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ABSTRACT

Accurate transport properties—such as opacity, and electrical & thermal conductivities—provide

crucial input for the intricate physics models necessary to describe the dynamics of complex, high

energy density (HED) systems. This includes stars, giant planets, and inertial confinement fusion

plasmas. However, these theoretical transport models present challenges as the phase space often

sits at the intersection of solid, liquid, gas, and plasma where many effects of comparable magni-

tude must be considered. Additionally, the transient nature of such high energy density materials

complicates experimental measurement, and many theories remain sparsely benchmarked by data.

In the laboratory, HED material must be created via some combination of material compres-

sion to very high densities or by adding large amounts of energy to the material in a very short

time. This thesis focuses on experiments utilizing the second technique. X-ray free-electron lasers

(τpulse <100 fs) or short-pulse lasers (τpulse <1 ps) are capable of heating materials from room

temperature to tens or even many hundreds of eV while keeping densities at appreciable fractions

of their ambient value. This allows for the probing of material properties before hydrodynamics

phenomena become dominant.

First, an experimental platform designed to constrain thermal conductivity models in warm

dense matter is presented. Its basis relies on differentially heating multilayer targets (one high-Z

layer and one low- to mid-Z layer) to generate a thermal gradient. This concept was first demon-

strated using the Titan laser at the Jupiter Laser Facility, creating an intense proton beam to heat a

gold/aluminum multilayer target. The temperature, reflectivity, and expansion of the rear surface

were observed with time-resolved diagnostics as the thermal energy from the hot gold layer reached

the coldest part of the aluminum layer. The data were compared with hydrodynamics models that

xxiii



self-consistently used the electrical and thermal conductivities to calculate observables. Measured

temperatures were too low relative to predictions, possibly indicating the need to decrease tested

conductivity models. This experiment was repeated using an X-ray free-electron laser at the Linac

Coherent Light Source (LCLS) with gold/iron targets. Data are presented for this work along with

calculations and a discussion of how the different drivers impact the experimental design and data

quality.

Finally, data from a platform designed to measure opacities using short-pulse lasers at the

Orion Laser Facility are presented. Spectroscopic measurements of silicon’s K-shell that are both

temporally and angularly resolved are benchmarked against the radiation transfer code Cretin.

The validity of the commonly-used escape factor approximation is tested against the full solution

of the radiation transfer equation and found to be in good agreement for presented experimental

conditions. An analysis of the effects of radial gradients on spectroscopically inferred temperatures

is found to lead to errors in the peak temperature as large as 50% as well as incorrect cooling rates.

This emphasizes the importance of absolute emissivity calibrations and spatially resolved spot size

measurements.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.
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CHAPTER 1

Introduction

1.1 Applications of dense plasma transport

Dense, ionized material is present in most astrophysical bodies in our universe as well as fusion and

laboratory plasmas. Knowledge of individual varieties of stars and planets aids our comprehension

of the origin and evolution of our universe as a whole. Similarly, mastering control of experimental

plasmas allows us to isolate and understand specific physical mechanisms used in the betterment

of our day-to-day lives. Without the ability to observe the center of a giant planet or star or

fusion capsule, we must turn to models to link all of the system’s energy pathways (conduction,

convection, radiation, etc.) to observable quantities. Such models provide a stringent test of human

insight as each piece affects the other, often leading to drastically different physical conclusions

based on constitutive model assumptions.

For example, uncertainty in the thermal conductivity of iron at conditions found in Earth’s core

impacts the prediction of when Earth’s solid inner core formed, with estimates ranging from as

little as 400 million years to 2.5 billion years ago[1]. The presence and size of the inner core

strongly impacts the strength and mechanism of the geodynamo that powers our magnetic field.

It impacts the heat flow into the mantle and the nucleation rate of light, buoyant elements which

determine the convection characteristics in the mantle. Measurements of the paleomagnetic field

have been used to constrain the nucleation of the core[2], but if true, recent measurements of the

conductivity of iron would force the interpretation of the historic magnetic field records to change,
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requiring different physical mechanisms[3, 4, 5]. In the next section, I present a system of intense

interest to the high energy density physics community that motivated the development of many of

the models tested experimentally in the later chapters of this thesis: inertial confinement fusion.

1.1.1 Application: inertial confinement fusion

Thermonuclear fusion of light atoms is the engine that drives heat production in the cores of

stars. Learning to create and harness a stable fusion reaction for power production on earth has

been a priority in the United States, and elsewhere, since the early 1950’s[6]. The appeal lies in

the vast abundance of potential fuel, the inherent safety of the self-quenching reaction, and the

dramatically-reduced production of long-lived radioactive waste (in comparison to fission energy

production). The most easily achieved fusion reaction, due to its high cross-section, is

D + T→ 4He(3.5 MeV) + n(14.1 MeV) (1.1)

where D is a deuterium atom (2H), and T , a tritium atom (3H). The products of this reaction are a

helium atom with 3.5 MeV of kinetic energy and a neutron with 14.1 MeV of kinetic energy. In or-

der to fuse and release the combined 17.6 MeV of kinetic energy, hydrogen atoms must overcome

the Coulomb potential between them. This potential barrier can be as large as 1 MeV[7]—well

above achievable thermal energies. As such, atoms must rely on quantum tunneling, which de-

mands both time and proximity. Creating a fusion reaction that is self-sustaining requires assem-

bling a high material density, heating it up, and keeping it together long enough to generate a large

reaction rate. The material is said to ignite when the energy produced by fusion reactions heats the

fuel faster than the energy losses causes it to cool. This typically happens when the fusion reaction

products efficiently deposit their energy within the fusing region. In a star, this is accomplished

quite easily using its gravitational force and tremendous size. In man-made designs, more finesse

is required, and different methods of confining the plasma have been developed. These gener-

ally split into two categories—(1) inertial confinement fusion (ICF) and (2) magnetic confinement
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fusion (MCF).

ICF uses the intrinsic inertia of mass to hold the fuel together long enough for sufficient fusion

reactions to occur and a burn wave to propagate through the fuel. MCF relies on using strong

magnetic fields to hold the plasma together and away from colder material in order to create

a steady-state (or long-pulse) burning plasma. ICF is the most heavily-researched confinement

method in the United States, partially due to its synergy with the Department of Energy’s stockpile

stewardship mission, and will be the focus here.

The largest ICF facility in the U.S. is the National Ignition Facility (NIF) and is located at

Lawrence Livermore National Laboratory (LLNL). It is an impressive modern facility capable

of delivering 1.8 MJ of frequency-tripled (λ=353 nm) laser light with 500 TW in 192 beams on

target[8]. Figure 1.1 illustrates the steps in an indirect drive capsule implosion. The fuel capsules

are approximately 1.1 mm and consist of an outer ablator layer (CH, Be, or high-density carbon),

followed by varied thin layers to mitigate preheating or provide diagnostic features, followed by

a deuterium-tritium (DT) ice shell (T≈20 K), and finally a core of DT gas[9]. Optical lasers are

focused on the wall of the high-Z hohlraum and converted into thermal energy within the hohlraum.

The intense thermal radiation heats the outer ablator layers which rapidly expand, causing the

remaining shell to begin imploding. Entropy must be minimized within the converging material in

order to reach maximum compression. This is achieved by tailoring the radiation drive to launch

consecutively-timed shocks which converge at the capsule center as the implosion stagnates. When

this occurs, the central low-density DT fuel—termed the hot spot—reaches maximum temperature

and areal density (Ti ≈5 keV & ρR ≈0.3 g/cm2) and initiates the fusion reaction. A burn wave

begins and propagates as fusion-product alpha particles stop in the dense plasma fuel surrounding

the hot spot. The entire process lasts for approximately 50 ps and releases a large neutron flux that

can be harnessed for energy.

The indirect drive ICF approach presents additional challenges, requiring a vast collection of

accurate material and transport properties in order to properly design an experiment[9, 11]. Un-

derstanding the laser interaction with the hohlraum requires detailed models for laser-plasma in-
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Figure 1.1: Illustration of the capsule implosion sequence for ICF. Figure credit of ref. [10]

teractions, non-thermal electron transport, and atomic physics which determines the opacity under

non-local thermodynamic equilibrium (non-LTE) conditions. The imploding fuel pellet transi-

tions through many decades of temperature and density space where the characteristic physics

may change. Again, the opacity, ionization state, electron thermal conductivity, and equation of

state are all crucial to design a system capable of achieving fusion ignition. Optimizing the overall

performance on the road to ignition has focused on understanding and controlling four high-level

implosion features—(1) the adiabat (fuel entropy) (2) the implosion velocity (3) the fuel mix and

(4) the hotspot shape[9].

As an example, the electron thermal conductivity has a large impact on multiple areas of the in-

direct drive concept. The electron thermal conductivity at the ablator/fuel (Be/DT) interface plays a

role in the growth rate of instabilities and consequent shell mixing[12]. Figure 1.2 shows hydrody-

namic simulation results by B. Hammel of LLNL that demonstrate the effect of scaling the Lee &

More thermal conductivity model[13] for DT and Be by 0.3 and 3.0 in an imploding ICF shell. The

simulation is shown at the time of peak velocity, and the material conditions are approximately 10

g/cc and 10–30 eV—solidly in the warm dense matter regime. A lower conductivity value results

in faster instability growth rate and more shell mixing. Also, at the hot spot/fuel interface, heat

conducting into the cold shell from the hot spot affects the interior ablation rate and subsequent

implosion velocity[14, 15]. Increased ablation of DT mass into the hot spot increases the density,

which improves its ability to stop alpha particles and undergo a sustained reaction. However, it
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Figure 1.2: Hydrodynamics simulations on a NIF capsule showing the impact on the shell mix-
ing of multiplying the electron thermal conductivity tables by 0.3 and 3.0. Figure credit B.
Hammel[12].

also increases the energy required to ignite. These issues motivate simpler experiments used to

test the many transport models required by the large-scale 3-D ICF models necessary for capsule

design.

1.2 Characteristics of high density plasmas

Dense plasmas generate a unique problem set for modern physicists. To describe the regime,

dimensionless parameters are most commonly introduced to quantify the relative importance of

effects. One of the most fundamental parameters is the plasma parameter, Γ—the ratio of the

potential energy between particles to the thermal energy

Γ =
Ec
kBT

=
(Ze)2

rskBT
; rs =

(
3

4πne

)1/3

(1.2)

where ne is the electron density, T is the temperature, and rs is the Wigner-Seitz radius. This

measures how strongly many-body interactions impact the system and material. A plasma with
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Γ > 1 is said to be moderately or strongly coupled, with this occurring at high densities or low

temperatures. The coupling parameter is closely related to the classical plasma parameter, ND =

4/3πneλ
3
D. We can show that Γ ∝ 1/N

2/3
D , and when the plasma is strongly coupled, it can never

satisfy the criteria for an ideal plasma of ND � 1.

A second parameter, called the electron degeneracy parameter, Θ, specifies when the electrons

behave quantum mechanically. It is defined as the ratio of the thermal energy to the Fermi energy.

Θ =
kBT

εF
; εF =

~2

2me

(3π2ne)
2/3 (1.3)

When the system is degenerate (Θ� 1), the thermal de’Broglie wavelength, λde = ~/(2mkBT )1/2,

can become larger than the interparticle spacing, rs, and the electron wave functions overlap. The

degenerate electrons behave in a fundamentally different manner from classical physics, requir-

ing Fermi-Dirac rather than Boltzmann statistics. In degenerate material, only electrons near the

chemical potential may participate in transport processes such as conduction.

These effects occur over a wide region of phase space which includes ultracold neutral plasmas[16],

but this thesis focuses on materials that are moderately coupled and partially to strongly degenerate

at elevated temperatures (above the melting temperature). This phase space is often termed warm

dense matter (WDM) or hot dense matter (HDM). In addition to the strongly coupled ions and

electrons and degenerate electrons, these systems characteristically have only partial ionization

leading to significant collisions with neutrals. The low number of particles per Debye sphere leads

to imperfect shielding, and long range order persists.

Theoretical descriptions in this phase space are particularly challenging to develop as there is

no small parameter or limiting behavior to exploit. It lies at the intersection of plasma physics

and condensed matter physics, where theories from either field are not strictly valid. Traditionally,

treatment relied on interpolations between two or more better-developed theories. More accurate

models of WDM require detailed quantum mechanical calculations that account for degeneracy

and collective effects on the electronic structure of atoms embedded within such a potential. The
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elevated temperatures stretch the accuracy and computational limits of methods, such as density

functional theory (DFT), which was originally developed for much colder material. Even in the

subset of HED phase space in which these models are tractable, other properties such as accurate

opacities remain a challenge due to inability to treat the large number of atomic transitions self

consistently with the many-coupled atoms. Such complex models must always make a determina-

tion of which properties can be averaged or excluded entirely, requiring validation over as much of

the phase space as possible.

An increase in the number of facilities capable of creating large volumes of HED matter in

tandem with a rapid increase in the capability of modern computing has led to intense interest in

improving the theoretical models. However, experimental data capable of informing these models

remains scarce due to the extreme difficulty in performing quality experiments. A 2009 report

commissioned by the U.S. Department of Energy and the National Nuclear Security Administra-

tion explicitly highlights the need to develop measurement techniques for transport properties such

as electrical and thermal conductivity in the WDM region as well as experimental opacity mea-

surements of hot plasmas[17]. In this thesis, I describe several experimental efforts performed to

help remedy this issue.

1.3 Thesis overview

This chapter has outlined the importance of accurate transport models in dense plasmas and the

implications they have for our understanding of the world around us. Some of the theoretical

and experimental complexities of high energy density (HED) physics, particularly in the warm

dense matter (WDM) regime, have been outlined. The remainder of this thesis presents a set of

experimental and computational efforts designed to measure electron heat conduction and radiation

transfer in dense plasmas.

• Chapter 2 presents the theoretical background information necessary to discuss classical

energy transport and some of the concepts behind widely-used quantum methods for dense
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plasmas with a focus on thermal conductivity and radiative transfer. It then discusses the

ways matter interacts with different drivers to create experimental HED conditions.

• Chapter 3 discusses the facilities at which experiments were performed for this work and the

basic concepts used for the diagnostics to infer physical parameters.

• Chapter 4 presents an experiment performed at the Jupiter Laser Facility (JLF) to study

thermal conductivity in proton-heated warm dense aluminum.

• Chapter 5 presents a follow-up experiment to the work at JLF, performed using the Linac

Coherent Light Source (LCLS) at the Stanford Linear Accelerator Laboratory (SLAC), to

improve and extend the thermal conductivity measurements to warm dense iron.

• Chapter 6 presents data from experiments at the Orion Laser Facility designed to measure

the opacity of dense materials. Temporally and angularly resolved spectroscopic K-shell

silicon data are analyzed and compared with collisional radiative modeling to quantify the

impact of modeling assumptions, such as escape factors and radial gradients, on the inferred

temperature from such an experiment.

• Chapter 7 concludes the thesis with a discussion of the outcomes of each experiment, and

directions for the improvement of future work are explored.

1.4 Role of the Author

This section is included to clarify the Author’s contribution to the work presented within this

thesis. Chapters 1 and 2 were prepared by the Author from archival literature and text books

cited as used in order to lay the foundation for the concepts being experimentally investigated.

Chapter 3 presents facility and diagnostic information from relevant publications and calibration

work performed by the Author. The Author participated in the proton heating experiment on Titan

along with collaborators and coworkers from LLNL, UCSD, MIT, and OSU to field diagnostics
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and collect data. The Author performed the absolute calibration of the optical streak camera using

the Europa laser and analyzed the streaked optical pyrometer data. The simulations presented here

were performed by the Author with aid from G. E. Kemp and Y. Ping. The Helmholtz solver was

implemented into Matlab by G. E. Kemp and expanded by the Author to model the diagnostic

data. The XFEL thermal conductivity experiment’s optical layout was designed by the Author, Y.

Ping, and collaborators from AWE. The Author and Y. Ping designed the targets and the Author

participated in data collection with experimental support from collaborators from AWE, LLNL,

and MEC staff. The SOP data was analyzed and modeled by the Author. Finally, during his

time at LLNL the Author participated in joint AWE and LLNL experiments to measure opacity

at the Orion Laser Facility. The data presented in Chapter 6 were collected during one of these

experiments. The Author participated in the data collection and target design for the experiment.

The data were analyzed by the Author. The collisional-radiative modeling was performed by the

Author with help using Cretin from H. A. Scott and guidance from R. Shepherd and H. A. Scott.
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CHAPTER 2

Theoretical background

It is the aim of this work to provide experimental measurements of transport properties in dense

plasmas. However, direct observation of transport coefficients is often impossible, necessitating

the use of integrated models to compare experimental observables with transport theory. In this

chapter, I review some of the basic transport theory and models that are in use in the field and

available for comparison with the experimental data presented in later chapters. Following the

discussion on transport theory, I present a discussion on the absorption mechanisms of the drivers

used to heat material in the work presented within this thesis.

2.1 Energy transport in classical plasmas

It goes without saying that the foundation to understanding the systems described in Chapter 1

is accurate knowledge of mass, momentum, or energy exchange mechanisms; this encompasses

the field of transport theory. Many formulations of transport theory under various approximations

have been extensively developed over the years, but they can all be grouped into one of three

descriptions—single-particle, kinetic, or fluid.

The single-particle descriptions comprise the most detailed microscopic models over which

averages must be taken to discuss energy flux, while the least detailed—fluid equations—have

substantial averaging built in, and macroscopic properties such as electrical conductivity, ther-

mal conductivity, diffusivity, or viscosity appear explicitly. Single-particle descriptions, such as

Particle-in-cell (PIC) models, have found tremendous success at modeling highly non-equilibrium
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phenomena such as hot electron production in intense laser-solid interactions or plasma wakefield

accelerators, but these effects belong to systems that are far from equilibrium and conventional

transport coefficients will not apply. For this reason, we will not discuss these methods signifi-

cantly and begin the discussion with kinetic theory.

In this section, I will provide a discussion of common classical transport descriptions including

fundamental assumptions, strengths, and challenges of each. Though classical descriptions may

not strictly apply in dense systems, they provide the basis for extensions into dense systems.

2.1.1 Kinetic theory

The starting point for most classical transport calculations is kinetic theory. We can describe

groups of particles of species, s, by their single-particle distribution function, fs(x, v, t). This de-

scription reduces the dimensionality of the model to seven—three spatial, three velocity, and time.

A tremendous amount of information about the dynamical nature of plasma species is maintained,

but inherent averaging is now a part of the model. The famous Boltzmann equation, which serves

as the foundation of the majority of plasma transport theory, can be written as[18]

∂fs
∂t

+ v · ∇xfs +
F
ms

· ∇vfs =

(
∂fs
∂t

)
coll

(2.1)

where the last term represents a generalized collision term, known as the collision integral, un-

derstood to represent the change to the distribution function from collisions. This equation de-

scribes the evolution of a non-equilibrium distribution function under the influence of external

forces and collisions. Equation 2.1 with the collision integral set to zero is known as the Vlasov

equation, which is simply a statement of the total derivative of the distribution function in phase

space. The Boltzmann equation, when applied to plasmas, typically assumes the Lorentz force,

F = q[E + (v× B)].

∂fs
∂t

+ v · ∇xfs +
q

ms

[E + (v× B)] · ∂fs
∂v

=

(
∂fs
∂t

)
coll

(2.2)
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It is in the collision term that all of the particle interaction physics as well as many of the model

assumptions occur. Boltzmann’s original collision integral is given by[19]

Cab(fa, fb) =

∫
[fa(v

′)fb(v
′
b)− fa(v)fb(vb)] |v − vb| dσdvb (2.3)

and uses the argument of ”stosszahlansatz” or molecular chaos where dσ is the differential scatter-

ing cross section[20]. It assumes that two particles, uncorrelated prior to their collision, undergo a

close-range, hard-sphere collision that can be described by the product of single-particle distribu-

tion functions before and after the collision rather than a two-particle distribution function.

f(t, x1, v1, x2, v2) ≈ f(t, x1, v1)f(t, x2, v2) (2.4)

The other assumptions implicit in the original Boltzmann equation are that the collisions are elastic,

occur fast relative to time scales in the problem, and occur in spatial scales small relative to the

problem. This description is only valid for binary, hard-sphere collisions found in dilute gases, and

much work has gone into various forms of the collision integral that are valid for charged particles.

When discussing plasmas, the collision integral is often simplified by assuming that collisions

will restore the distribution to its equilibrium state in some characteristic time, τ . This model is

called the Bhatnagar-Gross-Krook (BGK) model[21] and is defined as

(
∂fs
∂t

)
coll

=
f0 − f
τ

(2.5)

where τ is considered to be velocity-independent. This model greatly simplifies analytic and com-

putational solutions to the Boltzmann equation, but naturally is not acceptable in all cases. It

becomes ambiguous when discussing multi-species collisions[22] and introduces large errors in

higher moments such as the heat flow[23].

A more complete collision integral is given by the Fokker-Planck equation. The Fokker-Planck

equation more generally describes the effects of collisions on the distribution function without
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relying on a general relaxation time and is given by

∂fs
∂t

= − ∂

∂v
·
(
〈∆v〉
∆t

fs(v, t)
)

+
1

2

∂

∂v
∂

∂v
:

(
〈∆v∆v〉

∆t
fs(v, t)

)
(2.6)

where 〈∆v〉 represents the coefficient of dynamical friction—describing how particles above the

mean velocity slow and particles below it accelerate. This is defined as

〈∆v〉 =

∫
F (v,∆v)∆vd(∆v) (2.7)

Additionally, the coefficient of dynamical diffusion, which describes the effect of collisions on the

range of velocities, is given by

〈∆v∆v〉 =

∫
F (v,∆v)∆v∆vd(∆v) (2.8)

where F is a function given by
∫
F (v,∆V)d∆V = 1, describing the probability that a particle

with velocity v at time t will collide and have its velocity changed to v + ∆v at time t+ ∆t.

One thing worth remembering is that most collision integrals such as the Lorentz[24] form,

the Fokker-Planck form, or the Rosenbluth form for inverse-square forces[25] explicitly use the

Coulomb Logarithm—lnΛ = bmin/bmax, where bmax is the Debye length λD = (kBTe/4πe
2ne)

1/2

and bmin is the classical distance of minimum approach Zie2/mevth—in the form of the differential

scattering cross-section. This is acceptable for many plasmas but ill-suited to low-temperature,

dense plasmas. More realistic plasma screening effects are naturally included through a multi-

component dynamical dielectric function in the Lenard-Balescu collision integral[26, 27], but at

greatly increased complexity and only mild extension to more strongly coupled systems.

Though the kinetic equations presented here inherently neglect correlation effects due to the

basis of the theory in single-particle distribution functions and the closure of the Bogoliubov-Born-

Green-Kirkwood-Yvon (BBGKY) hierarchy with the molecular chaos ansantz, implementations of

them have nonetheless proved exceptionally useful in dense plasma research. An excellent review
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by Thomas[28] et al. outlines the contributions of Vlasov-Fokker-Planck numerical modeling in

the context of Intertial Confinement Fusion (ICF). He points out that VFP codes excel in regions of

plasmas where the Debye length is small, which could lead to prohibitively small meshing in PIC

models and where the plasma is semi-collisional. Additionally, the collisions tend to smooth out

anisotropy in velocity space, making the usual truncations of spherical expansions more justifiable.

Finally, due to the fact that it is not stochastically sampling the equations, the noise tends to be

much better. The major downside is that the high dimensionality in position and velocity space

means these models can still be quite computationally expensive.

2.1.2 Fluid theory

If we seek a simpler, more tractable model with which to work, we can employ the fluid equations.

First, we can describe macroscopic properties of the plasma by taking velocity moments of the

distribution function itself. The moments, in increasing order, describe the number density (n),

average fluid velocity (v̄), the pressure tenser (P), and the heat flux tensor (Q) or heat flux vector

(q):

n(x, t) =

∫
f(x, v)d3v (2.9)

v̄(x, t) =
1

n

∫
vf(x, v, t)d3v (2.10)

P(x, t) = m

∫
(v− v̄)(v− v̄)f(x, v, t)d3v (2.11)

Q(x, t) = m

∫
(v− v̄)(v− v̄)(v− v̄)f(x, v, t)3dv (2.12)

q(x, t) =
m

2

∫
(v− v̄)2(v− v̄)f(x, v, t)d3v (2.13)

These are easily related to other physical quantities; for example, we may multiply eq. (2.9)
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by m to get mass density or q to get charge density, or multiply eq. (2.10) by the charge density to

get the current density j = qnv̄.

Taking this method and applying it to the entire Boltzmann equation, 2.1, we can arrive at

the well-known fluid equations. To derive these, we multiply through by quantities we expect

to be conserved such as mass (v0), momentum (v1), or kinetic energy (v2). Derivations of these

equations may be found in numerous texts[29, 18, 30]. The zeroth-moment equation is achieved

by integrating the Boltzmann equation over velocity-space.

∂n

∂t
+∇ · (nv̄) = 0 (2.14)

Here, the integral of the collision term going to zero is a statement that, even in a simple two fluid

model, elastic collisions can’t change the total number of particles of a species. Note here that this

zeroth-moment equation contains v̄, a first-moment quantity.

Repeating the process for the next moment, momentum, unsurprisingly yields the following

momentum transfer equation:

m
∂(nv̄)

∂t
+m

∂

∂t
· (nv̄v̄) = nq(E + v̄× B)− ∂

∂t
· P −Rei (2.15)

where we again see an addition from a higher-order moment, the pressure tensor P , and the term

Rei results from integrating the collision operator in this moment. Intraspecies collisions can’t

change the total species momentum, but interspecies collisions can. This effect is often approxi-

mated with Rei = νeimene(v̄e−v̄i), where νei represents an average momentum exchange collision

rate.

The next moment gives the energy flow equation

3

2

∂P

∂t
+

5

2
P∇ · v̄ = −∇ · q + Rei · v̄−

(
∂W

∂t

)
Eei

(2.16)

where the off-diagonal terms in the pressure tensor have been neglected and (∂W/∂t)Eei represents
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the rate at which electrons transfer energy to ions via collisions. At this point, we have equations

for the balance of mass, momentum, and energy. However, we need more information on the heat

flux, the collision rate, and the energy exchange rate. This problem will persist and some extra

physical insight must be supplied to provide closure to the system, such as a Fourier’s law and a

separately derived EOS to relate pressure, temperature, and density.

Recasting equations (2.14)–(2.16) in more directly relevant forms given by Drake[31], with

radiation pressure and generic forces included, gives us

∂ρ

∂t
+∇ · ρv̄ = 0 (2.17)

ρ

(
∂v̄
∂t

+ v̄ · ∇v̄
)

= −∇(p+ pR) +∇ · σν + FEM + Fother (2.18)

∂

∂t

(
ρε+

ρv̄
2

+ ER

)
+∇ ·

[
ρv̄
(
ε+

v̄2

2

)
+ pv̄

]
= −∇ ·H− J · E + Fother · v̄ (2.19)

where pR is the radiation pressure, σν is the viscous stress tensor, FEM = ρcE + (J×B)/c+∇pR,

ER is the radiation field energy density, and the energy flux, H, is given by H = FR + (pR +

ER)u + Q− σν · u.

At this point, we have a system of equations that relate macroscopic quantities, but we have

lost nearly all of the detailed physical insight provided by the distribution functions or individual

particle trajectories. This comes with the great benefit of having a system of equations that can be

solved rapidly and over much larger time and space steps, but the drawback is that we now need to

provide all of the physics ourselves through transport coefficients and equation of state.

Classically, the transport coefficients can be calculated through techniques such as the Chapman-

Enskog expansion[32]. In this expansion, the equilibrium distribution function, f (0), is expanded

in terms of the Knudsen number ε = λmfp/L where L is a hydrodynamic length relevant to the

problem, and the Knudsen number is assumed to be small.

f = f (0) + εf (1) + ε2f (2) + · · · (2.20)
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The higher terms in the expansion represent the perturbed components of the isotropic distribution

and are assumed to be small, so terms quadratic in f (1) are neglected. Substituting this expansion

into the Boltzmann equation and isolating orders of the expansion yields an equation for f (1) in

terms of f (0), which can be assumed Maxwellian and therefore relate f (1) to local macroscopic

quantities. A similar process using a Cartesian tensor expansion was performed by Braginskii[19]

and later improved by Epperlein and Haines[33] to get classical transport coefficients for fully

ionized plasma that are still commonly used.

Fluid codes remain the most accessible method of modeling an integrated experiment, so

tremendous effort has gone into creating detailed transport models that can be integrated into the

existing fluid codes to provide accurate predictive capabilities.

2.2 Energy transport in dense plasmas

In dense plasmas, the basic assumptions of a classical plasma break down. In this case, the system

is better described as a dense quantum fluid where the ions are correlated, the electrons are Fermi-

degenerate, and large-angle collisions become important. There has been substantial effort put

into developing theoretical models that describe these systems more accurately. One of the most

successful techniques of the last several decades uses Density Functional Theory (DFT) to calculate

the electronic structure and couples it to a classical molecular dynamics calculation to determine

the ionic structure. However, these techniques become computationally demanding above Te ≈ 10

eV. Alternatively, Path Integral Monte Carlo (PIMC) can capture many-body quantum effects via

the system density matrix through Feynman’s path-integral formulation, but this method struggles

at low temperatures. This leaves intermediate temperature regimes without satisfactory theoretical

calculations. PIMC results were not available for the experimental regimes found in this thesis

and won’t be discussed further; see review by Kang and Dai for more details[34]. Due to the

complexities of the above approaches, simplified models such as Average Atom (AA) models

are commonly employed where the electronic properties of a single spherical ”average” ion are

17



calculated in the DFT framework. These models are part of a larger set of models loosely described

as neutral pseudo-atom models. The following sections will discuss the basics of each of these

approaches in preparation for discussion of their predictions of thermal conductivity in Section

2.3.

2.2.1 Density functional theory

DFT is one of the most widely used techniques to calculate the detailed electronic structure of

dense systems. It is a theoretical framework that provides an alternative solution to the many-

electron Schrödinger equation in terms of a system’s density. The basis of the theory lies in the

Hohenburg-Kohn theorem[35] which describes a system of electrons under the influence of an ex-

ternal potential Vext(r). First, it states that for a non-degenerate ground state, the external potential

and therefore the total energy, E[n(r)], is a unique functional of the electron density, n(r), given

by

E[n(r)] =

∫
dr n(r)Vext(r) + F [n(r)] (2.21)

where F [n(r)] is an unknown functional of the electron density only. Furthermore, the energy

functional, E[n(r)], is minimized when n(r) is the unique ground state configuration. These state-

ments provide the link between the system density and the Hamiltonian, which determines the

ground-state many-electron wave function and, by extension, the system properties. The second

statement provides a variational method through which to arrive at the correct density function—

minimization of the total energy. At this point, if we had the exact form of F , it would provide

an exact description of the ground state system, hence this method is often termed an ab initio

method.

In reality, the exact form of F [n(r)] is unknown, but it can be written in terms of components

that contribute to the total energy

F [n(r)] = T [n(r)] + Eee[n] (2.22)
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where T is the kinetic energy of the system, Eee represents the electron-electron interactions. Both

of these terms are not exactly known. From this point, approximations can be made for these terms

to arrive at the commonly-known Thomas-Fermi model, which is often applied when effects from

detailed shell structures can be neglected.

In 1965, Kohn and Sham[36] outlined a far more precise framework which now serves as the

modern basis of DFT. Their idea was to solve for a virtual system of non-interacting electrons. This

allows for the exact calculation of the kinetic and Coulombic energies, lumping all of the uncertain,

complex effects such as exchange and correlation into an exchange potential, Vxc[n]. They stated

that for a system of non-interacting electrons to have the same density as the interacting system

under an external potential, the non-interacting electrons must experience an additional effective

potential, Vs(r), given by

Vs(r) = Vext(r) + e2

∫
d3r′

n(r′)
|r− r′|

+ Vxc (2.23)

where the terms are the external potential in the interacting system, the Coulomb potential, and

the exchange potential. The wave function for this system is constructed from a set of orbitals that

satisfy (
− }2

2m
∇2 + Vs(r)

)
ψi(r) = εiψi(r) (2.24)

where εi is the orbital energy of the ith Kohn-Sham (KS) orbital and the N total orbitals must obey

n(r) =
N∑
i

|ψi(r)|2 (2.25)

Thus, the system is simplified greatly, assuming an accurate model for the exchange functional

exists. If one provides a trial density function or potential, the system can be iterated to consistency,

and the energy minimized.

The exchange and correlation functional is instrumental in capturing the effects necessary to

describe warm dense matter. It is also the only term not exactly known: it is where all the error
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creeps into the formally exact framework, and is therefore an area of intense, active research. For

WDM in particular, as the temperature rises, the effects of temperature on the ground state must

be considered. As such, methods including Finite-Temperature DFT (FT-DFT)[37, 38] are typi-

cally used, though this introduces the challenges of finding energy functionals of both density and

temperature, and greatly increases the computational cost due to the expanded orbital basis set re-

quired to resolve higher energy states[39]. Methods such as Orbital-Free DFT (OF-DFT)[40] seek

to increase computation speed at finite temperatures by creating functionals that do not explicitly

rely on the KS orbitals, but typically sacrifice accuracy.

2.2.2 Molecular dynamics models

Molecular Dynamics (MD) is another particle-particle approach that differs from PIC models. In

this framework, one describes an ensemble of N ions and calculates the total forces each particle

feels. This is done by finite-differencing Newton’s law of motion, with interparticle potentials as

the force, and using sub-femtosecond time steps.

d2ri
dt2

=
fi
m

; fi = −∇iV (ri, ..., rN) (2.26)

The real art behind this method goes into creating accurate potentials that describe the near- and

long-range forces on the particles. Two primary methods exist: an all-particle-MD method uses

classical point particle representations for both electrons and ions, while an ion-only-MD uses a

classical treatment for the ion dynamics only[41]. All-particle MD methods typically attempt to

capture the quantum nature of the electrons with two-body quantum statistical potentials (QSP)

defined in the equilibrium state[41]. This concession introduces uncertainty in the models, but

makes the methods more robust and computationally tractable. These methods have been em-

ployed in hot dense plasmas, where the degeneracy is less important to study electron-ion temper-

ature equilibration[42] and electrical and thermal conductivities[43].

Alternatively, in ion-only-MD, the electrons are handled in the quantum mechanical frame-
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work. The most common implementation in warm dense matter is called Quantum Molecular

Dynamics (QMD), which uses DFT with the external potential given by the ion positions at each

time step to calculate the total wave functions within the simulation volume[44]. These calcula-

tions typically rely on the Born-Oppenheimer approximation, which allows the total wave function

to be described by individual electronic and nuclear terms, to separate calculation of the ion and

electron motions. Figure 2.1 demonstrates the exchange between the DFT and MD processes as

implemented in modern QMD codes.

Figure 2.1: Calculation flowchart in a typical QMD simulation. Given an ion distribution, KS
equations are iterated to consistency (the ground state reached) and the electron system potential
passed back to the MD routines. Figure by W. Lorenzen et al.[45] reprinted with permission.

The major advantage of QMD is requires very little external input or approximation—just the

exchange-correlation functional—and is therefore believed to be very accurate. The downside is

that the DFT solutions at each time step must be calculated for all electrons of each atom in the

simulation volume. This is far too costly to calculate for more than ∼32–256 particles evolving

over times longer than several picoseconds. Tightly bound electrons are often replaced with ef-

fective potentials to reduce the computational burden, but this adds uncertainty to the intended ab

initio method. As temperatures rise or densities fall, the number of plane waves required to pro-
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vide a full basis set grows dramatically, and the computations become untenable. Even utilizing

the large-scale computing resources available at U.S. national laboratories, these calculations can

only reasonably be carried above solid densities (1–10 g/cc) up to temperatures of ≈10 eV, or at

reduced densities around 0.1 g/cc up to ≈1–2 eV[46]. QMD methods are a growing staple in cal-

culating transport coefficients for WDM, but for the moment are largely used to benchmark more

accessible theories in the absence of accurate experimental data.

2.2.3 Average atom calculations

As an alternative to calculating the detailed evolution of a many-atom system, we can apply some

of the same concepts from DFT to a single spherically symmetric atom. Variations of this con-

cept exist, such as the neutral pseudo atom (NPA)[47, 48, 49], but here we focus on the aver-

age atom model outlined by Liberman[50] and implemented in codes such as Inferno[51] and

Purgatorio[52]. These models are intended to be valid for arbitrarily high densities where relativis-

tic effects may become important, so they employ solutions to the Dirac equation rather than the

Schrödinger equation.

A complex polyhedral atomic cell is represented as a sphere, imposing radial symmetry. In

the center of the sphere is all of the positive charge of the nucleus, Z. The radius of the cavity

is chosen to be the Wigner-Seitz radius, Rws = 3/(4πni)
1/3, and the charge neutrality boundary

condition is imposed as ∫ Rws

0

4πr2ρtot(r)dr = Z (2.27)

where the total density ρtot is explicitly composed of contributions from the bound and free elec-

trons.

ρtot(r) = ρbound(r) + ρcontinuum(r) (2.28)

4πr2ρbound(r) =
∑
i

f(ε, µ)2|κi|
[
P 2
i (r) +Q2

i (r)
]

(2.29)

4πr2ρcont(r) =

∫ ∞
i

dεf(ε, µ)
∑
κ

2|κ|
[
P 2
κ,ε(r) +Q2

κ,ε(r)
]

(2.30)
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Figure 2.2: Simple representation of the average atom model.

In the above equations, f(ε, µ) = (1 + e(ε−µ)/T )−1 is the Fermi distribution; µ, the chemical

potential; P andQ, the major and minor components of the radial Dirac equation; κ, a spin-angular

momentum channel; and i, the index of discrete bound states. The wave functions are populated

according to their statistical weights given by the Fermi function, and the chemical potential—

which roughly determines the boundary between negative energy-bound states and positive energy-

free states—is varied to enforce (2.27). The functional of the total internal energy is minimized

through iteration of the density and corresponding potential functions until the ground state is

reached. The exchange-correlation term in the potential is calculated under the Local Density

Approximation (LDA)[53] which assumes the exchange and correlation terms can be expressed

with forms relevant to a homogeneous electron gas at the local density.

The forms of the self-consistent wave functions within the sphere are matched to analytic forms

of the continuum wave functions[54] for a free-electron gas outside of the sphere, where the poten-

tial is zero, yielding phase shifts at the boundary. These phase shifts contain information necessary
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to calculate the differential cross-section of a plane wave scattering off of a single ion center which

is used to calculate relaxation times and electrical conductivity[55] in Purgatorio. Generally, the

primary goal of average ion calculations is to use knowledge of the internal energy at a given

density and temperature to calculate the electron contribution to the Helmholtz free energy, and

construct the equation of state[56].

This model represents an obvious simplification, and as such has some drawbacks. The nature

of taking an ”average” ion radius means that the model will give fractional shell occupations and

ionization energies. In fact, the definition of average ionization is ambiguous in this model and

can be defined as the total continuum electrons, or just the electrons in the ideal density of states

(ignoring quasi-bound resonant states), or just the value of the total density evaluated at the ion

sphere surface[56]. Additionally, the model is a single-site scattering center which is known to

not be accurate in the WDM regime, altering the density of states[57] and therefore the inferred

transport properties and effects. Also, it has been discussed that some effects such as chemical

bonding that occurs in the interstitial region between atoms, such as transient covalent bonding in

carbon, will not be captured in traditional AA models[58].

In spite of these potential limitations, the simplifications of AA models reduce computational

requirements and speed calculation times by 2-5 orders of magnitude when compared with QMD

simulations[46]. This allows the model to be applied over many logarithmic decades of tempera-

ture and density phase space—a crucial requirement if one wants to make accurate tables for use

in hydrodynamics codes—while maintaining the vast majority of the effects of shell structure on

the free energy of the electron configuration.

2.3 Thermal Conductivity

Measuring thermal conductivity is the aim of a large portion of the experimental efforts presented

in this thesis, so a discussion of it and the theoretical models developed to calculate it are in

order. Thermal conductivity refers to the rate at which heat is transferred through a system; this is
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measured (in watts per square meter) by the heat flux, q. The local heat flux is proportional to the

local temperature gradient through Fourier’s law

q = −κth∇T (2.31)

where the thermal conductivity, κth, is the constant of proportionality given in units of W/m/K. If

we wish to know how a spatially-dependent temperature profile evolves in time, we use the heat

transport equation, given in one dimension by[59]

ρcp
∂T

∂t
−∇ · (κth∇T ) = QV (2.32)

where ρ is the mass density, cp is the specific heat at constant pressure, and QV any volumetric

sources of heat. This is defined for a stationary, homogeneous, isotropic solid.

Analytic solutions to this equation under many initial and boundary condition assumptions can

be found in most thermal transport texts, but here we follow Hahn and Özisik[59]. The simplest

problem of interest is the propagation of heat through a semi-infinite slab at T = 0 with the

boundary at x = 0 held at constant temperature Tb, shown in figure 2.3.
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Figure 2.3: Basic solution to the heat equation for semi-infinite medium at zero temperature with
fixed boundary temperature, Tb.
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The heat equation, (2.32), has a solution for these conditions given by

T (x, t) = Tb

[
1− erf

(
x√
4αt

)]
(2.33)

where α = κth/(ρcp) is the thermal diffusivity and erf is the standard error function given by

erf(x) = 2√
π

∫ x
0
e−t

2
dt. Following the discussion of Ping et al.[60], we look at the solution

to (2.32) in Fig.2.3(a), which demonstrates the evolution of the thermal gradient in time. If we

were to measure the temperature at a specific position in time, we would see something like the

curves in Fig. 2.3(b). These show a strong dependence on the thermal diffusivity; a measurement

of temperature in time would contain the effects of the thermal conductivity, the density, and

the specific heat. This provides the foundation of the thermal conductivity measurements that

is presented in later chapters.

At the microscopic level, heat is transported through collisional processes between particles.

In a solid material, this can be due to collisions with electrons or vibrational excitations of ions

(phonons). As the material heats up, the disorder makes phonon contributions less important.

In the liquid/plasma state, electron-ion collisions dominate the energy transport. This is due to

the large mass difference, me/mi; the collision frequency between ions is much smaller and the

resulting heat flux due to ion collisions is much less than that due to electron-ion collisions. This

is not the case in strong magnetic fields, where the electrons are trapped in cyclotron orbits, and

the ion contribution can be much larger[20, 61], though those situations are not considered in this

thesis.

For the work found within this thesis, we limit discussion of thermal conductivity to its unmag-

netized classical regime where it is subject to the constraints of (1) small temperature gradients

relative to the particle mean free path, (2) no electric fields, and (3) no electric current. In the

following sections, we will discuss basic definitions of thermal conductivity and the heat transport

equation, how thermal conductivity is derived in plasmas starting with the classical Spitzer-Harm

derivation, how the electric coefficients are related through the Onsager coefficients, and then move
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into explanations of the theoretical models against which data were compared in this thesis before

finishing with a brief discussion of the Wiedemann-Franz law which related electrical and thermal

conductivity.

2.3.1 Landau-Spitzer-Härm theory

The classical theory for thermal conductivity of a Lorentz gas—which assumes full ionization,

non-interacting electrons, and fixed ions—can be solved from kinetic theory. A standard approach,

here following the treatment of Atzeni[7], uses a VFP equation of the form

∂f

∂t
+ v · ∇xf −

eE
m
· ∇V f =

2πnZe4

m2
lnΛe∇V ·

(
∇V f

v
− v(v · ∇V f)

v3

)
+ Cee(f) (2.34)

where the first term on the right is the electron-ion collision integral based on a relaxation rate

formulation shown by Shkarofsky et al.[62] to be appropriate, and Cee(f) is the electron-electron

collision integral historically ignored. The thermal conductivity is given by the third moment

of the distribution function, eq. (2.13), but we require the non-equilibrium part of the distribution

function. This is done by expanding the distribution function in Legendre polynomials and keeping

only the first two terms.

f(v) = f0(v) + f1(v)cosθ (2.35)

The angle, θ, represents the angle of anisotropy of the distribution in velocity space, and f0 is

taken to be a Maxwellian distribution. Substituting this into the full VFP equation, and keeping

only terms involving cosθ gives

∂f1

∂t
+ v

∂f0

∂z
− eE

m

∂f0

∂v
= −4πnZe4

m2v3
lnΛef1 (2.36)

In steady state (∂/∂t = 0), the first order perturbation is given as

f1(v) = − v4m2

4πnZe4lnΛe

(
∂f0

∂z
− eE

mv

∂f0

∂v

)
(2.37)
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The electric field is solved for with the help of the first velocity moment and the condition that the

electric current caused by f1 must vanish in order to satisfy charge neutrality, yielding

eE = −5

2
kB
dT

dz
(2.38)

Equations (2.38) and (2.37) together give an explicit formula for f1(v), which can be used with the

appropriate moment equation to give the heat flux; the proportionality constant to the temperature

gradient being κth, the thermal conductivity.

κth =

(
8

π

)3/2

G(Z)
(kBT )5/2kB
Ze4m1/2lnΛe

(2.39)

Here, G(Z) ≈ (1 + 3.3/Z)−1 is a fit to take into account the fact that electron-electron collisions,

neglected in eq. (2.34), act to re-normalize the electron distribution function and reduce the con-

ductivity. It was for detailed numerical solutions demonstrating this effect as a simple coefficient

to the Lorentz values that Spitzer and Härm[63] bear the name of this classical theory.

2.3.2 General statement of electron transport coefficients

Often, the coefficients for electron transport are written in a form that dates back to the work of

Onsager[64, 65] on the mutual interaction of irreversible processes. The basic statement is that any

force, F, imposed on a system will result in a current, j, given by

j = L · F +O(F2) (2.40)

where L represents the matrix of transport coefficients, taken to be scalar in isotropic media. Real

systems have multiple currents that are not independent; the set of equations describing i currents

under the influence of j forces can be written as

ji =
∑
j

LijFj (2.41)
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For electrons in a plasma, we can write the relationships for electron and heat currents in terms of

electric field (potential gradients) and temperature gradients a posteriori.

je = LeeE + Leq(−∇T ) (2.42)

jq = LqeE + Lqq(−∇T ) (2.43)

A key feature of the present framework is the reciprocal relation L12 = L21. It can be taken as a

statement that the system will produce the minimum entropy possible; each potential will feel a

restoring force from symmetric potentials in the system.

If L12 = L21 holds true, then the Onsager transport coefficients must have the same units, and

(2.42) and (2.43) are incorrect. The correct forms are given in many texts (e.g., Ziman[66]) as

je = eS11 · [eE + T∇(µ/T )] + eS12 · (∇T )/T (2.44)

jq = −S21 · [eE + T∇(µ/T )]− S22 · (∇T )/T (2.45)

where the electric field force has been broken up into the sum of the force resulting from an external

electric field and the force caused by a temperature-dependent gradient in the chemical potential,

µ. This is often absorbed into E, interpreted to be an observed electric field[66]. The traditional

electrical conductivity is defined under isothermal (∇T = 0) conditions, so one recognizes the

standard coefficient from Ohm’s law, je = σE.

σ(ω) = e2S11 (2.46)

The thermal conductivity is obtained under conditions of no current flow, je = 0, so substituting

(2.44) into (2.45) for E and recognizing the thermal conductivity κth as the term in front of the

temperature gradient yields

κth =
S11S22 − S12S21

TS11

(2.47)
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These equations are general within the framework of small-amplitude perturbations, assuming

these are the only relevant thermodynamic forces within the plasma, so are often the starting point

when calculating transport coefficients. These can be derived from kinetic theory by relating the

first and third moments of the distribution function (obtained through a linearized solution to the

Boltzmann equation) to the electric and heat currents. Solutions of this form using a relaxation

approximation for the collision integral are given by Ziman[66] and Ashcroft & Mermin[67]. More

complicated solutions considering more realistic collision integrals are demonstrated by Lampe[68,

69]. The coefficients can alternatively be calculated from linear response theory using Kubo-

Greenwood current-current correlation functions[70].

2.3.3 The degenerate calculations of Hubbard and Lampe

At the other extreme of the density spectrum is the case of completely degenerate systems, such as

those found in stars with electron densities exceeding 1024 cm−3. Early work by Hubbard[71] per-

formed transport calculations for fully-degenerate and weakly-coupled electrons with intermediately-

coupled ions(Γ < 40). He utilized the Lorentz gas model, assuming that e-e collisions have negligi-

ble impact on the distribution function at sufficiently high degeneracy, and a Kubo-type generating

equation for transport coefficients from linear response theory[72].

Shortly thereafter, Lampe improved the calculation of the thermal conductivity[68] using a

kinetic equation based on the quantum Lenard-Balescu transport equation. The solution used a

Chapman-Enskog linearization of the transport equation[32] that assumed a Maxwellian for the

ions and a Fermi distribution for the electrons. The resulting Fermi-Dirac integrals were approx-

imated using a Sommerfeld expansion, which is an expansion around a small electron degener-

acy parameter[67] (KBTe/EF � 1). Lampe showed that inclusion of the previously neglected

electron-electron interactions led to an insignificant change in the electrical conductivity but found

substantial reduction (25-50%) in the thermal conductivity for the phase space where electrons are

strongly degenerate and the ions and electrons weakly coupled (T > 107 K and 1027 < ne < 1030

cm−3). The inclusion of the dynamic screening through the random-phase-approximation (RPA)
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dielectric function was also shown to reduce the thermal conductivity by a smaller amount.

Following his first paper, Lampe extended his calculation to partially-degenerate plasmas[69]

by again using the quantum Lenard-Balescu equation linearized in the Chapman-Enskog approach.

The Fermi-Dirac integrals are directly represented, and the transport coefficients are expressed us-

ing the first two polynomial approximations, which Lampe states is necessary in the non-degenerate

regime. The primary approximations in this approach were the assumption that all collisions result

in small momentum transfer (weakly coupled), and that the electrons and ions are all statically

screened. The statically screened assumption was a necessary concession required to make the

theory tractable in the partially degenerate regime. Finally, Hubbard and Lampe tabulated the

combined theories of their papers for thermal conductivities in stellar matter[73] where tempera-

tures are typically high enough to satisfy the weak-coupling requirements. This work, like Spitzer’s

for classical plasmas, again reiterated the importance of including electron-electron collisions in

calculating the thermal conductivity, even in degenerate matter.

2.3.4 The Rinker model

One of the early implementations of an average atom (AA) model to calculate dense plasma con-

ductivities was performed by Rinker[74] with the intent of creating wide-reaching tabulated values

for use in hydrodynamic codes. These tables are part of the Sesame library and contain tabulated

electrical and thermal conductivities as well as the average ionization values used in those calcu-

lations. These tables are in common use and will be compared with experimental data in later

chapters.

The early Rinker tables[75], tables ending in the number 1 or 3 (for example Sesame 23711

for aluminum or Sesame 22141 and 22143 for iron), were centered around the calculation of the

electrical resistivity using the modified Ziman formula, described by Evans et al.[76] as

η = − 1

3πα

[
Ω0

Zi

]2
1

Ω0

∫ ∞
0

dε
d

dε
fβµ(ε)

∫ 2p

0

dq q3S(q)σε(q) (2.48)
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where η is the resistivity; Zi is the number of free electrons per atom; Ω0, the atomic volume;

fβµ, the Fermi-Dirac distribution with β = 1/kBT ; q = p′ − p, the momentum transfer; S(q),

the ionic structure factor; σε, the electron-ion cross-section for momentum transfer; α, the fine

structure constant; and ε, the incident energy. Rinker points out that to make use of this relation,

four quantities must be specified—(1) the free electron density, (2) the chemical potential, (3)

electron-ion scattering cross-section, and (4) ion-ion structure factor.

In principle, quantities (1)–(3) can be given self-consistently by an AA code, but simplifications

were made in order to facilitate ease of calculation. The free electron density, Zi, was given as the

integral over the free-electron density of states weighted with the Fermi function:

Zi =

∫ ∞
0

dεfβµ(ε)
dNf

dε
;
dNf

dε
=

Ω0

π2
p(M + ε) (2.49)

In the above equation, p is the momentum, M represents the electron rest mass energy, and ε the

kinetic energy. The chemical potential and scattering cross-section are dependent on the ionic

potential used. Rinker states that standard solutions such as Liberman’s[50] can produce a dis-

continuity in the self-consistent potential which can non-physically impact the low-energy scat-

tering amplitudes. For this reason, he neglects the variational principle and provides his own

potential, given by an interpolation function (in temperature and density space) that asymptoti-

cally approaches a Hartree-Fock-Slater mean-field approximation in the low-T, low-ρ region and

a Thomas-Fermi-Dirac potential in the high-T, high-ρ phase space. The mean-field approximation

potential accounts for the average force an electron feels in the field of the others, but neglects elec-

tron correlations[77]. The chemical potential is determined using this potential and the AA condi-

tion of charge neutrality, with the form of the potential being tweaked on an element-by-element

basis to provide agreement with known melting-point resistivities and feasible conduction-band

electron states. Finally, the structure factor is chosen as a function that essentially interpolates

between the smooth Debye-Hückel form and the strongly peaked Percus-Yevick form.

With the electrical resistivity (and inversely, conductivity) thus calculated, Rinker computes the
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thermal conductivity[78] by taking Lampe’s[69] electrical conductivity and replacing the electron-

ion Coulomb logarithm with one that replicates his values over the entire phase space. The thermal

conductivity exactly follows Lampe’s work, but with this alternate Coulomb Logarithm. The belief

is that this alleviates the reliance on the Born approximation implicit in Lampe’s collision cross-

sections and extends the model validity to strong ion-ion coupling (Γii < 200) while preserving

the validity at arbitrary degeneracy.

An improved version of the calculations—Sesame transport tables ending in 4 (for example

Sesame 22144 for iron)—was later published by Rinker following the first set of tables[79]. The

primary difference in this calculation is that the ionic potentials (and chemical potential) are de-

termined self consistently by partial wave analysis rather than manually, as in the previous calcu-

lations. As before, these potentials blend with a Thomas-Fermi-Dirac potential as the calculation

moves to high temperatures and densities. These potentials directly impact the density of states

and elastic scattering cross-sections. Additionally, the assumed structure factor is taken to be that

of a one-component plasma from the work of Rogers et al.[80].

2.3.5 The Lee & More model

Perhaps the most widely used thermal conductivity model in applied calculations is the model

of Lee and More[13]. Its success can largely be attributed to the ease with which it can be im-

plemented into codes for in-line calculations using different ionization models while maintaining

respectable accuracy over most of the phase space.

The need for a model such as this arose from the increasing demand on computational mod-

els to design and understand laser-driven High Energy Density (HED) experiments in the 1980’s

when the primary models available were those of Spitzer[63] and Braginskii[19]—which are only

valid for fully-ionized, non-degenerate plasmas—or that of Hubbard and Lampe[73]—valid for

degenerate, but still fully-ionized and non-magnetized plasmas.

The model is based on a simple solution to the Boltzman equation with a relaxation time ap-

proximation for the collision operator, where the relaxation time has contributions from electron-
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ion and electron-neutral combined scattering using Matthiessen’s rule, defined as

1

τc
=

1

τei
+

1

τen
(2.50)

with τei = 1/nivσei, and τen = 1/n0vσen. Electron-electron collisions are not included in the

model, and this is expected to have inaccuracies below Z = 5–10 according to the authors[13]. The

Coulomb log is formulated as

lnΛ =
1

2
ln
(

1 +
b2
max

b2
min

)
(2.51)

where bmax is the combination of the ion and electron Debye-Hückel screening lengths, λDH . This

length is degeneracy-corrected, written as

1

λ2
DH

=
4πnee

2

k(T 2
e + T 2

F )1/2
+

4πniZ̄
2e2

kTi
(2.52)

and is used for bmax unless it is smaller than an undefined interatomic distance, R0, commonly

taken to be the Wigner-Seitz radius[81], in which case R0 is used for bmax. The minimum impact

parameter, bmin, is taken as the largest value between the classical distance of closest approach and

the de-Broglie wavelength,

bmin = max
[
Z̄e2

3kTe
,

h

2mevth

]
(2.53)

though the total Coulomb log value is clamped at a minimum value of 2.

The electron transport coefficients for non-magnetized plasmas using Fermi statistics for the

electrons are given as

σ =
nee

2τc
me

Aα
(

µ

kTe

)
(2.54)

κth =
nekkTeτc
me

Aβ
(

µ

kTe

)
(2.55)

S =
k

e
Aγ
(

µ

kTe

)
(2.56)

where σ is the DC electrical conductivity, κth is the thermal conductivity, and S is the thermoelec-
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tric power. The relaxation time for the plasma phase is given by

τc =
3
√
me(kTe)

3/2

2
√

2πZ̄2nie4lnΛ

[
1 + exp

(
−µ
kTe

)]
F1/2 (2.57)

and the Aα, Aβ , Aγ coefficients are given as functions of µ/kT and Fermi-Dirac integrals

Aα
(

µ

kTe

)
=

4

3

F3

[1 + exp(−µ/kTe)](F1/2)2
(2.58)

Aβ
(

µ

kTe

)
=

20

9

F4[1− 16F 2
3 /(15F4F2)]

[1 + exp(−µ/kTe)](F 2
1/2)

(2.59)

Aγ
(

µ

kTe

)
=

5

3

F3/2

F1/2

− 4

3

F3

F2

(2.60)

Fj

(
µ

kTe

)
=

∫ ∞
0

tj dt

1 + exp(t− µ/kTe)
(2.61)

The validity of these equations was tested by numerically calculating the partial-wave scattering

cross-section off of Thomas-Fermi potentials and substituting this into the relaxation-time solu-

tions to the Boltzmann equation, and reasonable agreement was demonstrated over wide condi-

tions.

The model spans a wider phase space than the traditional plasma; Lee and More point out that

(2.57) is only valid in the plasma state and propose different relaxation times in terms of mean free

paths for solid and liquid materials. The melting temperature is defined by

Tm = 0.32[ξ/(1 + ξ)]4ξ2b−2/3 (eV ) (2.62)

where b = 0.6Z1/9 and ξ = 9.0Z0.3ρ/A. The mean free path, lmfp, below melting is defined as

lmfp =


50R0(Tm/T ) T < Tm

50R0(Tm/T )(1/γ) T ≥ Tm

(2.63)
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where γ is, in principle, defined for each metal to match the increase in resistivity upon melting.

However, in practice, it is sometimes set to a constant. The HYDRA simulations described in later

chapters use a value of 1.35 for γ.

Figure 2.4 shows the different regions in which the physical model for the collision time, τc,

changes. Regions 1 and 2 represent the ideal plasma state, with region 2 taking R0 for bmax rather

than the Debye length. Region 3 uses the clamped Coulomb log value of 2 in equation 2.57.

Region 4 represents a minimum conductivity valley where lmfp < R0, and so τ is manually set to

τ = R0/v̄. Finally, region 5 represents the solid and liquid regions where Bloch-Grüneisen theory

is applied. In application, all types of collision time are calculated and the maximum one is used

to generate transport coefficients. The shaded region in figure 2.4 shows the temperature-density

WDM

Figure 2.4: Regions where different models are applied in the model of Lee & More. Warm dense
matter occupies regions 3–5, where model assumptions are the most simplified. Figure adapted
with permission from [13].

space where WDM typically sits; it is clear that an experiment can traverse between regions 2–5

very quickly or exist in all simultaneously. The theory in these regions is quite simple and known

to be questionable. In fact, many experiments, such as those described later in this thesis, largely

fail to access regions in this model where plasma physics-based theory is used.

The traditional Lee & More model was improved by Desjarlais[82] in this low-temperature
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region, with a particular focus on the metal-insulator transition. Correction is made to the ion-

ization fraction, typically calculated with a Thomas-Fermi model, by using a Saha model with

ad hoc pressure ionization correction that is smoothly blended to give Thomas-Fermi results at

high temperature and density. The electron-neutral cross-section, which was constant in the origi-

nal version, was calculated in the Born approximation using a screened polarization potential and

parameterized to be temperature and density dependent. Finally, a new coefficient, p2 ∈ O(1),

was added to allow tuning of the minimum electron relaxation time (region 4) to available data.

Together, these results allowed the electrical conductivity calculation to reproduce measurements

done by DeSilva and Katsouros[83] of exploding aluminum and copper wires in glass capillaries.

2.3.6 The Purgatorio model

Purgatorio[52] is an AA model based on Liberman’s Inferno[51], as discussed in section 2.2.3.

Here, we discuss Purgatorio specifically and how it is used to calculate the conductivities compared

with data in Chapters 4 & 5.

Much of the development work put into Purgatorio centered on how to accurately handle

bound-state resonances. In the model, bound states—those below the chemical potential—are

represented as discrete Eigenvalues. As the density increases and the Wigner-Seitz radius de-

creases, bound states are raised to higher energies. Roughly speaking, when the average radius

for a particular shell is greater than or equal to the ion-sphere radius, it enters the continuum and

becomes a quasi-bound resonance before becoming free[84]. Each shell (s, p, d, f, etc.) has a char-

acteristic shape, and these impact the scattering cross-section quite strongly. These resonances can

be very sharp as they cross the continuum line, and on a finite simulation grid, can be missed in

numerical integrations. This has implications for thermodynamic consistency of EOS tables cal-

culated from numerical derivatives of neighboring density-temperature points[56]. Purgatorio uses

an adaptive-energy gridding method based on Gaussian quadrature[52] and a phase-shift tracking

method[56, 85] to provide very robust numerics and thermodynamically-consistent quantities.

The phase shifts used for tracking numerical stability also have physical significance and are
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the necessary input to calculate the electrical and thermal conductivity. The electrical conductivity

is calculated using the extended Ziman formula[76] as used by Rinker[75]. The primary difference

in calculation of the electrical conductivity results from improvements in the self-consistent field

model (more stringent numerical methods and convergence requirements, and inclusion of a LDA

exchange and correlation potential), slight differences in how the average ionization is applied, and

a different structure factor. The approach taken for the thermal conductivity is entirely different.

The Ziman formula is based on relaxation time approach where resistivity is calculated on the

assumption that electrons in a metal are accelerated until they collide with scattering centers in

some mean time, τ . This is represented in Drude-like form as

η =
1

nZi

(
1

τ

)
(2.64)

where nZi is the charge carrier density. The relaxation time is dependent on the scattering cross-

section and the free-electron velocity distribution, given as

(
1

τ

)
= − 1

3πZ0

∫ ∞
0

σ(ε)
∂f(ε, µ)

∂ε
dε (2.65)

where Hansen[55] points out that Z0 must be the number of free electrons in the ideal density

of states (ignoring quasi-bound resonance contributions), but the number of charge carriers, Zi,

does not have to be. The scattering cross-section in the traditional Ziman formula is based on

the free-electron scattering from a pseudo-potential representation of the ion. These approximate

pseudo-potentials do not accurately capture effects from resonances of quasi-bound states. The t-

matrix formulation of Evans[76] represents the scattering cross-section as the integral of the angle-

dependent differential cross-section over all scattering angles, θ, modulated by the ion structure

factor, S(q), as a function of q where q is the momentum transfer vector, q2 = 2p2[1-cosθ].

σ(ε) =

∫ 2p

0

q3

(
dσ(p, θ)

dθ

)
S(q)dq (2.66)
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The ion structure factors are not calculated self-consistently, and must be specified. The model of

Baiko et al.[86] was chosen. The angle-dependent differential cross-section is given in terms of

Legendre polynomials as

dσ(p, θ)

dθ
=

1

p2

∣∣∣∣∣∑
κ

|κ|eiδκ(p)sin(δκ(p))Pl(cosθ)

∣∣∣∣∣
2

+

∣∣∣∣∣∑
κ

|κ|
iκ
eiδκ(p)sin[δκ(p)]P

1
l (cosθ)

∣∣∣∣∣
2


(2.67)

where Pl and P 1
l are the Legendre and associated Legendre polynomials; p, the relativistic dis-

persion relation such that p2 = ε(2 + εα2); and the scattering phase shifts, δk, are determined

by matching the numeric solution to the Dirac equation within the Wigner-Seitz radius to analytic

solutions outside of it (see Yuan et al. for analytic forms[54]).

The Ziman theory has no direct link to thermal conductivity. In order to incorporate the

electron-scattering physics calculated by Purgatorio, the electron thermal conductivity is obtained

using the Wiedemann-Franz law (see Section 2.3.7) in conjunction with the calculated electri-

cal conductivity[87]. A proportionality constant, the Lorenz number, is chosen from the trans-

port model of Lee & More[13]—specifically, the ratio of equations (2.58) and (2.59)—which is

a function of Fermi-Dirac integrals, the electron temperature, and the chemical potential, which

are self-consistently determined with Purgatorio. In the case of thermal conductivity, the effects of

electron-electron collisions must explicitly be added to the Ziman approach. This is accomplished

by modifying the effective relaxation time (total relaxation frequency) to be the sum of e-e and e-i

scattering contributions, invoking Matthiessen’s rule to give νκ = νei+νee. The e-i relaxation time

is given by eq. (2.65), and the e-e relaxation time is taken from the semi-empirical fits given by

Potekhin et al.[88] and later improved to arbitrary degeneracy by Cassisi et al.[89]. The thermal

conductivity is then given in terms of the combined e-e & e-i relaxation time, τκ and the Lee &

More derived Lorenz number, LLM , as

κth = LLMk
2
BT nZi

(
1

τκ

)
(2.68)
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2.3.7 The Wiedemann-Franz law

Initially proposed in 1853, the Wiedemann-Franz law[90] provides a link between the electrical

and thermal conductivities through the Lorenz number, L, which is a constant for most metals.

κth
σDC

= LT (2.69)

The Wiedemann-Franz law (WFL) was proven valid in the degenerate strong and weak coupling

regimes by Chester and Thellung[72] using the linear response framework of Kubo[91]. They

concluded that it was valid in both regimes, and the Lorenz number took the exact value of

π2/3(kB/e)
2 (note: commonly values of L are quoted by the value of the pre-factor, π2/3 = 3.29,

with physical constants excluded) provided (i) electrons are scattered elastically (by impurities or

lattice vibrations), (ii) the electrons move independently of one another and follow Fermi-Dirac

statistics, and (iii) the Boltzmann equation is valid.

In the non-degenerate case, the Lorenz factor can be calculated using electrical and thermal

conductivities as defined by Spitzer[63]. For a Lorentz plasma, L = 4.0, and with the electron-

electron collisions included, it decreases to 1.5966[92].

The primary requirement ensuring validity of the Wiedemann-Franz law is elasticity of the

electron collisions[93, 67]. In order to break the relationship, we require an effect that can impact

one current (thermal or electric) while leaving the other untouched. The electric charge of an

electron will not change in a collision, so electric current can only change via velocity changes.

However, for thermal currents, an inelastic collision can change the energy an electron carries in

addition to its velocity. Thus, inelastic collisions are expected to break the symmetry.

In warm dense matter, the relationship is not well understood. No experimental validations of

the WFL exist. Several authors have presented Lorenz factors calculated from QMD simulations

of warm dense hydrogen[70, 94] and aluminum [95]. For densities above several g/cc, the results

appear to remain between the degenerate limit of 3.29 and the classical limit of 1.5966. However,

the calculations by Holst et al. demonstrate substantial deviations (up to an order of magnitude)
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for densities of 0.01–1 g/cc and for temperatures of 10–50 kK.

2.4 Equation of State models

The equation of state (EOS) refers to a system of equations that describe the thermodynamical

properties of matter. An EOS describes the relationships between variables that are dependent on

each other such as pressure, temperature, density, entropy, etc. that together fully characterize the

material. The most widely known, basic EOS would be the ideal gas model given (for a plasma)

by

p =
ρ(1 + Z)kBT

Amp

(2.70)

and

ρε =
p

γ − 1
(2.71)

where p is the pressure; ρ is the density; Z, the degree of ionization; A, the atomic mass; ε, the

internal energy; and γ, the ratio of specific heats Cp/CV given by γ = 1 + 2/n for a gas with n

degrees of freedom.

The primary assumption of these relations is that the particles will be weakly interacting. For

a plasma with average kinetic energies greatly exceeding energies from Coulombic potentials—at

high temperatures, low densities, and full ionization—this is a fair approximation. However, for

most HED plasmas of interest, these conditions do not hold, and more sophisticated EOS models

are required to obtain accurate predictions. In the following sections, I discuss the construction of

three commonly used equation of state models—QEOS, LEOS, and Sesame.

2.4.1 QEOS

In 1988, R. M. More et al. introduced a now widely-utilized model called the Quotidian Equation

of State (QEOS)[96]. As the name quotidian—meaning everyday or commonplace—suggests, this

model was designed for simplicity while still maintaining accuracy (better than 15–20%) over the
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wide temperature and density ranges found in ICF and laser-produced plasma experiments. The

work points out the growing use of hydrodynamic modeling to interpret experimental results and,

with that in mind, prioritized features that would allow Z scalability, smooth and numerically stable

functions, and inexpensive computation.

The model’s basic construction relies on the assumption that electron and ion contributions

to the free energy can be treated individually and summed. This approach requires an additional

corrective term to account for chemical bonding effects present at solid density as quantum effects

are not accurately treated. The Helmholtz free energy (from which internal energy, pressure, and

entropy can be derived) of such a model takes the following form:

F (ρ, Te, Ti) = Fi(ρ, Ti) + Fe(ρ, Te) + Fb(ρ, Te) (2.72)

where each of the ion, electron, and binding terms are expressed using often unrelated semiem-

pirical models relevant to that species. This decomposition provides the foundation for most EOS

models and is a big assumption—especially in dense systems. Recent work by Burnett et al.[97]

uses QMD to explore the validity of this. The pressure (p), entropy (S), and energy (E) are related

to the free energy as follows[96]

p = ρ2∂F

∂ρ
(2.73)

S = −∂F
∂T

(2.74)

E = F + TS (2.75)

and thermodynamic consistency is defined as

ρ2

(
∂E

∂ρ

)
= p− T

(
∂p

∂T

)
(2.76)

The electron-thermal contribution is modeled with Thomas-Fermi theory, which is just the

simple case of the AA model discussed earlier where the radial density function is related to the
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self-consistent potential through the Poisson equation. This theory can be scaled based on atomic

mass and charge and is preferred, for this reason, over more accurate electronic structure mod-

els that include exchange, correlation, or improved kinetic energy terms. A single table can be

calculated and quickly scaled for any element or mixture.

The use of Thomas-Fermi theory for the electrons means that at solid density for metals, the

electron pressure is a few megabars. Chemical bonds provide the necessary energy to hold ma-

terial at equilibrium conditions at zero pressure. To account for this, the bulk modulus, B =

ρ(∂ptot/∂ρ)ρ0 , is used to calculate fitting parameters to the semiempirical bonding correction.

Finally, the ion contribution is based on a generalization of the Cowan model[7] which smoothly

transitions from an ideal gas behavior at high temperatures and low densities, to a liquid metal, to

a cold crystal dominated by lattice vibrations at high low temperature and high density. This

is another semiempirical model that scales between solid, liquid, and gas regimes based on the

Debye temperature (ΘD), the melting temperature (Tm), and the Grüneisen coefficient (γs). The

Helmholtz free energy from the ions is given by

Fi =

(
kBTi
AMp

)
f(u,w) (2.77)

where u = ΘD(ρ)/Ti and w = Tm(ρ)/Ti are scaling variables that determine whether the system

is in the fluid, high-temperature solid, or low-temperature solid phases, and f provides the func-

tional behavior of each regime in terms of u and w. In practice, the Debye temperature, melting

temperature, and Grüneisen coefficient are all represented as empirical formulas that are tweaked

to provide agreement with available data.

2.4.2 LEOS

An alternative model available at LLNL is the Livermore Equation of State (LEOS). This model

is the successor of QEOS and reaffirms many of the same computational goals, but makes efforts

to improve specific aspects of the tables. These aspects include the modeling of shock-Hugoniot
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curves, diamond-anvil isotherms, liquid-vapor critical points, and the addition of molecular degrees

of freedom[98]. Away from these portions of phase space, LEOS tables very closely match the

QEOS model.

These improvements are implemented into the overall table structure by including more flexible

fitting functions for the zero-Kelvin energy isotherm, the Grüneisen gamma function, and cold

cohesive energy equation. Specific experimental data such as shock velocity measurements often

display discontinuities at solid-solid phase transitions, which the original QEOS model could not

fit. Break points were added to the fitting process, providing the necessary flexibility to match

these data.

EOS models such as LEOS are pre-calculated onto a logarithmically-spaced temperature-

density grid[99]. A major factor in the accuracy of EOS models as-used is in the numerical inter-

polation methods that hydrodynamics codes use to access the table. Poor interpolation subroutines

can lead to thermodynamic inconsistency and negative-valued properties such as bulk-modulus

and sound speed. For this reason, the LEOS data library contains and is designed to use its own

subroutines to perform bilinear or bicubic interpolation between table values.

Ultimately, each table for a given element, compound, or mixture will be loosely based on

this framework but have normalizations and semiemperical fits to whatever data or trusted detailed

simulations were available at the time of construction.

2.4.3 Sesame

The Sesame collection of tables[100] were one of the first wide-spread, publicly available, tabu-

lated EOS models. The first tables were created by J. Barnes and J. Rood starting in 1971[101],

though many authors have contributed to the large library maintained by Los Alamos National

Laboratory.

The models of the EOS are constructed with the same idea of separable contributions to the

free energy, and various models are employed for the electron, ion, and cold correction curves.

As an example, Figure 2.5 shows the regions where various models are implemented in the
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Sesame 3712 table for aluminum, the descriptions from which can be found in [101]. The ex-

act construction will differ for each table, with less-important elements receiving less detail, and

documentation for each table should be consulted prior to use.

Figure 2.5: Phase space diagram indicating where different models are applied in the Sesame 3712
aluminum table. The shaded region between models, corresponding to WDM, is interpolated over.
Figure reprinted with permission from ref. [101].

2.5 Radiative transfer

When matter exists at elevated temperature such that it is significantly ionized, radiation plays a

strong role in the transport of energy and is a powerful tool in determining the state of the plasma.

The photon distribution function, the specific intensity, I(r,n, ν, t), is described using the 1-D

radiative transfer equation as[102]

[
1

c

∂

∂t
+ µ

∂

∂z

]
I(r,n, ν, t) = η(r,n, ν, t)− χ(r,n, ν, t)I(r,n, ν, t) (2.78)

where r is the radiation position; n, the propagation unit vector; µ = cos(θ) where θ is the angle

between the +z and propagation direction; ν is the frequency; t, the time; η, the emissivity; and χ,

the absorptivity. Equation (2.78) takes the form of a conservation equation. The two terms on the

left describe the change in the specific intensity along a unit vector in time and space. The terms on

the right represent source and sink terms with the emissivity term, η, describing how matter adds
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to the specific intensity as radiation propagates through it and the absorptivity term, χ, describing

how photons are lost (or scattered) by matter as they propagate.

Both of these terms critically depend on ionization distribution and excited state populations.

In Thermodynamic Equilibrium (TE), this is determined by the local state variables such as pres-

sure and temperature. For this condition to hold, elastic collisions must distribute the electrons and

ions into a Maxwellian distribution, and the medium must be optically thick such that all radiation

processes experience detailed balance, forming a Planckian distribution. In TE, the ionization dis-

tribution of the matter is given by the Saha ionization equation (following the notation of Hubeny

and Mihalas[103])
NI

NI+1

= ne
UI
UI+1

(
h2

2πmekBT

)3/2

eχI/kBT (2.79)

where the subscript I represents an ionization stage such that NI , UI , and χI represent the number

density, partition function, and ionization potential of ionization stage I . The excited state popula-

tions denoted by subscript i are determined within an ionization stage by the Boltzmann excitation

equation
ni
NI

=
gi
UI
eEi/kBT (2.80)

where gi is the statistical weight, and Ei is the excited level energy.

In reality, plasmas can never be in TE due to finite sizes, gradients, and boundary layers all

driving the radiation out of detailed balance. In the case where the particle distributions are still

Maxwellian at the local temperature, the plasma may be classified as being in LTE, and the Saha

and Boltzmann equations remain valid. In this situation, parts of the radiation spectrum may be in

equilibrium, but strong lines often are not. For a specific transition to be in LTE, the collisional

de-excitation rate from the upper level must greatly exceed the spontaneous decay rate. Chung et

al.[104] provide a simple estimate of densities for which this occurs, defined as

ne[cm−3] ≥ 1.6× 1012Te[eV]1/2Emn[eV]3 (2.81)

where Emn is the transition energy.
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With the populations determined, the total emissivity (ηtot) and absorptivity (χtot) may be de-

termined. There are contributions from photons created by bound electrons transitioning between

energy levels (bb), photons created by free electrons interacting with bound electrons (bf), and free

electrons colliding with ions (ff). The total emissivity and absorptivity values are assumed to be

the superposition of all of these added linearly and independent of each other. The sums span the

occupation numbers of all levels i, all ions j, and all elements k with u and l representing upper

and lower bounds, written as[103]

χtot(n, ν) =
∑
k

∑
j

[
∑
u>l

∑
l

[nljkφlu,jk(n, ν)− (gl/gu)nujkψul,jk(n, ν)] (Blu,jkhν/4π) +

∑
i

(
nijk − n∗ijke−hν/kT

)
αbfijk(ν) + nenjk

(
1− e−hν/kT

)
αffjk (ν, T )

] [
cm−1

]
(2.82)

ηtot(n, ν) =
∑
k

∑
j

[∑
u>l

∑
l

nujkψul,jk(n, ν)(Aul,jkhν/4π) +

(2hν3/c2)e−hν/kT

[∑
i

nijkα
bf
ijk(ν) + nenjkα

ff
jk (ν, T )

]] [
ergs/cm3/sec/Hz/str

]
(2.83)

where φlu is the line absorption profile; ψul, the line emission profile; Blu, the Einstein absorption

probability; Aul, the Einstein coefficient for spontaneous emission; α, the process-relevant cross-

section; and superscript * denotes the LTE quantity. Thus, with accurate frequency dependent data

for the absorption cross-sections and line profiles for each transition, the radiation transfer equation

(2.78) may be solved.
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2.5.1 Collisional radiative (NLTE) models

When the assumptions of LTE do not apply, such as in boundary layers of stars or optically-thin

laboratory plasmas, more general methods of determining the ionization and population balance

must be used. These models are generally called NLTE or collisional radiative models and are em-

ployed in widely-used simulation codes such as FLYCHK[105], CRETIN[106], or SCRAM[107].

When the Saha and Boltzmann equations are no longer valid, the excited states must be deter-

mined explicitly via a set of coupled rate equations of the form

dni
dt

= ni

NL∑
j 6=i

(Rij + Cij)−
NL∑
j 6=i

nj(Rji + Cji) (2.84)

where NL represents the total number energy levels, and Rij and Cij the rates of radiative and

collisional transitions from state i to j, respectively.

Radiative processes include spontaneous and stimulated decay, photoabsorption, and photoion-

ization. The general form of a radiative rate for a bound-bound absorption transition is given

by[103]

Rij = Bij

∫ ∞
0

∮
I(ν,n)φij(ν,n)

(
dΩ

4π

)
dν = Bij

∫ ∞
0

φij(ν)Jνdν ≡ BijJ̄ij (2.85)

where Bij is the Einstein coefficient for stimulated absorption, Iν is the local intensity given by

the transfer equation (2.78), and φ(ν) is the absorption line shape profile. The reverse downward

process is given by

Rji = Aji +Bji

∫ ∞
0

∮
I(ν,n)ψji(ν,n)

(
dΩ

4π

)
dν (2.86)

whereAji andBji are the Einstein coefficients for spontaneous and induced emission probabilities,

respectively, and ψν is the emission line shape profile (ψν = φν) under the assumption of complete

redistribution (valid when collisional rates greatly exceed radiative rates). It should be noted that a

complete model would require radiative rates for bound-free and free-free interactions in addition
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to the given bound-bound rates.

Collisional processes refer to excitation/ionization by collisions between species within the

plasma, most commonly electrons. These take the general form of

niCij = nine

∫ ∞
v0

σij(v)f(v)vdv (2.87)

where σij is the cross-section of an impact causing transition i → j to occur as a function of the

electron velocity, and f(v) is the electron distribution function. These cross-sections are often

measured or derived from more involved calculations but always depend on local thermodynamic

quantities such as the average ionization, electron density, electron temperature, and electron dis-

tribution function.

Constructing a complete atomic model is a daunting task that requires detailed data or calcu-

lations for the Gaunt factors, the oscillator strengths, the excited state energies, and all relevant

cross-sections. In practice, detailed models are most commonly built using HULLAC[108] or

FAC[109]. The number of available transitions grows rapidly with the atomic number. Figure 2.6

shows the statistical weight (approximately equal to number of transitions) that a detailed model

containing single- and some doubly-excited states may have as the number of electrons increases.

Simply storing a rate matrix that contains 106 transitions may occupy as much as a terabyte of

computing memory[110], causing the problem to quickly become intractable.

A review by Hansen in ref. [110] discusses the balance that must be struck between state-

space completeness and computational tractability. The complexity of NLTE models has led to an

ongoing workshop series in the NLTE modeling community to compare, benchmark, and improve

codes[111, 112, 113, 114, 115, 116, 117, 118].

The high degree of complexity required for NLTE model construction often means any addi-

tional physics is implemented in simplified ways. At high density, ionization potential depression

is frequently incorporated using ad hoc models such as the one by Ecker and Kroll[119] or Stewart

and Pyatt[120]. The line shape function, φν , is sensitive to the uncertainty principle (natural line
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Figure 2.6: Statistical weight per ion in a detailed model as a function of the number of bound elec-
trons. The solid line includes all single excitation states to principle quantum number (nmax = 8)
from valence and first inner shell electron. The dashed line includes double-excited states from the
valence and first inner shells to the same maximum n. The shaded region indicates approximately
where detailed calculations become intractable due to computing limitations. Figure credit to S.
Hansen[110] reprinted with permission.

widths), local electric fields (Stark effects), magnetic fields (Zeeman effects), and velocity distri-

butions (Doppler effects) and can differ for absorption or emission lines, just to name a few. These

effects are often simplified or calculated with external codes at even greater computational expense.

Opacity effects are often neglected entirely, assuming an optically-thin plasma, or integrated via

simplified models such as the escape factor formalism. Great success has been achieved match-

ing experimental plasma spectra to theory, but many assumptions within the calculations remain

untested due to the complexity associated with obtaining sufficiently accurate measurements.

2.5.2 Escape factor approximation

If we take another look at the net radiative transition rate from level j to i,

njR
net
ji ≡ njAji + njBjiJ̄ij − niBijJ̄ij (2.88)
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we see that the solution of the rate itself is dependent on the frequency-averaged mean intensity

J̄ij =
∫∞

0
Jνφij(ν)dν. This is a form of the very quantity we are trying to solve for in the transfer

equation (2.78), and these rates make the rate matrix non-linear and much more costly to solve. The

escape factor approximation simplifies this by calculating an effective spontaneous emission rate—

including the effects of stimulated emission and absorption—that is independent of the radiation

field. This can be expressed as[103]

njAji + njBjiJ̄ij − niBijJ̄ij ≡ njAjiZji (2.89)

where Zji is known as the Net Radiative Bracket (NRB). Using the definition of the line source

function as the ratio of the emissivity to the absorption, Sij = ηij/χij = njAji/(niBij − njBji,),

the NRB can be expressed exactly as

Zji = 1− J̄ij
Sij

(2.90)

This is not immediately helpful as it still depends on the intensity. However, Irons proved that the

emission-weighted average escape coefficient is equal to the emission-weighted escape probability

over the entire volume (known as Irons Theorem[121])

〈Z〉 = 〈Pe〉 (2.91)

where the angle brackets of a function f are given by

〈f〉 =

∫
f(τ)S(τ)dτ∫
S(τ)dτ

(2.92)

and the escape probability is defined as a global probability that a photon created anywhere within

the volume escapes. Thus, if a satisfactory escape probability can be calculated, Irons Theorem

indicates that using the escape factor formalism should be a reasonable approach.
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Since the escape probability is a globally-averaged quantity, its formulation is sensitive to the

geometry and absolute size of the problem. Details of the spectral line shape across the volume

must also be considered. Irons published a series of papers that described, reviewed, and elaborated

on escape factors in the late 1970’s[122, 123, 124, 125].

The approximation is a method of expediting the exact transfer problem, so historically the

escape factors have been solved and tabulated for specific line shapes and symmetric geome-

tries. Mancini et al.[126] have calculated escape factors for Stark-broadened lines and tabulated

them for spherical geometry. Bhatia and Kastner have similarly done so for Doppler profiles in

cylindrical[127] and planar[128] geometries. More recently, Phillips et al.[129] reviewed com-

monly used escape factor formulations (Holstein, Apruzese, Rose, and Capriotti) for 0-D radiation

transfer codes, all of which are presented as approximate analytic formulae as functions of τ0,

the geometric average optical depth at line center. It is stressed that care must be exercised when

choosing the chord along which τ0 is calculated, and it may not be the same for the calculation of

population balance as it is for calculating the observed emission spectrum.

2.6 HED Drivers

All of the experimental studies found in this thesis involve the creation of samples of matter at

extreme conditions. High energy density (HED) material is generally defined as having pressures

exceeding 1 Mbar, or an energy density greater than 1011 J/m3[17]. To create these same conditions

in the laboratory, we require drivers capable of converting solids, liquids, and gases—generally at

ambient temperature—to plasmas in large enough volumes for systematic study.

Technologies in use today capable of accomplishing this feat, include pulsed-power drivers,

long-pulse optical lasers, short-pulse optical lasers, and x-ray free electron lasers. These primary

drivers are frequently used to create intense secondary sources of x-rays, electrons, or ions which

may themselves be used as drivers. Each of these technologies rely on different mechanisms to

couple energy from the driver to the sample, which has important implications for how the system
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equilibrates and evolves. Understanding the physics in these coupling processes remains an area

of focused study essential for complete understanding of these generated plasmas. In the following

sections, I will discuss the mechanisms by which the HED drivers used in this thesis couple energy

to matter at solid density.

2.6.1 Heating with lasers

Since the application of Chirped Pulse Amplification (CPA)[130] to optical lasers, laser systems

have grown increasingly capable of delivering tremendous energy to very small volumes of ma-

terials in extremely short time periods, making them a common choice of driver in the creation

of HED matter. Short-pulse lasers are particularly suited to delivering energy before material has

time for hydrodynamic motion (�100 ps), making them a sensible choice for experimental studies

of transport quantities such as those described in this thesis.

An incoming laser pulse with photon energy less than the material’s ionization energy, Uion,

may directly ionize ambient material by multi-photon ionization, tunnel ionization, or barrier sup-

pression ionization. Multi-photon ionization occurs when the minimum number of necessary pho-

tons (n) interact simultaneously with an atom to overcome the binding energy, imparting a kinetic

energy, KE , of

KE = n~ω − Uion (2.93)

to the now-free electron. Tunneling ionization occurs when the oscillating potential of the laser’s

electric field sums with the atomic Coulombic potential binding an electron

U(x) = −e
2

x
− exE0cos(ωt) (2.94)

and the effective barrier height is reduced. The electrons may then quantum-mechanically tunnel

through the reduced potential well and become free. Barrier suppression ionization occurs when

the laser potential is sufficiently intense that the atomic potential is reduced beyond the ionization

energy, and ionization is achieved directly.
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The Keldysh parameter[131, 132] determines which of these mechanisms is dominant based

on the laser intensity:

γK =

√
Uion
2Up

=

√
2Uionmeω2

0

(eE0)2
=

√
Uion(eV )

1.87 · 10−13I(W/cm2)λ2
µ(µm)

(2.95)

where Up is the ponderomotive potential of the laser. When γK is much less than 1, tunneling

ionization is dominant, and when γK is much greater than 1, multi-photon ionization is preferred.

The intensity of many short-pulse lasers exceeds 1018 W/cm2, so ambient material is rapidly ion-

ized by the rising edge of the laser pulse. As such, the majority of the laser pulse interacts with an

ionized plasma. However, even at intensities as low as 1012 W/cm2, ionization by the nanosecond

pedestal that accompanies CPA lasers is possible and must be considered if a long scale-length

pre-plasma is undesirable. Once a small degree of ionization is present, collisional ionization will

rapidly increase the number of free electrons.

Optical lasers interact primarily with electrons in matter due to the relative mass difference be-

tween ions and electrons and the inability of the ions to move at the laser frequency. The sinusoidal

electric field of the laser causes electrons to oscillate, or quiver, in response. The velocity of the

electron oscillating in the electric field, EL = E0cos(ωt− kz), is given as[133]

posc
mec

=
γvosc
c

=
cE0

mecω0

=

√
Iλ2

µ

1.3× 1018
(2.96)

where posc is the momentum of the oscillating electrons; γ, the relativistic factor; E0, the laser

electric field amplitude; I , the laser intensity in W/cm2; and λµ, the laser wavelength in µm.

Writing laser absorption fractions in terms of the factor Iλ2
µ allows for easy comparison between

laser systems and focal geometries.

In the following sections, I will describe some of the more energetically important absorption

mechanisms that exist in the experiments described within this thesis. In any laser-plasma exper-

iment, many mechanisms will be active simultaneously or at various points during the laser pulse

depending on the exact laser parameters—focal spot, wavelength, intensity, polarization, contrast
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ratio, angle of incidence—and the specific material properties impacting ionization and the created

scale length. Understanding the dominant mechanism(s) allows for a deeper understanding of the

spatial/temporal deposition of energy as well as the energy spectrum and angular distribution of the

excited electrons. This is important in order to understand the deviations from LTE assumptions

under which most models are held. The discussion in this section closely follows Gibbon’s[134]

and Kruer’s[135] texts, unless otherwise mentioned.

2.6.1.1 Inverse Bremsstrahlung

Inverse bremsstrahlung, also referred to as collisional absorption, occurs when electrons are accel-

erated in the incident laser’s electric field and then collide with the stationary ions thereby remov-

ing energy from the electric field. The classical theory for the inverse bremsstrahlung absorption

coefficient is given according to Pfalzner and Gibbon[136] as

κIB = 1.89× 106Zn
2
elnΛ

T
1/2
e ν3

0

(
1− ωp

ω0

)(
1− e−hν0/kBTe

)
[cm−1] (2.97)

Looking at equation (2.97), we can see that inverse bremsstrahlung is most efficient for high den-

sities, high Z materials, and low temperatures. The absorption coefficient is maximized when the

plasma frequency matches the laser frequency at the critical surface. The decreasing efficiency with

increasing temperature is caused by the strong decrease (∝ v−3
th ) of the classical collision frequency

with increasing thermal velocity. It is for this reason that inverse bremsstrahlung is the dominant

absorption mechanism for laser intensities <1015 W/cm2, especially in plasmas with long scale

lengths, but becomes ineffective when high laser intensities create local high-temperature colli-

sionless plasmas.

2.6.1.2 Resonance Absorption

Resonance absorption occurs when the laser is incident at oblique angles and a component of the

laser’s electric field is parallel to the electron density gradient (P polarization). The pulse will reach
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a turning point and reflect at a density below the critical density given by nccos2θ, where θ is the

angle relative to the target normal. An evanescent wave may propagate a characteristic distance

given by the collisionless skin depth, ls = c/ωp, and resonantly excite an electron plasma wave.

The energy in the plasma wave is subsequently dispersed to the plasma in secondary mechanisms

such as particle trapping at low intensities or wave breaking at high intensities.

Naturally, the amplitude of the electric field that may tunnel to the critical surface will de-

pend on the scale length, Ln, and the laser frequency, ω0. Following conventional derivations,

the efficiency of the resonance absorption mechanism is given as a function of the dimensionless

parameter τ = (ω0Ln/c)
1/3sinθ by

φ(τ) ≈ 2.3τe−2τ3/3 (2.98)

The total absorption fraction, fra, given by

fra ≈
φ2(τ)

2
(2.99)

The efficiency, φ(τ), has a global maximum at τ ≈ 0.8. If the scale length is too long, no

electric field can tunnel to the critical surface and excite a resonance. If the scale length is too short,

the electron density modulations that give rise to the electron plasma wave cannot be supported,

and again no resonance will occur[137]. For this reason, resonance absorption is an important

absorption mechanism to consider but is only dominant for specific conditions.

2.6.1.3 Vacuum Heating

Vacuum heating, or ”not-so-resonant” resonance absorption as named by Brunel[138], becomes

important for high intensity interactions on sharp density gradient targets with P polarization. Elec-

trons near the target surface and within a skin depth will experience oscillations in the laser field

approximated by xp ≈ eE0/meω
2 = vosc/ω. These electrons are pulled out of the target, beyond

the Debye sheath, and into the vacuum, then accelerated by the half-cycle of the laser field into the
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target. However, the velocities picked up by the electrons put them beyond the collisionless skin

depth (ls) that the laser can access, and the electrons are lost to the laser’s influence, accelerated

deeper into or through the target as suprathermal electrons. Vacuum heating is one of the important

mechanisms in short-pulse experiments where high contrast and intensity are present.

2.6.1.4 Relativistic j x B heating

When the laser intensity grows sufficiently high, the electron oscillation velocity (vosc) approaches

the speed of light, and the magnetic component of the Lorentz force (evosc × B0) becomes appre-

ciable. The resulting force is recognizable as the ponderomotive force [139]

fp = −me

4

∂v2
osc(x)

∂x
(1− cos(2ω0t)) (2.100)

where the second high-frequency term acts in much the same way as the electric field in vacuum

heating, though the driving frequency is now twice the laser frequency. Just as in vacuum heating,

electrons near a sharp density gradient are pulled into the vacuum, accelerated back into the target,

and shielded from the laser beyond a skin depth resulting in hot electron generation and collisional

heating.

2.6.1.5 Hot electron generation

All of the previously mentioned laser-absorption mechanisms as well as parametric decay instabili-

ties such as stimulated Raman scattering (SRS) or two plasmon decay (TPD) generate suprathermal

electron populations. These populations are colloquially referred to as ”hot electrons,” and much

effort has gone into characterizing how the laser intensity, Iλ2, impacts the temperature scaling.

A review of hot electron temperature scalings from Iλ2 = 1015–1020 W/cm2 is given along with

a comparison of experimental data from 1992–2000 by Gibbon in ref. [134]. At the lower end of

this intensity range, long-pulse mechanisms such as inverse bremsstrahlung and parametric decay

instabilities (arising due to excitation of plasma waves) are responsible for hot electron creation
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and Th ∝ (Iλ2)1/3. At the opposite extreme, with intensities greater than 1019 W/cm2, relativistic

effects dominate, and the temperature is expected to be proportional to the ponderomotive potential

felt by an electron, Th ∝ (Iλ)1/2, commonly referred to as the Wilks scaling after predictions from

early 2-D PIC simulations[140].

These scalings were investigated experimentally by Beg et al.[141] for intensities up to 1019

W/cm2, yielding the commonly-used Beg scaling with Th ∝ (Iλ)1/3. This was experimentally

verified by Chen et al.[142] up to 1021 W/cm2 who found a very similar scaling, Th ∝ (Iλ)0.34.

The discrepancy between the ponderomotive scaling predicted by simulations and experimentally-

validated Beg scaling was explained by Haines[143] as the simple fact that relativistic electrons

will travel a distance greater than the skin depth before seeing even a quarter of the laser wave-

length, and thus will not pick up the full ponderomotive potential.

The effect of these hot electrons is to create high-energy bremsstrahlung, ionization of the

target by generating inner-shell holes (which are most commonly observed as K-alpha radiation),

and to create extremely strong electric fields from the large charge separation of hot electrons and

initially immobile ions. The following several sections will describe how these effects lead to bulk

heating utilized in the experiments in Chapters 4 and 6.

2.6.1.6 Heating by electron refluxing

The full Beg scaling discussed in the previous section[141] predicts hot electron temperatures of

0.2–1.0 MeV for laser intensities of 1018–1020 W/cm2 with a laser wavelength of 1064 nm. For

copper, the range of electrons with these energies is 76–710 µm[144]—much larger than typ-

ical short-pulse laser target dimensions of tens of microns. This means that electrons initially

accelerated by the laser can stream through the target. The highest-energy electrons will es-

cape, rapidly setting up a sheath field, which acts to trap and reflect lower-energy electrons at

both target surfaces. This effect is known as electron refluxing and has been the subject of nu-

merous experimental studies for thin targets where electrostatic field formation is expected to be

important[145, 146, 147, 148].
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An early semi-analytic model was presented by J. Myatt et al.[149] based on the capacitance

created by the escaping electrons in an ideal, electrically-isolated, thin disk. The model relates the

electron temperature (assuming a Boltzmann distribution) (Te), laser conversion efficiency into hot

electrons (ηL→e), heated radius (r), and laser energy (EL), providing an estimate of the refluxing

efficiency, ηr,

κ =
7.08× 10−2rT 2

e

ηL→eEL
=

1

Φ
e−Φ (2.101)

ηr = 1− e−Φ (2.102)

This efficiency is found to be greater than 90% in experiments with favorable conditions for gen-

erating sheath fields[150, 149, 148]. The refluxing efficiency provides a measure of how many

hot electrons remain within the target and deposit their full energy through collisional processes.

This was experimentally diagnosed by measuring the absolute K-α emission from thin targets ir-

radiated with short-pulse lasers. Measurements were compared with a single-pass model and the

refluxing model— which simply assumed that the trapped electrons were allowed to collisionally

slow down—and excellent agreement was found with the refluxing model. This observation was

later replicated by Neumayer et al.[151] who verified refluxing as the dominant mechanism by

comparing K-α emission from thin targets with targets backed with sufficiently thick (5 mm) alu-

minum substrates. This process can lead to efficient heating in excess of 200 eV[148, 152] in the

experiments outlined by Nilson et al., and 800 eV in the case of Nakatsutsumi et al.[147].

2.6.1.7 Heating by cold return current

Another effect caused by hot electrons accelerated via interaction of an intense laser pulse with

solid density target is ohmic heating. This effect was described by Glinsky[153] and further elab-

orated on by Bell et al.[154]. Bell’s calculation estimates the target conditions for a 1 ps, 1 µm

wavelength, 30 µm focal spot laser incident with an intensity of 1018 W/cm2. He finds that the

hot electron population generated by such an interaction generates a 24 MA current; assuming it

remains in a cylindrical volume, this corresponds to a tremendous 3200 MG magnetic field with 5
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kJ of stored energy. This greatly exceeds even the laser energy that gave rise to this electron cur-

rent, and is thus energetically impossible. Therefore, the hot current must be negated by a return

current: jtotal = jfast + jthermal ≈ 0.

We determine the energy deposited in the target material by assuming that the cold current,

given by jthermal = σeE, is supported by a great many thermal electrons that ohmically deposit

energy according to j2
thermal/σe. We expect this to be a very rapid heating method, occurring dur-

ing the laser pulse itself and vanishing once the presence of a hot current vanishes. Particle-in-cell

(PIC) simulations performed by Kemp et al.[155] suggest that in thin targets, the resistive heating

vanishes once the hot electrons reach the back surface and refluxing begins. Experimental work by

Brown et al.[156] on the Orion buried-layer platform—some of which will be described in Chapter

6 of this thesis—indicate that resistive heating is the dominant heating mechanism. The effects of

refluxing were ruled out by using a long-pulse laser to ablate the target’s rear surface, thus de-

stroying the formation of a strong sheath field, and then heating with the short-pulse laser. Similar

temperatures were observed with and without the rear surface disruption. Recent theoretical work

by Compant La Fontaine[157] indicates that for the conditions outlined by Brown[156]—a 50 µm

focal spot with a short scale length and laser-normalized vector potential, a0 = 1—the return cur-

rent heating is actually at a global maximum with almost 40% of the hot electron energy lost to

thermal currents, supporting Brown’s conclusions.

2.6.2 Heating with proton beams

For the experiment outlined in Chapter 4, we used the Titan short-pulse laser and solid Cu foils

to generate a proton beam for isochoric heating. As such, I briefly review the acceleration and

absorption of proton beams using high-intensity lasers here.

Protons and ions are most commonly accelerated via laser using the Target Normal Sheath

Acceleration (TNSA) method[158]. This occurs when energetic, hot electrons are accelerated

through a target resulting in rapid formation of a strong sheath field of magnitude GV/m[134].

Impurity atoms on the rear surface, predominantly made of hydrogen and carbon, are ionized
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(collisionally or by barrier suppression[159]) and accelerated in the strong field up to tens of MeV.

Initial experimental observations of these beams were described by Clark et al.[160], Snavely et

al.[146], Hatchett et al.[161], Maksimchuck et al.[162], and Krushelnick et al.[163]. Researchers

showed that large numbers of protons (>1013) could be accelerated into a beam with a cone of 20–

45 degrees with total conversion efficiencies from laser energy to total proton energy reportedly as

high as 10%.

These proton beams have been used extensively for isochoric heating of matter, both as a

heating source[164, 165, 166] and for direct studies of proton stopping power[167, 168]. Ions

deposit energy due to collisions with bound electrons of the target material according to the Bethe

formula

S =
dE

dx
= −

4πneZ
2
pe

4

mev2
p

[
ln

(
2mev

2
p

Ī(1− v2
p/c

2)

)
−
v2
p

c2

]
(2.103)

where Zp is the particle charge, vp is the projectile’s velocity, and Ī is average ionization poten-

tial. The review by Ahlen[169] outlines many correction terms which may be applied within the

brackets of eq. (2.103) such as relativistic or density corrections, multiple Coulombic scattering, or

nuclear interactions. For the experiment outlined in Chapter 4, only the relativistic correction will

be sizable, and the dominant absorption process will be proton Coulomb collisions with the target

material’s atomic electrons; energy loss due to material ion recoil or nuclear reactions is expected

to be small.

2.6.3 Heating with XFELS

X-ray free-electron lasers XFEL such as the LCLS at the Stanford Linear Accelerator (SLAC)

belong to the fourth generation of advanced light sources. They represent a significant advance

and provide peak brightnesses of >1034 photons/s/mm2/mrad2 0.1% BW—more than 10 orders of

magnitude greater than third-generation light sources[170]. With the use of refractive beryllium

optics to focus the x-ray pulse, the LCLS x-ray pulse can exceed 1x1018 W/cm2, and for the

experiments presented in this thesis, it becomes an excellent, tunable heating source.
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The interaction process differs from the laser heating mechanisms listed above because the

photon energy is now high enough to directly photoionize atoms. In fact, for XFEL energies (1–20

keV), photoionization is the most probable process between photoionization, coherent scattering,

or incoherent scattering. In order to determine which electrons are most preferentially ionized, we

can look at a simple Kramers cross-section[171, 172]

σpi = κ
∑
n

64παa2
0

3
√

3

ωnn

(Zi + 1)2

(
In
hν

)3

(2.104)

where n, ωn, Zi, In, hν, and κ are the principle quantum number, number of bound electrons in the

nth shell, ionization state, ionization energy, photon energy, and a fitting parameter, respectively.

Each electron shell contributes to the cross-section, but the dominant contribution will always

come from the transition with the highest ionization energy, i.e., the inner shells. For this reason,

the primary interaction of an XFEL pulse with a target will always take the form of photoionization

of the highest energy shell the pump wavelength can access.

The extremely high brightness of the XFEL pulse creates a large population of atoms with

singly or doubly ionized K-shells and photoelectrons with kinetic energy equal to the difference be-

tween the drive photon energy and the ionization potential—often several keV. The ionized atoms

will recombine rapidly on the time scale of 10–100 fs, either by autoionization (Auger decay) or by

a radiative process. The fluorescence yield is the factor that describes the probability with which

the excited state will decay by a radiative process rather than an Auger decay. Figure 2.7 shows

the fluorescence yield for a K-shell hole as calculated by Krause[173]. The probability that an ex-

cited state decays by ejecting an Auger electron decreases as atomic number increases. The kinetic

energy of an ejected Auger electron is equal to the difference between the binding energy of the

K-shell hole, the binding energy of the shell the relaxing electron starts in, and the binding energy

the ejected electron starts in. In the case of the most common Auger process, KL1L2, 3—denoted

as such because of the K-shell hole filled by an electron from the L1 shell, and the ejected electron

originating in the L2 or L3 shells—this takes the form Ekin = EK − EL1 − EL2,3. These values
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have been tabulated by Larkins[174], and typical Auger energies are on the scale of 1–10 keV.
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Figure 2.7: Fluorescence (red) and Auger (blue) yield for K-shell vacancies as a function of atomic
number, Z, based on theoretical calculations by Krause[173].

Thus, following the matter’s interaction with the XFEL pulse, the matter is left in a highly

nonequilibrium state with the ejection of keV photoelectrons, keV Auger electrons, and charac-

teristic radiation. For experiments that seek to probe material properties on femtosecond time

scales, the equilibration process is of fundamental interest. This is an active area of study, re-

quiring collisional radiative models with large quantities of accurate atomic data that track both

electron and radiative populations, such as those outlined by Sentoku et al. in ref. [172]. For the

experiment presented in this thesis, the equilibration of the energetic particles is expected to oc-

cur in less than a picosecond, with subsequent equilibration between electrons and ions in several

more picoseconds—much shorter than even the temporal resolution of the instruments—and it is

sufficient to know just the spatial energy deposition.
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CHAPTER 3

Methods

In this chapter, I review the operating parameters of facilities from which the experimental data

presented in this thesis were collected. After discussing the facilities, the main plasma diagnostics

used herein are explained, and performance characteristics such as energy responses and sensitivi-

ties are documented.

3.1 Experimental HED facilities

3.1.1 Titan at the Jupiter Laser Facility

Titan is a kW-class Nd:glass laser housed and operated at Lawrence Livermore National Labora-

tory’s Jupiter Laser Facility (JLF). It is a dual-beam platform, with one long-pulse beam from the

Janus laser capable of delivering 1 kJ of energy in a 1 ns pulse of 1053 nm light, and one short-

pulse (SP) beam capable of delivering 250 J in 1–10 ps pulses of 1053 light. The SP contrast ratio

between the main pulse peak and the nanosecond pedestal is typically 105, with the pre-pulse be-

ginning approximately 3 ns prior to the main pulse arrival[175]. The pre-pulse is measured on-shot

using a calibrated, fast (20 ps resolution) optical diode paired with a fast (12 or 16 GHz) oscillo-

scope. An additional low-energy short-pulse probe beam can be delivered to the chamber which

can be compressed to 0.5 ps or chirped to 100 ps in the fundamental frequency, or doubled with a

beta barium borate (BBO) crystal to a wavelength of 527 nm. The experiment in Chapter 4 used

the short-pulse beam and the probe beam in its uncompressed, chirped, and frequency-doubled
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configuration. The final focusing was performed with an f/3 off-axis-parabola and the spot size

monitored with a far-field monitor on shot.

3.1.2 Callisto & Europa at the Jupiter Laser Facility

At the time of the work done in this thesis, Callisto—previously one JLF’s user facility platforms—

had been converted to a smaller-scale laser to be used for diagnostic calibration. It is a Ti:Sapphire

laser capable of delivering 800 nm, 100 mJ pulses at 10 Hz to the target chamber. This setup is

ideal for the calibration of x-ray crystal spectrometers and x-ray streak cameras, as discussed in

the following sections. Additionally, Callisto’s beam could be converted to 30 mJ of 400 nm light

using a second harmonic KDP crystal. Making use of this along with a Fabry-Perot interferometer

allowed measurement of the temporal resolution of optical and x-ray streak cameras. Utilizing the

same setup, but separating the pulses by a known amount with a micrometer, the sweep linearity

could also be measured.

The Europa laser—another Ti:Sapphire device—was also available as a minimally-supported

platform. In the configuration that existed during the time of this work, it was capable of producing

10 mJ, 100 fs pulses of 800 nm light at a 10 Hz repitition rate to an optics table. The beam was

often frequency-doubled with a KDP crystal and used for calibration of optical streak cameras.

The doubled light was measured using a commercially available Ocean Optics spectrometer to

have a bandwidth of 10 nm and a central wavelength of 405 nm. This provided an ideal calibration

source that was bright enough (photons per picosecond) to calibrate streak cameras on the fastest

sweep speeds. Conventional calibration sources, such as comb generators, do not possess sufficient

brightness and can only calibrate significantly slower sweep speeds.

3.1.3 LCLS at the Stanford Linear Accelerator Center

LCLS, built at SLAC, was the first hard x-ray Free Electron Laser (FEL). In a FEL, an electron

beam is accelerated to relativistic speeds and then passed through a periodic array of alternating-

pole magnetic fields, called an undulator. The magnetic fields force the electrons to begin moving
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in a sinusoidal path, emitting synchrotron radiation whose wavelength is dependent on the undu-

lator period, magnetic field strength, and electron kinetic energy. The electrons are normally out

of phase, and the emitted radiation is therefore incoherent. However, if the electron beam is bright

enough, the intensity of the emitted radiation field will influence the electron beam itself through

the ponderomotive force[176]. This interaction leads to micro-bunching of the electron beam, and

all of the electrons will ultimately bunch into spaces based on the wavelength of the synchrotron ra-

diation. The evenly-spaced electrons will all be in phase and emit coherently, leading to extremely

bright x-ray pulses. This process is known as Self-Amplified Spontaneous Emission (SASE) and

is the primary mode of operation for LCLS. A second mode, known as self-seeding, uses SASE-

produced radiation—spectrally filtered using diffraction off a diamond crystal—to seed a specific

frequency in the primary undulator. This reduces the spectral bandwidth of output pulses by 40–50

times at the cost of total pulse energy[177].

At LCLS, the electron beam is injected part way into the linear accelerator and accelerated to

relativistic energies ranging from 4.3–14 GeV. The undulator is 132 meters long, after which the

electrons are dumped, and the x-ray pulses are transported to one of seven experimental hutches.

Each hutch has a designated purpose and a suite of diagnostics tailored to specific types of study,

which are outlined in a review by Bostedt et al.[178].

For the work in this thesis, experiments were performed at the MEC end station described by

Nagler et al. in [179]. This facility was designed for the purpose of studying WDM and is the

only hutch to pair high-power optical lasers with the FEL. The facility has both a Nd:glass long-

pulse laser and Ti:Sapphire short-pulse laser. The long system can deliver 1 J/ns, up to 25 joules

of doubled light in two separate pulses, with a repetition rate of approximately 7 minutes. The

short-pulse laser can produce 1.5 joules in 50 fs pulses, with a repetition rate of 5 Hz, or amplified

in the final amplifier of the long-pulse system to 7 joules at the long-pulse repetition rate. The FEL

can be tuned from 2.5–11 keV, with pulse energies ranging from 2–4 mJ in SASE mode. The beam

can be focused to sizes ranging from 2–100 µm using beryllium compound refractive lenses. The

pulse duration is 5–200 fs. The beam contains a third harmonic component, but it contains less
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than one percent of the pulse energy and is not focused as tightly by the Be lenses.

3.1.4 Orion at the Atomic Weapons Establishment

Orion is a large-scale laser facility at the AWE in Aldermaston, United Kingdom[180, 181]. Fun-

damentally, it is a Nd:glass laser with ten long-pulse beams that can deliver 500 J of 351 nm light

in 0.1–5 ns, temporally shaped pulses and two short-pulse beams which can deliver 500 J of 1054

nm light in 0.5 ps pulses. For the experiments in this thesis, one of these short-pulse beams is

frequency-doubled to 527 nm and can deliver 100 joules. The maximum energy was limited by

damage thresholds in the sub-aperture doubling crystal. Later, the facility added a second sub-

aperture doubling crystal that could increase the maximum energy to 200 J, but two focal spots

had to be aligned onto the target[182]. As with most Nd:glass systems, the shot rate is limited by

cooling in the gain media, and short pulse experiments achieve 3–6 shots per shot day depending

on the complexity of target alignment.

The target chamber is 4.2 meters in diameter and is equipped with six Ten Inch Manipula-

tor (TIM). These vacuum chambers contain diagnostic payloads insertable into the target chamber

under vacuum and allow image plates to be cycled without venting the larger vacuum chamber.

TIM-based diagnostics are typically aligned with mechanical pointers placed at the target cham-

ber’s center without a target present. Positions are saved, and motion control can return diagnostics

to their correct positions to better than 25 µm. Individual targets are inserted and aligned via the

target inserter and the chamber’s imaging system with an accuracy often greater than 10 µm.

One of the most important features for short pulse experiments is the contrast ratio. Substantial

effort has gone into minimizing the ratio between the nanosecond pedestal and main pulse. The

Orion short-pulse beams demonstrated 10−7–10−8 after initial construction. Later, a Short Pulse

Optical Parametric Amplifier (SPOPA) system was installed after the oscillator, which increases

the pulse energy into the nanosecond-OPA, lowering the gain required and thereby reducing the

amplitude of the ns pedestal. This SPOPA system improved the contrast by three orders of magni-

tude to 10−10, which was reconstructed over a series of shots using two diodes with varied filtering.
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Additionally, frequency doubling was measured to improve the contrast of the infrared pulse (pre-

SPOPA) by six orders of magnitude. The combination of the two could not be measured, but the

total contrast is estimated to be 10−18[181, 183].

3.2 Plasma diagnostics

3.2.1 Ultra-fast Streak cameras

A common tool for making time-resolved measurements—one used in all the experimental work

in this thesis—is the ultra-fast streak camera. Streak cameras operate on the basic principle of

converting incident radiation into electrons and then temporally dispersing, or sweeping, them on

the read out screen. This is schematically illustrated in fig. 3.1.
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Figure 3.1: Conceptual layout of a streak camera. Photons are incident from the left, converted
to electrons via the photoelectric effect, and then accelerated through an anode mesh. The pho-
tocathode surface is imaged to the output surface, usually with electrostatic electron optics. The
electron pulse experiences a time-varying electric field as it passes the sweep plates, resulting in
a different physical trajectory for each moment in time, thereby providing temporal resolution in
one dimension and spatial information along the second.

The best time resolution achievable by a streak camera is conventionally determined by as-

sessing each of the resolution limiting effects and adding them in quadrature, though because the

mechanisms are not fully independent this merely provides an estimate. The most important of
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these effects were described by Murnane et al.[184]:

∆tmin =
√

∆t2dc + ∆t2pc + ∆t2sc (3.1)

where ∆tdc is due to the finite entrance slit size in the temporal direction, ∆tpc is due to the energy

spread in the electron distribution, and ∆tsc represents the temporal spreading due to space charge

effects.

The finite entrance slit impacts the resolution based on its image size on the output screen, ∆x,

and sweep speed, vs, as ∆tdc = ∆x/vs. The fact that emitted electrons aren’t mono-energetic

means that the fastest electrons outrun the slowest, causing broadening of an electron bunch in

time. The presence of an axial electric field, V (z), will impact the propagation time of an electron

emitted with energy eV0 according to[185]:

tpc =

√
m

2e

∫
[V0 + V (z)]−1/2dz (3.2)

In most cases the dominant contribution to ∆tpc occurs where the electrons are moving the slowest—

in the anode cathode gap. Under the assumption that the emitted energy eV0 is approximately

equal to the distribution FWHM, e∆V0, and both are much smaller than the accelerating voltage,

eq. (3.2) may be used to approximate the temporal spread ∆tpc ≈
√
m/2e(∆V

1/2
0 /E). However,

when the time of flight through the streak tube, tdr, is long, the dispersion in the drift region must

also be included as ∆tdr = 0.5 tdr e∆V0/E[186]. Multiple authors have presented models for

space charge broadening in streak tubes, including Kalibjian[187] and Qian et al.[188], and de-

tails will not be presented here. However, this effect quickly becomes the dominant broadening

mechanism in streak tubes if the signal is allowed to become too strong. Space charge acts to

spatially spread propagating electron bunches, increasing ∆tdc, but it can also strongly impact the

electron energy distribution further increasing ∆tpc,dr. Finally, additional effects such as off-axis

aberrations, fringe and leakage fields, electrons born with high divergence angles, finite beam size

within the sweep plates experiencing different sweep field strengths, and chromatic aberration all
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contribute to the final resolution, greatly increasing the complexity of considerations required for

a successful design.

The creation of a streak camera with temporal resolution on the scale of <1 ps requires com-

promise. Typically, the biggest term results from dispersion caused by the width of the electron

energy distribution. This occurs due to fundamental material limitations; currently available x-ray

cathodes (Au, CsI, KBr, etc.) have FWHM widths in secondary electron energy distribution of

approximately 1–5 eV. Thus, to minimize the dispersion, an extremely high extraction field is re-

quired, but again we hit a fundamental limit: DC electric fields break down above 5–10 kV/mm.

With the maximum kinetic energy electrons can obtain set by the breakdown thresholds of vac-

uum, the only remaining lever is reducing the distance electrons must propagate. However, as with

geometric optics, making the optical system shorter is the equivalent of going to a smaller f/#, and

off-axis aberrations become severe, dramatically limiting the length of usable slit a streak camera

may use. For any design, choices must be made about prioritizing performance characteristics such

as usable cathode length, temporal resolution, spatial resolution, and dynamic range. Commercial

devices have already made the choice of what to prioritize, and this should be considered by the

user when selecting a device for a measurement.

3.2.1.1 Optical streak cameras

For the experiments presented within this thesis, optical streak cameras were utilized to make

pyrometry measurements as discussed below in Section 3.2.2.2. The primary difference between an

optical streak camera and x-ray streak camera is the photocathode material used. For optical streak

cameras, the most commonly used photocathode is S20 (SbNa2KCs), with spectral sensitivity in

the range of 350–850 nm. Some applications require sensitivity out into infrared wavelengths, in

which case a S1 (AgOCs) cathode can be used out to 1100 nm, though with less quantum efficiency

through the whole range, as shown in fig. 3.2. The time resolution of optical streak cameras is

often similar to or slightly worse than x-ray streak cameras. The incident photon energies are

1–3 eV in the visible range, and so the primary photoelectrons determine the electron distribution
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Figure 3.2: Response functions for optical streak camera photocathodes S1 and S20. Data from
ref. [189].

function—that is, those resulting from direct photoionization rather than collisional ionization–and

have distribution widths on the order of 0.1–1 eV[189] depending on the material and the incoming

photon energy. This narrow spread results in less temporal dispersion than x-ray streak cameras.

However, these cathodes degrade rapidly in atmospheric conditions, requiring the streak tubes be

sealed within their own vacuum environment. For that reason, optical streak cameras are typically

operated with lower acceleration voltages far from breakdown thresholds, to ensure stability and

increase longevity.

3.2.1.2 X-ray streak cameras

X-ray streak cameras were used for the experiments presented in Chapter 6 to obtain time-resolved

spectral measurements. Typical photocathodes for x-ray streak cameras include Au, Al, CuI, KBr,

KI, and CsI. Devices in the x-ray regime are defined by highly-energetic primary photoelectrons

(and Auger decay electrons), and the electron population used within the streak tube stems from

secondary electrons created by collisional ionization and plasmon deexcitations within the cathode

material. The absorption process as well as the transport and escape of secondary electrons was

investigated theoretically and experimentally in a series of papers by Henke et al.[190, 191, 192].

The width of the secondary electron distribution was found to be significantly broader than primary
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photoionizations due to the stochastic nature of the process but very nearly independent of the

energy of the incoming x-rays in the range of 0.1–10 keV. The simplest photocathode, a thin Al

layer, was found to have a 4.9 eV FWHM with a peak at 1.3 eV, Au a 3.8 eV FWHM and 1.3 eV

peak, and CsI a 1.5 eV width and 0.5 eV peak. Some materials such as KI or KBr have narrower

distributions but 2–5x lower sensitivity than CsI.

Due to its high sensitivity, low peak energy, and narrow secondary-electron distribution, CsI

is one of the most commonly used x-ray photocathodes in streak cameras and the only one used

within this work. Figure 3.3 shows the Henke data for (a) the secondary-electron yield and (b) the

secondary-electron distribution for a CsI transmission photocathode.
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Figure 3.3: Measured response characteristics for a 1020 Åthick Cesium Iodide transmission
photocathodes[192]. Figure (a) shows the secondary-electron yield and (b) the secondary-electron
distribution function with Epk = 0.5 eV and ∆E = 1.5 eV.

At the Orion laser facility, two types of x-ray streak cameras are used. The first, manufactured

by Axis Photonique Inc[193], uses a Photonis bilamellar streak tube, providing independent fo-

cusing of the spatial and temporal axes using a quadrupole lens and pre/post temporal focusing

electrodes. It uses a DC extraction field and a slit acceleration anode, which contributes to its ex-

cellent spatial resolution. It has a manufacturer-stated time resolution of <1 ps, a spatial resolution

40 µm, a dynamic range of 6[194], and 18 mm of usable cathode length.

The second camera—developed by R. Shepherd and colleagues at LLNL to support short-pulse
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laser plasma experiments[195, 196]—is called the TREX. Its pulse-charged photocathode reaches

300 kV/cm, accelerating electrons to 15 kV in the 500 µm (mesh) anode cathode gap, making

it capable of 500 fs temporal resolution. This high acceleration voltage can be applied during

the experiment and then dissipated before the formation of an electronic avalanche, allowing for

orders-of-magnitude improvement in the extraction field when compared with conventional DC

extraction biases. The TREX also uses a bilamellar electron optics design, sketched in figure 3.4,

that allows independent focusing of the spatial and temporal axes. Splitting the focal axes acts

to suppress some of the effects of space charge, relative to cylindrical lens designs, by reducing

electron density at the geometric ray crossover point. There is minimal angular filtering of the
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Figure 3.4: Schematic drawing of the LLNL TREX.

accelerated electrons, resulting in a spatial resolution of ∼140 µm in the center 12 mm of the 28

mm cathode. The high-divergence electrons slightly reduce the spatial resolution but result in an

increased dynamic range of 20–40. A substantial amount of the author’s effort while at LLNL was

directed toward improving the off-axis spatial resolution of the TREX in preparation for a streaked,

high-resolution crystal spectrometer designed to measure time-resolved line shapes at Orion.
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3.2.2 Streaked Optical Pyrometer

In some plasmas of interest—particularly those termed WDM, where the temperature is several to

tens of eV,and the density is near solid—the atoms are not ionized far enough to provide bright

spectral lines. In these instances, another temperature diagnostic is helpful. A Streaked Opti-

cal Pyrometer (SOP) uses the thermal self-emission from a heated material to diagnose the time-

dependent temperature.

Any ideal body in thermal equilibrium with its environment will emit radiation isotropically

into 2π steradians (assuming planar geometry) according to Planck’s law, shown here following

the notation found in Mahan[197] where ib(λ, T ) is the spectral radiance:

ib(λ, T ) =
2hc2

λ5

1

e
hc

λkBT − 1
(3.3)

A feature of Planck’s law is that, for all wavelengths, the value of the spectral radiance will always

increase with temperature. So a 2 eV black body will have less spectral radiance at all wavelengths

than a 3 eV black body. This enables a theoretically simple temperature diagnostic for looking at

any heated material. If one assumes that a plasma is in LTE—that is, Te = Ti—and that the surface

is emitting as a black body, then one can use eq. (3.3) to calculate a temperature from the total

photon count. Figure 3.5(a) shows the generalized Planck function obtained by dividing Planck’s

law by T 5, which represents all variations of the function. The peak is at x = 2.9, in agreement

with Wien’s Law

λmax =
b

T
(3.4)

where b = 2.898 x 10−3 m·K. The second pane in fig. 3.5 shows the function calculated for four

temperatures between 2 and 3.5 eV. The peak emission shifts to lower wavelengths as temperature

increases, but the total emission increases according to the Stefan-Boltzmann law, eb = σT4. From

a diagnostic standpoint, measurement of the temperature will have the greatest sensitivity if the

measurement is made at a wavelength near the peak. This is shown in fig. 3.5(c), where the shortest

wavelength plotted (250 nm) yields the greatest change in emitted power per eV of temperature.

74



0 0.01 0.02

( T) [m K]

0

1

2

3

4

5

i b
(

T
)/

T
5

[1
0

-6
 W

/ 
m

2
m

s
tr

 K
5
]

(a)

0 200 400

Wavelength (nm)

0

1

2

3

4

5

i b
(

)

[1
0

1
7
 W

/ 
m

2
m

s
tr

]

(b)
2 eV

2.5 eV

3 eV

3.5 eV

0 5 10

Temperature (eV)

0

0.5

1

1.5

2

i b
(T

)

[1
0

1
7
 W

/ 
m

2
m

s
tr

]

(c)
250 nm

300 nm

400 nm

500 nmmax @

T=2.898e-3

Figure 3.5: Representations of the behavior of Planck’s Law. Panel (a) shows the generalized
Planck function which has been normalized by T 5 and is only a function of (λT ), (b) shows eq.
(3.3) for several WDM temperatures as a function of wavelength, and (c) shows ib as a function of
temperature at several wavelengths.

Thus, for WDM sources, the ideal measurement would be made in the ultraviolet (UV) or extreme

ultraviolet (EUV) wavelength ranges 100–300 nm. However, sensitivities for the optical streak

camera photocathode, throughput of optical elements, and availability of bright UV calibration

sources all provide challenges to a SOP designed for such short wavelengths. For this reason,

many implementations, including those found within this thesis, opt for visible wavelengths.

An optical streak camera provides a measurement’s time dependence. For the work in Chapter

4, a Hamamatsu C7700 high dynamic range optical streak camera was used with the SOP. For the

experiment discussed in Chapter 5, an ultra-fast Axis Photonique optical streak camera was used.

The energy calibrations of the Axis optical streak camera were performed by collaborators[198],

hence, I will focus on the calibration work I performed on the Hamamatsu camera at JLF. The

general layout of a SOP is shown in figure 3.6.

3.2.2.1 Emission from real surfaces

Planck’s law represents the maximum emission any optically-thick surface can produce; real sur-

faces usually do not emit at this level, especially not at all frequencies. The ratio of a surface’s

actual emitted intensity to that of a true black body surface is known as the emissivity[197]. Such
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Figure 3.6: Schematic layout of the SOP used in this work. The heated region of the target is
imaged with lens fa, transported to the optical streak camera, and re-imaged onto the streak camera
cathode with final lens fb with magnification M=fb/fa. The wavelength range is selected with a
narrow band pass filter (BPF), and the intensity is attenuated with neutral density (ND) filters to
prevent degradation of the temporal resolution due to space-charge effects.

non-ideal surfaces are sometimes referred to as gray surfaces. Note, this is not to be confused with

the grey atmosphere approximation used in radiation transport texts such as Mihalas’s[199], where

the opacity is assumed independent of frequency. Grey surfaces can result in solids due to surface

structure, but in a plasma, they generally result when the plasma is optically thin to the radiation, or

the current material conditions do not possess enough available states to redistribute the radiation

in the wavelength band being observed. The emissivity correction modifies Planck’s law as

iλ,e(λ, T ) = ε(λ) ib(λ, T ) (3.5)

where 0 < ε < 1 is the emissivity.

In a macroscopic description, the total balance of energy at a surface can be described by

1 = R(λ) + T (λ) + α(λ) (3.6)

76



where the reflectivity, R, transmissivity, T , and absorptivity, α, are all normalized to the total

energy in the system. This balance should also include scattered light. If the surface is optically

thick, the transmission is zero, and the absorptivity is simply the difference between the total

energy and reflected portion.

A perfect black body will, by definition, absorb all incident radiation: it is both a perfect emitter

and absorber. However, Kirchoff’s law of thermal radiation extends this to non-ideal surfaces,

relating the emissivity to the absorptivity.

α(λ) = ε(λ) (3.7)

Thus, we arrive at a description of the expected, observed emission for a real surface in terms

of experimental observables:

iλ,e(λ, T ) = α(λ) ib(λ, T ) = (1−R(λ))ib(λ, T ) (3.8)

All SOP measurements from the experiments presented in this thesis are accompanied by reflectiv-

ity measurements in order to make this necessary correction. The material conditions vary rapidly

in time, requiring a time-resolved reflectivity measurement to accompany the time-resolved abso-

lute emissivity measurement of the SOP.

3.2.2.2 Absolute calibration of Hamamatsu optical streak camera

In order to apply the above concepts and develop a functioning SOP diagnostic, an accurate, abso-

lute calibration of the optical streak camera and accompanying optics is required. In this section,

I discuss the calibration work I performed at the Europa laser on the Hamamatsu optical streak

camera.

Obtaining sensitivity of the optical streak camera and CCD readout in counts per incident

joule were the primary goals. For reasons stated in the previous section in addition to the readily-

available Ti:Sapphire, the calibration was performed at 405 nm.
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The compressed Ti:Sapphire beam was doubled using a a Potassium Dihydrogen Phosphate

(KDP) crystal, and the 800 nm fundamental light was dumped using three dielectric mirrors with

>99% reflectivity each. The 800 nm component was minimized at each reflection by varying

incidence angle and viewing the spectrum in real time with an Ocean Optics visible spectrometer.

For energy calibrations, the beam was collimated to a 1 mm spot size. The total energy per pulse of

the 10 Hz beam was measured after all of the transport optics but before the optical streak camera

input using an Ophir pyroelectric energy meter (PE9-F) with an Ophir Vega reader and Starlab

computer software. This setup had a manufacturer-given calibration accuracy of ±7% at 400 nm.

A set of Thorlabs neutral density filters were calibrated by measuring 2000 pulses before and after

each individual filter, and the error—given as the standard error of the mean, σ = σstd/
√
N—was

less than one percent due to good statistics. The standard deviation of the pulse energy was 17.5%

±2.5%.

The optical streak camera was timed in and triggered 50 ns before the light’s arrival at the streak

camera. The fine tuning of the timing delay was performed using a delay box and continuously-

variable delay unit. The Hamamatsu requires focusing of the front and rear optics for the wave-

length being used. The rear is adjusted in a focus mode by maximizing the sharpness of the cosmic

ray readout noise in the intensifier set at high gain. The front optics are set by focusing a resolution

target at the entrance slit back lit by 400 nm light. The front entrance slit was opened fully so that

the entire pulse measured by the calorimeter could enter the streak camera. Care was taken to en-

sure that any surface reflections generated in the optics chain were not measured in the calorimeter

or incident onto the streak camera cathode. Energy calibration was performed at the fastest sweep

window, 0.5 ns, and was used for the experiments discussed in later chapters. Additionally, it was

performed at two gain settings of the unit’s intensifier—30 and 50 (where gain settings can range

from 1 to 60). The 30 femtosecond pulse is much shorter than the optical streak camera’s time

resolution, so with the slit fully open, swept images appear similar to static images of the laser

spot. This is shown for five pulse energies in fig. 3.7. Care was taken to ensure beam smoothness,

with no parts of the laser spot causing non-linear space-charge effects.
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Figure 3.7: (a) Streaked images of the frequency-doubled Europa laser spot at five different pulse
energies recorded with the JLF OSC6 Hamamatsu C7700 with the entrance slit fully open. (b)
Energy calibration measurements for the JLF OSC6 Hamamatsu streak camera. The slopes of
each set of measurements give the sensitivity at 400 nm in CCD counts per incident joule.

The pulse energy was selected using an available combination of neutral density filters, then

taking a 2000 pulse energy measurement of the resulting beam. Thirty single-shot exposures were

taken at each energy on the 0.5 ns sweep speed. The background counts are subtracted from

each image and the total counts within the spot summed within a constant area for all images.

This was performed for a series of 7–9 energy values for gain settings of 30 and 50. Analysis

results are shown in fig. 3.7(b) with the final sensitivities at 400 nm for a gain setting of 30 being

8.41x1018 counts/J, and the gain 50 sensitivity being 6.72x1019 counts/J. This calibration includes

the effects of the input optics, S-20 photocathode, streak tube, intensifier, output optics, and CCD.

Thus, changes to any portion of the instrument render the result prone to error. The most likely

cause for deviation from this calibration would be damage of the photocathode due to incident

light.
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Following the energy calibration, several other aspects of the streak camera performance were

characterized such as the temporal resolution, the actual slit width, the intensifier gain response,

and measurement of the onset of space-charge effects.

(a) (c) (e)

(b) (d) (f)

fwhm = 12.4 pix

Space

Time

fwhm = 15.8 pix

fwhm = 16.7 pix

fwhm = 13.5 pix

fwhm = 10.3 pix

fwhm = 9.6 pix

= 4.5 ps

 = 4.2 ps

= 5.4 ps

= 5.9 ps

 = 7.3 ps

= 6.9 ps

Figure 3.8: Streaked images of the Europa short pulse to measure the temporal resolution of the
OSC6 streak camera. Streaks were taken with a 20 µm slit at positions near the top, middle, and
bottom of the sweep window. The yellow box shows a sample region over which the annotated
FWHM values were taken. Pixels were converted to time using the sweep length of 446 ps (pro-
vided by Hamamatsu) over 1024 pixels.

With a short-pulse laser, the temporal resolution can be measured in one of two ways. The

simplest method is to ensure that the entrance slit is closed far enough that the spatial size (in the

temporal direction) does not limit the time resolution and streak the pulse. The temporal FWHM of

the resulting streak, along with knowledge of the total sweep window, gives the limiting resolution.

These measurements should always be taken with the lowest possible signal to obtain the optimum

response, so the intensifier gain and signal should be maximized. This is shown in fig. 3.8 for

the JLF OSC6 Hamamatsu, where the average time resolution is approximately 6 ps. The

resolution is better near the top of the sweep window than the bottom, possibly due to stray electric

or magnetic fields, imperfect focusing in the electron optics near the edges, or changes in the sweep
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pulse near the edge of the sweep window.
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Figure 3.9: Temporal resolution calibration of the OSC4 Hamamatsu streak camera. Fig. (a)
shows the raw streaked data for six path length differences of the Michelson interferometer arm,
(b) shows calculated Gaussian distributions of equal intensity separated by increasing times, and
(c) shows theoretical peak-to-valley ratios for four time resolutions and experimental results for
800 nm and 400 nm illumination. Results indicate that shorter wavelength illumination produces
increased temporal resolution. The measured resolution is slightly more than 4 ps at 400 nm and
slightly less than 6 ps at 800 nm.

A second and more precise method involves splitting the incident pulse using a Michelson

interferometer. The zero-time position occurs where the interference fringes are strongest, using

the streak camera to view this in focus mode with the slit open. The fringes were only visible at all

over a 200 micron distance, providing experimental verification that the pulse duration was much

less than 1 picosecond. Once the pulses overlap in time, the length of one arm can be increased

with high accuracy using a micrometer and the temporal offset between the two pulses determined

based on the speed of light (300 µm/ps). In this manner, the resolution can be defined at any chosen
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contrast ratio between the two pulses. This method was performed for a second unit of the same

type, the OSC4 at JLF, and shown in fig. 3.9. Additionally, if measurements are taken across the

sweep window, the sweep linearity and length of the sweep window can be measured and verified

for acceptability. A perfect sweep linearity would have zero deviation from a constant mm/ps value

displacement of the electrons within the sweep tube across the entire sweep window.
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Figure 3.10: Supplemental calibrations for OSC6. Figure (a) shows the behavior of the time
resolution as a function of increasing slit width, and (b) shows the increase in signal level as a
function of the intensifier gain settings.

Related to the temporal resolution is the minimum slit size. The minimum time resolution is

a combination of space charge effects, spatial image size, and electron energy spread. Therefore,

beyond a point, reducing the entrance slit will not continue to improve time resolution as other

effects dominate. To determine at what size this occurred, swept images were recorded at the full

range of slit sizes from 5 µm to 1 mm. This can be seen in Fig 3.10 (a). Note that below 100 µm,

the time resolution is approximately constant at 10 ps, indicating that any slit size less than this will

maximize signal and have minimal impact on minimum resolution. The value of 10 ps is higher

than the average value of 6 ps measured in Fig. 3.8, likely because of space charge resolution

degradation. In general, using larger slit sizes permits more signal in experimental configurations

which may be flux starved and minimizes impact of dust/debris and physical imperfections on the

slit.
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At times, experimental data may be collected at gain settings other than those at which the

energy calibration was performed. A calibration of the intensifier gain would be sufficient to scale

the above energy calibration, but it was not available. To provide this data, I collected shots at

seven gain settings at fixed input energy. Due to time limitations, these were single-shot measure-

ments rather than an average, and the intensity carries the uncertainty of Europa’s pulse energy

fluctuation. These results are shown in fig. 3.10(b). The ratio of the mean counts at gain 50 to gain

30 is 8.7, as compared with the ratio of the calibration values at gain 50 and 30 in fig. 3.7, which

is 8.0.

3.2.2.3 Calculation of temperature from SOP data

We now discuss the calculation of temperature from the data. Simply put, Planck’s law can

be solved in terms of observed counts, with the emissivity correction and other geometrically-

measured constants:

Counts(t) = tdwellAsourceΩεFDI(t)

∫ λmax

λmin

Tsystem(λ)BPF (λ) ηOSC(λ)
2hc2

λ5

1

ehc/λkT (t) − 1
dλ

(3.9)

Here, tdwell is the time per pixel determined by the streak camera sweep speed; Asource is the area

of the emitting region determined from the spatially-resolved axis of the streak camera; Ω, the

solid angle of the first collection optic; εFDI , the emissivity ’gray body’ correction determined

from the FDI reflectivity measurement converted to emissivity through Kirchoff’s law; Tsystem,

the transmission through the transport optics chain; BPF , the band pass filter transmission; and

finally ηOSC , the optical streak camera’s response function. This equation is solved iteratively

by guessing temperatures at each time step until the calculated counts match the measurement.

It is also by taking partial derivatives from this equation that the total error contributions from

uncertainties due to various geometrical system measurements are assessed.

83



Figure 3.11: Layout of LLNL FDI used at Titan and LCLS experiments.

3.2.3 Fourier Domain Interferometer

The chirped-pulse Fourier Domain Interferometer (FDI) is a diagnostic designed to measure time-

resolved phase and normalized reflectivity from an expanding surface in short-pulse laser experiments[200].

The basic phase and reflectivity measurement relies on optically probing a surface with a spot large

enough to capture unheated and heated regions. The target surface is imaged onto the input of a

Mach-Zehnder interferometer. Path lengths are kept equal, but the wavefronts are tilted such that

the heated region is interfered with the reference unheated region. The fringe shifts then contain

the phase difference between the heated critical surface and cold critical surface. Time resolution

is achieved by spectrally chirping the probe so that the perturbation to the probe wavefront at any

given time is encoded in a specific wavelength. After the interferometer, the probe is imaged onto a

slit and then dispersed with a spectrometer. The final image is spatially resolved in one dimension

and spectrally (i.e., temporally) resolved in the other. The schematic drawing of the FDI used in

this thesis is shown in fig. 3.11.
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3.2.4 Thomson Parabola

The Thomson Parabola (TP) ion spectrometer provides information on which ion species are ac-

celerated and the energy spectrum of each species. To achieve this, parallel electric and magnetic

fields disperse ion species onto differing parabolic tracks[201]. Fig. 3.12 shows the basic design

of a TP.

N

S

V

Permanent magnet

DC electric field (Image plate) 
Detector plane

Ion source

Pinhole

Figure 3.12: Schematic representation of a Thomson parabola ion spectrometer. Parallel electric
and magnetic fields are applied to a mixed-species ion beam to disperse it in two dimensions based
on charge-to-mass ratio and velocity.

The entrance aperture limits source divergence and therefore plays a role in determining the

total flux and energy resolution. The magnetic and electric fields act on the incoming ion beam

in perpendicular directions. The acceleration on ions from the electric field is only dependent on

the charge-to-mass ratio, q/mi, causing a separation by ion species in the vertical direction in fig.

3.12. The amount of electric deflection, xe, is given in a small-angle approximation by[202]

xe =
q ·
∫
Ed`

2 ·KE

(
D1 +

d1

2

)
(3.10)

where q is the ion charge;
∫
Ed`, the potential between electrodes; KE, the kinetic energy of the

ions; D1, the electric drift length; and d1, the electrode length. The magnetic field separates ion

species by both charge-to-mass ratio and velocity with a deflection, xm, as given by

xm =
q ·
∫
Bd`√

2 ·mi ·KE

(
D2 +

d2

2

)
(3.11)
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where q is the ion charge;
∫
Bd`, integral of the magnetic field across the gap; d2, the axial length

over which magnetic field is applied; and D2, the magnetic drift length.

The resulting data is a two-dimensional image with a zeroth-order dot (where all uncharged

particles and x-rays impinge) and a series of parabolic arcs. Each represents an ion species, with

the distance along the arc containing energy dispersion. Absolute particle counts can be determined

from geometric distances, the entrance aperture, and response data of the film (Fuji BS image

plate).

3.2.5 X-ray crystal spectrometers

One of the most practical ways of diagnosing the extremely small and short-lived laboratory plas-

mas is by looking at characteristic radiation given off by atomic transitions. Atomic transitions

provide information about the electronic and ionic configurations within the atoms of the heated

material. The observed transitions are proportional to the density of specific states which are im-

pacted by the radiation field, collision kinetics, electric and magnetic fields, bulk motion, energetic

particles, and thermodynamic state.

We can measure the intensity of specific transitions using crystal spectrometers. Many crys-

talline materials have lattice spacings of several to tens of angstroms, more suitable to x-rays than

the micron-scale size of most diffraction gratings. For most of the spectroscopy-based work pre-

sented in this thesis, I used crystal spectrometers to view transitions in the 1–10 keV range.

X-ray crystal spectrometers come in varied layouts with a multitude of crystal geometries.

However, all are based on elastic scattering from the electrons of atoms found in periodic crystal

lattice planes. When the path lengths of scattered photons between planes are the same, construc-

tive interference occurs, and x-rays appear to be reflected according to Bragg’s law[203]:

mλ = 2d sin (θb) (3.12)

where m is the diffraction order; λ, the photon wavelength; 2d, the lattice spacing of the crystal;
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and θb, the angle between the crystal plane and the incoming ray. A polychromatic x-ray source,

typically on the scale of 100 µm or less for short-pulse laser-plasmas, acts as a point source that

illuminates the entire crystal. At each Bragg angle, a specific wavelength is ‘reflected’, resulting

in a spectrum on the output screen. The natural divergence of the source provides the necessary

variation in Bragg angle along the crystal, but if more or less dispersion is required, different

spectrometer geometries may be used.

The intrinsic resolution of a crystal is determined by a parameter known as the rocking curve.

This is the range of angles over which constructive interference will occur for a given energy, cen-

tered at the nominal Bragg angle. The width of the rocking curve is determined by imperfections in

the crystal lattice and thus may significantly differ for each crystal type, but may also be strongly

impacted by crystal thickness, bending geometry, and aging. The rocking curve width, ∆θB as

measured in µrad, can be related to an energy uncertainty through Bragg’s law as

λ

∆λ
=

tanθB
∆θB

(3.13)

This provides the crystal intrinsic resolution which is naturally energy-dependent. The integral

of the rocking curve at each energy is known as the integrated reflectivity, which is used for en-

ergy corrections to measured spectra. Thus, mosaic-type crystals like Highly Oriented Pyrolitic

Graphite (HOPG) have excellent reflectivity (broad rocking curves) but poor intrinsic resolution,

where perfect crystals such as quartz have excellent resolution and poor reflectivity.

Finally, to compare the measured data with theoretical models, a spectral sensitivity curve

must be constructed that matches the calculated intensity units [J/cm2/s/Hz/str] to the measured

units, typically [PSL/pixel]. The finite size of detector elements means that the measurement

integrates a ∆t, ∆E, and ∆Ω, and the total energy carried by photons within the pixel is converted

to Photostimulated Luminescence (PSL) (image plate) or secondary electrons (streak camera).

The nonlinear dispersion off of crystals requires the calculation of response functions to account

for the difference in the solid angle and energy width of a pixel along the spectrum. Additionally,
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detector responses and filter transmissions must be included. The total response function relating

the measured intensity (Im) to the theoretical intensity (Ith) is Ith = Im · S, where S is

S = E
4π

Ωpix

dθ

dE

1

Rθ

1

ηdetTfilt
(3.14)

such that E is the energy per photon; Ωpix, the solid angle of a pixel; dθ/dE, the dispersion at film

plane; Rθ the crystal-integrated reflectivity; ηdet, the detector response (cathode, film, or CCD);

and Tfilt, the total filter transmission.

3.2.5.1 Flat crystal spectrometer

The simplest spectrometer geometry, and the one used on the TREX streak camera at Orion, is the

flat crystal spectrometer. The geometry for this layout is shown in figure 3.13. This configura-

θB,max θB,min

Emax

Emin

Origin
Crystal

Film Plane

Source Block

S

L

Figure 3.13: Geometric layout of the flat crystal spectrometer used with TREX streak camera at
Orion laser facility. The streak camera entrance slit is placed in the film plane with a tantalum
block used to exclude view of the source.

tion benefits from simple implementation and ease of obtaining high-quality crystals of sufficient

thickness to get high diffraction efficiencies. Also, the flat crystals are free of strains caused by

bending processes, and data available in the literature—such as rocking curves and integrated

reflectivities—are likely more accurate.
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The dispersion of such a spectrometer on the image plane can be expressed as

E(y) [eV ] =
1.2398

2b [µm]

√
α2 + 1

α
; α =

y + S

L
[cm] (3.15)

where 2b is the crystal lattice spacing, and α is a variable containing geometric lengths defined in

fig. 3.13 with y being the vertical position on the image plane. Rarely is the image plate precisely

located when scanned, making an additive factor necessary to translate the data until the dispersion

relation matches all identifiable spectral features.

In the above geometry, rays in both the dispersive and perpendicular axes follow the inverse

square law. The solid angle of a detector element is calculated as a rectangle at the total path length

of its corresponding spectral ray, Ω ≈ (a · b)/Ltot. The rectangle is the pixel size in the transverse

axis, and the projected pixel size at the Bragg angle in the dispersive axis.

3.2.5.2 Convex crystal spectrometer

In many instances, more spectral coverage is desired than what a flat crystal spectrometer can

provide, making a convex crystal useful. Relative to a flat crystal, this geometry yields more

dispersion (eV/pix) on the front curvature of the crystal and less on the decreasing surface. It

mitigates resolution loss due to source broadening. A typical geometry for this type of instrument

is sketched in figure 3.14, similar to one described by L. N. Koppel and J. D. Eckels[204]. The

layout as shown corresponds to the MKII spectrometer designed and built by the staff at AWE for

the Orion experiments.

The theoretical dispersion is a bit more complex, best solved numerically using the relation-

ships below, with θ as the independent variable:

θB = tan−1

(
S − r · cosθ
h− r · sinθ

)
+ θ = δ + θ (3.16)

α = 2θ + δ = θB + θ (3.17)
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Figure 3.14: Schematic drawing of convex crystal spectrometer geometry used in Orion time-
resolved and time-integrated spectrometers.

y(θ) = (k + rsinθ)tanα + rcosθ (3.18)

Here, y is the height on the image plane, and θ is positive counter-clockwise, zero at the crystal

apex, and negative in the clockwise direction. Figure 3.15 shows a comparison between the curved

and flat crystal dispersions with the flat crystal placed at the apex of the circle for a CsAP crystal

and typical MKII configuration (Table 3.1). Assuming a detector resolution element is 100 µm, as

is the case for image plate detectors, the spectral resolution due to geometry is shown in panel (b).

Beck et al.[205] measured rocking curve widths for CsAP of 1.05 mrad at 1000 eV and 0.22 mrad

at 2500 eV. This corresponds to intrinsic crystal resolutions of 525 and 893. Thus, the limiting

resolution will be due to the crystal material at low energy and due to the geometry at high energy,

with an approximate average of 600.
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Figure 3.15: Comparison of (a) the dispersion and (b) geometric resolution (assuming 100 µm
spatial resolution on detector) for flat and convex crystal spectrometers. The geometry is shown in
fig. 3.14 with parameters in table 3.1.

Table 3.1: Geometric parameters for MKII convex crystal geometry
Parameter Value (cm)

S 53.64
r 50
h 12.5
k 14.2

3.2.6 Fuji BAS-type image plate

Intense short-pulse laser-matter interactions can create harsh environments. Energetic particles and

electromagnetic pulses often make the use of electronic readout devices such as CCDs impossible.

Passive diagnostics like traditional film are also an option, but these have become harder to obtain,

handle, and process. This has led to widespread use of Image Plate (IP) diagnostics—a set of

detectors produced by Fuji Films. They contain a phosphor layer composed of BaF(Br,I):Eu2+.

The Eu2+ ions are photoionized, and the resulting electrons are trapped in lattice defects caused

by the FBr− and FI− anions, called F-centers, where they sit in a metastable state until scanned or

thermally deexcited (faded). The scanner uses a focused 632.8 nm laser to release the metastable

electron from the F-center which recombines with the Eu3+ ions and releases a 400 nm photon.

A photomultiplier tube reads this at each pixel as the plate is raster scanned to form an image.
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The calibrated intensity unit is known as photostimulated luminsecense (PSL). The plates may be

erased and reused by exposure to a white light source.

IPs have excellent sensitivity, good dynamic range, and acceptable spatial resolution. Image

plates come in three varieties—MS, TS, and TR. Each differ in their sensitivities to x-rays, elec-

trons, and protons and are designed for slightly different applications, based on mylar overcoat

thickness and the density/thickness of their sensitive layer. The properties, as given by Mead-

owcroft et al.[206], are listed in table 3.2.

Table 3.2: Fuji BAS image plate layer composition information
Type Mylar layer Phosphor layer thickness Phosphor layer density Phosphor

(µm) (µm) g/cm3

MS 9 112 3.18 BaFBr0.85I0.15

TR - 60 2.61 BaFBr0.85I0.15

SR 8 112 3.07 BaFBr

Image plates were designed for medical and biological industries where sources are typically

brighter than necessary, and feature sizes are larger. Adoption by the laser-plasma community

has led to numerous calibration papers to characterize spatial resolutions, dynamic range, fade

rates, and the absolute responses to photons, electrons, protons, and alpha particles. Generally,

the calibrations must be performed for the specific scanner unit as well as the plates, so a host of

calibrations exist, with most larger facilities performing their own[206, 207, 208, 209]. Generally,

measurements agree in functional form but experience systematic offsets of≈20%. The sensitivity

used to correct IP data for spectroscopic data in later chapters of this work is shown in figure 3.16

and stems from a model described by Boutoux et al.[209]. For all of the spectral measurements

between 1–10 keV, TR image plates are used due to enhanced sensitivity of soft x-rays and the

lowest sensitivity to high-energy x-rays resulting from the intense laser-plasma interaction.
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Figure 3.16: Image plate response functions calculated by Boutoux et al.[209].
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CHAPTER 4

Thermal conductivity measurement of proton heated

warm dense aluminum

4.1 Introduction

Thermal conductivity is an important component in the energy balance and thermodynamic evo-

lution of high energy density (HED) systems. As such, electron thermal conductivity study inter-

twines with that of planetary cores[3, 4, 210, 1], white dwarf cores[88, 89], and in many aspects of

the hohlraum and fuel capsule in current inertial confinement fusion (ICF) designs[12, 14, 15].

HED systems pose a challenge as the classical Spitzer model[63]—derived for a fully-ionized

low-density plasma—breaks down. Many researchers have developed models covering parts of

the HED phase space under various assumptions[71, 73, 93, 76, 13, 82]. However, development of

these transport models is hampered by a scarcity of experimental data. Most models remain largely

unvalidated. This vacancy is commonly filled with ab initio models using Kohn-Sham density

functional theory (DFT) paired with molecular dynamics (MD) simulations[211, 212, 213]. These

models are generally believed to provide the most accurate calculations and are used to validate

or tune simpler models. However, they are computationally expensive and only exist for specific

materials of interest at temperatures below 20 eV and densities above 1 g/cc. Average atom (AA)

calculations, such as Purgatorio[52, 56, 55], try to maintain the best features of the electronic

DFT calculation and implement them into the Ziman framework, preserving the ability to make

predictions over the many decades of phase space required to model an ICF experiment.
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Previous experiments have focused on the measurement of electrical conductivity (or resistiv-

ity) in strongly-coupled and degenerate systems using pulsed-power-driven capillary discharge or

exploding wires[214, 83, 215]. Alternatively, the reflectivity of optical light in short-pulse laser

experiments has also been used to measure AC electrical conductivities[216, 217]. Experiments

such as these provided the majority of data used to benchmark current electrical transport models.

Measuring the thermal conductivity poses a greater challenge due to the additional requirement

of simultaneous spatial and temporal temperature determination. Virtually no thermal conductiv-

ity measurements exist. Konopkova et al.[4] measured the thermal conductivity of high-pressure

iron in a laser-heated diamond anvil cell. However, higher temperatures (Te &0.75 eV) can not be

accessed by such an experiment in a static geometry. Dynamic measurements are extraordinarily

difficult to accurately characterize due to the extremely small temporal and spatial scales and res-

olution limitations of modern diagnostics. However, they are likely required to reach the higher

temperature regions of the warm dense matter (WDM) phase space.

In this chapter, I present the first experimental data of aluminum at 2–10 eV and 0.5–2.7 g/cc

with high sensitivity to the thermal conductivity. These data stem from an experiment performed

at the Titan laser at LLNL’s Jupiter Laser Facility (JLF). We use a short-pulse laser to generate

an intense proton beam and induce a temperature gradient in a multi-layered gold/aluminum tar-

get. Optical diagnostics measure properties at the target’s rear surface as thermal energy conducts

from the hot layer to the rear surface of the cold layer. Data are compared against exhaustive hy-

drodynamics calculations paired with a Helmholtz wave solver to accurately calculate the optical

experimental observables in a self-consistent manner between tabulated electrical and thermal con-

ductivity models. I draw conclusions about the experimental technique as well as the conductivity

models available at LLNL. The experimental setup and design is laid out in Section 4.2; the an-

alyzed data from the diagnostics are presented in Section 4.3; the hydrodynamics simulations are

described and compared with data in Section 4.4; and finally, a discussion of the simulation results

and interpretations is presented in Section 4.5.

95



4.2 Experimental setup at Titan

4.2.1 Differential heating of Au/Al targets using protons

The experimental design for this study is founded on the differential heating of a multilayer target,

as described by Ping et al.[60]. In the case of heating with charged particles, the stopping power

is determined by the Bethe formula[169], eq. (2.103). This illustrates that the energy deposited

by ions increases with increasing electron density and decreasing ionization potential. It stands

to reason that a bi-layer target of very different atomic numbers would experience a temperature

gradient at the interface when exposed to the same proton beam, assuming the beam heats more

rapidly than the heat conduction can equilibrate the layers. Figure 4.1(a) shows the difference

in stopping power for cold aluminum and gold from NIST’s PSTAR database[144]. The greatest

heating efficiency will result from protons in the 0.1–0.2 MeV range, but the ratio of the gold

stopping power to the aluminum stopping power continues to increase with energy. At 0.5 MeV,

gold receives 2.4 times more energy per distance than aluminum. Thus, if we use a short-pulse laser

to generate a proton beam via the TNSA effect, a sharp temperature gradient can be established.

Figure 4.1(b) shows the projected range in gold and aluminum. For targets <<1µm, all but the

lowest energies pass through the target, minimizing longitudinal gradients.

(a) (b)

Figure 4.1: Figure (a) shows the stopping power for protons in aluminum and gold at each mate-
rial’s solid density and ambient temperature; (b) shows the projected range as a function of energy.
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4.2.2 Target design

A schematic drawing of the target geometry used for this experiment is shown in figure 4.2. A

50-µm thick silicon wafer was coated with 100 nm of silicon nitride (Si3N4), then the wafer etched

away. The Si3N4 side was then vapor-coated with gold and aluminum using electron-beam physical

vapor deposition (EB-PVD). A 20-µm thick copper foil was glued to the opposite side to serve as

the TNSA proton source. The open aperture was 1 mm2 with several mm of silicon wafer frame

around it for support. The assembly was glued to a glass stalk for individual shots on Titan.

This design provided a consistent 50-µm gap for all targets, and the EB-PVD layers had excellent

optical flatness—a constraint necessary for the use of face-on imaging optical diagnostics. The

gap spacing was chosen to allow sufficient distance for the divergent proton beam to create a large

heated region, but kept short to minimize the time-of-flight spread in the heating pulse due to the

polychromatic proton beam.

Si Wafer

Si Wafer

Sho Proton beam

100 nm Si3N4

100 nm Au

60-200 nm Al 

20 �m Cu

50 �m

1 mm

Figure 4.2: Target geometry for differential heating using proton heating.

Target thicknesses were determined according to several constraints. The large aperture silicon

nitride window could support 200–400 nm of metal before strain from the EB-PVD layers caused

significant warping. This set the upper limit on total thicknesses without increasing the silicon

nitride layer thickness. The total thickness must also remain low enough to minimize longitudinal

gradients in the proton energy deposition. Alternatively, the layers must be thick enough to remain
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optically thick to the optical diagnostics and contain a sufficient number of mean free paths for

the diffusion-based description of thermal conductivity to be valid. Finally, a balance must be

struck between cooling due to expansion and heat arriving at the back surface due to conduction.

An increased aluminum thickness requires more time for the thermal energy to reach the back.

This results in additional sensitivity to the conductivity model, but also increases the effect of

hydrodynamic cooling, which is undesirable. These two aspects must be balanced to achieve a

temperature that is both measurable and in the targeted phase space.

Full interpretation of the experiment requires a set of targets. Ideally, a set of single-layer gold

and aluminum targets would be fabricated and measured to rule out uncertainties in the EOS and

heat-deposition model for each material separately. This would be followed by a set of double-

layer targets which would—in theory—only be sensitive to heat conduction effects. The diagnos-

tics measure a free surface, so including aluminum layers of varied thicknesses is approximately

equivalent (in the absence of expansion) to probing the heat flux at different spatial positions.

4.2.3 Laser parameters

The Titan short-pulse beam was capable of delivering up to 150 joules of 1053 nm light in ap-

proximately 1 ps. Full-energy shots were attempted but resulted in too much heat, possibly due

to electrons and x-rays, and the proton spectrum was too energetic. It was observed that the en-

tire 1 mm2 of the target became heated, inconsistent with the angular divergence expected of a

proton beam. These other heating mechanisms, while less efficient, are deleterious to the differ-

ential heating concept, so the laser energy was reduced. The data presented within this chapter

were taken using 15 J focused into a 10 µm spot for approximate intensities of 1018–1019 W/cm2.

The probe beam was frequency-doubled to 527 nm, chirped to a 50 ps pulse duration, and used at

S-polarization with approximately 10 mJ defocused onto the target.
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4.2.4 Diagnostic layout

The experiment utilized three main diagnostics. A schematic layout of the target chamber can

be seen in figure 4.3. The Thomson parabola (TP) ion spectrometer was placed at target normal

behind the target to measure the transmitted proton spectrum on each shot. Data were recorded on

Fuji BAS-TR image plate films.

The S-polarized chirped probe beam was transported to the target and defocused onto the rear

surface at 16 degrees from target normal for the FDI. The surface was imaged with a spherical

lens to the entrance plane of the Mach-Zehnder interferometer in the FDI located outside of the

chamber. A detailed layout of the LLNL FDI can be seen in fig. 3.11. Data was read out on an

Apogee U9 CCD, which had a 9 µm pixel size and 27.6 by 18.4 mm active area.

The SOP was set up in the vertical plane, also at 16 degrees from target normal, with the

collection lens being a 25-mm- diameter, f/4-spherical lens. The pyrometer frequency was fixed

using a bandpass filter centered at 406 nm with a 60 nm FWHM width. A Hamamatsu C7700

high dynamic range optical streak camera was used to time resolve the optical emission from the

target. The photocathode material was S20 (Na2SbK:Cs), which provided the greatest sensitivity

at these wavelengths. The absolute response was calibrated for 405 nm light on the 500 ps sweep

window using the Europa laser at JLF (see Section 3.2.2.2 for details). This setup was also utilized

to calibrate all of the optics within the SOP optics chain to<1% error. The optical system response

was measured using CW diode lasers in-situ during the experiment. Laser parameters—such as

the far- and near-field beam profiles, pulse energy, and pre-pulse level—were measured on each

shot with JLF-provided instrumentation.
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Figure 4.3: Experimental layout for thermal-conductivity measurements on the Titan laser facility.

4.3 Results

This section presents experimental data taken from a series of low-energy shots on gold and alu-

minum targets. A gold-only shot (100 nm Si3N4 + 106 nm Au) was taken with 29.3 joules to

characterize the heater layer that would be otherwise be unobservable in the double layer targets.

Single-layer aluminum targets were not available due to fabrication issues prior to the experiment.

Three shots were taken with double-layer targets. Each had the same 100 nm Si3N4 + 100 nm Au

layer, but the final aluminum layers were 59 nm, 105 nm, and 211 nm thick. The laser energies

for these three shots were 15.7, 12.0, and 13.4 joules, respectively. All were taken on the same

day with similar pre-pulse and focal spot characteristics. For simplicity, the aluminum shots are

referred to as 60, 100, and 200 nm thick in the rest of this chapter. The correct thicknesses—as

determined by high-accuracy profilometry measurements at JLF’s target fabrication facility—was

used in all modeling.
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4.3.1 Thomson parabola results

The Thomson parabola was fielded and analyzed by Dr. Joohwan Kim from The University of

California, San Diego. Figure 4.4 shows the analyzed proton spectra. The low-energy cutoff

of the TP was 240 keV. The inset shows the peak of the spectrum on a linear scale. The peak

occurs between 0.5 and 1 MeV, which is near the maximum in the stopping power curve (fig. 4.1),

indicating the experimental spectra are ideal for efficient heating. At this energy, the projected

range in cold material is nearly 30 times greater than the target thicknesses. For this reason, these

spectra—measured in transmission—are taken to be the same as the heating source and used in the

hydrodynamic modeling in Section 4.4. The laser parameters varied on a shot-to-shot basis which

was emphasized in the generation of a secondary proton beam. We found that measurement of

each shot’s heating spectrum is essential to obtain reasonable agreement with models.

Figure 4.4: Proton spectra measured with the Thomson parabola for gold and gold/aluminum
multilayer targets.

4.3.2 Fourier domain interferometry results

The FDI data presented here were analyzed by Dr. Yuan Ping from LLNL and included here

for completeness. For each data shot, the target was aligned and a reference image taken. This

provided the fringe locations and reflected intensity of the unheated target, crucial in accounting

for spectral modulations in the probe beam. Figure 4.5 shows a sample interferrogram of the heated
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region.

Time t = 0

S
p
ac

e

Figure 4.5: Sample FDI image of the heated region from a 15 J shot on a gold + 60 nm aluminum
target.

The system magnification and image quality are measured using a known resolution target with

one arm of the interferometer blocked. The temporal axis is calibrated using a variable delay line

to shift the probe-beam delay relative to the short-pulse laser. A series of shots are recorded to

establish a fit between wavelength and time.

A spatial lineout (vertical in fig. 4.5) will contain unshifted fringes and shifted fringes within

the heated region. The detailed reconstruction procedure is described by Rebibo et al.[200], but

the intensity of such a lineout is described by

I(x) = |f(ω)|2
[
1 +R(x)2 + 2R(x)cos

[
2πx

d
+ Φ(x)

]]
(4.1)

where R(x) and Φ(x) are the reflection coefficient and phase difference we seek; f(ω) is the

spectral envelope; and d, the spacing between unshifted fringes. An inverse-Fourier transform of

this intensity yields three peaks in frequency space: the carrier frequency (located at ±k0 = 2π/d)

of the unshifted fringes will be modified in the heated regions. This peak should be isolated and

Fourier transformed back into the spatial domain to yield the desired information.

The reflectivity is given as a ratio relative to the unheated portion of the image. The ratio is

then multiplied by the room temperature (cold) reflectivity of the target to achieve real values.

Cold reflectivities for each target type were obtained at the experimental angle of incidence and

polarization using constant wave (CW) diode lasers at 400 and 527 nm prior to the experiment.
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Figure 4.6: Analyzed (a) reflectivity ratio and (b) phase shift from FDI measurements.
.

Figure 4.6 shows the analyzed reflectivity and phase data from the experiment. The expansion

velocity proportional to the derivative of the phase shift. As this is more prone to numeric noise,

only the phase shift data are presented. The gold-only target had the slowest reflectivity decay,

which is consistent with it also having the slowest expansion velocity. Thinner aluminum layers

were also observed to expand more rapidly than thicker layers. The error bars were determined

by the statistical variation of phase and reflectivity values within the 70 µm heated area being

averaged.

4.3.3 Pyrometry results

The temperature of the rear surface was measured using streaked optical pyrometry. A schematic

of the diagnostic can be seen in figure 3.6. This diagnostic measures the absolute thermal self-

emission from the heated spot and infers a temperature by equating that emission to the theoretical

emission from a black body at a single temperature. This is known as the brightness temperature.

A correction to this temperature is made—realizing that real surfaces are not perfectly black if they

are reflecting—using the emissivity to obtain an electron temperature. See Section 3.2.2 for details
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on the SOP theory and assumptions.

Making the temperature measurement for this experiment required tremendous care be taken

to properly account for all loses of signal and correctly calibrate the imaging system. The system

magnification and field of view of the SOP were measured by placing a mesh target with 10 µm

bars and 250 µm period at the laser focus and illuminating it with a 405 nm CW diode laser. The

scattered light was imaged onto the optical streak camera in focus mode with the adjustable slit

fully open. From this, the total magnification was found to be 0.83 ± 0.025, and the field of view

was greater than 500 µm on target.

Figure 4.7: Measured response of bandpass filter used to isolate the chosen 405 nm SOP emission.

The system transmission, neglecting the bandpass filter, was measured to be 0.663 ± 0.05

at 405 nm (the central wavelength of the bandpass filter). This was measured using a CW laser

aligned through an aperture at target chamber center (TCC) and another at the streak camera face.

The power was measured with a Thorlabs S120C photodiode power sensor. The bandpass filter had

an average transmission of 0.523, and a frequency response shown in figure 4.7. The manufacturer-

stated extinction ratio was 10−4 outside of the transmitted band. The transport optics used Thorlabs

ultraviolet (UV)-enhanced aluminum mirrors, a fused silica chamber window, and a quartz micro-

scope slide to protect the front collection lens from debris and metal vapor accumulation. The

slide was changed on each shot. The response of the mirrors and transmissive optics varied by

less than 2% over the frequency band, and so their frequency response is neglected in temperature

calculations, using simply the mean value.
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Figure 4.8 shows raw SOP images from two data shots. The measured spot size has a 300 µm

FWHM. Data was taken from the central 70 µm to match the same region averaged in the FDI and

minimize any radial gradients in the data. Signal was abundant, and care was taken to minimize

blooming within the streak camera and preserve the measured spatial and temporal resolutions.

This was achieved by keeping the entrance slit at 15 µm and using calibrated neutral-density (ND)

filters. The time resolution was measured to be approximately 6 ps near the center of the screen.

The entire sweep window was 446 ps over 1024 pixels according to the calibration provided by the

manufacturer. The data was oversampled by a factor of 14, which allowed some averaging to be

performed to reduce signal to noise.

100 nm Au100 nm Au + 100 nm Al

Figure 4.8: Raw SOP images for a 100 nm Au shot (right) and a 100 nm Au + 100 nm Al shot
(left). The intensities of each image have been scaled separately. Temperatures presented below
are taken as the average of the central 70 µm of the heated region, indicated by the white box.

Optical Transition Radiation (OTR) is generated by the relativistic electrons crossing the metal-

vacuum interface[218]. This would, in principle, give an absolute measure of the time the source

turned on. The signal would begin 0.2 ps after the laser-solid interaction. Two MeV protons cross

the 50 µm gap in 2.6 ps, and 0.2 MeV protons cross in 8 ps. The heating due to the protons begins

within one time-resolution element, and the OTR pulse is masked due to the instrumental response.

However, the OTR signal was observed in several gold/carbon shots with less self-emission than

OTR signal. This was due to lower temperatures in those shots. The position was correlated

with an inflection in the rising edge of the signal, and a 6 ps FWHM Gaussian was subtracted to

approximately account for this extra signal.

In order to infer temperature, the total counts within the heated region were summed and the

temperature calculated iteratively using eq. (3.9). Figure 4.9 shows both the brightness temperature
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Figure 4.9: Calculated temperatures for the 100 nm Au shot (right) and 100 nm Au + 100 nm
Al shot (left). Brightness temperature (blue) and electron temperature (red) calculated using the
time-resolved reflectance data.

and corrected electron temperature calculated for the 100 nm gold and 100 nm gold + 100 nm

aluminum shots in order to illustrate the relative importance of the emissivity correction. For these

data, the FDI reflectances (shown in fig. 4.6) are scaled to the cold material values measured at

405 nm. The FDI traces were extrapolated to zero reflectance to maintain continuity in the SOP

data beyond the FDI record.

Theoretical reflectances, calculated using Fresnel equations and complex dielectric function

data from ref. [219], are shown in fig. 4.10. Aluminum has no significant change in reflectivity

between 405 nm and the 527 nm. As such, the FDI will sample a slightly-lower critical-density

surface, but the temporal evolution is expected to be very similar between the 405 and 527 nm criti-

cal surface in Al. However, gold has interband transitions that preferentially absorb blue and green

light. The behavior of the band structure persists even into warm dense matter conditions[220],

and the onset is near 530 nm (2.35 eV). This could result in differences in the optical properties

of the 527 and 405 nm surface for gold, but it will still have a small impact on the correction of

the brightness temperature, as seen in fig. 4.9. This is because of the relatively low reflectivity.

Additionally, the correction becomes insignificant entirely after ≈ 30 ps.

106



Gold Aluminum

Figure 4.10: Theoretical reflectivities from the Fresnel equations for (a) gold and (b) aluminum.
The bands covered by the SOP bandpass filter and FDI probe beam are indicated with shaded areas.

The final temperature profiles are shown in fig. 4.11. As shown, the gold-only shot obtains

the highest temperature with a peak value of 6.7 eV. The hottest double-layer target is the 60 nm

thickness with a peak temperature of 3.3 eV. It is generally expected that the thinner double-layer

targets achieve higher temperatures. This occurs simply because energy from the hot gold layer

arrives at a time when less energy has been lost due to expansion. Thicker targets increase the

distance over which a thermal wave must propagate and the amount of material to be heated,

resulting in lower temperatures. However, shot-to-shot fluctuations of the laser parameters, and

consequently the generated proton spectrum, resulted in similar temperatures for the 100 and 200

nm Al layers.

Rigorous error analysis considered uncertainties due to the magnification measurement, col-

lection aperture size, lens position, system transmission, and other optical properties. Dominant

sources of systematic error included the inferred area of the emitting source, the streak camera

calibration, and the early-time reflectance correction. At times where the emissivity was not 1,

the temperature was assumed to be known to ±15%, and at later times, to ±10%. The statistical

error—determined by the signal-to-noise level—was slightly lower at 5–10%.
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Figure 4.11: Electron temperatures, corrected for emissivity, of the gold-only and three
gold/aluminum target thicknesses.

4.4 Hydrodynamic modeling

The evolution of the aluminum layer is determined by the balance between cooling mechanisms

(PdV and radiative) and heat conducting into the layer. To analyze an integrated experiment

such as this, we turn to 1-D, Cartesian-geometry, Lagrangian hydrodynamic simulations using

the LLNL-developed code, HYDRA[221]. HYDRA is a multi-dimensional, multi-physics, arbi-

trary Lagrangian-Eulerian (ALE) radiation hydrodynamics code. It takes input tables for the EOS,

opacity, and thermal conductivity and uses simplified, in-line models for electron-ion equilibration

and ionization to solve Euler’s fluid equations on a mesh.

We employ two temperature simulations which track electron and ion temperatures indepen-

dently. Electron-ion energy equilibration is calculated using a collision rate determined by the Lee

& More model[13]. The proton-heating source is implemented using HYDRA’s heavy ion beam

deposition model, which calculates the slowing down and energy deposition of protons based on

the data of Betz[222] and a model developed by Tech-X Corporation based on Peter and Meyer-

ter-Vehn’s work[223]. The on-shot proton spectrum measured with the TP (figure 4.4) is initialized

at t = 0, 50 µm from the target. The heating source lasts approximately 7 ps, based on the time-of-
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flight spread of protons traversing the gap. This is shown for the three aluminum shots in fig. 4.12.

Using the transmitted proton spectrum as the source is expected to be acceptable due to the negli-

gible slowing down of MeV protons in these ultra-thin targets. The only fitting parameter used is a
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Figure 4.12: Energy-deposition rates used in HYDRA simulations for each target thickness.

source multiplier to scale the divergence angle of the proton beam. The final value, approximately

14◦, is reasonable considering that the central 70 µm corresponds to a 10–15◦ divergence angle

of the 300 µm spot. The total spot size corresponds to the expected divergence angle of TNSA

protons (≈40–60◦). The value of this fitting parameter is determined from the gold-only shot and

left fixed for all remaining shots. Radiation transport is included using multi-group implicit Monte

Carlo[224] with frequency-dependent opacity values generated by the LLNL opacity server. Op-

tical wavelengths were resolved, though it was found through numerical testing that the radiation

transport resulted in negligible energy transfer when compared with electron-thermal collisions.

4.4.1 Tabular EOS models

The EOS model used affects the calculated expansion velocity and rear surface temperature. At

the time of this work, two EOS models were available to test for gold—Sesame 2700[101] and

LEOS 790[96, 98]. Aluminum is a common prototype material, and more robust models exist.

Three aluminum EOS models were compared—Sesame 3720[225], LEOS 130, and Lynx 130.
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The Lynx tables utilize the same methodology as the LEOS tables, but use the AA code Purgatorio

to calculate the electron-thermal contribution to the EOS. This approach includes effects from

electron orbitals that the other Thomas-Fermi approaches average out.

This experiment relies primarily on the behavior of the EOS in material that is unloading,

or releasing, into vacuum. Figure 4.13(a) shows the temperature of an isentropic release from

a Hugoniot calculated from 2.7 g/cc and 5 eV for the three aluminum EOS options tested. As

shown, Sesame 3720 and LEOS 130 predict similar temperatures as the profile expands, but Lynx

130 cools significantly faster. It is visible in (c) and (d) that the pressures and sound speeds are

similar for all three models. The largest variance in EOS temperatures arise due to calculation

differences of the specific heat (b). The structure in the specific heat at Te = 3.5 eV may not

be physical and could be the cause of the rapid temperature drop in the isentropic release shown

in (a). From these plots, we can expect similar physical characteristics but potentially different

temperature predictions.

4.4.2 Tabular electrical & thermal conductivity models

Four conductivity models were available to test: Lee & More[13], Purgatorio[52, 55], Sesame

23714[79], and Sesame 29373[82]. Sesame 23714 is based off of Rinker’s AA calculations, out-

lined in Chapter 2. Sesame 29373 was generated by M. Desjarlais following the methodology laid

out in ref. [82] and tuned to match QMD simulations. These models are referred to as LM, PG,

SS (or Rinker), and LMD respectively. Figure 4.14 shows the values thermal and electrical con-

ductivities at 2.7 and 0.5 g/cc versus temperature. At 10 eV and solid density, all models agree to

within a factor 2.5. This grows to a factor of 10 at 2 eV. As the density decreases, the number of

conduction electrons created through pressure ionization decreases and the thermal conductivity

drops rapidly below 5 eV.
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Figure 4.13: Comparison of aluminum EOS quantities for Sesame 3720, LEOS 130, and Lynx
130: (a) shows an isentropic expansion from a Hugoniot starting at 5 eV and 2.7 g/cc, (b) shows
the specific heat Cp, (c) the pressure, and (d) the sound speed.
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4.4.3 Helmholtz wave solver

Hydrodynamics calculations provide temperature and density on a spatial grid. Comparison of

such a simulation with measurement requires determining exactly which surface the diagnostics

see and what its optical properties are. The simplest estimate of this surface is the electron critical

surface at the probe wavelength. However, as the plasma expands and the scale length increases,

there will be significant underdense plasma in front of the critical surface. The reflected wave

energy, in the WKB (Wentzel-Kramers-Brillouin) approximation, decays as exp(-8ν∗eiL/3c) for

a linear scale length where L is the scale length and ν∗ei is the electron-ion collision frequency

at the critical surface[135]. Thus, the optical behavior will depend equally on the collisionality

of the plasma and the density gradient. Real systems will not have linear scale lengths, and the

optical signatures will stem from a range of conditions with varied collision frequency. The most

consistent way to model optical diagnostics is achieved by solving the Helmholtz wave equation

for each time step of the hydrodynamics calculations.

The method has been used by Milchberg and Freeman to study short-pulse laser absorption

in short scale lengths[226] and employed in the context of optical measurements of shock break-

outs for EOS measurements[227]. In this work, I follow the computational study by Celliers and

Ng[228], to construct a complex dielectric function and model the optical response of the expand-

ing layer. The Helmholtz solver used was described by Gibbon[134]. Gibbon’s solver was adapted

from Fortran to Matlab and expanded to include the Lee & More conductivity model by Dr. Elijah

Kemp of LLNL. It was further modified by the author to include P polarization, and accept tabu-

lated electrical-conductivity input and include the spatial-absorption profile calculations necessary

for modeling the SOP.

The Helmholtz equation describes the propagation of electromagnetic waves through inho-

mogeneous plasma. It is solved independently for S and P polarizations. The problem geometry

assumes an electron-density gradient oriented along the x-axis. For S polarization, determining the

z-component of the electric field (Ez) entirely determines the problem. The Helmholtz equation is
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given by
∂2Ez
∂x2

+ k2
0(ε− sin2θ)Ez = 0 (4.2)

where k0 = ω/c is the vacuum wave number, θ is the angle of the Poynting vector relative to

the x-axis, and ε is the dielectric function. For the case of P polarization, the problem is entirely

determined by the z-component of the magnetic field, and the Helmholtz equation is

∂2Bz

∂x2
− 1

ε

∂ε

∂x

∂Bz

∂x
+ k2

0(ε− sin2θ)Bz = 0 (4.3)

The other components of the fields can be retrieved using Maxwell’s equations[134]. These equa-

tions are numerically solved using finite-differencing and appropriate assumptions about the trans-

mitted wave and vacuum boundary conditions.

The dielectric function is given by

ε(z) = 1 + i
4πσ(ω, z)

ω
(4.4)

where σ(ω, z) is the frequency- and space-dependent electrical conductivity. We have chosen the

Drude model for this function, so σ(ω, z) is defined as

σ(ω, z) =
σ0

1− iωτei
(4.5)

where σ0 is the DC electrical conductivity, and τei is the electron-ion collision frequency. For all

models compared within this work, σ0 and Z are tabulated or calculated with simple formulas. As

such, the collision time is obtained using

1

τei
=
Znie

2

mσ0

(4.6)

where Z is the average ionization; ni, the ion density; m, the electron mass; and e, the electron

charge. It is important to note that some degree inconsistency may enter at this point. Some
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physical pictures—such as the average atom (AA) model in Purgatorio—calculate τei and σ0 self-

consistently. Equation (4.6) may not exactly match the self-consistent calculation. The average

ionization is vaguely defined in such a model[55], and flexibility exists. Here, we choose eq. (4.6)

to more readily compare DC electrical conductivity models using the same ionization model across

the comparison. When Purgatorio is tested without using the TF ionization, I use the definition

Zfree =
∫∞

0
f(ε, µ)X ideal(εdε), which counts the free electrons in the ideal density of states for

an electron gas using the self-consistent chemical potential but ignores quasi-bound resonance

features due to loosely-bound shells.

To summarize, we take model input for the DC electrical conductivity and average ionization.

We further assume the Drude model is appropriate, allowing for the construction of a complex di-

electric function dependent spatially on temperature and density. This is then used in the Helmholtz

equation to solve for the electric and magnetic field components in space. The total reflectivity

may be calculated from the incident and reflected wave amplitudes as Rsλ(θ) = |Er|2/|Ei|2 and

Rpλ(θ) = |Hr|2/|Hi|2 for each polarization. This allows direct comparison of different electrical

conductivity models with the time-resolved FDI data.

Calculating the temperature the SOP sees requires a spatially-dependent absorption profile.

This is calculated for each zone along the spatial mesh as 1
2
Re(σ)|E|2, which yields an absorp-

tion coefficient with units of cm−1. This is integrated along the mesh, yielding a total absorption

fraction. This value should obey the relation A = 1− R, where R is the total reflectivity—useful

as a consistency check. We assume that light emitted within the target will have the same re-

flective/refractive behavior as if it had been incident on the target. The target has a temperature

gradient, so the total emissivity is calculated using Kirchoff’s law as

S(θ) =

∫ z

−∞
α(z′)Iλ(T (z′))cosθdz′ (4.7)

where α(z′) is the local absorption coefficient, and Iλ(T (z′)) is the black-body intensity at the local

electron temperature. This is performed for all visible frequencies, and the intensity weighted by
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the bandpass filter response and summed. This total emissivity may then be compared with the

emissivity from a single black body temperature to get a brightness temperature, or paired with the

calculated reflectivity to get a ‘corrected’ temperature as was done with the SOP data (fig. 4.9).

4.4.4 Gold simulations

Figure 4.15 shows the simulation results for the 100 nm gold target. The left column contains

simulations using LEOS 790, and the right column, simulations using Sesame 2700. The in-line

Lee & More (LM) model was used for all thermal conductivities, but the observed temperature and

reflectivity were calculated using electrical conductivities from Purgatorio (PG) as well as with

Purgatorio using the TF ionization calculated by HYDRA (PGTF). Single-layer targets are not

sensitive to the value of thermal conductivity because of the volumetric heating source. This was

confirmed with numeric simulations that arbitrarily scaled the thermal conductivity up and down

by factors of 10. Thus, the electrical conductivity model will demonstrate the uncertainty in which

surface within the gold is viewed by the SOP.

The temperature matches between 30–100 ps for LEOS. Sesame falls within the error bars, but

the temporal slope is quite different. Remembering that the primary source of error is systematic in

nature, the cooling rate in the data should be accurate. Scaling the amplitude of the heating source

within error bars simply shifts the temperature curve up and down, leaving the temporal evolution

trace unchanged. No value of the multiplier leads to a temperature match with s2700. The phase

shift of the critical surface using L790 also provides an excellent match to the data while the s2700

simulation predicts a slower expansion of the critical surface. This is consistent with the rapid

cooling seen in the s2700 temperature curve. Lower temperature leads to a drop in the ionization,

and the critical surface moves deeper into the target where the expansion is slower. Finally, looking

at the temporal reflectivity traces, both simulations do an adequate job with neither matching the

entire time history but both having the correct general trend.

The early-time temperature in both calculations does not match the data. The cause of this is an

open question. During the heating phase, the electron subsystem will be driven from equilibrium
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Figure 4.15: Modeling results for 100 nm Au data. The left column shows results using LEOS 790,
and the right column shows Sesame 2700. All calculations use Lee & More thermal conductivity
(LM), but the density profiles were also processed with Purgatorio (PG) electrical conductivities
using the Purgatorio ionization and the Thomas-Fermi ionization (PGTF). At the top, (a)–(b) show
the effective temperatures calculated from the Helmholtz absorption profiles. The phase of the
expanding 527 nm critical surface is shown for both cases in (c)–(d). Finally the reflectivity calcu-
lated using the Helmholtz solutions at 527 nm is shown in (e)–(f).
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for an unknown amount of time. The present models (EOS and electrical conductivity) are poorly

defined for non-equilibrium systems and unpredictable results may occur. However, measurements

in proton-heated tantalum indicate an electron-ion equilibration time of 0.5 ps[229]. This would

suggest that non-equilibrium conditions should not persist for longer than 10 ps—several picosec-

onds past the end of the heating pulse. Another possibility is the early-time band structure of gold.

The green probe will exhibit a distinct, non-Drude behavior due to the onset of conduction band

transitions. Though not expected, it is possible that band-structure effects last beyond the first sev-

eral picoseconds. Regardless, our aim with the gold data is to fix the heating source and gold EOS.

The late-time behavior is sufficient to accomplish this.

The above comparisons make LEOS 790 the preferred gold EOS for these simulations. It is

important to be clear at this point: the proton-source multiplier determined with the single-layer

data impacts the final conclusions. However, the single-layer data remains the best choice to fix

this free parameter. It is not sensitive to the choice of thermal conductivity model, and it does not

have interface effects. Fortunately, the electrical conductivity model does not play a large role in

temperature amplitude. In anchoring the divergence of the proton source using gold, we rely on

the proton stopping-power calculation being as correct for gold as it is for aluminum.

4.4.5 Aluminum simulations

With the proton heating source fixed, we now consider how the data can constrain the aluminum

EOS and conductivity models. There are three available EOS models—LEOS 130, Lynx 130,

and Sesame 3720—and four thermal conductivity models—Lee & More[13], Purgatorio[52, 55],

a Sesame table based on Rinker’s calculations[79] (s23714), and a Sesame table based on the Des-

jarlais improvements to the Lee & More model[82] (s29373). Each of these thermal conductivity

models is accompanied by a DC electrical conductivity and average ionization table. In the fol-

lowing simulations, electrical and thermal conductivities are always paired to keep the collision

physics consistent. The temperature and reflectivity calculations are presented using the model’s

native ionization table as well as with the in-line TF ionization in the calculation of collision time,
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τei. These are denoted in plots, for example, as PG for Purgatorio with its native ionization, or

PG-TF for Purgatorio with a Thomas-Fermi ionization model. All permutations of these mod-

els are considered. The combination of phase, reflectivity, and temperature data provide a strong

constraint on all modeling parameters.

(a) (b) (c)

60 nm Al 100 nm Al 200 nm Al

Figure 4.16: Comparison of the simulated 527 nm critical surface phase shift with FDI data. Color
depicts the thermal conductivity model used and is shown in the legend.

First, we consider the phase-shift measurement. The phase shifts for all cases and target thick-

nesses are shown in fig. 4.16. As shown, phase shift is only weakly dependent on EOS and thermal

conductivity model, with all models agreeing to better than 5%. Purgatorio is the highest-valued

thermal conductivity model and has the highest phase shift, and s23714 has the lowest-valued

thermal conductivity and phase shifts, but all are within the error bars. Nonetheless, it boosts con-

fidence that the pressure and expansion predicted by the EOS options remain close enough that the

phase shift differences are indistinguishable.

Figure 4.17 shows the reflectivity calculations for S polarization at 527 nm for all simulation

cases. Each column represents simulations from an EOS and each row from a target thickness, as

indicated by headers. For the 60 nm Al target, the LM, LMD, PG, and PG-TF models all match for

the first 5 ps before deviating. No model matches for the entire time history of the measurement
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Figure 4.17: Reflectivity comparison for 100 nm Au and 60, 100, and 200 nm aluminum targets at
16 degrees from target normal for S polarization. Target thicknesses are the same across rows, and
EOS model is the same down columns, as indicated by row/column headers. Different conductivity
(thermal and electrical) models are indicated in the legend.
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for any of the three EOS options. However, looking at both the 100 nm and 200 nm data, there is

much better agreement. The reflectivity data exhibits an inflection starting at t = 6 ps, and a local

maximum at t ≈ 12 ps for both targets, with trends for the 200 nm data being more distinct. The

only conductivity model that can replicate this feature is the Lee-More-Desjarlais (LMD) table,

s29373. The Purgatorio table also closely matches the time history, though without the distinct

reflectivity feature.

This feature is caused by the dynamics of the multi-layer target and corresponds to a minimum

in the electron-ion collision frequency at the reflecting surface. Recalling that the reflectivity from

the expanding profile approximately scales as exp(-8ν∗eiL/3c)[139], it follows that a smaller col-

lision frequency leads to a higher reflectivity. The electron collision frequency in WDM, when

T < Tf , is proportional to νe ∝ e2

~vF
kBTi
~ ∝ Ti/n

1/3 due to electron-phonon scattering[7]. As the

material heats, the ion temperature increases, causing the rapid rise in the collision frequency and

the corresponding reflectivity drop seen at t = 0–5 ps. At t ≈ 5 ps, the pressure and temperature

reach their maxima, and the target begins to cool and decompress. The rarefaction wave passes the

reflecting surface by t = 10 ps, leaving the density nearly constant for later times. Simultaneously,

the temperature reaches a local minimum due to expansion cooling before thermal energy from

the hot gold layer causes it to increase again. At this point, the material near the reflecting surface

(1–2.5 eV and 0.2–0.7 g/cc) has been transitioning from a metal to an insulater as both thermal

and pressure ionization decreases. It is precisely this regime that the LMD table was designed to

improve accuracy in, so its greater agreement is unsurprising. The reflectivity then decays primar-

ily based on the increasing plasma scale length. The collision frequency changes gradually, but

hydrodynamic variables change much more slowly after the passage of the rarefaction wave.

Thus, the time-resolved reflectivity trace for double-layer targets is sensitive to the thermal

conductivity, electrical conductivity, and the equation of state. Looking again at fig. 4.17, it can

be seen that the Sesame 3720 EOS does not match the 100 or 200 nm reflectivities for any model

between 10 and 25 ps, instead predicting a slower decay. LEOS 130 and Lynx 130 are very similar,

though Lynx 130 with LMD conductivity matches the time history best near the reflectivity feature
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just discussed.

Finally, we look at the predicted temperature traces in fig. 4.18. In double-layer targets, we

hope to see the thermal energy from the hot layer arriving at the rear surface. This energy will tra-

verse the target at approximately the sound speed. The sound speed at solid density and 2–10 eV is

10–20 nm/ps (see fig. 4.13(d)). Thus, we would expect thermal energy from the hot layer to arrive

as soon as 3/5/10 ps for 60/100/200 nm targets, respectively. Unfortunately, the time resolution of

the optical streak camera—6 ps—precludes observation of a clear rise in the temperature. This is

also complicated by the depth over which the SOP integrates signal around the critical surface and

the extended duration of the proton beam. Nonetheless, a general trend is that the thicker targets

require more time for the thermal energy to show up, and the width of the temperature peak be-

tween t = 5–40 ps increases with target thickness. A higher thermal conductivity transports energy

more rapidly, reaching a higher temperature before the target expands. The ionization model com-

plicates the observation. A lower degree of ionization will have a critical surface deeper within

the target, which sees thermal energy earlier in time and also appears to our diagnostic as a higher

temperature. This is seen in the 60 and 100 nm Al curves for the s23714 (SS) model, which has

such a low ionization that the critical surface is actually within the gold layer for t > 25 ps. Pur-

gatorio, also an AA calculation, exhibits a similar effect but to a lesser degree. These models are a

poor match to the cooling history of the 60 and 100 nm data, and these ionization models are likely

an underestimate.

All EOS models predict qualitatively-similar temperature evolutions for the same target thick-

nesses but with different temperature magnitudes. This is consistent with the phase measurement

in fig. 4.16, and also with the general knowledge that the most uncertain EOS quantity is the

temperature[228]. Sesame 3270 predicts temperatures above the maximum error bars in data for

all target thicknesses. Considering this, along with the poor match to the reflectivity data, rules

out Sesame 3270 as the best Al release EOS for conditions within these data. LEOS and Lynx

are very similar, with the exception of Lynx predicting a higher peak temperature, and can not be

distinguished by these data. However, the reflectivity data for Lynx matched marginally better, so
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Figure 4.18: Observed SOP temperature comparison for 100 nm Au and 60, 100, and 200 nm
aluminum targets. Target thicknesses are the same across rows, and EOS model is the same down
columns, as indicated by row/column headers. Different conductivity (thermal and electrical) mod-
els are indicated in the legend.
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it was chosen as the best EOS option.

Considering the conductivity models, only Sesame 23714 (Rinker’s model) with TF ionization

(SS-TF) and the Lee & More (LM) model are within error bars for all target thicknesses. Neither

of these models match the reflectivity history, and thus no model matches all of the data as-is. The

electrical conductivity and thermal conductivity generally rely on the same collision physics, and

a correct model should match both. In this experiment, the electrical conductivity is crucial in

interpretation of the optical diagnostics, while the thermal conductivity determines the evolution

of the target itself. The reflectivity data is able to differentiate EOS and electrical conductivity

models based on amplitude and time history. The SOP data is most sensitive to the thermal con-

ductivity, but the 6 ps time resolution limits observation of the dynamical behavior of the thermal

wave appearing. The amplitude of the rear surface temperature is still a measure of the thermal

conductivity due to balance between conduction heating and expansion cooling. The LMD model

(s29373) provides the best fit to all pieces of data, but the temperatures are too high, suggesting

the thermal conductivity should decrease. I discuss this in the next section.

4.5 Discussion

The measurements presented in this chapter do not provide a single-state thermal conductivty

measurement. By necessity, the design requires a thermal gradient, and the conductivity cannot

be considered constant across the aluminum layer. The spatial profile of the electron tempera-

ture and mass density are shown at various times, starting right after peak temperature, in figure

4.19. To asses the plasma conditions in which the experiment takes place, we look at the density-

temperature phase space of the simulations that match best—Lynx 130 for the EOS, and Sesame

29373 for the thermal/electrical conductivity. This is shown in fig. 4.20 for each target thickness.

Conditions that exist during specific time slices are illustrated with different colors.

After heating, the targets reach 10–12 eV, with conditions being more dependent on the specific

shot’s proton spectrum than target thickness. Table 4.1 shows the aluminum layer mass-averaged
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Figure 4.19: Spatial temperature (top) and density (bottom) profiles from a 100 nm Au + 100 nm
Al simulation using Lynx 130 for the EOS and sesame 29373 for the thermal conductivity. The
red dot indicates the position of the critical density surface for 400 nm light. The thickest portion
of each line contains the aluminum zones, the intermediate thickness the gold, and the thinnest
contains the Si3N4 zones. The profiles have been aligned to the Si3N4/Au interface for clarity.

Figure 4.20: Density-temperature phase space occupied by the aluminum layer in the best-fit (Lynx
130/Sesame 29373) simulation. Colors represent the conditions occupied by the aluminum layer
during the denoted time slice.
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coupling parameters, Γii & Γei, and the electron-degeneracy parameter, Θ. The maximum value

of the coupling parameter at the gold-aluminum interface is 20% higher than the listed values,

while the degeneracy parameter, 35% lower. Thus, the experiment takes place in material that is

moderately coupled and partially degenerate.

Table 4.1: Plasma-coupling and electron-degeneracy parameters for Al target layers
60 nm Al 100 nm Al 200 nm Al

Time [ps] 10 30 60 10 30 60 10 30 60
Γii,avg 4.6 2.4 1.7 8.1 4.4 3.3 9.0 6.1 4.2
Γie,avg 2.6 1.7 1.5 4.4 3.3 2.4 4.6 3.9 3.3
Θavg 1.7 3.3 4.4 0.9 1.4 1.9 0.8 1.1 1.4

Concerning potential causes of disagreement between the SOP data and simulations in fig.

4.18, as seen in fig. 4.21, I apply arbitrary multipliers of 4x and 0.25x to the Sesame 29373

thermal conductivity table—leaving the electrical conductivity unchanged—and plot the effective

temperature and reflectivity. For the 100 nm aluminum target, this reduction in thermal conduc-

tivity bounds the error bars in the data, indicating a value between 0.25–1x of the tabulated model

would fit the data. For the 200 nm data, the temporal shape of the simulation becomes a better fit

at lower conductivity, but the data suggests an even lower value of the thermal conductivity. As

the conductivity is decreased, sensitivity is lost due to the increasing relative contribution of hy-

drodynamic cooling. Nonetheless, the modeling and data clearly indicate a better fit with a lower

conductivity value. The reflectivity calculation is insensitive to changes in the temperature of this

scale.

The thermal conductivity could be lower than expected for several reasons. The inhibition

of heat flow has been observed for cases with sharp temperature gradients[230, 231]. This oc-

curs when the electron population responsible for carrying the bulk of the heat (≈ 3.7vth for a

Maxwellian[7]) has mean free paths, λe = (λeeλei)
1/2, larger than the temperature gradient scale

length, Lth = Te/∇Te. In this situation, electrons deposit heat non-locally (i.e., not according

to a random-walk diffusive pattern), and the depletion of electrons near the temperature gradient

leads to dramatically-lower forward heat transport near the gradient itself. The ratio for the onset
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Figure 4.21: Simulation results showing the effect on Teff (a)&(c) and reflectivity (b)&(d) when
the LMD table (s29373) is used with fixed electrical conductivity and arbitrarily-scaled thermal
conductivity.

of non-local transport has been reported for Lth/λe > 50[232]–500[233] with more recent works

quoting 140[231].

According to the HYDRA simulations presented here, at t = 7 ps—right after the proton heating

source turns off—Lth = 180 nm at the conduction interface, and λe = 2.8 nm. Here, the thermal

velocity results from the maximum of the Fermi or thermal temperature, and the electron-collision

time is taken from the predictions of Purgatorio. At this point, Lth/λe = 64, and if kinetic effects

are present, they should be small. The situation may also be more favorable in degenerate matter

where only electrons near the Fermi energy (chemical potential at finite T ) may participate in

conduction[67]. As the target decompresses, λe increases, but the fast time scale of conduction

causes Lth to increase more rapidly. By t = 20 ps, Lth/λe = 160, and by t = 50 ps, Lth/λe = 325.

Thus, I expect the experiment to be adequately described by diffusion-based heat transport, and

heat transport could only account for thermal-conductivity reductions by several percent or less,
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and only at early times.

Another explanation could reside in consideration of electron-electron or electron-neutral col-

lisions within the models. The LM model assumes a Lorentz plasma, which is increasingly inaccu-

rate with decreasing atomic number due to the neglect of e-e collisions. The LMD and Purgatorio

models attempt to include the effects of these collisions in somewhat ad hoc manners of unknown

accuracy. For a fully-ionized aluminum plasma, the Spitzer result would indicate an electron-

thermal conductivity that is only 79% of the Lorentz value[63] where the electical resistivity would

only be reduced to 92%. Electron-electron collisions are not explicitly treated in relaxation-time

approaches (such as in LM) or in Ziman theory, originally developed for strongly-degenerate liquid

metals where degeneracy effects, such as Pauli blocking, limit changes to the electron distribution

function due to collisions. Recent work by Reinholz et al.[234] and Desjarlais et al.[235] point out

the importance of including electron-electron collisions even in so-called ab initio models such as

DFT. Desjarlais posits that the exchange-correlation potential impacts both Kth and σ, reshaping

the electron distribution in a mean sense, but that binary e-e scattering will only reduce Kth due to

the inability of e-e scattering to change the charge current. The results of ref. [235] demonstrate

that binary e-e scattering is not treated correctly in their QMD simulations, necessitating correc-

tion factors to match more-trusted kinetic QLB calculations. Effects like this may explain the data

within this chapter, which appears to have the correct electrical conductivity but an incorrect ther-

mal conductivity. The calculations in ref. [235] were done for hydrogen at 40 g/cc and 500–900

eV where the plasma is weakly coupled and partially degenerate (Γii = 0.13–0.07, Θ = 1.65–2.97)

because the QLB solution is trusted as a benchmark in the moderate-coupling regime. The au-

thors reiterate that the magnitude of this effect in higher Z and more strongly-coupled plasmas is

unknown and requires further investigation.

The data presented within this chapter are the first of their kind and provide a good first step

toward the design of experimental measurements capable of benchmarking modern models. The

experimental conditions created sit in a parameter space where the kinetic energy, Coulombic

potential energy, and Fermi energy are all roughly equal with dimensionless parameters of approx-
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imately 1 (see Table 4.1), and no single theory dominates the dynamics of the system. The choice

of aluminum is also sufficiently low-Z so that standard Lorentz models may not be applied without

incurring error.

4.6 Conclusions

This chapter describes an experiment that uses a high-intensity short-pulse laser to generate a short-

duration proton beam through the TNSA mechanism. The protons differentially heat multi-layer

targets on an ultrafast time scale, inducing a thermal gradient at the interface. The rear surface

of the target was observed with optical diagnostics to measure the time resolved temperature,

phase shift, and reflectivity as the targets evolved over 100 ps. These data are compared against

hydrodynamics modeling using the LLNL code HYDRA and a Helmholtz wave solver that self-

consistently tests each conductivity model.

The best gold release EOS tested was found to be LEOS 790 based on the match to all available

data. Simulations of the aluminum layers found that the release EOS could fit with both LEOS 130

and Lynx 130. The reflectivity measurements were able to constrain the best electrical conductivity

model to be Sesame 29373, with Purgatorio’s prediction also matching well. However, no thermal

and electrical conductivity model was able to match both the rear surface temperature and the

reflectivity, most likely indicating that the value of the thermal conductivities in the model is too

high. This could possibly be explained through an incorrect treatment of electron-electron or

electron-neutral collisions in the modeling. The data presented in this chapter are the first reported

data with high sensitivity to both electrical and thermal conductivities and contribute toward the

validation of transport models within the field of warm dense matter.
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CHAPTER 5

Thermal conductivity studies of XFEL heated Iron

5.1 Introduction

In an effort to improve upon the experimental measurements in Chapter 4, we proposed a follow-

up experiment using the XFEL at LCLS. The concept of differential heating remains the core

operating principle. However, the XFEL provides an ultra-fast heating source that can be tailored

to the material under consideration. This experiment provides the opportunity to better isolate the

thermal wave driven between the hot and cold targets without involving the issues of an extended

heating source dispersed in both time and energy, such as the protons.

Following the successful aluminum measurements, a more complex metal was chosen—iron.

Iron is a suitable choice for study due to its relative importance in stellar opacities as well as geo-

physical applications like thermal transport within planets. Complexities arise in the theoretical

description of iron because it is a transition metal with a partially filled d-shell. At solid den-

sity, these electrons are pressure-ionized and form a resonance in the density of states which can

strongly impact the electron scattering cross-section.

In this chapter, I will discuss the experimental setup, analysis, and simulation of XFEL-heated

iron foils as they pertain to EOS, electrical, and thermal conductivity models. Data will be com-

pared with hydrodynamics simulations following the same procedure described in the previous

chapter.
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5.2 Experimental setup at LCLS

The experiment was performed at LCLS as part of beam time LJ91 at the Matter in Extreme

Conditions (MEC) end station. This facility provided the ideal place to perform these differential

heating transport studies due to the availability of both short-pulse optical lasers and the XFEL

beam.

5.2.1 Differential heating of Au/Fe targets using x-rays

The differential heating concept applied in this experiment, as proposed by Ping et al.[60], uses

the tunable nature of the XFEL and K-shell structure in the target to maximize the temperature

gradient between the heater layer and the cold layer being studied. Figure 5.1 shows a plot of the
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Figure 5.1: Attenuation lengths for iron and gold and the selected XFEL wavelength to max-
imize the absorbed energy difference. Values from the Center for X-Ray Optics (CXRO)
(http://www.cxro.lbl.gov/).

attenuation lengths for gold and iron. This is the distance that it takes for the intensity of a beam

of photons to be reduced to 1/e of its initial value, according to the Beer-Lambert Law. We see

that if we choose a wavelength below the K-absorption edge, the difference in attenuation lengths

is maximized, and we achieve the greatest difference in absorbed energy. For the gold/iron pair,

6.8 keV is an ideal XFEL pump energy.
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A secondary benefit stems from the ultra-short pulse duration, 40 fs, of the XFEL. This enables

heating on a time scale much shorter than the evolution of physical processes such as the thermal-

wave propagation, hydrodynamic motion, or the measurement resolution of the streak cameras.

This allows the experiment to come as close to an initial-value problem as possible; a temperature

gradient is created, and then the system is observed as it evolves in LTE.

The creation of non-thermal electron populations from the recombining photoionized atoms

poses the primary complication of this heating mechanism. These take the form of photoionized

and auger electrons, discussed in Section 2.6.3, which have energies of several keV and will have

mean free paths much longer than the characteristic thermal mean free path. The effect of these

electrons on the spatial deposition of energy was investigated using Monte Carlo calculations per-

formed by Stephen Hau-Riege at LLNL and is discussed in Section 5.5.3.

5.2.2 Diagnostic layout

This experiment utilized a diagnostic suite similar to the previous thermal conductivity experiment

at Titan. Two SOPs were fielded—one using a Hamamatsu C7700 optical streak camera, and one

Axis Photonique (Axis-PV) optical streak camera—along with the Livermore FDI and x-ray diodes

provided by the MEC staff. Our original goal was to perform pyrometry measurements at both

450 and 800 nm, which would provide time-resolved temperatures at different physical surfaces

within the target—corresponding approximately to the critical surface of each wavelength—as

an additional constraint on the hydrodynamic modeling. The probe beam for the FDI could be

delivered to the chamber either at its fundamental wavelength, 800 nm, or frequency-doubled to

400 nm so that reflectivity corrections would be available for both SOP wavelengths.

The experimental layout is shown in fig. 5.2. Each SOP was set at 27 degrees from target

normal in the horizontal plane, and the FDI was set at 27 degrees from target normal in the ver-

tical plane. Matching the angle of the FDI to the SOP ensures that the reflectivity, and inferred

emissivity, can be applied without modification or calculation to the SOP directly.

The SOP bands were determined using band pass filters (BPF) from Edmunds Optics with
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Figure 5.2: Experimental layout for thermal-conductivity measurements at LCLS MEC. Primary
diagnostics include two streaked optical pyrometers and a Fourier domain interferometer.
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50 nm bandwidth centered at 450 nm (P/N #84-782) and 800 nm (P/N #84-789). These filters

have greater than 90% transmission within the bands and greater than four orders of magnitude of

attenuation outside of them.

Our central concern when designing this experiment was the signal level. At MEC, the XFEL

pulse in SASE mode arrives at the hutch with approximately 3 mJ of 6.8 keV energy. Roughly

20–50% of the energy is lost in the beryllium lens, resulting in 1.5–2.4 mJ of energy on target.

According to CXRO, the attenuation length of these x-rays in gold is 1.62 µm, 16 times greater

than our standard 100 nm thick Au heater layer, and < 5% of the pulse is absorbed. This creates

an ideal situation with a very low longitudinal temperature gradient, but contributes to the lack

of signal. Finally, the choice of focal spot size impacts the total signal. A small spot will reach

a higher, more easily observed, temperature but emit from less area and suffer from large radial

gradients. A large spot alleviates the gradient issue but may not reach a high enough temperature

to be observed. We decided on a 10 µm spot, primarily because it was the largest defocused spot

achievable with the available lenses before losing radial symmetry.

Thus, we emphasized high collection efficiency with the additional requirement of sub-10 µm

spatial resolution. Fortunately, our collaborators from AWE provided the optical design of the

Orion facility pyrometer[236], which was designed to satisfy these requirements. Both pyrome-

ters used an f/1.4 Mitutoyo M Plan APO 10x objective as the collection optic with several trailing

lenses—as outlined in ref. [236]—to correct collimation, and broadband dielectric mirrors (Thor-

labs E02 coating) to transport the beam to the streak cameras. Figure 5.2 shows a photograph of

the target frame with two SOP f/1.4 objectives and a f/2 lens for the FDI. Maintaining the simulta-

neous focus and pointing of three highly-sensitive optics throughout the course of the experiment

proved to be a significant challenge.
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5.3 Target design

The targets for this experiment had firm requirements for optical flatness, just like those fabricated

for Titan. From a diagnostic standpoint, the FDI requires optical-quality surfaces in order to image

the target surface in the probe beam. Additionally, interpretation of results is simplified by having

very smooth interfaces which alleviate concerns such as spurious interface resistance due to surface

roughness or seeding instabilities that could cause layer mixing once heated.

The high repetition rate of LCLS imposes the additional requirement of needing a large number

of targets. We met this requirement by designing an array of 30 x 30 silicon nitride windows

arranged within a 1.25 inch silicon wafer frame. Figure 5.3 shows a photograph of one of these

frames. The Si3N4 layer was chosen to be as thin as possible while maintaining sufficient strength

Silicon

Gold (50-100 nm)

Study layer (Al, Fe, Ge, C) (50-200 nm)

200 �m

(a)

(b)

Figure 5.3: Target design for LCLS thermal conductivity experiments. The etched silicon wafers
and silicon nitride membranes are visible in (a). Each array has 30 x 30, 400 nm square windows
with a 40 nm thick membrane. A schematic of the metal layers that are EB-PVD coated onto the
membrane is shown in (b).
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to support metal coatings of several-hundred nanometers. Through trial and error, we found that 40

nm was sufficient. Materials of interest were coated using electron-beam physical vapor deposition

(EB-PVD) at JLF’s target fabrication facility. Layer thicknesses were measured with a calibrated

profilometer on a witness slide and given as part of target fabrication. As a rule of thumb, our

uncertainty in the resulting target thickness was less than 10%.
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Figure 5.4: Simulations of the observed rear-surface temperature of multi-layer gold and iron
targets with a 100 nm gold layer followed by increasing thicknesses of the iron layer.

The constraints placed on the targets from the perspective of a successful physics measurement

are the same as for the Titan experiment in Chapter 4. The targets must be thick enough to slow the

arrival of thermal energy so that the streak cameras may resolve it while remaining optically thick

for the entire observation duration. However, targets must remain thin enough that the temperature

signature created by conduction is sufficiently bright. Figure 5.4 shows HYDRA simulations that

demonstrate the effect on SOP temperature as the iron layer thickness increases.

Table 5.1: List of Au/Fe targets resulting in data collection
Target Materials Thickness (nm) Purpose

Single layer Au Si3N4 + Au 40 + 100 Heater layer source & Au EOS
Single layer Fe Si3N4 + Fe 40 + 47 Cold material T & Fe EOS
Double layer Fe Si3N4 + Au + Fe 40 + 100 + 53 Thermal conductivity
Double layer Fe Si3N4 + Au + Fe 40 + 100 + 108 Thermal conductivity

An integrated experiment such as this requires data to provide as many constraints as possible.
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Thus, the experiment is designed around a set of targets, each with specific purposes. I list the

targets for which we collected data in table 5.1 along with their intended purpose. In the rest of

this chapter, targets will occasionally be referred to as single- or double-layer targets—in reality,

this refers to Si3N4 + Au/Fe and Si3N4 + Au + Fe respectively, with the nitride layer often not

mentioned for brevity. Single-layer targets are intended to constrain the individual material EOS

and verify that the heating source accurately reproduces temperature profiles. Double-layer targets

are then intended to study the heat conduction between layers.

5.4 Results

5.4.1 FDI Results

We fielded the FDI for all data shots, but upon analysis, determined that the spatial resolution of the

imaging system was insufficient to resolve the 10 µm heated region. This resulted in the inability

to extract a phase shift from all data. However, one shot on a 50 nm Au target had a sufficiently

large heated spot to obtain a time-resolved reflectivity ratio. This shot was analyzed by Yuan Ping,

and presented in figure 5.5.

0 20 40

Time (ps)

0

0.5

1

R
e

�

e
c
ti

v
it

y

(a)

Data
Fit/Extrap.

0 20 40

Time (ps)

0

0.5

1

E
m

is
s
iv

it
y (b)

Figure 5.5: Reflectivity ratio from FDI data on a 50 nm Au target. Figure (a) shows the reflectivity

ratio with a linear fit and extrapolation, and (b) the inferred emissivity using Kirchoff’s Law.

This reflectivity ratio was used for the emissivity corrections for gold and for the final SOP data

presented in fig. 5.9. Each material used this ratio normalized by the appropriate cold reflectivity

shown below in fig. 5.6. The data is extrapolated below R ≈ 0.2 with a linear fit to provide
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a continuous function for the pyrometer correction. This inherently makes the assumption that

the transmission through the target remains zero, neglects scattering, and requires the absorption

approaches 1.

Using the gold reflectivity for iron shots is an approximation made by necessity rather than

choice. The reflectivity contains information about the electron-ion collision frequency through

the complex dielectric function by way of the electrical conductivity. This is almost certainly

different between gold and iron. However, in the absence of data, applying a general emissivity

correction will result in a ‘true’ temperature closer to reality than simply a brightness correction.

It is likely that this will only give approximate temperature amplitudes. The dynamics that arise in

double-layer targets will be lost.

5.4.1.1 Cold reflectivity measurements

The FDI provides a time-resolved reflectivity ratio. This ratio is relative to the unheated portion of

the target. In order to get the absolute reflectivity values, I performed a set of measurements for

the full list of targets using 450 and 405 nm CW lasers (Thorlabs CPS405 and CPS450 laser diode

modules). Figure 5.6 shows the results for the targets used in this experiment.
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Figure 5.6: Theoretical Fresnel reflectivity for (a) bulk gold and (b) bulk iron. Reflectivity mea-
surements of the experimental targets at 405 and 450 nm are overlaid with S polarization in blue
and P in red. Indices of refraction accessed from https://refractiveindex.info[219], with gold data
from [237] and iron data from [238].
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5.4.2 Pyrometry results

Two streaked optical pyrometers were initially fielded. Figure 5.7 shows raw data for the brightest

targets—100 nm Au—from both the AXIS and the Hamamatsu SOPs filtered to view 425–475 nm.

The signal strength in the 800 nm band of emission was not large enough to observe. This was due

to 7–9x weaker black-body emission at 800 nm rather than 450 nm. This was further exacerbated

by the drop in the S20 photocathode response (see fig. 3.2). In figure 5.7, the AXIS (left) has

better signal-to-noise than the Hamamatsu (right). This primarily resulted from less magnification

in the optics (12.95 for the AXIS and 49 for the Hamamatsu), but the slit electrode in the AXIS

also collects more signal than the fixed-slit design of the Hamamatsu. Time constraints during

the beam time prevented modification of the optical system once data collection began, and the

Hamamatsu SOP signal was not strong enough to collect a complete data set. The results in this

section will focus on the data collected with the AXIS SOP at 450 nm.
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Figure 5.7: Streaked optical pyrometry raw data for 100 nm gold targets. The image on the left
comes from the AXIS SOP at 450 nm with a 1 ns sweep window, while the image on the right
comes from the Hamamatsu SOP also at 450 nm with a 500 ps sweep window. The gold-only
target is the hottest and therefore brightest target. As such, these data represent the highest single-
shot, signal-to-noise data collected.

5.4.2.1 Shot averaging

Data quality was improved by the high repetition rate available at LCLS. Pyrometer data were

collected and averaged from each target type. An optical fiducial, pictured in figure 5.7, was set
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up to allow automated alignment of each data shot. However, jitter between the optical fiducial

and XFEL arrival led to approximately 5 ps of scatter in the rising edges of individual shots. Si-

multaneously, the f/1.4 collection objectives were extremely sensitive, and shot-to-shot alignment

caused small spatial walks. To minimize spatial and temporal blurring resulting from averaging,

each image was manually aligned in both dimensions. The averaged, streaked images are shown

in figure 5.8 along with the total counts within the spot.

100 nm Au

0 50 100 150 200

-5

0

5
0

25

50

75

50 nm Fe

0 50 100 150 200

-5

0

5
0
2
4
6

100 nm Au + 50 nm Fe

0 50 100 150 200

-5

0

5
0

20

40

100 nm Au + 100 nm Fe

0 50 100 150 200

Time (ps)

-5

0

5

S
p
a
c
e
 (

m
)

0

10

20

30

0 20 40 60 80 100

Time (ps)

0

200

400

600

800

1000

A
v
e
ra

g
e
 t
o
ta

l 
c
o
u
n
ts

100 nm Au

50 nm Fe

100 nm Au + 50 nm Fe

100 nm Au + 100 nm Fe

(a) (b)

Figure 5.8: Averaged pyrometry data for the iron data set. Figure (a) shows the temporally- and
spatially-aligned and averaged heated regions against time in counts above background, and (b)
shows spot-summed counts.

The statistical information for each target type is listed in table 5.2. The average energy was

recorded with an x-ray diode prior to entering the MEC chamber. The standard deviation in the

pulse energy was < 10% for each case. Approximately 20 individual shots were averaged for each

data set. The total quantity of data that could be collected was limited by the time it took to align

each shot individually, but this still resulted in significant improvement over single-shot data.
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Table 5.2: Statistical information for each data set
- 100 nm Au 50 nm Fe Au + 50 nm Fe Au + 100 nm Fe

# of shots 21 13 18 19
FWHM (µm) 7.7 6.8 7.6 6.8

Eavg (mJ) 3.117 2.878 2.977 3.009
σstdev (mJ) 0.159 0.337 0.275 0.174

5.4.2.2 Rear-surface temperatures

The rear-surface temperatures are calculated from spot-summed counts using the measured reflec-

tivity and optical constants listed in table 5.3, according to eq. (3.9). The system transmission is

assumed spectrally flat, based on the use of broadband dielectric mirrors (Thorlabs E02 coating).

Only the bandpass filter and streak camera response are considered inside of the spectral integral

of eq. (3.9). The frequency response of the streak camera calibration is shown in fig. A.3. The

spatial, temporal, and energy calibrations necessary for calculating temperature are described in

Appendix A.

Table 5.3: Experimental parameters of the AXIS SOP
Parameter Value

Working distance 33.5 mm
Front aperture diameter 24 mm

Total magnification 21.5
Electrical magnification 1.66

Total transmission 0.35
BPF center 450 nm

BPF bandwidth 50 nm
tdwell/pixel 0.507 ps

The emitting spot size area requires careful calculation; the optical and electrical magnification

must be separated, as typically the entire heated spot will not make it past the 100 µm entrance slit

of the streak camera. The emitting area assumed to bypass the entrance slit is an important lever

on the temperature calculation. The SOP provides a time-resolved spot-size measurement, but it

was found that this size decreased in time. This most likely occurred as the signal fell beneath

the detection threshold of the streak camera rather than a true shrinking of the spot (caused by
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cooling). For this reason, the time-integrated spot sizes listed in table 5.2 were used to calculate

the emitting area. These spots are smaller than the nominal x-ray spot of 9 µm, showcasing the

general trend of enlarging for more intense emitters.

The calculated temperatures for the complete data set are shown in figure 5.9. The left pane

shows the brightness temperatures while the right pane shows the emissivity-corrected tempera-

ture. The data demonstrate expected trends. The gold is the hottest, with a peak temperature of 8

eV, and iron the coldest with a peak temperature of 2 eV. For the double layers, the Au + 50 nm Fe

target is hotter than the Au + 100 nm Fe target and peaks earlier in time. Both double-layer targets

also exhibit a slower cooling rate due to the thermal source behind them, as designed.
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Figure 5.9: Brightness temperature (left) of the rear surface for 100 nm Au, 50 nm Fe, Au + 50 nm
Fe, and Au + 100 nm Fe targets. The emissivity-corrected temperature is shown on the right using
the linear fit in figure 5.5.

The data are plotted along with their systematic error bars of ±20%. The systematic error is

dominated by the streak camera calibration[198] and the error in the emitting hot-spot area, both

approximately 20%. Both of these errors stem from the design of the AXIS streak camera, which

uses an accelerating slit extraction electrode. This style of electrode improves the spatial resolution

and sensitivity, but leads to uncertainty in how much area of cathode passes the internal aperture.

Error in the area and calibration will not change as a function of plasma conditions or time, and
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thus this stated systematic error will only shift inferred temperatures up or down within the range.

The random error bars due to noise and the shot averaging are smaller at approximately ±12% for

the dimmest 50 nm Fe targets and ±8% for the brightest Au targets.

5.5 Hydrodynamic modeling

Like the previous chapter, hydrodynamics simulations were used to model the target evolutions.

HYDRA[221] was again used in 1-D Cartesian geometry. The heated region was 10 µm in diam-

eter and 0.2 µm thick, justifying the use of 1-D simulations.

The 1-D model tracks separate electron and ion temperatures (1D2T) which are equilibrated

according to a relaxation rate calculated with the collision frequencies from Lee & More[13]. Radi-

ation is handled using an Implicit Monte Carlo (IMC) multi-group calculation, which uses effective

photon transport cross-sections to probabilistically model radiation transport[224]. This package

handles x-ray absorption but does not include the non-local electron dynamics known to occur as

the photo-ionized material relaxes. Any in-line calculations requiring an average ionization (such

as Lee & More thermal conductivity) use a Thomas-Fermi model.

The modeling effort is designed to match the entire data set. Single-layer targets—which are

not sensitive to thermal conductivity—intend to constrain the energy deposition (the only free

parameter) and EOS model. Then the double-layer targets, which are sensitive to thermal con-

ductivity, provide the desired benchmark for conductivity models. Calculations are performed to

test the sensitivity to other modeling variables such as gold or silicon nitride thermal conductivity

values, layer thicknesses, or the electron-ion equilibration rate. I discuss these results in Appendix

B. Fortunately, the experimental observables are more sensitive to models for the iron layer than

to uncertainties in the gold and silicon nitride layers.
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5.5.1 Tabular EOS models

Three EOS models were available to test—LEOS 260, Lynx 260, and Sesame 2140. Both LEOS

and Lynx were constructed in the improved QEOS framework[98, 99] with Lynx using Purgatorio

to generate the electron-thermal contribution to the internal energy and pressure. Sesame 2140 is an

older iron model that uses Thomas-Fermi-Dirac theory for the electron-thermal component and the

a Cowan model for the thermal-nuclear part[101]. The differences in EOS models for iron are very

similar to the differences in aluminum options shown in Chapter 4. Similar expansion velocities

are expected, with the greatest uncertainty expected in the specific heat and final temperatures.

5.5.2 Tabular electrical & thermal conductivity models

Four conductivity models were available to test—(1) Lee & More, (2) Purgatorio, (3) Sesame

22144 (Rinker’s average atom model[79]), and (4) Sesame 29273 (Desjarlais’ LMD model for

stainless steel[239]). No LMD model was available for pure iron, but s2927 is 70% iron, 20%

chromium, and 10% nickel. All of the metals are transition metals, and the composition leads to

an effective Z of 25.8, very close to iron. This is based on the Lee-More-Desjarlais framework[82]

but tuned with QMD/Kubo-Greenwood electrical-conductivity calculations. Of these models, only

Lee & More does not include electron-shell effects that may be important in transition metals.

However, the increased atomic number of iron may also make the application of Lee & More—

which assumes a Lorentz model—more accurate.

Figure 5.10 shows the tabulated thermal and electrical conductivities for these models at Te

= 1–12 eV. The thermal conductivities are all within a factor of 2 at 10 eV and 7.87 g/cc. The

differences rise to greater than a factor of 5 at 2 eV and 0.5 g/cc. The application of Lee &

More predicts dramatically-higher DC electrical conductivities, which will lead to smaller collision

frequencies and a higher reflectivity as the target cools. The optical diagnostics will mostly probe

lower densities and temperatures. At 0.5 g/cc, the electrical conductivity models will predict very

similar optical responses for the diagnostics at 5 eV, but rapidly diverge at colder temperatures.
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Figure 5.10: Thermal (a) and electrical (b) conductivity models for iron. LM is the widely used
Lee & More model, LMD is the Sesame 29273 table for stainless steel, PG is the Purgatorio
calculation, and Rinker is the Sesame 22144 table.

5.5.3 Non-local energy deposition using Monte Carlo

A question of import to the experimental design using XFELs is how well the x-ray differential

heating establishes a sharp temperature gradient. How impactful are the non-local Auger and

photoionized electrons? How much do they blur the gradient?

Monte Carlo (MC) calculations performed by Dr. Stefan Hau-Riege (LLNL) addressed this

issue. His method is described for similar circumstances in ref. [240]. The target stack is mod-

eled in a 2-D, radially-symmetric geometry with 2 mJ of 6.8 keV x-rays focused into a 10 µm

Gaussian spot with a 40 fs pulse duration. As the pulse propagates through the material, the x-

ray photoabsorption is calculated according to the shell-dependent photoionization cross-section.

When photoionization occurs, a photo electron and Auger electron may be created at that spatial

location. These are also propagated using a Monte Carlo algorithm, and their slowing down and

energy deposition are tracked within the material. Subsequent radiation or electron production is

not considered. The material is assumed to remain cold, and charging of layers due to ballistic

electron transport is not considered.

Figure 5.11 shows the calculated dose for three targets—(1) 40 nm silicon nitride + 100 nm

gold (2) 40 nm silicon nitride + 47 nm iron and (3) 40 nm silicon nitride + 100 nm gold/53 nm iron.
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Figure 5.11: Monte Carlo simulation results of dose deposited into 40 nm Si3N4 + 100 nm Au, 40
nm Si3N4 + 53 nm Fe, and 40 nm Si3N4 + 47 nm Fe targets by a 6.8 keV XFEL beam. Dose is
averaged over the center 1 µm of heated spot. Calculation by S. Hau-Riege (LLNL).

Case (2) represents the energy deposition by the XFEL in iron only (with only slight modification

by the silicon nitride), while case (3) includes contributions from the gold layer. It is clear that

the ballistic electrons from the gold layer (KE ≈ 2–4 keV) do smear the temperature gradient.

The electrons contribute additional dose across most of the 50 nm target thickness. The total dose

within the iron layer next to gold is 3.7-times higher than for the isolated iron layer. However, the

total dose in the gold layer is 21-times higher than the dose in the case (3) iron layer, and 76-times

higher than in the case (2) iron layer.

To assess the impact of non-local dose on the observed temperature, the MC calculations were

implemented in HYDRA as a spatially-dependent electron internal energy source. This used the

temperature-dependent heat capacity to convert dose to temperature. The dose was deposited over

1 ps, though the results are insensitive to the rate of energy deposition over such a short time scale.

A multiplier on the entire dose was used to match the single-layer SOP data. The iron calculation

matched with a multiplier of 0.92, but the gold required a multiplier of 0.28. This indicates that

additional energy loss mechanisms exist in the gold, or that intensity effects of the XFEL pulse are

modifying the ionization dynamics, resulting in less deposited energy.

The most important question is how these non-local electrons impact the interpretation of the
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thermal conduction results. As a worst-case scenario, the dose in the gold-layer was multiplied by

0.28 while the iron dose shown in case (3) in figure 5.11 was left unmodified for a set of double-

layer simulations. This resulted in a 0.5 eV temperature increase, for all times, at the rear surface

for the Au + 50 nm Fe case and a 0.1 eV shift in the Au + 100 nm Fe case. No modification to the

temporal evolution occurred because of the rapid time scales of conduction across such thin layers

and the limited 5 ps temporal resolution of the optical streak camera. The blurred thermal gradient

simply manifests itself as extra energy deposited within the iron at t = 0.

These shifts are a worst-case scenario, and the effect is likely much smaller than these stated

values. A nearly 4-fold reduction in the deposition in the gold would also significantly reduce the

ballistic electron transport into the iron. The remainder of the calculations in this chapter do not

use the MC source due to the discrepancy between the correct gold and iron deposition rates, but

the above discussion may be informative to final conclusions.

5.5.4 Single-layer targets

The modeling begins with a simplified system—single-layer targets. The single-layer gold and

iron targets were modeled to ensure that the source deposition and equation of state chosen were

correct.

5.5.4.1 Single-layer gold

Figure 5.12 compares SOP data with the rear-surface temperature for the 100 nm gold target for

both LEOS 790 and Sesame 2700 EOS options. The rear-surface temperatures from HYDRA were

calculated using the Helmholtz solver and methodology outlined in Chapter 4. For gold, only the

in-line Lee & More thermal conductivity was available. However, electrical conductivity from

Purgatorio was also used to process the rear-surface temperatures. Single-layer targets are insen-

sitive to thermal conductivity, and thus differing electrical-conductivity models simply provide an

estimate on the variance of the observation.

It is clear that LEOS 790 provides much better agreement with data than Sesame 2700, reaf-
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Figure 5.12: Comparison of the rear surface temperature for 100 nm Au targets with (a) LEOS 790
and (b) Sesame 2700. Lee & More, Purgatorio, and Purgatorio-TF electrical conductivities were
used to calculate Teff .

firming Chapter 4’s conclusion that the best gold release EOS near these conditions is LEOS.

Predictions from LM and PG models are similar, with PG displaying a slightly faster cooling rate.

This is partially due to the ionization model and partially due to the conductivity value itself, as

shown by the PG-TF prediction between LM and PG.

Here, the error bars represent the random error caused by uncertainty in the FDI emissivity

correction, statistical averaging of shots, and readout noise. These are approximately 15% at peak

temperature, and 5% by 100 ps. This provides a measure of the uncertainty in the shape of the

temporal evolution. However, it is important to remember that the systematic error in the streak

camera calibration could shift the entire temperature curve up or down by ±20%. The reflectivity

and phase measurements show similar trends to the comparison shown for the proton-heated data,

with LEOS predicting a larger phase shift than s2700. It is interesting to note that the early-time

discrepancy shown in the proton data (fig. 4.15) is not repeated here. Perhaps this is because

the probe used for the reflectivity correction is now 400 nm rather than 527 nm. It could also be

attributed to different equilibration rates for protons and x-rays[229].

Unfortunately, a precise measurement of the absorbed x-ray dose was unattainable using equip-

ment available at the time of the experiment. Even with a precise measurement, more sophisticated
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modeling would have been required to properly treat the dynamics of XFEL energy deposition. In-

stead, the choice was made to scale the energy in the gold simulations until data reached agreement,

fixing the source at that value for all subsequent calculations. There was < 10% difference in the

mean pulse energy for each data set (see table 5.2). To keep the source consistent across data sets,

it was multiplied by the ratio of the measured average pulse energy to the average pulse energy of

gold—i.e., Sfixed ∗ (Eavg,Fe/Eavg,Au).

5.5.4.2 Single-layer iron

The 50 nm iron temperature data is compared with models in figure 5.13. Lynx 260 and the LM

electrical conductivity provide the best match, closely followed by Purgatorio with a TF ionization.

These models work best because they predict the highest collisionality for the plasma.
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Figure 5.13: Rear-surface temperature for 50 nm Fe targets with (a) LEOS 260 and (b) Lynx 260.

These results should be regarded with caution as the target fails to remain opaque out to 100 ps.

This invalidates both the Helmholtz solution for light reflecting from an overdense electron density

gradient as well as the opaque black-body assumptions the SOP relies on. Transmitted energy will

not be accounted for properly. This is seen in figure 5.13 beyond 80 ps when the entire target is

below the critical electron density for 450 nm photons, though the effect begins at much earlier

times.
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However, results still bear presenting as they indicate that the iron EOS options and the source

multiplier achieve the correct temperature for iron, as well. This is confirmed by the early-time

behavior. Sesame 2140 is not compared because it has a liquid-vapor critical point at 0.75 eV, and

multiple phases may exist. The current simulations handle phase changes incorrectly or unreliably,

and exhibit clustering of matter. For this reason, s2140 is excluded from these low-temperature

comparisons, with the focus shifted to LEOS 260 and Lynx 260 which are smoother and show no

signs of a phase change.

5.5.5 Double-layer targets

With the heating source and, tentatively, the equation of state model shown to agree with single-

layer data, we shift attention to the more complicated double-layer gold/iron system. We collected

data from two thicknesses of iron to provide a stronger constraint on the models.

Figure 5.14 shows the measured brightness temperatures for all EOS and conductivity model

combinations. Here, brightness temperature is compared rather than the emissivity-corrected ef-

fective temperature because the available experimental emissivity correction (from a gold target)

would not provide an accurate temporal evolution.

Looking at the figure, it is seen that general agreement with all three EOS models is reasonable.

LEOS 260 seems to predict lower temperatures, as was seen in the single-layer iron data (fig. 5.13),

while Sesame 2140 predicts the highest temperatures. All are within the ±10% random error bars,

and no strong distinction can be made between EOS models. However, Lynx 260 seems to provide

slower cooling rates for all three iron target types. These match the temporal shape of the data

better, and Lynx is likely—narrowly—outperforming the others.

Temperatures predicted by the different conductivity models are within 25% of one another

during t = 5–30 ps, and within 10–15% from t = 30–100 ps. Differentiating models within such a

small scatter would have required smaller error bars on the data. While no model may be clearly

distinguished, these data do provide confidence that the models sufficiently reproduce the experi-

mental conditions.
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Figure 5.14: Comparison of the brightness temperature for 100 nm Au + 50 nm Fe (row 1) and
100 nm Au + 100 nm Fe (row 2) targets for LEOS 260, Lynx 260, and Sesame 2140. Thermal and
electrical conductivity models are designated with color, and the dotted lines are models using TF
ionization rather than their self-consistent model.

No data were obtained for the time-resolved reflectivity, but the calculations show that reflec-

tivity may have been able to constrain the electrical conductivity model and, to a lesser extent, the

EOS model.

Figure 5.15 shows the calculated S polarized time-resolved reflectivities at the SOP angle (27◦).

The thermal wave crosses the 50 nm target rapidly (< 5 ps), and the thermal dynamics cannot be

resolved in time. The observation is still dependent on the thermal conductivity, but rather than

viewing the thermal wave itself, we see the unloading derived from the system heated by the

thermal wave. The reflectivity predictions only vary by 5–15% at any given time.
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Figure 5.15: Comparison of the reflectivity for 100 nm Au + 50 nm Fe (row 1) and 100 nm Au
+ 100 nm Fe (row 2) targets for LEOS 260, Lynx 260, and Sesame 2140. Thermal and electrical
conductivity models are designated with color, and the dotted lines are models using TF ionization
rather than their self-consistent model.

However, for the gold + 100 nm Fe target, the heat conduction and resolution time scales are

more compatible. We recall the simple expression given by Kruer[135] for reflection from an

electron-density gradient scales as exp(-νeiL). The scale length will expand rapidly during the

rarefaction wave (t ≈ 0–7 ps) and then continue to increase at a slower rate. The thermal energy

from the hot gold layer provides a dynamic change to νei, which manifests itself in the reflectivity

data. This effect was observed in the proton-heated aluminum data shown in Section 4.4.5 but

was washed out by the duration of the proton-heating pulse. In fig. 5.15, this effect is present

for three of the four conductivity models, demonstrating improvement of the experimental design
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using the XFEL. The minimum in the reflectivity—corresponding to the maximum in νei—occurs

at different times for each model. The timing of this feature, along with the amplitude of the

reflectivity, would likely provide a strong constraint on the electrical conductivity model.

The lack of data for the present experiment precludes our ability to reach definitive conclu-

sions about the conductivity of iron. In spite of this, these calculations show promise, indicating

that sufficient difference exists between conductivity models, and that a reflectivity measurement

with a time history of∼30 ps and < 10% random error bars could constrain the EOS and electrical

conductivity. This would be easily achievable at a high-repetition rate facility such as LCLS. With

the uncertainty in modeled SOP temperatures due to the EOS resolved, the amplitude of that data

would indicate if the thermal conductivity should increase or decrease. Assuming Lynx 260 re-

mained the best EOS in a comparison of reflectivity data with the model—as it did for aluminum—

the SOP temperatures indicate that the thermal conductivity for the current iron models is accurate

within the error bars of this measurement.

5.6 Discussion

Analysis of the simulations allows for characterization of the phase space this reached in this

experiment. Figure 5.16 shows the electron temperature and mass density of the 100 nm Au +

100 nm Fe target at times ranging from the end of the heating pulse to 35 ps. The profiles have

been aligned to the left edge of the gold for clarity. Comparing these profiles with the ones from

Titan in fig. 4.19, the XFEL’s greater efficiency at creating differentially-heated target stacks is

immediately clear. The gold is heated to a peak temperature of 15 eV while the iron starts at 4.5 eV.

The temperature and densities occupied by just the iron layer are shown in fig. 5.17. The resulting

conditions are comparable to the aluminum experiment with peak temperatures of approximately

10 eV in the multi-layer targets, and the average density remains above 0.7 g/cc for the entire 100

ps.

The coupling and degeneracy parameters are shown in table 5.4. Due to the prompt heating
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Figure 5.16: Spatial temperature (top) and density (bottom) profiles from a 100 nm Au + 100 nm
Fe simulation using Lynx 260 for the EOS and Purgatorio for the thermal conductivity. The red
dot indicates the position of the critical density surface for 450 nm light. The thickest portion of
each line contains the iron zones; the intermediate thickness, the gold; and the thinnest contains
the Si3N4 zones. The profiles have been aligned to the Si3N4/Au interface for clarity.

Figure 5.17: Electron temperature vs. mass density phase space from best matched targets: (a) 50
nm Fe, (b) 100 nm Au + 50 nm Fe, and (c) 100 nm Au + 100 nm Fe. The phase space is shown in
5-ps sections, represented with color.
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source and higher density of iron, the coupling parameters are 2–3x higher than they were for the

aluminum, with an average Γii value of 25 at t = 10 ps for the 100 nm Fe target. The degeneracy

parameters are also a factor of 2 smaller. However, the general conditions are still moderately

coupled and partially degenerate—similar to the aluminum experiment in Chapter 4—and provide

an excellent test for theories in WDM.

Table 5.4: Plasma-coupling and electron-degeneracy parameters for Fe target layers
50 nm Fe 100 nm Fe

Time [ps] 5 10 30 60 5 10 30 60
Γii,avg 19 12 5.5 3.5 32 25 11 6.2
Γie,avg 7.6 5.5 3.3 2.4 12 9.8 5.8 4.0
Θavg 0.6 0.9 1.8 2.8 0.4 0.5 0.8 1.3

The validity of the local-heat transport assumption was checked under these conditions. The

electron mean free path was calculated using electron-electron and electron-ion collision times

from Purgatorio and an average velocity that was either the maximum of the Fermi velocity or the

thermal velocity. The electron mean free path was defined as λe = (λeeλei)
1/2, and the thermal

scale length, L = T/∇T , was determined from the spatial profiles in the hydrodynamics calcu-

lation. I found that the ratio L/λe dipped as low as 25 at t = 5 ps, rose to 50 by t = 7.5 ps, and

exceeded greater than 225 beyond 15 ps. Early times may experience slight kinetic effects due to

non-local heat transport, but the target should rapidly approach diffusion conditions. For very thin

targets, the time scales for diffusive transport across the target may coincide with the time it takes

for non-local effects to dissipate, and future experiments should aim for targets greater than 100

nm with these conditions. Problems may also arise if a material with significantly lower density

than iron is chosen. To mitigate these problems, consider tuning the XFEL to a higher energy

(which is absorbed less efficiently), using a different element for the heater layer (which absorbs

less strongly), or using a larger x-ray focal spot.

Successful fabrication of thicker targets allowing us to obtain the reflectivity measurement

from the FDI would have significantly improved the present experiment. Figure 5.19 shows the

S-polarized reflectivity and the rear-surface temperature for 100 nm Au + 100–300 nm Fe targets.
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Figure 5.18: Calculated reflectivity (top) and rear-surface temperature (bottom) of Au/Fe targets
of increasing iron thickness. Purgatorio and Sesame 22144 are compared .

The conduction dynamics are greatly emphasized in the 200 and 300 nm iron layers. The

calculation for s22144 shows > 20% difference from the minimum at t = 23 ps to the maximum at

t = 36 ps. This difference would be well within typical measurement uncertainties. The temporal

evolution is even slow enough that currently-available equipment with a 5 ps time resolution could

resolve the feature. During the design process of the experiment, the rear-surface temperature was

assumed to be the most distinguishable observable. However, for the successfully measured target

thicknesses, the target’s rarefaction and the propagation of the thermal wave are on nearly-identical

time scales. This led to suppression of features in the brightness temperature alone, making the

obtainment of a quality, time-resolved reflectivity measurement imperative.

Figure 5.19 shows the effect on calculated observables if the entire thermal conductivity table is

scaled up or down by a factor of 4. The temperature data is sensitive to higher thermal conductivity

values, showing a∼40% increase but losing all features as the thermal energy arrives much sooner.

155



10 30 50 70 90

Time [ps]

0

1

2

3

4

T
e
ff
 [

e
V

]

10 30 50 70

Time [ps]

0

0.2

0.4

0.6

0.8

1.0

R
e

fl
e

c
ti
v
it
y
 [

S
-p

o
l] PG K

th
 x 0.25

PG K
th

 x 1.0

PG K
th

 x 4.0

Figure 5.19: Rear-surface temperature (left) and S-polarized reflectivity for 100 nm Au + 200 nm
Fe target calculated with the Purgatorio model. Arbitrary multipliers of 0.25x and 4.0x are shown
in dotted and dashed lines, respectively.

This increase also serves to blur the feature visible in the reflectivity, resulting in a nearly 20%

change near the reflectivity features. Conversely, the reduction in thermal conductivity serves

to sharpen them. This effect is certainly smaller, but within resolvable limits. These types of

measurements are particularly well-suited to a high repetition-rate facility where quality statistics

can reduce errors caused by digital readout and low signal to very small levels. This reflectivity

shows great promise, likely distinguishing at least factors of 4—though possibly smaller changes—

to the conductivity.

5.7 Conclusions

This chapter described an experimental campaign performed at the LCLS using the XFEL as a

pump and the short-pulse Ti:Sapphire laser as a probe to diagnose differentially-heated high-

Z/low-Z target stacks. We measured the brightness temperature of the rear-target surface for a

set of single- and double-layer gold and iron targets designed to constrain hydrodynamics models.

The modeling—performed using HYDRA—tested three EOS models and four thermal/electrical

conductivity models against the data. The electrical and thermal conductivity models were used

self-consistently with a Helmholtz wave solver to calculate the observed optical behavior assum-

ing a Drude model. Reasonable agreement between temperature data and models was found for all
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EOS and conductivity models. Calculations were presented that indicate the strongest evidence of

thermal conduction would have been present in the reflectivity data. The ultrashort heating dura-

tion of the XFEL emphasizes a minimum in the reflectivity that is highly sensitive to the EOS and

conductivity models. The platform exhibited the ability to create moderately-coupled, partially-

degenerate warm dense matter in a temperature range of 2–10 eV and 0.5–10 g/cc.

The demonstration of measurable signal levels establishes the possibility for future, improved

experiments. This future work should focus on enhanced target fabrication techniques capable of

creating targets of 200–400 nm thickness. These target improvements would significantly heighten

sensitivity to the thermal evolution, keep the experiment at higher densities, and mitigate the impact

of ballistic and other non-local electron heat transport.
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CHAPTER 6

Radiation transfer in dense short-pulse laser-heated

targets

6.1 Introduction

In high-temperature matter, radiation plays a crucial role in the energy balance and system evo-

lution as well as the experimental diagnosis of the thermodynamic state of the system. Plasma

spectroscopy is a staple in the diagnosis of the temperature, density, and ionization balance of as-

trophysical and laboratory plasmas[241, 242]. By blending a target of interest with low- to mid-Z

elements and observing the K-shell emission, one may infer the plasma conditions. If the dopant

is kept to a sufficiently low concentration, the impact of an impurity usually remains small. This

technique is commonly used at facilities such as the National Ignition Facility to diagnose implod-

ing capsules. It has also been demonstrated as an effective temperature and density diagnostic for

the opacity experiments related to the work presented within this chapter[243, 244].

The most accurate determination of temperature and density requires fitting as many spectral

features as possible to a self-consistent synthetic spectrum. These calculated spectra are most com-

monly generated using Collisional Radiative (CR) models such as FLYCHK[105], Cretin[106], or

SCRAM[107]. CR models must solve a coupled local and non-local problem that treats large num-

bers of individual atomic transitions (see Section 2.5.1) in addition to satisfactorily accounting for

dense-plasma effects not present in isolated atoms. These include ionization potential depression,

line shifts, and line shape calculations. Ongoing NLTE workshops focus on benchmarking codes
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against one another, and recent workshops have begun extensive comparison with experimental

data[116, 117, 118]. The scarcity of well-characterized and benchmarked experimental data rel-

evant to NLTE conditions is highlighted among the conclusions of these workshops. This has

sparked experimental efforts to create platforms that determine temperature and density indepen-

dently of spectroscopic measurements[245], but data remains scarce.

The brightest spectral lines often result from optically-thick transitions. Photons within such

spectral lines experience many absorptions and re-emissions before exiting a plasma, leading to a

trapped radiation field within the volume. In practice, the effects of this trapped radiation are of-

ten neglected entirely using optically-thin models or are incorporated probabilistically through the

escape factor approximation (see Section 2.5.2 for a description) in lieu of a full radiation transfer

solution. This approximation—viewed as a correction to an optically-thin model—provides more

accurate results while minimizing the tremendous computational burden of solving the full radi-

ation transfer equation. However, the use of these escape factors has not been well benchmarked

with experimental data, and their impact on inferred temperatures from optically-thick lines is

nebulous.

Previous work by Kerr et al.[246] used Cretin to compare a radiation-transfer calculation with

an escape-factor calculation and found modest disagreement for Fe XV ions with column densities

between 1017–1019 cm−2, with the escape-factor method over-predicting the escape of radiation.

Dumont et al.[247] performed a comparison between escape factors and full radiation transfer in

simulations of active galactic nuclei using the photoionization code, Titan. They modeled a hy-

drogen slab of particle density n = 1012 cm−3 and a total column density of 5x1024 cm−2 that was

irradiated by a constant external continuum source. They concluded that the escape factor calcu-

lation significantly over-estimated the line emission (by ≈30%), with the best agreement found

for transitions without significant overlap with the continuum. Minguez et al. presented a com-

parison of calculations done with 1-D radiation transfer and escape factors for a laser-produced

plasma[248]—100 µm thick Al, 300 eV, 1023 cm−3—representing the closest comparison between

existing literature and this current work. They found excellent agreement for the population frac-
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tion and specific intensity in the case of a uniform plasma, but began to see significant deviation

for non-uniform density and temperature profiles.

In this chapter, I will present angularly- and temporally-resolved K-shell spectra from silicon

plasmas at 450–650 ev and 1–2 g/cc. These data will be presented along with a computational

study of escape factors in 0-D and 1-D compared with radiation transfer in 1-D and 2-D. General

uncertainty in the inference of temperature from these spectroscopic models will be compared, as

well as an assessment of other significant experimental uncertainties such as radial temperature

gradients.

6.2 Radiation transfer and escape factor simulations

Here, we choose two codes for comparison. The first is the NIST version of FLYCHK[105].

FLYCHK is widely used in the laser-plasma community because of its accessibility, simplicity,

and accuracy. All FLYCHK calculations assume a uniform 0-D slab geometry. A thickness over

which to calculate opacity effects (using the escape factor formalism) may be specified, or else

an optically thin model is assumed. The second code, Cretin[106], is a powerful tool with the

capability to perform direct comparisons between model assumptions using the same numerics

and atomic data. Cretin was developed by Howard Scott at LLNL and can perform detailed 0-D or

multi-dimensional radiation-transfer calculations. These calculations either utilize escape factors

or a formal transfer solution that treats small groups of interacting spectral lines independently with

a complete linearization technique[103]. The continuum and spectral lines are treated separately,

allowing for differentiation between cases where the continuum is important to the overall problem.

Within Cretin, individual transitions must be specifically chosen for a detailed transfer treat-

ment. The rest are treated with the escape factor formalism. All components of the 1s2-1s2p (He-

α), 1s-2p (Ly-α), 1s2-1s3p (He-β), and 1s-3p (Ly-β) transitions are transferred in detail, where

the satellites are always treated with escape factors. This is considered acceptable as the satellites

remain optically thin and will never contribute to an internal radiation field. Line shapes for these
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spectral lines are calculated using TOTAL[249].

Both models require detailed atomic data as input. FLYCHK uses detailed data from HULLAC[108]

and calculations from the original FLY code[250] for the most commonly used diagnostic ions (Li,

He, and H-like). Beryllium-like ions to neutral atoms are represented with only a ground state, ion-

ization potential, and statistical weight. The current silicon FLYCHK model includes 380 levels

and 3749 transitions. Cretin may use any atomic model provided, but all of the results presented

here are from a detailed K-shell model provided by H. Scott (LLNL), calculated with FAC[109].

This model used full-level detail calculated with FAC for H, He, Li, and Be ions. The Be ion

model is averaged based on principal quantum number, n, to match the structure of a screened-

hydrogenic model. Levels within H, He, and Li ions are averaged or combined for n≥4. Finally,

all ions from B to neutral silicon are included from a simple screened-hydrogenic model. This

results in a model with 552 levels and 19,460 photoexcitation transitions; 7,059 photoionization

transitions; 13,445 collisional excitation transitions; 7,116 collisional-ionization transitions; and

7,554 Auger-ionization transitions.

The model parameters in this section are chosen for their similarity to the data presented in later

sections. The targets are 1500 Å thick, 300–900 eV, and 1–2 g/cc. All models are run in steady-

state conditions with constant mass density and varied temperature profiles. The electron and ion

temperatures are held equal to one another. A characteristic simulation result from Cretin is shown

in figure 6.1. The energy range of interest is 1800–2500 eV for the silicon K-shell. The primary

features are the He-α, Ly-α, He-β, and Ly-β resonance lines, along with dielectronic satellites

from Be, Li, and He-like ions. Finally, the He-like free-bound continuum is seen between the

Helium and Hydrogen beta lines. The intensity of all continua are low through the entire energy

range.

At first glance, these conditions might be expected to be sufficiently collisional to be in LTE. In

this case, escape factors—which enter only in calculating radiative rates—would be insignificant.

However, the elevated temperatures mean that trapped radiation from spectral lines might play a

role in the kinetics, particularly for the n = 2→ 1 alpha lines which are moderately trapped. It is
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Figure 6.1: Characteristic silicon K-shell spectrum at 1 g/cc and 400–600 eV for a 1500 Å thick
target. At the thinnest dimension, the alpha lines have optical depth of 2–10, and the beta lines and
dielectronic satellites are optically thin.

precisely in this region of moderate optical depth that the approximation may fail. The aim is then

to determine how far from LTE the samples are, how the escape factor formalism compares with a

full transfer calculation, and assess how different the model-inferred temperatures are.

6.2.1 Kinetics comparison

First, we look at the population balance determined from the FLYCHK and Cretin kinetics cal-

culations. Figure 6.2 shows a comparison of the average ionization and ionization distribution

calculated by both codes for 0-D geometry using Apruzese-style planar escape factors[251] for

the line radiation only. The plasma was assumed to be 1500 Å thick Si at 1 g/cc mass density.

This corresponds to a 3000 Å thickness in FLYCHK. This is the 60◦ chord length corresponding

to the planar volume-averaged path length which should be used for the volume-averaged escape

factor[129]).

Below 300 eV, we observe all models for the average ionization converging to LTE—as ex-

pected. As the temperature increases and the role of radiation becomes more important, the models

diverge. Above 900 eV, the silicon becomes fully stripped, and line radiation again becomes less
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(c)

Figure 6.2: Comparison of 0-D kinetics models calculated by FLYCHK and Cretin for the LTE
case (blue), optically-thin NLTE case (yellow), and the NLTE case with opacity included in the
escape factor formalism (red).

important. The region between these two limits sees the maximum difference in the models. For

these conditions, both Cretin (dotted line) and FLYCHK (solid line) predict very similar average

ionizations. Small differences are attributable to the specific level structure in the atomic data.

Under these conditions, the inclusion of the trapped radiation leads to only a 1.5% increase in

average ionization, relative to the optically-thin case. However, the ratio of helium to hydrogen-

like ions at 500 eV is 0.95 using escape factors and 1.34 in the optically-thin case, a 40% change.

Remembering that the temperature inference is sensitive to the ratio of these ions, radiation trap-

ping is an important effect to include. FLYCHK consistently predicts more He-like ions than Cretin

does.

A key difference between an escape-factor calculation and a spatially-dependent transfer solu-

tion is the inclusion of a boundary layer. All plasmas have a skin depth over which populations

vary due to escaping radiation. Thus, even with a uniform temperature, the population balance
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will have a spatial dependence that is a function of the optical depth of each transition. This is

illustrated in figures 6.3 and 6.4 for the ground states of hydrogen- and helium-like ions as well

as the upper level of the Ly-α (2p1) transition and a Li-like dielectronic satellite (1s12s2). Escape

factors rely on a volume-averaged probability of a photon escaping which, by definition, remains

constant throughout the volume. Thus, all escape factor calculations will have a constant value in

space.

The H-like ground state is elevated relative to the optically-thin limit, decreasing close to the

edge, while the He-like ground state is suppressed but increases close to the edge. This has been

discussed previously by Apruzese et al.[252] and results from a process called ladder ionization.

The trapped radiation pumps the upper level of He-like ions, moving them closer to the continuum.

This reduces the energy required for collisional ionization, causing the observed decrease in the

He-like ground state and corresponding increase in the H-like ground. The radiation field decreases

toward the edges and populations tend toward the optically-thin limit. The upper levels of H-α and

He-α are both pumped by trapped radiation and decrease toward the edges, though only H-α is

shown in fig. 6.4. The population fractions from Cretin 0-D and 1-D escape factor calculations

are all reasonably close to the mass-average of the transfer calculation, but do vary some. This is

likely due to numerical and atomic model differences.

Figure 6.5 shows a comparison between ionization balances calculated with a 0-D FLYCHK

escape factor model, 0-D & 1-D Cretin escape factor models, and a 1-D Cretin transfer model.

The populations for the 1-D transfer model are the mass-averaged value. At 700 eV, the models all

agree very closely, predicting less He- and H-like ions but more fully stripped than the optically-

thin model. However, at 500 eV the optically-thin model predicts helium as the dominant charge

state while the 1-D transfer predicts hydrogen. This is due to the ladder ionization previously

discussed. The trapped He-α photons increase the number of ions excited to the upper level, which

is 1865 eV. The ionization potential of the helium atom is 2436 eV, so the thermal temperature

of 500 eV approximately provides the difference required to ionize the closed helium shell and

increase the degree of ionization.
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Figure 6.3: Spatially-dependent ground state population fractions for H- and He-like ions in half of
the target. The H-like is elevated relative to the optically-thin limit, but the He-like is suppressed.
This effect is known as ladder ionization—where the trapped radiation excites He-like ions, moving
them closer to the continuum where they are easier to collisionally ionize. The Li-like ground state
(not shown) demonstrates the same trend. The transfer solution confirms this effect, showing an
increase near the plasma edges where the radiation field is lower.

(a) (b)

Figure 6.4: Population fractions for selected upper levels of ground states shown in fig. 6.3. On the
left is the upper level of the H-α transition which shows enhancement relative to the optically-thin
model. The upper level of the He-α is not shown, but demonstrates the same trends. On the right
is the upper level of the Lithium-like satellites to the He-α transition.
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Figure 6.5: Ionization balance calculated by several models. At Te = 500 eV, the optically-thin
model predicts a He-to-H population ratio greater than one, as does FLYCHK. The 0-D and 1-D
escape factor models from Cretin predict a ratio less than 1 with the 1-D transfer and escape models
agreeing closely. The difference is less significant at 700 eV as the He-like population is ionized
away.

6.2.2 Spectral intensity comparison

The experimental plasma conditions are determined using the specific intensity predicted by the CR

model. The escape-factor and radiation-transfer calculations predict varying ionization balances,

and thus are expected to predict different specific intensities.

The current NIST FLYCHK implementation is limited by the inability to specify separate

volume-averaged and viewing chord lengths. Previous work by Kerr et al.[253] demonstrated the

necessity of using the volume-averaged line of sight for the escape-factor calculation, but calculat-

ing the spectrum along the observed line of sight. For any convex geometry, the volume-averaged

line of sight is l̄ = 4V/S, where V is the volume and S is the surface area. For planar geometry,

this is 60 degrees. In FLYCHK, the ‘size’ field refers to this quantity. When analyzing data, one is

left with the choice of potentially misusing this field. It can be set to match the diagnostic chord

length at the risk of inaccurate kinetics, or set to the mean chord—causing incorrect intensities at

any angle other than 60. These fields can be correctly set in the input-file-initialized versions of

FLYCHK (available at some institutions).

Figure 6.6 shows a comparison between the spectral output for FLYCHK and Cretin models at
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Figure 6.6: Calculated specific intensity for a 500 eV, 1 g/cc, and 1500 Å thick Si target. Models
include 1-D Cretin transfer and escape factor, along with 0-D Cretin and FLYCHK escape-factor
calculations. The optically-thin case, generated from Cretin, is included to show the effect of
neglecting opacity entirely.

500 eV, 1 g/cc, and 1500 Å thickness. All spectra are shown for a 60◦ line of sight in order to get

both correct kinetics and intensity out of FLYCHK. The primary differences in models occur for

the optically-thin case, which would predict a temperature ∼40 eV lower (< 10%) than the 1-D

Cretin transfer solution. Additional differences arise in the line shapes of Stark-broadened beta

lines due to the averaging of spectral line components and the line-shape calculations.

6.2.3 Angular dependence

The experimental data presented below were collected at several angles for the same spectral re-

gion. This is an uncommon measurement and provides an opportunity to benchmark the angularly-

resolved spectra that Cretin produces. Figure 6.7 shows the emitted spectrum at several angles for

the silicon targets considered. The optically-thin beta lines and dielectronic satellites gain intensity
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relative to the optically-thick alpha lines with increasing angle of incidence. This follows from the

standard solution to the transfer equation for an optically-thin transition[253]

Iul,thin =
1

4π

∫
nuAulhνulds (6.1)

where Iul,thin is the specific intensity for an optically-thin line; nu, the population density of the

upper state; Aul, the Einstein coefficient for spontaneous emission; νul, the frequency of the tran-

sition; and s, the path length along the ray. There is no difference between escape-factor and

transfer calculations for the optically-thin beta lines, but some discrepancy can be seen for the

optically-thick alpha lines at large angles. The transfer calculation predicts a self-reversal of both

alpha lines, while the escape factor does not. Self-reversal occurs when the opacity in the line

core is sufficiently large that all photons of that frequency are reabsorbed within the plasma and

distributed into the wings.
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Figure 6.7: Specific intensity for increasing angles from target normal for the four observable Si
lines. Conditions are Te = 500 eV, ρ = 1 g/cc, and ∆Z = 1500 Å. Solid lines are from a 1-D Cretin
full-transfer simulation, and the dashed show the same 1-D model using planar escape factors.
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6.2.4 Radial temperature gradients

Gradients are always present in experimental plasma measurements despite often heroic efforts

to mitigate them. The buried-layer platform at Orion[243] has demonstrated the ability to create

nearly-uniform plasmas in space—both in temperature and density—through the use of thin mi-

crodot targets. These are tamped to constrain the density longitudinally and heated with a laser spot

that over-fills the dot to control radial gradients. Nonetheless, radial gradients have been measured

in Orion experiments[244] and invoked as a possible cause of disagreement in the time history of

spectral measurements[254, 255].

Existing models that consider radial gradients in spectroscopic measurements are incorporated

in large-scale integrated simulation efforts[254, 256] that combine particle-in-cell (PIC), hydro-

dynamics, and atomic-physics calculations. Here, I want to explore the possible impact of radial

gradients on the presently-discussed experiments arising solely from radiation transfer. I present

2-D (RZ) transfer and escape-factor simulations with fixed mass density and radially-symmetric

electron and ion (Te = Ti) temperature profiles. These are all performed in the steady-state ap-

proximation.

Figure 6.8 shows the population distributions vs. the radial dimension of the target. The tem-

perature profile is shown in black. The temperatures peaked at 500 eV with super-Gaussian tem-

perature profiles (eq. (6.2)) with exponents n = 2, 4, and 10 and a FWHM of 60 µm. Shallower

temperature gradients contain large regions of material in which helium and lithium are the domi-

nant ions.

When CR models are used to match temperatures, single-temperature calculations are com-

monly used. If a radial gradient is present, contributions from colder regions of the target make

the spectrum appear to have come from a colder ionization balance. The inferred temperature will

come from an emission-, rather than mass-, averaged spectrum. Figure 6.9 shows the error that

arises from fitting the spatially-integrated emission from the 2-D radial-gradient simulations—

described by their peak temperatures—to a single-temperature model. The best fit between the

calculations is determined by minimizing Chi2 of the helium- and Lyman-beta lines. Below 300
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Figure 6.8: Spatially-dependent ion fractions for hydrogen, helium, and lithium from a Cretin 2-D
radial gradient transfer simulation with detailed transfer. Thin lines are from a 2-D escape-factor
calculation, and thick from the transfer calculation. Plotted in heavy black are the super-Gaussian
temperature profiles, all peaked at 500 eV, with exponents n = 2, 4, & 10. All distributions have a
60 µm FWHM.
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Figure 6.9: The apparent temperature inferred by matching a 1-D single-temperature synthetic
spectrum to the spatially-integrated emission from a 2-D radial-temperature-gradient simulation
characterized by its peak temperature.
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eV, the error is small. As temperature increases, the error approaches 50 percent. This can lead to

significant underestimation of the peak temperatures that exist within the plasma.

Figure 6.10 shows the observed spectrum for a uniform 500 eV target and a Gaussian (n =

2, FWHM = 60µm)) radial-gradient simulation with peak temperature of 680 eV. The optically-

thin beta lines are indistinguishable, even in the absence of noise that typically accompanies a

measurement. The only diagnostic signature that exists to differentiate the models would be total

emitted flux or the ratios of the satellites. The gradient simulation predicts lower intensity for the

helium dielectronic satellites to Ly-α and higher lithium dielectronic satellites to He-α.
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Figure 6.10: Comparison of the emitted spectrum at 76◦ from a uniform 500 eV Si target, and one
with a 60 µm FWHM Gaussian temperature profile with peak temperature 680 eV.

6.2.5 Longitudinal temperature gradients

Heating a target with a laser on only one side invariably leads to a degree of longitudinal gradient.

The dominant heating mechanism for these targets is believed to result from a return current that

counters the fast electron flux generated at the laser interaction point[156]. However, the compli-

cated field geometry and charged particle interactions that exist at the laser-interaction point may

cause the front surface to become hotter than the rear.

To determine if a longitudinal gradient would be spectroscopically observable for these condi-

tions, a 1-D simulation was run which assumed a linear temperature gradient throughout the target.

The results are shown in figure 6.11. The front surface was held at 625 eV, and the rear at 375 eV.
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This corresponds to a ±25% variation from the mean of 500 eV. The spectra observed from each

surface, at 76 degrees from target normal, are plotted for escape-factor and transfer calculations.

The large angle was chosen to match angles for which data exists. The difference between escape-

factor and transfer treatments is minimal and could likely not be experimentally determined. The

optically-thin n = 3→1 lines are identical from both views and are not shown. The primary differ-

ence resides in the alpha lines, which exhibit reduced intensity when viewed through less-ionized

material on the cold side. The optically-thin satellites have the same intensity when viewed from

either side. Thus, the satellite-to-resonance line ratios should detect a longitudinal gradient if a

measurement is produced from both sides.
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Figure 6.11: 1-D Cretin simulations for a 1500 Åthick Si target assuming a ±25% linear longitu-
dinal gradient with an average temperature of 500 eV. The spectrum on the left is observed from
the high-temperature side at 76◦ from normal, and the right spectrum viewed from the same angle
on the low-temperature side.

6.3 Experimental setup at Orion

The data presented within this chapter were collected during a series of ongoing experimental cam-

paigns using the Orion laser located at the Atomic Weapons Establishment (AWE) in the United
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Kingdom as part of a collaboration between AWE and LLNL. These measurements served to char-

acterize the experimental platform to better facilitate high-accuracy LTE opacity measurements.

Details of the facility itself are outlined in Chapter 3. This section will focus on the specific setup

for the campaign in which these data were collected.

6.3.1 Buried-layer platform

The current buried-layer platform at Orion[243] continues the similar short-pulse work performed

in the late 1990’s at Rutherford Appleton Laboratory[257], LLNL[258, 259], and Orion’s prede-

cessor, Helen[260, 261]. The concept is to inertially tamp the material of interest between layers

that do not interfere with the method of temperature and density measurement. The tamp limits the

expansion of the material, minimizing longitudinal spatial gradients, and thereby improving mea-

surement accuracy. These high-accuracy methods generate opacity measurements with sufficiently

small uncertainties as to instruct theoretical improvements to existing opacity models.

The favored approach uses K-shell spectroscopy to diagnose plasma conditions. Targets con-

tain an active layer of low- to mid-Z elements—either in pure or co-mixed form—that are chosen

based on the expected peak temperature. The material is isochorically heated, causing the high-

density buried layer to expand into the lower-density tamp until it reaches pressure equilibrium.

The targets are left highly ionized and at a constant density until the rarefaction wave propagates

through the tamp material. The temperature and density may be inferred from comparison of the

helium- and hydrogen-like ion emission with detailed atomic physics models.

To achieve high-fidelity measurements from a plasma in a single-state, the targets must be

carefully chosen. Figure 6.12 shows a schematic of the targets presented in this work. The tamp

layers are made of low-Z plastics such as polypropylene (C3H6) or parylene-N (C8H8). The choice

of a low-Z tamp layer ensures that the tamp material will remain optically thin to the multi-keV

transition radiation from the targets and free of significant spectral contamination. It also sets the

effective mass density at which the spectral measurement will be made due to the pressure balance

between the tamp layers at 1.1 g/cc and the active layer at 2.33 g/cc, in the case of silicon.
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Figure 6.12: Schematic drawing of Si buried-layer targets shot at the Orion Laser Facility. Square,
silicon microdots with a 100 µm side are tamped within parylene-N plastic and mounted on a
washer and stalk for shots. The thickness of front and back tamps may be varied based on the
specific shot requirements, but generally are 2–10 µm. The microdots were fabricated at LLNL
and target assemblies, constructed by target fabrication at AWE.

The active layer is most commonly a square microdot of 50–100 µm length that is EB-PVD

coated onto a 1 µm layer of polypropylene. The assembly is then submerged into a parylene-N

vapor coater which adds a typical 3 µm of tamp on either side. This results in an asymmetric

tamp with 3 µm on the front and 4 µm on the back. In some instances, greater asymmetry is

desired. This is achieved by varying the thickness of the initial polypropylene layer. The thickness

of the active layer is chosen so that the hydrogen- and helium-like beta lines (n = 3→1) remain

optically thin. A balance must be struck between having enough material to ensure sufficient

signal while minimizing possible optical depth effects and spatial gradients that can complicate

the interpretation of temperature and density. This thickness is in the range of 1000–2000 Å.

Finally, the target Z should be chosen carefully based on the expected temperature range of

the experiment. The temperatures are inferred by fitting an entire spectrum to the data, but in

principle, two resonance lines from different ions—typically helium and hydrogen—are sufficient.
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The sensitivity of this temperature measurement relies on the relative populations between the two

ions; sensitivity is lost if the temperature is so low there are no hydrogen ions or so high that there

are no helium ions.

6.3.2 Diagnostic layout

Orion is uniquely suited to spectroscopic studies of hot dense matter. A wealth of spectroscopic

instruments have been developed by the Orion facility staff and physicists[181] and through col-

laboration with LLNL[196, 262]. The combination of TIM-based diagnostics with those mounted

on the chamber walls enables a large number of instruments to be fielded simultaneously. For

the experiment presented here, the angular distribution of fielded diagnostics is shown in figure

6.13. There were five time-integrated spectrometers, two time-resolved spectrometers, and three

hot-spot imaging diagnostics. The spectrometers all utilized curved crystals. The spectral ranges,

angle of incidence, filtering, and crystal information may be found in table 6.1.

Table 6.1: Orion diagnostic list with accompanying instrument information.
Diagnostic Range (eV) Θnorm (◦) Filter Crystal RoC (mm) 2d (Å)

MKII 1800-2500 76.0 16 µm Be CsAP +500 25.65
Titan 1800-2500 76.0 16 µm Be CsAP +500 25.65

OHREX 1 2300-2450 46.2 50 µm Be Quartz 101̄1 -672 6.687
OHREX 2 1800-1900 58.3 50 µm Be Quartz 101̄0 -672 8.512
Axis 608 1800-2250 65.0 16 µm Be CsAP +500 25.65
Axis 609 1800-2275 25.0 16 µm Be CsAP +500 25.65

PHC Hot-spot 20.0 8 µm Be - - -
KB91 Hot-spot 11.9 8 µm Be - - -
KB21 Hot-spot 27.3 8µm Be - - -

Both of the time-resolved spectrometers were used with Axis-PX ultrafast x-ray streak cameras[193],

which are operated with approximately 1–2 ps temporal resolution. Both used CsI photocathodes

on Be substrates, were fitted with image intensifiers, and read out to SI1000 CCDs. All of the

other instruments utilized Fuji BAS-TR image plate detectors that were scanned 15–30 minutes

after each shot with 25 µm pixel size on a Fuji FLA7000 IP scanner.
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Figure 6.13: Diagnostic arrangement for angularly-resolved spectroscopic measurements at Orion.
Names written in blue are time-integrated spectrometers, those in purple are time-resolved spec-
trometers, and those in red are spatial-imaging diagnostics. The azimuthal angle, θ, is measured
counter-clockwise from the short-pulse laser, and the polar angle, φ, is given as the angle above
or below the equatorial plane shown. Finally, the angle from the target normal surface, Θnorm, is
listed for each instrument.

6.3.3 Laser parameters

All of the shots described here used the short-pulse beam line, SP1, frequency-doubled from 1054

nm to 527 nm using a KDP crystal to improve the nanosecond Amplified Spontaneous Emission

(ASE) contrast ratio (to ≈10−18 [181]) as well as heating efficiency[156].

Prior to the time of this experiment, the maximum pulse energy was limited to 100 J in a 700 fs

pulse by the doubling crystal; however, improvements prior to this experiment allowed for delivery

of 200 J to the target. This was achieved by passing the beam through two sub-aperture doubling

crystals before refocusing using the same final f/3 parabolic mirror[182]. The temporal offset of

the pulses was determined to be better than the pulse duration by the presence of interference

fringes. The effects of the interference fringes on the laser-plasma interaction are not known, but

the fringes do not show up in imaging of the x-ray spot. For high-energy shots, both beams were
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spatially defocused to create a 75 µm spot, overfilling the standard 50 µm microdots to decrease

radial gradients. Both configurations delivered approximate intensities of 5x1018 W/cm2.

6.4 Experimental Results

In this section, I present analyses of data collected from 100 µm, square, microdot targets. The

pure Si layer is 1500 Å thick and asymmetrically tamped with 3, 7, or 10 µm front tamps and

varied rear tamps. Table 6.2 summarizes the target and laser specifications for each shot.

Table 6.2: Shot list for analyzed silicon data
Shot number Materials Thickness Focal spot size Laser Energy Pulse width

(µm) (µm) (J) (ps)

6583 PyN / Si / PyN 3 / 0.15 / 20 50 182 0.62
6597 PyN / Si / PyN 7 / 0.15 / 3 75 162 1.5
6598 PyN / Si / PyN 10 / 0.15 / 3 75 184 1.49

6.4.1 Spot size measurements

The spot sizes of each target were measured with a pinhole camera (PHC) and two Kirkpatrick

and Baez (KB) microscopes[263]. The pinhole camera provided the best images due to its 20◦

viewing angle. The PHC magnification was set to 10, and data were recorded on TR IP for an on-

target resolution of 10 µm. Stray light and soft x-rays were rejected with an 8 µm-thick beryllium

front filter. After correcting for the viewing angle, the resulting x-ray spot sizes were by 69x66

µm, 63x60 µm, and 66x55 µm, respectively, for the three shots shown in fig. 6.14. These values

are close to the expected spot size and indicate that the laser was not grossly misaligned with the

microdot. Furthermore, the spot is fairly uniform without any clear evidence of the two separate

focal spots or interference fringes.

The heated regions are smaller than the 100 µm microdot size, so a radial gradient is expected.

The plots in fig. 6.14 show the radially-averaged hot-spot profiles. These are the average of 12

profiles taken 15 degrees apart to span the full rotational symmetry of the images. They were fitted
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Figure 6.14: Heated region images from the pinhole camera (PHC) for Orion facility shots 6583,
6597, and 6598. The images are oriented so that vertical is vertical in the experimental configura-
tion. The spot sizes, after correcting for the viewing angle, are (width x height) 69x66 µm, 63x60
µm, and 66x55 µm, respectively. The bottom row show the radially-averaged images (over 12
lineouts, 15-degree separation) along with super-Gaussian fits with exponents n = 1.5, 2, and 4.

with a super-Gaussian of the form

I(r) = I0e
−0.5

(
r−r0
w0

)n
(6.2)

where w0 = FWHM
2 (2 ln2)1/n

. In general, the heated region is well-fit by an exponent n = 3–4. Some

signal persists beyond the 100 µm of the target; this is likely caused by the plastic and could be

eliminated with thicker filters or a Ross filter pair.
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6.4.2 Time-integrated spectra

Time-integrated spectra provide the average temperature and density while the target emits at its

brightest. If the temperature or density change significantly while signal from the target is mea-

surable, the time-integrated spectrum will contain emission from charge state distributions that

existed at different phases of the target’s evolution. The benefit of spectra created by a short-pulse

laser is that material does not emit for extended times relative to hydrodynamic time scales, and

only spectra from a narrow range of conditions are recorded. This is further improved by the

buried-layer experimental platform which limits expansion of the active layer to the time it takes a

rarefaction wave to travel through the tamp layer. Thus, the time-integrated spectra presented here

are averages but only include emission from a narrow temperature and density phase space.

Three spectrometers—the MKII, the Titan, and the HBS—measured most of the K-shell. They

captured the He-α (1s2-1s2p), Ly-α (1s-2p), He-β (1s2-1s3p), Ly-β (1s-3p), and associated satel-

lites. It is possible the He-γ (1s2-1s4p) also exists during some late times, but the transition is

broad and signal sufficiently low that it merges with the continuum and is poorly resolved. All

transitions from higher principal quantum number states are pressure ionized into the continuum

and do not exist[243].

Figure 6.15 shows IP data for the Titan and MKII spectrometers on shot 6598. The white boxes

show the area over which an average lineout was taken. The TR image plate has 100 µm spatial

resolution[264], so the MKII is averaged over 680, 25 µm pixels, or 170 resolution elements. The

Titan is averaged over 70 resolution elements. This averaging provides good count statistics for

each energy, but the resolution of the spectrometers using CsAP will be determined by the crystal-

intrinsic resolution. According to rocking curve measurements by Beck, this will be E/∆E ≈

600–900 [205].

The OHREX 1 spectrometer measured the Si He-α complex, and the OHREX 2 measured the

Si Ly-β transition. These are used as a consistency check—particularly for the density—on the

plasma conditions inferred from the Titan and MKII because of the OHREX diagnostic’s superior

resolution (E/∆E ≈ 9000 [262]).
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Figure 6.15: Time-integrated silicon spectra for shot 6598 for the Titan and MKII time-integrated
spectrometers. The white dotted boxes represent the area over which an average lineout was taken.

The time-integrated spectrometer data shown in fig. 6.16 have been corrected for background,

Be filters, CsAP-integrated reflectivity, TR image plate response, and converted to CGS-specific

intensity units. The energy dependence of the solid angle is small and, therefore neglected. The

background is subtracted as a low-order polynomial fit to points between spectral lines and away

from satellites.

Figure 6.16 shows three shots of increasing temperature (S6598, S6597, and S6583) as mea-

sured by spectrometers at three unique angles. These data have been normalized by the amplitude

of the He-β transition—the simplest, optically-thin feature present on all spectra. This normaliza-

tion removes the effect of increasing path length and leaves only differences due to opacity. This

is verified in the amplitude of Ly-β and in the Li- and He-like satellites to the alpha lines, which

are also optically thin and share very similar amplitudes after the normalization. The intensity of

the alpha lines decrease with increasing angle of observation from target normal, as expected. The

MKII and Titan view the same angle on opposite sides of the target. They look through different

thicknesses of CH tamp but remain very similar, supporting the choice to neglect the tamp layers in

180



1800 1900 2000 2100 2200 2300 2400

Energy [eV]

0

5

10

15

In
te

n
s
it
y
 [

n
o

rm
.]

Titan - 76 deg (front)
MKII - 76 deg (rear)
A608 - 65 deg (front)
A609 - 25 deg (rear)

1800 1900 2000 2100 2200 2300 2400

Energy [eV]

0

5

10

15

In
te

n
s
it
y
 [

n
o

rm
.]

Titan - 76 deg (front)
MKII - 76 deg (rear)
A608 - 65 deg (front)
A609 - 25 deg (rear)

1800 1900 2000 2100 2200 2300 2400

Energy [eV]

0

5

10

15

In
te

n
s
it
y
 [

n
o

rm
.]

Titan - 76 deg (front)
HBS - 70 deg (rear)
A608 - 65 deg (front)
A609 - 25 deg (rear)

Shot 6598

Shot 6597

Shot 6583

(a)

(b)

(c)

Figure 6.16: Time-integrated silicon spectra measured for shots 6598, 6597, and 6583. Each shot
has four time-integrated spectra—two from the integrated signal of a streak camera, and two from
image plate detectors—at three unique angles. Intensity units have been converted to be in CGS
and normalized to the amplitude of the He-β transition. All spectra have been convolved with a 4
eV FWHM Gaussian (E/∆E ≈ 500) for equivalent comparison across instruments. The optically-
thick alpha lines follow the expected trend, decreasing relative to the He-β line, with increasing
angle from target normal.
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the modeling efforts. Additionally, the similarity between data measured from the front and back

indicates the longitudinal gradient within the target remains small or, at the very least, is symmetric

about its mid-plane (see fig. 6.11).

6.4.3 Time-resolved spectra

Two time-resolved spectra were measured for each shot using the Axis x-ray streak cameras[193].

The images required correction for temporal distortion using the onset of the continuum emission

between spectral lines as t = 0. Figure 6.17 shows the streaked images for shot 6598 after making

these corrections.

Axis 608 - Shot 6958

Axis 609 - Shot 6958

He-�
Ly-�

He-�

Time

Energy

Figure 6.17: Streaked images from the Axis 608 (65◦ from target normal) and the Axis 609 (25◦)
for shot 6598. The He-α complex with lithium-like satellites, the Ly-α with helium-like satellites,
and the He-β are within spectral coverage. The red overlaid line is the time-integrated spectrum of
the streak.

The sweep speed is 0.25 ps/pixel based on the knowledge of the 500 ps sweep window spread

over 2000 active pixels of the CCD. One way to improve this would be to perform a sweep-speed
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calibration with an interferometer and pulsed UV light source. Assuming a temporal resolution of

1 ps, the data is oversampled by a factor of 4. However, to improve the signal-to-noise, the data is

binned in 3 ps segments. This provides 17 spectra before the signal is too weak to analyze. The

previously-mentioned intensity corrections have been reapplied here (with the detector response

being that of a CsI photocathode, rather than TR image plate). The background is subtracted

from flat regions between spectral features for each time slice assuming insignificant underlying

continuum.

Figure 6.18: Time-resolved data from shot 6597 for the Axis 608 streak camera with a viewing
angle of 65 degrees from target normal. The data have been integrated into 3 ps bins and convolved
with a 4 eV Gaussian (E/∆E ≈ 500) to improve the signal-to-noise and reduce the electronic noise
introduced by the streak camera intensifier and CCD.

Figure 6.18 shows spectra from the Axis608 instrument for shot 6597 at six times. At the earli-

est times, there are no significant emissions from hydrogen-like ions in addition to large beryllium-

and lithium-like satellites. By the 6–9 ps time slice, the Ly-α is nearly maximized. Beyond this
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point, the Ly-α begins decreasing again as the plasma cools. Temperatures can be inferred for ap-

proximately 45 ps before the signal is too dim. The density starts at roughly 2.2 g/cc and decreases

to 1.4 by t = 30 ps. However, the signal in the beta line is quite faint, and the uncertainty in the

inferred density is as large as ±50% when below solid density.

The opacity of the alpha lines makes them challenging to fit satisfactorily, as shown in fig-

ure 6.18. Matching the temperatures for the time-resolved data was done by fitting voigt and

Lorentzian curves to the models and data, then comparing the integrated signal of the Ly-α to the

He-α lines. This captures kinetic effects on the ionization balance due to radiation trapping but

to some extent bypasses uncertainties in line-broadening calculations. This ratio is shown in fig.

6.19(b) for the 1-D transfer, optically-thin, and radial-gradient case. Figure 6.19(a) shows an ex-

ample of how the curves were fit to the He-α line complex. The PeakFit tool for Matlab, written

and maintained by Professor Tom O’Haver, was used to fit these curves[265]. Curves 1 and 2 are

due to lithium-like dielectronic satellites. Obtaining a unique fit to curves 2 and 3 proved chal-

lenging, so all of the presented ratios are the integral of curves 2 and 3 combined. The satellite

contributions are optically thin and the resonance line optically thick, so this contamination intro-

duces some angular dependence on the ratio. The ratios for 65◦ are shown, though each diagnostic

is matched to a curve calculated at its angle in the analysis. The time-resolved temperature profiles

are shown in the following section.

6.5 Discussion

The principle aim of this work is to compare the escape-factor approximation with a more com-

plete radiation-transfer calculation. This comparison is shown for shot 6597 in figure 6.20. The

agreement between a Cretin 0-D escape factor calculation—using the Apruzese escape factors for

voigt line shapes[251]—with the 2-D transfer calculation is excellent. The agreement with a 1-D

transfer calculation, which removes skin-depth effects in one dimension, is even better. The beta

lines are identical between both models, resulting in the same inferred temperatures to within a few
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Figure 6.19: The He-α complex has been fit to three curves for integration. Curves 1 and 2 arise
due to Li-like satellites and curve 3 from the resonance line. Curves 2 and 3 are included in the
ratios shown in (b). The ratios used to fit temperatures to the alpha lines are shown in (b) for a
single-temperature, optically-thin, and a Gaussian temperature profile case.

percent. The escape-factor calculation predicts slightly higher intensities in the optically-thick al-

pha lines, and lower intensities in the Li- and He-like satellites to the alpha lines. This is consistent

with the findings of Kerr et al.[246] and Dumont et al.[247].

This excellent agreement is not unexpected. The material is relatively low-Z, the plasma suffi-

ciently collisional, and the average ionization is close to the closed helium shell. These conditions

all minimize the effect of radiative transitions or the uncertainty in calculating them. Addition-

ally, high material density reduces the number of bound states through pressure ionization, and the

lines are well separated in frequency. This limits radiative pumping of one transition by another.

Finally, the targets are thin enough that the underlying continuum radiation is quite low, and the

tamp prevents density gradients. Nonetheless, validating this approximation here is a valuable first

step before moving on to systems where agreement is less likely.

The model agrees quite well with the data, but several differences do exist. The positions of

the dielectronic satellites to He-α are calculated by FAC[109] and are 3 eV too low in energy. The

beryllium satellites are 15 eV too low in energy. This will change the shape of the calculated He-α

complex slightly, but play no significant role in the kinetics.

The most notable difference is the intensity of the alpha lines. He-α and Ly-α are both over-

predicted at 25 degrees and under-predicted at 76 degrees. Figure 6.21 shows the ratio of the
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Figure 6.20: Comparison of time-integrated spectra at 25◦, 65◦, and 76◦ from shot 6597 with 0-D
escape factor and 2-D transfer calculations from Cretin.

simulated line-integrated intensity to the data. The error bars on the plot are based on the un-

certainty added to the integration due to satellite contamination (see fig. 6.19). This trend with

increasing angle persists for shot 6598. The causes for this discrepancy remain an open question.

The most likely suspects are the line shapes. At small angles, the intensity of the optically-thick al-

pha lines will be determined by the plasma conditions—though n = 2 lines are insensitive to Stark

broadening. As the angle increases, opacity broadening dominates, and this could mask errors in

the line intensity. More work is required to explain the nature of this observation.

The secondary aim of this work is to quantify the effect of radial gradients on spectroscopically-

inferred temperatures. The 2-D simulations described in Section 6.2.4 are compared against the

data from shot 6597 for the n = 2 (Gaussian) case in figure 6.22. The disagreement in the ampli-

tudes of the alpha lines persists in the radial-gradient calculations, ruling this out as a cause for the
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Figure 6.21: Comparison of predicted, integrated, alpha line intensity at each angle to the mea-
sured. Small angles are over-predicted by current simulations, and large angles are correct or
slightly under-predicted.

discrepancy shown in figure 6.21. The most striking difference appears in the inferred peak tem-

peratures. The Gaussian case fits—based on the ratio of beta lines, which are not shown—with a

peak temperature of 840 eV, compared with the single-temperature fit of 580 eV. This corresponds

to a mass-averaged value of 526 eV over the 100 µm target. Spectrally, the only thing that sets the

radial gradient case apart is the increased Be- and Li-like satellite emission in the He-α complex.

In fact, it appears that the Li-like satellites are overestimated in the n = 2 case, but underestimated

in the uniform case when compared with data. This would be consistent with the radially-averaged

spot size measurement presented in fig. 6.14, which shows that the heated region in shot 6597 is

best fit by a super-Gaussian with n = 4. For the n = 4 case, the best-fit peak temperature is 680 eV

with a 500 eV mass average (taken over the 1/e2 spot ≈ 78 µm). For this case, the satellites most

closely fit the data.

Radial gradients can play a significant role in the interpretation of a time-resolved temper-

ature. Figure 6.23 shows time-resolved temperatures inferred from streak camera data for shot

6597. The temperatures were determined by comparing the integrated alpha-line ratios for each 3

ps time slice to theory. The left pane is the time history inferred by fitting the data to a uniform

temperature model, the middle to a 2-D radial gradient model with a super-Gaussian temperature

distribution with n = 4, and the right a 2-D radial gradient model with a Gaussian temperature dis-

tribution. The y-axis displays the peak temperature of each model. The red data points come from
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Figure 6.22: Comparison of a uniform Te calculation at 580 eV with a Gaussian temperature
simulation with a FWHM of 60 um and peak Te of 840 eV.

the streak camera measuring at 25◦, and the blue from the camera at 65◦. The profiles are similar,

indicating opacity effects do not significantly alter the use of integrated alpha lines as a temper-

ature diagnostic. However, A609—which looks through a smaller optical depth—does exhibit a

more sharply-peaked temperature profile. This trend is observed in the other two analyzed data

shots. Though this could be an opacity effect, the larger-angle streak camera also has more signal,

indicating that it could be suffering degraded resolution due to space charge. More investigation

would be required to resolve this.

The light blue line corresponds to the value determined from the time-integrated spectral data

(the MKII, Titan, or HBS). The time-integrated temperature inferred from the beta-line ratios

matches the one from alpha ratios to within a few percent, establishing confidence in the method.

Summing a synthetic spectrum for each point in the streaked time history yields time-integrated
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Figure 6.23: Time-resolved temperatures for shot 6597 for Axis 609 at 25◦ and Axis 608 at 65◦.
Each pane represents the inferred peak temperature at each time assuming a uniform temperature
target, a super-Gaussian Te target with n = 4, and a Gaussian target with n = 2. Error bars are
determined assuming a ±10% uncertainty in the integrated line ratio, leading to larger fractional
error bars toward higher temperatures.

temperatures within several percent of the one inferred from the time-integrated spectrometers.

This is true for each of the three hypothetical time histories in fig. 6.23, indicating the temporal

gradient places no constraint on the radial gradient assumed to analyze the data. This is quite trou-

blesome. The assumption of a radial gradient leads to nearly a factor of 2 difference in the peak

temperature inferred.

The temporal evolution measured from similar aluminum buried-layer targets has been shown

to disagree with hydrodynamics simulations by Marley et al.[255, 266]. The measured cooling rate

of these targets is too slow relative to hydrodynamics predictions. Marley demonstrated agreement

with 1-D hydrodynamics simulations using a temporally-extended heat source. This was physically

motivated by a description of lingering hot electrons due to electron refluxing. This idea was

experimentally supported by prior measurements done by Chen et al.[267]. These measurements

show that the time history of titanium K-α emission from a tamped target, irradiated with 1x1018

W/cm2 of 1054 nm laser light, was greater than 13 ps—very similar to the length of the heating

source used Marley used to match the data. Marley achieved the best agreement with data using a 2-
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D particle-in-cell (PIC) simulation. The calculation incorporated a radial-intensity profile derived

from the measured focal-spot profile, using the energy content of the hot electron population as a

fitting parameter. The excellent fit was attributed to the inclusion of a more accurate treatment of

electron refluxing in the PIC simulation, but radial temperature variations were also included in

this modeling.

The data presented in figure 6.23 indicate that the derived cooling rate can be strongly influ-

enced simply by the presence of a radial gradient. In particular, when temperatures are high enough

to fully ionize the hottest region in the target, as is the case for aluminum and silicon, a radial gra-

dient will act to flatten the cooling curve by significantly underestimating the peak temperature.

This situation corresponds to the 50 percent error shown in the inferred temperature at 900 eV in

figure 6.9.

Figure 6.24: Spatially- and spectrally-integrated intensity as a function of the spectroscopically-
inferred temperature for a single Te target and a 60 µm FWHM Gaussian temperature distribution
target. Both targets are 100 µm in size.

It appears that spectral measurements alone struggle to determine the presence of a radial gradi-

ent. The ratio of the satellites changes, but one would have to use a well-benchmarked model with

particular care taken in the calculation of these transitions. Experimentally, these lines are often

very weak and have poor signal-to-noise—especially in time-resolved diagnostics. The total emit-
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ted signal may be used as an additional constraint. Figure 6.24 shows the spatially- and spectrally-

integrated emission (from 1700–2500 eV) calculated by Cretin for a 100 µm-diameter target. At

300 eV, the uniform-temperature spot has 4-times more signal than a Gaussian-distributed spot

with the same spectrally-inferred temperature. At 650 eV, the uniform spot still emits nearly twice

the signal. According to the calculation, a Gaussian spot on a target this size cannot appear to

be hotter than 700 eV. This occurs as a result of the over-ionization of the target center, which

will not contribute to the measured emission when it becomes fully stripped. Nonetheless, the dif-

ference between a Gaussian temperature distribution and uniform temperature distribution should

still be experimentally observable. The total emission from the uniform temperature evolution

shown in fig. 6.23 is 1.52-times higher than the total emission from the n = 2 Gaussian tem-

perature distribution. This indicates that an absolutely-calibrated crystal spectrometer, or even an

appropriately-filtered x-ray diode, is essential in distinguishing the presence of a radial gradient.

6.6 Conclusions

In this chapter, I have presented a study of the effects of trapped radiation on ionization balance and

inferred temperature for conditions relevant to the buried-layer opacity experiments underway at

the Orion Laser Facility. These targets are 1–2 g/cc, 1500 Å thick, and have temperatures ranging

from 500–1000 eV. For these conditions, the helium- and Lyman-alpha lines have maximum optical

depths of 5–10 at normal incidence, and up to 40 for the larger measurement angles of 76◦. It

was shown that the radiation field resulted in increased ionization due to the ladder-ionization

mechanism. This results in a lower temperature required to achieve the same ionization balance.

However, for silicon, neglecting radiation trapping entirely only results in an approximate 10%

temperature error.

The use of escape factors to calculate the synthetic spectrum was compared with a full lin-

earized solution of the radiation transfer equation with Cretin. Using Apruzese’s planar escape

factor for voigt line shapes, agreement with inferred temperatures and ionization balance was found
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to be better than 5% for all conditions tested. This is largely attributed to the simplicity of the sys-

tem studied. It is low-Z, without underlying continuum, has reasonably small gradients, has largely

non-overlapping lines, and is strongly collisional. For these conditions, the escape-factor approxi-

mation is excellent and limits the computational demand without loss of accuracy. The 0-D model

runs in seconds compared to approximately 10 minutes for the 1-D radiation-transfer model and 2

hours for the 2-D radiation-transfer model. Future work should verify this agreement for targets of

increasing atomic number, higher temperatures, and for the case when spectral lines from mixed

targets overlap in some portion of the spectrum.

A study of radial gradients was also presented. It demonstrated that for plausible radially-

symmetric temperature profiles, a spectral measurement alone can result in inferred peak temper-

ature errors of up to 50 percent. This occurs when the central peak temperature is high enough

to fully strip all bound electrons, and the sensitivity of inferred temperatures due to the hydrogen-

helium ion ratio is lost. This effect also exhibited strong flattening of the cooling rate in the

time-resolved data. Errors of this kind may be alleviated by using a sufficiently high-Z material

to keep the ionization peaked near the helium shell for the measured temperatures. However, the

maximum temperature is not always known a priori to aid in material selection. In that case, the

presence of a radial gradient may be inferred from absolute measurements of the emitted K-shell

intensity and an accurate heated region profile measurement in the K-shell wavelengths.
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CHAPTER 7

Summary

The aim of this thesis was to generate experimental data capable of benchmarking the commonly-

used physics models within simulation codes utilized by the HED community. All experiments

demonstrate the use of short-pulse drivers (laser or XFEL) to produce plasmas at high density re-

sulting from short time scales. These materials quickly evolve to LTE conditions due to their high

collisionality, allowing for comparison with developed LTE theories. Short-pulse plasma physics

experiments pose challenges as many exhibit characteristically small spatial scales and rapid tem-

poral evolutions. Those presented here utilize facilities with sufficient energy to generate large

spots (∼10–100 µm) and diagnostics with picosecond-scale temporal resolutions. In the follow-

ing sections, experiments on thermal conductivity and radiation transport are discussed separately,

with a summary of lessons learned and an outlook given for each method.

7.1 Thermal conductivity experiments

7.1.1 Titan experiment

Chapter 4 presented an experiment performed on the Titan laser system at LLNL’s Jupiter Laser

Facility. A sub-picosecond-duration optical laser was focused onto a solid target, generating an

intense proton beam via the TNSA mechanism. Multilayer gold/aluminum targets utilized the

Z-dependent difference in the proton stopping power to induce a temperature gradient between

the two materials. The rear, and coldest, surface of the target was observed with a streaked opti-
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cal pyrometer (SOP) and a chirped-pulse Fourier Domain Interferometer (FDI). These provided

complimentary time-resolved temperature, reflectivity, and phase shift data as the thermal energy

from the hot gold conducted through the aluminum layer. 1D2T hydrodynamics calculations were

paired with a Helmholtz wave solver to calculate the optical spatial absorption profiles and reflec-

tivity for each time. The assumption of a Drude model allowed the self-consistent use of tabulated

DC electrical conductivities with their thermal conductivities for comparison with temperature and

reflectivity data.

The temperature and phase-shift data illuminated the most appropriate gold release EOS, al-

lowing the only free parameter in the simulations (the proton-divergence angle) to be fixed. For

the double-layer targets, the reflectivity data proved essential. It showcased a subtle feature—a

local minimum followed by an increase in the reflectivity before decaying again. This feature re-

sulted from a maximum in the collision frequency due to the thermal energy arriving at the surface

probed by the FDI, a feature sensitive to the EOS, electrical, and thermal conductivity models.

Only Sesame 29373—a conductivity model based on the Lee-More-Desjarlais (LMD) framework

and tuned with QMD simulations—successfully replicated the feature shown in the data. However,

the predicted temperatures were still higher than data for all target thicknesses.

Multiple explanations may account for this. Fixing the free parameter of the heating source

based on the single-layer gold data assumes conclusions dependent on the energy-deposition model

in gold relative to aluminum. If that model is correct (or equally wrong) for both gold and alu-

minum, the next most likely conclusion is that the thermal conductivity values are too high. It was

shown that reducing the thermal conductivities by as much as a factor of four provided a better

fit—both in amplitude and temporal shape—for the two thicker targets. Experimental error bars

prevented a finer determination of how much the conductivity model should be reduced.

Lower thermal conductivity values could be explained by the exclusion of e-e collisions in the

tested models. For a fully-ionized aluminum plasma in which the Spitzer model is valid, we would

predict a 21% reduction in thermal conductivity. This value for material in the WDM regime

remains unclear. However, these are the first experimental results for warm dense aluminum that
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demonstrate large sensitivity to the thermal conductivity, and provide a valuable benchmark in a

regime where models are largely untested.

7.1.2 LCLS experiment

Building on the lessons learned from the experiment performed at Titan, Chapter 5 presents a

follow-on experiment designed to measure gold/iron at the Linac Coherent Light Source (LCLS).

The XFEL differential-heating concept exploits K-shell structure—tuning the pump energy just

below the iron edge—to maximize the difference in absorption between gold and iron. The x-ray-

heated design provides a prompt, monochromatic heating source without the presence of secondary

radiation or particles typically generated by a laser-created proton beam.

I presented an experimental design including two pyrometers at 450 and 800 nm with provi-

sions for the FDI at two wavelengths (400 nm and 800 nm). The finite energy available in the XFEL

pulse, low absorption fraction of our targets, and focal characteristics of the beryllium lens meant

that the largest radially-symmetric spot size that could be created and measured was approximately

9 µm. This placed the experiment in a signal-starved state requiring collection/imaging optics with

very short focal lengths. Keeping three f/1–f/2 optics precisely imaging a 9 µm spot and aligned

through many-component, ∼5 meter optics chains crossing a vacuum-chamber boundary proved

to be extraordinarily difficult. As such, only a partial data set containing brightness temperatures

for all target types could be obtained within the allotted beam time.

These brightness temperatures were enough to fix the x-ray heating source and provide a good

match to the single-layer gold and iron data. When reapplied here, application of the simulation

methodology outlined in Chapter 4 yielded reasonable agreement between the brightness tem-

perature and all combinations of EOS and conductivity models. This instills confidence in the

overall simulation technique, lending credence to the accompanying reflectivity calculations—the

most promising aspect of the work. The ultrashort heating source generated distinct features in

the reflectivity history which—if successfully measured—would clearly differentiate thermal and

electrical conductivity models. In particular, targets greater than 100 nm thick demonstrated this
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feature’s ability to constrain the thermal conductivity to better than factors of 4, and possibly 2.

7.1.3 Outlook on thermal conductivity measurements

The method of differential heating provides valuable experimental data sensitive to the electron-

thermal and AC electrical conductivities. This builds on previous experimental results which use

optical probing of material releasing into vacuum to determine the EOS[228, 227, 165, 268] by in-

troducing the dynamics of a multilayer target with a sharp temperature gradient. The combination

of time-resolved temperature and reflectivity data—used in conjunction—provide a powerful tool

capable of constraining the detailed evolution of thin targets and can produce high-quality data ca-

pable of educating integrated hydrodynamics simulations. The experiments within this dissertation

have demonstrated the viability of creating moderately-coupled and partially-degenerate WDM in

multiple metals at 2–10 eV and 0.5–10 g/cc.

That said, some limitations exist. Differential heating is not a single-state measurement. While

it is most sensitive to thermal conductivities at peak temperature and density conditions, all condi-

tions between the conduction interface and optically-probed surface must be considered. Optical

diagnostics initially probe high-density material, but the expanding material rapidly shifts through

the complicated metal-insulator transition as the density and temperature drop and the valence

electrons become localized. This provides a rich topic of study, but may convolute interpretation

of the diagnostics. The accessible physical conditions are currently limited by the ambient density

of cold material and the peak temperature reached in the heater layer. Temperature is more-readily

varied, but reliable control would require significant effort to achieve.

Target materials must be carefully chosen. Aside from the obvious material requirements nec-

essary to induce a temperature gradient, the experiment should be run in a regime where observ-

ables are only sensitive to the thermal conductivity of the rear layer. This is attained when the

thermal conductivity of the heater layer is large enough to make it isothermal. In this situation,

thermal transport is dominated by the rear layer’s ability to receive heat and not the transport of

heat within the heater layer. On the other hand, if the rear layer’s conductivity is too low, expansion
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dynamics will dominate thermal signatures in the data.

Future work may enhance experimental results and reach more concrete conclusions, with

suggested areas for improvement enumerated as follows:

1. Reduction of systematic error bars—Systematic error bars ranged from 10–20%. These

result from uncertainty in diagnostic calibrations. They add uncertainty in the absolute tem-

perature, but do not change temporal evolutions. With precise calibrations, it should be

possible to achieve < 5–10% at select wavelengths. Harmonics of short-pulse lasers provide

ideal candidates for bright-pulsed sources that can calibrate the shortest sweep speeds of the

optical streak cameras used here.

2. Reduction of stochastic error bars—The stochastic error bars—those arising from random

statistical processes in the electronics of diagnostics—ranged from 5–15% throughout these

experiments. These result in uncertainty in the temporal traces measured and play a larger

role in obscuring comparison with models. High-repetition rate facilities with energetically-

stable drivers are highly desirable and capable of providing the shot statistics necessary to

generate precise temporal traces for both reflectivity and temperature. Random error bars

below 5% should be achievable with modest statistics.

3. Reduction of electrical-conductivity uncertainty—The AC electrical conductivity is nec-

essary for interpretation of optical diagnostics. An expanded set of single-layer data or

QMD/Kubo-Greenwood calculations at experimental conditions would increase the preci-

sion of thermal-conductivity determination. Improving this data set could relax the current

reliance on the Drude model which grows increasingly questionable with decreasing density.

4. Fabrication of thicker targets—Targets greater than 200 nm would improve the clarity of

thermal traces in the reflectivity, particularly for XFEL-heated targets. A complete set of

data for an expanded range of target thicknesses would provide a very tight constraint on

thermal-conductivity models. Thicker targets also test conduction at densities closer to solid

and increase certainty that electron and ion temperatures are equilibrated.
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5. Detailed energy-deposition modeling—Currently, the energy deposition is treated as a free

parameter in the modeling. Detailed energy-deposition modeling would remove the relative

nature of fixing the heating source for all materials based on the heater layer. This could be

done using the same data set as the electrical-conductivity measurements.

6. Reflectivity measurements with P polarization—Including P-polarization reflectivity mea-

surements in addition to S would provide greater constraint. P-polarized light can drive

electron-plasma resonances at the critical surface and is thus more sensitive to both the den-

sity scale length (EOS) and the collision frequency.

7. Varied atomic number targets—Discrepancies in the thermal conductivity most often arise

from a theoretical model’s treatment of e-e collisions. This platform is capable of testing

most elements that form a homogeneous solid. After reducing the above uncertainties, future

experiments could systematically vary Z to test the effect of e-e collisions in WDM.

In summary, the measurement of thermal conductivity of dense plasmas proves extremely dif-

ficult yet feasible. Before this work, no measurements in this regime existed. Using the method of

differential heating—as presented in this thesis—in lock-step with theoretical modeling heightens

our understanding of the complex and intriguing warm dense matter phase space.

7.2 Radiation transfer experiments

Chapter 6 presents data collected during an ongoing collaboration between LLNL and AWE in the

United Kingdom to measure the opacity of short-pulse-heated buried layer targets. A fundamental

requirement to improving opacity models is benchmarking them at well-known temperatures and

densities. For these experiments, temperatures are inferred by matching synthetic spectra generated

by a CR model to K-shell spectra from low-Z tracer elements. Therefore, success in benchmarking

the opacity is linked to the degree of uncertainty in the modeling technique used to infer experi-

mental temperatures. At high densities, alpha or beta lines often remain the only ones available
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to infer temperatures. When the lines become optically thick, they form an internal radiation field

that impacts the ionization balance and emergent spectrum. Calculation of this radiation field is

often neglected or greatly simplified out of necessity.

In this chapter, I present angularly- and temporally-resolved silicon K-shell data and test several

assumptions commonly made in CR modeling. First, I test linearized radiation-transfer and sim-

plified escape-factor calculations from Cretin against the angularly-resolved data to quantify how

different treatments of the trapped radiation field impact the ionization balance and inferred temper-

ature. The results show that the ratio of helium- to hydrogen-like ions may increase significantly—

particularly for temperatures just below the thermal ionization threshold of the closed helium

shell—by including treatments of the trapped radiation. However, calculated spectra from both

full-transfer solutions and escape-factor methods matched the data closely and inferred the same

temperature to within 5 percent for all conditions tested.

The impact of a radial temperature gradient in tamped targets was explored and the inclu-

sion of one led to errors between 20–50% in the peak temperature if the spatially-integrated data

were fit using a single-temperature spectrum. Spectra from spatially-integrated targets with super-

Gaussian-distributed temperature profiles were compared against uniform temperatures, and vir-

tually no experimentally-resolvable diagnostic evidence of the gradient was present. This error in

the peak temperature was shown to change the inferred cooling rate of the time-resolved data. It

was shown that an absolutely-calibrated spectral-intensity measurement can provide sensitivity to

the presence of a gradient.

Future work should check the escape-factor approximation in situations where spectral lines

overlap. For instance, this could occur when multiple K-shell tracers are used in conjunction to

maintain sensitivity of the He:H ion ratios across a broad temperature range, or in mixes with

higher-Z materials where higher shells may overlap the K-shell diagnostic wavelength. Testing

the approximation should also be considered in standard cases where radiation plays a larger role

relative to collisions—increasing atomic number, decreasing density, or increasing temperature.
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APPENDIX A

LCLS Pyrometer Calibrations

The SOP is relatively simple in concept but quite challenging to implement accurately. Determin-

ing a temperature from the target’s self-emission requires detailed knowledge of the streak camera

and optical system. To get the most accurate measurement, it is best to measure as much as pos-

sible in-situ at the experiment. The spatial and temporal calibrations used in the data analysis are

presented below.

A.1 Spatial calibration

The first step in characterizing the imaging system was collecting the calibration images. For this

purpose, a quad-mesh—purchased from SPI, Inc.—makes an ideal resolution target. The variety

used in this work has 10 µm bars throughout, but has four meshes of different periods (125–62–

165–83 µm) joined by a vertex at the center. Illuminating the mesh with a sufficiently-bright CW

light source and imaging the scattered light provides a minimum resolution, magnification, and

field of view in a single image at the correct imaging wavelength. The calibration images from the

Axis and Hamamatsu SOPs are shown in figure A.1 along with the mesh geometry. From these

images, the total magnifications are determined as 21.5 ±0.5 for the 450 nm SOP and 24.5 ±0.6

for the 800 nm SOP. Using the magnification for the 450 nm SOP along with the diameter of the

measured wires gives a 11.3 µm measurement of the 10 µm (nominal) wires. This demonstrates

that the imaging system is at least resolving the XFEL spot, enabling the use of the streaked spot

size for the SOP calculation of emitting area.

200



200 400 600 800 1000

200 400 600 800 1000

(a) (b)

(c)

Figure A.1: Spatial calibration images for the (a) 450 nm Axis SOP and the (b) 800 nm Hamamatsu
SOP. Both image the SPI quad-mesh (c) illuminated with 405 nm light and imaged in their static
imaging modes. Mesh image courtesy of SPI Supplies (www.2spi.com).

A.2 Temporal resolution

The time resolution of the data can be inferred from the data itself in two ways. The first is using

the optical fiducial. The fiducial beam originated as a leakage through one of the FDI probe mirrors

and was re-compressed to a pulse width of less than one picosecond in a dedicated compressor. The

FWHM of the probe on the streaked image is a measure of the temporal response. Figure A.2 shows

lineouts of the fiducial on the 450 nm SOP, giving an average FWHM of 5.3 picoseconds. The

800 nm SOP was calibrated at Europa prior to the experiment (fig. 3.9), but fiducial measurements

gave a comparable 5 ps at the time of the experiment.

Alternatively, the time resolution can be inferred from the rising edge of the emission in the

single-layer data. The time required to heat with an XFEL is expected to be less than a picosecond

for solid density material. As such, the rising edge of the emissivity (counts) measured will also

be limited by the instrumental response. Assuming instrumental response acts to broaden a Delta

function input into a Gaussian distribution, the time from 10% to 90% intensity closely matches

the FWHM of the Gaussian response. Taking the time from 10- to 90-percent intensity of the fast

rising edge of the LCLS data provides a measure of the time resolution. This comparison was
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Figure A.2: Shown above are six measurements of the compressed temporal fiducial for the Axis
SOP. On the left are the data, and on the right, the corresponding Gaussian fits to the averaged
fiducial profile. The average time resolution inferred from this method was 5.3 ps.

completed (not shown) and agreed closely with the prior method of taking the fiducial widths.

A.3 Energy calibration

Finally, the energy calibration of the collection optics, transport optics, and streak camera must be

absolutely calibrated. The streak camera response was calibrated on the experimental sweep speed

between 425 and 650 nm using a supercontinuum white light source generated by focusing a 2 mJ,

500 fs, Ti:sapphire pulse into a liquid cell containing K2ZnCl4[198, 236]. Figure A.3 shows the

frequency response in the calibration for the unit used for this experiment in addition to the band

in which our BPF allowed signal. The transmission of the optics in the experimental geometry

was measured to be 0.35 ±0.02 using a 450 nm CW laser and calorimeter, ensuring that all of the

angle-dependent transmission and reflectivity values were as true to reality as achievable.
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Figure A.3: Axis optical streak camera response used in calculation of temperatures. Shown with
the band pass filter used to limit spectrum to 425–475 nm.
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APPENDIX B

Thermal-conductivity simulation sensitivity scans

When modeling an integrated experiment, one important aspect is understanding the impact of the

uncontrollable and/or immeasurable experimental variables. In this section, I outline some of the

experimental uncertainties and present modeling results to state the quantitative impact of these on

the primary experimental observable—the rear surface temperature.

• Impact of Si3N4 thickness

The silicon-nitride membrane is grown onto a silicon wafer by low-pressure chemical vapor

deposition (LPCVD), and the silicon is etched away to create the free-standing membrane.

Uncertainty in layer thickness enters through the growth rate and how much is etched away

while etching the Si wafer, but is estimated to be 10 percent for layers of this thickness.

Figure B.1 shows simulations where the layer thickness is increased to 100 nm, 2.5-times

larger than the nominal case, as a worst-case scenario. It can be seen that for the 100 nm

Au and 100 nm Au + 100 nm Fe cases, the increased layer thickness causes no noticeable

change in the observed temperature. For the 50 nm Fe case, the significantly-increased mass

results in the iron layer staying at higher density and temperature longer, and therefore in a

slightly-increased temperature from t = 10–40 ps. This difference, considering the extreme

upper bound, would not impact results.

• Impact of Si3N4 thermal conductivity

The Si3N4 thermal conductivity was not the focus of study for this work and so remains
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Figure B.1: Effect of changing Si3N4 layer thickness from nominal 40 nm layer (black on plot) to
100 nm for three calculation types.

an uncertainty. To quantify the impact of the unknown amplitude of this thermal conduc-

tivity, simulations were run with this varied, as shown in figure B.2. Increased Kth in the

silicon-nitride layer reduces available energy in the iron layer, which is observed as a lower

temperature. A two-order of-magnitude change results in a peak difference in the 50 nm Fe

of 15%, in the 100 nm Au simulation by 4%, and in the Au + 100 nm Fe simulation by less

than 3%. A change to the thermal conductivity this substantial is again physically unlikely,

and therefore this is expected to play a minimal impact in data interpretation.
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Figure B.2: Effect of changing Si3N4 thermal conductivity, using the Lee & More model[13] in
HYDRA, by ±2 orders of magnitude.

• Impact of gold thickness

The single-layer gold data is used as the anchor to determining the x-ray source amplitude to

use in the simulations. As such, uncertainties in the thickness could potentially be important.

The uncertainty in the coating process and measurement of layer thickness on a witness-slide

is ±10%. Figure B.3 shows the impact of changing the gold thickness by ±25%, two-and-

a-half-times the expected uncertainty, with the impact in the temperature being less than 9%
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for thinner targets and less than 6% for thicker targets. Thinner targets demonstrate a larger

temperature drop on the 100 ps time scale due to the rarefaction wave propagating through

the target sooner.
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Figure B.3: Effect of changing the thickness of the gold layer in single-layer simulations.

• Impact of gold thermal conductivity

Similarly to the uncertainty in the silico- nitride thermal conductivity is the gold thermal

conductivity. In the experimental design, the heater layer’s conductivity is much higher than

the layer under study, so the thermal transfer is dominated by the conductivity of the study

layer. Figure B.4 shows the impact of varying the gold thermal conductivity on single- and

double-layer targets.

In the 100 nm Au target, the nominal case is on a local maximum. If the thermal conductivity

is higher than expected, the layer can redistribute heat within itself faster than expansion can

introduce a temperature gradient; this is observed as a higher peak temperature but a faster

cooling rate at the observed surface. Alternatively, if the thermal conductivity is significantly

lower than expected, heat from the densest regions in the target cannot reach the rear surface

being observed, and again, the temperature remains low.

In the double-layer case, the expected saturation for high thermal conductivity values is

seen. The 1x, 10x, and 100x cases all have near-identical temperature profiles. However, if

the conductivity is much lower than expected, the balance between the gold and iron thermal

conductivities become important.
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Figure B.4: Effect of changing the thermal conductivity, using the model of Lee & More[13] in
HYDRA, in the gold layer for (a) 100 nm Au and (b) 100 nm Au + 100 nm Fe.

While there is a demonstrated sensitivity to the gold’s thermal conductivity value, it re-

mains unlikely that the true values will be wrong by multiple orders of magnitude. We

expect greater accuracy from the Lee & More model for high-Z metals as the material is

more representative of a Lorentz plasma. Furthermore, the physical quantities impacting the

conductivity—the density of charge carriers and scattering cross-sections—are unlikely to

vary from model to model by enough to result in such large factors. This is, however, the

most impactful of the tested uncertainties and a potentially non-negligible uncertainty.

• Impact of electron-ion equilibration rate

The electron-ion equilibration rate is itself an active area of experimental[229, 269] and

theoretical[81, 270, 42, 271] study in HED physics. It enters into these simulations through

the energy balance within the expanding plasma. The ions carry the majority of the energy

and lose it as the plasma expands into the vacuum. The electron temperature is dragged down

by the equilibration rate with the cooling ions. In the un-rarefied layer, the density remains

high, and there is little deviation between ion and electron temperatures. In the outer regions,

there can be deviation.

These models in HYDRA use an equilibration rate determined by the collision frequencies

within the Lee & More model. Figure B.5 shows the impact on the observed temperature of

varying the equilibration rate in single- and double-layer iron targets. In both cases, there

is not much sensitivity to the equilibration rate. Increasing the equilibration rate by a factor
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of 10 results in less than a 2% change, while increasing it results in the electrons retaining

a larger proportion of the heat, and the observed temperature would increase by 8% for the

single-layer iron and 4% for the double-layer case.

Figure B.5: Simulated temperatures for cases where the electron-ion equilibration rate has been
multiplied by 0.1 and 10.0.

• Meshing convergence study

To ensure the final results were fully converged, I performed a convergence study in the

spatial meshing of the simulation. The mass-per-cell was matched across material interfaces

to prevent numerical artifacts, and the mesh density was increased until the difference in

observed temperature was less than 0.1%. The problem is well-converged using at least 1.5

cells per nm thickness of solid density material.

208



BIBLIOGRAPHY

[1] Q. Williams. The thermal conductivity of earth’s core: A key geophysical parameter’s
constraints and uncertainties. Annual Review of Earth and Planetary Sciences, 46:47–66,
2018.

[2] A. J. Biggin, E. J. Piispa, L. J. Pesonen, R. Holme, G. A. Paterson, T. Veikkolainen, and
L. Tauxe. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nu-
cleation. Nature, 526:245–248, 2015.

[3] K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, and Y. Ohishi. Experimental determination
of the electrical resistivity of iron at Earth’s core conditions. Nature, 534:95098, 2016.
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[90] R. Franz and G. Wiedemann. Ueber die wärme-leitungsfähigkeit der metalle. Annalen der
Physik, 165:497–531, 1853.

[91] R. Kubo. Statistical-mechanical theory of irreversible processes. I. general theory and sim-
ple applications to magnetic and conduction problems. Journal of the Physical Society of
Japan, 12:570–586, 1957.

[92] R. Redmer. Physical properties of dense, low-temperature plasmas. Physics Reports,
282:35–157, 1997.

[93] J. M. Ziman. A theory of the electrical properties of liquid metals. I: The monovalent metals.
The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics,
6:1013–1034, 1961.

[94] C. E. Starrett, J. Clerouin, V. Recoules, J. D. Kress, L. A. Collins, and D. E. Hanson. Average
atom transport properties for pure and mixed species in the hot and warm dense matter
regimes. Physics of Plasmas, 19:102709, 2012.

[95] B. B. L. Witte, P. Sperling, M. French, V. Recoules, S. H. Glenzer, and R. Redmer. Obser-
vations of non-linear plasmon damping in dense plasmas. Physics of Plasmas, 25:56901,
2018.

[96] R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman. A new quotidian equation
of state (qeos) for hot dense matter. The Physics of Fluids, 31:3059–3078, 1988.

[97] S. C. Burnett, D. G. Sheppard, K. G. Honnell, and T. Sjostrom. Sesame-style decomposition
of KS-DFT molecular dynamics for direct interrogation of nuclear models. AIP Conference
Proceedings, 1979:030001, 2018.

[98] D. A. Young and E. M. Corey. A new global equation of state model for hot, dense matter.
Journal of Applied Physics, 78:3748–3755, 1995.

[99] E. M. Corey and D. A. Young. A new prototype equation of state data library. AIP Confer-
ence Proceedings, 429:43–46, 1998.

[100] S. P. Lyon and J. D. Johnson. Sesame: the Los Alamos National Laboratory equation of
state database. Technical Report LA-UR-92-3407, Los Alamos, 1992.

[101] V. Montoya. T-4 handbook of material properties data bases vol Ic: Equations of state.
Technical Report LA-10160-MS, Los Alamos, 1984.

215



[102] J. I. Castor. Radiation Hydrodynamics, pages 179–211. Cambridge University Press, New
York, 2004.

[103] I. Hubeny and D. Mihalas. Theory of stellar atmospheres: an introduction to astrophysi-
cal non-equilibrium quantitative spectroscopic analysis. Princeton series in astrophysics.
Princeton University Press, Princeton, 2015.

[104] H. K. Chung, R. W. Lee, M. H. Chen, and Y. Ralchenko. The How To For FLYCHK
@ NIST. NIST, 2008. https://nlte.nist.gov/FLY/Doc/Manual_FLYCHK_
Nov08.pdf.

[105] H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee. FLYCHK: General-
ized population kinetics and spectral model for rapid spectroscopic analysis for all elements.
High Energy Density Physics, 1:3–12, 2005.

[106] H. A. Scott. Cretin–a radiative transfer capability for laboratory plasmas. Journal of Quan-
titative Spectroscopy and Radiative Transfer, 71:689–701, 2001.

[107] S. B. Hansen, J. Bauche, C. Bauche-Arnoult, and M. F. Gu. Hybrid atomic models for
spectroscopic plasma diagnostics. High Energy Density Physics, 3:109–114, 2007.

[108] A. Bar-Shalom, M. Klapisch, and J. Oreg. HULLAC, an integrated computer package for
atomic processes in plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer,
71:169–188, 2001.

[109] M. F. Gu. The flexible atomic code. Canadian Journal of Physics, 86:675–689, 2008.

[110] S. B. Hansen. Balancing detail and completeness in collisional-radiative models. In
Y. Ralchenko, editor, Modern Methods in Collisional-Radiative Modeling of Plasmas.
Springer Series on Atomic, Optical, and Plasma Physics, vol 90., pages 1–15. Springer,
Cham, 2016.

[111] R. W. Lee, J. K. Nash, and Y. Ralchenko. Review of the NLTE kinetics code workshop.
Journal of Quantitative Spectroscopy and Radiative Transfer, 58:737–742, 1997.

[112] C. Bowen, A. Decoster, C. J. Fontes, K. B. Fournier, O. Peyrusse, and Y. Ralchenko. Re-
view of the NLTE emissivities code comparison virtual workshop. Journal of Quantitative
Spectroscopy and Radiative Transfer, 81:71–84, 2003.

[113] C. Bowen, R. W. Lee, and Y. Ralchenko. Comparing plasma population kinetics codes: Re-
view of the NLTE-3 Kinetics workshop. Journal of Quantitative Spectroscopy and Radiative
Transfer, 99:102–119, 2006.

[114] J. G. Rubiano, R. Florido, C. Bowen, R. W. Lee, and Y. Ralchenko. Review of the 4th NLTE
code comparison workshop. High Energy Density Physics, 3:225–232, 2007.

[115] C. J. Fontes, J. Abdallah, C. Bowen, R. W. Lee, and Y. Ralchenko. Review of the NLTE-5
kinetics workshop. High Energy Density Physics, 5:15–22, 2009.

216

https://nlte.nist.gov/FLY/Doc/Manual_FLYCHK_Nov08.pdf
https://nlte.nist.gov/FLY/Doc/Manual_FLYCHK_Nov08.pdf


[116] H. K. Chung, C. Bowen, C. J. Fontes, S. B. Hansen, and Y. Ralchenko. Comparison and
analysis of collisional-radiative models at the NLTE-7 workshop. High Energy Density
Physics, 9:645–652, 2013.

[117] R. Piron, F. Gilleron, Y. Aglitskiy, H. K. Chung, C. J. Fontes, S. B. Hansen, O. Marchuk,
H. A. Scott, E. Stambulchik, and Y. Ralchenko. Review of the 9th NLTE code comparison
workshop. High Energy Density Physics, 23:38–47, 2017.

[118] S. B. Hansen, H. K. Chung, C. J. Fontes, Yu. Ralchenko, H. A. Scott, and E. Stam-
bulchik. Review of the 10th Non-LTE Code Comparison Workshop. arXiv e-prints, page
1903.09605, 2019.
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