
It’s Data All the Way Down: Exploring the Relationship
Between Machine Learning and Data Management

by

Michael R. Anderson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2019

Doctoral Committee:

Associate Professor Michael Cafarella, Chair
Associate Professor Kevyn Collins-Thompson
Professor H. V. Jagadish
Professor Thomas F. Wenisch

Michael R. Anderson

mrander@umich.edu

ORCID iD: 0000-0002-0959-4234

c© Michael R. Anderson 2019

To my wife Carol and our wonderful children, Katie and Nicholas.

ii

Acknowledgements

I first off would like to thank my advisor, Mike Cafarella, whose guidance in how
to approach research has truly been one of the key takeaways I have from my Ph.D.
adventure. Learning how to break down a problem into parts that can be reasoned
about and how to effectively and convincingly explain experimental results are things
that are probably more important than any particular technical aspect of my research.
Mike was also very supportive and understanding of my situation as a non-standard
graduate student; being old and married with kids, as I am, presents certain constraints
to graduate student life that a student fresh out of an undergraduate degree may not face.
Being able to put family first at times and being able to maintain a reasonable work-
life balance certainly improved my ability to produce quality (if not entirely speedy)
research.

My fellow University of Michigan database students also deserve much thanks. Dolan
Antenucci was my collaborator on several projects and on the golf course, and his
presence was certainly missed when he graduated a year or two ahead of me. Mark
(Zhongjun) Jin was also a great collaborator, full of insight, and one of the nicest lab-
mates one could hope to meet. The database group is in good hands for the next couple
of years, with Mark as one of the senior students heading things up. Yongjoo Park was
always a great sounding board for ideas, especially on our nearly daily walks to Duder-
stadt for coffee. Dan Fabbri and Matt Burgess, too, were great influences to me as a new
grad student.

Most of all, I’d like to thank my family. My wife, Carol, and our two children, Katie
and Nicholas gave me loving support through the (many) years this Ph.D. has taken.
They put up with me whenever I was particularly stressed out and made things work
when I had to fly halfway around the world for a week on relatively short notice. More
generally, it was always great to be able to switch out of grad student mode for a while
to watch one of the kids’ soccer games, go on a lunch date with my wife, or do any of
the other little family things that many graduate students aren’t lucky enough to take
part in while they’re still in school. (Also, explaining my research to a 3rd grader was
great training in science communication.)

iii

My parents, Bob and Kathy Anderson, were also instrumental in my success, always
supporting my goals, academic and otherwise, in a loving and stable home. Through
their example, I (and my brothers) learned the value of education and hard work. My
grandparents, too, where always there for me. Grandma Norma—a model of a strong,
self-sufficient person—passed away before I finished my studies, but would have been
proud to see me graduate. Grandma Phyllis and Grandpa Carl came to nearly every
baseball game, band concert, and school function throughout my childhood, always
cheering me and my brothers on. From all three, I learned that working hard and trying
difficult things was something to be celebrated.

To everyone who has supported me throughout my life, I give a heartfelt thanks. I could
not have made it here without you.

iv

Table of Contents

Dedication . ii

Acknowledgements . iii

List of Figures . ix

List of Tables . xii

Abstract . xiii

Chapter

1 Introduction . 1
1.1 Problem Setting . 4

1.1.1 Machine Learning Queries . 4
1.1.2 Measures of Machine Learning Success 6

1.2 Overview and Contributions . 7
1.2.1 Zombie: Indexing Raw Data . 7
1.2.2 Tahoma: Alternative Input Representations 8
1.2.3 Grover: Embeddings for Relational Data 9

2 Background and Related Work . 11
2.1 Databases and Systems for Machine Learning 11

2.1.1 Machine Learning Pipelines . 11
2.1.2 Feature Engineering and Machine Learning Development 12
2.1.3 Machine Learning in Production Environments 12

2.2 Machine Learning for Data Management Tasks 13
2.2.1 Indexing . 13
2.2.2 Query Optimization . 13
2.2.3 Data Integration . 14

v

2.2.4 Database Management . 14

3 Input Selection for Fast Feature Engineering . 15
3.1 Introduction . 15
3.2 The Feature Evaluation Query . 18

3.2.1 Feature Evaluation Loop as a Query 19
3.2.2 Common Practice: Subset . 19
3.2.3 Approximation by Early Stopping . 21
3.2.4 Optimizing the Approximate Query 22
3.2.5 Deployment and Limitations . 24

3.3 System Architecture . 24
3.3.1 Execution Model . 24
3.3.2 Input Selector . 25
3.3.3 Index Groups . 26
3.3.4 Physical Access . 28

3.4 Predicting Input Utility . 28
3.4.1 Design Discussion . 28
3.4.2 Our Bandit Model . 29
3.4.3 Rewarding a Pull . 29
3.4.4 Selecting an Arm . 31
3.4.5 Putting It All Together . 31

3.5 Experiments . 31
3.5.1 Feature Engineering Workloads . 32
3.5.2 Overall Performance . 34
3.5.3 Testing SUBSET . 36
3.5.4 Varying System Parameters . 37
3.5.5 Varying Task Parameters . 41

3.6 Related Work . 42
3.7 Conclusions and Future Work . 44

4 Physical Representation-based Predicate Optimization for a Visual Analytics
Database . 45
4.1 Introduction . 45
4.2 Background . 48
4.3 Design Considerations . 49
4.4 Definitions and Notation . 51
4.5 Cascade Methodology . 53

vi

4.5.1 System Architecture . 54
4.5.2 Building Models . 56
4.5.3 Computing Decision Thresholds . 57
4.5.4 Constructing Cascades . 57

4.6 Data Handling Costs . 58
4.7 Evaluation Methods . 60

4.7.1 Evaluating Cascades . 60
4.7.2 Comparing Cascade Sets . 61

4.8 Experiments . 62
4.8.1 Experiment Setup . 62
4.8.2 Comparison Against Baselines . 65
4.8.3 Comparison with NoScope . 67
4.8.4 Deployment Scenario Awareness . 69
4.8.5 Analysis of Input Transformations . 70
4.8.6 Analysis of Increased Cascade Depth 70

4.9 Related Work . 72
4.10 Conclusion and Future Work . 74

5 Column and Table Embeddings for Data Integration Tasks 76
5.1 Introduction . 76
5.2 Background . 79

5.2.1 Word and Sentence Embeddings . 79
5.2.2 Recurrent Neural Networks . 81

5.3 Tasks . 81
5.4 Algorithms and Methods . 83

5.4.1 Column-value Embedding . 83
5.4.2 Column Labeling . 83
5.4.3 Table Titling . 85
5.4.4 Key Column Identification . 85
5.4.5 Schema Matching . 86

5.5 Experiments . 87
5.5.1 Data Set . 87
5.5.2 Column Labeling . 88
5.5.3 Predicting Table Titles . 90
5.5.4 Key Column Identification . 92
5.5.5 Schema Matching . 93

vii

5.5.6 Related Work . 95
5.6 Conclusion and Future Work . 96

6 Conclusion and Future Work . 97
6.1 Databases Built on Machine Learning . 97
6.2 Embeddings for Relational Data . 98

Bibliography . 99

viii

List of Figures

Figure 1.1 Time to answer a feature engineering query for Zombie, compared
to a baseline which processes the raw data corpus sequentially and
stops early when the query is answered. Each set of bars represents
a different feature engineering task. See Chapter 3 for full details
on these experiments. 8

Figure 1.2 Examples of the variations in input representations created to in-
crease the design space of Tahoma’s cascades. Tiny images with a
single color channel lead to much faster classifiers, due to a much
small number of input parameters. These tiny inputs may carry
sufficient information to successfully answer some queries. 9

Figure 3.1 In the feature engineering evaluation loop, bulk data processing
and machine learning steps are interdependent but to date have
been commonly implemented as separate systems. 16

Figure 3.2 Query execution plans. In (a), the UDF is applied to the entire
dataset before T is invoked. In (b), the raw data items are pipelined
to Tincremental and Q. The output quality is continuously monitored
to detect the early stopping point. In (c), data are pipelined to
Tincremental and Qoptimize. The output quality is monitored for early
stopping, and utility informs the index group selection. 20

Figure 3.3 Learning curves for our execution plans. The Naïve plan performs
a bulk scan over R, while Early stops the bulk scan early to use
a subset R′. Zombie scans the data from index groups and stops
early much sooner, translating to a time savings for the user. 22

Figure 3.4 Illustration of the subset R′ created by each execution plan. Col-
ored rectangles represent raw data items. High-utility items are
white; low-utility ones are dark. The Naïve plan processes R in its
entirety. Early processes R′, chosen by streaming R and stopping
early. Zombie patches together R′ from index groups. 23

ix

Figure 3.5 Zombie’s basic architecture. The novel components are (a) the
Physical Index and (b) the Input Selector. 25

Figure 3.6 Time to stopping point, as well as Zombie’s speedup over Early in
reaching that point, for all of our experimental tasks. At bottom,
the dotted line indicates Early’s performance. 34

Figure 3.7 Subset sizes tested on DC6 using (a) the full dataset and (b) a class-
balanced filtered dataset. Subset10 was too small in (b) and had no
result. Execution time for both is shown in (c). 36

Figure 3.8 Time to stopping point, as well as Zombie’s speedup over Early in
reaching that point, for our different bandit reward methods. At
bottom, the dotted line shows Early’s performance. 37

Figure 3.9 Zombie’s performance with our index grouping methods, on the
DC6 task, shown as the speedup compared to Early (dotted line).
The diamonds show each method’s group quality. 39

Figure 3.10 Zombie’s speedup over Early for a range of different index group
quality levels on the (a) DC2 and (b) DC6 tasks. Green and yellow
areas indicate speedups over Early. All but the very lowest-quality
groupings (lower left, in red) yield a speedup. 40

Figure 3.11 Speedup for several tasks, varying the feature function execution
time. Diamonds on lines show the task’s actual F execution time.
The black dotted line shows SubsetEarly. 40

Figure 3.12 Left: Time needed to reach the accuracy plateau for both Early

and Zombie on the DC6 task. Error bars show the 95% confidence
bound for mean time over 10 runs. Right: Speedup over Early for
the same trials. Early is shown by the dotted line. 43

Figure 4.1 A multi-level classifier cascade. If the first classifier’s output is un-
certain, the input is classified by the second, and so on. If reached,
the output of the final classifier in the cascade is accepted as the label. 48

Figure 4.2 Tahoma architecture . 54
Figure 4.3 CNN architecture used by Tahoma. The number of layers and

the number of nodes in each layer are varied as part of the model
architecture specifications A. 56

Figure 4.4 Cascades (gray) and Pareto frontier (blue) for an example deploy-
ment scenario, compared to the Pareto frontier for a scenario only
considering inference costs (orange). 59

x

Figure 4.5 Areas to the left of Pareto frontiers, used for evaluation. Frontiers
correspond to the cascades in Figure 4.4. 61

Figure 4.6 A comparison of the cascade space of Tahoma (gray) compared
to that of our Baseline cascades (red). Tahoma’s Pareto-optimal
points are in blue. This example uses our komondor binary predicate
under the Camera cost model. 66

Figure 4.7 Average speedup values of Tahoma over baselines. ResNet50 and
Baseline (fastest) comparisons use the optimal cascade with the near-
est higher accuracy to ResNet50 and the fastest Baseline cascade,
respectively. Baseline (average) shows average speedups over the
Baseline accuracy range. 66

Figure 4.8 Throughput of Tahoma and ResNet50 of fastest cascades for each
cost model, averaged over 10 binary predicates. 67

Figure 4.9 Comparison with NoScope. Tahoma+DD is Tahoma with a simu-
lated NoScope-style difference detector. 68

Figure 4.10 Pareto frontiers for several of our binary predicates, under the
Camera cost model (blue), compared to cascades that appear in
the Pareto frontier for the Infer Only model (orange). 69

Figure 4.11 Average throughput of optimal cascades for cascade sets that use
different input transformations. 71

Figure 4.12 Evolution of Pareto frontier as cascades depth increases, shown for
our fence predicate in the Camera scenario. Other predicates and
scenarios showed similar results. As cascades get deeper, Pareto
frontier improvements become negligible. 72

Figure 5.1 The basic skip-gram model used by word2vec is a neural network
with one hidden layer. The input vector is a one-hot vector describ-
ing the vocabulary used by the model. The projection layer has
n nodes with no activation functions. The output layer has nodes
representing the vocabulary members, with softmax activations to
predict the context words. The output of the projection layer is
what is used as the word embedding vector. 79

Figure 5.2 A recurrent neural network, on the left. An RNN can be concep-
tually “unrolled,” as is shown on the right side of the diagram.

. 81

xi

List of Tables

Table 3.1 Feature engineering inputs, given by (R,F , L, T, Q, G), with exam-
ples from a classification task: a classifier is trained with crawled
news pages to automatically categorize future pages. 19

Table 3.2 Default experiment settings. 33

Table 4.1 Frequently used notation. 51
Table 4.2 Binary predicates used in our experiments and their corresponding

ImageNet category IDs. 63
Table 4.3 Throughputs, given in frames per second (fps), for various deploy-

ment scenarios when the cascade choices chosen in either oblivious
or aware of scenario data handling costs. Here, permissible accuracy
loss indicates how much accuracy the user is willing to trade for an
increase in throughput. Scenario awareness can lead to significant
throughput increases, shown in parentheses. 70

Table 5.1 Top-k accuracy for column labeling on test set. 89
Table 5.2 Top-k accuracy for predicting table titles on test set. 91
Table 5.3 Accuracy when predicting whether a table’s first column is the key

column. 92
Table 5.4 Number of schema matching tables within the top 100 nearest neigh-

bors in the table embedding vector space. 94

xii

Abstract

Data is central to machine learning: models are trained with data, trained models
infer their predictions over input data, and the resulting inferences are themselves data.
This being the case, there should be a natural relationship between machine learning
and data management techniques. Much of machine learning research, perhaps under-
standably, focusses strictly on algorithmic improvements, chasing ever-increasing state-
of-the-art accuracy measurements on their task of choice. Likewise, data management
research has been slow to incorporate recent machine learning breakthroughs, like deep
learning, to classic data management tasks. In this dissertation, we will demonstrate this
relationship between machine learning and data management with a series of projects
that improve aspects of machine learning through data management or improve data
management with the addition of machine learning.

Specifically, we detail two systems that use database-style methods to improve run-
time issues traditionally associated with machine learning and a third project that uses
recent machine learning methods to solve data quality issues. Our system Zombie shows
that novel data indexing methods can greatly reduce the time needed to evaluate the ef-
fectiveness of feature engineering, thereby reducing the time needed to train accurate
machine learning models. With our system Tahoma, we show that by using particular
physical representations of the images used as input into convolutional neural network
classifier cascades, content can be quickly extracted to support binary predicates used
in a video analytics database. And our system Grover demonstrates that universal em-
beddings, like those used in computer vision or natural language processing, can be
created for relational data, with both column and table embeddings used to improve the
performance of data integration tasks.

Our work shows machine learning and data management go hand-in-hand, and tak-
ing a holistic view of both can lead to improvements in each field.

xiii

Chapter 1

Introduction

Machine learning is built on data. Models are trained on data, which itself is likely
extracted, modified, or engineered from other data. The output of a machine learn-
ing model is also data, which—depending on the application—may be loaded into and
queried by a database or used as input into some other machine learning model. Be-
cause of this centrality of data to the practice of machine learning, data management
techniques should also be central to a successful machine learning system. Likewise,
because machine learning methods are highly effective at extracting, transforming, pre-
dicting, or otherwise acting upon data, there are a number of areas in data management
that would be well served by the incorporation of modern machine learning techniques.

One of the key insights that made modern relational data management systems
(RDBMS) highly successful was that the logical data structures can be independent from
the structure of the physical storage of the data. By removing the need concentrate on
the efficiency of physical data access, users could focus on their true task of gleaning in-
sights from their data. This separation allows RDBMS users to declaratively work with
their data, leaving the physical management of it to the data management system. Ide-
ally, an RDBMS can decide how to execute a query and take advantage of system-level
data structures like indexes with no input from the user.

Recent advances in machine learning have brought with them the development of
systems that extract content or knowledge from large corpora of non-relational, unstruc-
tured, or otherwise opaque data. A common task for a user of these system is to select
data instances based on the outputs inferred by the machine learning system (for exam-
ple, “What input documents are classified as ‘sports’?” or “Which input images contain
stop signs?”). While this could be directly compared to a traditional database query that
selects tuples based on particular attributes, there is little execution optimization that
can be done be in the machine learning case. The attributes must be inferred by the

1

machine learning algorithm before they can be queried, and the system’s handling of
the data is typically tied directly to data storage decisions made by the user.

These machine learning content extraction systems are often ad hoc, built on top of
general execution engines like MapReduce or Spark, or simply coded up from scratch in
a language like Python. In these cases, the developer of the system often is the user of
the system, due in part to the lack of standard of-the-shelf machine end-to-end learning
products or because the machine learning field is progressing too fast for such products
to be created. While there are currently numerous popular machine learning frameworks
and libraries, including TensorFlow [6], Keras [27], PyTorch [112], and scikit.learn [114],
to develop and deploy a successful machine learning solution using one of these frame-
works still requires much development and system configuration.

Further, these systems focus (perhaps rightfully) on the machine learning aspect of
the system’s pipeline: training, testing, and inference for a variety of popular algorithms.
Data management—loading and transforming inputs, as well as saving outputs—is lim-
ited to loading and saving files directly to and from local or networked file systems.
Analysis or queries of the system’s outputs is performed by analyzing the entire output
set using a library like Pandas [101] or loading those results into a standard RDBMS.

In database terms, physical and logical separation of query execution does not exist
in machine learning systems. Physical access of the raw data is limited by how the
user or system administrator loaded the data into the system: for example, images are
read from a certain directory, text files are read in the order they are retrieved from
an Amazon Web Services S3 bucket, or sensor readings are read from a series of log
files. These inputs are usually processed in the order in which they are accessed (the
aforementioned frameworks generally offer a method to shuffle inputs randomly, but
this is generally used during training, not inference). The data is not indexed—as it
might be in an RDBMS—to allow a query to be executed over the raw data that is
relevant to the query. Indeed, because the query operates over the output of a (frequently
inscrutable) machine learning algorithm, deciding which raw inputs are relevant to a
given query is a challenge. Thus, the execution plan for machine learning-based queries
is typically all-or-nothing, or at best, accelerated by computing an approximation of an
answer on a random sample.

In this dissertation, we show that database-inspired techniques and the facilities they
enable—indexes, for example—can be created to significantly speed up content extrac-
tion and queries over raw text and image data. These ideas can be applied in several
areas of a machine learning pipeline, from feature engineering that allows the training

2

of better models to the final inference stage of image classification using deep convo-
lutional neural networks. We also show that recent machine learning innovations can
improve data management tasks, with a particular focus on data integration. Our work
covers the three following approaches that highlight the relationship between machine
learning and data management.

Indexing — In a traditional database system, indexes are used to avoid processing ir-
relevant data. To do the same for a machine learning system, indexes must be created
on the raw input data, while the query is run on the machine learning system’s output
data. For all but the very simplest linear models, it is very difficult, if not impossible,
to determine which raw inputs are relevant to a query over the outputs without running
the actual model on all of the data, making a standard database-style index impossible to
create. As introduced in Section 1.2.1, we show with our Zombie project that effective,
general-purpose indexes over the raw data can be created, however, by clustering the
raw data using an online learning method at query time to discover which clusters are
relevant to a given query.

Alternate data representations — By taking the physical storage responsibilities away
from the user, a traditional database system can represent data in ways that directly
benefit the execution of queries. Various compression techniques are used, for example,
in column-store databases to very effectively reduce the amount of data (and therefore
time) needed to load and inspect database table columns [140]. These techniques work
because the compression methods—storing counts of identical values, rather than each
value individually—work directly on the data being queried. For a machine learning
system, we again run into the problem where optimization must be done on the raw
data, and it is not clear a priori what the correct representation of the input data should
be to generate a suitable model. For example, a deep convolutional neural network for
image classification will run faster with smaller input images, since there will be fewer
connections between the input layer and subsequent layer. But, will the smaller inputs
carry enough information to build an effective predictive model?

With our Tahoma project, we demonstrate that using alternate representations of
raw input data can lead to significant speedups when building image classifiers by
generating a large number of classifiers with variations in architecture and input rep-
resentations. We show that these classifiers can be used in a huge number of cascades,
from which a small set of Pareto optimal cascades can be discovered that allow for huge
throughput gains. Further, and perhaps more importantly, we show that the costs of
constructing and loading the inputs to the classifiers must be considered when deter-

3

mining the optimal architectural configurations of classifier cascades for different de-
ployment scenarios. Our methods, introduced in more detail in Section 1.2.2, allow the
construction of the alternate representations and particular cascade configurations to be
constructed independently from a user’s query over the output of the classifiers.

Embeddings for relational data — While our first two projects demonstrate how tech-
niques inspired by databases can improve machine learning workflows, this final project
demonstrates that recent machine learning advances can likewise improve performance
on data management tasks. To successfully use a deep learning model, sparse input
vectors, like those representing words in a large vocabulary, should be embedded in a
dense vector space. In natural language processing (NLP) applications, this is often done
using word embedding models like word2vec [104, 105]. These models essentially emit
a dense vector in an embedding space that encodes some semblance of semantics for a
given word, based on that word’s context as used in a large training corpus. These em-
bedding vectors have been shown to greatly improve the performance of many different
NLP applications.

In our Grover project, we show how embeddings like these might be constructed
for relational data: we create both column embeddings and table embeddings and show
how each can be used in several classic data integration tasks.

1.1 Problem Setting

The data managment techniques described in this dissertation are applicable to a range
of supervised machine learning systems, including those that perform classification, ob-
ject detection, and regression. Our methods are not directly applicable for unsupervised
machine learning tasks, such as clustering, or for generative systems like generative ad-
versarial networks (GANs) [52]. More specifically, our work targets problems where the
task can be formulated as a machine learning query.

1.1.1 Machine Learning Queries

A machine learning query is a task in which a trained supervised machine learning
model is used to extract inferred content from a corpus of raw data such that a user can
run a database-style query over that extracted data. For example, given a large corpus
of video frames collected from a car’s dashboard camera (dashcam), a user may query:

4

"Find 100 examples of images with stop signs."1 In this case, the dashcam images would
be processed by a trained image classifier to produce a tuple for each image containing
a single Boolean value (or possibly a probabilistic value in the range [0, 1]) indicating
whether a given input contains a stop sign.

More generally, a machine learning query can be run over data produced by a trained
supervised machine learning model that outputs data in a relational format, with a single
tuple produced for a single raw data input that will allow a query with binary predicates
to be answered. In cases where the tuple attributes themselves are not binary, the query
predicates can be: “Find images where stopSignProbability > 0.8”. This class of machine
learning task includes several important workloads:

Text classification — Given a large corpus of documents, the task is to classify them
into categories. These categories could be, for example, for document organization (e.g.,
‘sports’, ‘news’, ‘comedy’, etc.), language identification (e.g., English, French, German,
etc.), or sentiment analysis (e.g., ‘positive’, ‘negative’ or ‘happy’, ‘sad’, etc.) Each of
the categories in the output would be a single attribute in the machine learning output
tuple. Where our work is less applicable in the text domain is for tasks like machine
translation, where there is not a defined tuple beyond a single attribute for the translated
text. However, if a binary predicate could be written for the output text, our indexing
methods would work. For example, a query like “Does the translated text contain ‘Eiffel
Tower’?” would benefit from our methods.

Image classification — Much recent work has been done in the computer vision category
using deep learning to classify images. With the ImageNet benchmark [127], a host
of highly successful deep networks like AlexNet [83], VGGNet [136], and ResNet [56]
have been created that can classify images with very high accuracy. In the ImageNet
context, these networks take as input a certain sized image and output a tuple with 1,000
attributes, one for each category in the ImageNet dataset, each describing the likelihood
of the input image belonging to that particular category. These types of classifiers can
clearly benefit from our work, as can other classifiers derived from their architectures.

Object detection — A related area of work is object detection, which aims to find par-
ticular class of objects in an image and return their location, perhaps as the coordinates
of a bounding box, as the YOLO9000 system does [124]. The output for these sys-
tems are typically a set of tuples per image, one for each object detected describing its
bounding box. This output could be transformed into a single relational tuple, such as:

1For clarity, we will often specify user queries in natural language, though in practice such queries may
be written in a language like SQL. Query parsing is orthogonal to the work presented in this dissertation.

5

< ObjectA1 bbox, . . . , ObjectAn bbox, ObjectB1 bbox, . . . , ObjectBn bbox, . . . >. While not as
straightforward as typical image classification, this extra transformation step would al-
low for suitable binary predicates to be written for machine learning queries over object
detection systems such that our work would be applicable.

In the most naïve of implementations, these output tuples for any of these tasks
could be materialized over the entire corpus of raw data and loaded into an RDBMS,
which could then efficiently handle the subsequent query processing. Unfortunately,
extracting these tuples is very computationally expensive (perhaps 10ms per input when
performing state-of-the-art object detection in images, for example [124]). Processing
an entire corpus can quickly become infeasible as the number of inputs or number of
individual classifiers or content extractors acting on each data instance grow.

Our main goal, then, is to accelerate the processing of a machine learning query: we
want a user to find their answer in seconds instead of hours, or in hours instead of days.

1.1.2 Measures of Machine Learning Success

Machine learning researchers have traditionally concentrated more on improving accu-
racy of their techniques rather than improving the speed of machine learning appli-
cations. (Indeed, “performance” in machine learning papers almost always refers to
some measure of accuracy, rather than system speed or throughput, as is usually does in
database and systems research.) When speed in considered, the concern is typically with
the time required to train a system, not the time needed to run a trained model—the in-
ference time—on new inputs to the system. And of far less concern is the time needed
to prepare raw data for input into the machine learning system, which may include im-
age resizing or, for text, steps like stop-word removal and stemming. We reviewed 71
papers presented at the 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR 2017) for their mention of any aspects of speed or throughput of their
systems. While a majority of them reported training time, only 31% of the papers had
any mention of the time required for inference. Fewer than 3% had any mention of
data preparation time. (For better or worse, many of these papers highlight accuracy
results over pre-prepared benchmark datasets, so real-world data preparation concerns
are orthogonal to their goals of algorithmic improvements.)

The research presented in this dissertation, however, primarily focuses on improving
the speed of answering machine learning queries. That is, we to machine learning in-
ference faster, either for individual inputs or over the whole set of inputs processed to
answer a particular query. The cost of training machine learning models is important,

6

but it often can be considered a one-off, offline cost, similar to those incurred when ini-
tially setting up and configuring a typical RDBMS. We also consider the costs of handling
the raw data: things like loading and transforming the data into suitable formats incur
significant costs that limit overall system throughput when answering machine learning
queries.

Our research on applying data management techniques to machine learning systems
does not focus on improving the accuracy of machine learning models, however. Our
optimizations and other techniques are designed to be algorithmically agnostic when it
comes to machine learning models, such that improvements in machine learning algo-
rithms can be incorporated into systems implementing our methods.

Likewise, our research on applying machine learning methods to data management
tasks—data integration and data quality improvement, particularly—does not aim to
directly develop novel algorithms for these tasks. We aim to show that by introducing
ideas from the machine learning community—embedding data in a dense, contextual
vector space—these data management tasks can be more effective.

1.2 Overview and Contributions

In this section, we will introduce the three different research systems that make up
the body of work of this dissertation, as well as briefly discuss other project we have
participated in that are tangential to our core work.

1.2.1 Zombie: Indexing Raw Data

Turning raw data into queryable tuples via machine learning has many slow steps: data
transformation (or feature extraction), model training, and inference. Speeding up any
of those steps can increase the throughput of a system, and each area are important
areas of current research. Another way to improve system throughput, however, is to
reduce the number of times each of those steps needs to be performed to answer a
particular machine learning query. In Chapter 3, we show that because a large corpus
of raw data is likely to contain a large number of items that are irrelevant to a particular
query, performing intelligent input selection can drastically reduce the amount of data
that actually needs to be processed to answer a query. Input selection is an online
method that determines the utility of potential inputs as the query (and raw data) is
processed.

7

dc2 dc2-ner dc6 dc6-ner Regress

0
300
600
900

1200
1500
1800

Ti
m

e
to

pl
at

ea
u

(s
)

Early Zombie

Figure 1.1: Time to answer a feature engineering query for Zombie, compared to a
baseline which processes the raw data corpus sequentially and stops early when the
query is answered. Each set of bars represents a different feature engineering task. See
Chapter 3 for full details on these experiments.

Our system Zombie was designed to support the process of feature engineering, and
our work presented in Chapter 3 shows how feature engineering and the evaluation of
feature sets can be formulated as a query over a corpus of raw data. We build indexes
over that data by clustering it on general features and use a multi-armed bandit tech-
nique to discover which clusters (called index groups in the Zombie system) are most
likely to contain raw data inputs that will be useful to answering the feature evaluation
query. We show that Zombie can answer these queries up to 8X faster than baseline tech-
niques, as shown in Figure 1.1. While these results are specific to the feature engineering
domain, we will show in with our Proposal project that Zombie-style index groups are
useful for speeding up the answering of other types of machine learning queries.

1.2.2 Tahoma: Alternative Input Representations

With the proliferation of video capturing devices, from home security cameras to dash-
cams, being able to query large amounts of collected image data quickly has become
increasingly important. Because data is collected quickly and constantly and user may
repeatedly ask novel queries—a self-driving car research may wish to find historical ex-
amples of newly discovered failure modes, for example—queries must run quickly over
raw data for which the desired content has yet to be extracted.

With our Tahoma system, we set out to directly speed up the content extraction—the
inference step of the machine learning query processing. Using classifier cascades [25,72,
142, 147], Tahoma replaces expensive state-of-the-art deep learning networks with com-
binations of very small binary classifiers to achieve nearly the same level of accuracy 98
times faster than a fine-tuned ResNet50 classifier [56]. When creating these cascades of

8

Figure 1.2: Examples of the variations in input representations created to increase the
design space of Tahoma’s cascades. Tiny images with a single color channel lead to
much faster classifiers, due to a much small number of input parameters. These tiny
inputs may carry sufficient information to successfully answer some queries.

small classifiers, Tahoma instantiates several hundred small convolutional neural net-
work (CNN) classifiers, varying a number of architectural hyperparameters, such as
number of layers and number of nodes per layer. Further, the format of the inputs to
these networks is varied by changing image size and varying the color depth of the in-
puts, as shown in Figure 1.2. Adding these varied input representations dramatically
increases the design space of possible cascades.

Creating cascades with up to three levels of these small classifiers results in over one
million possible cascades. Tahoma can quickly evaluate the accuracy and throughput
of this large set of cascades, providing the user with a small set of Pareto optimal cas-
cades. The user can decide which cascade matches the execution requirements (e.g.,
high throughput and low accuracy or low throughput and high accuracy) for a particu-
lar query. We also show that it is vitally important to include the costs of data handling
in a particular system’s deployment scenario, such as those for transformation and load-
ing, when evaluating the relative throughput measurements of a set of classifiers. Basing
throughput evaluation solely on inference costs (as is typically done) often results pre-
senting the user with a set of “optimal” cascades that are not truly optimal in practice.

1.2.3 Grover: Embeddings for Relational Data

The use of deep learning and other machine learning methods in the data management
world has been quickly increasing in recent years. Index construction [78], query opti-

9

mization [74,100], and data integration [38] are just some of the areas that have seen the
introduction of these methods. One ancillary area that has not seen much focus is that of
creating suitable representations of relational data such that it can be input into machine
learning models while retaining much of it semantic and contextual information. NLP
and computer vision systems often use embeddings, where a data instance is embedded
into a dense vector space by a model that has been pre-trained on a large corpus of
general data relevant to the machine learning task.

For example, many NLP tasks, like sentiment analysis or machine translation have
used word embeddings like word2vec [104, 105], GloVe [115], or fastText [20] to embed
words into a vector space created by models trained on large text corpora. These models
tend to preserve some sense of semantics by measuring how often words appear in con-
text with other words. Using embeddings like these give can act as a head start when
training a model, and can be considered a form a transfer learning, where information
from the trained embedding model is transferred to the machine learning model being
developed. Similarly, in computer vision, deep networks that have been pre-trained on
large image classification tasks, like ImageNet [128], are used to embed a new task’s im-
ages into the vector space learned by the pre-trained network. The pre-trained network
has already learned how to extract many salient features from the images, and using
these features in a new task leads to more successful models [83].

We take this idea and put it to use in our Grover system. Starting with fastText
embeddings trained on a huge corpus of web tables, we can create embeddings for the
contents of each cell in a table, and then aggregate those embeddings into column and
table embeddings. We show that the column and table embeddings can then be used in
a data integration tasks to improve the quality of data found in web tables.

10

Chapter 2

Background and Related Work

In this chapter, we briefly review work that demonstrates the relationship between ma-
chine learning and data management. Each subsequent chapter in this thesis includes a
dedicated and detailed project-specific related work section. Here, though, we will first
discuss databases and software systems designed with a machine learning focus. Fol-
lowing that, we will discuss how machine learning has been used in data management
tasks.

2.1 Databases and Systems for Machine Learning

There has been a number of projects in recent years that integrate database and systems
methods into building machine learning models. In this section, we will discuss three
major areas where the database and systems communities have made major contribu-
tions to machine learning-related work.

2.1.1 Machine Learning Pipelines

MapReduce [34] was an early distributed processing system that became widely used as
part of Apache Hadoop [1]. Though not a machine learning-centric system, MapReduce
was used as a platform for systems like SystemML [49], which leveraged MapReduce’s
parallelism to accelerate machine learning tasks.

Apache Spark [3,154], while also not purposely developed to support machine learn-
ing, became an important part in many machine learning systems, especially for the
distributed preprocessing of large amounts of data as might me found in an organiza-
tion’s data lake. SystemML has been updated to run on Spark [19], taking advantage
of Spark’s graph-based execution plans, lazy evaluation, and distributed in-memory
caching to improve upon its previous MapReduce-based version. (SystemML has also

11

become part of the Apache ecosystem [4].) MLBase [79] was developed as a system
on top of Spark to train machine learning models at scale in a distributed fashion. Its
MLlib [103] has become Apache Spark’s distributed machine learning library.

KeystoneML [139] is a system for optimizing pipelines for data analytics. It provides
a suite of data processing tools for text and images, as well as a library of statistical anal-
ysis tools, which are used to build pipelines for analytics tasks. Apache MADLib [2, 58]
was developed to provide in-database access to machine learning and statistical analytics
tools, allowing machine learning operations to be run locally on data with an SQL-based
language, without the need for external frameworks.

2.1.2 Feature Engineering and Machine Learning Development

While the previous section detailed some of the many general systems that have been
developed to support machine learning tasks, there has also be much interest in im-
proving specific parts of a machine learning workflow. For example, in this thesis, we
present Zombie [10], a system designed to accelerate the iterative process of feature
engineering [9]. Feature engineering is just a part of the overall workflow of creating
successful machine learning models: other portions include data cleaning and prepro-
cessing [35, 81, 134, 156], data loading [135], training set creation [121], hyperparameter
tuning [95], and model inference and evaluation [12, 71, 72].

Because it is difficult to predict the efficacy of each step of this machine learning de-
velopment workflow without actually performing each (often expensive) step, a machine
learning engineer must often perform many iterations over this workflow to determine
suitable settings for each step. Ideally, this entire workflow would be optimized holisti-
cally, and recent work has been made in this direction. Helix [152] is one such system
designed to optimize this entire workflow, using database-style techniques like materi-
alization of intermediate steps that do not change between development iterations and
treating this workflow as an optimizable directed acyclic graph.

2.1.3 Machine Learning in Production Environments

Beyond machine learning pipelines, the database community has worked on several
projects related to model selection and managing machine learning models for use in
production environments [84]. Velox [31], for example, is a system for serving and man-
aging machine learning models, as well as dynamically updating weights and tuning
parameters as new data arrives. Clipper [32] is a more recent model serving system

12

that decouples the machine learning models from downstream applications to provide
features such as caching, batching, and adaptive model selection.

Our work with the Tahoma system [12], described in Chapter 4, is designed to speed
up what is perhaps the core aspect of production machine learning systems: making
classification inferences for novel data. Other systems have also recently taken different
approaches to this problem: NoScope [72], for example, uses a classifier cascade ap-
proach to speed up image classification in the same vein as Tahoma, while Willump [76]
uses feature selection-based cascades and statistical approximation to speed up top-K
queries over classification results.

Another important facet of real-world model use is being able to explain a trained
model’s inferences, which can be difficult when using deep learning methods, such as
convolutional neural networks (CNNs). Krypton [107] frames this challenge in terms
of a traditional database-style view maintenance problem to significantly speed up ex-
plainable CNN inference.

2.2 Machine Learning for Data Management Tasks

With the widespread popularity of deep learning research, its methods have become
increasingly used in database and data management tasks. In this section we will discuss
several key areas that have recently benefited from the introduction of these techniques.
Our work with the Grover system detailed in Chapter 5 employs embeddings and deep
learning to data integration tasks.

2.2.1 Indexing

For example, learned indexes [78] have recently been demonstrated that use deep learn-
ing methods to develop index structures for databases that are more effective than tradi-
tional b-tree or hash index structures in many circumstances. These techniques are part
of the indexing methods of SageDB [77], a database system that demonstrates that many
core components of a traditional database can be replaced by “learned components” that
are automatically configured via machine learning.

2.2.2 Query Optimization

Query optimization, too, has seen the introduction of deep learning methods [74, 109],
where key parameters in query optimization algorithms, such a table cardinalities for
joins have been estimated with higher accuracy than with traditional methods. SageDB [77],

13

mentioned previously, also estimates cardinalities using trained models, improving join
optimization.

Deep reinforcement learning methods have also been applied to optimizing join
queries; the DQ optimizer [82] examines the plans of previous queries to learn heuristics
that improve future searches through the space of possible join plans. ReJOIN [100] uses
deep reinforcement learning to enumerate join orderings, as does the system designed
by Ortiz et al. [109]

2.2.3 Data Integration

Data integration [38, 73] is perhaps a natural fit to deep learning methods, given text
processing similarities it shares with some NLP tasks. Our Grover system uses deep
learning models and embeddings to approach several data integration tasks. Grover is
described in Chapter 5, along with detailed background information and related work
on relevant data integration tasks.

2.2.4 Database Management

Recent work applying machine learning techniques to the management of database sys-
tems, with an ultimate goal of developing “self-driving” database systems []. Otter-
Tune [145] uses machine learning models to tune the performance of database systems,
using observed historical workloads to automatically configure key system settings, ri-
valing the performance of expensive human experts. QueryBot 5000 [98] is a framework
that learns models to predict future query workloads. Query2Vec [67] uses learned vec-
tor representations of SQL queries to perform analytics over database workloads, to aid
in tasks like index selection and prediction of query-related memory errors.

These systems and techniques are just a sample of the many methods being currently
being researched. Machine learning clearly is a powerful tool that can and should be
applied to wide and varied world of data management, and as the projects described
above demonstrate, the potential impact on data management is likely to be huge.

14

Chapter 3

Input Selection for Fast Feature Engineering

3.1 Introduction

Many of today’s most compelling software systems, such as Google’s core search en-
gine, Netflix’s recommendation system, and IBM’s Watson question answering system,
are trained systems that employ machine learning techniques over very large datasets.
The financial value of these systems far outstrips the traditional database software mar-
ket, and though the social value is hard to quantify, it is undeniably high. Unfortunately,
constructing trained systems is often a difficult endeavor, requiring many years of work
even for the most sophisticated technical organizations. One reason for this is the diffi-
culty of feature engineering.

A feature engineer writes code to extract representative features from raw data ob-
jects; the features are the input to a machine learning system. For example, consider
a Web search engine that uses a trained regressor to estimate a Web page’s relevance
to a user’s query; a feature engineer might write functions to determine if the query
appears in italics in the document, if the query is in the document’s title, and so on. The
challenge of feature engineering is that good feature code must not only be programmat-
ically correct; it must also produce features that successfully train the machine learning
system.

Unfortunately, good features are difficult to devise [8,37] and are a crucial bottleneck
for many trained systems [22,44,92]. First, using a large set of diverse inputs (say, a set of
crawled Web pages) means the engineer never quite knows the “input specification” and
must resort to trial-and-error bug fixing as unexpected inputs are discovered. Second,
predicting whether a proposed feature will in fact be useful to the machine learning
algorithm is difficult; the programmer may implement a feature only to throw it away
after it is found to be ineffective. As a result, feature engineers make many small iterated
changes to their code and need to evaluate candidate features many, many times before

15

f0 f1
t0 f00 f01
t1 f10 f11

f2
f02
f12

Label
+
-

Labeled Training Set}
Machine Learning

(Step 2)
Bulk Data Processing

(Step 1)

Quality
Function

Feature &
Label Functions

Learning
Procedure

Repeat until quality
is "good enough"

Raw
Dataset

Input
0

...
Input

1

Input
N

Figure 3.1: In the feature engineering evaluation loop, bulk data processing and machine
learning steps are interdependent but to date have been commonly implemented as
separate systems.

achieving a well-trained machine learning model. But evaluating each change to the
feature code can take hours, as it entails applying user-defined functions to a huge
number of inputs and retraining a machine learning model. In this paper, we address
the sheer amount of time required to perform this feature code evaluation loop.

System Goal — Figure 3.1 shows the feature evaluation loop as conventionally imple-
mented. Having written new feature code, the engineer applies it to a large raw dataset
(Step 1) using a bulk data processor, like MapReduce [34], Spark [154], or Condor [143].
This time-consuming step executes the feature code during a scan of the data, produc-
ing a training set sent to a machine learning system (Step 2). The engineer evaluates
the resulting trained model’s accuracy (probably using a holdout set of human-labeled
examples). If the model is satisfactory, the engineer is done; otherwise, she modifies the
feature code and returns to Step 1.

Feature engineering and feature selection are topics of growing importance in the
database field because of their inherent data management challenges [8,11,13,80,85,122,
155]. Here, we model feature evaluation as a specific SQL query over a relation of raw
data items. The query implements the feature code as a user-defined function (UDF) and
computes a machine learning quality metric with a custom aggregation function. Feature
engineering amounts to repeatedly running this query with small changes to the feature
UDF. The query is run over large data volumes, so the engineer spends a huge portion
of the evaluation loop waiting for the query result. Thus, a feature engineer’s productivity
is bound by the feature evaluation query’s runtime. We treat accelerating feature evaluation
as a query optimization problem; our metric of success is the reduction in the time needed
to evaluate feature code.

16

Technical Challenge — To date, the bulk data processing and machine learning stages
have typically been separate systems, with neither module aware of the larger feature
evaluation loop. Since the actual bulk data processing system’s output only matters
insofar as it eventually produces a high-quality trained system, we can use feedback from
the machine learning system to perform input selection optimization. Rather than scanning
over the entire set of raw data—as is standard today—we can perform a variation of active
learning: choose to process raw inputs that maximize the quality of the trained model,
while minimizing runtime by not processing inputs that have little effect on the model’s
quality. Thus, our technical challenge is to build an effective training set while running
the user’s feature code as little as possible. The system’s success can be measured by
its speedup over traditional methods when producing the training set for a model of
comparable quality.

Our Approach — We propose a version of the bulk data processing system (from Fig-
ure 3.1) that optimizes the feature extraction time through effective rule-based input
selection. Our system replaces systems like MapReduce, Spark, and Condor, but our
core techniques are orthogonal to their distributed processing methods; in the future,
our approach could be combined with those systems. Our system has two stages: (1)
offline indexing, where the system organizes the raw dataset into many index groups of
similar elements before it is used and (2) online querying, where the system dynami-
cally builds a high-quality subset of the data using index groups determined likely to
yield useful feature vectors. This subset is used to train the machine learning system for
feature code evaluation.

Traditional active learning techniques require computing the features for the entire
raw dataset, and thus are much too expensive. Instead, we want to use an online method
to quickly discover high-impact raw inputs. Our index groups allow us to use a multi-
armed bandit algorithm: runtime identification of high-yield index groups is a good fit
for a bandit problem’s classic tradeoff of exploration vs. exploitation. By using carefully
designed rewards for our bandit, our system quickly identifies relevant index groups
for processing, while avoiding irrelevant ones. Our group-and-explore approach yields
a substantial speedup over both conventional practice and a previous state-of-the-art
method that builds a supervised classifier to choose inputs [66]. We have implemented
this method in a prototype data processing system called Zombie.1

Contributions and Outline — Our central contributions are:
1Like the undead, Zombie goes straight for the “brains” of the input data.

17

• A proposed query model of the feature engineering workflow that captures current
practices (Section 3.2).

• A system design and algorithms for optimizing input selection (Sections 3.3–3.4).

• An implemented feature engineering evaluation system that can speed up the fea-
ture evaluation loop by up to 8x in some settings and has reduced engineer wait
times from 8 to 5 hours in others, compared to conventional methods (Section 5.5).

We cover related work in Section 5.5.6. Finally, we conclude with a discussion of future
work in Section 3.7.

3.2 The Feature Evaluation Query

Feature engineering is a task parameterized with a 6-tuple of inputs (R,F , L, T, Q, G).
The raw dataset R is a large corpus, such as a Web crawl. The feature engineer writes a
set of feature functions F that extract features from a raw data item r ∈ R. Each function
f ∈ F accepts an item r as input and emits a single value. Taken together, F (r) yields
an unlabeled feature vector. A label function L provides a supervised label for a raw
data item.2 A machine learning training procedure T accepts the training set of labeled
feature vectors and produces a trained model T(F (R), L(R)). A quality function Q
determines the quality of the trained model Q(T(F (R), L(R))). Finally, G is the quality
goal: the ultimate quality level desired for the trained model.3 Feature engineering, then,
is task of writing and evaluating the feature code F such that Q(T(F (R), L(R))) ≥ G.

Table 3.1 summarizes these elements and shows examples from a document classifi-
cation task. Five of the elements—R, L, T, Q, and G—are pre-determined and remain
static for the duration of the task (or even across many tasks). A feature engineer adds
to or modifies the functions F to maximize the value of Q. To do this, she writes and
evaluates feature code in the feature evaluation loop (Figure 3.1), defined as follows:

Definition 1 (Feature Evaluation Loop). Starting with R, L, T, Q and G, the feature engineer
writes a set of feature functions F , and then applies F and L to R to create a trained model
M = T(F (R), L(R)). The engineer evaluates the features in F by comparing the quality Q(M)

with goal G. If Q(M) is less than G, the feature engineer modifies or adds to F and repeats the
process until Q(M) ≥ G.

2We assume labeling is relatively inexpensive; e.g., labels may be drawn from an existing database or
provided by distant supervision techniques [106].

3G might also be defined in terms of time: a feature engineer may have, say, 8 hours to produce the
highest quality model possible.

18

Parameter Description Example

R Raw dataset Crawl of news sites with several million pages
F Feature functions Boolean indicators of keywords and named

entities
L Label function Label extractor from in-page tags
T Training procedure Multi-class Naïve bayes
Q Quality function Accuracy over holdout set
G Quality goal 90% accuracy

Table 3.1: Feature engineering inputs, given by (R,F , L, T, Q, G), with examples from
a classification task: a classifier is trained with crawled news pages to automatically
categorize future pages.

Algorithm 1 Feature Evaluation Loop
Input: Task (R, L, T, Q, G)

1: repeat
2: User writes or modifies feature code F
3: query
4: SELECT Q(T(F (R.data), L.label) AS quality
5: FROM rawDataSet R, labels L
6: WHERE R.id = L.id
7: done
8: until quality ≥ G
9: return F

3.2.1 Feature Evaluation Loop as a Query

We can model the inner loop of this workflow as a database-style query, shown in Algo-
rithm 1. Lines 4 to 6 show the query as a hypothetical SQL statement. We consider the
raw data R and the labels L to be relations. The feature code F is a UDF that produces
the input for an aggregation function T that trains the learning system. Q is a UDF that
accepts the trained model and emits a quality metric. The Naïve execution plan for this
query is shown in Figure 3.2a. Because F (R) is computed by applying an expensive
UDF with a full scan over a large dataset, it is slow; our goal is speed it up.

3.2.2 Common Practice: Subset

One popular method for speeding up the feature evaluation loop is an informal method
we call Subset. The feature engineer creates a task-specific program S that consumes
the entire raw input R and generates a smaller dataset R′ ⊆ R. She then enters the
evaluation loop, running the SQL query with R′ instead of R. Because R′ is small, the

19

 ⨝id

∏quality

UDF Q

full
scanR

UDF F L

aggregate T

(a) Naïve plan

monitored for
early stopping

 ⨝id

∏quality

UDF Q

streaming
scanR

UDF F L

aggregate Tincremental

(b) Early plan

monitored for
early stopping (quality) &

index group selection (utility)

 ⨝id

∏quality, utility

UDF Qoptimize

stream from
best index groupR

UDF F L

aggregate Tincremental

choose
index group

(c) Zombie plan

Figure 3.2: Query execution plans. In (a), the UDF is applied to the entire dataset before
T is invoked. In (b), the raw data items are pipelined to Tincremental and Q. The output
quality is continuously monitored to detect the early stopping point. In (c), data are
pipelined to Tincremental and Qoptimize. The output quality is monitored for early stopping,
and utility informs the index group selection.

evaluation is fast. After exiting the loop, the engineer may perform an additional run
with the full R to produce the final trained model.

In a series of conversations with feature engineers, we have found that Subset is
popular, though it does not appear to be a topic of academic investigation.4 The im-
plicit assumption behind Subset is that Q(T(F (R′), L(R′))) accurately approximates
Q(T(F (R), L(R))). While Subset’s popularity suggests it provides some benefits, its
drawbacks are clear:

1. The program S takes extra effort to develop.

2. Applying S means scanning R at least once.

3. If R is large and diverse, it may be difficult to write a filter program S that identifies
a high-quality subset.

4. When the engineer changes F , the set of useful inputs may change. She may need
to rewrite and rerun S.

5. Even if S produces a relevant subset, it may still contain unproductive “redundant”
inputs and be unnecessarily large. If, for example, the engineer identifies useful
Web domains, only a few examples from each domain may actually be useful.

4The textbook Data Mining does, however, describe an interactive procedure for feature selection that
is roughly akin to Subset [151].

20

Subset has overhead costs associated with writing and running S. Thus, we believe it
is likely only useful when the costs can be amortized over many runs of the same feature
code, probably when debugging the code itself is the goal. Further, choosing the right
size for R′ is difficult: too few inputs lead to an inaccurate estimate of the Q value, while
too many quickly reduce the time advantage of using S. Moreover, the optimal size for
R′ will change per task.

The method we propose in this paper can be seen as an attempt to remove the weak-
nesses of Subset. An ideal input selection method would reduce development time and
runtime overhead (weaknesses 1 and 2), choose good subsets automatically (weakness
3), and respond quickly to feature code changes (weakness 4). Finally, it would respond
to the learner’s changing requirements (weakness 5).

3.2.3 Approximation by Early Stopping

To address weaknesses 1–4 of the Subset method, we can use a method similar in spirit to
the approximation and early stopping of online aggregation [57]. We can build the subset
by adding one item at a time, retraining and re-evaluating the model after each addition.
Once the model reaches a desired state, we can stop early and have an appropriately sized
subset that contains enough useful inputs for the learning task.5

Figure 3.2b illustrates this Early execution plan. The raw data items, stored in ran-
dom order on disk and accessed sequentially, are pipelined to F , to Tincremental, which is
retrained as new items arrive, and then to Q, whose output is monitored by a process
that stops the query when a stopping criterion is met. In this paper, we stop the query
when the learning curve (e.g., Figure 3.3) begins to plateau, though there are a number
of valid stopping criteria, including reaching a certain accuracy level or after a specific
amount of runtime. Researchers have also investigated algorithmic stopping criteria,
though these are tailored to specific learning tasks [148, 160].

Figure 3.3 shows the effects of early stopping on a single iteration of the feature
evaluation loop. The gray line is a learning curve taken from our experiments. The
x-axis shows the runtime, which increases as more raw items from R are added to R′

and processed by the UDF; the y-axis shows the classifier’s accuracy after each item is
added to R′. As R′ grows, the accuracy curve flattens out as the marginal return for
each new item in the training set decreases. Using all items in R, the classifier—with this
particular feature set—achieves an accuracy of 56%. The dotted line shows 98% of the

5Training overhead is a concern, but many learning algorithms can be trained incrementally. We discuss
this further in Section 3.3.2.

21

0 50 100 150 200 250 300
20

30

40

50

60

Early

Zombie
Naïve

User time saved

Runtime (s)

%
co

rr
ec

t

Naïve scan
Zombie scan

Figure 3.3: Learning curves for our execution plans. The Naïve plan performs a bulk
scan over R, while Early stops the bulk scan early to use a subset R′. Zombie scans the
data from index groups and stops early much sooner, translating to a time savings for
the user.

full accuracy; with early stopping, the trained model achieves nearly the full accuracy
when R′ is only half the size of the full R.

3.2.4 Optimizing the Approximate Query

With Zombie, we also address Subset’s weakness 5. We construct R′ using only a mini-
mal number of corpus’s low-utility items (i.e., items that are redundant or irrelevant to
the task), so R′ consists mainly of high-utility items, and thus a high-quality model can
be trained with a relatively small amount of data. This is similar to traditional active
learning, described by Algorithm 2 [133]. The crucial difference is that for active learn-
ing, F (R) is already computed (on line 2) for all potential training examples—exactly
what we wish to avoid. An active learning-based feature evaluation method would re-
quire the full scan of the Naïve plan plus significant overhead from using an active
learning method to build a subset R′.

Algorithm 2 Active Learning-based Feature Evaluation
Input: Task (R,F , L, T, Q, B)

1: trainingSet = [], M = ∅
2: examples = F (R)
3: repeat
4: best = chooseBestExample(M, examples)
5: trainingSet.append([best, L(best)])
6: M = T(trainingSet)
7: until |trainingSet| == B
8: return Q(M)

22

NAÏVE

EARLY

ZOMBIE

Index Groups
…

Figure 3.4: Illustration of the subset R′ created by each execution plan. Colored rectan-
gles represent raw data items. High-utility items are white; low-utility ones are dark.
The Naïve plan processes R in its entirety. Early processes R′, chosen by streaming R
and stopping early. Zombie patches together R′ from index groups.

What Zombie does instead is estimate the average utility of groups of similar raw
data items in real time. Like the two-phase operation of many approximate query
databases [7, 16, 48], our system first creates many sub-samples of the data in an off-
line phase; the raw data in R is organized into many groups of similar items, called
index groups. Then, during the runtime query phase, the most relevant index groups are
used to answer the user’s query. Again, we cannot pre-compute the utility values; an
item’s usefulness directly depends on the features generated by F . Zombie learns the
index group utility values in real time with a multi-armed bandit algorithm. We describe
this algorithm in detail in Section 3.3.2.

Figure 3.2c shows the optimized query execution plan. Like the previous early stop-
ping method, the raw data is pipelined through Tincremental, which incrementally trains
the learning system, and Qoptimize, which, in addition to the quality value monitored for
early stopping, also produces a utility value that quantifies the usefulness of the item just
processed. The utility value is used by the “choose index group” operation to estimate
which index group has the highest average utility. This operation is key to our input
selection optimization method and is the focus of the remainder of this paper.

Figure 3.3 illustrates the benefit of using Zombie’s input selection method. The blue
line shows a full scan done with Zombie, with the dot showing the early stopping point.
With Zombie, the classifier can reach nearly its full potential in a much shorter runtime
than with Early and in just a small fraction of the time needed by Naïve. Figure 3.4
illustrates the difference in the subset R′ created by each method. Naïve processes all of
R, Early processes truncated version R, and Zombie patches together R′ from its index
groups, as it learns which will provide the highest-utility items.

23

3.2.5 Deployment and Limitations

There are settings in which Zombie may not be helpful. First, our user model itself may
not apply. In domains where it is difficult for humans to provide insight (e.g., signal
processing), a “generate-and-select” approach—a huge number of candidate features are
hypothesized and data-centric methods select the best ones—may be more useful than
the “engineer-and-test” approach described here. Even when it is possible to provide
domain insight, “generate-and-select” needs little human attention, and the resulting
features may be sufficient if the high accuracy enabled by domain knowledge is not
required.

Alternatively, deployment details may reduce the need for Zombie. Some machine
learning systems have huge training or evaluation costs; any reduction in feature ex-
traction time may be negligible compared to the learning system’s inherent costs. (We
examine this point experimentally in Section 3.5.5.) Finally, a few organizations may
have massive parallel infrastructures that make all but the most burdensome computa-
tions irrelevant.

Despite these limitations, Zombie directly targets a setting that we believe is ex-
tremely common (from both published engineering accounts and personal experience):
a feature engineer trying to improve a trained system’s accuracy by creating features
that embody domain expertise.

3.3 System Architecture

We can now describe our design for Zombie, depicted in Figure 3.5. First, we discuss
Zombie’s two-phase execution model. We then detail the system’s two major compo-
nents: the input selector and the physical indexes.

3.3.1 Execution Model

Zombie executes in two stages, similar to the indexing and query processing stages of
a relational database. In system initialization, the system is given dataset R but has no
access to any other part of the task description. System initialization is a one-time pre-
processing of R that builds a physical index I—a set of index groups that each contain
a set of similar raw inputs. System initialization may be costly, but its runtime can be
amortized over many rounds of code modification (and further, many distinct learning
tasks if they use the same input set R). In the feature evaluation query, the system is

24

} f0 f1
t0 f00 f01
t1 f10 f11

f2
f02
f12

Label
+
-

Labeled Training Set

Quality
Function

Feature &
Label Functions

Learning
Procedure

Ph
ys

ic
al

 In
de

x

In
pu

t S
el

ec
to

rInput
0

...
Input

1

Input
N

(a) (b)Raw
Dataset

Input
0

...
Input

1

Input
N

Figure 3.5: Zombie’s basic architecture. The novel components are (a) the Physical Index
and (b) the Input Selector.

given the feature engineering parameters (R,F , L, T, Q). The query is repeated with a
modified F until the quality goal G is achieved.

Our design is shown in Figure 3.5. It is driven by the basic framework from Figure 3.1
and the query model from Section 3.2 but includes two novel components. Zombie

completely takes over the role of the bulk data processing system from Figure 3.1, but
it invokes the machine learning system as an external library component. The raw data
items are organized into a physical index (a) consisting of a series of index groups built
during system initialization. Instead of simply scanning and fully processing R during
feature evaluation, Zombie uses an input selector module (b) that repeatedly chooses the
next raw data item to process from the index groups. The system stops when the trained
model meets the user’s stopping criterion.

3.3.2 Input Selector

Zombie’s input selector is the core of the system, repeatedly choosing the next raw data
input r ∈ R to process with the feature functions F . As items are processed, the input
selector learns which index groups are most likely to produce high-utility inputs and
uses those groups as the source of the next selected inputs. By prioritizing inputs that
are most likely to improve Q, our approach is roughly comparable to the active learning
strategy of expected error reduction [133].

Input Selection Algorithm — The selector’s basic execution loop is shown in Algo-
rithm 3. On line 4, it chooses an index group from which to select an input, using
current statistics and utility information. On lines 5 and 6, it fetches the item and ap-
plies F and L to create a labeled feature vector. On line 7, T trains a new model. On

25

Algorithm 3 Input Selection Algorithm
Input: Task (R,F , L, T, Q), index I

1: trainSet = {}; utilities = []
2: quality = 0; model = ∅;
3: repeat
4: bestIdx = chooseIndexGroup(utilities)
5: r = I(bestIdx).getNext()
6: trainSet = trainSet ∪ 〈F (r), L(r)〉
7: model = T(trainSet)
8: (quality, utility) = Q(model)
9: utilities[bestIdx].append(utility)

10: until |trainSet| == |R| or shouldStop(quality, model)
11: return model, quality

lines 8 and 9, it measures and records the model’s quality the chosen input’s utility with
Q. The loop ends on line 10 when R is exhausted or shouldStop() returns true (as
discussed in Section 3.2.3).

Zombie’s performance is linked to its ability to accurately predict the utility of apply-
ing F to an input from a given index group. We track the utility of a single raw input r
by observing changes in the model after adding 〈F (r), L(r)〉 to the training set (by using
T to train a new model and using Q to evaluate it). We track index group utility by ag-
gregating utility values of previously processed inputs from the group. We discuss this
important part of our algorithm—embedded in the chooseIndexGroup() function—in
Section 3.4.

Managing Overhead — Depending on how T and Q are implemented, running them
could be computationally expensive. Indeed, the expense might undermine any ad-
vantage gained by avoiding unproductive raw inputs. If T can incrementally retrain
the model with each input, doing so should yield large performance benefits. Zombie

does not strictly assume incremental retraining, but the lack of it may add substantial
overhead. However, incremental procedures exist for a range of popular machine learn-
ing methods, including neural networks [119], SVMs [88], and decision trees [144]. In
Section 5.5, we examine several tasks, including one without incremental retraining.

3.3.3 Index Groups

At system initialization, we group the raw inputs in R into a task-independent set of
index groups. We create an inverted index I that contains one entry for each index
group. The key is a unique identifier for the group, while the key’s indexed posting list
is an unordered set of raw inputs. An input can be present in multiple groups.

26

Choosing a good set of index groups for I is a core challenge for Zombie. Because
feature code in F changes quickly and often (and re-indexing for each change would be
too expensive), we assume I is built just once and serves a range of feature engineering
tasks. I must be broadly useful over many runs of the feature engineering loop. We
expect, though, a single task-independent I will serve many different versions of F . If
there are index groups within I with a concentration of useful inputs even slightly
higher than the corpus as a whole, Zombie can perform better than other methods.

This paper’s core contribution lies in how the system exploits the grouped data, not in partic-
ular grouping methods. Our work assumes that the qualities that make a raw input useful
for the learner will be reflected in a grouping of the input data. Our method relies on
correlation between I and the output of the F ; if there is no relationship between the
two, our method will be no better than random selection. Though this assumption might
seem unreasonably strong, we find off-the-shelf, general-purpose clustering effective, for
several reasons:

1. Experience has shown general-purpose clustering to be broadly useful across a
huge range of domains, including Web page clustering [141], cancer detection [33],
and network security [120].

2. The output of F and I can be correlated in unexpected ways that are useful for
input selection. E.g., a feature describing document length may seem unrelated to
a token-based I , but our method will work if some tokens exist primarily in long
documents.

3. As we show in Section 3.5.4, Zombie yields substantial speedups over traditional
input selection methods using even low-quality input groupings.

Index groups tailored to a particular run of Zombie would surely allow for success-
ful input selection, but the time advantage gained by selecting good raw inputs would
be lost while waiting for the data to be grouped. Thus, we depend on a general, task-
independent grouping done using standard clustering algorithms known to be success-
ful with a wide variety of data types, such as k-means. We examine grouping methods
in depth in Section 3.5.1. In certain cases, if the index groups and features are truly
uncorrelated (a situation we view as unlikely) it might make sense to re-group the data
using a different user-defined method, similar to reindexing a database.

27

3.3.4 Physical Access

Zombie is designed for processing large datasets, so the selector should be able to
handle raw input sets larger than available memory. Our physical indexes are essen-
tially inverted index posting lists and so are compatible with handling larger-than-RAM
datasets. However, even modest memory sizes are quite large; we assume each posting
list has a buffered in-memory portion continually replenished by a background process
scanning items from disk.

3.4 Predicting Input Utility

In this section, we cover how the input selector can effectively implement the chooseIn-

dexGroup() function from Algorithm 3. Our solution is to learn at runtime a notional
inverted mapping from user feature vectors output by F to the index groups in the index
I . The system creates this mapping by observing the utility of the feature vectors. The
chooseIndexGroup() function then uses the inverted mapping to find high-utility index
groups in I .

3.4.1 Design Discussion

By processing many raw inputs r ∈ R with F , and thereby generating many (r,F (r))
example pairs, we can likely build a high-quality mapping from the space of feature
vectors to that of index groups. Such a mapping would be useful in choosing raw
inputs, but building a high-quality mapping would require the costly processing of a
large amount of example data and would often be unnecessary. Instead, exploiting a
quickly built, medium-quality mapping may be better. In other words, we face the
classic tradeoff between exploration (processing novel items to improve the mapping)
and exploitation (using the current mapping to select the most useful data items).
Bandits — Researchers in fields ranging from online advertising to robotics have de-
veloped a number of solutions for such problems under the banner of reinforcement
learning. A standard problem formulation in this area is the multi-armed bandit [21].
Consider a gambler choosing to pull an arm from one of a number of slot machines with
different but unknown payout rates. Each pull yields a reward drawn from a distribution
of values tied to that arm. The gambler must balance explorative arm-pulling to gather
additional payout information against exploitative arm-pulling to maximize the reward
using current knowledge. Our system fits well with this model: the input selector (the

28

gambler) must choose which of the index groups (the arms) will supply the next raw
data item.
Strategies — Many arm-pulling strategies have been developed to minimize regret, the
difference between actual and optimal payouts. One popular strategy bases arm selec-
tion on comparing upper-confidence bounds (UCB) of estimated rewards rather than the
estimated rewards themselves. UCB-based strategies have been shown to have near op-
timal regret bounds [15]. We use a UCB strategy to choose arms to pull—that is, index
groups from which to fetch raw inputs—in our input selector. We now describe more
precisely how we model the task.

3.4.2 Our Bandit Model

The multi-armed bandit in our system determines which index groups from the task-
independent grouping I of the raw dataset R are most useful to the current task and
which can be safely ignored. We define our bandit problem as follows:

• A set of bandit arms. We create one bandit arm for each key k ∈ I . “Pulling arm
ak” means reading a random raw data item from I [k], processing it with F and L,
and adding the result to the training set.

• A reward function to compute a pulled arm’s payout. This is the utility value in
Algorithm 3.

For each index group (i.e., key in I), we must record the rewards received so far
(lines 8 and 9 of Algorithm 3). The rest of our chooseIndexGroup() procedure comes
from carefully defining the reward function.

3.4.3 Rewarding a Pull

The reward for an arm pull is how the bandit learns the pulled arm’s utility to the current
task. Careful design of the reward function lets us encourage the selector to prefer certain
index groups over others. Consider, for example, a classification task where examples of
one of the labeled classes are rare. Giving a high reward (i.e., utility value) to members
of the rare class and a low reward otherwise will lead to the selection of index groups
more likely to contain members of the rare class. For our experiments, we implemented
four reward functions based on active learning and other machine learning techniques:

ClassBalance is designed to produce a training set that is more balanced in terms
of relative class populations than is the raw data corpus. Real-world datasets are often

29

heavily imbalanced, and restoring a degree of balance is often a first step in building a
learning system [55]. The reward (or utility) ubalance(r) for a selected item r is based on
the ratio of that item’s class in the current training set:

ubalance(r) = 1−
nL(r) − nLmin

nLmax − nLmin
(3.1)

where nL(r), nLmin, and nLmax are the counts of the items in the training set belong to
r’s class, the least populated class, and the most populated class, respectively. The label
function L determines the item’s class.

Uncertainty is a reward based on the active learning technique of uncertainty sam-
pling, where the item selected is the one the classifier is most uncertain about when
predicting its class label [93]. Using a probabilistic classifier, a prediction’s uncertainty
is defined in terms of the probabilities of the two most likely class labels. That is, for
a raw data item r ∈ R with feature vector F (r), p(c1|r) is the probability of the most
likely label for r, p(c2|r) is the probability of the next most likely label, and the reward
uuncert(r) is given by the uncertainty:

uuncert(r) = 1− (p(c1|r)− p(c2|r)) (3.2)

ClassifyError gives a high reward to items for which the currently trained classifier
predicts the wrong class label. The reward uerror(r) is defined as:

uerror(r) =

1, if classifier error

0, otherwise
(3.3)

This method is somewhat related to boosting, where a series of weak classifiers are
trained on different subsets of training data and then combined. When a weak classifier’s
training set is constructed, previously misclassified examples are preferred, to emphasize
the “hardest” training examples [130].

InfoTrace is our reward for regression tasks, based on the idea of minimizing the
training set’s variance by maximizing the Fisher information, a technique from active
learning and optimal experiment design [133]. To encourage the selection inputs that
yield a large increase in the trace of the learner’s Fisher information matrix I, the reward
uinfo(r) is given by:

uinfo(r) = β (trace(Inew)− trace(Iold)) (3.4)

30

For linear regression with a constant variance σ2, I = 1
σ2 XTX, where X is the model’s

design matrix [126]. We chose β = 0.2 after testing a range of values (0 < β ≤ 1) in our
experiments.

3.4.4 Selecting an Arm

Arms are selected in our system using the UCB1 algorithm of Auer et al. [15]:

UCBa,t = µa + α

√
2 ln n

na
(3.5)

where µa is the average reward of arm a, na is the number of pulls of arm a, and n is
the overall number of pulls so far. The parameter α controls the size of the confidence
bound, which sets the balance between exploration and exploitation in the system. We
chose α = 2 after testing a range of values.

3.4.5 Putting It All Together

We can now summarize our overall bandit algorithm for choosing raw inputs. At each
invocation of chooseInputGroup(), we use the learner’s statistics about previous pulls
to estimate the reward and update the UCBa,t values (as in “Selecting an Arm” above)
for each ak in index I . We then return the key with maximal UCB. Depending on the
initial grouping method, a raw input can appear in more than one index group, so we
may encounter previously processed raw inputs. If so, we do not invoke F but instead
update the UCBa,t value for the pulled arm using that input’s previous reward, and then
again select the key with highest UCB.

3.5 Experiments

We ran four types of experiments to demonstrate Zombie performs effective input se-
lection under a range of tasks and system settings. First, we compared Zombie’s overall
speedup to several baselines on a family of learning tasks. Second, we compared Zom-
bie to a common input selection method, Subset. Third, we varied internal algorithmic
decisions: the reward function, the input grouping method, and the quality of the index
groups. Finally, we varied two kinds of difficulty that impact input selection: feature
function execution time and rarity of high-value data items in the raw corpus. Table 3.2

31

shows default settings for important system parameters, which were used except where
stated otherwise.

We implemented Zombie and our machine learning tasks (using Weka [54]) as a
Java application of about 17,500 lines of code. (Our prototype replaces the bulk data
processing platform in Figure 3.1, but our method could be integrated into existing data
processing systems.) We deployed the system on an Amazon EC2 r3.xlarge instance with
30 GB of RAM.

3.5.1 Feature Engineering Workloads

We evaluated the system using two different learning tasks and four different index
group creation methods.
Document Classification — We first tested a document classification task. The raw input
dataset (R in the feature engineer’s tuple) was a corpus of one million WikiText docu-
ments randomly drawn from Wikipedia, after removing all pages marked as “deleted”
or “redirect.” We labeled each document with a function (L) that derived a label from
Category tags. The trained artifact predicted a novel page’s class label. We tested two
variants of this task: DC2 labeled documents as either geography or other. The DC6 task
distinguished among six different labels: geography, politics, science, sports, videoGames, and
other. For both tasks, other was the majority class. The remaining classes each comprised
0.5% of the corpus, except when explicitly varied for the experiments discussed in Sec-
tion 3.5.5. The engineer’s Q function returned the trained model’s classification accuracy
over a holdout set of 2,500 documents from each labeled class.

The training mechanism T for DC2 and DC6 was Weka’s updatable multinomial
naïve Bayes classifier. We tested a set of 40 feature functions as F ; each applied a single
regular expression to the raw input document and returned the number of matches;
thus, F resulted in a 40-element feature vector for each input. We also tried a more
time-consuming F that applied the Stanford Named Entity Recognizer [45] to each text,
yielding a vector of counts of the three NER types (organization, person, and location);
the tasks that use NER features are DC2-NER and DC6-NER. The regular expression F
averaged 1 ms per execution per input, while the NER F averaged 87 ms. We held F
constant over each experiment to measure Zombie’s impact on a single iteration of the
feature engineering loop.
Linear Regression — To test Zombie on a non-classification problem, we created a re-
gression task using the same Wikipedia raw dataset. The trained model predicts the
page’s length. This simple task has several desirable methodological qualities: (1) this

32

Parameter Setting

Index grouping method cluster
Reward method Uncertainty

Minority class rarity 0.5%

Table 3.2: Default experiment settings.

prediction should be possible, as some topics naturally lend themselves to longer arti-
cles; (2) it is not trivially obvious how to make this prediction, so it is a good target for
a trained system; (3) we can use the same data and features as our classification task,
making feature function times comparable across the tasks; and (4) page length is an
easy value for others to compute when trying to reproduce our results. We counted the
page’s length in bytes, normalized by the standard deviation of the page lengths. The Q
function measured root mean squared error over a holdout set. For training procedure
T, we used Weka’s least squares regression module. The feature function set F was the
40-element vector described above.
Index Group Construction — We tested four methods to create index groups. For
Zombie’s default cluster method, we used tf-idf normalized token counts as features for
the k-means clustering implementation from scikit-learn [114]. (We chose k = 500 after
testing values of k ranging from 100 to 10,000.) The remaining three methods were
designed to test a variety of grouping methods and are not proposed for practical use.
For the w2v index, we used Google’s word2vec tool [53, 104] to build a set of index
groups. To do so, we provided the tokenized corpus to the tool to create a feature vector
for every token. We then clustered these vectors using k-means clustering, with k = 2000
(chosen from a range of tested values) and created an index group for each cluster by
assigning a document to a group if one of its tokens belonged to that index group’s
corresponding cluster. Documents could belong to multiple index groups. For the token

index, we tokenized the Wikipedia documents and removed stop-listed and rare tokens
(those with fewer than 50 occurrences). We created one index group per unique token,
adding to each group the documents containing the corresponding token. The resulting
index had roughly 35,000 index groups. For random, we assigned documents randomly to
one of 500 index groups. Finally, to test the impact of index group quality on Zombie, we
evaluated a range of synthetic groupings, each with a different distribution of “useful”
items.

33

dc2 dc2-ner dc6 dc6-ner Regress

0

300

600

900

1200

1500

1800

Ti
m

e
to

pl
at

ea
u

(s
) Early FilteredScan Zombie

dc2 dc2-ner dc6 dc6-ner Regress

0

2

4

6

8

Sp
ee

du
p

vs
.E

a
r

l
y FilteredScan Zombie

Figure 3.6: Time to stopping point, as well as Zombie’s speedup over Early in reaching
that point, for all of our experimental tasks. At bottom, the dotted line indicates Early’s
performance.

3.5.2 Overall Performance

We measured the speedup of all input selection mechanisms relative to the Early technique—
the early stopping execution plan discussed in Section 3.2. For Early, raw data items
were stored on disk in random order and processed sequentially. Early allows for a
direct comparison to Zombie’s early stopping, though the Naïve full scan method may
better represent current practice. Comparing to Early understates the actual speedup
that feature engineers would see with Zombie, since standard systems do not perform
early stopping.

We also compared Zombie to our implementation of another proposed input selec-
tion method called FilteredScan, from Ipeirotis et al. [66]. FilteredScan first runs in
standard bulk processing mode, collecting example pairs of raw inputs and observed
accuracy improvements. It trains a classifier with the gathered data to label new items
as helpful or not. Helpful inputs are those that are expected to yield large accuracy
gains. Then, candidate inputs are classified; helpful inputs are processed first and the
rest deferred until helpful inputs have been exhausted. For our experiments, Filtered-
Scan chose its first n inputs randomly and used commodity bag-of-words features to
train the helpful-or-not model. For document classification, helpful items were in the

34

minority class. For regression, the labels were based on the InfoTrace reward: helpful
items increase the information matrix’s trace more than the average of previous inputs.
We then trained a naïve Bayes classifier that, starting with the n + 1 input, labeled new
items as helpful or not. For each experiment, we tested a range of n values and chose
the one yielding the best speedup.
Methodology — As we showed in Figure 3.3, better input selection systems can reach
high quality values rapidly, so the system can stop early. We measure performance by
recording how long either Early or Zombie took to reach a plateau in accuracy in its
learning curve. This plateau is defined as the point where the tested accuracy values
over a window of time change less than a user-specified minimal change value. In our
experiments, we chose a value equal to ε times the final accuracy achieved by running
the task to completion. We ran each experiment ten times. To show our system is robust
to the user’s choice of stopping point, we evaluated each result with ε varying from
0.01 to 0.05. We averaged the measured time to the stopping point over all ten runs and
minimal change values. When we report speedup vs. Early, it is Early’s stopping point
time divided by Zombie’s stopping point time.
Results — Our basic results for the document classification and regression tasks are
summarized in Figure 3.6. Zombie yielded a gain over Early in all cases, with speedups
up to nearly 8x. It also beat the FilteredScan method in all cases, usually substantially.
Zombie performed especially well on DC6; our index groups correlate well with all of
our tasks, but Early displayed a slower learning rate on DC6 than on the other tasks,
giving Zombie more room for improvement. The speedup numbers are important, but
so are actual time savings. When using Zombie, the feature engineer could reach the
accuracy plateau for the DC6 task in 12 seconds (processing about 11,800 items or 1.2%
of the corpus), nearly eight times faster than the 92 seconds (9.1% of the corpus) required
to reach the same level of accuracy with Early. FilteredScan was better than Early

but still required 61 seconds.
Zombie speedups over Early for the NER tasks are 3.6x and 5.1x for DC2-NER

and DC6-NER, respectively. These speedups were smaller than DC6, but the high cost
of the NER function still made the absolute time savings substantial. Zombie reached
the stopping point for DC2-NER in 2.2 minutes instead of the 8.1 minutes required
for Early. For DC6-NER, Zombie could stop after 5.6 minutes instead of Early’s 28.3
minutes. Saving over 20 minutes per iteration of the feature engineering cycle would
certainly improve an engineer’s productivity over the course of a work day. For the
Regression task, Zombie showed a 1.7x speedup over Early, needing only 36 seconds
versus Early’s 63 seconds. FilteredScan’s speedup over Early was relatively poor,

35

Full

0

2

4

6

8

(a)

Sp
ee

du
p

vs
.E

a
r

l
y

Subset50 Subset25 Subset10 SubsetEarly Zombie

Balanced

0

2

4

6

8

(b)

Sp
ee

du
p

vs
.B

u
l
k

Full Balanced

0

30

60

90

(c)

Ti
m

e
to

pl
at

ea
u

(s
)

Figure 3.7: Subset sizes tested on DC6 using (a) the full dataset and (b) a class-balanced
filtered dataset. Subset10 was too small in (b) and had no result. Execution time for
both is shown in (c).

with a less than 2x speedup for even the simplest DC2 task. As tasks became more
difficult—that is, with more classes to label—FilteredScan declined to almost the same
level as Early. We could almost certainly improve FilteredScan’s performance by
tuning it to particular tasks, but this is exactly the type of extra human labor we aim to
avoid.

3.5.3 Testing SUBSET

The Subset method (Section 3.2.2) is a common approach to speeding up feature evalua-
tion. The user has two main choices when building a subset: the method used to choose
its contents and its size. Recall that in addition to the manual labor involved in writing
the Subset program and its execution overhead, the user has a real challenge in formu-
lating the Subset size; choosing too few samples will mean the system fails to meet the
plateau-based stopping point, while too many will make the system run longer than is
necessary. The feature engineer using Subset must make this guess in a preliminary
phase before running any machine learning procedures.

We tested two subset selection methods on our DC6 task: the Full method sampled
randomly from the entire dataset, while the Balanced method sampled from a dataset
that was filtered so it has a balanced number of class labels. The Full dataset contained
one million items and the Balanced dataset had 30,000 items. We tested different user
guesses for size: Subset10 (10%), Subset25 (25%), and Subset50 (50%), as well as the
unrealistic SubsetEarly, which contained the exact number of items needed to reach the
task’s stopping point. This method acts as if the user could perfectly predict the number
of items used by our Early baseline method. Averaged over 10 runs, SubsetEarly

contained about 91,000 items for Full (9.1%) and 3,400 for Balanced (11.3%).

36

dc2 dc2-ner dc6 dc6-ner

0

300

600

900

1200

1500

1800
Ti

m
e

to
pl

at
ea

u
(s

) Early RoundRobin ClassBalance ClassifyError Uncertainty

Regression

InfoTrace

dc2 dc2-ner dc6 dc6-ner

0

2

4

6

8

Sp
ee

du
p

vs
.E

a
r

l
y RoundRobin ClassBalance ClassifyError Uncertainty

Regression

InfoTrace

Figure 3.8: Time to stopping point, as well as Zombie’s speedup over Early in reaching
that point, for our different bandit reward methods. At bottom, the dotted line shows
Early’s performance.

Figure 3.7 shows the results for these experiments. As expected, SubsetEarly was
better than any of the subsets that represent more realistic user guesses (Subset10, Sub-
set25, and Subset50). In the Balanced experiment, we show no result for Subset10, since
it was too small to reach the stopping point (and the feature engineer would not accept
the subset’s trained model). For Subset25 and Subset50, the Balanced method was fast
in terms of raw execution time, taking less than 10 seconds to complete the task. Zom-
bie was the best approach on both the Full and Balanced sets; it beat SubsetEarly by
avoiding the processing of redundant items unlikely to improve the end system. The
filtering done to create the Balanced subsets does not generalize across learning tasks
and must be repeated for each subsequent task using the dataset. In contrast, Zombie’s
initialization is performed just once per dataset.

3.5.4 Varying System Parameters

We also tested Zombie’s configuration, testing several bandit rewards, several index
grouping methods, and Zombie’s robustness in the face of index groups of varying
quality.

37

Bandit Reward Methods

We evaluated Zombie using the reward functions described in Section 3.4.3. For classifi-
cation tasks, we tested ClassifyError, ClassBalance, and Uncertainty. For Regres-
sion, we tested InfoTrace. Finally, we tried a baseline RoundRobin method that just
cycled through the list of index groups, choosing one element per group on each pass.

Figure 3.8 shows the impact of choosing different reward functions for our ban-
dit model on the classification tasks. Each of our three proposed reward functions
(Uncertainty, ClassBalance, and ClassifyError) had at least a 2x speedup over
Early for all of the document classification tasks. It may seem surprising that the base-
line RoundRobin method fared reasonably well on several tasks: in these cases, just the
index grouping alone is enough to increase the likelihood of processing an example of
one of the minority classes. Perhaps not surprisingly, Uncertainty either performed
the best or tied for best method in all cases and is our recommended reward function for
classification tasks. ClassifyError is likely to learn incorrectly from bad past decisions.
ClassBalance cannot avoid candidate inputs that might have been useful in the past
but are no longer useful to the learner.

For the Regression task, InfoTrace outperformed Early, showing a speedup of 1.7x.
RoundRobin performed slightly worse than Early, with a 0.9 speedup. Our Regression
results were not as good as those for the other tasks: overhead is higher from retraining
the linear regression learner, as well as from the expensive InfoTrace. Also, active
learning for regression is relatively understudied, and the field’s best techniques are
unsuitable due to high computational costs.

Index Grouping Methods

Figure 3.9 shows Zombie’s speedup over Early using the Uncertainty reward on the
DC6 task for four index group construction methods: cluster (our recommended method)
and, for comparison, random, token, and w2v. We found similar results for the other tasks,
but omit them due to space constraints. The figure’s left axis describes the bars, showing
the speedup over Early. The right axis describes the black diamonds, showing the mean
group quality for each method, defined as an index group’s ratio of minority class items
(our proxy for useful items), weighted by its fraction of all the minority items. The random

index performs poorly. For all others, Zombie yields a speedup over Early.
Unsurprisingly, Zombie’s speedup was roughly correlated with the quality of the

grouping. In the case of random, there were simply no high-quality index groups for our
bandit model to find and exploit. The results show that Zombie can yield a very large

38

random w2v token cluster

0

2

4

6

8

Sp
ee

du
p

vs
.E

a
r

l
y

0

0.1

0.2

A
vg

.g
ro

up
qu

al
it

y

Figure 3.9: Zombie’s performance with our index grouping methods, on the DC6 task,
shown as the speedup compared to Early (dotted line). The diamonds show each
method’s group quality.

speedup when the group quality is middling and can even yield some speedup when the
group quality is quite poor (as with w2v and token). These results give us increased confi-
dence in our recommendation of Zombie’s use of standard, task-independent clustering
(e.g., our k-means cluster method).

The time needed to compute these indexes for our Wikipedia dataset was non-trivial
but manageable, ranging from 30 to 60 minutes for token and cluster and several hours for

w2v. Because these indexes are designed for use with many different learning tasks, their
construction costs (as when building traditional database indexes) can be amortized over
their long life.

Effects of Index Group Quality

To better understand the impact of index group quality on Zombie’s performance in-
dependent of any particular grouping method, we created a range of synthetic indexes
with specific quality measures. We fixed the raw dataset while distributing the items
among index groups to vary two parameters. Useful group density measures the frac-
tion of index groups containing at least one minority class item (again, our useful items
proxy). Group quality measures the fraction of useful items in each useful index group,
as defined previously. That is, the former is how likely a random input will be useful;
the latter is how likely a random item from a useful index group will itself be useful.

Figure 3.10 shows Zombie’s performance using index groupings with parameter set-
tings ranging from 0.1 to 0.9, averaged over 10 runs, for DC2 and DC6. Each square’s
color represents Zombie’s speedup using the grouping with the corresponding param-
eters, compared to Early. Red regions show where Zombie underperformed Early,
while green regions show where Zombie had a significant speedup. In the lower left
corner are truly bad (and likely unrealistic) groupings: most index groups contain no

39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Useful group density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
ro

u
p

qu
al

it
y

3

6

9

12

15

18

21

S
p

ee
d

u
p

vs
.

E
a
r
ly

(a) DC2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Useful group density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
ro

u
p

qu
al

it
y

3

6

9

12

15

18

21

S
p

ee
d

u
p

vs
.

E
a
r
ly

(b) DC6

Figure 3.10: Zombie’s speedup over Early for a range of different index group quality
levels on the (a) DC2 and (b) DC6 tasks. Green and yellow areas indicate speedups over
Early. All but the very lowest-quality groupings (lower left, in red) yield a speedup.

0 5 10 15 20 25 30
0

2

4

6

8
dc6

dc6-ner (F : 87ms)

dc6-50x

dc6-100x

regression

Mean feature function execution time (ms)

Sp
ee

du
p

ov
er

Su
b
s
e
t
Ea

r
l
y

Figure 3.11: Speedup for several tasks, varying the feature function execution time.
Diamonds on lines show the task’s actual F execution time. The black dotted line shows
SubsetEarly.

useful items, and in those that do, useful items are very rare. Here, Zombie has a very
difficult job finding any useful items. The upper right represents near perfect (and,
again, unrealistic) groupings: most index groups contain high concentrations of useful
items. Here, our bandit method can quickly start exploiting the good groups. Between
these extremes is a large area of the parameter space showing a positive speedup. Even
with low-quality index groups, Zombie is successful at speeding up the feature engineering loop.

We expect standard clustering methods to fall within Zombie’s effective range. As a
point of comparison, our k-means cluster method exhibits density 0.55 and group quality
0.11 on DC2 and density 0.86 and group quality 0.24 on DC6.

40

3.5.5 Varying Task Parameters

We performed two types of experiments to test properties of the learning task, first
exploring the impact of the feature function costs. We then tested how the difficulty of
finding useful inputs in the dataset affects Zombie’s performance.

Feature Function Costs

Zombie’s performance gains are tied to the computational difficulty of F and T. Re-
ducing the number of function invocations is more meaningful when F is expensive.
However, Zombie incurs overhead from T and from the input selection loop. If F is fast
enough, this overhead will swamp any gains from avoiding calls to F .

Figure 3.11 shows the results of our experiment to discover how slow a feature func-
tion has to be before it can benefit from using Zombie. We compared five tasks to
SubsetEarly, chosen for a baseline because it only runs T after the subset has been
created and so does not incur additional retraining runtime costs; these results show
the worst-case effects of Zombie’s overhead. The y-axis shows Zombie’s speedup over
SubsetEarly. For the x-axis, we simulated different average F runtimes. We kept the
other aspects of the tasks—the number of inputs processed, the outputs from F , and the
observed learner accuracy—exactly the same.

A line on this graph shows Zombie’s speedup ratio for a task, if a single invocation
of the user’s F took the time indicated on the x-axis. The diamonds show the actual
F average runtimes. As a line increases, the effect of Zombie’s overhead (largely from
retraining) decreases. When a line is “flat,” the overhead is negligible compared to F ’s
invocation time. For longer F times, Zombie’s ability to avoid function invocation yields
a larger speedup. A line’s height is task-specific, showing how fast we reach the task’s
stopping point.

For three of the tasks, Zombie yields a speedup larger than 1x except when F is
extremely fast. Even with the observed average runtime of 1 ms in the case of DC6
and Regression, Zombie is useful. For DC6-NER’s 87 ms runtime, Zombie provides a
healthy speedup. For DC6 and DC6-NER, retraining is incremental and the training
costs are negligible. Regression’s retraining costs are about five times higher.

We also introduced two synthetic tasks: DC6-50X and DC6-100X. These are identi-
cal to the DC6 task, except with artificially-inflated training times of 50 and 100 times
DC6’s average training time, simulating tasks with an extremely computationally in-
tensive training procedure T. The gentler curves of DC6-50X and DC6-100X show that
when T is extremely time-consuming, F must also be more time-consuming for Zombie

41

to yield a substantial speedup. In some cases, a very fast F might mean that Zombie

does not yield a speedup over Early. Indeed, with the 1 ms F we observed for DC6,
the DC6-100X task would be slower than SubsetEarly. However, Zombie yields a real
speedup even when running with a training procedure 50x slower than our real system.
And when training is 100x slower, even a tiny increase in feature function invocation
time means Zombie is worth running.

Difficulty of Finding Good Inputs

We varied the relative rarity of the labeled classes in the document classification task in
order to test how Zombie responds when it is difficult to find good items. As minority
items become more rare, we expect the input selection task to become more difficult, as
it is harder to find the minority-class examples needed to train a high-quality learner.
Early should also suffer in this situation.

Figure 3.12 shows that Zombie does well for minority class sizes that range from
0.01% to 5% of the corpus for the DC6 task. For the timing plot on the left, error bars
indicate a 95% confidence interval. Results for our other tasks were consistent with
these results but are omitted due to space constraints. For the most difficult case, only
100 examples of each minority class were present in the 1M document test corpus. This
extreme ratio would not be surprising in many settings: for example, a task that predicts
e-commerce prices might use a feature that exploits rare pages that list prices but is
useless on news or social media pages. While Zombie’s speedup ratio over Early was
relatively low in the 0.01% case, the engineer’s wait time was reduced from almost 10
minutes to 5 minutes, which could have a major impact on workflow. When the feature
function execution time is much larger, absolute savings can be much larger: Zombie

saves 182 minutes, or over 3 hours, on DC6-NER at 0.01% rarity, reducing the evaluation
loop from 8 to 5 hours. This would allow an engineer to perform two feature iterations
in a workday instead of just one.

3.6 Related Work

Database researchers have begun to propose frameworks that support feature selection
and engineering [8, 80, 155]. Our system’s goal—accelerating the feature engineering
development cycle—has grown from the vision sketched in Anderson et al. [8]. We
have demonstrated a user-facing tool [11] built on the techniques detailed in this paper.
Zhang et al.’s work [155] is more suited for the “generate-and-select” feature generation
approach discussed in Section 3.2.5. MLBase [80] focuses on the learning pipeline and

42

0.01 0.05 0.1 0.5 1.0 5.0

0

200

400

600

Minority class (%)

Ti
m

e
to

pl
at

ea
u

(s
) Early Zombie

0.01 0.05 0.1 0.5 1.0 5.0

0

2

4

6

8

Minority class (%)

Sp
ee

du
p

vs
.E

a
r

l
y

Figure 3.12: Left: Time needed to reach the accuracy plateau for both Early and Zombie

on the DC6 task. Error bars show the 95% confidence bound for mean time over 10 runs.
Right: Speedup over Early for the same trials. Early is shown by the dotted line.

does not specifically address feature engineering; Zombie may be complementary to its
methods.

Our system draws intellectually on several other areas of data management. Large-
scale distributed data processing has seen intensive research for at least a decade [28,
34, 70, 96, 99, 102, 154]. MapReduce [34] was the first in the modern wave of systems,
but its simple scan-and-process model has been largely eclipsed by systems that use
familiar database techniques: indexes, high-level query languages, query optimization,
etc. Few, though, optimize execution of user-defined code, let alone opaque feature code
in a learning task, as we do with Zombie.

Zombie’s two-phase operation is similar to approximate query processing systems;
samples of the data with specific statistical properties are pre-computed and then used
to answer an approximate query [7, 16, 48]. Our system also answers queries using pre-
computed data subsets. Unlike approximate query processors, it is unclear what useful
statistical properties could be pre-calculated because of the users’ changing feature code;
feature evaluation is more suited to an online approach.

Active learning is a well-known topic within machine learning [133]. Our work shares
the main goal of active learning: minimizing the cost of constructing a training set
through careful selection of training examples. We differ from typical active learning in
that we cannot examine the features of potential training examples to guide our selection,
which would require unwanted feature code runtime costs. The most related line of
active learning research is active feature-value acquisition, which attempts to avoid very
expensive features, like medical tests, by estimating the utility of every object in the
raw dataset [129]. This assumes a dramatic cost split between features that are nearly
free and features that are so expensive that it is worth paying almost any computational

43

cost to avoid them. While useful, this does not apply in our setting: our work assumes
functions with comparable runtimes, so total runtime is best reduced by processing less
raw data.

Deep learning has become a hot area of research, promising high-accuracy models
that do not require traditional explicit feature engineering [29, 89]. Deep learning meth-
ods may somewhat displace human feature engineers in the future, though we believe
there will always be a strong role for human-provided domain knowledge. Deep learn-
ing, despite its many successes, faces several challenges. Its applicability to text is still
unclear, and it is extremely computationally intensive. Moreover, its operation is notori-
ously opaque: engineers may face trouble maintaining and debugging these systems. In
any case, our system can be used alongside such approaches.

3.7 Conclusions and Future Work

We have described the Zombie input selection system. For the critical feature engineer-
ing evaluation loop, Zombie obtains speedups of up to 8x, and reduces wait from 8 to
5 hours in some cases. It is a promising tool in the effort to accelerate the feature engi-
neering iteration cycle. We view Zombie as just one component of an integrated feature
engineering system. We would like to improve Zombie by incorporating arm statistics
across multiple iterations of the evaluation loop, and by giving the engineer explicit fea-
ture design hints. We will also explore other applications for our bandit method, such
as automatically choosing among data sources of varying quality.

44

Chapter 4

Physical Representation-based Predicate
Optimization for a Visual Analytics Database

4.1 Introduction

Recent developments in computer vision have made feasible a long-term dream for the
database community: a visual analytics database, which stores image data and answers
user questions about its contents. For example, video frames from a city’s traffic cameras
could be used to count cars per minute. Or photos uploaded to photo storage web sites
could be automatically sorted and tagged based on their contents. The sheer volume and
diversity of data captured by cameras opens up myriad analytical query possibilities, if
the content hidden behind opaque pixel values can be extracted at scale.

Deep convolutional neural networks (CNNs)—the family of methods used in mod-
ern computer vision systems—have enabled huge strides in image understanding in the
last few years through tasks like image classification and object detection. For exam-
ple, the classification error rate in the annual ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [127] dropped from 25% to 18% in 2012 when a deep CNN was first
used [83]. Recent results have lowered the error rate to 2% [62], rivaling or exceeding
human performance.

Unfortunately, deep networks pose a considerable computational challenge when
deployed in an analytical database system: a model’s inference for a single image can
require a lengthy series of large tensor multiplications. For example, YOLOv2, an object
detection system designed for speed, requires 8.52 billion operations per single 416x416
pixel image, processing about 67 images per second on a modern GPU [124]. Since
GPU hardware is far more expensive than most image sensors, data from multi-camera
applications will soon outpace processing capabilities. Simply, to query huge amounts
of image data, we need drastically lower processing costs.

45

Processing queries over a corpus of image data fits a more general loop-and-test pat-
tern that is common to many machine learning tasks: the processor loops over the data,
executing an expensive operator on each element to find those satisfying the task’s con-
straints. In this case, content is extracted from each image by the expensive inference
stage of a deep network to determine if the image satisfies a binary predicate specified
in a user’s query. While a loop-and-test process can be shortened by processing fewer
items overall—using simple sampling or more sophisticated input selection [10]—we
focus here on speeding up the test phase by reducing the per-image inference cost.

Recent work has reduced inference times for these types of deep learning systems
(e.g., [59, 72]). However, we note that all of the visual data system optimizations to
date suffer from a critical defect: they concentrate only on computation and ignore the
inevitable data-handling costs, such as loading and transformation. Any query optimiza-
tion method that focuses only on reducing computational load cannot exploit complex
data-centric tradeoffs that weigh the amount of image data available, the classifier accu-
racy, and data handling costs.

As an example, consider an optimizer choosing between two image classification
models (M1 and M2). M1 accepts a 3-channel, full-color, 224x224 image as input while
M2 accepts a 1-channel, grayscale, 224x224 image. M1 has fewer convolutional layers
and, despite the larger input, requires fewer tensor operations than M2, so its inference
is faster. M2 uses less rich data than M1, but is nonetheless able to obtain comparable
accuracy because of its additional convolutional layers. An optimizer that considers only
the inference speed would choose M1. However, a data system using M2 might be faster,
as its inputs load in one-third the time of those of M1.

Such data-handling tradeoffs are important because visual analytics systems are
likely to be architecturally diverse. Some systems may store multiple versions of the
same image data (high-res vs. low-res). Others may employ different storage systems
(local server vs. cloud vs. in-camera). In some architectures—say, one in which connec-
tivity conditions change, or one in which GPUs are only intermittently available—the
highest-payoff query plan may change by the moment. Ignoring data-centric tradeoffs
can sacrifices substantial performance. In this work, we propose a framework for han-
dling data-centric tradeoffs when optimizing visual analytical queries.

Technical challenge — We aim to optimize visual analytics queries that might be run
in a range of diverse architectures and deployment settings. In this work, we ignore
many standard relational query optimization issues, such as query plan rewriting or in-
dexing. We focus exclusively on designing and choosing the CNN-based operator that
implements an image-sensitive relational predicate. These operators can be chosen in

46

a manner that trades system throughput against classification accuracy. Making that
tradeoff of runtime vs. data quality is an application-specific decision we leave to the
user. This paper offers a framework for identifying the best possible operator implemen-
tation, subject to a user’s desired tradeoff.

Our approach — One method to speed up an expensive-but-accurate CNN is to replace
it with cascades of fast, high precision (but low recall) image classifiers [25, 72, 142].
This is effective but focuses exclusively on computational efficiency. We start similarly,
training a large number of specialized candidate binary-classification CNN models by
varying not only CNN hyperparameters (as in prior work [72]), but also the represen-
tations of the inputs; for example, we build an n-layer CNN for large full-color inputs,
another for small full-color inputs, more for grayscale inputs, and so on.

From these core candidate models, we then construct a massive number of classifier
cascades. All of these cascades have different initially unknown runtime and accuracy
characteristics. Our optimization method efficiently evaluates the cascades’ accuracy
using held-out data, and evaluates their runtime characteristics for the system’s current
deployment scenario. Finally, it identifies the Pareto-optimal cascades that satisfy the
user’s application-specific speed and accuracy constraints.

Organization — After formally describing our problem in Section 4.4 we discuss the
following contributions:

• We propose a method for identifying high-quality image predicate implementa-
tions, by exploring CNN hyperparameters and varying input data representation
(Section 4.5).

• We show the dramatic impact on runtime when a system is running in different
deployment scenarios and is aware of the deployment-specific data handling costs
(Section 4.6).

• We prototype our methods in a system called Tahoma and show that it provides
up to a 35x speedup to classifier cascades through input data transformations.
Tahoma also achieves up to a 98x speedup over the ResNet50 image classifier with
no accuracy loss (Section 5.5).

We follow with a discussion of related work in Section 4.9.

47

Classifier 1 Inferred
label

Low confidence

Done

Classifier 2 Inferred
label

High
confidence

Low confidence

Done

Classifier N Inferred
label Done

High
confidence

Image data

Figure 4.1: A multi-level classifier cascade. If the first classifier’s output is uncertain, the
input is classified by the second, and so on. If reached, the output of the final classifier
in the cascade is accepted as the label.

4.2 Background

In this section, we will briefly give some background on cascade classifiers, since these
methods are core building blocks of our work. Numerous systems have used cascades
to speed up classifier inference. One of the first was the Viola-Jones face detector [147],
which used a series of classifiers based on simple image features to detect faces in sub-
sections of photographs; if any classifier had high confidence in its result, the result was
immediately accepted, avoiding the use of further classifiers.

Figure 4.1 illustrates the general cascade process: an image is input into a classifier,
whose output is accepted if it has high confidence. Otherwise, a second classifier is
used, where again, a low-confidence result will send the input to a third, and so on. If
the final level of the cascade is reached, its output is accepted. Ideally, the initial levels
of a cascade are fast with high precision, though they may suffer from low recall. In face
detection, for example, if most images have no human faces at all, the first classifier may
quickly eliminate most cases. Only the few cases containing a face will be processed by
the remainder of the cascade, at correspondingly higher cost.

Recently, cascades have been used to accelerate the relatively slow inference speeds
of deep neural networks [25, 72, 142]. Our system takes these techniques further by
exploiting the representations of the inputs and finding optimal cascades for a user’s
deployment scenario. Section 4.5 details our model and cascade construction.

48

4.3 Design Considerations

Several key questions are important to Tahoma’s design. We touch on these issues
below.

Issue 1: Object detection vs. image classification — In general terms, an object detector
(e.g., YOLOv2 [124]) finds the location of particular object classes within an image, while
an image classifier (e.g., ResNet50 [56]) identifies the overall contents of an image as one
of a particular set of classes. When implementing binary contains-object predicates in
a visual database application, the extra architectural and computational complexity of
object detectors is unnecessary. Our cascades therefore use small and fast CNN image
classifiers. Applications requiring object location within images, however, could build
cascades from small and fast object detectors.

Issue 2: Online vs. offline classification — If a user’s corpus is small or slow-growing
enough to allow for offline classification of the entire dataset with available resources,
this paper’s techniques are unnecessary. Also, our techniques may be unneeded if query
predicates are fixed and new ones are unlikely to be introduced. In such cases, the user
could materialize the classification results for each image on ingest and store them in a
standard database for future queries.

However, there are many exciting real-world applications where assumptions of a
small or slowly growing dataset or stable query predicates are unrealistic. Consider, for
example, a website for photo storage: Flickr has reported that days of heavy usage can
see 25 million photo uploads [5]. Facebook had 350 million daily photo uploads as of
2013 [41]. Video applications can be even more extreme. A single self-driving car can
have over a dozen cameras, each gathering 30 frames per second for many hours on a
daily basis; a fleet of such cars can generate a huge amount of data.

Further, many applications require retrospective exploration and analysis, where the
query predicates may not be known in advance. For example, a self-driving car engineer
may wish to find historical examples of a new failure case, requiring the training of
a new model to be run over an existing corpus. Or consider a police investigation
reviewing thousands of hours of surveillance camera footage to find a local delivery van
with a unique logo: a trained object detector would be ideal, but such a specific model
is unlikely to already exist. In general, it is unlikely that all possible query predicates
can be enumerated in advance for a visual analytics application.

Issue 3: Training costs — A deep CNN image classifier, such as ResNet50 [56], can take
days to fully train, due to the model’s architectural complexity and the huge training set

49

needed for such a complex model. Such a burden is incompatible with our use case, since
requiring this amount of time to install a new predicate in our system is unreasonable.
Thankfully, our simple binary predicates typically do not require huge classifiers. The
majority of our cascades consist solely of small, specialized classifiers, which train in just
minutes.

Further, in cases where a deep network may be needed, training it from scratch is
likely to be unnecessary. It is common practice to fine-tune pre-trained deep networks
to a particular task [68]. Generally, when fine tuning, most of the deep network is frozen
and only the last several layers are modified and retrained to a new task, taking advan-
tage of already-learned features from a similar problem domain. In our experiments, we
fine tuned ResNet50 for binary classification tasks using a modern GPU in only 2 to 4
hours.

Issue 4: Deployment scenarios — A visual analytics system may be deployed in a
variety of scenarios, requiring accounting for differing data handling costs, in addition
to classifier inference costs. Consider the following example scenarios, also later used in
our experiments:

• Archive – In this situation, a large archival corpus of historical image data is
stored on local drives. Each image must first be loaded from the drive and then
transformed into an appropriate input format for the classifier.

• Ongoing – Here, video is continually ingested from its source into a datacenter-
based query system, where it is transformed into appropriate representations that
are stored on SSD for later queries. Because this data is transformed as it is ac-
quired, only the cost of loading the representations from disk are considered at
query time.

• Camera – If compute nodes are at the edge of the network (e.g., connected to
surveillance cameras), the images can be directly provided to the classifiers. Only
the image transformation costs must be considered, since transfer costs from cam-
era to memory are negligible.

We show in Section 4.8.1 that scenario-awareness while evaluating of the accuracy
and speed of classification systems can lead to a large practical increase in a system’s
throughput.

50

Table 4.1: Frequently used notation.

Notation Definition

I = (I1, . . . , In) Image data corpus
Ti = (ti1, . . . , tin) Content tuple for image Ii
K Image classifier, s.t. K(Ii) = ti j
M = (M1, . . . , Mm) Basic classification models
A = (A1, . . . , Ana) Model architecture specifications
F = (F1, . . . , Fn f) Input transformation functions
C = (M1, . . . , Mn) Cascade of n models belonging toM
C = (C1, . . . , Ck) Collection of cascades for a binary query
plow, phigh Cascade model decision thresholds

4.4 Definitions and Notation

Here we will formalize the particular image classification problem addressed in this
work. Frequently used notation is given in Table 4.1.

Content-based Queries — A query system that operates over images can perform queries
over two main types of information: image metadata (e.g., GPS or acceleration informa-
tion that may accompany frames from dashcams) and content extracted from images
themselves (e.g., the image contains a bicycle). Metadata queries are easily handled by
existing methods, so we focus this work on processing content-based queries.

Definition 2 (Content-based query). Given a corpus of image data I containing images
I1, . . . , In, the tuples Ti = (ti1, . . . , tim) represent the visual contents for each image Ii, where
each element tij in this tuple represents a content object present in image Ii. A content-based
query is constructed of predicates that can be evaluated with the elements of Ti.

We restrict content-based queries to binary queries, which can be combined into a full
query over all TI tuples.

Definition 3 (Binary query). Given an image’s content tuple Ti, a binary query involves a
single contains-object predicate evaluated with a single tuple element, tij. A binary query
thus asks if image Ii contains object tij.

Despite this restriction, our envisioned system will support complicated queries that
can be rewritten as a combinations of metadata and binary query predicates. For exam-
ple, the query “Find images from Detroit containing a bicycle” can be decomposed into
a metadata predicate (location = ‘Detroit’) and a binary query predicate (contains_ob-
ject(bicycle)). Our focus is on choosing the best classifiers to implement a given con-

tains_object predicate. While further query optimization could be done considering

51

multiple binary predicates in concert, we leave that for future work and here concentrate
on optimizing single predicates.

Image Classification — The content tuples are generally not available upon image ac-
quisition and must be extracted from the image. In this work, we focus on extraction
via image classification. In particular, we focus on queries where classification has not
been performed in advance, so that classification must be performed as part of query
execution.

Definition 4 (Image classification). Given a corpus of image data I , for each image Ii ∈ I ,
we wish to generate a binary label L using a classifier K, such that Li = K(Ii). The label Li

corresponds to a member ti j of content tuple Ti.

The output of a classifier model can be thought of as a virtual column in a relation
describing the content objects in images. For example, processing the query predicate
contains_object(bicycle) would populate the bicycle column of this relation with the
output of Kbicycle. The classifier K could be generated by a range of methods, including
basic models like logistic regression or deep CNNs, or may be a collection of basic models,
such as classifier cascades.

Definition 5 (Basic model). A basic model M implements a classification method that accepts
image I as input and outputs a binary classification result. Our system generates a large set of
such CNN-based modelsM = (M1, ..., Mm).

Two factors parameterize a model M: model architecture specification A and input trans-
formation function F.

Definition 6 (Model architecture specification). The internal architecture of a model M is
specified by A. For the CNNs used in our system, Am describes network hyperparameters, such
as the number and size of layers. A = (A1, . . . , Ana) gives all potential architectural options for
models inM.

Definition 7 (Input transformations). Before the classification of an image I by model M, the
raw image data is processed by an image transformation function F, such that input image I is
transformed into output image I′. Such a function may perform one or more operations such as
resizing, normalizing, or reducing color depth. The set F = (F1, . . . , Fn f) gives all functions
available to pre-process image data for models inM.

We use the cross product of F and A as the model design space, resulting, in prac-
tice, in several hundred individual models in M for each binary query. A goal of this

52

work is to determine which models are most suitable for a user’s accuracy and runtime
constraints and current deployment scenario.

Classifier cascades — Classification models can be aggregated into collections or en-
sembles to improve either accuracy or speed. One such method designed to improve
classification speed is the classifier cascade [147].

Definition 8 (Classifier cascade). A classifier cascade C = (M1, . . . , Mn) is a list of n basic
models with probabilistically interpretable output. The models are run in series: image Ii is
classified by M1, and if the output is between two given decision thresholds, plow and phigh, it is
uncertain. If so, Ii is then classified by M2. Otherwise, the cascade is stopped and M1’s output
is accepted as the label of Ii. This continues to the final classifier Mn, whose output is always
accepted.

Given a set of classification models M, we can construct a large set of cascades
C = (C1, . . . , Ck) with up to n levels each, to be evaluated in terms of accuracy and
throughput.

Model evaluation — The quality of classifier—either a model M or a cascade K—is given
by its accuracy and its throughput. Accuracy gives the fraction of labels produced by M
that are correct. Throughput is the number of classifications per unit time and measures
how fast the model’s relation is populated.

For a set of classifiers, we can find a subset that is Pareto-optimal over these two crite-
ria. That is, there is a subset that is non-dominated in terms of accuracy and throughput,
from which users can select a classifier to meet application needs.

Problem statement — With the preceding definitions, we can formally describe the prob-
lem addressed in this paper thusly:

For an image corpus I and a set of binary classification modelsM = (M1, . . . , Mm) param-
eterized by architectural specifications A = (A1, . . . , Ana) and input transformation functions
F = (F1, . . . , Fn f), find the set of classifier cascades C = (C1, . . . , Ck) constructed from models
inM that are Pareto-optimal in terms of accuracy and throughput over I .

4.5 Cascade Methodology

As discussed in Section 4.4, a classifier cascade is a series of classification models run
one after another until a trusted classification result is found. Our methods depend upon
building a large number of models that are combined in all possible combinations to cre-

53

Labeled
Data

Model Trainer

Model
architecture

specifications
Transformation

functions

Cost Profiler

Cascade
Builder

Cascade
Evaluator

Training
Set

Config
Set

Evaluation
Set

Models

Models

Visual
Data

Corpus

Cascade
Selector

Pareto-optimal cascades

Query
Processor

User

Binary
predicate
relation

Cascade

Accuracy &
throughput
constraintsAll cascades

System Initialization Query Time

Query

Figure 4.2: Tahoma architecture

ate a huge number of cascades. After giving a brief overview of our system architecture,
we will discuss the details of our models and cascades.

4.5.1 System Architecture

Figure 4.2 sketches out Tahoma’s architecture. Tahoma has two main modes of oper-
ation: system initialization and query execution. During system initialization, model
repository is prepared for each binary predicate, which requires a set of labeled data.
This dataset is small compared to what is generally used to train deep CNNs: per binary
predicate, Tahoma requires 3,000–4,000 labeled images, with equal numbers of positive
and negative examples. The labeled data is split into three sets for training, configu-
ration, and evaluation. Training set Itrain, transformation functions F , and architecture
specifications A are provided as input to the model trainer.

For a given binary predicate, a set of models M (each implementing the contains_-

object operator) is trained and provided to the cost profiler and to the cascade builder.
The cost profiler measures the throughput of each model in the current deployment
scenario (see Section 4.6). The cascade builder constructs Tahoma’s cascade set C, using
all possible combinations of size n of the models in M and the configuration set Iconfig

(see Section 4.5.3). Using the evaluation set Ieval, the cascade evaluator measures each

54

cascade’s accuracy and throughput (see Section 4.7.1). With this, the system determines
the set of Pareto-optimal cascades for use at query time.

Similar to how approximate query systems like BlinkDB [7] and VerdictDB [111]
allow users to specify approximation constraints as part of their queries, a Tahoma user
provides their constraints on accuracy (Uacc) and throughput (Uthru) at query time (in
the form of the highest tolerable loss in either of those parameters). The cascade selector
chooses which of the Pareto-optimal cascades best suits the user’s desired tradeoff. For
example, the user may wish to maximize throughput as long as the resulting cascade
does not suffer more than a 5% loss in accuracy over the most accurate cascade available.
The user would set Uacc = 0.05 and provide no constraint for Uthru. The system would
select the cascade from the set of Pareto-optimal cascades has an accuracy closest to (but
not below) 95% of that of the most accurate cascade. Because this is a Pareto-optimal
choice, there will be no faster cascades at that (or a higher) accuracy level. The selected
cascade processes the data in the corpus, extracting the notional relation for the binary
predicate in the user’s query.

Integration considerations — Because our goal was to explore the optimization meth-
ods discussed in this paper, we implemented Tahoma as a standalone query system.
However, we believe future deployments of Tahoma’s ideas will likely be embodied in
RDBMS software. The execution of a contains_object operator is analogous to that of
a user-defined function (UDF) in a database such as PostgreSQL, and could be wrapped
in the RDBMS CREATE FUNCTION statement. RDBMS query optimizers could leverage
additional metadata relations, such as image location and capture date, to reduce the
number of expensive Tahoma UDFs calls for a specific query. Further, UDF output
could be stored as a partially materialized table, enabling further query optimization.

Tahoma’s initialization process is run at the installation of each new binary predi-
cate. During this, the profiled speeds could be used to inform the RDBMS query opti-
mizer of the execution cost of the UDF (like the PostgreSQL’s COST parameter for CREATE
FUNCTION, if each Pareto-optimal cascade was implemented as a separate UDF). While
indexing or materializing the output of the UDFs at system installation is not practical
in our envisioned deployment scenarios, database triggers could be used to execute the
Tahoma UDFs over newly ingested data after system initialization to pre-materialize
the output for future queries. In such situations, slower processing may be tolerated for
more accurate results, allowing a different Pareto-optimal choice than at query time.

55

Convolution Convolution

Max Pooling Max Pooling

Fully Connected

Output
Prediction

Figure 4.3: CNN architecture used by Tahoma. The number of layers and the number
of nodes in each layer are varied as part of the model architecture specifications A.

4.5.2 Building Models

With Tahoma, we create a huge number of cascades C by first training a large num-
ber of individual classification models M. We build the collection of models in two
ways: by varying the internal architecture of our CNN-based classifiers with our model
architecture specificationsA and by transforming the input images using the input trans-
formation functions F .

Model architecture variations — Tahoma uses convolutional neural networks for its
models. Goodfellow et al. provide in-depth discussion on CNNs and deep learning [51].
Our CNNs follow the basic architectural pattern shown in Figure 4.3. Input values
are fed into one or more layers of convolutional nodes. Each convolutional layer is
followed by a max pooling layer, connected by rectified linear activations (ReLu). The
final convolutional layer feeds into a fully connected ReLu layer. A sigmoid output
node provides the inferred label. A key point is that our CNNs are small (and thus
fast), typically having only one to four convolutional layers. When creating models, we
vary these architectural details according to A; for our experimental settings of A, see
Section 4.8.1.

Input transformations — We also vary the physical representation of the input to each
model. The set of input transformation functions F comprises functions that perform
one or more image processing operations, such as resolution scaling and color channel
modification. These types of transformations are useful for building fast, small models:
reducing image size and color depth can greatly reduce the number of model input
values, directly reducing the size of the CNN’s tensor operations. For our experiments,
we scaled the image resolution (30x30, 60x60, 120x120, and 224x224 pixels), and for

56

each image size, we used five different color variations (full 3-channel color, each of the
individual red, green, and blue color channels, and single-channel grayscale).

The design space defined by these model architecture variations and input trans-
formation functions result in hundreds of different model configurations (360 in our
experiments). Once each model is trained on a labeled subset of I , we can compose the
models into cascades. Training can take less than a minute for the smallest networks
(one convolutional layer with few nodes) with the smallest inputs (30x30 pixels, 1 color
channel) to nearly an hour for the largest. Overall, training 360 models for a single
binary predicate requires about 12 hours when done serially on an NVIDIA Tesla K80
GPU. Training is parallelizable, so this cost can be greatly reduced in practice.

4.5.3 Computing Decision Thresholds

Each model in M provides a probabilistic output for a binary classification problem, a
real number ranging from 0 to 1. Each model has a pair of decision thresholds, plow and
phigh, which determine whether the model’s labelling decision should be trusted. If the
output o ≤ plow or o ≥ phigh, the model’s output is accepted as the output of the cascade.
If plow < o < phigh, then we consider the model’s output to be uncertain and reclassify
the image with the next model in the cascade.

These thresholds are chosen on a per-model basis, such that the precision of classifi-
cation results with o ≤ plow or o ≥ phigh matches a predefined constraint while recall is
maximized. Using a small configuration dataset distinct from the training set, the thresh-
olds are determined via a grid search that sweeps through the potential thresholds to
find those that provide a precision value greater than or equal to the target precision and
selects the thresholds from those that maximize recall.

4.5.4 Constructing Cascades

Each model has its decision thresholds determined independently, rather than in the
context of a specific cascade. This assumption of independence allows us to quickly
instantiate and evaluate the millions of possible multi-level cascades that can be con-
structed from the models inM.

To determine the accuracy and throughput of our cascades, we first classify a set
of labeled images Ieval with each model in M. (The images in Ieval are distinct from
those for training and determining decision thresholds so that the resulting accuracy
measurements are not the product of overfitting.) Since the cascades in C comprise

57

combinations of the models in M, the above evaluation need only be done once per
model (360 times in our experiments) and not once per cascade (1.3 million).

Ensuring the independence of both model evaluations and decision thresholds (as
described in Section 4.5.3) enables extremely fast evaluation of cascades: our evaluation
required just over one minute to determine the accuracy and throughput values for 1.3
million cascades. As such, once models have been trained and classified, the selection of
a cascade can be part of query planning at query execution time and can thus incorpo-
rate query-specific performance criteria (e.g., which storage devices are providing input
images).

Using the pre-computed classification results for Ieval for each model in the cascade,
the cascade execution is simulated to obtain its label predictions for Ieval. The cascade’s
accuracy is then computed by comparing with true labels for Ieval.

4.6 Data Handling Costs

An often overlooked part of image classification is the cost of loading and preparing
the data prior to inference. Of the rare projects in the computer vision field that report
inference speeds (e.g., the YOLO family of object detectors [123,124]), none report video
decoding or image loading time. Likewise, the NoScope video query system [72] explic-
itly ignores these costs, claiming that GPU-based decoding is so fast as to be negligible
or that decoding might be avoided altogether by obtaining raw video frames directly
from the generating camera sensor.

This last point hints at why image loading or decoding costs should be included
when evaluating these systems: deployment scenarios for a given query system may
differ drastically. Some may use top-of-the-line GPUs for video decoding, others may
store video frames as individual image files on disk, while some may require video to
be transported over a network prior to processing. Further, if multiple classification
models with a variety of input representations might be used for classification, data
handling costs—including preprocessing—must be included in throughput evaluations
when deciding which classifier will be used at query time.

More concretely, for accurate model comparisons to be made, the throughput must be
measured as the reciprocal of the average classification time, tclassify, defined as follows:

tclassify = tload + ttransform + tinfer

58

Figure 4.4: Cascades (gray) and Pareto frontier (blue) for an example deployment sce-
nario, compared to the Pareto frontier for a scenario only considering inference costs
(orange).

where each time t above is the average recorded over some typical set of input images,
measured on the deployed system.

Our experiments in Section 4.8.4 demonstrate that choosing among cascades with
incorrect cost assumptions can lead to a large decrease in throughput. This throughput
loss can be seen in Figure 4.4. The gray points depict all possible cascades for an exam-
ple binary predicate (e.g., contains-object(semitruck)) in a deployment scenario where
image loading costs are negligible (full size raw data is already present in memory),
but image preprocessing costs are incurred to transform the images into the appropriate
resolutions and color representations for each model. The points on the Pareto frontier
(shown in blue) represent the cascades that present the best tradeoffs between accuracy
and throughput under this deployment scenario. The orange points show the cascades
that would be on the Pareto frontier for this binary predicate if only inference costs

59

were considered (pre-processed images are already present in memory). If the prepro-
cessing costs were not considered, the query throughput would be far below its potential for most
accuracy levels.

4.7 Evaluation Methods

In this section, we detail the methods used to evaluate and compare the cascade sets
generated by our system.

4.7.1 Evaluating Cascades

As just discussed, each of the cascades in C can be displayed on a plot of accuracy versus
throughput, as shown in Figure 4.4, where the cascades with the best tradeoffs between
accuracy and throughput belong the Pareto frontier. The points on the Pareto frontier are
those not dominated by any others, where point is said to dominate another point if it
has greater-than-or-equal values for all attributes, and strictly greater values for at least
one attribute. [110]. In database literature, this is sometimes referred to as a skyline [75].
Computing the Pareto frontier over just two attributes, as we do here, is O(n log n) in
the number of points [86].

To determine the accuracy and throughput of our cascades, we first classify a set
of labeled images Ieval with each model in M. (The images in Ieval should be distinct
from those used for training and determining decision thresholds so that the resulting
accuracy measurements are not the product of overfitting.) Since the cascades in C
comprise combinations of the models in M, the above per-model evaluation need only
be done once per model, and can be reused when evaluating alternative cascades.

Ensuring the independence of both model evaluations (as described above) and de-
cision thresholds (as described in Section 4.5.3) enables extremely fast evaluation of cas-
cades: our evaluation required just over one minute to determine the accuracy and
throughput values for 1.3 million cascades. As such, once models have been trained
and classified, the selection of a cascade can be made as part of query planning at query
execution time, and can thus incorporate query-specific performance criteria (e.g., which
storage devices are providing input images).

Using the pre-computed classification results for Ieval for each model in the cascade,
the cascade execution is simulated to obtain its predictions of the labels for Ieval. The
cascade’s accuracy can then be computed by comparing with true labels for Ieval.

60

Figure 4.5: Areas to the left of Pareto frontiers, used for evaluation. Frontiers correspond
to the cascades in Figure 4.4.

4.7.2 Comparing Cascade Sets

Figure 4.5 illustrates how we compare sets of cascades, such as those belonging to a
Pareto frontier, in terms of throughput. We compute the area to the left of the curve
(ALC) created by those points in this plot over a given accuracy range. Because a Pareto
frontier is a collections of points and not a curve, we interpolate the curve as a step
function, as shown in Figure 4.5. Dividing the ALC by the size of the accuracy range
give the average throughput for cascades in the Pareto frontier C f :

Avg. throughput =
ALC(C f)

acchigh − acclow

61

Dividing the ALC of one frontier by another gives the speedup of the former over the
latter:

Speedup =
ALC(C1)

ALC(C2)

To make comparisons fair, we use the accuracy range for the full set of cascades for each
configuration, and then choose the smallest said range. In some cases, we compute the
ALC for a Pareto frontier’s cascades in a different cost context (detailed in Section 4.6).
In this case the cascades are no longer a strict Pareto frontier (see the orange area in
Figure 4.5). However, we can still compute ALC and make comparisons.

4.8 Experiments

We have implemented Tahoma as a prototype system, and in this section, we discuss
our experiments that compare Tahoma’s performance against existing baseline methods,
investigate the effects of data handling costs of different deployment scenarios, evaluate
the effects of the individual input transformations, and analyze the effects of increasing
cascade depth.

4.8.1 Experiment Setup

To evaluate the methods and components used in Tahoma, we designed a series of
experiments with the following setup.

Binary predicates

We evaluated Tahoma’s performance over a set of 10 queries with a single contains-

object binary predicate, randomly chosen from the 1,000 categories in the ImageNet
dataset [127]. Each query is of the form “SELECT * FROM images WHERE contains-

object(category)”, where category is one of those shown in Table 4.2. The ImageNet
dataset provides about 1,200 training images for each category. We held out 200 of each
category’s images as a validation set. The remaining images were labeled as positive
examples. We then selected a matching number of random images drawn from the re-
maining 999 ImageNet categories and labeled them as negative examples. Because these
training sets were relatively small, we followed common data augmentation practice by
creating a copy of each image that was flipped left-to-right, doubling the amount of
training data.

62

Table 4.2: Binary predicates used in our experiments and their corresponding ImageNet
category IDs.

Predicate ImageNet ID Query ImageNet ID

1. acorn n12267677 6. ferret n02443484
2. amphibian n02704792 7. komondor n02105505
3. cloak n03045698 8. pinwheel n03944341
4. coho n02536864 9. scorpion n01770393
5. fence n03930313 10. wallet n04548362

We performed similar labeling for the validation set. For performance evaluation, we
collected an additional dataset for each category using the image search functionality
of the Google and Bing search engines, resulting in roughly 500 positive images per
category. To find negative examples, we first created a large collection of images by
performing image searches on Google and Bing for each of the remaining 999 ImageNet
categories. From that, we randomly chose our negative examples to match the number
of positive ones.

Cascade configurations

We used the Keras [27] deep learning library running TensorFlow [6] to train and execute
the CNNs used in our cascades. We varied several network architecture hyperparame-
ters to create a range of models for each binary predicate: the number of convolutional
layers (1, 2, 4), the number of convolutional nodes in each layer (16, 32), and the number
of nodes in the final dense layer (16, 32, 64). These hyperparameters provide a range
of reasonable options similar to those used in other systems (e.g., [72]). We also varied
the size of the input images (30x30, 60x60, 120x120, 224x224). For each input size, we
used five different image representations: full 3-channel color, each of the individual
red, green, and blue color channels, and single-channel grayscale. In all, we constructed
360 simple CNNs for each binary predicate.

We also included in our pool of classifiers a fine-tuned implementation of ResNet50 [56]
that had been pre-trained on ImageNet. Fine-tuning was done using standard tech-
niques; the final 1000-class classification layer was replaced with 64-node ReLu dense
layer, followed by a 2-node softmax layer for the output of the binary prediction. These
layers were trained using the same training set as the smaller, specialized classifiers.

For each classifier, we calibrated its decision thresholds using the validation dataset
for five precision settings: 0.91, 0.93, 0.95, 0.97, and 0.99. We use each classifier variation

63

to construct cascades of one and two levels, as well as three-level cascades with ResNet50
as the final layer (see Section 4.8.6), resulting in 1,301,405 possible cascades per predicate.

Deployment Scenarios

The data handling and preprocessing costs of particular deployment scenarios can have
a large effect on the optimal choices in classifier cascades. To demonstrate this, we ana-
lyzed our cascades under four different scenarios, corresponding to those in Section 4.3:

• Infer Only — This scenario ignores data handling and transformation costs—only
inference costs (i.e., only the time required to evaluate the CNN) are considered
when computing throughput, a practice commonly used in computer vision liter-
ature. However, as we show, the fastest inference often does not imply the fastest
end-to-end query performance in practical deployments.

• Archive — This scenario includes the cost of loading a full-size image off an SSD
hard disk, as well as the cost of resizing that image to the appropriate input size for
a given classifier, as might be done when querying an existing corpus of archived
image or video data.

• Ongoing — This scenario corresponds to deployments where images are resized
on ingest before saving to disk. Load times are smaller, since the full-sized image
is not loaded from disk if not needed for a particular classification. This scenario
may occur when setting up a data collection system in tandem with a query system;
proper image sizes for object detectors are known and initial transform costs can
amortized over many queries.

• Camera — This scenario only includes the computation costs of resizing the im-
ages, as in deployments where loading costs are negligible (e.g., images are loaded
to memory directly from a connected camera sensor).

Data handling costs for the above scenarios only occur once for a given input: if a
cascade includes two classifiers that use, for example, a 30x30 pixel red channel input,
the costs to create that input are incurred only once per image.

Cascade evaluation

To compare two sets of cascades in terms of throughput, we compute the area to the
left of the curve (ALC) created by those points in this plot over a given accuracy range.
Because a Pareto frontier is a collection of points and not a curve, we interpolate the

64

curve as a step function. Dividing the ALC by the size of the accuracy range give the
average throughput for cascades in the Pareto frontier. Dividing the ALC of one frontier
by another gives the speedup of the former over the latter. For fair comparisons, we use
the accuracy range for the full set of cascades for each configuration and choose the
smallest said range. In some cases, we compute the ALC for a Pareto frontier’s cascades
in a different cost context. These cascades are no longer a strict Pareto frontier, but we
can still compute ALC for comparisons. When comparing Tahoma to a single classifier,
such as against our ResNet50 baseline system, we choose the optimal cascade whose
accuracy is both higher and closest to the accuracy of the single classifier.

Hardware

We used an Amazon EC2 p2.xlarge instance with an NVIDIA Tesla K80 GPU to do
training, inference, and throughput measurements for all CNNs. For operations suited
to parallel CPU processing—such as finding the Pareto frontiers for our cascade sets—we
used a 32-core (2.8GHz) Opteron 6100 server with 512GB RAM.

4.8.2 Comparison Against Baselines

Summary: Tahoma yielded significant throughput gains over our baselines under a
variety of deployment scenarios.

Overview — We compare Tahoma against a fine-tuned, pre-trained ResNet50 imple-
mentation [56], as well as a set of non-optimized cascades, which comprise a subset
of Tahoma’s design space. These two-level cascades terminate in a full-cost classifier
(i.e., ResNet50) and use full-color 224x224 images as input. These are similar to design
to CNN-based cascades in previous work [72]. An illustration of the difference in the
design spaces is shown in Figure 4.6, with Tahoma’s available cascade options being
markedly larger due both the use of data transformations on the inputs and the addi-
tional cascade depth.

Throughput gains — Figure 4.7 shows the performance of Tahoma compared to our
baselines for the four deployment scenarios from Section 4.8.1. When only considering
inference speed (i.e., Infer Only), Tahoma yielded a 98x speedup over using a fine-
tuned ResNet50 classifier alone, averaged over our 10 predicates. Tahoma showed a 35x
average speedup over the accuracy range provided by the Baseline cascades. At the ac-
curacy level provided by the fastest Baseline cascade for each predicate, Tahoma yielded
a 59x speedup on average. For the other scenarios, data handling overheads reduce the

65

0 200 400 600 800 1,000 1,200 1,400
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Throughput (fps)

A
cc

ur
ac

y

All Cascades
Baseline Cascades
Baseline Optimal
Tahoma Optimal

Figure 4.6: A comparison of the cascade space of Tahoma (gray) compared to that of
our Baseline cascades (red). Tahoma’s Pareto-optimal points are in blue. This example
uses our komondor binary predicate under the Camera cost model.

Infer Only Ongoing Camera Archive

101

102

Deployment Scenario

Ta
h

o
m

a
sp

ee
du

p

ResNet NoScope (fastest) NoScope (average)

Figure 4.7: Average speedup values of Tahoma over baselines. ResNet50 and Base-
line (fastest) comparisons use the optimal cascade with the nearest higher accuracy to
ResNet50 and the fastest Baseline cascade, respectively. Baseline (average) shows average
speedups over the Baseline accuracy range.

66

Infer Only Ongoing Camera Archive

102

103

104

Cost Model

Th
ro

ug
hp

ut
(f

ps
) ResNet50 Tahoma

Figure 4.8: Throughput of Tahoma and ResNet50 of fastest cascades for each cost model,
averaged over 10 binary predicates.

speedup gains. Nevertheless, Tahoma achieves substantial speedup in all scenarios, and
even the most expensive scenario that requires costly loading and transformation costs
(Archive) shows a nearly 2x speedup versus both ResNet50 and Baseline.

If speed is the priority, Tahoma allows a user to trade accuracy for a large through-
put boost. Figure 4.8 shows Tahoma’s fastest optimal cascade compared to ResNet50.
Across all predicates, the fastest cascades were not true cascades at all: they comprised
a single specialized classifier with adequate accuracy and high throughput. In the Infer

Only scenario, Tahoma achieved an average throughput of 20,926 frames per second—
280 times faster than our fine-tuned ResNet50 models, which had an average throughput
of about 75 frames per second. The more realistic Ongoing scenario still achieves 5484
frames per second—an 81x speedup. These large speedups come at a price, though:
under Infer Only, the Tahoma’s fastest cascade was on average 12% less accurate than
ResNet50. Of course, as Figure 4.6 shows, the optimal cascades provide a rich space of
throughput and accuracy tradeoffs, so users can find the right balance for their needs.

4.8.3 Comparison with NoScope

Because NoScope [72] is the existing system most closely aligned with our work, we
ran experiments to directly compare the two systems. For these experiments, we used
the code and datasets (coral and jackson) provided by the NoScope authors1. The other
datasets presented in the NoScope paper were not publicly available. We used the de-
fault parameters provided in the NoScope code for each dataset and report results for
both systems with a target precision of 0.95 used to select cascade thresholds. YOLOv2 [124]
was used as the final, expensive classifier for both systems. Both NoScope and Tahoma

were run on AWS p2.xlarge instances. Note that CPU and GPU specifications differ be-

1https://github.com/stanford-futuredata/noscope

67

https://github.com/stanford-futuredata/noscope

coral jackson
0

2, 500

5, 000

7, 500

10, 000

Th
ro

ug
hp

ut
(f

ps
) NoScope Tahoma+DD

Figure 4.9: Comparison with NoScope. Tahoma+DD is Tahoma with a simulated
NoScope-style difference detector.

tween our NoScope installation and the one in the NoScope paper, so raw performance
numbers differ between our experiments and theirs.

To compare NoScope and Tahoma on an equal footing, we implemented Tahoma+DD,
which is Tahoma with a simulated difference detector equivalent to that used by No-
Scope. The difference detector measures the similarity between the current frame and
previously seen ones and reuses previous results if the compared frames meet a sim-
ilarity threshold. This mechanism is orthogonal to our work and increase NoScope’s
throughput by avoiding many classifier executions. To create Tahoma+DD, we recorded
frame similarity using NoScope’s difference detector and reused Tahoma’s results for
frames meeting NoScope’s threshold instead of classifying them.

Additionally, both systems used basic frame skipping, only processing one of every
30 frames. The results shown here include only those frames actively processed by
each system, not those skipped this way. Tahoma+DD results are measured in the
Infer Only deployment scenario, which matches NoScope’s throughput measurements.
Tahoma+DD results use the Pareto-optimal cascade with the closest but higher accuracy
level to that of the NoScope for each dataset.

Figure 4.9 compares the throughput for NoScope and Tahoma+DD for the two public
NoScope datasets. For both datasets, Tahoma+DD significantly outperformed NoScope.
On coral, Tahoma+DD system reached a throughput of 10,700 fps, while NoScope’s
throughput was 3494 fps, giving Tahoma+DD a 3.1x speedup over NoScope. On jackson,
Tahoma+DD system reached a throughput of 7,150 fps, while NoScope’s throughput
was 260 fps, giving Tahoma+DD a 27.5x speedup over NoScope2.

2As may be apparent from the results, the coral dataset was a much simpler classification task than
jackson, with far more reused results from the difference detector for coral (25.2% reused) than for jackson
(3.8% reused). NoScope used the expensive YOLOv2 model for a significant number of frames on jackson,
as well, leading to its slow performance. Tahoma+DD’s much larger cascade design space allowed it to
find an accurate cascade that was able to avoid calling YOLOv2 for all but a few frames.

68

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y
amphibian

0 500 1,000 1,500

0.6

0.8

Throughput (fps)
A

cc
ur

ac
y

fence

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y

scorpion

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y

wallet
All Cascades Camera Infer Only

Figure 4.10: Pareto frontiers for several of our binary predicates, under the Camera cost
model (blue), compared to cascades that appear in the Pareto frontier for the Infer Only

model (orange).

4.8.4 Deployment Scenario Awareness

Figure 4.10 shows (in blue) the Pareto frontier of all classifier cascades for the Camera

cost model for several of our binary predicates. Additionally, the cascades that would be
Pareto-optimal for each query under the Infer Only model are shown in orange. These
orange points form a non-convex curve, since they are not a Pareto frontier under the
depicted Camera cost model. Each cascade may be impacted differently by loading and
transformation costs, so their throughputs can change relative to one another in different
deployment scenarios. With few exceptions, the optimal cascades under Camera are
different than the Infer Only ones. It is clear that if the data handling costs of a scenario
like Camera were ignored and the “optimal” cascades were chosen only considering
inference costs, considerable throughput gains would be missed.

Table 4.3 shows the difference in throughput in our deployment scenarios when cas-
cades are chosen in a scenario-oblivious way (i.e., when only inference costs are consid-
ered, as in Infer Only) versus when the cascades are chosen taking scenario costs into
consideration. Because Tahoma provides a tradeoff between accuracy and throughput,
we show results for four different levels of permissible accuracy loss. A user, for exam-
ple, may decide that a 5% decrease in accuracy is acceptable in order to process images
faster. Then, in the Camera scenario, the system’s throughput would increase by 59.5%
if cascades were chosen taking data handling costs into consideration, instead of being
oblivious to these costs and only considering the classifier’s inference.

69

Table 4.3: Throughputs, given in frames per second (fps), for various deployment sce-
narios when the cascade choices chosen in either oblivious or aware of scenario data
handling costs. Here, permissible accuracy loss indicates how much accuracy the user is
willing to trade for an increase in throughput. Scenario awareness can lead to significant
throughput increases, shown in parentheses.

Permissible
accuracy loss

Scenario: Archive Scenario: Camera Scenario: Ongoing

Oblivious Aware Oblivious Aware Oblivious Aware

0% loss 57.5 58.3 (+1.4%) 107.1 107.1 (+0.0%) 111.9 111.9 (+0.0%)
2% loss 85.1 91.1 (+7.1%) 267.5 324.6 (+21.3%) 985.2 985.3 (+0.0%)
5% loss 103.1 117.1 (+13.5%) 344.7 549.9 (+59.5%) 1938.7 2000.8 (+3.2%)

10% loss 130.6 142.0 (+8.7%) 568.0 806.8 (+42.0%) 3669.1 3669.1 (+0.0%)

4.8.5 Analysis of Input Transformations

Tahoma uses several different input transformations to expand the space of simple clas-
sifiers used to construct cascades. To see how these affect Tahoma’s performance, we
constructed four cascade sets that used varying subsets of the transformations: None,
which used no input transformations (i.e., all inputs are 224x224 three-color-channel im-
ages); Color Variations, which used only the transformations that extract the color chan-
nels or create grayscale images; Resizing, which used only transformations that reduce
resolution; and Full, which used the full set of transforms included in Tahoma.

Figure 4.11 shows the average throughput for each cascade set for each binary pred-
icate, computed using the ALC method described in Section 4.8.1. We computed these
values over the accuracy range of the Full cascade set for each predicate. Image resizing
operations by far have the largest impact on throughput, giving nearly a ten-fold increase
over None. The resized 3-channel, 30x30 pixel input images equate to 2,700 input values,
while the full-sized 3-channel, 224x224 pixel images equate to 150,528 values; this huge
reduction in input size results in orders of magnitude fewer tensor operations during
CNN inference. Likewise, reducing the color depth of an image from three channels
to one reduces the CNN’s computational requirement by two thirds. These transforms,
especially resolution reduction, are critical to high query throughput; they enable much
smaller CNNs, more than paying for the transforms’ computational costs.

4.8.6 Analysis of Increased Cascade Depth

Each additional level added to the cascade exponentially increases the size of the cascade
design space. Evaluating the 1.3 million cascades used in results reported elsewhere in
this section is fast, taking about 1 minute on average per binary predicate. However,

70

acorn amphibian cloak coho fence ferret komondor pinwheel scorpion wallet
0

1, 000
2, 000
3, 000
4, 000
5, 000

Binary Predicate

A
vg

.T
hr

ou
gh

pu
t

(f
ps

) None Color Variations Resizing Full

Figure 4.11: Average throughput of optimal cascades for cascade sets that use different
input transformations.

this cascade set includes a full cross-product only for one- and two-level cascades, with
three-level cascades restricted to those with fine-tuned ResNet50 as the final classifier. If
we considered all possible three-level cascades from all available models, our cascade set
balloons to about 45 million distinct cascades, requiring about 40 minutes of evaluation
time per predicate. Evaluating a full cross-product of four-level cascades is intractable
(roughly 3604 total cascades).

Figure 4.12 shows how a cascade set’s Pareto frontier evolves as the maximum depths
of the cascades increase. Each set of cascades includes all depths up to its maximum. A
“one level” cascade simply corresponds to our set of basic classification models. Where
a cascade depth indicates “+ ResNet50”, we append ResNet50 as an additional final level
of the cascade. That is, "Two level + ResNet" cascades comprise two levels populated
by any model from our collection, followed by a final ResNet50 level. The addition of
a ResNet50 level effectively doubles the number of cascades in a cascade set. Adding a
full additional level (drawn from our full set of models) increases the cascade set size
and evaluation time exponentially.

As can be seen, increasing the depth of the cascades has diminishing returns to
throughput at query time, while greatly increasing computational cost of cascade eval-
uation during system initialization. Moving from “Two level + ResNet50” to “Three
level (full)” only increases average throughput by 1.0%, while increasing evaluation time
nearly 40-fold to just over 40 minutes. Thus, for our experiments, we have restricted cas-
cades to at most “Two level + ResNet50”.The minimal increase in throughput capabilities
of additional layers is not worth the huge increase in evaluation time.

71

0 200 400 600 800 1,000 1,200 1,400

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Throughput (fps)

A
cc

ur
ac

y

1 level
1 level + ResNet
2 level
2 level + ResNet
3 level
3 level + ResNet

Figure 4.12: Evolution of Pareto frontier as cascades depth increases, shown for our
fence predicate in the Camera scenario. Other predicates and scenarios showed similar
results. As cascades get deeper, Pareto frontier improvements become negligible.

4.9 Related Work

Tahoma builds upon a rich history of work in the database, image processing, and
machine learning communities.

Query systems for visual data — A number of database and query systems targeted at
visual data have been developed over the past two decades [63, 138]. Early approaches
involved manual textual labeling (e.g. [137]) or extracting rudimentary low-level features
(e.g. [46, 125]). Later systems performed additional semantic object extraction, using
hand-written functions and statistical methods to define objects [117, 118]. That work,
however, precedes the recent deep learning revolution in computer vision and relies on
highly manual object extraction methods that limit system applicability and scale.

Work that extended relational query methods over visual data [50,87,94] may be use-
ful in extending query capabilities in a system like ours. Fagin’s work with the Garlic
system [42], for example, deals with a number of issues particular to querying multime-
dia databases and the fuzziness of data extracted from multimedia data. However, the
data handled by Tahoma does not exhibit the same kind of fuzziness as Garlic, which
is concerned with approximate matches and image similarity. Our system deals with

72

binary predicates that—while based on probabilistic classifier output—are considered
strictly true or false at query time.

There has been a recent explosion of interest in query systems for visual data due to
advances in classifier accuracy made possible by convolutional neural networks and to
the massive datasets made possible by cheap storage and image sensors. NoScope [72],
for example, uses several techniques, including classifier cascades, to accelerate query
processing over video. Our key departure from this prior work is to include transforma-
tions of the input image representation within our query plans, drastically expanding
the design space of classifier cascades and enabling much smaller models and order-of-
magnitude throughput improvements. We compare our our system with NoScope in
Section 4.8.3.

BlazeIt [71] optimizes queries for objects found in video, in part by using small,
specialized CNNs to quickly answer queries where possible. Like NoScope, these spe-
cialized CNNs do not make use of Tahoma’s input transformations. The rich space of
Tahoma’s specialized CNNs, however, could potentially be integrated into a query op-
timizer like BlazeIt. Focus [61] is a system that indexes objects in live video. It too,
uses specialized CNNs to speed up queries. Focus varies the resolution of input im-
ages when creating the set of specialized CNNs, though it does not use Tahoma’s other
input transformations. Additionally, Tahoma’s use of cascades of multiple specialized
CNNs (rather than a single CNN) creates a design space of millions of possible special-
ized cascades and a much richer set of Pareto-optimal choices. Further, Tahoma can
quickly evaluate its cascades in deployment-specific settings, determining the cascades
optimal for the deployment’s current operating characteristics. This could be particularly
useful in dynamic scenarios, such as with networked cameras with varying bandwidth
constraints. VideoStorm [157] is a system that automatically adjusts parameters like res-
olution and frame rate to maximize output quality of computer vision algorithms, based
on computing resource availability in large clusters.

Image classification — Deep CNNs have revolutionized the field of computer vision,
leading to breakthroughs in image classification and detection capabilities in recent
years. The ImageNet competition [127] has had as one of its core challenges a 1000-
category, million image classification task. A deep CNN was first used in 2012 and
greatly reduced the best error rate [59], and the error rate has dropped in the subsequent
years to near or better than human performance on the same task (e.g, [56,62,65]). Deep
CNNs can now facilitate semantic content extraction from images and videos, support-
ing the development of large scale visual analytics databases. Deep CNNs are too slow,
however, in their current incarnations to be applied at scale. Research in speeding up

73

CNNs has seen some recent interest (e.g., SqueezeNet [64] and MobileNets [?]). Tahoma

is essentially classifier-agnostic, so these and future networks can be incorporated into
our cascading techniques.

Classifier cascades — Our work leans heavily on previous research into classifier cas-
cades. One of the first works to use the technique was Gama’s Cascade Generaliza-
tion [47], in which data was classified by a cascade of classifiers that each subsequently
added additional features to the input vector. Another famous early use was in the
Viola-Jones face detector [147], which used a series of classifiers based on simple image
features to detect faces in photographs. More recently, cascades have been used to ac-
celerate the slow inference speeds of deep neural networks [25, 72, 142]. Other work has
used cascades to improve accuracy, rather than speed [146]. Chen et al. [26] used clas-
sifier cascades to reduce the cost of feature extraction for text. Our system, rather, uses
feature extraction (in the form of input transformations) in cascades to create smaller,
faster models. We show how classifier cascade-driven query optimization can be ex-
ploited in a visual data analytics system.

Model selection and management — Tahoma’s general method of generating a large
number of model (and cascade) variations and selecting among those can be seen as
a form of model selection [84]. A number of recent data systems have been proposed
or developed to assist in machine learning model creation, management, and deploy-
ment [17, 31, 43, 79]. These systems have been developed with general machine learning
tasks in mind, while Tahoma focuses directly on performing queries and analytics over
visual data. Because of this tight focus, we can take advantage of characteristics of
CNN architectures and properties of image and video data. Our model generation and
selection methods could be integrated with systems like Velox [31] or MacroBase [17],
whose functionality in serving models and handling large amounts of fast data would
be complementary to our work.

4.10 Conclusion and Future Work

In this paper, we have presented a method of accelerating content extraction from large
corpora of visual data, with the aim of supporting visual analytics queries. We showed
how constructing a huge number of classifier cascades from a wide variety of CNN-
based classification models can yield large speedups in content extraction. Our cascades
applied input transformations on the raw image corpus to further reduce classification
costs. We also demonstrated the necessity of being deployment scenario-aware—that

74

is, considering costs such as those for data loading and image transformation—when
evaluating the accuracy and throughput tradeoffs of classifiers.

While this paper primarily focused on image classification tasks, it is just the begin-
ning of series of work that will develop a data analytics for visual data that will take
full advantage of spatio-temoporal locality present in adjacent video frames to further
accelerate content extraction. We hope to include new state-of-the-art computer vision
methods to extract more complex data, which will then allow the processing of complex
analytical queries over video.

75

Chapter 5

Column and Table Embeddings for
Data Integration Tasks

5.1 Introduction

Myriad tasks in data management can benefit from the application of machine learning
models: index construction [78], query optimization [74, 100], and data integration [38]
have all recently seen the application of deep learning to their domains. A problem
with applying deep learning (and most other machine learning methods) to the data
management domain is how to best represent the data being input into the models.
Relational tables, for example, do not naturally translate into a typical vector used as
machine learning input. Our goal with this work is to demonstrate suitable representa-
tions for relational tables for deep learning for data management tasks, with a focus on
data integration.

One advantage of deep learning over other, simpler machine learning methods is that
input features often do not have to be manually created; raw data (e.g., pixel values for
an image) can be input directly into the network, and given enough training data, the
complex architecture of the deep network can learn the features (essentially, as encoded
by the weights of the network) on its own.

Indeed, this works well with raw data that is represented by a dense vector that
encodes some sort of relationships between each element, as with the pixel values of
images: an image is represented by a vector where each member is a consecutive pixel
(or color channel of a pixel for color images where each pixel consists of a red, green,
and blue intensity value). In an image, there is typically some sort of relationship be-
tween adjacent pixels, and the deep network can learn higher order features—edges and
corners, perhaps—from those simple building blocks, given a large enough training set.

76

In other problem domains, such as natural language processing (NLP), however, input
data might not be naturally represented by a dense vector.

In many NLP tasks, the input to a model is a word or series of words that are part of a
vocabulary. A common way to represent input like this is with a one-hot encoding, where
the input is a vector with the length of the size of the vocabulary, with each element
representing a word. The element for a given input word has the value 1, while the rest
of elements have the value 0. This has a major shortcoming, though: this representation
is a very long, extremely sparse vector, with little or no semantic relationships between
elements. A very large training set would be needed to learn such relationships, and for
many tasks, such a dataset (at least a labeled one) does not exist and collecting such data
would incur great expense.

Thankfully, researchers have developed a technique to encode members of a vocabu-
lary as a dense vector, or an embedding in a vector space. Perhaps one of the most famous
such embedding techniques is the now classic word2vec [104, 105]. Others include the
successful GloVe embeddings [115] and the more recent fastText [20] and ELMo [116]
embeddings. In all of the cases, semantic relationships between words (or even parts of
words, in the case of fastText and ELMo) are learned and encoded in the vector repre-
sentations of each word, based on models trained over large corpuses of text. To perhaps
oversimplify, these models learn the relationships between words based on their context
in the training corpus, such that the resulting vector encodings for two semantically sim-
ilar words will be relatively close to one another in the vector space, compared to two
words that have less semantic relatedness to one another. For example, Mikolov et al.
demonstrate that word2vec associates “Beijing” with “China” much more so than with
“Portugal” [105].

Data management tasks using deep learning are similar in some aspects to NLP, es-
pecially in the data integration domain. Consider schema matching, where two tables
are compared to see if their schemas match sufficiently to perform an operation between
the two tables like a union or a join. In schema matching, the semantic meaning of
columns can be compared to determine match suitability. This has been done by match-
ing the contents of a column with entities in a knowledge base (e.g., YAGO or DBPedia)
and then using the majority class of the matched entities as the semantic type of the
column [18, 36]. When a table corpus is derived from heterogeneous sources of varying
quality, however, it can be rare to match table values with a knowledge base (Lemh-
berg and Bizer [90] found that only roughly 5% of the 90 million tables in the Web Data
Commons (WDC) 2015 web tables corpus [91] contained at least one entity that could
be found in DBPedia). A better method to represent the semantic relationships between

77

relational data—like those captured by word embeddings in the NLP domain—-would
at the least allow for better coverage for real-world datasets.

Technical challenge — Relational data is central to many tasks that benefit from ma-
chine learning. Performance on these tasks would be improved by finding a way to
represent attribute values, columns, and entire tables that is suitable for input into ma-
chine learning models, while capturing semantic relationships between elements in the
corpus. This project aims to develop an effective way to embed relational data into a
vector space that preserves relationships between table elements, similar to word em-
bedding methods like word2vec. A further challenge is that within a large web tables
corpus, the variety of elements within the tables is huge and of a wide range of sizes,
making creating a definitive vocabulary of reasonable size difficult.

Our approach — Our approach to embedding relation data in a vector space is to begin
with a existing method that builds word embeddings based on letter n-grams within
words to allow for words not seen in the training corpus to still be represented in the
vector space. We train fastText [20] on a large subset of a web tables corpus, where
each “word” is an element in a table, whose context is the column in which it appears.
We then aggregate these elements by finding the mean for all elements in a column
to create a column embedding–similar to a bag-of-words method of creating sentence
embeddings from word embeddings. Likewise, a table embedding is created by finding
the mean of all elements of the table. Each of these embeddings has a use in various
data management tasks, which we describe in Section 5.3.

Organization — This chapter is organized as follows:

• We discuss relevant background material, including word embeddings and the
neural network architectures used in our models, in Section 5.2.

• We describe our target data management tasks—column labeling, table titling, key
column identification, and schema matching—in Section 5.3.

• We detail our methods in Section 5.4.

• We prototype our methods in a system called Grover and show our experimental
results in Section 5.5.

We follow with a discussion of related work in Section 5.5.6.

78

Input Vector Projection Layer Softmax Output
Layer

…

Figure 5.1: The basic skip-gram model used by word2vec is a neural network with one
hidden layer. The input vector is a one-hot vector describing the vocabulary used by the
model. The projection layer has n nodes with no activation functions. The output layer
has nodes representing the vocabulary members, with softmax activations to predict the
context words. The output of the projection layer is what is used as the word embedding
vector.

5.2 Background

In this section, we will provide some background on methods and algorithms that influ-
ence this work.

5.2.1 Word and Sentence Embeddings

Word and sentence embeddings have become a key component of deep learning-based
NLP systems. The most successful methods are sometimes called universal embeddings,
because they are pre-trained on a large corpus of text and act as a form of transfer
learning, where relationships between words or sentences are learned from that large
corpus and then used as a starting point for an NLP system. Embeddings used in this
way can greatly improve the performance of a downstream application, especially if
that application has a smaller training set that would preclude learning some of those
pre-learned relationships.

79

The word2vec [104, 105] embedding method had a huge impact on the field, produc-
ing dense word vectors for text corpora that still rival more recent methods. The method
uses a skip-gram model1 to produce embeddings. The skip-gram model (illustrated in
Figure 5.1) essentially tries to predict a word that appears in context with a given word.
That is, given two words that appear close to one another in the text (first, second), the
model will be trained to predict second when given first as input. For example, given
the text “a long time ago in a galaxy far far away” and a context window of size 2, for
the word “ago”, the model will be trained with the word pairs (ago, long), (ago, time),
(ago, in), and (ago, and). A large text corpus produces a very large number of these pairs,
which can lead to long training times. Mikolov et al. introduced number of efficiency
tricks to train a word2vec embedding model quickly [104].

Several years later, a project which might be considered a successor to word2vec was
introduced: fastText [20]. This method, rather than using a word as input and output,
the model uses the sum of vectors representing character n-grams derived from a word
as input to a skip-gram model. Thus, for the word “galaxy”, 3-length n-grams would be
gal, ala, lax, and axy, for the input word “galaxy”. Vectors representing these n-grams
are summed and after training, this summed vector for the input word is used as a
word embedding. This n-gram-level encoding allows for the model to represent words
that may not appear in the original corpus, with the assumption that words that share
n-grams have some amount of similarity to one another.

Many other methods of producing word embeddings have been developed, including
GloVe [115], which is based on global co-occurance counts of words in a corpus, and
ELMo [116], which uses a more sophisticated LSTM-based model to develop a language
model over a text corpus. In this paper, we use fastText as the basis for our embeddings,
because of the speed in training of the model and high quality of the results.

There has also been much interest in creating sentence embeddings, which embed an
entire sentence in a dense vector space. While a number of effective sophisticated meth-
ods have been developed to create sentence embeddings, it has been found that a sur-
prisingly effective yet simple method is to take a bag-of-words approach and average a
sentence’s word vectors [14, 30, 149]. Because of this simplicity and effectiveness, we use
this method to create embeddings for columns and tables.

80

A

ht

Xt

A

h0

X0

A

h1

X1

A

h2

X2

A

hn

Xn

=

Figure 5.2: A recurrent neural network, on the left. An RNN can be conceptually “un-
rolled,” as is shown on the right side of the diagram.

5.2.2 Recurrent Neural Networks

A column in a data table can be seen as a sequence of values, and as such, a natural
model for making predictions with a data column as input is a recurrent neural network
(RNN) [40, 97]. An RNN accepts as input a sequence of values (X0, X1, . . . , Xn), and
as shown in Figure 5.2, when each value Xt is processed as input, the RNN’s previous
hidden state is also provided as input. This allows the model to essentially have a
memory of previous inputs when providing the output for all subsequent outputs.

One particular architecture of RNNs is the long short term memory, or LSTM [60].
LSTMs were designed to combat certain deficiencies found in early RNNs in handling
long-term dependencies (e.g., trying to predict the last word in long sentence when
important context is given early in the sentence). LSTMs maintain a “cell state” in
addition to a typical hidden state. As a sequence is processed, the LSTM can forget or
modify this cell state, depending on what it has seen previously. This flexibility in its
memory allows it to maintain long-term dependencies, while ignoring information that
is no longer important to the remainder of the sequence. We use LSTMs in this paper as
our RNN architecture.

5.3 Tasks

There are a number of important data integration tasks that can be improved by using
table embeddings. In this project, we focus on four particular tasks to illustrate the utility
of column and table embeddings with our Grover prototype:

1They also present a continuous bag of words (CBOW) model, but the skip-gram method has tended
to be the better of the two and is typically the model used.

81

1. Column Labeling – The aim of this task is, when given a relational table without
labels for its columns, determine the best labels for each column.

Previous methods [18, 36] have used databases derived from an ontology such as
Google Knowledge Graph or YAGO to look up the entity each cell corresponds to,
and then to look up the class of each entity. If a class is 50% or more of a column,
that class is used as the label, otherwise, the highest scoring class is used.

2. Table Titling – Perhaps less important when performing relational operations on
data tables than when presenting them in human-readable form, determining ap-
propriate titles for tables is nonetheless important in providing proper context to
data users.

Previous methods [91] extract titles for web tables from caption text surrounding
the table on its host web page. In cases where no suitable text can be found, titles
cannot be provided for the data.

3. Key Column Identification – Identifying the key column of a table can be very
important for later operations, such as table joins or entity matching. The Web
Data Commons 2015 Web Table Corpus [91] defines a key column of a table as
the column that contains the names of the entities represented by each row. For
that corpus, key columns were identified by determining if a column had a high
number of unique values that were strings of relatively short length.

4. Schema Matching – Schema matching involves determining whether two tables
have compatible schemas, such that operations like JOIN or UNION can be suc-
cessfully performed between them. Many schema matching techniques have been
developed over the past decades; we will be concentrating on those useful for per-
forming table unions [108] and table joins over a corpus of web tables [24, 39, 91].

Other tasks, that we save for future work include data augmentation [23], where
missing data in a web table can be extracted from surround text on the containing web
page, and knowledge base matching [132,159], where web tables are matched to existing
knowledge bases to facilitate downstream applications like knowledge base completion
or table extension.

82

5.4 Algorithms and Methods

In this section, we detail the methods used to create various embeddings for relational
data, as well as the machine learning architectures used to employ these embeddings
towards the tasks described in Section 5.3.

5.4.1 Column-value Embedding

In order to use a single column value as an input into a neural network, we first created
a vector representation of the value, similar to the use of word embeddings in NLP ap-
plications. Because considerable work has been done in this area in the NPL domain,
we used an existing method, fastText [20], to create these vector representations. As we
discussed in Section 5.2, fastText is based on the continuous skip-gram model used in
word2vec [105], but instead of limiting the model to the words appearing in the train-
ing corpus, fastText builds its model using character n-grams, allowing for vectors to
be constructed for out-of-dictionary words. This is important when constructing vec-
tor representations for values found in a huge corpus of general web tables, since the
contents of individual table cells are incredibly varied and are often multi-word phrases
(and thus, creating a comprehensive dictionary is infeasible).

5.4.2 Column Labeling

For the column labeling task, we have tried several methods, with experimental results
reported in Section 5.5.2.

LSTM on a Single Column

The architecture for this first method comprises an LSTM network, whose input is a
sequence of column value vectors and whose output is a vector of the possible column
labels. Though a prediction is generated after each element of the sequence is processed
by the LSTM, only the output from the final element is used as the predicted label.

Each column is treated independently in this method, which limits its performance.
Consider the case of a column containing a series of integers: with only the integers as
a source of information, a model may be unable to determine if the values represent
temperatures, ages, or strike outs. We find that in cases like these, the model was able
to discern some column labels based on apparent properties of the column, like value

83

range2: for example, a column with values ranging from 20 to 40 was correctly labeled
“low temp” while one with values between 60 and 80 was correctly labeled “high temp”.
(Note that prior to any processing, we normalized the column labels in our training set
by converting all to lower case. We did not combine similar labels—both “low temp” and
“lo temp” are present in our dataset, for example. Combining semantically similar labels
such as these is a standard preprocessing step that could be done to further improve
accuracy if these methods were to be deployed in a real world system.)

Full-table LSTM Label Predictions

To overcome the problems created by treating columns independently, we can train a
model that uses all of the columns in a table as input. Like we can treat a column of data
as a sequence for input into an LSTM model, we can think of a table as a sequence of
columns that can likewise be used as a model’s input. Of course, a column of values can-
not be directly used as a single input, so we must create a suitable vector representation,
or column embedding.

Column Averaging — The idea of a column embedding is similar to that of a sentence
embedding in NLP applications. Sentence embedding creates a vector representation
of a sentence, which can then be used as input into a classifier or other model. As we
discussed in Section 5.2, simply averaging the results of word embeddings has been
found to be surprisingly effective [14, 69, 150]. Extending this to data tables, we can
create column embeddings by averaging the value embeddings within the column. These
column embeddings can then be used for our column labeling task by using the columns
embeddings for the table as an input sequence to an LSTM model, with the output being
the sequence of labels. Given that we have the entire sequence on hand, and that we are
predicting labels for each member of the input sequence, we can use a bidirectional
LSTM model [131]. This type of model essentially combines two LSTM networks, one
which looks at the sequence beginning-to-end, and the other from end-to-beginning. The
outputs of both directional LSTMs are concatenated and used as input into a final fully
connected linear layer with softmax outputs to predict the sequence of column labels.

LSTM Output Vectors — Beyond simply averaging the values in a column to produce
a column embedding, we can create column embeddings by using the output of inter-
mediate layers of a neural network trained on a related task, similar to the common
practice of using image embeddings extracted from deep networks trained to classify

2Properties like these were not explicitly provided to the model; all features were automatically learned
by the model from the input vectors.

84

ImageNet images [83]. Given that we have already created an LSTM model to predict
column labels for a single column, then, we can use the final output of the LSTM layer
as a vector representation of the entire column. The architecture for a full table column
labeling network using the vectors is the same as the previously described network using
column averaging embeddings. We test both of these methods for column embeddings
in Section 5.5.2.

5.4.3 Table Titling

When predicting an appropriate title for a data table, the entire table should be consid-
ered as input to the model; thus, for this task we based our methods on the full-table
LSTM models used for column labeling. Further, we focused on using the column-
averaging method to create column embeddings over using LSTM output vectors due to
the much faster training speed (essentially training a single LSTM versus training one
per column plus one for the table) and comparable accuracy (see Section 5.5.2) between
the two methods. One difference between this task and column labeling is that there is
just a single prediction for the entire input sequence of column embeddings. Thus, we
limited evaluation to the model to the output of the model for the final element of the
sequence.

5.4.4 Key Column Identification

The key column of a web table is the column which contains the name of the entity
represented by a row of data [91]. Any column could potentially be the key column;
however, in a random sample of 100,000 web tables in the Web Data Commons 2015
Web Table Corpus, nearly 75% of the tables had no key column or had the first column
as the key column. (A further 15% had the second column as the key column.) For the
purposes demonstrating the effectiveness of column embeddings in this paper, then, we
simplified the task from predicting which column of a table was the key column to one
of predicting whether or not the first column of the table was a key column. We used
the same column-averaging embedding LSTM architecture as the column labeling and
table titling tasks, with the output of the model being a boolean value representing key
column status of the table’s first column. We only used the model’s output for the final
element of the input sequence for this model’s predicted value.

85

5.4.5 Schema Matching

An important task applicable to many data integration tasks is schema matching, or
finding tables (typically with unlabeled schemas) within a corpus that have matching or
overlapping schemas and are thus suitable for join or union operations. In this work, we
will show that the column embeddings derived from fastText can be leveraged to find
schema-matched tables within our web table corpus.

Nearest Neighbors

Because our column embeddings are vectors embedded in a multidimensional space, we
can compute the distance between, say, a query column and the rest of the columns in
our corpus. A query column in this case is one which we wish to find similar columns
in the corpus that belong to tables that are candidates for schema matching. The ability
to quickly find candidate tables is important, since a web tables corpus can be huge and
running expensive schema matching algorithms on the entire data set can be infeasible.
Finding similar columns (and thus candidate tables) based simply on column embed-
dings can be problematic, however, especially if the column contains simply a set of
integers or other values that are difficult to semantically understand without additional
information like column headers or the column’s context within its table.

Like column embeddings can be effectively created by simply averaging the Fast-
Text embeddings of its member values, we can create table embeddings by averaging
the table’s column embeddings. This single vector embeds the table into n-dimensional
space, allowing for nearest neighbor search to be performed to find candidate tables for
schema matching to a query table. We show in Section 5.5.5 that while both column em-
beddings and table embeddings generate suitable candidate tables for schema matching,
table embeddings are much more effective.

We found that some tables do not make semantic sense for joining or unions, even
if they share nearly all the same column types. For example, one query table contained
baseball batting statistics, but each row was an aggregation over a particular batting
count (e.g., 1 ball and 1 strike, or 2 balls and 0 strikes). It does not make sense to join or
union this table with the vast majority of baseball statistics tables in our corpus, which
contain stats for individual players aggregated over entire seasons, even though they
match on all but one column (i.e., batting count versus name).

86

Schema Matching Classifier

While schema matching itself is not the focus of this work, we created an LSTM-based
schema matching classifier to predict whether or not a pair of tables are suitable for a
schema matching operation, such as a table union. Our model consists of two LSTMs,
each based on the column average LSTM used for column labeling. The two LSTMs—
one for each table—take as input a sequence of column embeddings and the final output
of each LSTM is concatenated together to form the input of a sigmoid later that outputs
a boolean prediction of whether or not the two tables match. Note that this method
does not include any schema information and solely relies on the embeddings created
from the table contents. A classifier like this would likely be improved by including such
information, but we leave implementing an improved classifier to future work. Such a
classifier may include embeddings created for the column labels themselves to encode
schema information in a suitable format.

5.5 Experiments

We performed experiments on several different tasks to demonstrate the feasibility of
applying neural network-style embeddings to data integration tasks. Experiments were
performed using our Grover prototype implemented using PyTorch [113] and executed
on NVidia GTX 1080 GPUs.

5.5.1 Data Set

For our experiments, we used data from the Web Data Commons (WDC) 2015 Web Table
Corpus [91]. To build fastText [20] vectors for column values, one million tables were
randomly sampled from the corpus, with an additional constraint that only 1000 were
selected from each web site domain. (Certain domains, such as sports statistics websites,
would be overly represented, leading the model to be biased towards those types of
tables.)

For training the various neural network models (with a slight variation for our pre-
dicting table titles experiments, described in Section 5.5.3), an additional 100,000 tables
were randomly sampled, with a limit of 100 tables per web domain. From these 100,000
tables, 10% were extracted randomly to build a validation set used to configure training
parameters, and 10% were held out at random to build a separate test set, which was
used to calculate our reported results.

87

5.5.2 Column Labeling

We tested several different methods for labeling columns, as described in Section 5.4.

Single Column LSTM

The single column LSTM treated each column independently, using only that column’s
values to predict the column’s label, as described in Section 5.4.2. Each value was first
converted to a 64-element fastText vector, and each column in the table was treated
as an independent sequence of these vectors. The set of column labels was minimally
preprocessed by converting each label to lower case. Labels that appeared less than 10
times were replaced with an OTHER token, which represented 17% of the final column
data set. There were 4475 labels in the resulting data set.

Each column in the data set was represented by a (sequence, label) pair, where sequence
was used as the input to the neural network and label was the ground truth label. Model
parameters such as number and size of LSTM hidden layers were chosen by performing a
grid search over reasonable values and selecting the best performing values as evaluated
using the validation data set. For these experiments, the LSTM had a single hidden layer
with 256 features. The output of the LSTM was input into a fully connected 4475-node
linear layer with a softmax output to predict the label associated with the input sequence.
The network was trained using a batch size of 32 over 200 epochs, where each epoch
took roughly 5 minutes to complete. The model with the lowest loss on the validation
set was selected as the final trained model.

Results — As shown in Table 5.1, the trained model for the single column LSTM (Sin-
gleCol) task had an accuracy of 45.5% over the test data set. Table 5.1 also gives the
results for up to top-k accuracy (up to k = 5), where the model’s prediction is consid-
ered correct if the ground truth label appears in the top k ranked outputs of the model.
(A top-k interpretation of the output would represent a realistic use case, where a user of
model was presented with k possible choices for labeling a column.) For a top-5 result,
the SingleCol model was 70.7% accurate.

Column Averaging LSTM

We tested two column averaging LSTM methods, one with a standard LSTM and the
other with a bidirectional LSTM. Both otherwise used the same architecture. The fast-
Text vectors for each column in the dataset were averaged using a simple unweighted
mean, giving a single 64-element embedding representing each column. Each table in the

88

SingleCol ColAvgLSTM ColAvgBiLSTM LSTMOut

Top 1 45.5% 70.0% 76.0% 74.3%
Top 2 57.5% 78.5% 82.9% 81.1%
Top 3 63.6% 82.4% 85.7% 83.7%
Top 4 67.8% 84.5% 87.3% 85.1%
Top 5 70.7% 85.9% 88.5% 86.1%

Table 5.1: Top-k accuracy for column labeling on test set.

dataset was represented by a (column sequence, label sequence) pair, where the former was
the sequence of column embeddings for a single table, while the latter is the sequence
of labels for that table. Labels were preprocessed in the same way as for the single col-
umn LSTM method, and the training regime was the same, though each epoch for these
methods took between 20 and 30 seconds, due the much smaller input sequences. The
trained models produced an output for each element of the column sequence, with each
output predicting the label for the corresponding column sequence.

Results — Table 5.1 shows results for both the standard LSTM (ColAvgLSTM) and bidi-
rectional LSTM (ColAvgBiLSTM) methods. As expected the ColAvgBiLSTM method
performed better than ColAvgLSTM, since the ColAvgLSTM model more often predicted
incorrect labels for columns early in the sequence. The bidirectional LSTM gave those
columns additional information for predictions by also processing the columns in re-
verse order, improving the accuracy on those columns. Both column averaging methods
far outperformed the single column method, which was an expected result due to the
additional context in which the predictions were made.

LSTM Output Embeddings

For LSTM output embeddings, rather than averaging the column entry embeddings,
we started with the same architecture as for the single column LSTM method above.
After training that model, the final output of the LSTM node is stored as a column
embedding, rather than used as input into a softmax layer to predict the column labels.
These embeddings are then used in a bidirectional LSTM as is done in the column
averaging LSTM method. (A standard single directional LSTM was not tested, due
to the obvious advantage of the bidirectional model shown for the column averaging
LSTMs.) This model was trained with the same regime as previous methods, with each
epoch taking roughly 5 minutes to complete.

89

Results — The accuracy results for the LSTM output embeddings (LSTMOut) were
slightly less than for ColAvgBiLSTM (74.3% vs. 76.0%). This deficiency, plus the much
longer training time (5 minutes vs. 30 seconds per epoch), leads to the conclusion that
of these tested methods, the column averaging bidirectional LSTM method is superior.

Error Analysis

Upon inspection, many of the errors in label prediction for all of the models were simply
grading errors. That is, the model predicted a reasonable label for the column, but that
predicted label did not exactly match the actual label. For example, a weather table
had a column labeled “lo temp”, while the model predicted “low temp”. In other cases,
suitable synonyms for actual labels were predicted, but were reported as being incorrect.
As previously stated, we performed very little preprocessing and normalization on the
labels; if a thorough mapping of equivalent labels was performed, the ColAvgBiLSTM
model could have reached 84% top-1 accuracy, based on an analysis of 100 randomly
sampled tables in the test set. Likewise, the ColAvgLSTM model would have reached
79% top-1 accuracy, LSTMOut reached 81% top-1 accuracy, and SingleCol reached 65%
top-1 accuracy.

5.5.3 Predicting Table Titles

In addition to labeling columns, column embeddings can be used to label entire tables
with appropriate titles, as well. In this section, we describe our experimental results
using a similar LSTM architecture with column embedding inputs to predict table titles.

Data Set

For these experiments, we again used the WDC 2015 Web Table Corpus and extracted
100,000 tables that had titles present in their corpus entries. Like the previous exper-
iment, we limited each domain to a maximum of 100 tables. With this extracted data
set, we removed tables whose titles did not appear 10 or more times (after performing
simple normalization on the titles), leaving a final dataset with 57,662 tables and 1,115
different titles. We split this final data set into three parts, with 90% of the tables in the
training set and 10% in each of the validation and test sets. The tables were partitioned
into these subsets such that tables from a particular web domain would only be present
in one subset. Domains were randomly assigned to the subsets.

90

ColAvgLSTM ColAvgBiLSTM

Top 1 69.0% 69.2%
Top 2 72.7% 76.4%
Top 3 75.9% 80.6%
Top 4 77.2% 83.3%
Top 5 77.6% 85.1%

Table 5.2: Top-k accuracy for predicting table titles on test set.

Model Architecture

Due to the success of the LSTM and BiLSTM column averaging approaches in the pre-
vious experiments, we used these same methods to predict the titles for the tables in
the above described data set. For each column, the fastText vector for each value was
averaged as before, and the 64-element column vectors was used as input to standard
LSTM and BiLSTM models. The output of each model was a produced by a softmax
layer with 1,115 elements, one for each potential column label. Only the output given by
the model for the final member of the sequence was evaluated as the predicted title.

Results and Discussion

Table 5.2 shows the top-5 accuracies for the table title prediction task using column
averaging embeddings for both the LSTM and BiLSTM models. While both the LSTM
and BiLSTM models provided similar accuracy for the top prediction (69.0% and 69.2%,
respectively), the BiLSTM provided much higher top-5 accuracy at 85.1% versus 77.6%
for the LSTM model.

In cases where the model provided an incorrect predicted title for a table, the pre-
dicted title was often close semantically. For example, for a schedule of television pro-
grams, the correct title was a certain date and the predicted title was a different date.
Or, a table had a specific title (“women’s shirts”) and a more general title was predicted
(“women’s apparel”). For many of these error cases, a more sophisticated title normal-
ization scheme would provide a significant increase in model accuracy. An analysis of
100 randomly sampled tables in the test set shows that the BiLSTM model would have
reached 81% top-1 accuracy if semantically similar titles were normalized into a sin-
gle equivalent title. The LSTM model would have reached 75% accuracy in the same
situation.

91

ColAvgLSTM ColAvgBiLSTM

Accuracy 80.5% 81.4%

Table 5.3: Accuracy when predicting whether a table’s first column is the key column.

5.5.4 Key Column Identification

In this section, we demonstrate how column embeddings can be used to identify the key
column in a web table—a key step in efficiently using web tables in a relational database.

Data Set

The WDC Web Table Corpus metadata includes a boolean flag that indicates whether
or not a table has a key column and if so, also identifies which column it is. In the
100,000 table data set used in the column labeling experiments (Section 5.5.2), the first
column of nearly 40% of the tables was the key column, and nearly 35% of the tables
had no key column at all. Since this covered a large portion of the dataset, we simplified
the task from identifying which column was a key column to one of determining if the
first column was the key column. We limited the dataset to those tables with no key
column and those where the first column was the key column, resulting in a total of
73,305 tables. As in previous experiments, we split this data set into three parts, with
90% of the tables in the training set and 10% in each of the validation and test sets. The
tables were partitioned into these subsets such that tables from a particular web domain
would only be present in one subset. Domains were randomly assigned to the subsets.

Model Architecture

Like the previous experiments, we used column-average embeddings as input into both
LSTM and BiLSTM models and used the same training regime. The output of the model
was a softmax layer predicting true (the first column is the key column) or false (the
first column is not the key column). Only the output for the final element of the input
sequence is considered when evaluating the output of the model.

Results and Discussion

Table 5.3 shows the model accuracies for predicting whether or not the first column of a
table is the table’s key column, for both the LSTM and BiLSTM models. The LSTM and
BiLSTM models both provided similar accuracy levels for this task, at 80.5% and 81.4%,
respectively.

92

5.5.5 Schema Matching

In this section, we discuss our experiments on schema matching using embeddings. We
first identified candidates using a nearest neighbor search with full table embeddings,
and then developed a simple classifier to predict whether the candidate was suitable for
a table union operation.

Labeling Data

Training data for our classifier was identified by comparing two candidate tables by
hand and determining if the two shared at least one semantically identical column.
For example, if one table listed basketball players along with their height, weight, and
position, while the other listed basketball player names and statistics, the pair would be
labelled as a match. A union of the two tables would clearly have empty values where
the columns do not overlap, but other downstream data integration operations could be
used to fill those spots. If the pair included the basketball player stats table and another
with stats of basketball teams, it would not be a match, since, even if columns have the
same label (e.g., “points”), the values are arguably semantically different and do not
belong in the same table.

Data Set

The schema matching task uses a small subset of full dataset used for column labeling.
Tables were chosen at random and examined to determine if they were suitable as query
tables for a table union operation. A considerable number of tables in the overall dataset
are calendars, tables that describe a single store inventory items (where the first column
lists attributes and a second lists values—these would be suitable for use, perhaps, after
a transposition operation, but that is out of scope of this experiment), and other similarly
unusable tables.

Candidate Search

Candidates were selected by doing a nearest neighbor search in the table embedding
space for a given query table. Table embeddings were created by averaging the column
embeddings for each table. The top 100 nearest tables in terms of euclidean distance
were considered candidates for the table union task, filtering out duplicate tables and
any tables from the same web domain as the query table (otherwise, the task proved
simple and unrealistic, as the top 100 was primarily from the same domain for the

93

Query table Matches

patents 99
baseball 70
keywords 45
soccer 37
basketball-roster 27
hockey 27
tennis 25
football-roster 7
basketball-stats 1
aussie-football 0

Table 5.4: Number of schema matching tables within the top 100 nearest neighbors in
the table embedding vector space.

majority of query tables). Due to the amount of labor involved with evaluating the pairs,
only candidates 10 query tables (chosen at random from suitable tables) were examined.

Results — The number of matches with the top 100 candidates are shown in Table 5.4.
Note that no explicit schema information was used in this search, just the averaged
table embeddings. The candidate searches resulted in nearly 99% schema matches to
0% matches. The patents table was perhaps surprisingly matchable, given the large
amount of varied text present in patent descriptions and titles. Many of the sport-related
tables—which dominated the randomly selected tables—had mediocre to fair results,
since the table values were primarily numeric, and there were matches from other sports
interspersed throughout the candidates. The basketball-stats table was particularly bad
in this regard, but this occurred because the query table had a very high proportion of
zeros listed in the statistics, making it difficult to differentiate the table from other tables
that had mostly zeroes for entries. The aussie-football table was from one of the very
few domains in the corpus dedicated to Australian rules football, so filtering out results
from that same domain severely limited the potential matches.

Classifier

As we described in Section 5.4.5, our schema match classifier consisted of two LSTMs:
each took in a sequence column-average embeddings—one for the query table and one
for the candidate table—and the final output of each LSTM was concatenated together
and provided to a sigmoid layer that predicted whether there was a schema match or
not. Testing was limited by the small amount of labeled training data, as we used the
1000 candidate pairs (top 100 for 10 query tables) generated by the nearest neighbor

94

search described in the previous section. We ran the training and test procedure 10
times, using 9 of the query table sets to train and using the remaining one as the test set
for evaluation of the model’s accuracy. This testing method resulted in 68% accuracy,
averaged over all runs.

While this accuracy level is not incredibly high (and, indeed, simply predicting “no
match” for every pair would have resulted in somewhat nearly as accurate of a result),
this classifier model did not use any schema information to make these predictions.
Other models can easily be envisioned that incorporate schema information; future work
should include creating embeddings for the column labels, allowing schema information
to easily be included in models like these.

5.5.6 Related Work

The work in this chapter draws on work from several areas in both the machine learning
and database communities.

Embeddings — We discussed related work in word and sentence embeddings in Sec-
tion 5.2. The use of embeddings for transfer learning-type tasks is not limited to NLP.
Many computer vision projects use pre-trained deep network architectures as a starting
point for novel tasks. One popular pre-training corpus is ImageNet [128], a collection of
1 million photos labeled into 1,000 classes. Deep network architectures like AlexNet [83]
or ResNet [56] are trained on the ImageNet classification task, and then reused in other
computer vision tasks, often by removing the final classification layer and replacing it
with one suitable for the new task. The model is then fine-tuned on a training set for
the new task. The output of the model after the final classification layer is removed is
analogous to word embeddings like word2vec [104, 105].

Data Integration — There is a rich history of data integration research. The area most
related to our work is that using web tables as a data corpus. Cafarella et al. [24] per-
formed some of the earliest web tables work, including some simple column labeling
and schema matching tasks. Further tasks were performed in the follow-on Octopus
project [23]. Other web tables data integration work was done in conjunction with the
Web Data Common’s Web Table Corpora [91]. Much of this work was done to combine
web table data with knowledge bases (e.g, [90]). The Infogather [153, 158] system also
performed data integration tasks over web tables; in particular, the project aimed to fill
in missing data or extend existing tables using tables extracted from the web. None of
these projects used deep learning or embeddings as we have done in this work. Some

95

embedding techniques have been used in data quality tasks, like entity linking. The IDEL
system [73] creates embeddings for entities in relational tables by concatenating vector
representations for each attribute, attribute type, and foreign key in a tuple, which is
used in a model along with text embeddings for entity candidates being matched. This
differs from our method, in that by using the character n-gram approach as in fastText,
to create embeddings for each element in a web table, we do not have to know (and
potentially do not concretely know types and foreign keys). Our methods also create
column- and table-wise embeddings, rather than for individual tuples.

As for non-web tables data integration, a similar project to ours was that of Nargesian
et al. [108], which used pre-generated (on natural language text) fastText embeddings to
represent attributes in open data databases. They found that there were many attributes
not representable, due to many attributes not being present in natural language cor-
pora. We avoid that problem by training a fastText model directly on a large number
of web tables, such that nearly all attributes in our training and test data sets can be
represented.

5.6 Conclusion and Future Work

With our prototype Grover system, we have demonstrated that column and table em-
beddings can be created and successfully used in several data integration tasks. Col-
umn labeling, table titling, and key column identification on a web table corpus was
accurately done using column embeddings as input into a bidirectional LSTM model.
Schema matching candidate search was demonstrated using nearest neighbor search in
a table embedding vector space, and a simple classifier that predicted a schema match
between a pair of tables was also shown to have fair success.

For future work, we would like to first test the embeddings described in this work in
more complicated data integration tasks, including knowledge base completion and data
augmentation. Testing on additional datasets would also further show the efficacy of us-
ing column and table embeddings for these tasks. We would also like to investigate more
sophisticated embedding creation methods; including additional context when training
the embedding model, such as table schemas and row information, should lead to more
effective embeddings. Finally, we would like to provide the public with downloadable
pre-trained embedding models suitable for a wide range of data management tasks.

96

Chapter 6

Conclusion and Future Work

The work covered in this dissertation touches both the machine learning and the data
management fields. We have shown that each community can learn from the other and
borrow techniques to improve the results of their own work, especially when implement-
ing real-world systems. There are a number of areas that our work can be extended or
be used to influence directions of future work. We discuss these below.

6.1 Databases Built on Machine Learning

Our Zombie and Tahoma projects have a key similarity: relational-style data is extracted
from instances of raw data by a machine learning model. While Zombie is focused
primarily on speeding up the process of feature engineering, the core indexing method
could easily be transferred to a more traditional data management domain. Consider
a visual analytics database, as envisioned as a later stage of the Tahoma project. The
classifier cascades developed as part of Tahoma speed up the inference step of content
extraction, but still require processing all (or a large part) of an image corpus to answer
the queries using content extracting binary predicates described in that work. A Zombie-
style index over the images would allow queries to be answered much more quickly by
processing less data. Combining the goals of these two projects would speed up query
processing in two orthogonal ways: processing raw data faster and processing less raw
data overall.

Interesting directions could be taken when designing such a system. It is not obvi-
ous how to best leverage a Zombie-style index when answering a query with multiple
content extracting functions. Further complications come when a previous query has
partially materialized the extracted content, leaving some raw data unprocessed. While
a future query might be answered quickly using that already materialized data, de-
pending on the downstream application of the query’s answer, the unprocessed raw

97

data might be the best choice for use. For example, if previous query execution had
partially materialized a CONTAINS(’stop sign’) predicate in conjunction with a CON-
TAINS(’bicycle’) predicate, a future query for stop signs and pedestrians may not be
best answered with the previously materialized stop sign images. Indeed, the distribu-
tion of the previously materialized data may differ enough from that of a future query
that answering the query with the previous data may, for example, bias a machine learn-
ing model trained with that data. Thus, building an end-to-end system that employs a
database to extract structured data from raw data objects for use in machine learning
applications must take a holistic view when optimizing queries.

6.2 Embeddings for Relational Data

Our Grover project demonstrated that embeddings can be created for relational data to
encode columns and tables in a dense vector space suitable for use in machine learning
models. The applications shown in the project where fairly rudimentary, however, and
relational data embeddings could be used in much more far ranging applications. We
discussed some additional data integration tasks, such as knowledge base completion
from web table data and data augmentation. Beyond data integration, query optimiza-
tion seems to be a prime target. Part of query optimization is estimating table cardi-
nalities for joins, and certainly some form of table embedding would be useful to deep
learning-based models used to perform these estimations. One could also imagine a use
for column or table embeddings, combined with more traditional word embeddings,
when processing queries expressed in natural language rather than SQL. Future work
with embeddings for relational data should include schema and metadata context to
support applications such as these.

98

Bibliography

[1] Apache Hadoop. https://hadoop.apache.org/.

[2] Apache MADLib. https://madlib.apache.org/.

[3] Apache Spark. https://spark.apache.org/.

[4] Apache SystemML. https://systemml.apache.org/.

[5] A year without a byte. http://code.flickr.net/2017/01/05/
a-year-without-a-byte/. Accessed: 2018-09-04.

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[7] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. BlinkDB: Queries with bounded errors and bounded response
times on very large data. In EuroSys, 2013.

[8] Michael Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
Brainwash: A data system for feature engineering. In CIDR, 2013.

[9] Michael R Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang.
Brainwash: A data system for feature engineering. In CIDR, 2013.

[10] Michael R Anderson and Michael Cafarella. Input selection for fast feature engi-
neering. In ICDE, 2016.

[11] Michael R. Anderson, Michael Cafarella, Yixing Jiang, Guan Wang, and Bochun
Zhang. An integrated development environment for faster feature engineering.
Proceedings of the VLDB Endowment, 7(13):1657–1660, 2014.

99

https://hadoop.apache.org/
https://madlib.apache.org/
https://spark.apache.org/
https://systemml.apache.org/
http://code.flickr.net/2017/01/05/a-year-without-a-byte/
http://code.flickr.net/2017/01/05/a-year-without-a-byte/

[12] Michael R Anderson, Michael Cafarella, German Ros, and Thomas F Wenisch.
Physical representation-based predicate optimization for a visual analytics
database. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 1466–1477. IEEE, 2019.

[13] Dolan Antenucci, Michael J Cafarella, Margaret Levenstein, Christopher Ré, and
Matthew Shapiro. Ringtail: Feature selection for easier nowcasting. In WebDB,
2013.

[14] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline
for sentence embeddings. In ICLR, 2017.

[15] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[16] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample selection for
approximate query processing. In SIGMOD, 2003.

[17] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. Macrobase: Prioritizing attention in fast data. In SIGMOD, 2017.

[18] Sreeram Balakrishnan, Alon Halevy, Boulos Harb, Hongrae Lee, Jayant Madha-
van, Afshin Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu.
Applying webtables in practice. In CIDR, 2015.

[19] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Freder-
ick R Reiss, Prithviraj Sen, Arvind C Surve, et al. Systemml: Declarative machine
learning on Spark. Proceedings of the VLDB Endowment, 9(13):1425–1436, 2016.

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

[21] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Machine Learning, 5(1):1–122, 2012.

[22] Eliot Van Buskirk. How the Netflix Prize Was Won. Wired, 2009.

[23] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. Data integration for
the relational web. Proceedings of the VLDB Endowment, 2(1):1090–1101, 2009.

[24] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
Webtables: exploring the power of tables on the web. Proceedings of the VLDB
Endowment, 1(1):538–549, 2008.

[25] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning complexity-
aware cascades for deep pedestrian detection. In ICCV, 2015.

100

[26] Minmin Chen, Zhixiang Xu, Kilian Weinberger, Olivier Chapelle, and Dor Kedem.
Classifier cascade for minimizing feature evaluation cost. In Artificial Intelligence
and Statistics, pages 218–226, 2012.

[27] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[28] Cloudera Impala. https://github.com/cloudera/impala.

[29] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer net-
works in unsupervised feature learning. In AISTATS, 2011.

[30] Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and
Marco Baroni. What you can cram into a single vector: Probing sentence em-
beddings for linguistic properties. arXiv preprint arXiv:1805.01070, 2018.

[31] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J Franklin, Ali Ghodsi, and Michael I Jordan. The missing piece in complex
analytics: Low latency, scalable model management and serving with velox. arXiv
preprint arXiv:1409.3809, 2014.

[32] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gonza-
lez, and Ion Stoica. Clipper: A low-latency online prediction serving system. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
pages 613–627, 2017.

[33] Marcilio CP de Souto, Ivan G Costa, Daniel SA de Araujo, Teresa B Ludermir, and
Alexander Schliep. Clustering cancer gene expression data: A comparative study.
BMC Bioinformatics, 9(1), 2008.

[34] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. In OSDI, 2004.

[35] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael Stone-
braker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouzzani,
and Nan Tang. The Data Civilizer system. In CIDR, 2017.

[36] Dong Deng, Yu Jiang, Guoliang Li, Jian Li, and Cong Yu. Scalable column concept
determination for web tables using large knowledge bases. Proceedings of the VLDB
Endowment, 6(13):1606–1617, 2013.

[37] Pedro Domingos. A few useful things to know about machine learning. Commu-
nications of the ACM, 55(10):78, 2012.

[38] Xin Luna Dong and Theodoros Rekatsinas. Data integration and machine learning:
a natural synergy. In Proceedings of the 2018 International Conference on Management
of Data, pages 1645–1650. ACM, 2018.

[39] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner. Top-k
entity augmentation using consistent set covering. SSDBM, 2015.

101

https://github.com/fchollet/keras
https://github.com/cloudera/impala

[40] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[41] Facebook, Ericsson, and Qualcomm. A Focus on Efficiency (whitepaper). Technical
report, 2013.

[42] Ronald Fagin. Fuzzy queries in multimedia database systems. In PODS, 1998.

[43] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards a uni-
fied architecture for in-RDBMS analytics. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 325–336. ACM, 2012.

[44] David Ferrucci. An Overview of the DeepQA Project. AI Magazine, 2012.

[45] Jenny Rose Finkel et al. Incorporating non-local information into information ex-
traction systems by Gibbs sampling. In ACL, 2005.

[46] Myron Flickner, Harpreet Sawhney, Wayne Niblack, et al. Query by image and
video content: The QBIC system. Computer, 28(9):23–32, 1995.

[47] Joao Gama. Combining classifiers by constructive induction. In European Conference
on Machine Learning, pages 178–189. Springer, 1998.

[48] Minos N Garofalakis and Phillip B Gibbons. Approximate query processing: Tam-
ing the terabytes. In VLDB, 2001.

[49] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. SystemML: Declarative machine learning on MapReduce. In 2011
IEEE 27th International Conference on Data Engineering, pages 231–242. IEEE, 2011.

[50] Forouzan Golshani and Nevenka Dimitrova. A language for content-based video
retrieval. Multimedia Tools and Applications, 6(3):289–312, 1998.

[51] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[52] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[53] Google word2vec. https://code.google.com/p/word2vec/.

[54] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA data mining software: An update. SIGKDD Explo-
rations, 11(1):10–18, 2009.

[55] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transac-
tions on Knowledge and Data Engineering, 21(9):1263–1284, 2009.

102

http://www.deeplearningbook.org
https://code.google.com/p/word2vec/

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[57] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation. ACM
SIGMOD Record, 26(2):171–182, 1997.

[58] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang, Eu-
gene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun
Li, et al. The madlib analytics library: or mad skills, the sql. Proceedings of the
VLDB Endowment, 5(12):1700–1711, 2012.

[59] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning Workshop, 2014.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[61] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Paramvir Bahl, Matthai
Philipose, Phillip B Gibbons, and Onur Mutlu. Focus: Querying large video
datasets with low latency and low cost. In OSDI, 2018.

[62] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 2017.

[63] Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. A survey
on visual content-based video indexing and retrieval. IEEE Trans. on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 41(6):797–819, 2011.

[64] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and <0.5mb model size. arXiv:1602.07360, 2016.

[65] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In ICML, 2015.

[66] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. To
search or to crawl?: Towards a query optimizer for text-centric tasks. In SIGMOD,
2006.

[67] Shrainik Jain, Bill Howe, Jiaqi Yan, and Thierry Cruanes. Query2vec: An
evaluation of nlp techniques for generalized workload analytics. arXiv preprint
arXiv:1801.05613, 2018.

[68] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architec-
ture for fast feature embedding. In International Conference on Multimedia. ACM,
2014.

103

[69] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers,
pages 427–431. Association for Computational Linguistics, April 2017.

[70] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,
Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A high-performance, distributed
main memory transaction processing system. Proceedings of the VLDB Endowment,
1(2):1496–1499, 2008.

[71] Daniel Kang, Peter Bailis, and Matei Zaharia. BlazeIt: Fast exploratory video
queries using neural networks. arXiv preprint arXiv:1805.01046, 2018.

[72] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. No-
Scope: Optimizing neural network queries over video at scale. Proceedings of the
VLDB Endowment, 10(11):1586–1597, 2017.

[73] Torsten Kilias, Alexander Löser, Felix A. Gers, Richard Koopmanschap, Ying
Zhang, and Martin Kersten. Idel: In-database entity linking with neural embed-
dings. Proceedings of the VLDB Endowment, 11(5), 2018.

[74] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In
CIDR, 2019.

[75] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky:
An online algorithm for skyline queries. In Proceedings of the 28th international
conference on Very Large Data Bases, pages 275–286. VLDB Endowment, 2002.

[76] Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, and
Matei Zaharia. Willump: A statistically-aware end-to-end optimizer for machine
learning inference. arXiv preprint arXiv:1906.01974, 2019.

[77] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. SageDB:
A learned database system. In CIDR, 2019.

[78] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International Conference on
Management of Data, pages 489–504. ACM, 2018.

[79] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin,
and Michael I Jordan. Mlbase: A distributed machine-learning system. In CIDR,
volume 1, pages 2–1, 2013.

[80] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin,
and Michael I. Jordan. MLbase: A distributed machine-learning system. In CIDR,
2013.

104

[81] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-
berg. ActiveClean: Interactive data cleaning for statistical modeling. Proceedings of
the VLDB Endowment, 9(12):948–959, 2016.

[82] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Sto-
ica. Learning to optimize join queries with deep reinforcement learning. arXiv
preprint arXiv:1808.03196, 2018.

[83] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, 2012.

[84] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M Patel. Model
selection management systems: The next frontier of advanced analytics. ACM
SIGMOD Record, 44(4):17–22, 2016.

[85] Arun Kumar, Feng Niu, and Christopher Ré. Hazy: Making it easier to build and
maintain big-data analytics. Communications of the ACM, 56(3):40–49, 2013.

[86] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding the
maxima of a set of vectors. Journal of the ACM (JACM), 22(4):469–476, 1975.

[87] Tony CT Kuo and Arbee LP Chen. A content-based query language for video
databases. In Multimedia Computing and Systems, 1996.

[88] Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental
support vector learning: Analysis, implementation and applications. The Journal of
Machine Learning Research, 7:1909–1936, 2006.

[89] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado,
Kai Chen, Jeffrey Dean, and Andrew Y. Ng. Building high-level features using
large scale unsupervised learning. In ICML, 2012.

[90] Oliver Lehmberg and Christian Bizer. Stitching web tables for improving matching
quality. Proceedings of the VLDB Endowment, 10(11):1502–1513, 2017.

[91] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A large
public corpus of web tables containing time and context metadata. In WWW, 2016.

[92] Steven Levy. How Google’s Algorithm Rules the Web. Wired, 2010.

[93] David D Lewis and Jason Catlett. Heterogenous uncertainty sampling for super-
vised learning. In ICML, 1994.

[94] John Z Li, M Tamer Ozsu, Duane Szafron, and Vincent Oria. MOQL: A multimedia
object query language. In Intl. Workshop on Multimedia Info. Systems, 1997.

[95] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. Tune: A research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118, 2018.

105

[96] Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A transformation-
based optimizer for MapReduce workflows. Proceedings of the VLDB Endowment,
5(11):1196–1207, 2012.

[97] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of recur-
rent neural networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[98] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J Gordon. Query-based workload forecasting for self-driving database
management systems. In SIGMOD, pages 631–645. ACM, 2018.

[99] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In SIGMOD, 2010.

[100] Ryan Marcus and Olga Papaemmanouil. Towards a hands-free query optimizer
through deep learning. In CIDR, 2019.

[101] Wes McKinney et al. Data structures for statistical computing in python. In Pro-
ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX,
2010.

[102] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivaku-
mar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale
datasets. Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

[103] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
MLlib: Machine learning in apache spark. The Journal of Machine Learning Research,
17(1):1235–1241, 2016.

[104] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Workshop at International Conference on
Learning Representations (ICLR), 2013.

[105] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages 3111–3119, 2013.

[106] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. In ACL-IJCNLP, 2009.

[107] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. Incremental and
approximate inference for faster occlusion-based deep cnn explanations. In Pro-
ceedings of the 2019 International Conference on Management of Data, pages 1589–1606.
ACM, 2019.

[108] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table union search
on open data. Proceedings of the VLDB Endowment, 11(7):813–825, 2018.

106

[109] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
Learning state representations for query optimization with deep reinforcement
learning. arXiv preprint arXiv:1803.08604, 2018.

[110] Christos H. Papadimitriou and Mihalis Yannakakis. Multiobjective query opti-
mization. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS ’01, pages 52–59, New York, NY, USA,
2001. ACM.

[111] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. VerdictDB:
Universalizing approximate query processing. In SIGMOD, 2018.

[112] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS Autodiff Workshop, 2017.

[113] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[114] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[115] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[116] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proc. of NAACL, 2018.

[117] M Petkovic and W Jonker. A framework for video modelling. In Intl. Conf. on
Applied Informatics, 2000.

[118] Milan Petkovic and Willem Jonker. Content-Based Video Retrieval: A Database Per-
spective, volume 11. Springer, 1999.

[119] R. Polikar, L. Upda, S.S. Upda, and V. Honavar. Learn++: An incremental learning
algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, 31(4):497–508, 2001.

[120] Leonid Portnoy et al. Intrusion detection with unlabeled data using clustering. In
Workshop on Data Mining Applied to Security, 2001.

[121] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid training data creation with weak supervision.
Proceedings of the VLDB Endowment, 11(3):269–282, 2017.

107

[122] Christopher Ré, Amir Abbas Sadeghian, Zifei Shan, Jaeho Shin, Feiran Wang, Sen
Wu, and Ce Zhang. Feature engineering for knowledge base construction. IEEE
Data Eng. Bulletin, 37(3), 2014.

[123] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In CVPR, 2016.

[124] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In CVPR,
2017.

[125] Wei Ren, Sameer Singh, Maneesh Singh, and Yuesheng S Zhu. State-of-the-art on
spatio-temporal information-based video retrieval. Pattern Recognition, 42(2):267–
282, 2009.

[126] Simon Rogers and Mark Girolami. A first course in machine learning. Chapman &
Hall/CRC, 2011.

[127] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[128] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[129] Maytal Saar-Tsechansky, Prem Melville, and Foster Provost. Active Feature-Value
Acquisition. Management Science, 55(4):664–684, 2009.

[130] Robert E Schapire. The boosting approach to machine learning: An overview. In
Nonlinear estimation and classification, pages 149–171. Springer, 2003.

[131] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[132] Yoones A Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo Merialdo.
Knowledge base augmentation using tabular data. In LDOW, 2014.

[133] Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

[134] Vraj Shah and Arun Kumar. The ML Data Prep Zoo: Towards semi-automatic
data preparation for ML. In Proceedings of the 3rd International Workshop on Data
Management for End-to-End Machine Learning, page 11. ACM, 2019.

[135] Vraj Shah, Arun Kumar, and Xiaojin Zhu. Are key-foreign key joins safe to avoid
when learning high-capacity classifiers? Proceedings of the VLDB Endowment,
11(3):366–379, 2017.

108

[136] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ILSVRC, 2014.

[137] Thomas G Aguierre Smith and Glorianna Davenport. The stratification system a
design environment for random access video. In International Workshop on Network
and Operating System Support for Digital Audio and Video, 1992.

[138] Cees GM Snoek and Marcel Worring. Concept-based video retrieval. Foundations
and Trends in Information Retrieval, 2(4):215–322, 2008.

[139] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin, and
Benjamin Recht. Keystoneml: Optimizing pipelines for large-scale advanced an-
alytics. In 2017 IEEE 33rd international conference on data engineering (ICDE), pages
535–546. IEEE, 2017.

[140] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
C-store: A column-oriented dbms. In VLDB, 2005.

[141] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity
measures on web-page clustering. In Workshop on AI for Web Search, 2000.

[142] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade
for facial point detection. In CVPR, 2013.

[143] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: The Condor experience. Concurrency and Computation: Practice and Expe-
rience, 17(2-4), 2005.

[144] Paul E Utgoff. Incremental induction of decision trees. Machine learning, 4(2):161–
186, 1989.

[145] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In
SIGMOD, pages 1009–1024. ACM, 2017.

[146] Rodrigo Verschae, Javier Ruiz-del Solar, and Mauricio Correa. A unified learning
framework for object detection and classification using nested cascades of boosted
classifiers. Machine Vision and Applications, 19(2):85–103, 2008.

[147] Paul Viola and Michael J Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[148] Andreas Vlachos. A stopping criterion for active learning. Computer Speech &
Language, 22(3):295–312, 2008.

[149] Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding. arXiv preprint arXiv:1804.07461, 2018.

109

[150] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards universal
paraphrastic sentence embeddings. In ICLR, 2016.

[151] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[152] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya
Parameswaran. Helix: Holistic optimization for accelerating iterative machine
learning. Proceedings of the VLDB Endowment, 12(4):446–460, 2018.

[153] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. In-
fogather: entity augmentation and attribute discovery by holistic matching with
web tables. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 97–108. ACM, 2012.

[154] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In HotCloud, 2010.

[155] Ce Zhang, Arun Kumar, and Christopher Ré. Materialization optimizations for
feature selection workloads. In SIGMOD, 2014.

[156] Ce Zhang, Arun Kumar, and Christopher Ré. Materialization optimizations for
feature selection workloads. ACM Transactions on Database Systems (TODS), 41(1):2,
2016.

[157] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with ap-
proximation and delay-tolerance. In NSDI, 2017.

[158] Meihui Zhang and Kaushik Chakrabarti. Infogather+: semantic matching and
annotation of numeric and time-varying attributes in web tables. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
145–156. ACM, 2013.

[159] Xiaolu Zhang, Yueguo Chen, Jinchuan Chen, Xiaoyong Du, and Lei Zou. Mapping
entity-attribute web tables to web-scale knowledge bases. In International Confer-
ence on Database Systems for Advanced Applications, pages 108–122. Springer, 2013.

[160] Jingbo Zhu, Huizhen Wang, Eduard Hovy, and Matthew Ma. Confidence-based
stopping criteria for active learning for data annotation. Transactions on Speech and
Language Processing, 6(3):3, 2010.

110

	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Problem Setting
	Machine Learning Queries
	Measures of Machine Learning Success

	Overview and Contributions
	Zombie: Indexing Raw Data
	Tahoma: Alternative Input Representations
	Grover: Embeddings for Relational Data

	Background and Related Work
	Databases and Systems for Machine Learning
	Machine Learning Pipelines
	Feature Engineering and Machine Learning Development
	Machine Learning in Production Environments

	Machine Learning for Data Management Tasks
	Indexing
	Query Optimization
	Data Integration
	Database Management

	Input Selection for Fast Feature Engineering
	Introduction
	The Feature Evaluation Query
	Feature Evaluation Loop as a Query
	Common Practice: Subset
	Approximation by Early Stopping
	Optimizing the Approximate Query
	Deployment and Limitations

	System Architecture
	Execution Model
	Input Selector
	Index Groups
	Physical Access

	Predicting Input Utility
	Design Discussion
	Our Bandit Model
	Rewarding a Pull
	Selecting an Arm
	Putting It All Together

	Experiments
	Feature Engineering Workloads
	Overall Performance
	Testing SUBSET
	Varying System Parameters
	Varying Task Parameters

	Related Work
	Conclusions and Future Work

	Physical Representation-based Predicate Optimization for a Visual Analytics Database
	Introduction
	Background
	Design Considerations
	Definitions and Notation
	Cascade Methodology
	System Architecture
	Building Models
	Computing Decision Thresholds
	Constructing Cascades

	Data Handling Costs
	Evaluation Methods
	Evaluating Cascades
	Comparing Cascade Sets

	Experiments
	Experiment Setup
	Comparison Against Baselines
	Comparison with NoScope
	Deployment Scenario Awareness
	Analysis of Input Transformations
	Analysis of Increased Cascade Depth

	Related Work
	Conclusion and Future Work

	Column and Table Embeddings for Data Integration Tasks
	Introduction
	Background
	Word and Sentence Embeddings
	Recurrent Neural Networks

	Tasks
	Algorithms and Methods
	Column-value Embedding
	Column Labeling
	Table Titling
	Key Column Identification
	Schema Matching

	Experiments
	Data Set
	Column Labeling
	Predicting Table Titles
	Key Column Identification
	Schema Matching
	Related Work

	Conclusion and Future Work

	Conclusion and Future Work
	Databases Built on Machine Learning
	Embeddings for Relational Data

	Bibliography

