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ABSTRACT

Stories are one of the main tools that humans use to make sense of the world around

them. This ability is conjectured to be uniquely human, and concepts of agency and in-

teraction have been found to develop during childhood. However, state-of-the-art artificial

intelligence models still find it very challenging to represent or understand such informa-

tion about the world. Over the past few years, there has been a lot of research into building

systems that can understand the contents of images, videos, and text. Despite several ad-

vances made, computers still struggle to understand high-level discourse structures or how

visuals and language are organized to tell a coherent story.

Recently, several efforts have been made towards building story understanding bench-

marks. As characters are the key component around which the story events unfold, char-

acter representations are crucial for deep story understanding such as their names, appear-

ances, and relations to other characters. As a step towards endowing systems with a richer

understanding of characters in a given narrative, this thesis develops new techniques that

rely on the vision, audio and language channels to address three important challenges: i)

speaker recognition and identification, ii) character representation and embedding, and iii)

temporal modeling of character relations. We propose a multi-modal unsupervised model

for speaker naming in movies, a novel way to represent movie character names in dialogues,

and a multi-modal supervised character relation classification model. We also show that

our approach improves systems ability to understand narratives, which is measured using

several tasks such as their ability to answer questions about stories on several benchmarks.
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CHAPTER 1

Introduction

Stories are ubiquitous and are one of the essential components of human communication

tools. These stories can take multiple forms such as movies, books, comic strips, and so

on. Understanding these stories usually engages multiple senses such as vision, listen-

ing, common sense, and sometimes even our imagination. Thus, story understanding is

essential to understanding human intelligence, which is crucial to building artificial intelli-

gence systems that can behave on par with humans [2]. In this thesis, we focus on visual

stories, particularly movies and TV shows, and aim to develop models that improve their

understanding. Movies and TV shows are interesting because understanding them requires

processing many sources of information at once. When people watch movies, they integrate

information from the dialogues between the movie characters as well as the visual channel

representing the entities and the scenes to develop a good understanding of the plots.

1.1 Language & Vision

Over the past decade, there have been rapid advances in the fields of natural language

processing (NLP) and computer vision (CV). With the development of large-scale bench-

marks [3, 4, 5, 6], both worlds have seen a dramatic shift from using hand-crafted features

such as Scale-Invariant Feature Transform (SIFT) or template patterns [7, 8] to trainable

end-to-end models for image and text representation using deep learning models such as

convolutional neural networks (CNN) [9, 10, 11, 12, 13]. These advances led to building

1



systems that can understand the contents of text, images, and videos. For instance, reading

comprehension systems can answer questions about a given narrative paragraph by extract-

ing the text span that answers a given question [14, 15]. An example of image and video

understanding is a system that recognizes and localizes objects in images or detects actions

in videos [16, 17, 18, 19, 20]. Building upon these advances led to an increasing interest

in tasks that involve joint analysis of both language and vision such as image captioning

[21, 22], phrase localization [16, 23], and description of short video clips [24, 25]. Visual

question answering (VQA) [26, 27, 28] is another task that aims to answer questions about

the content of a given image. The questions asked are typically based on the visual content

of the image, like the attributes of a given object (e.g., color/size), counting a specific object

(e.g., how many), yes/no questions (e.g., if objects exist or not), etc. Such questions are

basically tied by the static nature of images. Thus, several visual story question answering

benchmarks were proposed, such as MovieQA [29], TVQA [30], PoroQA [31].

Unlike still images or text, visual stories require humans to process many sources of

information. For instance, movies contain visual information (in the form of shots and

scenes), and language information in the form of dialogues between characters. Also, the

temporal organization of the story as a sequence of frames and the development of events

through interactions between characters requires humans to integrate information across

scenes and make connective inferences to build a coherent story.

1.2 Characters in Stories

Stories often revolve around characters around which the events of a story’s plot unfold.

These characters do not necessarily have to be human. They can be almost anything: peo-

ple, animals, objects, and so on. When we read a story or watch a movie, we easily identify

the story characters, interpret their relations from the dialogue or actions. As the story

evolves, we start to understand the dynamics of these characters relations, emotions, inten-

2



tions, and can sometimes predict their next course of actions and how these actions affect

the rest of the storyline. Consider the plot of the movie “There’s something about Mary”:

A shy 16-year-old high-schooler Ted lands a prom date with his dream girl

Mary, only to have it cut short by an embarrassing accident. He subsequently

loses touch with Mary.

Thirteen years later, Ted is still in love with Mary. On the advice of his friend

Dom, he hires private detective Healy to track her down. Healy finds that she is

living in Miami but Healy falls in love with the irresistible Mary as well. Healy

resorts to lying and cheating but is exposed by Mary’s friend, Tucker who turns

out to be also in love with Mary.

Ted, aided by Dom, drives down to Florida to reconnect with Mary. Ted seems

to have won Mary’s love, until an anonymous letter exposes his being less than

honest about his link to Healy. Ted confronts Healy and Tucker. Mary breaks

up with Ted. Then Ted leaves tearfully. But Mary forgives Ted after that and

chases him saying that she would be happiest with him. 1

This example illustrates the importance of characters to stories. For instance, the plot

starts with introducing the two main characters, “Ted” and “Mary.” It then goes on to de-

scribe the story events, introduce new characters, and explain how the story progresses. In

this example, every sentence in the summary talks about at least one character of the story.

It also shows how their relations evolve, how their motivations change, and how their ac-

tions affect the events. In the last paragraph of the story, “Ted” and “Mary” loved each

other. Then she broke up with him after thinking that he tricked her. She forgives him after

that, and they become lovers again.

As this example illustrates, character representation is essential for deep story under-

standing, and this representation includes information such as their names, appearances,

1Plot summary from: https://www.imdb.com/title/tt0129387
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and relations to other characters. This thesis takes a step towards endowing systems with

a richer understanding of characters in a given story by leveraging information from the

visual, acoustic, and textual modalities, with a focus on visual stories such as movies and

TV shows.

1.3 Research Questions

The goal of the research described in this thesis is to explore and analyze various aspects

of character representation. Specifically, the thesis seeks to find answers to the following

research questions:

Q1: Can we augment the representation of each entity with speaker names auto-

matically predicted from dialogue? (Chapter 4)

Humans identify and infer character names from dialogues and can identify the speaker

of each dialogue turn. Thus, this work starts with building a large speaker naming dataset,

which consists of eighteen movies and six episodes of a TV show. For each video, we

have human annotators watch and label each dialogue segment with the name of the char-

acters that uttered it. Then, we develop a new multimodal model that leverages in a unified

framework of the visual, speech, and textual modalities that are naturally available while

watching a movie.

Q2: Can this augmented character representations be used to improve the perfor-

mance of the downstream task of question answering? (Chapter 4)

To address this question, we develop a question answering system based on memory

networks. We compare the accuracy of this model to answer questions when it is introduced

with movie subtitles and when it is introduced with subtitles of movies in addition to the

speaker names. We use an existing question answering benchmark MovieQA [29], which

consists of 15k questions created about the plots of 408 movies. The results suggest that

using speaker names significantly improved the accuracy of the question answering models.

4



Q3: Can we create character representations that can more effectively identify the

relations between characters? (Chapter 5)

Existing models represent name mentions of characters by looking up their embed-

dings from Word2Vec or Glove models. Unlike regular words, for which their distance

from other words in an embedding space represents their semantic relatedness, we find that

names’ embeddings from such models do not reflect character relatedness in the same way.

To approach this problem, human judges watch the 18 movies from the speaker naming

dataset, and for each pair of characters, they give a score to how related these characters

are to each other. We propose a change to the existing Word2Vec models to include the

context word in addition to the previous and following speakers as a part of the Word2Vec

objective function. The resulting embeddings are significantly better correlated with hu-

man judgment than a regular Word2Vec model. We also evaluate the resulting embeddings

on different downstream tasks such as relation classification and question answering. We

also hypothesize that other channels of information such as the visual or acoustic channels

carry useful information that can help representing characters better than using language

alone.

Q4: Can we use these character representations to model the relation between

characters over time? (Chapter 6)

Many of the representations proposed so far are static and do not consider the changes

that occur to each character and how their relation to other characters change over the

events of the story. We hypothesize that using character-specific memory units that would

temporally encode character-related information such as emotions and interactions would

outperform the use of static representation on different tasks such as predicting the flow of

emotions and interactions between characters.

5



1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews previous work in the areas of our con-

tributions, particularly: joint modeling of language and vision, speaker identification and

naming, entity embedding, inter-character relationship modeling, and story understanding.

In Chapter 3, we discuss our first attempt to use linguistic cues to improve the alignment be-

tween textual and visual modalities for the phrase localization task, thus laying the ground

for more advanced language/vision tasks.

In the following three chapters, we discuss different aspects for character representa-

tion. Chapter 4 explores the usage of textual, visual, and acoustic information to identify

and name speakers in movies. Chapter 5 discusses how to represent the characters based

on the dialogue between them and how well does the resulting embedding space correlate

with human judgment about how related these characters are to each other. In Chapter 6, we

discuss our next step, which aims to build a graph of relations that models each character

and its relations with other characters temporally.

Finally, Chapter 7 provides a summary of the thesis and highlights the contributions

made by this thesis in the field of character representation and visual story understanding.
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tions.
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CHAPTER 2

Related Work

Recent years have witnessed great interest in combining natural language processing and

computer vision after the tremendous advances in both fields. Several datasets have been

created to facilitate the development and evaluation of deep neural models on tasks like

image/video captioning [32, 33, 34], grounding image descriptions [33, 35, 36], and visual

question answering [26, 37, 28, 38].

In this chapter, we start with an overview of previous work that jointly models language

and vision. We then survey the previous work most closely related to the problems of (i)

speaker naming; (ii) character embedding; and (iii) character relationship modeling. These

problems are the main focus of this thesis.

2.1 Language & Vision Modeling

Different language and vision tasks require different levels of reasoning about information

from textual and visual modalities to solve. For example, caption generation aims to res-

onate about an image or video as a whole and generate textual descriptions for them. At

a finer level of granularity, tasks like phrase localization and object retrieval using natu-

ral language aim to locate visual objects based on natural language descriptions or queries

[39, 40, 41, 17, 16].

Grounding image descriptions. Alignment of textual descriptions and visual scenes has

been extensively studied [42, 43, 44, 33, 45, 46]. Kong et al. [44] align mentions in textual
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descriptions of RGB-D scenes with object cuboids using a Markov random field. Karpathy

et al. [42] generate image fragments from object detection and sentence fragments from

dependency parsing, and match them in a neural embedding framework. Karphathy &

Fei-Fei [43] use a similar framework but replace dependency parsing with bidirectional

recurrent neural networks to generate image descriptions. It is worth noting that Karpathy

et al. [42] and Karpathy & Fei-Fei [43] only evaluate the performance using proxy tasks

(image retrieval and captioning) and do not evaluate the quality of matching.

Plummer et al. [33] introduced the Flickr30K Entities dataset, making it possible to

evaluate image-sentence alignments directly. Using this dataset, Wang et al. [45] learn

neural embeddings of phrases and regions under a large-margin objective and localize each

phrase by retrieving the closest region in the embedding space. Instead of producing ex-

plicit embeddings, Rohrbach et al. [46] train a neural network to predict the compatibility

of a region and a phrase directly.

Object retrieval using natural language. The task of object retrieval using natural lan-

guage is to locate visual objects based on natural language queries. Guadarrama et al. [39]

generate textual descriptions for each region proposal and retrieval objects by matching a

query with the descriptions. In contrast, Arandjelovic and Zisserman [40] convert a query

into multiple query images using Google image search and retrieve objects by matching

the query images with images in a database. Hu et al. [41] use a recurrent neural network

to score each object proposal given an input text query and an input image, and retrieve the

objects with the highest score. The difference between object retrieval using natural lan-

guage and phrase localization is that the former aims to match an image region to a whole

sentence whereas the latter aims to match an image region to only one part of a sentence.

Image captioning and retrieval. There has been a large body of prior work on image

captioning and retrieval. Previously proposed methods for image captioning [42, 43, 45,

47, 48, 49, 50, 51] and video captioning [52, 53] model the task as a machine translation

problem, in which the visual information gets translated into text. Typical approaches
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include recurrent neural networks [54, 55, 51, 42, 43], Canonical Correlation Analysis

[47], encoder-decoder architectures [50], and Discriminative Component Analysis [49].

The emphasis of learning and evaluation is placed on matching images and sentences as a

whole rather than matching their individual components such as regions and phrases.

Visual Question Answering. A common strategy to assess natural language and visual

understanding capabilities is to answer questions about them. Visual question answering

[56, 26, 37, 28] has become a very active topic. Given an image or video and a natural

language question, the task is to reason about the visual content of the input and infer the

correct answer to the question. Various visual question answering datasets contain ques-

tions at different levels of complexity, which require different reasoning capabilities. For

example, while datasets such as VQA [26, 57] and Visual7W [38] focus on reasoning about

the visual contents of a given image, other datasets require spatio-temporal reasoning to an-

swer questions such as TGIF-QA [37, 58]. A large number of attention-based deep neural

networks have been proposed to solve these problems. Generally, these models can be cat-

egorized into top-down and bottom-up attention [59, 60, 61, 62]. Typically, visual features

are extracted using one or more convolution neural network layer, and the textual features

are provided by encoding the question using a bi-directional recurrent neural network. The

attention mechanism aims to learn a weighting for each spatial location in the output of the

visual features that would help with answering the question.

Another category of visual question answering dataset focus on story understanding

such as MovieQA [29], TVQA [30], PororoQA [31]. These datasets focus on developing

a high-level understanding of information from the dialog and the visual channels. It is

hard to model such a temporally long sequence of information using a regular recurrent

network. Therefore, most of the proposed approaches tackle these tasks using deep end-to-

end multimodal memory networks [29, 63, 31, 64, 65]. The context with represented using

the question and several attention mechanisms have been applied to select the memory slots

that can answer a given question about the movie [63, 31, 66, 65].
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2.2 Speaker Naming

The problem of speaker naming in movies has been explored by the computer vision and

the speech communities. In the computer vision community, the speaker naming problem

is usually considered as a face/person naming problem, in which names are assigned to

their corresponding faces on the screen [67, 68, 69, 70, 71]. On the other hand, the speech

community considered the problem as a speaker identification problem, which focuses on

recognizing and clustering speakers rather than naming them [72, 73]. In this work, we

aim to solve the problem of speaker naming in movies, in which we label each segment of

the subtitles with its corresponding speaker name whether the speaker’s face appeared on

in the video or not.

Previous work can be furthered categorized according to the type of supervision used to

build character recognition and speaker recognition models: supervised vs. weakly super-

vised models. In the movie and television domains, utilizing scripts in addition to subtitles

to obtain time-stamped speaker information was also studied in [67, 71, 69, 74]. More-

over, they utilized this information to resolve the ambiguity introduced by co-occurring

faces in the same frame. Features were extracted through the period of speaking (detected

via lip motion on each face). Then they assigned the face based on candidate names from

the time-stamped script. Thus, these studies used speaker recognition as an essential step

to construct cast-specific face classifiers. [75] extended the face identification problem to

include person tracking. They utilized available face recognition results to learn clothing

models for characters to identify person tracks without faces.

In [68, 70], the authors proposed a weakly supervised model depending on subtitles

and a character list. They extracted textual cues from the dialog: first, second, and third

person references, such as “I’m Jack”, “Hey, Jack!”, and “Jack left”. Using a character list

from IMDB, they mapped these references onto true names using minimum edit distance,

and then they ascribed the references to face tracks. Other work removed the dependency

on a true character list by determining all names through coreference resolution. However,
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this work also depended on the availability of scripts [76]. In our model, we removed the

dependency on both the true cast list and the script, which makes it easier to apply our

model to other movies and TV shows.

Recent work proposed a convolutional neural network (CNN) and Long Short-Term

Memory (LSTM) based learning framework to automatically learn a function that combines

both facial and acoustic features [77, 78]. Using these cues, they tried to learn matching

face-audio pairs and non-matching face-audio pairs. They then trained an SVM classifier

on the audio-video pairings to discriminate between the non-overlapping speakers. In order

to train their models, they manually identified the leading characters in two TV shows,

Friends and The Big Bang Theory (BBT), and collected their face tracks and corresponding

audio segments using pre-annotated subtitles. Despite the very high performance reported

in these studies, it is tough to generalize their approach since it requires a lot of training

data.

On the other hand, talking faces have been used to improve speaker recognition and

diarization in TV shows [79, 80, 81]. In the case of [82], they modeled the problem of

speaker naming as facial recognition to identify speakers in news broadcasts. This work

leveraged optical character recognition to read the broadcasters’ names that were displayed

on the screen, requiring the faces to be already annotated. Recently, Nagrani et al. [83,

84] introduced VoxCeleb, a large-scale speaker identification dataset, relying on obtaining

videos from Youtube and performing active speaker identification method to train a speaker

verification CNN model. They used their model to identify characters in TV shows [84].

However, their method relied on matching actors pictures and names on IMDB to their

appearance in the videos.
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2.3 Character Embedding

Learning distributional representation of words plays an increasingly important role in rep-

resenting text in many tasks [85, 86]. The existence of massive datasets allowed learn-

ing high quality word embeddings in an unsupervised way by training a neural network

on some fake objectives [87, 88, 89]. A major strength of these learned word embed-

dings is that they are able to capture useful semantic information that can be easily used

in other tasks of interest such as semantic similarity and relatedness between pair of words

[87, 13, 90] and dependency parsing [86, 91]. However, these models treat names and en-

tities no more than the tokens used to mention them. As a result, these models are unable

to well represent names in narrative understanding task because the word “John” in a given

story can be very different from the word “John” in another narrative. In this work, we only

focus on representing character names and not the whole embedding space [92].

Ji et al, [92] approached this problem by tracking and building a dynamic representa-

tion of each entity in a given text. While this method improves the performance of entity

tracking and linking in text documents, it is very hard to apply in a dialogue setting due

to the sparseness of the name mentions in dialogues such as in movies [93]. Despite this

problem, most of the existing story understanding work feed the model the vector repre-

sentations of names based on a global model, which hinders the ability of these models to

understand the dialogue [29, 63, 93]. Unlike [92, 93], we focus on representing character

names in dialogue settings and learning different embeddings for characters from different

story dialogues in a way that reflect the relatedness between the story characters.

Identifying and analyzing character relations in literary texts is a very well studied

problem [94, 95, 96, 97]. Most of these models depend on analyzing the co-occurrence of

the characters and stylistic features used while characters address each other. These models

are important to summarizing, understanding, and generation of stories [96]. In this work,

we use the task of character relation classification as an extrinsic evaluation task to evaluate

the impact of character embeddings on this task.

12



2.4 Character Relationship Modeling

Relation extraction between characters in literary texts has been studied in-depth and from

multiple perspectives. We roughly categorize the related work into three topics: (1) literary

character analysis in novels, (2) social network analysis, and (3) movie/narrative under-

standing and question answering.

Literary Character Analysis. Various approaches have been proposed to analyze fic-

tional characters and/or their relationships in novels and movies. Bamman et al. [98, 99]

proposed latent variable models to learn character personas in novels and movies plot sum-

mary on Wikipedia. In their model, a character persona is defined as a set of mixtures over

latent lexical classes that capture their attributes (e.g., female, 28 years old) and the stereo-

typical actions (e.g., “strangle”, “kill”). Instead of following a character-centric approach,

other methods focused on modeling interpersonal relationships between characters. Super-

vised methods have been proposed to classify the inter-character relations from narratives.

However, they make limiting assumption that relationships are of two types cooperative vs.

non-cooperative [100, 101] and sometimes assume a fixed relationship between characters

within a narrative [100]. Other unsupervised methods aim to learn the evolving relations

between characters in novels [97] or plot summaries [97]. These models are similar to topic

models: given a narrative text and a character-pair, their proposed approach learns a se-

quence of relationship descriptors (topics). However, these unsupervised methods are hard

to evaluate given the subjectivity nature of the task and the coherence issues of the learned

descriptors. To support the training and evaluation of automatic methods for relation type

prediction, manually annotated relationships between characters in literary texts dataset

have been proposed [102]. For a given pair of main characters, this dataset includes four-

dimensional types of relation annotations: coarse-grained relation (professional, social,

familial), fine-grained relation (lovers, husband/wife), affinity (positive, negative, neutral),

and to whether this relation changes or not. While we aim to infer inter-character relation-

ships in movies based on dialog, speech, and video, previous work focused on novels and
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summarized movie plots in which text provide high-level semantic information explicitly

grounded in text. Therefore, our problem setting is quite different.

Social Network Analysis. Apart from literary character analysis, several social network

analysis based methods have been proposed to analyze movies [103, 104, 105, 106, 107,

108]. Generally, these approaches model movie characters as nodes and the edges between

the nodes represent the relation between characters. However, these methods represent

limited types of relationships such as the volume of interaction [96, 106], co-occurrence

[104], participation in social events [107, 109], adversarial vs. non-adversarial communi-

ties [105]. Example of these models is RoleNet [104], which constructs a social network as

the accumulation of the connected graphs of characters that appear in the same scene and

uses the frequency of scenes with co-appearance as the weight to classify the character role

as leading vs. supporting role. Another example, Character-Net [106], it uses the volume

of dialog exchange between characters as the weight to the edges regardless of the content

of the dialog and classifies the role of each character as a major, minor or extra accord-

ing to the centrality of a character in the constructed social network. Similarly, [105] uses

support vector regression model to estimate adverseness at the scene level using extracted

visual and acoustic features. Then, based on character co-occurrence in adversarial and

non-adversarial scenes, they cluster the characters into two communities adversarial com-

munities and identify the leading character within each community. These approaches are

different from ours because they do not necessarily model varied aspects of inter-character

relationships, and they do not model the dynamic nature of their relations.

Movie Understanding. While studying character roles and their relations is critical

to computationally represent and interpret narratives and movies, recently, there has been

growing interest to achieve this goal through question answering. Multiple narrative and

movies question answering datasets have been created, such as MovieQA [29], TVQA [30],

NarrativeQA [110], PororoQA [31]. NarrativeQA is a reading comprehension dataset in

which questions are generated based on stories and their summaries and requires integrating
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information and reasoning about events, entities, and their relations across a full document.

Similarly, MovieQA questions are generated based on text summaries of movie plots; thus,

they require a high-level understanding of the movie using the subtitles and video clips to

answer. This task is very challenging and hard to solve given the types of questions. To

overcome this problem, TVQA collected localized and compositional based on short video

clips (around 1 minute on average) of TV shows and did not focus on character relations or

plot. Rather than question answering, our work focuses on the character-centric approach

and aim to infer character relations and how they evolve in movies based on reasoning

about the dialog, speech, and video.
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CHAPTER 3

Setting the Stage: Aligning Linguistic

and Visual Modalities

3.1 Introduction

This chapter addresses the problem of phrase localization: given an image and a textual

description, locate the image regions that correspond to the noun phrases in the description.

1 For example, an image may be described as “a man wearing a tan coat signs papers for

another man wearing a blue coat”. We wish to localize, in terms of bounding boxes, the

image regions for the phrases “a man”, “tan coat”, “papers”, “another man”, and “blue

coat”. In other words, we wish to ground these noun phrases to image regions.

Phrase localization is an important task. Visual grounding of natural language is a

critical cognitive capability necessary for communication, language learning, and the un-

derstanding of multimodal information. Specifically, understanding the correspondence

between regions and phrases is important for natural language based image retrieval and

visual question answering. Moreover, by aligning phrases and regions, phrase localization

has the potential to improve weakly supervised learning of object recognition from massive

amounts of paired images and texts.

Recent research has brought significant progress on the problem of phrase localiza-

tion [33, 45, 46]. Plummer et al. introduced the Flickr30K Entities dataset, which includes
1The work described in this chapter was done in collaboration with Mingzhe Wang
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Figure 3.1: Structured matching is needed for phrase localization: it is not enough to just
match phrases and regions individually; the relations between phrases also need to agree
with the relations between regions.

images, captions, and ground-truth correspondences between regions and phrases [33]. To

match regions and phrases, Plummer et al. embedded regions and phrases into a common

vector space through Canonical Correlation Analysis (CCA) and pick a region for each

phrase based on the similarity of the embeddings. Subsequent works by Wang et al. [45]

and Rohrbach et al. [46] have since achieved significant improvements by embedding re-

gions and phrases using deep neural networks.

But existing works share a common limitation: they largely localize each phrase in-

dependently, ignoring the semantic relations between phrases. The only constraint used in

previous research was that different phrases should describe different regions, i.e., that each

region should be matched to no more than one phrase [46]. But phrases have more complex

semantic relations between each other, and phrase localization is often impossible without

a deep understanding of those semantic relations. For example, in Fig. 3.1, an image from

Flickr30K Entities is captioned as “a woman is sitting down and leaning her head on her

hand while another woman is smiling and sitting next to her.” Consider the localization of
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“her head” and “her hand” from “leaning her head on her hand”. There are two women,

two heads, and two hands visible in the image, but only one head and one hand have a

“leaning on” relation. So “her head” and “her hand” cannot be localized independently

without verifying whether the head is actually leaning on the hand.

This brings forward the problem of structured matching of regions and phrases, that

is, finding an optimal matching of regions and phrases such that not only does the visual

content of each individual region agree with the meaning of its corresponding phrase (e.g.

the regions must individually depict “head” and “hand”), but the visual relation between

each pair of regions also agrees with the semantic relation between the corresponding pair

of phrases (e.g. the pair of regions together must depict “leaning her head on her hand”).

The problem of structured matching is closely related to the standard (maximum weighted)

bipartite matching, although significantly harder: the nodes on the same side have relations

between them, and thus not only the nodes but also the relations need to be matched with

the other side.

In this chapter, we introduce a new approach to phrase localization based on the idea of

structured matching. We formulate structured matching as a discrete optimization problem

and relax it to a linear program. We use neural networks to embed regions and phrases into

vectors, which then define the similarities (matching weights) between regions and phrases.

We integrate structured matching with neural networks to enable end-to-end training. Ex-

periments on Flickr30K Entities demonstrate the empirical effectiveness of our approach.

3.2 Approach

Figure 3.2 illustrates our approach. Given an image and a description, our goal is to lo-

calize the image region that corresponds to each phrase in the description. Following prior

work [33], we assume that short noun phrases (“a man”, “tan coat”) have already been

extracted from the description. We also assume that pronouns and non-visual phrases have
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Figure 3.2: We embed regions and phrases into a common vector space and perform struc-
tured matching that encourages not only the individual agreement of regions with phrases
but also the agreement of phrase-phrase relations with region-region relations. In particu-
lar, we consider “partial match coreference” (PC) relations—the relation between phrases
such as “a man” and “his legs”.

been removed. Also following prior work [33], we generate a set of region proposals in the

form of bounding boxes.

Given these phrases and regions, the next step is to match them. To this end we adopt

the same approach by Wang et al. [45]: we extract visual and phrasal features, embed them

into a common vector space using neural networks, and measure region-phrase similarities

in this common vector space. Using these similarities we then solve a structured matching

problem: finding the optimal matching subject to two types of constraints: (1) a region

can be matched to no more than one phrase, and (2) if two phrases have a certain semantic

relation, their corresponding regions should have a visual relation that is consistent with

the semantic relation.

If we have only the first type of constraints, we arrive at a standard maximum weighted

bipartite matching problem, which can be solved exactly by linear programming. The

second type of constraints, however, pose significant new difficulties because it appears

intractable to obtain exact solutions. As a result, we propose a relaxation to a linear program

that gives approximate solutions.

We learn end to end with a structured prediction loss. That is, the learnable parameters

of our framework are jointly optimized with the objective that for each image-sentence

pair in the training set the ground truth matching should have a higher score than all other
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possible matchings. It is worth noting that although prior work on phrase localization has

considered the constraint that a region should be matched to no more than one phrase [46],

they have only used it as a post-processing heuristic, whereas we integrate this constraint

into end-to-end training.

3.2.1 Representing Regions and Phrases

We generate regions proposals using Edgebox [111]. These regions serve as the candidates

to be matched with phrases. To represent each region, we use Fast-RCNN [112] features,

that is, features from a 16-layer VGG convolutional network that is pre-trained on the Ima-

geNet [113] classification dataset and fine-tuned on the VOC2007 detection dataset [114].

In particular, we extract the fc7 layer activations to represent each region with a 4, 096

dimensional feature vector.

To represent phrases, we use Fisher vectors [47]. Following [47], we extract Fisher Vec-

tors of 18,000 dimensions by first applying ICA on the 300-dimensional word2vec [115]

word vectors and then constructing a codebook with 30 centers from a Hybrid Gaussian-

Laplacian mixture model (HGLMM). Similar to [45], to save time during training, we

apply PCA to reduce the dimensionality of the Fisher vectors from 18,000 to 6,000.

Next, we apply a linear transformation to the fc7 activations of the regions and another

linear transformation to the Fisher Vectors of the phrases in order to embed them in the

same vector space. That is, given for a phrase p and a region r and their feature vectors xp

and xr, we compute the embedded features x̃p and x̃r as

x̃p =M1xp + b1,

x̃r =M2xr + b2,

(3.1)

where M1,M2, b1, b2 are learnable parameters. We define the similarity wij between a
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phrase p and a region r as

cos(xp, xr) =
< xp, xr >

‖xp‖‖xr‖
, (3.2)

i.e. the cosine similarity between the embedded vectors.

Given phrases p1, p2 . . . pn and regions r1, r2 . . . rm , we obtain a similarity matrixWθ =

{wij}, where

wij = cos(xpi , xrj) (3.3)

and θ represents the learnable parameters M1,M2, b1, b2.

3.2.2 Bipartite Matching

Given the similarities between regions and phrases, we are ready to solve the matching

problem. We first consider bipartite matching, matching with only the constraint that each

region should be matched to no more than one phrase. We refer to this constraint as the

exclusivity constraint.

It is worth noting that in the most general case, this constraint is not always valid. Two

phrases can refer to the same region: for example, “a man” and “he”, “a man” and “the

man”. In these cases we need to perform coreference resolution and group the coreferences

before phrase localization. Here we assume that this step has been done. This is a valid

assumption for the Flickr30K Entities dataset we use in our experiments—coreferences

such as “he” and “she” have been removed.

Given phrases p1, p2, . . . , pn, regions r1, r2, . . . , rm, and their similarity matrix Wθ, we

have a standard bipartite matching problem if we consider only the exclusivity constraints.

We first formulate this problem as an integer program.

We define a binary variable yij ∈ {0, 1} for each potential region-phrase pair {pi, rj}

to indicate whether rj is selected as a match for pi in a matching y. Let S(W, y) be a score

that measures the goodness of a matching y, computed as the sum of similarities of the
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matched pairs:

S(w, y) =
n∑
i=1

m∑
j=1

wijyij. (3.4)

The best matching maximizes this score and can be found by a linear program that relaxes

yij to continuous variables in [0, 1].

max
y

n∑
i=1

m∑
j=1

wijyij

s.t.
m∑
j=1

yij = 1, i = 1, 2, . . . , n

n∑
i=1

yij ≤ 1, j = 1, 2, . . . ,m

0 ≤ yij ≤ 1, i = 1, . . . , n, j = 1, . . . ,m.

(3.5)

Here, the first constraint guarantees that each phrase is matched with exactly one region,

and the second constraint guarantees that each region is matched with no more than one

phrase. This linear program is guaranteed to have an integer solution because all of its

corner points are integers and this integer solution can be found by the simplex method.

To learn the embedding parameters, we optimize an objective that encourages the

ground truth matching to have the best matching score. Let y(l) be the ground truth match-

ing for the lth image-sentence pair in a training set, and let W (l)
θ be the region-phrase

similarities. We define the training loss L as

L(θ) =
∑
l

max(0,max
y′

S(W
(l)
θ , y′)− S(W (l)

θ , y(l))), (3.6)

where θ represents the learnable parameters. Note that although this loss involves a max

operator that ranges over all possible matchings, computing the gradient of L with respect

to θ only involves the best matching, which we can find by solving a linear program. It

is also worth noting that this loss function is a simplified version of the structured SVM

loss [116] with a margin of zero: although the ground truth matching needs to have the
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highest score among all possible matchings, the score does not need to be higher by a

fixed positive margin than that of the best non-ground-truth matching. With no margin

requirement, this loss is not as stringent as the original structured SVM formulation but is

significantly easier to implement.

3.2.3 Partial Match Coreference

We now address the matching of relations. In this work, we consider “partial match coref-

erence” (PC) relations, a specific type of sematnic relations between phrases. Partial match

coreference is composed of a noun phrase and another noun phrase including a possessive

pronoun such as “his” or “her”. Such relations indicate that the second phrase refers to an

entity that belongs to the first phrase. For instance, the following are examples of partial

match coreference:

1. A woman is dressed in Asian garb with a basket of goods on her hip.

2. An instructor is teaching his students how to escape a hold in a self-defense class.

Partial match coreference points to a strong connection between the two noun phrases,

which places constraints on the visual relation between their corresponding regions. In

particular, partial match coreference relations can give strong cues about the appearance

and spatial arrangement of the corresponding regions. We thus use PC relations in the task

of phrase localization and study if it can bring any improvements.

We extract partial match coreference relations using the Stanford CoreNLP library

[117]. Since a partial match coreference is indicated by possessive pronouns such as “his”

or “her”, we first extract coreference relations between entity mentions in each image cap-

tion.

Among the extracted coreferences, some are “full matches”, such as “he” as a coref-

erence of “a man” where the entire phrase “he” and the entire phrase “a man” are mu-

tual coreferences. The rest are “partial matches” such as “her hip” as a coreference of “a
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woman” where only a part of the phrase “her hip”, i.e. the possessive pronoun “her”, is

a coreference of “a woman”. We discard all “full match” coreferences and keep only the

“partial match” coreferences. Note that full match coreference is also useful because it

indicates that two phrases should be matched to the same region. We discard them only

because in Flickr30K Entities, the dataset we use for experiments, all pronouns that are full

match coreferences are annotated as non-visual objects and excluded in evaluation.

3.2.4 Structured Matching with Relation Constraints

Given a certain type of semantic relations between phrases, we would like to enforce the

constraint that the visual relations between regions should agree with these semantic rela-

tions. In the rest of this chapter we use the partial coreference relation as an example.

Formally, consider two arbitrary phrases pi, ps. Let rj, rt be two arbitrary regions,

which are potential matches for the two phrases. Given a matching y, let zijst ∈ {0, 1}

be a binary variable indicating whether phrases pi and ps are simultaneously matched to

regions rj and rt. In other words,

zijst = yij ∧ yst. (3.7)

Let g(rj, rt) be a non-negative function that measures whether two regions rj, rt have a

visual relation that agrees with the partial match coreference (PC) relation, that is, whether

the the two regions have a “visual PC” relation.

We can now modify our matching objective to encourage the agreement between rela-

tions:

max
y

n∑
i=1

m∑
j=1

wijyij + λ
n∑

(i,s)∈Q

m∑
j,t

zijstg(rj, rt), (3.8)

where Q is the set of all pairs of phrases with PC relations. The term zijstg(rj, rt) makes a

matching y more desirable if whenever a pair of phrases have a PC relation the correspond-

ing pair of regions have a visual PC relation.
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This new objective poses additional challenges for finding the best matching. It is an

integer program that appears difficult to solve directly, and it is not obvious how to relax it

to a linear program with the Boolean term zijst = yij ∧ yst.

We propose a linear program relaxation by introducing a probabilistic interpretation.

We relax the binary variables y and z into real values in [0, 1]. We imagine that the

matching is generated through a probabilistic procedure where each phrase pi chooses,

not necessarily independently, a region from all regions according to a multinomial distri-

bution parametrized by the relaxed, continuous variables yij . That is, we interpret yij as

Pr(R(pi) = rj), where R(pi) represents the region chosen by phrase pi. This interpretation

naturally requires that ∑
j

yij =
∑
j

Pr(R(pi) = rj) = 1, (3.9)

which is the same constraint used earlier in bipartite matching that requires a phrase to

match with exactly one region. We also add the exclusivity constraint that each region is

matched to no more than one phrase:

∑
i

yij =
∑
i

Pr(R(pi) = rj) ≤ 1. (3.10)

We treat zijst as the joint probability Pr(R(pi) = rj, R(ps) = rt), that is, the probability

that we match pi to rj and ps to rt simultaneously. It follows from the rule of marginaliza-

tion that

m∑
t=1

zijst =
∑
t

Pr(R(pi) = rj , R(ps) = rt) = Pr(R(pi) = rj) = yij

m∑
j=1

zijst =
∑
j

Pr(R(pi) = rj , R(ps) = rt) = Pr(R(ps) = rt) = yst.

(3.11)

Putting all the constraints together we have the following linear program for structured
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matching:

max
y∈Y

n∑
i=1

m∑
j=1

wijyij + λ

n∑
(i,s)∈Q

m∑
j,t

zijstg(rj , rt)

s.t.
m∑
j=1

yij = 1, for i = 1, 2, . . . , n

n∑
i=1

yij ≤ 1, for j = 1, 2, . . . ,m

m∑
t=1

zijst = yij for any i, j, s

m∑
j=1

zijst = yst for any i, s, t

0 ≤ yij ≤ 1, for all i, j

0 ≤ zijst ≤ 1, for all i, j, s, t.

(3.12)

In this linear program, each pair of phrases with a partial match coreference relation pi, ps

will lead to n2 instances of z and g. This means that the linear program may have too many

variables to be solved in a reasonable amount of time. To remedy this issue we adopt a

heuristic that only applies the relation constraints to a subset of regions that are the most

likely to be matched to phrases. Specifically, for a pair of phrases pi and ps, we only

introduce z variables for the top 10 regions of pi and the top 10 regions of ps as measured

by the cosine similarity. That is, the index j in zijst ranges over only the top 10 most similar

regions of pi and the index t ranges over only the top 10 most similar regions of ps. This

heuristic helps avoid a bloated linear program.

This linear program is easy to solve but is not guaranteed to produce an integer solution.

A fractional solution indicates multiple possible regions for some phrases. In such cases

we run a depth first search to enumerate all feasible solutions contained in this fractional

solution and find the best matching. Since we limit the number of z variables, the search

space is usually small and our approach remains efficient.

To learn or fine-tune parameters for structured matching we use the same loss function

as defined in Equation 3.6, except that the matching score S is given by the solution value
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of this new linear program.

We implement the “visual PC” scoring function g(rj, rt) as a logistic regressor. For a

pair of regions rj, rt, we concatenate their fc7 feature vectors and pass the longer feature

into the logistic regressor. The parameters of this logistic regressor can be learned jointly

with all other parameters of our method.

3.3 Experiments

Setup We evaluate our approach using the Flickr30k Entities dataset [33]. Flickr30k En-

tities is built on Flickr30K, which contains 31,783 images, each annotated with five sen-

tences. In each sentence, the noun phrases are provided along with their corresponding

bounding boxes in the image. These region-to-phrase correspondences enable the evalua-

tion of phrase localization. There are more than 500k noun phrases (a total of 70k unique

phrases) matched to 275k bounding boxes. Following [33], we divide these 31,783 image

into three subsets, 1,000 images for validation, 1,000 for testing, and the rest for training.

Also following [33], if a phrase is matched with multiple ground truth bounding boxes, we

merge them into a new enclosing box. After this merging, every phrase has one and only

one ground truth bounding box.

Following prior work [33, 45, 46], we generate 100 region proposals for each image

using Edgebox [111] and localize each phrase by selecting from these regions. We select

one region for each phrase and the selection is deemed correct if the region overlaps with

the ground truth bounding box with an IoU (intersection over union) over 0.5. We evaluate

the overall performance in terms accuracy, the percentage of phrases that are correctly

matched to regions. Note that some prior works [33, 45] have reported performance in

terms of recall@K: each phrase can select K regions; recall@K is 1 if one of them overlaps

with the ground truth and 0 otherwise. Our definition of accuracy is the same as recall@1.

We do not report recall@K with a K larger than 1 because it is unclear what it means to
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select more than one region for each phrase when we jointly localize phrases subject to the

exclusivity constraints and relation constraints.

We use the same evaluation code released by [33]. It is also worth noting that since

each phrase can only be localized to one of the region proposals, the quality of the region

proposals establishes an upperbound of performance. Consistent with prior work, with

EdgeBox the upperbound in our implementation is 76.91%.

Implementation We implement the following approaches:

1. CCA+Fast-RCNN: We produce CCA embeddings using the code from Klein et al. [47]

except we replace the VGG features pretrained on ImageNet with the Fast-RCNN

features (VGG features pretrained on ImageNet and fine-tuned on the VOC2007 de-

tection dataset).

2. Bipartite Matching: using the same features as CCA+Fast-RCNN, we embed the

features into a common vector space through (shallow) neural networks and perform

bipartite matching with exclusivity constraints.

3. Structure Matching: Same as Bipartite Matching except we perform structured match-

ing with relation constraints.

In training we modify the set of candidate regions: for each image we start with the 100

region proposals from EdgeBox; then we remove those with an IoU larger than 0.5 and add

ground truth bounding boxes. The reason for this modification is that the EdgeBox region

proposals may not contain the ground truth matches for all phrases. This modification

ensures that all ground truth matches are included and each phrase has only one ground

truth region.

For all training we use Stochastic Gradient Descent (SGD) with a learning rate of 1e-4.

We decrease the learning rate slightly after each epoch. We use a momentum of 0.9 and

a weight decay of 0.0005. The hyperparameter λ in the matching loss (Equation 3.6) is

selected on the validation set. For bipartite matching, we initialize the embedding matrices
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Methods Accuracy (Recall@1)

CCA [33] 25.30
NonlinearSP [45] 26.70 (43.89)
SCRC [41] 27.80
GroundR [46] 29.02 (47.70)
MCB [119] (48.69)
CCA [120] (50.89)
Ours: CCA+Fast-RCNN 39.44
Ours: Matching 41.78
Ours: Structured Matching 42.08

Table 3.1: Accuracy (Recall@1) of our approach compared to other methods. Results
in parentheses were released after the submission of this work for peer review and are
concurrent with our work.

Methods accuracy (Recall@1) on PC phrases only

Bipartite Matching 47.8
Structured Matching 49.3

Table 3.2: Performance of bipartite matching and structured matching on only phrases with
partial match corerference (PC) relations.

M1,M2 with Canonical Correlation Analysis(CCA) [118] and fine-tune all parameters end

to end for 3 epochs, optimizing the matching loss defined in Equation 3.6. Since CCA

provides a good initialization, the matching loss converges quickly.

For structured matching, we pre-train the “visual PC” logistic regressor using the 10,325

pairs of regions in the training set that have a ground truth “visual PC” relation and an equal

number of negative pairs of regions. This pre-trained logistic regressor has an accuracy of

78% on the validation set. Then we initialize all other parameters using the pre-trained

bipartite matching model and fine-tune all parameters (including those of the logistic re-

gressor) for 2 epochs optimizing the structured matching loss with relation constraints.

Results Table 3.1 summarizes our results and compares them with related work. Table 3.3

provides accuracy of phrase localization for different categories of phrases. Fig. 3.3 and

Fig. 3.4 show qualitative results including success and failure cases.
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Our results show that Fast-RCNN features leads to a large boost of performance, as

can been seen by comparing the CCA result from [33] with our CCA+Fast-RCNN result.

Similar results have also been reported in [120] and the latest version of [45].

Also we see that Bipartite Matching further improves CCA+Fast-RCNN, which demon-

strates the effectiveness of end-to-end training with our matching based loss function.

Structured Matching with relation constraints provides a small additional improvement

over Bipartite Matching. It is worth noting that the improvement from Structured Matching

appears small partly because in the test set only 694 phrases out of a total of 17519 are in-

volved in partial match coreference relations, limiting the maximum possible improvement

when averaged over all phrases. If we consider only these 694 phrases and their accuracy

as shown in table 3.2, we see that Structured Matching outperforms Bipartite Matching.

Methods person cloth body anim vehic instru scene other
ing parts als les ments

CCA[33] 29.58 24.20 10.52 33.40 34.75 35.80 20.20 20.75
GroundR[46] 44.24 9.93 1.91 45.17 46.00 20.99 30.20 16.12

(53.80) (34.04) (7.27) (49.23) (58.75) (22.84) (52.07) (24.13)
CCA[120] (64.73) (46.88) (17.21) (65.83) (68.75) (37.65) (51.39) (31.77)
Ours: CCA+FRCN 55.39 32.78 16.25 53.86 48.50 19.14 28.97 23.56
Ours: Bipartite 57.94 34.43 16.44 56.56 51.50 27.16 33.42 26.23
Ours: Structured 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23
Upperbound 89.36 66.48 39.39 84.56 91.00 69.75 75.05 67.40

Table 3.3: Performance within categories. “Upperbound” is the maximum accuracy (re-
call@1) possible given the region proposals. Results in parentheses were released after the
submission of our work.

3.4 Conclusion

In this chapter, we have introduced a new approach to phrase localization. The key idea is a

structured matching of phrases and regions that encourages the relations between phrases to

agree with the relations between regions. We formulate structured matching as a discrete
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optimization problem and relax it to a linear program. We integrate structured match-

ing with neural networks to enable end-to-end training. Experiments on Flickr30K Enti-

ties have demonstrated the empirical effectiveness of our approach. Such language/vision

alignments are essential for more advanced understanding tasks, such as building character

representations, which we address for the remainder of this thesis.

31



(a) A man with a helmet is using an ATM. (b) Two women and a man discuss notes in a class-
room.

(c) A man wearing a black jacket with a woman
wearing a black jacket are standing close to each
other.

(d) A man and a boy holding microphones.

(e) A young boy shows his brown and green bead
necklace.

(f) A man is working on his house by repairing the
windows.

(g) This lady is wearing a pink shirt and tuning her
guitar.

(h) A baby with red hat sit in his stroller.

Figure 3.3: Qualitative results. The first two rows compare CCA with bipartite matching.
The rest compare bipartite matching with structured matching.
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(a) A black man wearing a white
suit and hat is holding a paper
cup.

(b) A boy wearing an or-
ange shirt is playing on a
swing.

(c) A blond woman speaks at
a podium labeled Holiday Stars
Projectin front of a blue wall.

(d) A man is walking his horse on
a racetrack.

(e) A dark-haired bearded man wear-
ing a turquoise shirt with a yellow
peace sign on it.

(f) A womanwearing a black hel-
met riding on a bike.

(g) A clown in red plaid overalls relaxes in the
back of his tent.

(h) A man at a podium is speaking to a group of men at a
conference.

(i) A man in a green shirt is jumping a ramp on his skate-
board.

(j) Several people are standing on a street cor-
ner watching a cartoonist with glasses draw on
his sketch pad.

Figure 3.4: Qualitative results. The first two rows compare CCA with bipartite matching.
The rest compare bipartite matching with structured matching.
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CHAPTER 4

Speaker Naming in Movies

4.1 Introduction

Identifying speakers and their names in movies and videos is a primary task for many video

analysis problems, including automatic subtitle labeling [77], content-based video indexing

and retrieval [121], video summarization [122], and video storyline understanding [122].

It is a very challenging task, as the visual appearance of the characters changes over the

course of the movie due to several factors such as scale, clothing, illumination, and so forth

[123, 67]. The annotation of movie data with speakers’ names can be helpful in a number of

applications, such as movie question answering [29], automatic identification of character

relationships [121], or automatic movie captioning [77].

Most previous studies relied primarily on visual information [123, 67] and aimed for

the slightly different task of face track labeling; speakers who did not appear in the video

frame were not assigned any names, which is common in movies and TV shows. Other

available sources of information such as scripts were only used to extract cues about the

speakers’ names to associate the faces in the videos with their corresponding character

name [67, 71, 69, 74]; however, since scripts are not always available, the applicability of

these methods is somehow limited.

Other studies focused on the problem of speaker recognition without naming, using the

speech modality as a single source of information. While some of these studies attempted
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01:02:00	-->	01:02:01
Jack,	must you go?

01:02:01	-->	01:02:04
Time	for	me	to	go	row
with other slaves.

01:02:07	-->	01:02:08
Good	night,	Rose.

Names:
Jack
Rose
……

Jack,	must	
you	go?
……

Good	night

Jack:	Hold	On! Rose:	I	trust	you.

Jack:	All	right!	
Open	your	eyes.

In
pu

t
In
fe
re
nc
e

Rose:I'm flying.	Jack.

O
ut
pu

t

Joint	Optimization

Figure 4.1: Overview of our approach for speaker naming.

to incorporate the visual modality, their goal was to cluster the speech segments rather than

name the speakers [124, 80, 125, 79, 77, 78]. None of these studies used textual information

(e.g., dialogue), which prevented them from identifying speaker names.

In this work, we address the task of speaker naming, and propose a new multimodal

model that leverages in a unified framework of the visual, speech, and textual modalities

that are naturally available while watching a movie. We do not assume the availability of a

movie script or a cast list, which makes our model fully unsupervised and easily applicable

to unseen movies.

In this chapter, we make two main contributions. First, we introduce a new unsuper-

vised system for speaker naming for movies and TV shows that exclusively depends on
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videos and subtitles and relies on a novel unified optimization framework that fuses visual,

textual, and acoustic modalities for speaker naming. Second, we construct and make avail-

able a dataset consisting of 24 movies with 31,019 turns manually annotated with character

names. Additionally, we also evaluate the role of speaker naming when embedded in an

end-to-end memory network model, achieving state-of-the-art performance results on the

subtitles task of the MovieQA 2017 Challenge.

4.2 Datasets

Our dataset consists of a mix of TV show episodes and full movies. For the TV show, we

use six full episodes of season one of the BBT. The number of named characters in the BBT

episodes varies between 5 to 8 characters per episode, and the background noise level is

low. Additionally, we also acquired a set of eighteen full movies from different genres, to

evaluate how our model works under different conditions. In this latter dataset, the number

of named characters ranges between 6 and 37, and it has varied levels of background noise.

We manually annotated this dataset with the character name of each subtitle segment.

To facilitate the annotation process, we built an interface that parses the movies subtitles

files, collects the cast list from IMDB for each movie, and then shows one subtitle segment

at a time along with the cast list so that the annotator can choose the correct character.

Using this tool, human annotators watched the movies and assigned a speaker name to each

subtitle segment. If a character name was not mentioned in the dialogue, the annotators

labeled it as “unknown.” To evaluate the quality of the annotations, we double annotated

five movies in our dataset. The Cohen’s Kappa inter-annotator agreement score for these

five movies is 0.91, which shows a strong level of agreement.

To clean the data, we removed empty segments, as well as subtitle description parts

written between brackets such as “[groaning]” and “[sniffing]”. We also removed segments

with two speakers at the same time. We intentionally avoided using any automatic means
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to split these segments, to preserve the high-quality of our gold standard.

Table 4.1 shows the statistics of the collected data. Overall, the dataset consists of 24

videos with a total duration of 40.28 hours, a net dialogue duration of 21.99 hours, and a

total of 31,019 turns spoken by 463 different speakers. Four of the movies in this dataset are

used as a development set to develop supplementary systems and to fine-tune our model’s

parameters; the remaining movies are used for evaluation.

Min Max Mean σ
# characters/video 5 37 17.8 9.55
# Subtitle turns/video 488 2212 1302.4 563.06
# words/turn 1 28 8.02 4.157
subtitles duration (sec) 0.342 9.59 2.54 1.02

Table 4.1: Statistics on the annotated movie dataset.

4.3 Data Processing and Representations

We process the movies by extracting several textual, acoustic, and visual features.

4.3.1 Textual Features

We use the following representations for the textual content of the subtitles:

SkipThoughts uses a Recurrent Neural Network to capture the underlying semantic and

syntactic properties, and map them to a vector representation [126]. We use their pre-

trained model to compute a 4,800 dimensional sentence representation for each line in the

subtitles.1

TF-IDF is a traditional weighting scheme in information retrieval. We represent each

subtitle as a vector of tf-idf weights, where the length of the vector (i.e., vocabulary size)

and the idf scores are obtained from the movie including the subtitle.

1https://github.com/ryankiros/skip-thoughts
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4.3.2 Acoustic Features

For each movie in the dataset, we extract the audio from the center channel. The center

channel is usually dedicated to the dialogue in movies, while the other audio channels

carry the surrounding sounds from the environment and the musical background. Although

doing this does not fully eliminate the noise in the audio signal, it still improves the speech-

to-noise ratio of the signal. When a movie has stereo sound (left and right channels only),

we down-mix both channels of the stereo stream into a mono channel.

In this work, we use the timestamps of the subtitles as an estimate of the boundaries that

correspond to the uttered speech segments. Usually, each subtitle corresponds to a segment

being said by a single speaker. We use the subtitle timestamps for segmentation so that we

can avoid automatic speaker diarization errors and focus on the speaker naming problem.

To represent the relevant acoustic information from each spoken segment, we use iVec-

tors, which is the state-of-the-art unsupervised approach in speaker verification [127].

While other deep learning-based speaker embeddings models also exist, we do not have

access to enough supervised data to build such models. We train unsupervised iVectors for

each movie in the dataset, using the iVector extractor used in [128]. We extract iVectors

of size 40 using a Gaussian Mixture Model-Universal Background Model (GMM-UBM)

with 512 components. Each iVector corresponds to a speech segment uttered by a single

speaker. We fine-tune the size of the iVectors and the number of GMM-UBM components

using the development dataset.

4.3.3 Visual Features

We detect faces in the movies every five frames using the recently proposed MTCNN [129]

model, which is pre-trained for face detection and facial landmark alignment. Based on the

results of face detection, we apply the forward and backward tracker with an implementa-

tion of the Dlib library [130, 131] to extract face tracks from each video clip. We represent

a face track using its best face in terms of detection score, and use the activations of the fc7
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layer of pre-trained VGG-Face [132] network as visual features.

We calculate the distance between the upper lip center and the lower lip center based

on the 68-point facial landmark detection implemented in the Dlib library [130, 133]. This

distance is normalized by the height of face bounding boxes and concatenated across frames

to represent the amount of mouth opening. A human usually speaks with lips moving with

a certain frequency (3.75 Hz to 7.5 Hz used in this work) [71]. We apply a band-pass filter

to amplify the signal of true lip motion in these segments. The overall sum of lip motion is

used as the score for the talking face.

4.4 Unified Optimization Framework

We tackle the problem of speaker naming as a transductive learning problem with con-

straints. In this approach, we want to use the sparse positive labels extracted from the

dialogue and the underlying topological structure of the rest of the unlabeled data. We

also incorporate multiple cues extracted from both textual and multimedia information. A

unified learning framework is proposed to enable joint optimization over the automatically

labeled and unlabeled data, along with multiple semantic cues.

4.4.1 Character Identification and Extraction

In this work, we do not consider the set of character names as given because we want

to build a model that can be generalized to unseen movies. This strict setting adds to the

problem’s complexity. To extract the list of characters from the subtitles, we use the Named

Entity Recognizer (NER) in the Stanford CoreNLP toolkit [134]. The output is a long list

of person names that are mentioned in the dialogue. This list is prone to errors including,

but not limited to, nouns that are misclassified by the NER as person’s name such as “Dad”

and “Aye”, names that are irrelevant to the movie such as “Superman” or named animals,

or uncaptured character names.
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To clean the extracted names list of each movie, we cluster these names based on string

minimum edit distance and their gender. From each cluster, we then pick a name to rep-

resent it based on its frequency in the dialogue. The result of this step consists of name

clusters along with their distribution in the dialogue. The distribution of each cluster is the

sum of all the counts of its members. To filter out irrelevant characters, we run a name ref-

erence classifier, which classifies each name into first, second, or third person references.

If a name is only mentioned as a third person throughout the whole movie, we discard it

from the list of characters. We remove any name cluster that has a total count of less than

three, which takes care of the misclassified names’ reference types.

4.4.2 Grammatical Cues

We use the subtitles to extract the name mentions in the dialogue. These mentions allow

us to obtain cues about the speaker name and the absence or the presence of the mentioned

character in the surrounding subtitles. Thus, they affect the probability that the mentioned

character is the speaker or not. We follow the same name reference categories used in

[68, 70]. We classify a name mention into: first (e.g., “I’m Sheldon”), second (e.g., “Oh,

hi, Penny”) or third person reference (e.g., “So how did it go with Leslie?”). The first

person reference represents a positive constraint that allows us to label the corresponding

iVector of the speaker and his face if it exists during the segment duration. The second

person reference represents a multi-instance constraint that suggests that the mentioned

name is one of the characters that are present in the scene, which increases the probability

of this character to be one of the speakers of the surrounding segments. On the other hand,

the third person reference represents a negative constraint, as it suggests that the speaker

does not exist in the scene, which lowers the character probability of the character being

one of the speakers of the next or the previous subtitle segments.

To identify first, second, and third person references, we train a linear support vec-

tor classifier. The first person, the second and third person classifier’s training data are
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extracted and labeled from our development dataset, and fine-tuned using 10-fold cross-

validation. Table 4.2 shows the results of the classifier on the test data. The average num-

bers of first, second, and third-person references in each movie are 14.63, 117.21, and

95.71, respectively.

Precision Recall F1-Score
First Person 0.625 0.448 0.522
Second Person 0.844 0.863 0.853
Third Person 0.806 0.806 0.806
Average / Total 0.819 0.822 0.820

Table 4.2: Performance metrics of the reference classifier on the test data.

4.4.3 Unified Optimization Framework

Given a set of data points that consist of l labeled2 and u unlabeled instances, we apply an

optimization framework to infer the best prediction of speaker names. Suppose we have

l+u instancesX = {x1, x2, ..., xl, xl+1, ..., xl+u} andK possible character names. We also

get the dialogue-based positive labels yi for instances xi, where yi is a k-dimension one-hot

vector and yji = 1 if xi belongs to the class j, for every 1 ≤ i ≤ l and 1 ≤ j ≤ K. To

name each instance xi, we want to predict another one-hot vector of naming scores f(xi)

for each xi, such that argmaxjf
j(xi) = zi where zi is the ground truth number of class for

instance xi.

To combine the positive labels and unlabeled data, we define the objective function for

predictions f as follows:

Linitial(f) =
1

l

l∑
i=1

||f(xi)− yi||2

+
1

l + u

l+u∑
i=1

l+u∑
j=1

wij||f(xi)− f(xj)||2
(4.1)

2Note that in our setup, all the labeled instances are obtained automatically, as described above.
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Here wij is the similarity between xi and xj , which is calculated as the weighted sum

of textual, acoustic, and visual similarities. The inverse Euclidean distance is used as a

similarity function for each modality. The weights for different modalities are selected as

hyperparameters and tuned on the development set. This objective leads to a convex loss

function which is easier to optimize over feasible predictions.

Besides the positive labels obtained from first person name references, we also intro-

duce other semantic constraints and cues to enhance the power of our proposed approach.

We implement the following four types of constraints:

Multiple Instance Constraint. Although the second person references cannot directly

provide positive constraints, they imply that the mentioned characters have high probabili-

ties of being in this conversation. Following previous work [68], we incorporate the second

person references as multiple instances constraints into our optimization: if xi has a second

person reference j, we encourage j to be assigned to its neighbors, i.e., its adjacent subti-

tles with similar timestamps. For the implementation, we simply include multiple instances

constraints as a variant of positive labels with decreasing weights s, where s = 1/(l − i)

for each neighbor xl.

Negative Constraint. For the third person references, the mentioned characters may not

occur in the conversation and movies. So we treat them as negative constraints, which

means they imply that the mentioned characters should not be assigned to corresponding

instances. This constraint is formulated as follows:

Lneg(f) =
∑

(i,j)∈N

[f j(xi)]
2 (4.2)

where N is the set of negative constraints xi doesn’t belong class j.

Gender Constraint. We train a voice-based gender classifier by using the subtitles seg-

ments from the four movies in our development dataset (5,543 segments of subtitles). We
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use the segments in which we know the speaker’s name and manually obtain the ground

truth gender label from IMDB. We extract the signal energy, 20 Mel-frequency cepstral

coefficients (MFCCs) along with their first and second derivatives, in addition to time-

and frequency-based absolute fundamental frequency (f0) statistics as features to represent

each segment in the subtitles. The f0 statistics have been found to improve the automatic

gender detection performance for short speech segments [135], which fits our case since

the median duration of the dialogue turns in our dataset is 2.6 seconds.

The MFCC features are extracted using a step size of 16 msec over a 64 msec window

using the method from [136], while the f0 statistics are extracted using a step size of 25

msec over a 50 msec window as the default configuration in [137]. We then use these

features to train a logistic regression classifier using the Scikit-learn library [138]. The

average accuracy of the gender classifier on a 10-fold cross-validation is 0.8867.

Given the results for the gender classification of audio segments and character names,

we define the gender loss to penalize inconsistency between the predicted gender and char-

acter names:

Lgender(f) =
∑

(i,j)∈Q1

Pga(xi)(1− Pgn(j))f j(xi)

+
∑

(i,j)∈Q2

(1− Pga(xi))Pgn(j)f j(xi)
(4.3)

where Pga(xi) is the probability for instance xi to be a male, and Pgn(j) is the probabil-

ity for name j to be a male, and Q1 = {(i, j)|Pga(xi) < 0.5, Pgn(j) > 0.5}, Q2 =

{(i, j)|Pga(xi) > 0.5, Pgn(j) < 0.5}.

Distribution Constraint. We automatically analyze the dialogue and extract the number of

mentions of each character in the subtitles using Stanford CoreNLP and string matching to

capture names that are missed by the named entity recognizer. We then filter the resulting

counts by removing third person mention references of each name as we assume that this

character does not appear in the surrounding frames. We use the results to estimate the
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distribution of the speaking characters and their importance in the movies. The main goal

of this step is to construct a prior probability distribution for the speakers in each movie.

To encourage our predictions to be consistent with the dialogue-based priors, we penal-

ize the square error between the distributions of predictions and name mentions priors in

the following equation:

Ldis(f) =
K∑
j=1

(
∑

(f j(xi))− dj)2 (4.4)

where dj is the ratio of name j mentions in all subtitles.

Final Framework. Combining the loss in Eqn. 4.1 and multiple losses with different

constraints, we obtain our unified optimization problem:

f ∗ = argmin
f
λ1Linitial(f) + λ2LMI(f)

+ λ3Lneg(f) + λ4Lgender(f) + λ5Ldis(f)

(4.5)

All of the λs are hyper-parameters to be tuned on the development set. We also include

the constraint that predictions for different character names must sum to 1. We solve this

constrained optimization problem with projected gradient descent (PGD). Our optimization

problem in Eqn. 4.5 is guaranteed to be a convex optimization problem and therefore

projected gradient descent is guaranteed to stop with global optima. PGD usually converges

after 800 iterations.

4.5 Evaluation

We model our task as a classification problem, and use the unified optimization framework

described earlier to assign a character name to each subtitle.

Since our dataset is highly unbalanced, with a few main characters usually dominating

the entire dataset, we adopt the weighted F-score as our evaluation metric, instead of using
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an accuracy metric or a micro-average F-score. This allows us to take into account that

most of the characters have only a few spoken subtitle segments, while at the same time

placing emphasis on the main characters. This sometimes leads to an average weighted

F-score that is not between the average precision and recall.

Precision Recall F-score
B1: MFMC 0.0910 0.2749 0.1351
B2: DRA 0.2256 0.1819 0.1861
B3: Gender-based DRA 0.2876 0.2349 0.2317
Our Model (Skip-thoughts)* 0.3468 0.2869 0.2680
Our Model (TF-IDF)* 0.3579 0.2933 0.2805
Our Model (iVectors) 0.2151 0.2347 0.1786
Our Model (Visual)* 0.3348 0.2659 0.2555
Our Model (Visual+iVectors)* 0.3371 0.2720 0.2617
Our Model (TF-IDF+iVectors)* 0.3549 0.2835 0.2643
Our Model (TF-IDF+Visual)* 0.3385 0.2975 0.2821
Our Model (all)* 0.3720 0.3108 0.2920

Table 4.3: Comparison between the average of macro-weighted average of precision, recall
and f-score of the baselines and our model. * means statistically significant (t-test p-value
< 0.05) when compared to baseline B3.

One aspect that is important to note is that characters are often referred to using different

names. For example, in the movie “The Devil’s Advocate,” the character Kevin Lomax is

also referred to as Kevin or Kev. In more complicated situations, characters may even

have multiple identities, such as the character Saul Bloom in the movie “Ocean’s Eleven,”

who pretends to be another character named Lyman Zerga. Since our goal is to assign

names to speakers, and not necessarily solve this coreference problem, we consider the

assignment of the subtitle segments to any of the speaker’s aliases to be correct. Thus,

during the evaluation, we map all the characters’ aliases from our model’s output to the

names in the ground truth annotations. Our mapping does not include other referent nouns

such as “Dad,” “Buddy,” etc.; if a segment gets assigned to any such terms, it is considered

a misprediction.

We compare our model against three baselines:
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B1: Most-frequently mentioned character consists of selecting the most frequently men-

tioned character in the dialogue as the speaker for all the subtitles. Even though it is a sim-

ple baseline, it achieves an accuracy of 27.1%, since the leading characters tend to speak

the most in the movies.

B2: Distribution-driven random assignment consists of randomly assigning character

names according to a distribution that reflects their fraction of mentions in all the subtitles.

B3: Gender-based distribution-driven random assignment consists of selecting the

speaker names based on the voice-based gender detection classifier. This baseline randomly

selects the character name that matches the speaker’s gender according to the distribution

of mentions of the names in the matching gender category.

The results obtained with our proposed unified optimization framework, and the three

baselines are shown in Table 4.3. We also report the performance of the optimization frame-

work using different combinations of the three modalities. The model that uses all three

modalities achieves the best results and outperforms the strongest baseline (B3) by more

than 6% absolute in average weighted F-score. It also significantly outperforms the usage

of the visual and acoustic features combined, which have been frequently used together in

previous work, suggesting the importance of textual features in this setting.

The ineffectiveness of the iVectors might be a result of the background noise and music,

which are difficult to remove from the speech signal. Figure 4.2 shows the t-Distributed

Stochastic Neighbor Embedding (t-SNE) [1], which is a nonlinear dimensionality reduction

technique that models points in such a way that similar vectors are modeled by nearby

points and dissimilar objects are modeled by distant points, visualization of the iVectors

over the whole BBT show and the movie “Titanic.” In the BBT, there is almost no musical

background or background noise, while, Titanic has a musical background in addition to

the background noise such as the screams of the drowning people. From the graph, the

difference between the quality of the iVectors clusters on different noise-levels is clear.

Similarly, the short duration of the speech segment might have a negative impact on the
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(a) The Big Bang Theory Season One

(b) Titanic

Figure 4.2: For each speech segment, we applied t-SNE [1] on their corresponding iVectors.
The points with the same color represent instances with the same character name.

quality of the iVectors. The average utterance duration is 2.54 seconds. Figure 4.3 shows

the t-SNE visualization of the entire BBT show iVectors of segments shorter than 3 seconds

vs. segments longer than 3 seconds.

Table 4.4 shows the effect of adding components of our loss function to the initial loss

Linit function. The performance of the model using only Linit without the other parts is

very low due to the sparsity of first person references and errors that the person reference

classifier introduces.
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(a) Segments of duration less than 3 seconds (b) Segments of duration more than 3 seconds

Figure 4.3: For each speech segment in the BBT TV show, we applied t-SNE [1] on their
corresponding iVectors. In each figure, the points with the same color represent instances
with the same character name.

Precision Recall F-score
Linitial 0.0631 0.1576 0.0775
Linitial + Lgender 0.1160 0.1845 0.1210
Linitial + Lnegative 0.0825 0.0746 0.0361
Linitial + Ldistribution 0.1050 0.1570 0.0608
Linitial + LMultipleInstance 0.3058 0.2941 0.2189

Table 4.4: Analysis of the effect of adding each component of the loss function to the initial
loss.

4.6 Additional Analyses

To gain further insights into the system, we perform several analyses.

First, we look at the performance of the system when considering the top two characters

returned by our system. That is, if the correct character is listed in this top two, the system

receives full credit. The average weighted precision, recall, and F-score grow to 0.5069,

0.4230, and 0.4177, which indicates there are many cases where the system finds the correct

character as the second option.

Second, in order to analyze the effect of the errors that several of the used modules

(e.g., gender and name reference classifiers) propagate into the system, we test our frame-

work by replacing each one of the components with its ground truth information. As seen
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in Table 4.5, the results obtained in this setting show significant improvement with the re-

placement of each component in our framework, which suggests that additional work on

these components will have positive implications on the overall system.

Precision Recall F-score
Our Model 0.3720 0.3108 0.2920
Voice Gender (VG) 0.4218 0.3449 0.3259
VG + Name Gender (NG) 0.4412 0.3790 0.3645
VG + NG + Name Ref 0.4403 0.3938 0.3748

Table 4.5: Comparison between our model while replacing different components with their
ground truth information.

Third, to isolate the role played by each of the constraints used in the optimization

model, we perform an evaluation where we add to the initial loss function one constraint at

a time. Table 4.4 shows the results of these evaluations. As seen in this table, the biggest

improvement in our framework is brought by the multiple instance constraint, followed by

the gender constraint. That is expected because the first person reference instances are rare

and the only constraint that provides weak supervision is the multiple instance constraint,

which uses the second person references for the labels. Then the gender loss makes sure

that the speaker is not assigned a name of an opposite gender.

Finally, we also analyze the effect of the number of characters on the performance

of our framework. The number of characters in the movies in our dataset varies from 5

to 37 characters. Figure 4.4 shows the performance of our model on videos categorized

according to the number of their named speakers. As expected, the performance is better

when there is a limited number of characters, however, from the figure, we can see that the

performance does not decrease by much after a certain number of characters. This could

be explained by the fact that even movies with many characters are dominated by a few

leading characters, and a large number of characters that only utter a few subtitle segments

is not significantly affecting the performance of the system.
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Figure 4.4: The average weighted precision, recall and f-score of our model across videos
with different number of characters.

4.7 Speaker Naming for Movie Understanding

Identifying speakers is a critical task for understanding the dialogue and storyline in movies.

MovieQA is a challenging dataset for movie understanding. The dataset consists of 14,944

multiple choice questions about 408 movies. Each question has five answers, and only one

of them is correct. The dataset is divided into three splits: train, validation, and test accord-

ing to the movie titles. Importantly, there are no overlapping movies between the splits.

Table 4.6 shows examples of the question and answers in the MovieQA dataset.

The MovieQA 2017 Challenge3 consists of six different tasks according to the source

of information used to answer the questions. Given that for many of the movies in the

dataset the videos are not entirely available, we develop our initial system so that it only

relies on the subtitles; we thus participate in the challenge subtitles task, which includes

3http://movieqa.cs.toronto.edu/workshops/iccv2017/
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Movie Question Answers

Fargo
What did Mike’s wife, as he
says, die from?

A1: She was killed A2: Breast cancer
A3: Leukemia A4: Heart disease
A5: Complications due to child birth

Titanic
What does Rose ask Jack to
do in her room?

A1: Sketch her in her best
dress

A2: Sketch her nude

A3: Take a picture of her
nude

A4: Paint her nude

A5: Take a picture of her in her best dress

Table 4.6: Example of questions and answers from the MQA benchmark. The answers in
bold are the correct answers to their corresponding question.

the dialogue (without the speaker information) as the only source of information to answer

questions.

To demonstrate the effectiveness of our speaker naming approach, we design a model

based on an end-to-end memory network [139], namely Speaker-based Convolutional Mem-

ory Network (SC-MemN2N), which relies on the MovieQA dataset and integrates the

speaker naming approach as a component in the network. Specifically, we use our speaker

naming framework to infer the name of the speaker for each segment of the subtitles and

prepend the predicted speaker name to each turn in the subtitles.4 To represent the movie

subtitles, we represent each turn in the subtitles as the mean-pooling of a 300-dimension

pre-trained Word2Vec [12] representation of each word in the sentence. We similarly rep-

resent the input questions and their corresponding answers. Given a question, we use the

SC-MemN2N memory to find an answer. For questions asking about specific characters,

we keep the memory slots that have the characters in question as speakers or mentioned in

and mask out the rest of the memory slots. Figure 4.5 shows the architecture of our model.

Table 4.7 includes the results of our system on the validation and test sets, along with

the best systems introduced in previous work, showing that our SC-MemN2N achieves the

best performance. Furthermore, to measure the effectiveness of adding the speaker names

and masking, we test our model after removing the names from the network (C-MemN2N).

4We strictly follow the challenge rules, and only use text to infer the speaker names.
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Figure 4.5: The diagram describing our Speaker-based Convolutional Memory Network
(SC-MemN2N) model.

Method
Subtitles Video+Subtitles
val test val test

SSCB-W2V [29] 24.8 23.7 - -
SSCB-TF-IDF [29] 27.6 26.5 - -
SSCB Fusion [29] 27.7 - - 21.9
MemN2N [29] 38.0 36.9 - 34.2
Understanding visual regions - 37.4 - 34.34
RWMN [63] 40.4 38.5 38.67 36.25
Local Average Pooling Networks - - - 38.16
C-MemN2N (w/o SN) 40.6 - 38.4 -
SC-MemN2N (Ours) 42.7 39.4 40.8 38.16

Table 4.7: Performance comparison for the subtitles task on the MovieQA 2017 Challenge
on both validation and test sets. We compare our models with the existing models (from the
challenge leaderboard). (-) means that we do not have the numbers for this on the dataset.
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As seen from the results, the gain of SC-MemN2N is statistically significant5 compared to

a version of the system that does not include the speaker names (C-MemN2N). Figure 4.6

shows the performance of both C-MemN2N and SC-MemN2N models by question type.

The results suggest that our speaker naming helps the model better distinguish between

characters, and that prepending the speaker names to the subtitle segments improves the

ability of the memory network to correctly identify the supporting facts from the story that

answers a given question.

Figure 4.6: Accuracy comparison according to question type.

4.8 Conclusion

In this chapter, we proposed a unified optimization framework for the task of speaker nam-

ing in movies. We addressed this task under a difficult setup, without a cast-list, without

supervision from a script, and dealing with the complicated conditions of real movies. Our

5Using a t-test p-value<0.05 with 1,000 folds each containing 20 samples.
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model includes textual, visual, and acoustic modalities, and incorporates several grammat-

ical and acoustic constraints. Empirical experiments on a movie dataset demonstrated the

effectiveness of our proposed method with respect to several competitive baselines. We

also showed that an SC-MemN2N model that leverages our speaker naming model can

achieve state-of-the-art results on the subtitles task of the MovieQA 2017 Challenge. The

dataset annotated with character names introduced in this chapter is publicly available from

http://lit.eecs.umich.edu/downloads.html.
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CHAPTER 5

Representing Movie Characters in Dialogues

5.1 Introduction

Understanding characters (or more broadly people) plays a critical role in the human-level

interpretation of dialogues – be those in stories, movies, or day-to-day conversations. The

verbal interaction between characters provides important information [97, 96]. In these

contexts, the names of characters trigger reasoning at a much deeper level than other regular

words, due to the character background, behaviors, social network, and so forth. Currently,

the most commonly used word embedding models such as Word2Vec [87, 88] and Glove

[13] represent characters using the embeddings corresponding to the tokens used to name

them. Using these models in a dialogue setting to represent the characters poses three main

issues. First, name mentions in dialogues are sparse [93], which makes it difficult for these

models to learn a good quality representation for these names [140]. Second, in dialogues

or narratives, names often do not refer to the same person, and yet these embeddings have

a single vector representation for each word in the vocabulary. For example, “Danny” in

the dialogue of the “American History X” movie is different from “Danny” in the “Ocean’s

Eleven” movie. Finally, the learned embeddings of these names reflect the co-occurrences

of these name mentions and other words uttered by these characters, but do not model how

related these characters are. Thus, the resulting embeddings cannot be effectively used to

further reason about the characters and their relations.
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Henry: I did not know you could fly a plane.
Indiana: Fly yes. Land no. Dad, you have to use the machine gun.

Get it ready. Eleven o’clock!
Henry: What happens at eleven o’clock?
Indiana: Twelve, eleven, ten. Eleven o’clock, fire! Dad, are we hit?
Henry: More or less. Son, I am sorry. They got us.
Indiana: Hang on, dad. We are going in.

Table 5.1: A snippet of conversation between two characters from the “Indiana Jones and
the Last Crusade” movie with each dialogue turn annotated with its corresponding speaker
name. We aim to generate embedding representations for “Indiana” and “Henry” in a way
that captures their relation.

The representation of characters in dialogues has been an important task for social

network extraction [96], character relation modeling [101], and persona-based models

[141, 98]. However, most of the previous work relies upon the extraction of linguistic

features like explicit forms of address [95], the length of the utterance, or the frequency of

exchanges between the characters [96].

In this work, we address the task of representing characters in dialogues, specifically

focusing on movies and plays. Given a set of dialogue turns, annotated with the corre-

sponding speaker names, our goal is to generate a vector representation for each of these

characters that captures the relation with other characters. We propose a new approach to

embed characters in dialogues based not only on what a character is saying, but also to

whom. This model allows the information from the words in a dialogue turn to propagate

to the representation of the previous and following speakers.

Despite its simplicity, our model yields strong empirical performance. By evaluating

our model on two different tasks – namely character relatedness and character relation clas-

sification (fine-grained, coarse-grained, and sentiment) – we find that the model exceeds by

a large margin several strong baselines, which indicates that our model effectively cap-

tures the various characteristics of characters. Additionally, in the process of evaluating

the model, we build a new dataset consisting of 4,761 character relation pairs obtained

from eighteen movies, manually annotated with relatedness scores and relations of various
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S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

S(t):
Indiana 

S(t):
Indiana 

S(t-1):
Henry 

C(S(t)):
Dad 

S(t+1): 
Henry

Input Projection Output Input Projection Output

Figure 5.1: The conceptual figure describing input /output pairs of our character embedding
model. The diagram describes when both the speaker window and the context window are
size one. Left: Character Embedding(CBOW), Right: Character Embedding(SG).

granularities. We are making the dataset publicly available.

Characters play an important role in any dialogue, including movies or plays. Yet,

work to date has rarely considered specialized character representations. We hypothesize

that a representation that leverages both the language uttered by the characters as well as

information on the other characters in the dialogue could result in richer encodings. The

intuition behind our hypothesis is explained by the example in table 5.1. Here, the word

“Dad” should be associated not only with “Indiana” but also propagate its information to

“Henry”, conditioned by “Indiana”. Our proposed model is well conveying this intuition to

encode characters.

5.1.1 Setup

Our architecture builds on a pretrained embedding model generated by standard Word2Vec

models [87, 88] or pre-trained contextualized word representations from neural language

models (ELMo) [142]. We start by collecting sets of (current speaker, previous speakers,

next speakers, context words) as training examples. We split the four elements in the sets

into target and context depending on our objectives. Figure 5.1 describes the input-output

(target-context) pairs of our system. Additionally, our model works as an unsupervised

post-training of existing embeddings, rather than starting the training from scratch. This is

due to the fact that getting a good representation for characters is a separate task from get-
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ting a general representation of tokens. A good pre-trained embedding space is an essential

component to map characters so that they will be distributed in a semantically meaningful

embedding space. While a good pre-trained embedding is important, our models focus on

“moving” the character embeddings without affecting any other word representations.

5.1.2 Architecture

We propose two post-training schemes, which we refer to as Character Embedding (SG)

and Character Embedding (CBOW). The differences stand in the objective of post-training,

given sets of (current speaker, previous speakers, next speakers, context words) as training

examples. Formally, given the sequence of speakers at each turn S = s1, s2, s3, , , sT−1, sT ,

we define context words C for turn t as the set of words found by a sliding context window

in the utterance. We propose our post-training objectives as following:

L =
1

N

∑
si∈S

∑
wi∈C(si)

∑
−sw≤j≤sw

log(p(wi|si+j)))

(5.1)

L =
1

N

∑
si∈S

∑
wi∈C(si)

(log(p(si|wi)+

∑
−sw≤j≤sw,j 6=0

log(p(si|si+j)))
(5.2)

Our Character Embedding (SG) model maximizes the objective on Equation 5.1, while

Character Embedding (CBOW) maximizes the objective on Equation 5.2, where N indi-

cates the number of training examples and sw indicates the size of the speaker window

(speaker window of size one means we consider speakers of one preceding turn and one

succeeding turn). Our formulation defines probabilities p(si|wi), p(si|si+j) and p(wi|si+j)
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using the softmax equation. We also define two transformations of our network – lookup ta-

ble (LUT) initialized by embedding of pre-trained embedding model and Linear Projection

Layer W.

To examine the generality of our post-training schemes, we also apply them to another

pre-trained word embedding model. Given a dialogue turn, we encode it using ELMo’s pre-

trained Bi-LSTM model [142] to generate a sequence of contextualized vectors for words.

We add a linear projection layer on top that takes the generated embedding, in addition to

the previous and following speakers, and train it to predict the speaker of the current turn.

We refer to this model as Character Embedding (ELMo).

Algorithm 1: Character Embedding(SG)
E: The embedding from pre-trained model
W: Linear Projection Layer
α: Learning Rate
maxepoch: maximum epoch to run
LUT← E, epoch← 1;
while epoch ≤ maxepoch do

for t from 2 to T − 1 do
x1 ← LUT [st−1];
x2 ← LUT [st];
x3 ← LUT [st+1];
for w0 in C(st) do

target← LUT [w0];
logits = tanh(W T (x1 + x2 + x3));
prediction = softmax(logits);
loss = −target+ log(prediction);
W := W − α ∗ δloss

δW
;

LUT [st−1] := x1 − α ∗ δlossδx1
;

LUT [st] := x2 − α ∗ δlossδx2
;

LUT [st+1] := x3 − α ∗ δlossδx3
;

end
end
epoch := epoch+ 1

end
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5.1.3 Training

We represent our contexts and targets as a one hot vector of length equal to the vocabu-

lary size. The purpose of our model is to update the embedding of characters in LUT by

propagating the gradient from our objectives. We use cross-entropy to calculate the loss,

and we use gradient descent to update the parameters. The description of our Character

Embedding (SG) model with a speaker window size of one is showed in Algorithm 1.

5.2 Evaluation Tasks and Datasets

We evaluate the quality of our speaker embedding model across two different tasks. Our

goal is to evaluate how well each embedding model captures simple and complex character

representations and interactions.

5.2.1 Character Relatedness

Measures of semantic relatedness between words indicate the degree to which words are

associated with any kind of semantic relationship such as synonymy, antonymy, and so

on. Semantic relatedness is commonly used as an absolute intrinsic evaluation task to

assess and compare the quality of different word embeddings [143, 144, 145] and phrase

embeddings [90].

Similarly, we define character relatedness as the degree to which a pair of characters in

a given story are related to each other based on the story plot and their level of interaction

throughout the dialogue. Given a pair of characters, we would like the relatedness score

between their embedding representations to have a high correlation with their correspond-

ing human-based relatedness score. Thus, the distance of the embeddings between closely

related characters should be smaller than the distance between less related ones.

To measure the relatedness between characters in movies, we construct a new annotated

dataset based on a publicly available dataset [93]. That dataset includes 28K turns spoken
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by 396 different speakers in eighteen movies covering different genres, with the subtitles of

each movie labeled with the character name of their corresponding speakers. On average,

each character uttered 452 words.

For each movie in that dataset, two human annotators watched the movies and annotated

a dense relatedness matrix of characters on a 1-5 scale. Table 5.2 shows the meaning of

each score. These scores reflect the level of interaction or how closely related the characters

are over the course of the movie. For example, given two characters X and Y, a high score

for X and Y is assigned if e.g., X is the father of Y, regardless of the amount of interaction

between the two characters. We also give a high score for the cases where X and Y are

closely interacted, even if they are unrelated in terms of kinship. Due to the sparseness of

the number of closely related characters, we asked the annotators to select the higher score

when hesitating between two scores.

For three movies, the Pearson correlation between the two annotators is 0.8394, which

reflects a very good agreement. We then average the scores assigned by the annotators and

use the result as the human relatedness ground-truth score for each pair of characters.

5 interacted frequently/closely related
4 interacted/related
3 moderately interacted/somewhat related
2 interacted few times/not related
1 did not interact/not related

Table 5.2: Relatedness annotation scores.

In this dataset, we have 4,761 unique character pairs annotated with a relatedness score.

Figure 5.2 shows the statistics over the relatedness scores. As shown in the table, only a

small number of character pairs are closely related, while the majority of the characters

have either interacted very few times or did not interact at all. However, it is important to

include these unrelated pairs while evaluating the quality of the character embeddings, as

unrelated pairs might be closer than related ones especially for minor characters that do not

speak much during the dialogue.
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Figure 5.2: Statistics of the character relatedness dataset on movies of speaker naming
dataset.

5.2.2 Character Relationships

Understanding the relationships between characters is a primary task in extracting and an-

alyzing social relation networks from literary novels [96, 94]. It is also important for im-

proving computational story summarization and generation methods [146, 147].

Character relationship is a more complex task than character relatedness. In this task,

given a pair of character embeddings, we would like to classify the type of their relation-

ship on multiple dimensions. Specifically, we consider: fine-grained relations, such as sis-

ter/father/friend/enemy; coarse-grained relations, such as familial/social/professional; and

relation sentiment, i.e., positive, negative or neural. The goal of this task is to evaluate the

quality of our character embeddings and how well it captures such complex information

in an unsupervised fashion. It also serves as an extrinsic evaluation for the impact of our

character representations on downstream tasks.

We use a subset of character relationships in a literary dataset [102]. This dataset in-

cludes annotations for 18 fine-grained relationship classes, 4 coarse-grained relationship

classes, and 3 relation sentiment classes.1 We use the 31 Shakespeare plays in this dataset

and obtain their corresponding text from project Gutenberg. We use the Shakespeare plays

1Annotations on temporal change in the sentiment between each pair of characters is also included, but
since our models do not have the ability to track such temporal information, we do not use these annotations.
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because they have the dialogue turns annotated with speakers names, which is necessary

for training our character embedding models. The plays include a total of 605 character

pair relationship annotations.

5.3 Experiments

5.3.1 Baselines

For each task, we compare our character embedding models against five baselines:

Interaction Frequency. We count the number of exchanged dialogue turns between

every pair of characters and normalize it by the total number of turns spoken by a given

pair of characters.

TF-IDF. We treat all the utterances of a character as a document and calculate a tf-idf

weight for each word. We then represent a character by its tf-idf vector of the words that

they uttered.

Word2Vec (CBOW) model. We use the traditional Word2Vec architecture to train

a word embedding space based on the continuous bag-of-words approach [87]. Given a

sequence of words D, the context words that exist in a defined window size are considered

as input to the network and the objective is to predict the target word by maximizing the

average long probability:

L =
1

|D|
∑
wi∈D

logP (wi|C(wi)) (5.3)

Word2Vec (SG) model. We use the skip-gram architecture of Word2Vec with negative

sampling [88]. In this architecture, the objective is to learn a representation of the target

word that would be good at predicting the words within a defined window by maximizing

the average log probability:
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L =
1

|D|
∑
wi∈D

∑
w0∈C(wi)

logP (w0|wi) (5.4)

Character BOW. We represent each character as the mean-pooling of a 300-dimension

pretrained Word2Vec representation of all the words that this character has uttered through

the entire dialogue.

Doc2Vec. We train a Doc2Vec model [148] as tagged documents using the character

names as the document tags. We then represent each character as the Doc2Vec representa-

tion of all the words that this character has uttered through the entire dialogue.

ELMo (Mean-Pooling). We use pre-trained contextualized word representations from

neural language models (ELMo) [142] to generate character names representations based

on the sentences that include their names.2 To generate these representations, we feed the

pre-trained ELMo model with a Glove representation for the words and ELMo augments

their representation with the hidden states of its two layers bi-directional LSTM to repre-

sent the words with respect to their context. For each character name, we average their

contextualized representations through the entire dialogue.

5.3.2 Experimental Setting

To have these models trained on in-domain data, we use GenSim [149] to train the differ-

ent architectures of Word2Vec on the almost 600K sentences / 4M words of subtitles and

Shakespeare plays. For the target movies and plays, the speaker names are included in

the training data so that we can have a vector representation for each character name. The

names in our corpus have been manually normalized so that ’Joe’ and ’Joseph’ in a movie

get the same representation, while ’Joseph’ in a different movie gets a different represen-

tation. To achieve the first part of the name normalization, we utilize the name-clustering

algorithm provided by Bamman [99] to extract and cluster name tokens from the text and

2We also tried training ELMo from scratch on our data but the pre-trained model produces better results.
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annotate the true representation of names for each cluster. We achieve the second part of

the name normalization by adding the text title to the name tokens (e.g., ’Michael’ becomes

’MichaelOthello’).

For Gensim [149], we set the learning rate to 0.1, the window size to 4 and the samples

to 50 for negative sampling. We run 30 epochs to train our baselines. For post-training by

our models, we use a gradient decent to update our parameters. For general experiments, we

set the learning rate to 0.1 and the learning rate decays by the factor of 0.9 per 10 epochs.

We run maximum 40 epochs for our post-training. For Character Embedding (CBOW),

we use a context window of size two. We use a speaker window of size one for both the

Character Embedding (CBOW) and the Character Embedding (SG).

Movie Character Methods Closest Second closest Third Closest

The Devil’s
Advocate

Alice Lomax

Ground Truth Kevin Lomax John Milton Mary Lomax
Interaction Frequency Kevin Lomax Pam Garrety John Milton
TF-IDF Mary Lomax John Milton Don King
Character Average BOW John Milton Kevin Lomax Barbara
Word2Vec (CBOW) Lloyd Gettys Judge Poe Alexander Cullen
Word2Vec (SG) Alfonse D’amato Lloyd Gettys Judge Poe
ELMo (Mean-Pooling) Kevin Lomax Mary Lomax Alexander Cullen
Character Embedding (CBOW) Kevin Lomax Judge Poe Mary Lomax
Character Embedding (SG) Kevin Lomax John Milton Mary Lomax
Character Embedding (ELMo) Kevin Lomax Pam Garrety Mary Lomax

Table 5.3: Example of character relatedness task. Given a character, we list the top three
characters sorted in descending order from left to right according to their similarity scores.

5.3.3 Results

Character Relatedness. For each model, given a pair of characters we compute the cosine

similarity score between the embeddings of these two characters, defined as:

similarity(CCC1,CCC2) =
CCC1 ·CCC2

||CCC1|| · ||CCC2||
(5.5)

and compute the similarity score between two characters in the embedding space similar

to [150, 88]. The list of the nearest characters of a given character C are all the other

characters from the same movie sorted in descending order by their similarity score with

respect to C.
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Pearson Coeff
Interaction Frequency 0.3632
TF-IDF 0.3129
Doc2Vec 0.1771
Word2Vec (CBOW) 0.2081
Word2Vec (SG) 0.1989
Character BOW 0.2256
ELMo (Mean-Pooling) 0.3212
Character Embedding(CBOW) 0.4644
Character Embedding(SG) 0.4933
Character Embedding(ELMo) 0.3475

Table 5.4: Comparison between the average Pearson correlation coefficient scores of the
different models against average human relatedness scores.

Fine-grained Relation Coarse-grained Relation Sentiment
P R F P R F P R F

Interaction Frequency 0.04 0.16 0.06 0.30 0.44 0.33 0.33 0.58 0.42
TF-IDF 0.11 0.12 0.10 0.39 0.42 0.40 0.43 0.53 0.40
Character Average BOW 0.08 0.16 0.05 0.33 0.43 0.28 0.28 0.53 0.37
Word2Vec (CBOW) 0.11 0.13 0.12 0.37 0.38 0.38 0.39 0.40 0.39
Word2Vec (SG) 0.09 0.12 0.10 0.37 0.37 0.37 0.41 0.43 0.42
Doc2Vec 0.12 0.12 0.12 0.40 0.40 0.40 0.42 0.42 0.42
ELMo (Mean-Pooling) 0.14 0.18 0.14 0.39 0.41 0.40 0.44 0.50 0.46
Character Embedding(CBOW) 0.11 0.14 0.12 0.43 0.44 0.43 0.44 0.47 0.44
Character Embedding(SG) 0.11 0.17 0.12 0.43 0.46 0.42 0.40 0.51 0.42
Character Embedding (ELMo) 0.18 0.19 0.19 0.48 0.48 0.48 0.48 0.48 0.48

Table 5.5: Comparison between the average of the precision, recall and macro-weighted
f-score of the baselines and our character embedding model on both fine-grained, coarse-
grained character relation and sentiment classification.

Table 5.4 shows the Pearson correlation coefficients of the resulting similarity scores

of each model against the average human annotation scores. These results suggest that

having the context window over the utterance and adding the previous and next speakers

to the input layer greatly improves the ability of the character embeddings to capture the

relatedness between the different characters in a given story dialogue.

Table 5.3 shows an example of characters that are most related to “Alice Lomax” from

the movie “The Devil’s Advocate” as calculated based on each model sorted in descending

order according to their cosine similarity scores. It is worth noting that Kevin Lomax is

Alice’s son, John Milton is Kevin’s father and Mary Ann Lomax is Kevin’s wife. On the
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Play Character 1 Character 2 Methods Fine-grained Coarse-grained Sentiment

The Two
Gentlemen
of Verona

Julia Proteus

Ground Truth lovers social positive
Interaction Frequency lovers social positive
TF-IDF servant social negative
Character Average BOW friend social positive
Word2Vec (CBOW) servant familial negative
Word2Vec (SG) servant familial positive
ELMo (Mean-Pooling) friend social positive
Character Embedding (CBOW) lovers social negative
Character Embedding (SG) lovers social positive
Character Embedding (ELMo) lovers social positive

Table 5.6: Example of classification task on Shakespeare’s play, using different baselines
and our character representation methods. The classification output consists of the rela-
tions of character 2 from character 1’s perspective. A bold face indicates a correct relation
classification.

other hand the characters suggested by both Word2Vec CBOW and SG models did not

interact with Alice through the whole movie.

To further analyze the quality of the produced character embeddings, we evaluate the

embeddings across different characters according to the their frequency of appearance in

the movies. Figure 5.3 shows a comparison between the performance of the different mod-

els over minor and major characters based on the number of dialogue turns that each char-

acter uttered. These results show that our character embedding model consistently outper-

forms the traditional Word2Vec baseline models and reflect the robustness of our model in

generating better character embeddings.

Character Relationship. We have three classification tasks for characters relationship:

1) fine-grained relationship classification; 2) coarse-grained relationship classification; 3)

relation sentiment classification. For each of these tasks, we train a logistic regression

classifier using the Scikit-learn library [138]. These classifiers take a pair of character

embeddings as a concatenation of their vectors and predict their relationship. We use a

leave-one-play-out cross-validation in which character pairs from each play are used as

a test set and character pairs from the other plays are used to train the models. Table

5.5 shows the classification average precision, recall and weighted F-score obtained by

training the logistic regression classifiers using the character embeddings produced by the
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Figure 5.3: Comparison of the average Pearson correlation coefficient over characters who
had different number of turns.

different models. Training classifiers using our character embedding models consistently

outperforms the classifiers trained using the other models, which reflects the quality of

the semantic information captured by our character embeddings when compared to other

models. Table 5.6 shows examples of the three character relation classification tasks as

classified by our character embedding models and the baselines.

Accuracy
Q+S Q+S+V

MS (Glove) [30] 0.6515 0.6770
MS (Glove w/o names) 0.6177 0.6467
MS (CharEmbedding(CBOW)) 0.6590 0.6852
MS (CharEmbedding(SG)) 0.6554 0.6884

Table 5.7: Comparison on the TVQA validation dataset using the MS method with Glove
and Glove fine-tuned using our proposed character embedding method.

Question Answering. As a final evaluation, we test the impact of our character embed-

ding on dialogue understanding. TVQA [30] is a challenging dataset that includes 152.5K

multiple choice question answers about 21.8K video clips from 6 TV shows such as the

Big Bang Theory, House, and so on. These questions were created in a way that requires
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understanding of both the dialogue and the visual content of a given video. Each video clip

includes the video frames and subtitles with speaker names aligned automatically with their

corresponding show scripts (around 69% of the subtitle segments include speakers names).

We follow the same dataset splits for training, validation, and test sets.

To evaluate our embedding, we use the baseline implementation proposed with the

TVQA dataset, namely Multi-Stream (MS). This model relies on bidirectional attention

between context (represented by subtitles and/or visual content) and question answer pairs

as queries to predict the correct answer [30]. Visual features are included as textual labels

of detected visual concepts in the frames of the video clip. To measure the effect of the

person names on the model, we apply a named entity recognizer and replace the names

with a fixed randomly generated embedding. Table 5.7 shows the results from the MS

method using Glove, Glove with removing names from subtitles, and using a fine-tuned

Glove using our character embedding model. The use of our character embeddings bring

improvements over the pre-trained Glove embeddings, which demonstrates the usefulness

of these character representations.

5.4 Conclusion

In this paper, we presented a novel unsupervised embedding model to represent characters

and their interaction in a dialogue. Our embedding model produces character represen-

tations that reflect the language used by the characters as well as information about their

relations with other characters. To evaluate the performance of our character embeddings,

we experimented with two tasks on two datasets: (1) character relatedness, using a dataset

we introduced consisting of a dense character interaction matrix for 4,761 unique char-

acter pairs over 22 hours of dialogue extracted from eighteen movies; and (2) character

relation classification, for fine- and coarse-grained relations, as well as relation sentiment.

Our experiments show that our model significantly outperforms the traditional Word2Vec
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continuous bag-of-words and skip-gram models, thus demonstrating the effectiveness of

the character embeddings we introduced. We further showed how the character embed-

dings can be used in conjunction with a visual question answering system to improve over

previous results.
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CHAPTER 6

Character Relation Classification

6.1 Introduction

Story understanding requires the ability to interpret characters’ roles, relationships, and

how they evolve as the story progresses. This interpretation is vital to improve methods

for story summarization and generation [146, 147], as well as to analyze story characters’

social network [96, 107]. It also provides basic facts that assist with reasoning about and

justifying character actions in a story [95, 151].

Several character-centric story understanding attempts focus on modeling character per-

sona [98] or their relationships [100, 101, 151] from textual narratives and movie plot sum-

maries. Moreover, previously proposed methods often made several limiting assumptions

such as assuming that relationships are static within a narrative, or that relationships can

be modeled using a coarse binary polarity (e.g., cooperative vs. non-cooperative or ad-

versarial vs. non-adversarial) [105, 100]. Recent unsupervised learning approaches have

been proposed to overcome these limitations by modeling evolving character relationships

using latent variables to capture their dynamics within narratives [97, 151]. The evalua-

tion of these models is tricky and subjective since they result in relation descriptor words

similar to topic models. However, most of the existing methods for analyzing character

relations focus on textual narratives and movie plot summaries. These summaries include

a high-level understanding of the story as interpreted by the summary writer grounded in
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the text.

In this work, we address the problem of character relation classification in movies and

the evolution of these relations as the movie story progresses. Unlike textual story sum-

maries, movies require processing information from several modalities such as the dialog

between characters, their interactions, and expressions reflected in the visual and acoustic

channels. Figure 6.1 shows an example of how relations between characters in the movie

“Single White Female” are established and evolve. As seen in the figure, the movie starts

with “Allie” and “Sam” discussing their love life and their engagement plans. Allie then

discovers that “Sam” had a relation with his ex-wife. She gets angry and decides to break

up with him, but Sam still loves her. After several attempts to apologize to Allie, he suc-

ceeds, and they get back together. Recently, movie understanding from both text and video

gained attention with several movie understanding datasets developed to facilitate movie

story comprehension through question answering such as MovieQA [29] and TVQA [30].

They are, however, not enough to develop character-centric models for movie story under-

standing.

In this work, we make two main contributions. First, we construct a new inter-character

relationship dataset for movies. This dataset captures the introduction and changes in re-

lations throughout movie events. The collected relations also capture different facets of

these relations. Second, we present a supervised multimodal framework for modeling

inter-character relationships in movies. The input to our model is the subtitles, video,

speech signal, and a pair of characters appearing in the movie. We model the relationships

by leveraging all movie segments that each character speaks in as well as their common

interaction segments. Finally, our model predicts their relationship at any given time. We

evaluate our model on our new character relationship dataset and show that our multimodal

model outperforms using single modality and several non-neural baselines as well.

This chapter is structured as follows: in Section 6.2 we describe our dataset; in Section

6.3, we explain our data processing and feature extraction process from each modality; in
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Figure 6.1: Example of “Single White Female” movie character relations evolve over the
storyline. The head of an arrow represents the direction of the relation between the two
characters, and its color represents the sentiment between the characters green, blue, red
for positive, neutral, and negative sentiments, respectively. The labels on the arrow repre-
sent the coarse-grained relation Social/Professional/Familial followed by the fine-grained
relation such as lover or friend.

Section 6.4, we introduce our character relation classification model; Section Section 6.5

discusses our experiments and results; and finally, we conclude in Section 6.6

6.2 Datasets

6.2.1 Temporal Character Relations

We introduce our new dataset, Temporal Character Relations (TCR), of manually anno-

tated inter-character relationships between characters in seventeen movies covering dif-

ferent genres. Our dataset is built using the movies in the speaker naming dataset [93].

Therefore, for each subtitle segment, we have the ground-truth speaker name. For every
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pair of characters in each movie, we annotate their relationship when it is established, as

well as changes throughout the movie. Inspired by [102], we collect annotations on three

dimensions of interest: coarse-grained relation (professional, social, familial), fine-grained

relation (lover, friend, husband/wife), sentiment (positive, negative, neutral). Unlike [102],

we want our annotations to capture how the relations between characters evolve as the

movie storyline progresses.

For each movie, a human annotator watches it and labels the introduction/change of

relationships between every pair of characters, the direction of the relation, and the times-

tamp of the change. The annotated relation is directional, i.e., given two characters, c1

and c1, the relation between c1 and c2 is not necessarily the same relation between c2 and

c1. For example, in the movie “Just Friends” at the beginning of the movie there are two

characters “Chris Brander” and “Jamie Palamino”: “Chris” loves “Jamie” while “Jamie”

considers “Chris” only her friend. Thus, our dataset captures the temporal and dynamic

aspects of the relations between characters over the course of the movie plot. Overall, the

total number of fine-, coarse-grain, and sentiment labels in our dataset are 34, 4, and 3,

respectively.

Overall, our dataset consists of seventeen full movies with a total duration of 35.6 hours.

We treat each relation dimension independently; therefore, the number of relation types

might differ because one relation type might not change while others do not. For example,

when two friends fight, the sentiment relation between them changes, while the coarse

and fine relations remain unchanged. Similarly, two friends can become lovers, thus their

fine-relation changes while the coarse and sentiment relations stay the same.

We split our dataset into train, validation, and test sets. We use the validation set to

fine-tune our model as well as the baselines parameters. The movies in each split are mutu-

ally exclusive. Therefore, we evaluate the ability of our models to generalize to completely

unseen movies. Table 6.1 shows the statistics of our collected data. For training and eval-

uation purposes, we label character pairs that do not exist in our annotations with a “No
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Relation” label. Figure 6.2 shows the label distribution of each relation type in our dataset.

Train Val Test Total
# movies 9 3 5 17
# characters 185 53 109 347
# fine-grained relations 1,367 311 576 2,251
# coarse-grained relations 1,314 253 539 2,106
# sentiment relations 1,139 225 548 1,912

Table 6.1: Statistics of our temporal character relations dataset across train, validation, and
test splits. We show the number of movies, characters, fine-, coarse-grain, and sentiment
relations.

6.3 Data Processing and Representation

Given a movie, we split it into segments. We extract features from each segment by pro-

cessing their corresponding textual, acoustic, and visual information. The textual informa-

tion comes primarily from the subtitles, which represent the dialog between the characters.

The visual and acoustic features are extracted from the video content of the movie. In this

section, we discuss the process of obtaining the sequence of feature representations for

each individual modality: text, video, and audio. We use these representations as input to

our model for our character relation prediction task. Figure 6.3 shows an overview of our

representation of each modality.

6.3.1 Textual Features

We evaluate the following representations to represent the subtitle segments:

Glove Word Embedding. For each subtitle segment si, we first tokenize the sentence

and represent each token using its corresponding GloVe embedding [13]. We use the 300-

dimensional version of GloVe vectors pre-trained on text from Wikipedia. We represent

each sentence using the average representation of its individual tokens.

TF-IDF is a traditional weighting scheme in information retrieval. We represent each

subtitle segment as a vector of tf-idf weights, where the length of the vector (i.e., vocabulary
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Figure 6.2: Label distribution for each relation type in our temporal character relations
dataset. (a) shows the distribution of fine-grained relations; (b) shows the distribution of
coarse-grained relations; (c) shows the distribution of sentiment relations.

size) and the idf scores are obtained from the movie subtitles.
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1. 00:02:43 --> 00:02:49

Sam Rawson: If I can get you off the computer 

tomorrow,  I'll buy you that ring.

2. 00:02:50 --> 00:02:53

Allison Jones: Is this gonna be a real wedding?

Objects

bedroom

bed

woman
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d1  d2  d3               dn
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3. 00:02:53 --> 00:02:59

Sam Rawson: As opposed to a fake one?

Allison Jones: Sam, you've been through the big 

ceremony.

Dialog turns

Frames objects
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…

…

…MFCC, Energy, Pitch
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G
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Figure 6.3: Overview of our representation of each movie modality. We represent the entire
movie as a sequence of segments. Each movie segment si is represented using< di, vi, ai >
representing the feature vectors extracted from dialog, video frames, and speech signal,
respectively.

6.3.2 Acoustic Features

For each movie in the dataset, we extract the audio from the center channel. The center

channel is usually dedicated to the dialogue in movies, while the other audio channels

carry the surrounding sounds from the environment and the musical background. For each

dialog turn, we use the subtitles’ timestamps to estimate its boundaries.

We utilized the open source openSMILE [137] for feature extraction. In particular,

we extract the Interspeech 2009 emotion challenge features described in [152] to repre-

sent the acoustic information of each segment. In detail, the extracted features are: root

mean square frame energy, normalized pitch frequency, mel-frequency cepstral coefficients

(MFCC), harmonics-to-noise ration, and zero-crossing-rate (ZCR). To each of these fea-

tures, the delta coefficients are computed. In addition to 12 other features including the

mean, standard deviation, etc. This results in a 384-dimensional vector for each segment.
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6.3.3 Visual Features

For each movie segment, we subsample one frame every ten frames. We process each

frame using a Faster R-CNN [153] pre-trained on the Visual Genome dataset [154] to detect

objects and their predicted labels. 1 Across the segment frames, we follow [62] to select

the top-K objects, where K is a hyper-parameter that we fine-tune during training. Recent

work found that using detected object labels as input to an image captioning system and

question answering gave comparable performance to using regions visual features directly

[155, 30].

Inspired by this previous work, we use the detected objects labels as visual inputs.

Figure 6.3 shows an example of the detected objects and their predicted labels in a given

segment. The model can detect rich visual concepts such as objects and locations, e.g.,

“bed” and “bedroom,” which might suggest a familial or social relationship. For every

segment, we represent it using the average Glove embedding of the predicted objects labels.

The resulting segment representation is a 300-dimensional feature vector.

As a result of our feature extraction from the multiple modalities, each segment si in

the input sequences consists of features < di, vi, ai > where di represents the average word

embedding for a dialog turn, vi represents the embeddings of the objects extracted from

the video frames, and ai represents the acoustic features extracted from speech signal of

segment i.

6.4 Model

6.4.1 Problem Definition

Given a movie and two characters, C1 and C2 appearing in it, our goal is to predict their

relationship at any given time T in the story. For our relation classification task, we have

1We used the implementation available here: https://github.com/violetteshev/
bottom-up-features
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three sources of inputs (C1 memory, C2 memory, C1,2 interaction memory). We use the

word “memory” to refer to the movie segments that the characters uttered. We define:

• C1 memory as the sequence of segments Sc1 =< s1, s2, ..sT > in which character C1

is the speaker.

• C2 memory as the sequence of segments Sc2 =< s1, s2, ..sT > in which character C2

is the speaker.

• C1,2 interaction memory as the sequence of segments Sc1,c2 =< s1, s2, ..sT > in

which both characters C1 and C2 are talking to each other. In order words, Sc1,c2

include segments in which both C1 and C2 are present.

We represent each segment, as described in section 4.3. These sequences are usually

chronologically ordered according to the movie events unless there is a flashback as a part

of the movie plot.

Each input to our model is (C1, C2) or (C1,2), in addition to the target relation label. Our

model includes three encoders: i) dialog encoder; ii) visual encoder; iii) audio encoder. We

use a Gated Recurrent Unit (GRU) [156] to encode each modality sequence into a vector.

zt = σ
(
xtU

z + ht−1W
z
)

rt = σ
(
xtU

r + ht−1W
r
)

h̃t = tanh
(
xtU

h + (rt ∗ ht−1)W h
)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Here r is a reset gate, and z is an update gate. The reset gate determines how to combine

the information from the new segment with the previous memory, and the update gate

defines how much of the previous memory to keep.
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−→
h di = GRU(di), i ∈ [1, T ]

−→
h vi = GRU(vi), i ∈ [1, T ]

−→
h ai = GRU(ai), i ∈ [1, T ]

We use the last hidden state to represent the encoding of the input sequence. We use

the same encoders for the different input sequences C1, C2, C1,2. We then represent the

sequences of segments from all modalities as

S = [
−→
h C1
dT ;
−→
h C2
dT ;
−→
h C1
vT ;
−→
h C2
vT ;
−→
h C1
aT ;
−→
h C2
aT ]

in case of using C1, C2 as the input. In case of using C1,2, the sequence is represented as,

S = [
−→
h
C1,2

dT ;
−→
h
C1,2

vT ;
−→
h
C1,2

aT ]

where ; represent tensor concatenation. We finally pass it to a two fully connected feed-

forward layers for classification. We use cross entropy loss function to train our model.

6.5 Experiments

To study the role of using information from multiple modalities, we conduct several exper-

iments to evaluate the performance of models trained separately using each modality and

combinations of them on each relation classification task. Additionally, we investigate a

number of baselines for character relation classification.

6.5.1 Baselines

We also use naive baselines to study the inherited biases in the data, such as the majority

class and random guessing classifier. For each relation classification task, we compare our

multi-modal character relation classification model against several non-neural baselines.
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These baselines have been frequently used to relation classification between literary novel

characters [96, 95]. In particular, we train logistic regression, SVM, decision tree, and ran-

dom forest models using the Scikit-learn library [138]. For each model, given a character

pair, we train the model using TF-IDF representation of the dialog between the characters.

Majority Class. We select the majority class label in the training data as our prediction

during test.

Random Guess. We randomly select labels according to class distribution from the train-

ing data as our prediction during test.

Interaction Frequency. Similar to [96, 106], we use the volume of interaction to predict

the relationship between two characters. We use the number of turns between characters,

in addition to the the number of turns of C1 and C2 up to the target segment.

Logistic Regression. We train a multi-class logistic regression classifier using one-vs-all

strategy for each task.

SVM. Support Vector Regression has been used previously to estimate a weighting score

for relations between characters [105]. In our work, we train a linear SVM classifier for

relation classification. We experimented with several kernels, but the linear one achieved

the best results on the validation set.

Random Forest. It fits a number of decision tree classifiers on various sub-samples of the

dataset and uses averaging to improve its predictive power and control over-fitting. These

trees aim to find several important tokens in the dialog between characters to classify their

relation (e.g., a word like “dad” is more probable to occur in “son/daughter”/ “familial”

relation between characters.

End-to-End Memory Network. Memory networks have been widely adapted for movie

understanding and question answering tasks [29, 63]. We examine the ability of a memory

network to predict the relationship between two given characters.
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Fine Relation Coarse Relation Sentiment
P R F P R F P R F

Majority 0.2227 0.2764 0.2467 0.3961 0.4601 0.4257 0.3632 0.4434 0.3993
Random 0.0933 0.1002 0.0966 0.3447 0.3524 0.3485 0.3436 0.2363 0.2800
Interaction Frequency 0.2227 0.2806 0.2483 0.4634 0.5382 0.4980 0.4364 0.3759 0.4039
Logistic Regression 0.2186 0.2750 0.2435 0.3961 0.4601 0.4257 0.3898 0.4453 0.4157
SVM 0.2007 0.2279 0.2134 0.4042 0.4688 0.4341 0.3717 0.2828 0.3212
Random Forest 0.2227 0.2806 0.2483 0.3961 0.4601 0.4257 0.3632 0.4434 0.3993
MemoryN2N
{dialog} 0.2181 0.2096 0.2138 0.3961 0.4601 0.4257 0.3256 0.3066 0.3158
{audio} 0.2227 0.2764 0.2467 0.3946 0.4583 0.4241 0.3750 0.4215 0.3969
{video} 0.2124 0.2597 0.2337 0.3901 0.4531 0.4193 0.385 0.4124 0.3982
{dialog, audio} 0.2248 0.2782 0.2487 0.3961 0.4601 0.4257 0.3800 0.3668 0.3733
{dialog, video} 0.2012 0.1929 0.197 0.4529 0.5260 0.4867 0.4453 0.4015 0.4223
{audio, video} 0.2231 0.2764 0.2469 0.3946 0.4583 0.4241 0.3639 0.4416 0.3990
{dialog, audio, video} 0.2453 0.1948 0.2172 0.3976 0.4618 0.4273 0.3647 0.4453 0.4010

Our Model
{dialog} 0.2212 0.2746 0.2450 0.4200 0.4878 0.4514 0.3752 0.4252 0.3986
{audio} 0.2446 0.2542 0.2493 0.3961 0.4601 0.4257 0.3563 0.3303 0.3428
{video} 0.2335 0.2560 0.2442 0.4709 0.5469 0.5060 0.4003 0.4398 0.4191
{dialog, audio} 0.2227 0.2764 0.2467 0.3961 0.4601 0.4257 0.4366 0.4526 0.4444
{dialog, video) 0.3281 0.1929 0.2430 0.4918 0.5712 0.5285 0.4466 0.5036 0.4734
{audio, video} 0.2256 0.2746 0.2477 0.4469 0.5191 0.4803 0.3925 0.4197 0.4056
{dialog, audio, video} 0.2505 0.2505 0.2505 0.4686 0.4670 0.4678 0.4024 0.4325 0.4169

Table 6.2: Comparison between the average of the precision, recall and micro-averaged
f-score of the baselines and our multi-modal character relation classifier model on fine-
grained, coarse-grained and sentiment relation classification using C1 and C2.

6.5.2 Results

We model our task as a classification problem. Since the distributions in our dataset are

unbalanced, we use micro-averaged precision, recall, and f-score as our evaluation met-

ric. For all of our experiments, we use the validation set to fine-tune models’ parameters.

We then select the best model to evaluate on the test set. From our experiments, TF-IDF

representation of the text gives better results than Glove when used with the non-neural

baselines. Thus, for these models the textual modality in the results table refer to TF-IDF,

while for the neural baselines text is represented using pre-trained Glove embeddings.

Table 6.2 and Table 6.3 show the results of our model in comparison to the baselines

on each relation task when using C1, C2 and C1,2 only, respectively. In both scenarios, our

model outperforms the other baselines. Using C1, C2 memory for prediction, our model

has the best results when relying on information from both dialog and video. It also out-
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Fine Relation Coarse Relation Sentiment
P R F P R F P R F

Majority 0.2227 0.2764 0.2467 0.3961 0.4601 0.4257 0.3632 0.4434 0.3993
Random 0.0933 0.1002 0.0966 0.3447 0.3524 0.3485 0.3436 0.2363 0.2800
Interaction Frequency 0.2227 0.2806 0.2483 0.4634 0.5382 0.4980 0.4364 0.3759 0.4039
Logistic Regression 0.2196 0.2486 0.2332 0.3931 0.4566 0.4225 0.3710 0.4434 0.4040
SVM 0.2003 0.2467 0.2211 0.4048 0.4688 0.4344 0.3843 0.4635 0.4202
Random Forest 0.2227 0.2806 0.2483 0.3961 0.4601 0.4257 0.3643 0.4434 0.4000
MemoryN2N
{dialog} 0.2227 0.2764 0.2467 0.4245 0.4931 0.4562 0.4357 0.4453 0.4404
{audio} 0.2821 0.2077 0.2393 0.4081 0.4740 0.4386 0.3454 0.3120 0.3279
{video} 0.1880 0.1855 0.1867 0.3901 0.4531 0.4193 0.4223 0.4416 0.4317
{dialog, audio} 0.2227 0.2764 0.2467 0.4081 0.474 0.4386 0.4357 0.4453 0.4404
{dialog, video} 0.2196 0.1911 0.2044 0.3984 0.4601 0.4270 0.3831 0.4452 0.4118
{audio, video} 0.2272 0.1892 0.2065 0.4484 0.5208 0.4819 0.4357 0.4453 0.4404
{dialog, audio, video} 0.2302 0.1614 0.1897 0.4230 0.4913 0.4546 0.4072 0.4361 0.4211

Our Model
{dialog} 0.2244 0.2764 0.2477 0.3961 0.4601 0.4257 0.3756 0.3996 0.3873
{audio} 0.2226 0.2560 0.2381 0.4081 0.4740 0.4386 0.4252 0.3321 0.3730
{video} 0.2222 0.2635 0.2411 0.435 0.5052 0.4675 0.4282 0.3431 0.3810
{dialog, audio} 0.2248 0.2560 0.2394 0.3896 0.4410 0.4137 0.4079 0.4124 0.4102
{dialog, video} 0.2710 0.2504 0.2603 0.4854 0.5486 0.5151 0.4699 0.4562 0.4630
{audio, video} 0.2227 0.2764 0.2467 0.3991 0.4635 0.4289 0.4207 0.3047 0.3534
{dialog, audio, video} 0.2301 0.2635 0.2457 0.4051 0.4705 0.4353 0.4057 0.4161 0.4108

Table 6.3: Comparison between the average of the precision, recall and micro-averaged
f-score of the baselines and our multi-modal character relation classifier model on fine-
grained, coarse-grained and sentiment relation classification using C1,2.

performs our model trained on C1,2 segments. However, these models struggle to classify

the fine-grained relationships between the characters due to the unbalanced distribution of

the fine-grained relationship classes.

Table 6.4 shows an example of our model predictions for the two characters, “Holden

McNeil” and “Alyssa Jones” from the movie “Chasing Amy” over different segments of

the movie. From the example, it can be seen that the network was able to identify their

relationship correctly at the right time in many cases. In other cases, the network managed

to identify these relations after time segments than the ground-truth annotations. This par-

ticular example is tricky as well. The two characters did not know each other initially and

they got introduced in a business event through a friend. Both characters are writers and

spent their first two meetings chatting about publishing and work topics. Such cases might

impact the classification performance of the models. The current version of our dataset
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assigns a single label for each relation type, which is the most common scenario in movies.

Figure 6.4 shows the classification confusion matrix for each relation classification task

using our best model. The fine-grained relationships are sparse. Hence most of the predic-

tions

Segment # Character 1 Character 2 Ground Truth Our Model
135 Holden McNeil Alyssa Jones (NR, NR, Positive) (P, colleague, NR)
136 Alyssa Jones Holden McNeil (NR, NR, Positive) (P, NR, Neutral)
220 Holden McNeil Alyssa Jones (S, acquaintance, Positive) (P, colleague, Positive)
220 Alyssa Jones Holden McNeil (S, acquaintance, Positive) (P colleague, Positive)
603 Alyssa Jones Holden McNeil (S, friend, Positive) (S, colleague, Positive)
604 Holden McNeil Alyssa Jones (S, friend, Positive) (S, colleague, Positive)
813 Holden McNeil Alyssa Jones (S, lovers, Positive) (S, colleague, Positive)
889 Holden McNeil Alyssa Jones (S, lovers, Positive) (S, friend, Negative)
939 Alyssa Jones Holden McNeil (S, lovers, Positive) (S, lovers, Negative)
1224 Holden McNeil Alyssa Jones (S, lovers, Negative) (S, lovers, Negative)
1257 Alyssa Jones Holden McNeil (S, ex-lover, Negative) (S, lovers, Negative)

Table 6.4: Example of classification task on the movie “Chasing Amy”, using our character
relation classification model. The classification output consists of the relations of character
2 from character 1’s perspective. A bold face indicates a correct relation classification. The
relations are arranged as coarse-grain, fine-grain, and sentiment, respectively.

6.6 Conclusion

In this chapter, we explore modeling character relations and their changes in movies. To

facilitate the development and evaluation of our character relations model, we constructed

a new inter-character relationship dataset for movies. This dataset captures the introduc-

tion and changes in relations throughout movie events. The collected relations also capture

different facets of these relations, in particular, sentiment, fine-, and coarse-grained rela-

tions. We then developed a supervised multimodal framework for inter-character relation-

ship prediction between pairs of characters at any given point in the story. We modeled

the relationships by leveraging all movie segments that each character speaks in as well as

their common interaction segments. Our multimodal model outperformed methods that use

a single modality and several non-neural baselines as well.
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Figure 6.4: Confusion matrix for each relation type in our temporal character relations
dataset. (a) shows the confusion matrix of fine-grained relations; (b) shows the confusion
matrix of coarse-grained relations; (c) shows the confusion matrix of sentiment relations.
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CHAPTER 7

Conclusions

Throughout this dissertation, we explored various aspects of character representations that

leverage multiple modalities such as the visual, textual, and acoustic channels. Our main

goal was to use such representations to improve visual story understanding. Our approach

used different representations to solve three challenging problems: (i) speaker identification

and naming, (ii) character embedding, and (iii) character relationship representation.

7.1 Research Questions Revisited

The previous chapters have presented the details of our proposed approaches to represent

movie characters and provided several experiments analyses to answer the fundamental

research questions posed in Chapter 1. We will now recap these questions and discuss our

findings.

Q1: Can we augment the representation of each entity with speaker names auto-

matically predicted from dialogue?

Humans identify and infer character names from dialogues and can identify the speaker

of each utterance when they see or hear them again. Unlike previous work that relied on

scripts to identify speakers and focused on using vision and speech for their prediction, we

solely used the information that is naturally available while watching a movie. In Chapter

4, our experiments have shown that although it is reasonably possible to develop speaker
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naming system by identifying their names from the dialog, the predictive power is not

sufficient when relying on a single modality. Out of all the single modal models, the textual

features outperformed the visual and acoustic features, especially when applied to a movie

with a noisy background. Utilizing information from multiple modalities, in particular, the

dialog, video, and speech led to the best results. The speaker naming task remains difficult

as a result of using several methods to infer and cluster names from the dialog. Further, our

ablation studies showed that we could achieve more than 8% F-score improvement using

perfect auxiliary systems for voice gender and name mentions classifiers.

Q2: Can this augmented character representations be used to improve the perfor-

mance of the downstream task of question answering?

Empirical experiments on a movie question answering dataset demonstrated the ef-

fectiveness of our proposed method in comparison to several competitive baselines, as

shown in Chapter 4. We have also demonstrated that an SC-MemN2N model that leverages

our speaker naming model can achieve state-of-the-art results on the subtitles task of the

MovieQA [29] 2017 Challenge. This dataset is very challenging because answering the

questions requires a high-level understanding of the movie plot. Given that our model with

no supervision inferred the character names of 408 movies in the dataset, it shows the value

of identifying speakers to provide support for movie understanding, even if its predictive

power is not extremely strong.

Q3: Can we create character representations that can more effectively identify the

relations between characters?

Existing models represent name mentions of characters by looking up their embed-

dings from a Word2Vec or Glove models. From our analysis, we found that character name

embeddings do not reflect useful information about them in a given movie or story. In

Chapter 5, we proposed using speaker prediction as an auxiliary task to embed story char-

acter names in dialogues. To evaluate the quality of the character embeddings, we collected

human judgments on how related each pair of characters are to each other in a given movie.
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We then compared our character embedding models to other commonly used word and

sentence embedding models. Our experiments have shown several positive properties of

the character name embeddings. The distances between the embeddings representing the

characters were better correlated with human judgments than a regular Word2Vec model.

We also found these embeddings to predict relationships between characters better than

several word embedding baselines. As our main goal in this thesis is story understanding,

we experimented using our character embeddings for both character relation classification

[102] and TV question answering [30] tasks. On both tasks, our character representations

improved the classification and question answering tasks.

Q4: Can we use these character representations to model relations between char-

acters over time?

Changes to characters and their relations are crucial elements for stories and their pro-

gression. Using static embeddings to represent a character through a story causes the tem-

poral information in the story to be lost. In Chapter 6, we explored modeling character

relations and their changes in movies. To facilitate the development and evaluation of

our character relations model, we constructed a new inter-character relationship dataset for

movies. This dataset captures the introduction and changes in relations throughout movie

events. The collected relations also capture different facets of these relations, in particular,

sentiment, fine-, and coarse-grain relations. We then developed a supervised multimodal

framework for inter-character relationship prediction between pairs of characters at any

given point in the story. We modeled the relationships by leveraging all movie segments

that each character speaks in as well as their common interaction segments. Our mul-

timodal model outperformed methods that use a single modality and several non-neural

baselines as well.
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7.2 Final Remarks

Throughout this thesis, we have taken several approaches to represent characters in movies

and TV shows. We have shown that multimodal systems generally outperform systems

that rely on one modality at a time. However, there is still a long way ahead for building

machines that can “watch” a movie and fully understand it as humans do. Understanding

movies is a very challenging task. Beside processing information from several sources at

once, it requires a wealth of world knowledge and commonsense reasoning. An important

question is how to build this knowledge and integrate it within a model during training.

Finally, we hope that the resources, tools, and methodologies presented in this thesis

encourage further research on building character-centric approaches for movie understand-

ing.
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[101] Chaturvedi, S., Srivastava, S., Daumé III, H., and Dyer, C., “Modeling Evolving
Relationships Between Characters in Literary Novels.” AAAI, 2016.

[102] Massey, P., Xia, P., Bamman, D., and Smith, N. A., “Annotating character relation-
ships in literary texts,” arXiv preprint arXiv:1512.00728, 2015.

[103] Weng, C.-Y., Chu, W.-T., and Wu, J.-L., “Movie analysis based on roles’ social
network,” 2007 IEEE International Conference on Multimedia and Expo, 2007.

[104] Weng, C.-Y., Chu, W.-T., and Wu, J.-L., “Rolenet: Movie analysis from the perspec-
tive of social networks,” IEEE Transactions on Multimedia, 2009.

[105] Ding, L. and Yilmaz, A., “Learning Relations among Movie Characters: A Social
Network Perspective,” ECCV , 2010.

[106] Park, S.-B., Oh, K.-J., and Jo, G. S., “Social network analysis in a movie using
character-net,” Multimedia Tools and Applications - MTA, 2011.

[107] Agarwal, A., Kotalwar, A., and Rambow, O., “Automatic extraction of social net-
works from literary text: A case study on alice in wonderland,” Proceedings of the
Sixth International Joint Conference on Natural Language Processing, 2013.

[108] Fathi, A., Hodgins, J. K., and Rehg, J. M., “Social interactions: A first-person
perspective,” 2012 IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, 2012.

[109] Agarwal, A., Kotalwar, A., Zheng, J., and Rambow, O., “SINNET: Social Interac-
tion Network Extractor from Text,” The Companion Volume of the Proceedings of
IJCNLP: System Demonstrations, 2013.
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