, the interface acceleration and RTI growth

rate.
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CHAPTER VII

Conclusions and Future Work

To our knowledge, these experiments represent the first blast-wave-driven study of

single-mode RTI growth at low-Atwood-number. Spike- and bubble-front positions

and mixed-layer height were measured from 20 to 40 ns, however, growth of the

mixed-fluid layer was dominated by material decompression after 22 ns. At earlier

times (during the RTI growth phase), observation of the mixed-fluid region was

obscured by target shielding. Although the Omega-60 platform did not drive RTI

into the late-nonlinear growth stage, our goal was to demonstrate a design which

utilizes existing target-fabrication methods and diagnostic capabilities and could be

transitioned to a higher-energy facility. At NIF, Nagel et al. performed high-Atwood-

number experiments of hydrodynamic instabilities (RM and RT) in a planar geometry

using a half-hohlraum coupled to the physics package [113]. This platform may be

capable of driving RTI growth into the desired regime for a low-Atwood-number target

design. During the preliminary design of our Omega-60 experiments, we considered

an indirect-drive approach. 1D simulations with a temperature-source model of a

half-hohlraum at Omega-60 produced an acceleration profile at the interface, g(t),

which would extend the RMI phase and reduce deceleration during the the RTI phase.

For the NIF design, the relative contributions from RM and RT instabilities would

need to be assessed.
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Shot-to-shot variations were comparable to those reported in similar blast-wave-

driven experiments at Omega [106] [110]. Although this experimental error is ac-

ceptable for observing qualitative trends, the error must be greatly reduced in order

to accurately measure the RTI growth rate in the late-nonlinear stage and quantify

differences between experimental observations, numerical simulations, and theoretical

models. At Omega-60, approximately 10-15 shots/day are possible, which enabled us

repeat shots at the same observational times with different targets and measure the

shot-to-shot variation in the data. At NIF, only 3 shots/day and 1-2 days of facility

time would be possible. Fortunately, we expect the NIF platform to reduce errors

related to target positioning and alignment, enable clear imaging of the mixed-fluid

region from early to late times (without obstruction from target shielding), and ease

manufacturing tolerances. The indirect-drive source provides more uniform pressure

over the surface of the ablator and improves alignment because the hohlraum is coupled

to the ablator during target assembly. Additionally, the higher-energy laser beams

at NIF enable larger targets, thicker ablators, and brighter X-ray sources. In the

experiments of Nagel et al., the ablator was 450 µm thick with a cross-sectional area

of 2500 x 1900 µm2. The thicker ablator places the embedded interface farther down

the shock tube and clear of shielding. The larger target cross-section ensures that the

flow in the center of shock tube is unaffected by wall interactions for the duration of

the experiment. For our experiments of single-mode RTI, the perturbation wavelength

should be re-optimized for the NIF design (with the same aspect ratio a/λ = 0.1), in

consideration of the amplitude compression during the RMI phase, a longer-duration

potential-flow stage (during which longer-wavelength modes grow faster), and the

larger transverse domain. A longer-wavelength mode would also improve the quality

of the radiography data and ease target fabrication and angular alignment tolerances.

However, the Omega-60 experiments identified target-fabrication issues which are

not ameliorated by the NIF platform. The ablator design with an inset tracer strip
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pioneered by Robey et al. in 2001 [103] has become pervasive in HED experiments of

hydrodynamic instabilities ( [107] [106] [125] [126] [113] [127] [101] [128] [94] and others).

Unfortunately, the expertise and resources required to produce reliable, consistent

parts by this manufacturing method have not been sustained. The variability of

the perturbation pattern and surface quality (detailed in Appendix B) introduce

uncontrolled initial conditions, which may not have been significant in previous

experiments, but matter here. The simulations of both Ramaprabhu et al. [49] and

Wei and Livescu [79] showed that small differences in the initial conditions, although

not apparent in the potential-flow stage, seed secondary instabilities which affect the

time of onset for the reacceleration and chaotic mixing stages and the instantaneous

velocity at the bubble tip within these stages.

The CRF foam also introduces significant uncertainty into the experiment. Al-

though CRF is rigid enough for machining, the material is extremely brittle and

prone to chipping and crumbling. Metrology of the machined surface of the foam

showed large-scale voids and irregular surface roughness (see Appendix B). In the

current target fabrication process, the foam is machined into a rectangular shape

with nominally flat surfaces. This rectangular piece is manually inserted into the

shock tube and pressed against the ripped surface of the ablator. It is likely that the

CRF crumbles at the contact surface. Indeed, it may even be desirable to crush the

foam so that particulate material fills the space between the ablator ripples. However,

we have no means of inspecting the ablator-foam interface in the fully-assembled

targets. In our Omega-60 experiments, the interface was obscured by target shielding,

preventing pre-shot X-ray metrology of the interface. For the NIF targets, this should

not be a problem; however, such metrology would not reveal the interior structure

across the interface. In addition to these uncontrolled mechanical variables, the foam

EOS [129] and its dependence on porosity and micro-structure [130], and the effect

of preheat [114] on porous materials are poorly understood. The general assumption
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is that preheat in advance of the shock front causes pore-collapse and homogeniza-

tion of the foam at the interface. Simulations typically use an ideal-gas EOS with

γ = 1.4 [110] [106] or a tabular EOS for solid polystyrene with the density scaled to

match the foam [105].

Our 2D CRASH simulations used an EOS generated by PrOpacEOS. Previous

experiments at high-Atwood-number showed good agreement with CRASH simulations

using the same EOS [42]. However, the 2D spatial profile of the laser drive used

in those simulations (single beam at normal incidence) was a poor approximation

of the laser irradiance in the experiment (ten beams at oblique angles of incidence).

New CRASH simulations implemented a more accurate model for the laser irradiance,

but showed worse agreement with the experimental data. In the new simulations,

40% laser-energy scaling produced the best fit to shock front position in the foam

(as compared to 70% scaling with the less accurate laser model), but resulted in a

shock breakout time which did not agree with experimental results at high-Atwood

number. In our low-Atwood-number experiments, the foam is 4-10x more dense than

the foams used in previous experiments at high-Atwood-number. The denser foam

may introduce subtle differences that warrant further study. Additional simulations

should be performed using different EOS and compared to the experimental data.

Future low-Atwood-number designs might also consider alternatives to CRF, perhaps

a liquid or different type of foam which could be synthesized inside the shock tube to

fit the shape of the patterned ablator.

Aside from target fabrication, there are more fundamental concerns about the

physical observables in the experiment, how they compare with theory and simulations,

and how they inform scientific understanding of the problem at hand. At very high

Reynolds number, secondary KHI is the physical process which generates small-scale

vortices, whose interaction drives reacceleration at the bubble tip and then causes

chaotic fluctuations in the instantaneous velocity. The 2D high-resolution DNS of Wei
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and Livescu predict that coherent structure and symmetry are preserved and that

the bubble acceleration eventually becomes stationary [79]. However, this has yet

to be observed in experiments. In the 2D experiments of Morgan et al., secondary

instabilities generated three-dimensional small-scale structures and individual spikes

and bubbles began to interact and break up [76]. Their 3D experiments had only

one wave across the test section and the evolution of the system was affected by wall

interactions. The 3D LES of Ramaprabhu et al. predicted a stage of single-mode

reacceleration followed by turbulent mixing [49].

In laboratory experiments of single-mode RTI at high Reynolds number, many

wavelengths should span the transverse domain, in order to observe the late growth

stages in a system unaffected by wall interactions and permit the possibility of self-

similar growth where L(t) ∼ h(t) > λ. (Here λ is the wavelength of the single-mode

seed perturbation.) In any real-world system (whether HED or classical fluids),

there will be slight variations and inhomogeneities across the xy-plane, which cause

individual spikes and bubbles to evolve differently in the late growth stages. Thus,

laboratory experiments diverge from the theoretical description of single-mode RTI

and numerical simulations with periodic boundary conditions. The question arises:

how should the bubble (or spike) tip be defined for this regime of quasi-single-mode

RTI? Morgan et al. identify the bubble tip position zB as the point with the steepest

intensity gradient “in the vicinity of the bubble,” calculated by numerical analysis of

the image data in each camera frame. By this definition, the transverse coordinates

of zB may vary over time and it is unclear how this applies when individual spikes

and bubbles interact and break up. In our HED experiments, zB corresponds to the

visually-identified steepest gradient in image intensity (averaged over y) in the vicinity

of the x-coordinate which lies along the line normal to the vertex of the shock front.

These definitions of bubble tip position are not consistent with either the single-mode

definition (which applies at a fixed transverse coordinate through the center of a single
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bubble) or a multi-mode definition (such as that of Youngs, Equation 2.25).

Design of a future experiment at NIF should be informed by a rigorous simulation

study which:

1. Compares different EOS for the plastic and foam and evaluates the impact of

the uncertainty in the EOS and whether the experimental objectives can be

achieved.

2. Predicts acceleration at the interface g(t) for the hohlraum drive, the relative

contributions of RM and RT instabilities, and whether the blast wave sustains

deceleration for long enough to drive single-mode RTI from the potential-flow

stage to the reacceleration and chaotic mixing stages.

3. Determines the optimal seed perturbation wavelength for the NIF target design.

4. Calculates and compares spike and bubble height, instantaneousness velocity,

and Froude number for both single-mode and multi-mode definitions, during all

growth stages.

5. Includes synthetic diagnostics which model the radiography (including spatial

integration along y, spatial resolution in x, z, and background noise), the uncer-

tainty in the absolute position of the fiducial reference (from target metrology),

the detector integration time, and the temporal sampling rate of the experiment

(number of shots and interval between observation times).

6. Uses the synthetic diagnostic data to calculate spike and bubble height, instan-

taneous velocity and Froude number by the same methods that will be applied

to the actual experimental data. This should then be compared with the spike

and bubble growth found in step 3.

Experiments at NIF are extremely expensive and involve years of advanced planning.

Further simulations studies are needed to determine whether the NIF platform is
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capable of driving single-mode RTI growth to the reacceleration and chaotic growth

stages and whether the diagnostics can measure a trend in mean-velocity which

accurately describes the late stages of the instability growth. Additionally, significant

improvements to target fabrication and metrology methods would be required.
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APPENDIX A

Matlab Image Processing

A.1 Spatial Calibration with Fiducial Grids

Gold grids are mounted on the exterior walls of the shock tube facing the imaging

diagnostics. Grid specifications are as follows: square pitch = 64µm, bar width

= 26µm, hole width = 38µm. This enables calibration of the spatial scale in the

radiography images. Along the top edge of each grid, gold bars are clipped at

designated locations to create two notches that serve as absolute spatial references.

The notch nearest the drive surface is 2 squares wide; the farther notch is 3 squares

wide. During target assembly, the position of each notch is measured relative to the

PI-coated surface of the target base, which is assumed to be coplanar with the drive

surface of the ablator.
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Figure A.1: The targets are assembled in stages so that interior features can be
measured relative to the drive surface and fiducial grid references. This
photo shows a metrology view equivalent to TIM4 during assembly of the
target shot in RID90382.

A.2 Matlab Methods for Image Processing

The facility (LLE) provides the raw data from diagnostics in .hdf file format. As

an example, I will use the image data from RID90382-TIM4. This shot demonstrates

the impact of inadequate target shielding. In an attempt to obtain data at earlier

times, some targets were built with the gold foil on the outside of the acrylic cone

(Figure 5.12) positioned closer to the drive surface. Part of the detector FOV was

exposed to background noise (laser and X-ray emission at the drive surface).
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Shot day: July 18, 2019

Target type: Low-A, 3D perturbation

Measurement time: 30 ns

Backlighter pinhole exit diameter: 20 µm

Detector: film (ungated)

TIM4 radiography axis: primary

My Matlab code performs the following steps for image processing and analysis:

1. Read dataset from .hdf file. This is a 2D array of unsigned 16-bit integer values
representing the image intensity at each pixel of the detector. Figure A.2 shows
a histogram of the raw data.

2. Convert data to gray-scale image, shown in Figure A.3. This is a 2D array of
double-precision floating-point numbers in the range [0,1].

3. Crop image and rescale intensity range, shown in Figure A.4.

4. Take a lineout parallel to the horizontal axis of the fiducial grid, shown in Figure
A.7(a). Using this lineout, calculate the average number of pixels between grid
squares and convert distance units from pixels to microns. For this image, the
conversion factor is 2.63µm/pixel.

5. Determine the spatial resolution using the method described in Section A.3. For
this image, N = 3, which corresponds to spatial resolution: 3 pixels × 2.63
µm/pixel = 8µm. (Note that the measured resolution element is 40% the size
of the pinhole exit diameter, which indicates significant pinhole closure.)

6. Apply an image filter which averages over the spatial resolution element, shown
in Figure A.5.

7. Measure shock, spike, and bubble front positions relative to the fiducial reference.
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Figure A.2: RID90382-TIM4: Histogram of the raw image data.

Figure A.3: RID90382-TIM4: Original gray-scale image. The circular apertures
correspond to the nose-cone and vignetting from the filter packs. The
bright white band on the right side of the image results from inadequate
target shielding. The thin white lines are scratches in the film.
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Figure A.4: RID90382-TIM4. Left: image cropped and intensity rescaled. Right:
histogram of rescaled intensity values for the cropped image.

Figure A.5: RID90382-TIM4. Filtered image with averaging over the spatial resolu-
tion.
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A.3 Method to Determine Spatial Resolution of the Image

From the cropped image with scaled intensity, I take a lineout parallel to the

horizontal axis of the fiducial grid, as shown in Figure A.7(a). Next, I average the

image over N = 3 pixels using the method described below and take a lineout from

the averaged image at the same position as the original lineout. Then I increase N

until the peaks and troughs in the lineout (corresponding to the edges of the grid

bars) begin to broaden–this indicates that the image data is being averaged over a

domain larger than the resolution element.

Algorithm for sliding-neighborhood averaging operation:

1. For each pixel px(j) in the input image (j ranges from 1 to the total number of
pixels), determine the pixel’s neighborhood. This is an array of N ×N pixels
centered about px(j). (N is an odd integer.)

2. Apply a function to the values of the pixels in the neighborhood. This function is
an averaging operation which sums the values of the pixels in the neighborhood
and then divides the result by the number of pixels in the neighborhood (N2).
The result of this calculation is the value of the output pixel.

3. Find the pixel in the output image whose position corresponds to that of px(j)
in the input image. Set this output pixel to the value returned by the averaging
function. The size of the output image is the same as the size of the input image.

Figure A.6: Ideal synthetic grid. Left: image of the grid. Right: Horizontal line-out
through the center of the grid.
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(a) (b)

Figure A.7: RID90382-TIM4. For this image, the spatial resolution element is approx-
imately 8 µm , corresponding to N = 3 pixels in each linear dimension.
(a) Location of line-out shown on the image; (b) Line-outs without spatial
averaging and with averaging over N = 3, 5, 7 pixels.
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APPENDIX B

Target Metrology

B.1 Patterned Surface of the Ablator

The manufacturer of the ablators provided raw data from white-light interferometry

(WLI) scans of the patterned surface of each part. In Matlab, I wrote scripts to import

the WLI data, perform planar tilt correction (to compensate for the WLI platform

tilt), plot surface contour maps, take line-outs across the part, and measure:

• Pattern amplitude and wavelength

• For 3D parts, phase φ along the center of the part: cos(kx) + cos(ky + φ)

• Phase-drift across the part

• Alignment of pattern axes to edges of the part

• 2D FFT of perturbation spectrum

• Bowing across the part

• CHI depression

An extensive data set exists for all this metrology. Figure B.1 shows only a few

images which highlight discrepancies between the ideal pattern specifications and the

parts delivered.
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Figure B.1: White-light interferometry scans of the surfaces of three different ablator
parts (with 2D perturbation patterns)

B.2 CHI Material

During target assembly, we observed large bubbles and voids in the tracer strip

(in the interior of the CHI material). Several examples are shown in Figure B.2. We

performed higher resolution scans of the surface of a flat ablator using a dual-confocal

scanning microscope with 10 nm spatial resolution. This metrology was performed

at the Lurie Nanofabrication Facility (LNF) at the University of Michigan. These

high-resolution scans (Figure B.3) revealed tool marks (long, narrow scratches) and

micron-scale pits across the surface of the part.
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(a) (b)

(c) (d)

Figure B.2: Metrology photos of the ablator patterned surface (1100 × 1100 µm2)
showing large bubbles and voids in the interior of the CHI tracer strip.
(a) Flat target 1103 (not shot); (b) 2D target 2205 (not shot); (c) 2D
target 2101 (RID60393); (d) 3D target 3106 (RID90382).
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(a) (b)

Figure B.3: Dual-confocal microscope photos of the tracer strip in a flat target. (a)
20× magnification reveals tool marks (slanted lines) across the surface
of the part. The two specks of external debris are not target defects; (b)
100× magnification reveals micron-scale pits on the surface of the CHI.
Different optical sources and filters were used for these two photographs,
creating the false-color appearance.
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B.3 CRF Foam

Figure B.4 shows an example of a typical piece of CRF foam (0.38 g/cm3), prior

to insertion into the shock tube. The material is very brittle and easily damaged

by machining and handling. Metrology photos revealed large-scale chips and voids.

Additional defects may have been introduced during insertion into the tube. We

have no information about the micro-structure of the foam (pore size distribution) or

homogeneity of the bulk material.

(a)

(b)

Figure B.4: Example of machined CRF foam (0.38 g/cm3), prior to insertion into
the shock tube. (a) End-view (surface in contact with the ablator); (b)
Side-view. Machining and handling of the material introduce large-scale
chips and voids (visible in both the end- and side-views). The machining
process also introduces periodic tool marks (visible in the side view). On
the far end, the “nub” is an intentional design feature to facilitate tool
attachment and handling. The large chip near the nub was accidental,
but inconsequential because the shock front will not travel that far down
the tube at the latest observation time in the experiment.
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B.4 X-ray Scans of Physics Packages Extracted from Unused

Targets

Target shielding prevented pre-shot X-ray metrology of the fully assembled targets.

We extracted physics packages from unused targets and mounted them in custom

holders for X-ray scans at Los Alamos National Laboratory (LANL) with a Cr source

(5.4 keV). Nominally, the interface is positioned 100µm above the top surface of the

gold base (a 50µm thick, 4 mm diameter circular disk). Unfortunately, the interface

was still obscured by the gold in most of the images due to a slight tilt on the platform.

(For these targets, 3.4 degrees tilt results in complete obscuration of the interface.)

Figure B.5 shows a CAD model of the extracted physics package. Figure B.6 shows

how the physics package is mounted inside the holder for the X-ray scans at LANL.

Although the sample size was small, we observed significant differences in the quality

of the targets. Figure B.7 shows an example of a good-quality target. Figure B.8

shows an example of a poor-quality target with large gaps between the ablator, foam,

and shock tube walls.
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Figure B.5: CAD model of extracted physics package (by Sallee Klein). For illustration
purposes, two of the shock tube walls are not shown (all four walls of the
tube are intact in the actual part).

(a) (b)

Figure B.6: CAD model of the physics package inside the holder for X-ray scans at
LANL (by Sallee Klein). (a) perspective view; (b) view corresponding to
the anti-TIM4 axis in the Omega-60 target chamber.
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Figure B.7: LANL X-ray scan: example of a good-quality target. The fiducial grid
provides the spatial scale (64µm square pitch).
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Figure B.8: LANL X-ray scan: example of a poor-quality target with large gaps
between the ablator, foam, and shock tube walls. The fiducial grid
provides the spatial scale (64µm square pitch).
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APPENDIX C

Shot Day Summary

This appendix summarizes the data obtained on each of the four shot days: October

6, 2016, April 6, 2017, April 19, 2018, and July 18, 2018. Two different types of

detectors were used: gated X-ray framing cameras (XRFC) and un-gated direct-

exposure X-ray film. The image intensity data has been scaled for optimal visibility in

the figures below. The XRFC images include the entire detector FOV. The film images

have been cropped to exclude regions saturated by background noise (for example, see

Figure A.3).
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C.1 Shot Day: October 6, 2016

Target Target Primary Axis (TIM3c) Secondary Axis (TIM4)
RID SRF ID type Time BL Det. Time BL Det. Notes
83093 59810 test target test BL XRFC3 test BL XRFC4 1
83094 59421 0 high-A, 3D λ71 15 ns V10 XRFC3 15 ns V20 XRFC4
83095 59057 30 high-A, 3D λ40 15 ns V10 XRFC3 15 ns V10 XRFC4
83097 59161 31 high-A, 3D λ40 25 ns V10 XRFC3 25 ns V10 XRFC4 2
83098 59162 3 low-A, 3D λ71 20 ns Ni10 XRFC3 25 ns Ni20 XRFC4
83099 59822 22 low-A, flat-λ71 40 ns Ni10 XRFC3 40 ns Ni10 XRFC4
83100 59164 10 low-A, flat 40 ns Ni10 XRFC3 40 ns Ni20 XRFC4
83101 59163 11 low-A, flat 30 ns Ni10 XRFC3 30 ns Ni10 XRFC4
83103 59823 4 low-A, 3D λ71 30 ns Ni20 XRFC3 30 ns Ni10 XRFC4
83104 59824 23 low-A, flat-λ71 30 ns Ni20 XRFC3 30 ns Ni10 XRFC4
83105 59825 21 high-A, flat-λ71 15 ns V10 XRFC3 15 ns V20 XRFC4
83106 59827 32 high-A, 3D λ40 25 ns V10 XRFC3 25 ns V10 XRFC4
83107 59828 33 high-A, 3D λ40 20 ns V10 XRFC3 20 ns V10 XRFC4
83108 59926 1 high-A, 3D λ71 20 ns V20 XRFC3 20 ns Ni10 XRFC4 3

Table C.1: Shot Log for October 6, 2016

Notes:

1. Debris test shot

2. XRFC4 error (no TIM4 data)

3. Ran out of V BLs, used Ni BL for secondary axis
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(a) TIM3c (b) TIM4

Figure C.1: RID 83094: image data

(a) TIM3c (b) TIM4

Figure C.2: RID 83095: image data
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TIM3c

Figure C.3: RID 83097: image data

(a) TIM3c (b) TIM4

Figure C.4: RID 83098: image data
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(a) TIM3c (b) TIM4

Figure C.5: RID 83099: image data

(a) TIM3c (b) TIM4

Figure C.6: RID 83100: image data
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(a) TIM3c (b) TIM4

Figure C.7: RID 83101: image data

(a) TIM3c (b) TIM4

Figure C.8: RID 83103: image data
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(a) TIM3c (b) TIM4

Figure C.9: RID 83104: image data

(a) TIM3c (b) TIM4

Figure C.10: RID 83105: image data
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(a) TIM3c (b) TIM4

Figure C.11: RID 83106: image data

(a) TIM3c (b) TIM4

Figure C.12: RID 83107: image data
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(a) TIM3c (b) TIM4

Figure C.13: RID 83108: image data
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C.2 Shot Day: April 6, 2017

Target Target Primary Axis (TIM3c) Secondary Axis (TIM4)
RID SRF ID type Time BL Det. Time BL Det. Notes
85098 60993 test target test BL XRFC3 test BL XRFC5 1
85099 60987 024 low-A, 2D 30 ns Ni10 XRFC3 30 ns Ni10 XRFC5
85101 62230 026 low-A, 2D 30 ns Ni10 XRFC3 30 ns Ni20 XRFC5
85102 62231 023 low-A, 2D 22 ns Ni10 XRFC3 26 ns Ni20 XRFC5
85103 62234 031 low-A, 3D 22 ns Ni10 XRFC3 26 ns Ni10 XRFC5
85104 62239 034 high-A, 3D 22 ns V10 XRFC3 26 ns V10 XRFC5
85105 62235 033 low-A, 3D 30 ns Ni10 XRFC3 26 ns Ni10 XRFC5
85106 62240 038 high-A, 3D 15 ns V10 XRFC3 19 ns V10 XRFC5
85107 62242 022 low-A, 2D 22 ns Ni10 XRFC3 18 ns Ni10 XRFC5
85108 62243 027 low-A, 2D 35 ns Ni10 XRFC3 39 ns Ni10 XRFC5
85109 62236 032 low-A, 3D 22 ns Ni20 XRFC3 18 ns Ni10 XRFC5
85110 62232 001 low-A, flat 22 ns Ni20 XRFC3 18 ns Ni20 XRFC5
85111 62233 004 low-A, flat 26 ns Ni20 XRFC3 30 ns Ni20 XRFC5

Table C.2: Shot Log for April 6, 2017

Notes:

1. Debris test shot
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(a) TIM3c (b) TIM4

Figure C.14: RID 85099: image data

(a) TIM3c (b) TIM4

Figure C.15: RID 85101: image data
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(a) TIM3c (b) TIM4

Figure C.16: RID 85102: image data

(a) TIM3c (b) TIM4

Figure C.17: RID 85103: image data
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(a) TIM3c (b) TIM4

Figure C.18: RID 85104: image data

(a) TIM3c (b) TIM4

Figure C.19: RID 85105: image data
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(a) TIM3c (b) TIM4

Figure C.20: RID 85106: image data

(a) TIM3c (b) TIM4

Figure C.21: RID 85107: image data
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(a) TIM3c (b) TIM4

Figure C.22: RID 85108: image data

(a) TIM3c (b) TIM4

Figure C.23: RID 85109: image data
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(a) TIM3c (b) TIM4

Figure C.24: RID 85110: image data

(a) TIM3c (b) TIM4

Figure C.25: RID 85111: image data
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C.3 Shot Day: April 19, 2018

Target Target Primary Axis (TIM3c) Secondary Axis (TIM4)
RID SRF ID type Time BL Det. Time BL Det. Notes
89381 65630 test target test BL XRFC3 test BL XRFC4 1
89383 65631 1101 low-A, flat 30 ns Ni20 XRFC3 39 ns Ni20 XRFC4
89384 67456 2104 low-A, 2D 30 ns Ni20 XRFC3 39 ns Ni20 XRFC4
89385 67457 2105 low-A, 2D 39 ns Ni10 XRFC3 43 ns Ni10 XRFC4
89386 67455 2103 low-A, 2D 25 ns Ni10 XRFC3 25 ns Ni10 XRFC4
89387 67459 1101 low-A, flat 25 ns Ni10 XRFC3 30 ns Ni10 XRFC4
89388 67458 2101 low-A, 2D 39 ns Ni10 XRFC3 43 ns Ni10 XRFC4
89389 67469 1103 low-A, flat 35 ns Ni10 XRFC3 40 ns Ni10 XRFC4
89390 67467 2102 low-A, 2D 35 ns Ni20 XRFC3 40 ns Ni20 XRFC4
89391 67470 2107 low-A, 2D 39 ns Ni20 XRFC3 47 ns Ni20 XRFC4
89392 67471 2203 high-A, 2D 30 ns V20 XRFC3 35 ns V20 XRFC4
89393 67472 2202 high-A, 2D 20 ns V20 XRFC3 25 ns V20 XRFC4
89394 67461 2201 high-A, 2D 15 ns V10 XRFC3 20 ns V10 XRFC4

Table C.3: Shot Log for April 19, 2018

Notes:

1. Debris test shot
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(a) TIM3c (b) TIM4

Figure C.26: RID 89383: image data

(a) TIM3c (b) TIM4

Figure C.27: RID 89384: image data
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(a) TIM3c (b) TIM4

Figure C.28: RID 89385: image data

(a) TIM3c (b) TIM4

Figure C.29: RID 89386: image data
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(a) TIM3c (b) TIM4

Figure C.30: RID 89387: image data

(a) TIM3c (b) TIM4

Figure C.31: RID 89388: image data
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(a) TIM3c (b) TIM4

Figure C.32: RID 89389: image data

(a) TIM3c (b) TIM4

Figure C.33: RID 89390: image data
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(a) TIM3c (b) TIM4

Figure C.34: RID 89391: image data

(a) TIM3c (b) TIM4

Figure C.35: RID 89392: image data
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(a) TIM3c (b) TIM4

Figure C.36: RID 89393: image data

(a) TIM3c (b) TIM4

Figure C.37: RID 89394: image data
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C.4 Shot Day: July 18, 2018

Target Target Primary Axis (TIM4) Secondary Axis (TIM3c)
RID SRF ID type Time BL Det. Time BL Det. Notes
90381 68162 3108 low-A, 3D 25 ns Ni20 film 17 ns Ni20 film
90382 68935 3106 low-A, 3D 30 ns Ni20 film 35 ns Ni10 film
90383 68936 3104 low-A, 3D 27 ns Ni20 film 32 ns Ni10 film 1
90384 68947 3201 high-A, 3D 17 ns V20 film 22 ns V10 film 2
90385 68939 3110 low-A, 3D 20 ns Ni20 film N/A 3
90386 68941 2103 low-A, 2D 23 ns Ni20 film 27 ns Ni10 film
90387 68937 3103 low-A, 3D 23 ns Ni10 film 20 ns Ni10 film
90388 68163 3105 low-A, 3D 35 ns Ni20 XRFC3 40 ns Ni10 film 4
90390 68943 2104 low-A, 2D 27 ns Ni20 XRFC3 35 ns Ni10 film 5
90393 68938 2101 low-A, 2D 30 ns Ni20 XRFC3 28 ns Ni10 film 5
90394 68950 3207 high-A, 3D 17 ns V20 XRFC3 22 ns V10 film 5

Table C.4: Shot Log for July 18, 2018

Notes:

1. Dropped beam 59 (BL1 cluster)

2. Dropped beam 51 (BL1 cluster)

3. Dropped beam 51 (BL1 cluster); No BL2

4. Main target poorly aligned because XTVS reticle not visible; XRFC3 trigger error

5. XRFC3 performance inconsistent with prior shot days (for same bias voltage & PFM, responsivity is much lower)
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(a) TIM3c (b) TIM4

Figure C.38: RID 90381: image data

(a) TIM3c (b) TIM4

Figure C.39: RID 90382: image data
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(a) TIM3c (b) TIM4

Figure C.40: RID 90383: image data

TIM4

Figure C.41: RID 90384: image data
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TIM4

Figure C.42: RID 90385: image data

(a) TIM3c (b) TIM4

Figure C.43: RID 90386: image data
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(a) TIM3c (b) TIM4

Figure C.44: RID 90387: image data

(a) TIM3c (b) TIM4

Figure C.45: RID 90388: image data
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(a) TIM3c (b) TIM4

Figure C.46: RID 90390: image data

(a) TIM3c (b) TIM4

Figure C.47: RID 90393: image data
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(a) TIM3c (b) TIM4

Figure C.48: RID 90394: image data
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