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the ScarlETH leg design [45], driven by series elastic actuators, and
mounted on a planarizer which restricts its motion to the sagittal
plane [33]. The robot is represented as a detailed five link planar
model. The model uses a floating base description with rigid rolling
contacts, it encodes the actuator dynamics with non-linear springs,
and accounts for dry friction and viscous damping in the joints. . . 4

2.1 Cost of transport is shown as a function of speed given in m/s and as a
non-dimensional Froude number: F = v2

g`
(where ` = 0.47 m is the ex-

tended leg length of the robot). At all speeds, the walking sequences
with an extended double stance phase were suboptimal compared
to those with instantaneous support transfer. As such, the remain-
der of the analysis focuses on walking sequences with zero double
support phase. At low speeds, all four remaining cases had a similar
CoT. Walking footfall sequences had a slight energetic advantage. For
speeds below 0.88 m/s, the walking sequences with the knees pointing
forward had the lowest CoT, for speeds between 0.88 m/s and 1.04 m/s

it became optimal for knees to point backwards. Motions with a
running footfall sequence were slightly more energetically expensive
below 1.04 m/s. However, their CoT was only up to 0.036 higher. At
high speeds above 1.04 m/s, the CoT of the four gaits diverged. Mov-
ing with a running sequence and with the knees pointing backwards
became by far the most efficient mode of locomotion. Using a walk-
ing sequence increased the CoT by up to 0.77 (259 %) at 2.04 m/s.
Having the knees point forward instead of backward increased the
CoT of the running sequence by up to 0.52 (148 %) at 2.68 m/s. . . 16
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2.7 Center of mass kinetic, gravitational, and elastic energy flow for run-
ning sequence motions at 1.2 m/s. The left and right contact phases of
the motion are indicated with a shaded background. Both motions
exhibit the in-phase kinetic and gravitational energy oscillation with
out of phase elastic energy that characterizes spring mass running [12] 22

2.8 Total ground reaction force at each foot for running sequence motions
at 1.2 m/s. Both knees forward and backwards motions exhibit a sharp
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2.9 Comparison of loss contributions (normalized by mg∆x) between
walking and running sequences . Results are shown across a range
of speeds and for motions with the knees pointing backwards. All
components of the walking sequence motion increase smoothly across
speed, with electrical losses dominating. In contrast, the individual
costs of the running sequence motion change discretely across the
walk to run transition. Below the transition, the costs of the run-
ning sequence motion roughly follow those of the walking sequence
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different robot configurations at liftoff (shown in (a) for a velocity of
1.2 m/s). As a consequence, the joint velocities in the swing leg (shown
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velocities are thus distinctly different, and the knee motor is already
moving to retract the leg while the knee joint extends for liftoff. The
same does not hold for the hip joint, where joint and motor motion
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after lift-off. Because of this, running with the knees backwards is
at an advantage, since it requires a much smaller hip velocity. [Note
that all velocities are defined to be positive when counter clockwise.
A positive knee velocity thus indicates knee extension when the knees
are forward, and knee flexion when the knees are backwards.] . . . 26

3.1 (a) Specification of the phase parameter θ. Between -1 and 0, and
between 0 and 1, θ is a linear function of the horizontal distance
from the forward-most stance foot to the main body. Note that if
the gait is periodic with step length lstep, the duration of the double
stance phase xDS is determined by xDS = lstep−xSS. The parameter
∆x (negative as shown in the figure) is used to control the average
walking speed of the robot.
(b) Gait transition sequence. Beginning in double stance, θ becomes
less negative as the body moves forwards, triggering the liftoff phase
when it crosses 0. In this phase, the hip motor is held fixed and the
knee motor retracts until contact is no longer sensed in the swing
foot. Now in single stance, θ continues to increase from 0 as the
body moves forward, until touchdown is initiated when θ crosses 1.
Here the swing foot is held at fixed distance in front of the body until
contact is sensed. θ is then reset to -1 and we enter double stance. . 35

3.2 Stills of the robot across stride percentage in both hardware and
simulation for a desired body height of 0.54 m and desired walking
speed of 0.2 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.3 Tracking of controller objectives in simulation and hardware across
stride percentage for a desired body height of 0.54 m and desired
speed of 0.2 m/s. Plotted values are averaged over 30 strides, and
one standard deviation is shaded in grey. The color of each line
corresponds to the current stance configuration of the robot. In (a)
we see that body height is maintained to within 5 mm of the desired
value, with a slight rise upon entering double stance that occurs in
both simulation and hardware. The horizontal body speed in (b)
varies more significantly, as it is not controlled directly. The pitch in
(c) is controlled to within 0.04 rad in hardware, with similar variation
in simulation, however the phase and timing of the oscillations are
different between the two. In (d) and (e), we show the x and y
coordinates of each foot with respect to the ground. During swing
phase, the desired trajectory of each foot is shown as a thick dashed
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Trace of the foot trajectories with respect to the ground. We see
significant deflection of the foot during stance phase (represented by
negative y position). Also note that each foot slips slightly along the
ground before liftoff in simulation, but not in hardware. . . . . . . 39

3.5 Cost of transport and nondimensionalized copper losses in the hips
and knees across desired body height in hardware and simulation.
A minimum in the CoT was observed in both simulation and hard-
ware at a desired body heights of 0.56 m. Below this height, the
CoT decreased linearly with increasing body height, with a slope of
-2.835 1/m in hardware, and -3.08 1/m in simulation. The decrease
can be attributed to the decreased knee copper losses incurred by a
straighter legged gait. This is supported by the observation that on
average, the knee copper losses decrease with walking height while
the hip copper losses remain comparatively constant. . . . . . . . . 41

4.1 An illustration of how the objective function (4.7) approximates the
volume of the viability domain. Take a set of differentiable functions
vi that satisfy the constraints of the previous section. For every point
x not in the set ∂Vi, the value vi(x) is constrained only by (4.3) and
vi(x) ≤ 1,∀x ∈ Xi. This means that vi(x) can increase to a value of
1 for points inside the set (x s.t. vi(x) > 0), and vi(x) increases to a
value of 0 for points outside this set. As a result, each vi approaches
the indicator function over Vi, and the integral in Eq. 4.7 approaches
the original objective. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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4.2 Scaling weights between the user input u0 and the guaranteed safe
controller u. The weights satisfy w0 + ws = 1 and are used to form
the semi-autonomous controller um = w0u0 +wsu. When the barrier
function value is above a threshold value (i.e. vi(x) > vm), the user
input is unmodified, as we are sufficiently removed from the bound-
ary of the safe set. When 0 ≤ vi(x) ≤ vm

2
, the safe controller is

fully active, keeping the state in the safe set. Between these regions,
the controller is smoothly interpolated with a cubic spline to ensure
continuity of the semi-autonomous controller. . . . . . . . . . . . . 58

4.3 Visualization of the safe set for the Dubins car showing the 0 and
0.5 level sets of the barrier function v in light green and dark green,
respectively. For this example, we can compute the exact unsafe set
(complement of the viability kernel), shown here in light grey. Shown
in the overlay are two simulated vehicle trajectories, one (purple) uses
a randomly generated input, the other (blue) combines this input
with a semi-autonomous controller (threshold value vm = 0.5). We
see the randomly generated controller drive off the road (fail), while
the semi-autonomous vehicle remains safe. The trajectories are also
plotted in state space where we see that the semi-autonomous vehicle
diverges only once v = vm is reached. . . . . . . . . . . . . . . . . . 60

4.4 Compass gait states (right) and domains (left). The walker has two
legs with mass and length parameters loosely chosen to correspond
with the robot RAMone [89] (see supplementary code2). There are
two bounded control inputs: a torque at the ankle and a torque
between stance and swing legs. The robot has two discrete states:
pre-midstance (mode 1) and post-midstance (mode 2). There is a
transition defined from mode 1 to mode 2 and one defined from mode
2 to mode 1. The hybrid guard from mode 1 to mode 2 is associated
with an identity reset map. The hybrid guard from mode 2 to 1
represents a touchdown event. The associated reset maps the stance
leg angle to the swing leg and vice versa. . . . . . . . . . . . . . . 61

4.5 Safe set (shown in green) for the compass gait walker visualized as
a 3D slice of the 4D state space with a stationary swing leg (α̇ =
0). The yellow plane represents the touchdown guard, and the gray
planes represent the edges of the failure set, i.e. the state must stay
within these boundaries to remain viable. The viable set does not
intersect the failure set, but does intersect the guard. Note that along
the guard, increasing θ̇ requires an increase in α for the state to be
viable. This matches the intuition that larger step lengths should
be used for higher walking speeds [75]. Also note that the minimum
stance leg speed is large for large stance leg angles. For lower speeds,
the stance leg torque is insufficient to get the walker over mid-stance. 63
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4.6 Two simulated trajectories for the compass gait model simulated us-
ing the non-Taylor-expanded dynamics. The first, in purple, uses a
random control input, the other, in blue, uses our semi-autonomous
controller in combination with this input (threshold value vm = 0.2).
In the trajectory stills we see that the raw trajectory fails by falling
backwards (θ̇ < 0), while the semi-autonomous trajectory keeps walk-
ing. Also shown is the barrier function value (v(x)) over time. Note
the semi-autonomous controller deviates from nominal only once the
threshold value (shown in light green) is reached. . . . . . . . . . . 64

5.1 Generating safety guarantees for a high dimensional robot (illustrated
on Rabbit [18]). The state-space of the full robot is given in the top
right figure, where TQ is the tangent space on Q, S is the hybrid
guard representing foot touchdown, and ∆ is the corresponding dis-
crete reset map. Using feedback linearization, we restrict our states to
lie on a low-dimensional manifold Z, reducing the state-space dimen-
sion to an amenable size for sums-of-squares analysis. This manifold
is parameterized by the underactuated degrees of freedom of the robot
θ, as well as a set of shaping parameters α. The shaping parameters
can be modified in real-time by a control input, allowing for a broad
range of behaviours on Z. To guarantee safety on Z we find the set
of unsafe states ZF from which the state may leave the manifold (for
instance due to motor torque limits). We then use sums-of-squares
tools [70] to find a control invariant set V̂ ⊂ Z \ ZF . This control
invariant set can be used to define a semi-autonomous, guaranteed
safe controller for the full robot dynamics. . . . . . . . . . . . . . . 67

5.2 A 2D slice (along α = α̇ = 0) of the four-dimensional viability domain
V̂ (shown in green) for Rabbit. The border at the right corresponds to
the hybrid guard Ŝ of foot touchdown, where the state is reset under
the map ∆̂ to the left of the figure. The unsafe set ZF is shown in red.
We avoid the lower region (θ̇ < 0) in order to conservatively prevent
backwards falls. The upper region conservatively approximates the
region in which the control input (5.8) violates the torque limits of
the robot. By modifying the control input whenever Rabbit is at
the edge of V̂ , ZF can be avoided indefinitely. Finally, the periodic
trajectory used to generate our targets qFr is shown in dashed black.
Note that our viability domain is able to guarantee robot safety even
for states far away from this nominal trajectory. . . . . . . . . . . . 81
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5.3 Tracking performance of the safe (5.20) and näıve (5.21) controllers
following two reference trajectories under the full rabbit dynamics.
The pitch angles are shown in the top left. For both references, the
safe controller modifies the input before safety is at risk, while the
näıve controller follows the reference even as it leads to failure. Fail-
ure for the upper trajectory corresponds to stepping backwards, and
in the lower trajectory corresponds to moving too fast for the swing
leg to reach its target. The bottom left figure shows desired input
udα and executed input for both naïıve and safe tracking controllers
following the second reference target. The state-dependent region of
inputs that satisfy the torque constraints are shown in grey. Note
that under the näıve controller, this region vanishes as the forward
walking speed of the robot becomes too high. Stills from the simula-
tion trajectories are shown on the right. The dotted line is the desired
pitch, and the faded line is the nearest on-manifold state q0(θ, α). . 83

6.1 Overview of the reachability-based gait selection approach for a Rab-
bit model walking over rough terrain. The approach begins by con-
structing a standing controller that stabilizes the robot about a sta-
tionary standing position. Next, we specify a mid-stance configura-
tion qm and configuration velocity ∂qm

∂θ
. We then generate a parametrized

family of first steps (using interpolated FROST trajectories) that
start and end at the mid-stance configuration for a range of step-
lengths (x1), step heights (y1), and accelerations (a). Next we con-
struct a stopping controller (using the methods of the previous chap-
ter) that brings the robot to a stop in one step (of step-length x2

and step-height y2) by actively modifying the pitch angle. Finally,
we compute three set-based objects: a region of attraction (ROA) of
the standing controller, a forward reachable set (FRS) of the first-
step controller, and a backwards reachable set of the ROA using the
second-step stopping controller. The FRS takes in the current mid-
stance velocity (θ̇0) and the discrete parameters of the first step (β1),
and returns a bound on the next mid-stance velocity (θ̇1). The BRS
takes in the parameters of the stopping step (β2), and returns the set
of mid-stance velocities that can safely be brought to a stop in one
step. At each mid-stance event, the gait-selector searches for discrete
step parameters (β1, β2) that can bring the robot to a stop in two
steps (i.e. FRS(θ̇0, β1) ⊂ BRS(β2)). If the selector succeeds, the
robot takes the first step using parameters values β1, and the selec-
tion process repeats at the next mid-stance. If the selector fails, the
robot executes a stopping step using the parameter values β2 from
the previous mid-stance. Since the previous selection step ensured
that the robot state is within the BRS of the stopping controller, we
know that the robot can safely be brought to a stop. . . . . . . . . . 88
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ABSTRACT

For bipedal robots to gain widespread use, significant improvements must be made

in their energetic economy and robustness against falling. An increase in economy can

increase their functional range, while a reduction in the rate of falling can reduce the

need for human intervention. This dissertation explores novel concepts that improve

these two goals in a fundamental manner. By centering on core ideas instead of direct

application, these concepts are aimed at influencing a wide range of current and future

legged robots.

The presented work can be broken into five major contributions. The first ex-

tends our understanding of the energetic economy of series elastic walking robots.

This investigation uses trajectory optimization to find energy-miminizing periodic

motions for a realistic model of the walking robot RAMone. The energetically op-

timal motions for this model are shown to closely resemble human walking at low

speeds, and as the speed increases, the motions switch abruptly to those resembling

human running. The second contribution explores the energetic economy of the real

robot RAMone. Here the model used in the previous investigation is shown to closely

match reality. In addition, this investigation demonstrates a concrete example of a

trade-off between energetic economy and robustness. The third contribution takes

a step towards addressing this trade-off by deriving a robot constraint that guaran-

tees safety against falling. Such a constraint can be used to remove considerations

of robustness while conducting future investigations into economical robot motions.

The approach is demonstrated using a simple compass-gait style walking model. The

fourth contribution extends this safety constraint towards higher-dimensional walking

models, using a combination of hybrid zero dynamics and sums-of-squares analysis.

This is demonstrated by safely modifying the pitch of a 10 dimensional Rabbit model

walking over flat terrain. The final contribution pushes the safety guarantee towards

a broader set of walking behaviours, including rough terrain walking.

Throughout this work, a range of models are used to reason about the economy

and robustness of walking robots. These model-based methods allow control designers

to move away from heuristics and tuning, and towards generalizable and reliable

controllers. This is vital for walking robots to push further into the wild.

xvi



CHAPTER I

Introduction

1.1 Motivation

Society relies heavily on wheeled vehicles for transportation and mobility. From

trains and cars to bicycles and scooters, wheels have greatly improved our ability to

move around. Despite their wide-spread use, wheeled vehicles are relatively limited

in the terrain they can traverse. In cities, wheels are restricted to clear roads and

walkways; when obstacles are in the way or snow is on the ground, wheeled vehicles

will often come to a stop. Off of roads and walkways, these limitations are ampli-

fied. Brush, rocks, mud, and sand can prove impassable even for designated off-road

vehicles.

In remarkable contrast, many humans and legged animals have little difficulty

traversing such terrain. Legged robots, like humans and animals, have the potential to

access a wider variety of landscapes than their wheeled counterparts. Bipedal robots

in particular will be able to access spaces that are specifically designed for people,

including vehicle interiors, ladders and stairways. Until recently, bipedal robots were

confined to controlled, known lab environments. However, over the last five years,

they have started to leave the lab. We have seen demonstrations of bipedal robots

walking through the woods [81], running and jumping over obstacles [24], and walking

through sand, snow and grass [31]. There are many proposed applications that come

with this increase in range. Search and rescue, last mile delivery, construction site

monitoring, and security patrolling are among the many stated targets of companies

such as Boston Dynamics and Agility Robotics.

So what is missing? Why are legged robots not out in the world, accessing all the

space open to people? It is instructive to first look at what humans do well when

locomoting. Take an athlete running a long distance trail race (such as the Leadville

100: a rugged 100 mile race through the Rocky Mountains). The first observation
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from such an athlete is that despite the difficult and dangerous terrain, they can

move with confidence in their safety. Since falling comes with a high risk of injury,

confidence against falling is a crucial requirement for human locomotion. The second

observation is that this athlete can traverse incredible distance and elevation with

very little fuel. In one study, ultra marathon runners were found to consume just

4200 kJ over the course of a 100 km race [26] (this would be equivalent to a vehicle

fuel economy of 1765 mpg!). We call this energetic economy, and measure it by the

cost of transport (CoT)1. People are known to have a cost of transport around 0.376

when walking on flat terrain [99].

How do robots compare? Those that seem to be most robust and versatile, such as

Atlas [23] and Cassie [79], use powerful actuation for high-precision control, enabling

them to perform fast and strong actions to react to and cancel large perturbations.

However, despite this powerful actuation, these robots still fall regularly, even on flat

terrain. Powerful actuation also comes at an energetic cost. For example, Atlas has a

CoT of ∼ 5 [11], and ATRIAS (Cassie’s predecessor) has a CoT of 1.13 [43], more than

3 times that of a human. In contrast, the robot Cornell Ranger is about as energy-

economical as humans, with a CoT of 0.28 [10]. Ranger was designed and controlled

specifically to walk with little power, e.g. it exploits natural dynamic motions and

performs work when it is most optimal to do so (‘preemptive push-off’). But Ranger

is barely stable, as it falls on slopes of just two degrees and is only able to walk, but

not, say, run or hop. This apparent trade-off between robustness and economy has

also been observed when designing legged robot controllers, as more robust controllers

have been seen to incur an energetic penalty for the robot Rabbit [83].

The goal of this thesis is to help bridge the gap between robots and people by

making fundamental improvements in the robustness and economy of bipedal legged

robots. I aim to explore four major questions:

1. How should a realistic robot model locomote in order to minimize energy con-

sumption?

2. Can such economical motion translate from a model to reality?

3. Can we constrain simple legged robot models to avoid falls while allowing for

flexible behaviour?

4. Can such a constraint be extended to more complex robot models?

1Cost of transport is a standard metric [98], defined as the energy consumed per distance traveled
normalized by body weight
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A central theme that underlies these questions is how different models across a

range of complexity and abstraction can be used to reason about the robustness

and economy of legged robots. The models used in our investigation include simple

models that capture the general underlying principles of locomotion, detailed models

that closely approximate the behaviour of specific robots, real robots (i.e. physical

models) such as the planar bipedal robot RAMone (Fig. 1.1) which can be used to

evaluate performance in experiment, and biological models which provide a benchmark

for performance as well as an illustration of important locomotion principles. We

explore the strengths and limitations of these models, and use them to explicitly

construct conclusions and guarantees about bipedal locomotion while acknowledging

their fundamental limitations.

Using these models, I will present the following principle findings. First, RAMone

should use different gaits at different speeds to minimize energy consumption, and

these gaits bear strong similarity to templates of animal motion found in nature. Next,

straight legged walking is economical for the real robot RAMone, and economical

motions can lie at the boundary of failure, where falls are highly likely. Third, a

safety regulator that guarantees against falling can be generated for simple biped

models. Finally, this safety regulator can be extended to more complex models with

a wider range of behaviours.

1.2 State of the Art

Significant progress has been made towards improving the energetic economy and

the robustness of legged robots. This work can be classified as improving either

hardware or controller design.

When designing robot hardware for improving energetic economy, it is important

to first use hardware components that minimize energy losses in the system, regardless

of the specific motion or controller. These include efficient actuators (e.g. DC motors

instead of hydraulics), small friction between different elements, and regenerative

power. The MIT Cheetah is one robot that effectively makes use of such hardware

components [86]. In addition, it is important to use hardware design principles that

can be exploited by the controller for economical gaits. For example, light legs with

small feet allow for swinging the legs quickly and with little effort [86]. Springs can

reduce ground-impact energy losses; they can also store energy generated by negative

work and release it later to help power the robot motion [2]. ATRIAS [42], Cassie,

and DURUS [76] are examples of robots that follow such principles.

3



Horizontal
Slider

Ve r t ica l
S lid e r

Tr e a dm ill

Motors

Main
Body α

+-

+ -
φ

β
+-

m2, j2

m3, j3

m1, j1

l2

l L2

l3l L3

lH
kα

kβ

hipmotor

kneemotor

(onefor each leg)

rfoot

chain and cable
connections

x

y

bumper end-stop
(unilateral damper,
engaged for small β)

thigh

shank

kneedisc
(rigidly connected
to kneemotor)

knee cap design

(mountedat thehipaxis
on therobot)

Figure 1.1: The first two aims of this proposal investigate properties of bipedal gait
for the robot RAMone. This robot was built to explore the exploitation of natural
dynamics in legged locomotion. It is based on the ScarlETH leg design [45], driven
by series elastic actuators, and mounted on a planarizer which restricts its motion to
the sagittal plane [33]. The robot is represented as a detailed five link planar model.
The model uses a floating base description with rigid rolling contacts, it encodes the
actuator dynamics with non-linear springs, and accounts for dry friction and viscous
damping in the joints.

Legged robot hardware can also be designed to improve robustness against falling.

One such principle is that the robot should have sufficient and fast actuation in all

joints in order to be able to quickly respond to disturbance. Another principle that

can improve robot robustness is to have compliance in the point of contact with the

ground, in order to isolate the main body motion from unexpected variation in the

terrain [74, 92, 44, 43].

When designing controllers to improve the energetic economy of legged robots,

one way to gain insight is to observe the characteristic properties of economical bio-

logical gait. One widespread observation is that as locomotion speed varies in many

animals, the type of locomotion changes [40, 16, 3]. At low speeds, many animals

exhibit an inverted pendulum style walking gait [61]. At high speeds, a spring-mass

style running gait [12] is observed across a broad range of species. Transferring these

observations from biology to robotics is nontrivial, as biological and artificial systems

are fundamentally dissimilar. To establish a meaningful connection between nature

and robotics, a number of simple models have been used to distill fundamental princi-

ples from locomotion in nature and provide templates for design and control of robots.

Such models include a point mass on massless legs [94, 93], passive dynamic walkers
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[59], the spring loaded inverted pendulum [12], and elastic walking models [29, 28].

The first aim of this dissertation can be seen as an extension of previous work in

optimal gait for conceptual models [93, 77, 107, 108] and builds upon optimization

methodologies put forward in [17, 19, 109].

A promising tool for analyzing and improving the robustness of legged system con-

trollers is sums-of-squares (SoS) optimization [70]. This approach uses semi-definite

programming to find safe sets of states and associated controllers for a broad class

of nonlinear [56, 37, 50] and hybrid systems [72, 87, 62]. These safe sets can take

the form of reachable sets (sets that can reach a known safe state) [49, 87, 56] or

invariant sets (sets whose members can be controlled to remain in the set indefi-

nitely) [8, 72, 71] in state space. However, the representation of each of these sets

in state space severely restricts the size of the problem that can be tackled by these

approaches. To accommodate this limitation, sums-of-squares analysis has been pri-

marily applied to reduced models of walking robots: ranging from spring mass models

[111], to inverted pendulum models [49, 96] and to inverted pendulum models with

an offset torso mass [71]. The substantial differences between these simple models

and real robots causes difficulty when applying these results to hardware.

A contrasting approach to designing robust controllers for high dimensional, un-

deractuated robot models uses hybrid zero dynamics (HZD) [104]. In this approach,

feedback linearization is used to drive the actuated degrees of freedom of the robot

towards a lower dimensional hybrid zero dynamics manifold. This manifold is spec-

ified as the zero levelset of a configuration-dependent output vector and represents

the motion of the robot in its underactuated degrees of freedom. Many current ap-

proaches for guaranteeing safe HZD control [4, 41, 66, 68, 65] rely on the Poincaré

stability of a periodic limit cycle. In some of these approaches, safety is contingent

on the feasibility of a real-time Quadratic Program (QP) [41, 66, 67, 68, 65] that

is dependent on the underactuated coordinates of the system. Guaranteeing feasi-

bility of this QP thus requires a bound on these degrees of freedom. So far, such

a bound has relied on local limit-cycle stability, which precludes recovery behaviors

that would leave the neighborhood of the limit cycle. Recent work has been done to

extend the range of safe HZD behaviours beyond a single limit cycle neighborhood

[63, 101, 102, 5]. In [63, 101, 102], the controller is allowed to discretely switch be-

tween a family of periodic gaits. Safety is then ensured using a dwell time constraint

that limits how frequently switching can occur. In [5], a combination of HZD and

finite state abstraction is used to safely regulate forward speed of a fully-actuated

bipedal robot.
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1.3 Contributions

This dissertation can be broken into five contributions.

In the first contribution of this dissertation (Chapter II), I find the energetically

optimal periodic motions for a high-fidelity model of RAMone across a wide range

of forward speeds. The optimal motions are found using multiple-shooting trajectory

optimization. At low speeds, the resulting optimal motions are found to share a

striking resemblance to human and animal walking. At high speeds, the optimal

motion abruptly switches to a gait similar to human and animal running. These

resemblances indicate that the optimal motions of this robot match the inverted

pendulum template of walking and the spring-loaded inverted pendulum template of

running.

In the second contribution of this dissertation (Chapter III), I investigate the ener-

getic performance of the real robot RAMone and demonstrate the trade-off between

economy and stability. This investigation takes the form of a hardware study [89],

in which a virtual-model controller is implemented on the robot in both hardware

and simulation. The simulation performance is first compared to hardware results.

The walking height for this controller is then varied and the cost-of-transport is eval-

uated. Straight-legged walking is found to be energetically economical for the robot

RAMone, in agreement with expectations. In this study, energetic economy is found

to continually improve as body height increases, up until the robot reaches a point

of instability and falls. Avoiding falls is thus shown to take the role of a constraint

when exploring within the space of gaits.

In the third contribution of this dissertation (Chapter IV), I construct a semi-

autonomous safety regulating controller that guarantees the satisfaction of the ”not

falling” constraint. Such a regulator allows for free exploration of robot motions

without risking the potential damage of a fall. The safety regulator is constructed

by first finding a safe set of states for the robot, then regulating the input such that

the robot state remains within this set. This method is applied to a 4 dimensional

compass-gait walking model with uncertain dynamics, and we show that it can achieve

a wide variety of walking motions while still remaining safe.

In the fourth contribution of this dissertation (Chapter V), I extend the safety

regulator to more complex walking robots. This is challenging, as the sums-of-squares

approach used for generating the safe sets in the previous contribution does not scale

well with state-space dimension. I mitigate this scaling problem by constraining the

safe set to lie on a low dimensional hybrid zero dynamics manifold. In order to add
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flexibility to the robot behaviour on this manifold, a degree of actuation is introduced

into the previously unactuated manifold. The safety regulator then takes controls this

degree of actuation in order to preserve safety when needed. The method is validated

on a 10-dimensional model of the bipedal robot Rabbit walking on flat terrain with

continuously controllable torso pitch.

In the fifth contribution of this dissertation (Chapter VI), I propose an extension

of the previous method towards more complex environments, using a reachability-

based gait selector. This selector switches discretely between different gaits, using

sums of squares analysis in order to maintain safety guarantees during switching. I

then outline how such an approach can be applied to a rabbit model walking on rough

terrain.
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CHAPTER II

The Energetic Benefit of Robotic Gait Selection:

A Case Study on the Robot RAMone

This chapter investigates the nature of economical locomotion for a realistic robot

model in a simulated environment. A family of energy minimizing periodic motions is

found for this model. The underlying properties of these motions are then analyzed,

and parallels are drawn to fundamental principals of biological gait. The contents of

this chapter were published in Robotics and Automation Letters 2017 Volume 2 [88],

and are presented here as originally published.

2.1 Introduction

Being able to move in an energetically economical fashion over a wide range of

velocities is a desirable property for legged robotic systems. Imagine, for example,

an autonomous search and rescue robot. This robot would ideally operate in at least

two distinct locomotor modes: a fast traveling mode to quickly get to the disaster

scene, and a slow exploration mode that is employed at the scene while searching for

survivors. Efficiency is key in either mode to maximize the operation time and range

of the robot.

Similarly, biological systems need to move efficiently over a wide range of speeds.

They achieve this energetic economy by using different gaits, such as walking, running,

or galloping. By switching between gaits, animals and humans travel across a large

range of speeds in an energetically economical manner [40, 57]. This chapter asks if

the ability to change gaits can lead to a similarly improved energetic economy in a

bipedal robot and investigates the nature of these gaits.

One way to gain insight into the mechanisms that govern locomotor economy is

to study the characteristic properties of biological gaits. The simplest such property

8



is the contact pattern; that is, the sequence in which feet strike and leave the ground

[39]. Another property consists of the phase relationship of kinetic and potential

energy during locomotion. This phase relationship has been shown to be distinctly

different at low and high speeds across a large range of species [16]. Another such

property which characterizes gait is the shape of the contact force profiles, which

has been used to classify gaits into walking or running [3]. In fact, as locomotion

speed varies in animals, the type of locomotion (as classified by each of these gait

characteristics) also changes [40, 16, 3].

If economical locomotion in robotic systems similarly varied as a function of speed,

controller design would be profoundly impacted. Since different gaits constitute dis-

tinct motions which do not continuously transition from one to another, economical

robot locomotion would require controllers that discretely switched from one gait

to another. As a result, the question of the existence and the energetic benefits of

distinct gaits is fundamentally important to the robotics community.

The extension of gait from biology to robotics is nontrivial, since biological and

artificial systems are fundamentally dissimilar. To establish a meaningful connection

between nature and robotics, a number of simple models have been proposed that

provide a useful interface between biology and machine. They distill fundamental

principles from locomotion in nature to provide templates for design and control of

robots. Such models include a point mass on massless legs [94], passive dynamic

walkers [59], the spring loaded inverted pendulum [12], and elastic walking models

[29, 28].

To strengthen the link between these simple models and actual robotic systems,

this chapter investigates a set of optimal motions for a specific robotic system (Fig. 1.1).

RAMone is a bipedal robot, designed specifically to investigate energy efficiency and

the role of gaits in robotic hardware. The robot is driven by high compliance series

elastic actuators that can store large amounts of elastic energy and thus enable lo-

comotion that exploits natural dynamics [77]. This chapter investigates properties

of the energetically optimal motion at different speeds and determines whether using

distinct gaits is useful for a robotic system and whether certain gait characteristics

from biology or conceptual models are applicable to RAMone. Though this work

focuses on illustrating the benefits of using distinct gaits at varying speeds on this

particular robot, the presented approach clears the path for future hardware experi-

ments since the developed model is realistic. In fact, robots with similar design and

actuation will show similar characteristics and the proposed methods can be extended

to other legged robotic systems.
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The investigation in this chapter can be seen as an extension of previous work in

optimal gait for conceptual models [93, 77, 107, 108] and builds upon optimization

methodologies put forward in [17, 19, 109]. This chapter presents optimization across

a variety of speeds for two distinct contact sequences and two different knee orienta-

tions. In addition to the added detail and realism that comes from modeling an actual

robot rather than a contrived conceptual model, some of the important differences

between this and previous work stem from the inclusion of articulating knees with

nonlinear springs, and the presence of a large reflected inertia in the motors.

The remainder of this chapter introduces the model, the cost function, and the

employed optimal control approach (Section 2.2), and classifies and discusses the

obtained motions (Sections 2.3 and 2.4). In particular, we show that for RAMone

the most efficient motions are ballistic walking at slow speeds and spring-mass running

at high speeds. Furthermore, we show that it is clearly beneficial for RAMone to run

with its knees pointing backwards. These results are put in context with findings

from nature and with prior work on simple models. To the best of our knowledge,

this is the most realistic model of a robotic system for which the benefits of changing

gait have been demonstrated.

2.2 Constructing Optimal Motions

This chapter exploits trajectory optimization to discover energetically economic

motions for the robot RAMone (Fig. 1.1). RAMone is a bipedal, five link, planar

robot with circular feet and high-compliance series elastic actuators that are driven

by brushless DC motors. It has the same legs as the ScarlETH and StarlETH robots

[44, 78]. Since the robot has articulated knees, the presented approach considers

motions for a pair of discrete morphologies: knees forward and knees backward with

respect to the direction of motion. In addition, two different footfall patterns are

evaluated. The first is a walking sequence with alternating single support and double

support phases. The second is a running sequence in which phases of single support

alternate with flight phases.

2.2.1 Model

The kinematic configuration, q, of the model of RAMone was described by the

main body position x and y, the main body orientation φ, the hip angles αL and αR,

and the knee angles βL and βR. Since the robot is driven by series elastic actuators,

four additional coordinates encoded the motor positions uαL, uαR, uβL, and uβR. A
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vector of motor torques T constitutes the input to this model. In the supplementary

documents1, MATLAB code that defines the dynamics, cost, and constraints of this

model is included. The following is an overview of the model, highlighting only

important features.

2.2.1.1 Dynamics

To formulate the dynamics, a hybrid dynamic approach is employed[30] in which

continuous dynamics are interrupted by discrete events, corresponding to feet gaining

or losing contact with the ground. The mechanical dynamics q̈ = fc (q, q̇, τ), were

derived using implicitly constrained Newton-Euler equations. Here τ represents the

torques exerted on the joints by the actuators. In this approach, the generalized

accelerations q̈ and the contact forces λ are simultaneously solved for.

If a foot leaves the ground, the contact is removed from the set of active constraints

which changes the structure of the mechanical dynamics but does not alter the state.

When a foot comes into contact with the ground, a new constraint is established, and

the foot is assumed to be instantaneously brought to a halt by a collision impulse Λ.

To this end, a discrete state transition q̇+ = fd (q−, q̇−) is computed which expresses

the generalized velocity after the event (q̇+) based on the pre-impact state (q− and q̇−).

When solving for q̇+ and Λ, one must carefully choose a post impact active constraint

set that satisfies nonpenetration and nonnegative ground contact force conditions

across the transition. In particular, this means that for the walking sequence (in

which one foot is on the ground when the other collides), two outcomes are possible.

Either the first foot remains on the ground, leading into an extended double-support

phase, or the first foot immediately lifts off, creating an instantaneous double-support

phase.

2.2.1.2 Series Elasticity

RAMone has two different types of series elastic springs, one type for the hip

joints and the other for the knee joints [44]. The hip springs behave linearly with

viscous damping and negligible dry friction. The resulting force model is:

τα = −kα∆α− bα∆α̇, (2.1)

where ∆α = α− uα is the difference between joint position and motor position, and

τα is the torque on the hip joint.

1https://bitbucket.org/ramlab/ral_2016
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To improve knee angle control while the foot is in the air, the robot’s knees are

designed with “endstops” in the series elastic knee springs [44]. The resulting knee

joint is modeled as a position and velocity dependent spring damper system. When

the knee joint is pushing against the endstop, we have a high stiffness and damping

(k1
β, b1

β), otherwise they take on smaller values (k2
β, b2

β). The dry friction (fβ) observed

in experiment is added to the model to obtain the following nonlinear spring:

τβ =− k1
β∆β − (k2

β − k1
β) min (0,∆β − βsm)

− b2
β∆β̇ − (b1

β − b2
β)∆β̇1(∆β−βsm>0)1(∆β̇>0)

− fβ sign (∆β̇), (2.2)

where 1A is the indicator function over the set A, ∆β = β − uβ is the difference

between the joint and motor position, and τβ is the torque on the knee joint.

2.2.1.3 Motor Model

Each joint of RAMone is actuated by a brushless DC motor that is connected via

a gearbox and chain drive to a series elastic spring. In the model considered in this

chapter, the motors are represented by their rotor inertia Jrot, the motor speed-torque

gradient Smot, and the net gear ratio of nα and nβ for the hip and knee, respectively.

Motor torques T and speeds u̇ are limited by the maximum rated continuous motor

torque Tmax and the maximum rated input speed of the gearboxes u̇max. In the

series elastic actuators, the motor accelerations ü are determined individually for

each actuator:

n2Jrotü = (T − τ). (2.3)

All model parameters needed to compute the dynamics, cost, and constraints are

provided in the supplementary MATLAB script Parameters.m. The parameters were

identified and refined iteratively as the robot hardware was undergoing continuous

testing and evaluation. The inertial properties were established from CAD models of

RAMone and verified through measurement where possible. Other parameter values

were determined using manufacturer specifications when available and were otherwise

identified through direct or indirect measurement and fitting.
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2.2.2 Optimization

Given this model, the following constrained optimization problem is solved to find

the energetically economical periodic motions:

min
q,q̇,u,u̇,T,tF

CoT (q, u̇, T, tF ) (2.4a)

s.t. Continuous Dynamics (q, q̇, u, u̇, T ) (2.4b)

Actuator Limits (u, u̇, T ) (2.4c)

Joint Limits (q) (2.4d)

Foot Nonpenetration (q) (2.4e)

Positive Contact Force (q, q̇, u, u̇) (2.4f)

Discrete Dynamics
(
q−, q̇−

)
(2.4g)

Foot Touchdown
(
q−, q̇−

)
(2.4h)

Positive Contact Impulse
(
q−, q̇−

)
(2.4i)

Foot Liftoff
(
q−, q̇−

)
(2.4j)

Periodicity(q(0), q̇(0), u(0), u̇(0),

q(tF ), q̇(tF ), u(tF ), u̇(tF )) (2.4k)

Fixed Speed (q, tF ) . (2.4l)

The motion obtained from this formulation represents an energetic optimum for

uninterrupted periodic locomotion without external disturbances, model errors, and

sensor noise. In particular, the results will not take into account the additional

energetic cost associated with stabilizing feedback.

2.2.2.1 Cost Function

The cost function used in the optimization estimates the electrical work required

to drive the motors. Its computation reflects the fact that the motors share an input

voltage rail, such that electrical power generated from one motor can be directly

consumed by the other motors. The total power is thus the sum of the mechanical

motor power and the motor copper losses of all four motors i. Since the robot has

no means to store excess electrical energy in batteries or capacitors, if all motors

together create negative net power, this power is dissipated in the form of shunt

losses. Negative values were thus excluded when power was integrated over a full
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stride with period tF :

c =

tF∫
0

max

(
4∑
i=1

Tiu̇i +
T 2
i

n2
iSmot

, 0

)
dt. (2.5)

To compare energetic economy across different velocities, the resulting work was nor-

malized to yield a dimensionless “cost-of-transport” (CoT) [27]:

CoT =
c

mg∆x
, (2.6)

where ∆x is the distance traveled in the stride and mg is the total weight of the

robot.

2.2.2.2 Constraints

Mathematical constraints were used to ensure that the resulting motion was fea-

sible on RAMone. These constraints fall into three categories: continuous con-

straints (Eqs.2.4b,2.4c,2.4d,2.4e,2.4f) which must be satisfied throughout the con-

tinuous phases of the trajectory, discrete constraints (Eqs.2.4g,2.4h,2.4i,2.4j) which

must be satisfied during the event phases, and endpoint constraints (Eqs.2.4k,2.4l)

which must be satisfied at the start and end of the trajectory. They encode the dy-

namics and physical limitations of the model, as well as the required periodicity and

locomotion speed.

2.2.2.3 Optimizer

The constrained optimization problem in Eq. (2.4) was solved with the optimiza-

tion package MUSCOD [13, 54, 22]. MUSCOD is a multistage multiple shooting op-

timizer that can perform simultaneous optimization of trajectories and control inputs

for nonlinear systems with a predefined schedule of continuous modes. The trajec-

tory and input are discretized as trajectory nodes with piecewise constant control

inputs. Between nodes, the dynamics are integrated forwards with variable step inte-

gration, providing feasible trajectories even with coarse discretization. Additionally,

MUSCOD allows for nonlinear state and input constraints throughout the trajectory.

Optimizations were performed for two distinct footfall sequences: a walking se-

quence and a running sequence. For the walking sequence, two possible collision

outcomes had to be accounted for. In one outcome, the stance foot remains on the

ground when the swing foot impacts which results in a double stance phase of finite
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duration. In the other, the stance foot immediately lifts off, resulting in a zero dura-

tion double stance phase. Also, rather than implementing two models for the different

knee directions, optimizations were conducted for positive and negative velocities.

Since this optimization is not necessarily convex, initialization is an important

consideration when searching for global optima. The search for walking sequence

trajectories was initialized with a feasible walking gait generated with a hand built

controller. This gait contained a significant double support phase. The search for

running sequence trajectories was initialized with a stationary trajectory. Once an

optimal trajectory was found at a single velocity, this trajectory was used to initialize

optimizations at higher and lower velocities. This process was repeated recursively.

Optimizations were undertaken for the running and walking sequences and with the

knees pointing forwards and backwards over a range of locomotion velocities with a

velocity resolution of 0.02 m/s.

2.3 Optimal Motions and Gaits

Results of the optimizations are presented in Fig. 2.1. For a range of speeds, each

curve shows the cost of transport (CoT) of the optimal motion for a given sequence

and knee orientation. Note that attempts to enforce a non-zero duration double-

stance in walking inevitably led to a higher CoT (Fig. 2.1). Hence, this chapter

will focus solely on the walking sequence solutions with an instantaneous transfer of

support.

At low speeds, motions with a walking sequence are found to be optimal, while

at high speeds a running sequence consumes less energy. The transition happens

at 1.04 m/s. Below this speed, three of the four motions exhibit a ballistic walking

gait (Sec. 2.3.1), while above this speed the two running sequence motions exhibit

a spring mass running gait (Sec. 2.3.2). The differences in cost are small below the

transition speed, but clearly deviate for higher speeds. At these higher speeds, a

significant benefit of having the knees pointing backwards rather than forwards is

observed (Sec. 2.3.4). Motions with a walking sequence were identified for speeds as

low as 0.12 m/s, while no running sequence for velocities lower than 0.50 m/s with the

knees pointing forward and lower than 0.90 m/s with the knees pointing backwards

were identified.

At a velocity of 1.04 m/s a clear transition point in terms of the CoT-optimal foot-

fall pattern is observed, changing from a walking sequence to a running sequence.

For motions with a running sequence, the rate of increase of the CoT was drasti-
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Figure 2.1: Cost of transport is shown as a function of speed given in m/s and as a non-
dimensional Froude number: F = v2

g`
(where ` = 0.47 m is the extended leg length of

the robot). At all speeds, the walking sequences with an extended double stance phase
were suboptimal compared to those with instantaneous support transfer. As such,
the remainder of the analysis focuses on walking sequences with zero double support
phase. At low speeds, all four remaining cases had a similar CoT. Walking footfall
sequences had a slight energetic advantage. For speeds below 0.88 m/s, the walking
sequences with the knees pointing forward had the lowest CoT, for speeds between
0.88 m/s and 1.04 m/s it became optimal for knees to point backwards. Motions with
a running footfall sequence were slightly more energetically expensive below 1.04 m/s.
However, their CoT was only up to 0.036 higher. At high speeds above 1.04 m/s, the
CoT of the four gaits diverged. Moving with a running sequence and with the knees
pointing backwards became by far the most efficient mode of locomotion. Using a
walking sequence increased the CoT by up to 0.77 (259 %) at 2.04 m/s. Having the
knees point forward instead of backward increased the CoT of the running sequence
by up to 0.52 (148 %) at 2.68 m/s.
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cally reduced beyond this transition point. In contrast, the CoT of motions with a

walking sequence kept growing at an increasing rate. As detailed in the subsequent

sections, this divergence corresponds to a sudden and discrete transition in terms of

the underlying gait characteristics.

2.3.1 Ballistic Walking at Speeds Below 1.04 m/s

Motions with a walking sequence were energetically the most efficient at speeds

below 1.04 m/s. When examining the exchange of kinetic, gravitational, and elastic

energy content over the course of a stride, the motions exhibited a clear out of phase

transfer between kinetic and gravitational energy (Fig. 2.3). Additionally, gravita-

tional energy was highest during mid-stance with the center of mass moving in an

upwards arc. There was virtually no elastic energy storage in motions with the knees

pointing forward. Some energy was stored elastically in motions with the knees point-

ing backwards. The ground reaction forces (Fig. 2.4) were mostly flat apart from a

large peak at the beginning of single stance (an effect of the contact collision). With

the knees pointing forward, a peak in force towards the end of stance, reminiscent of

a human push-off, was discovered. This is consistent with the demonstrated energetic

benefit of pre-emptive push-off for both animals [35] and machines [82].

The characteristics of the energy exchange are clearly indicative of ballistic walk-

ing [61]. Especially with the knees pointing forward, the robot’s optimal motion is

much like that of a compass gait walker [46] with almost no energy storage in the

elastic actuators and the dynamics represent those of an inverted pendulum. This is

in stark contrast to earlier studies with simplified models of robotic systems, which

found that at low speeds, elastic walking with substantial elastic energy storage in leg

springs and an extended double support was the optimal locomotion mode [108]. The

absence of elastic walking gaits [29, 108] in RAMone’s motion is likely a consequence

of the fact that the knees are nearly straight throughout stance (Fig. 2.2) which makes

the robot’s legs rigid. This knee extension is not as pronounced when the knees are

pointing backwards and more storage of elastic energy was observed in this configu-

ration. While the two walking sequences shared many conceptual properties, there

remained some visible differences including varying amounts of elastic energy storage

throughout the gait, straightness of the knees, stride length, and stride frequency.

However, overall both motions were clearly ballistic walking gaits.

For motions with a running sequence, the outcome was more structurally depen-

dent on the knee direction. With the knees pointing backwards, the duration of the

air-phase was nearly zero and the energy dynamics showed an exchange between ki-
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Figure 2.2: Trajectory stills show the optimal motions at a speed of 0.9 m/s. This
speed is below the walk to run transition and the gaits share similar properties that
are indicative of ballistic walking. In particular, the knees are extended, the main
body is pitched forward, and the center of mass moves in an upwards arc. The running
sequence with knees pointing backwards is an exception to this pattern and shows
characteristics more reminiscent of Groucho running.
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Figure 2.3: Center of mass kinetic, gravitational, and elastic energy flow for all mo-
tions at 0.9 m/s. Both walking sequence motions and the knees forward running se-
quence motion exhibit an out-of-phase relationship between kinetic and potential
energy. This is prototypical of ballistic walking [61]. The knees backwards running
sequence gait exhibits Groucho running [60], characterized by a constant potential
energy and an out of phase exchange between kinetic and elastic energy.
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Figure 2.4: Ground reaction force magnitudes at 0.9 m/s. A distinct pushoff force
is observed near the end of each single stance phase for the knees forward walking
sequence. This pushoff force is conspicuously absent in the other three motions.
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netic and elastic energy storage, with hardly any fluctuations in gravitational energy

(Fig. 2.3). This gait could be described as Groucho running [60]. However, only such

motions for speeds larger than 0.90 m/s could be found. In contrast, with the knees

pointing forwards, such motions were found for speeds as low as 0.50 m/s. These mo-

tions showed all characteristics of ballistic walking, even though they had a running

footfall sequence. Characteristics included an out-of-phase relationship in kinetic and

gravitational energy (Fig. 2.3), an upwards arc of the center of mass, and extended

knees (Fig. 2.2). The optimizer brought the air-phase duration of these gaits nearly

to zero (Fig. 2.5), getting as close as possible to an instantaneous transfer of support.

One should note that there is an important difference between a walking sequence

with a zero duration double support and a running sequence with a zero duration

air-phase. In the walking sequence, the touchdown impact at the leading leg and

the resulting impulse that propagates through the mechanical structure create an

immediate lift-off of the trailing leg. When we enforce an air-phase (even of vanishing

time duration), the trailing leg must leave the ground before the impact collision,

meaning that lift-off must be generated without the assistance of the ground impulse.

Despite this important difference, the optimizer still converged to a ballistic walking

motion.

2.3.2 Spring-Mass Running at Speeds Above 1.04 m/s

As locomotion speed was increased beyond 1.04 m/s, a sudden and significant in-

crease in the air-phase duration was observed for motions with a running footfall

sequence (Fig. 2.5). With knees pointing backwards, for example, the air-phase du-

ration (as percentage of a full stride) increased in a single velocity increment from

1.3 % at 1.04 m/s to 18.6 % at 1.06 m/s. The sudden increase is indicative of a structural

change in the motion strategy. For speeds larger than 1.04 m/s, the energy flows of

these motions exhibited an in phase relationship between kinetic and gravitational

energy, with energy being stored as elastic energy in the actuator springs (Fig. 2.7).

Gravitational energy was lowest at mid-stance with the center of mass moving in a

downwards arc. For both knee orientations, the ground reaction forces showed an

initial (collision) peak followed by a single hump (Fig. 2.8).

These characteristics are clearly indicative of spring-mass running, also called

spring loaded inverted pendulum (SLIP) running [12]. The legs are used as springs

and the motion resembles that of a bouncing ball. The required leg-compliance is

achieved by a more pronounced knee bend that softens the leg (Fig. 2.6).

In contrast to the sudden changes that were observed in motions with a running
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Figure 2.5: Flight phase durations of the running sequences. The optimal flight phase
duration is near zero for speeds below the walk to run transition and jumps up sharply
at speeds above this point, indicating a sudden and discrete change in gait.

sequence, motions with a walking sequence remained mostly unchanged across the

transition point. In particular, they continued to exhibit an instantaneous transfer of

support, extended knees, and all other characteristics of a ballistic walking gait.

2.3.3 Walk to Run Transition

At the transition point, the most economical footfall sequence changed from a

walking sequence to a running sequence. This change in footfall sequence was not

the only indication of gait change. When considering only motions with a running

sequence, we observed a clear structural change at this speed. Below this speed, the

motion with forward knees closely resembled a ballistic walking gait, despite the

presence of an enforced air-phase. The energetic benefits of changing gait thus likely

do not originate primarily in the footfall sequence, but more in the dynamic pattern

of the chosen gait.

The transition occurred at a Froude number of 0.23. This is similar to the 0.25

observed for a simple biped in [108], but is significantly smaller than the 0.42 ob-

served for humans [94]. Additionally, the transition speed is similar for both forwards

and backwards knee directions. The similarity of the transition speed between the

two knee orientations and the prismatic legs of [108] suggests the existence of an

underlying trigger that is independent of leg morphology.

What is this mechanism that drives the sudden structural change in motion at

speeds of 1.04 m/s? Why is ballistic walking more efficient at lower speeds and why is

spring-mass running more efficient at higher speeds? One hypothesis is proposed in

[94], where the authors found a similar transition for a minimal biped model. They
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Figure 2.6: Trajectory stills of the optimal running sequence motions at 1.2 m/s. In
contrast to the same footfall sequence at lower speeds (Fig. 2.2), the motions now
exhibit clear properties of spring-mass running. This includes a pronounced knee
bend and a downwards arc of the center of mass.
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Figure 2.7: Center of mass kinetic, gravitational, and elastic energy flow for running
sequence motions at 1.2 m/s. The left and right contact phases of the motion are
indicated with a shaded background. Both motions exhibit the in-phase kinetic and
gravitational energy oscillation with out of phase elastic energy that characterizes
spring mass running [12]

22



Running Sequence Knees Forwards

Left StanceRight Stance
Air

phase

0 20 40 60 80 100

Percent of Stride [%]

0

100

200

300

400

500

T
o

ta
l 
G

R
F

 [
N

]

Running Sequence Knees Backwards

0 20 40 60 80 100

Percent of Stride [%]

λ
total
right

λ
total
left

Figure 2.8: Total ground reaction force at each foot for running sequence motions at
1.2 m/s. Both knees forward and backwards motions exhibit a sharp initial force at
contact followed by a single hump.

argued that this was driven by the large collision cost of high speed ballistic walking.

In order to see if similar arguments apply to our results, we separated the total

CoT into losses due to collisions, damping losses, copper losses, and shunt losses.

Since the motion trajectories were periodic, no energy was gained or lost by the robot

over one period, and the energy required to drive the actuators matched the above

mentioned losses:

c = Qcoll +Qdamp +Qcopper +Qshunt. (2.7)

To match the definition of the CoT, the values of these losses were scaled by (mg∆x)−1.

This breakdown of contributors to overall cost was computed for motions with

the knees pointing backwards in both a walking and a running sequence (Fig. 2.9).

For the walking sequence, copper losses were the primary contributor to the cost (on

average 57 %), followed by damping losses (31 %) and collision losses (13 %). A similar

breakdown was obtained for the running sequence below 1.04 m/s. For the running

sequence above 1.04 m/s, this ratio was inverted, damping losses led (on average 62 %),

followed by copper losses (31 %) and collision losses (6 %). Negative electrical work

appeared solely in high speed walking sequence gaits.

The fact that collision losses were dominated by damping and electrical losses in

our cost function would indicate that the mechanism proposed in [94] is not the sole

factor driving the walk to run transition.

2.3.4 Influence of the Knee Direction

A notable finding was the large difference in CoT as a function of knee direction.

For the running sequence, moving with forwards knees required on average 60 % more

energy than with backwards knees. This is in agreement with prior findings in [34],
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Figure 2.9: Comparison of loss contributions (normalized by mg∆x) between walking
and running sequences . Results are shown across a range of speeds and for motions
with the knees pointing backwards. All components of the walking sequence motion
increase smoothly across speed, with electrical losses dominating. In contrast, the
individual costs of the running sequence motion change discretely across the walk to
run transition. Below the transition, the costs of the running sequence motion roughly
follow those of the walking sequence motion. Above the transition, the electrical losses
sharply decrease and damping losses dominate the cost. This sharp jump is a result
of the transition from Groucho running to spring mass running.

24



in which it was shown that backwards kneed gaits are more efficient for most five link

bipeds.

The increased cost for forward kneed running is incurred during leg retraction

at the beginning of swing. Since the reflected rotor inertia for this robot is large in

comparison to the leg mass, the majority of the cost of leg retraction comes from

reversing the direction of the motors.

For the knee backwards gait, the push-off velocity is largely generated from the

extension of the knee joint (kinematically governed by the liftoff speed). This velocity

can be driven by the knee springs, allowing the motors to begin moving in flexion even

before liftoff (Fig. 2.10). As a result, the knee rotors don’t need to reverse direction

during swing.

For the knee forwards gait, the push-off velocity is mainly generated from the

extension of the hip. Ideally this velocity would come from spring deflection (as

in the knee), however, this deflection would create a large hip torque before liftoff.

Since torques in the hip before liftoff lead to pitching of the main body, the hip spring

deflection must be small. This forces the hip motor to match the hip joint velocity

(Fig. 2.10).

Therefore, knee forwards running gaits must quickly dissipate a large angular

momentum stored in the hip motors at liftoff in order to retract the swing leg. In

this case 1.13 J (0.0157 when expressed as a dimensionless energy) of hip rotor energy

must be dissipated. When the knees are pointing backwards, only 0.02 J (0.0004) of

energy is dissipated.

2.4 Discussion & Conclusion

This chapter presents a study on the question of economical gait selection for

legged robotic systems. Optimal control was used to generate energy optimal mo-

tions for a realistic model of the bipedal robot RAMone. Two different footfall

sequences (a walking sequence with a double-support phase and a running sequence

with an air-phase) and two different orientations of the knee joints (pointing forwards

and backwards) were compared. Actuator inputs and motion trajectories that min-

imized the electrical cost of transport were identified for a range of velocities. The

optimal motion at each individual speed was computed and each such motion was

characterized using established gait classifications.

At a speed of 1.04 m/s the optimal gait was found to change from ballistic walk-

ing with an instantaneous double-support to spring-mass running with an extended

25



Figure 2.10: The different knee directions in the running sequence motion lead to
different robot configurations at liftoff (shown in (a) for a velocity of 1.2 m/s). As a
consequence, the joint velocities in the swing leg (shown in (b)) differ greatly between
the two cases. These joint velocities are the sum of the motor and spring velocities. A
significant deflection in the knee springs decouples the joint from the motor. Joint and
motor velocities are thus distinctly different, and the knee motor is already moving
to retract the leg while the knee joint extends for liftoff. The same does not hold
for the hip joint, where joint and motor motion must be more similar and the motor
motion can only be reversed after lift-off. Because of this, running with the knees
backwards is at an advantage, since it requires a much smaller hip velocity. [Note
that all velocities are defined to be positive when counter clockwise. A positive knee
velocity thus indicates knee extension when the knees are forward, and knee flexion
when the knees are backwards.]
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air-phase. Switching from ballistic walking to spring-mass running reduced energy

consumption by up to 88 %. This result illustrates clearly that it is beneficial for

RAMone to employ different gaits at different speeds.

Notably the different motions at distinct speeds distinguished themselves primarily

in terms of the dynamics of the motion. Gaits were clearly identified as either ballistic

walking or spring-mass running. That is, at low speeds nearly no energy was stored

in the actuator springs, while at high speeds almost all of the energy fluctuations

within the robot were conducted through the springs. There was no continuous

transition between these types, with a sudden change occurring at a speed of 1.04 m/s.

This switch was not only initiated by a change of footfall sequence, as motions with a

running footfall sequence showed clearly different dynamic behaviors below and above

this speed.

That the identified optimal motions shared many properties with gaits found in hu-

mans and animals was not expected per-se. While the overall morphology of RAMone

roughly resembles that of a human (when the knees point forward) or of birds (when

the knees point backwards), there are considerable differences between this robot and

biological systems. Among these, RAMone lacks ankles and feet, is actuated by elec-

trical DC motors which have a considerable reflected inertia, has springs that are only

slightly damped, and employs a cost function that trades-off work and force penalties

specific to electric actuators. Still, the general trend of transitioning from ballistic

walking to spring-mass running, as well as the main characteristics of the individual

gaits (especially with respect to the exchange of potential, gravitational, and elastic

energy) were similar. Most major differences, such as the lack of the double stance

phase found in human walking, were likely a consequence of the rigidity of the robot’s

structure (which differs from the compliant legs of humans and animals).

It is tempting to interpret the backwards-knee orientation as a transformation of

the knees into ankles, thereby making the morphology of the robot more similar to

that of, for example, birds or ungulates. However, this interpretation is not made in

this chapter since, unlike animals, the inertia of RAMone’s leg is largely dominated

by the reflected inertia of the actuators (by a factor of 10). Still, the demonstrated

benefits left no doubt that RAMone should locomote with knees pointing backwards.

It is necessary to note that the optimization problems in this chapter are not

convex. Relying on local methods, we cannot guarantee that our results represent

globally optimal motions. However, despite seeding each contact sequence and knee

orientation with dissimilar initial trajectories, all four optimizations converged to sim-

ilar gaits with similar cost of transport at low speeds. For the running sequence, this
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means that optimizations seeded with locally optimal ballistic running gaits converged

instead to pendular walking gaits at speeds below the walk to run transition. Since

walking and running have discretely different trajectories, there is likely no sequence

of locally optimal gaits that lead gradually from the first local minimum to the other.

This indicates that our search is capable of escaping suboptimal local minima.

This work prompts several questions that merit further investigation. One is that

of generality. How do these results extend to other robots? Another is gait transition.

What drives the transition in RAMone, and why does it occur at similar speeds across

leg morphologies? We also hope to understand specific features of the gaits, such as

the significantly bent knee at liftoff and touchdown during knees forward running.

Additionally, while we did our best to model RAMone as precisely as possible,

certain effects can never fully be encoded in a simulation. This includes gearbox

friction, foot deformation, elastic forces in cables, and parametric model error. To

truly appreciate the role and benefits of using different gaits in legged robots, one

thus has to implement optimal gaits on an actual robotic prototype.

This study is another milestone in the effort to understand the meaning and the

usefulness of different gaits in legged robotic systems. It extends on an understanding

of biology [40, 16], simple passive models [29, 28] and conceptual models [108], and

adds a strong layer of realism to this question. It now remains to explore how these

results translate to actual physical robots.
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CHAPTER III

RAMone: A Planar Biped for Studying the

Energetics of Gait

This chapter moves our investigation from the ideal simulated world of the previ-

ous chapter towards physical reality. Here the real robot RAMone is used to conduct

experimental evaluations of a simulation-inspired walking controller, as well as to val-

idate our detailed robot model. The contents of this chapter were published at IROS

2017 [89], and are presented here as originally published.

3.1 Introduction

For legged robots to be practically useful, they have to be robust (able to operate

in the presence of noise, model errors, external disturbances, and uncertain envi-

ronments) and versatile (able to perform different tasks) while using little energy to

function. However, no robot to-date demonstrates all of these qualities. Robots that

seem to be most robust and versatile, such as Atlas [23] and Asimo [84], use powerful

actuation for high-precision control. This enables them to perform fast and strong

actions to react to and cancel large perturbations. But such control also makes the

robot motions energetically costly. For example, Atlas has a cost of transport1 (CoT)

of ∼ 5, which is 15 times that of a walking human [10]. In contrast, the robot Cornell

Ranger is about as energy-economical as humans, with a CoT of 0.28 [10]. Ranger was

designed and controlled specifically to walk with little power, e.g. it exploits natural

dynamic motions and performs work when it is most optimal to do so (‘preemptive

push-off’). But Ranger is barely stable, as it falls on slopes of just two degrees and

is only able to walk, but not, say, run or hop.

1Cost of transport is a standard metric of energetic economy [98], defined as the energy consumed
per distance traveled normalized by body weight.
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So how can we make robots that combine robustness, versatility and energy econ-

omy, which many legged animals seem to do naturally [98]? One approach is to

use common attributes of versatile robots, such as sufficient and fast actuation in all

joints, along with general principles that are considered beneficial for energy economy.

Such principles influence three different levels of robot control and design:

• Hardware components that minimize energy losses in the system, regardless of

the specific motion or controller. These include efficient actuators (e.g. DC

motors instead of hydraulics), small friction between different elements, and

regenerative power. The MIT Cheetah is one robot that effectively makes use

of such hardware components [86].

• Hardware design principles that can be exploited by the controller for econom-

ical gaits. For example, light legs with small feet allow for swinging the legs

quickly and with little effort [86]. Springs reduce ground-impact energy losses;

they can also store energy generated by negative work and release it later to

help power the robot motion [2]. The ATRIAS robot is an example of a robot

that follows these principles [42].

• Control principles that optimize energy use during locomotion. For example,

controllers that exploit underlying natural dynamics, such as pendular walking,

can greatly reduce energy consumption in robots [92]. Additionally, the use of

different gaits can allow for energy economical motion across a large range of

speeds [40][94][88].

Our goal is to study energy-economical locomotion that is also versatile and

possibly robust. For this purpose, we designed the planar bipedal robot RAMone

(Fig. 1.1). RAMone is a bipedal version of the robot ScarlETH , a monoped which was

designed at ETH Zurich according to many of the above principles [44]. RAMone is

similar to other planar bipedal robot platforms including ERNIE [109], KURMET [47],

and MABEL [92].

In our past work [88], we determined the energy optimal motion strategies for a

detailed model of RAMone. We found that for this robot, straight-legged pendular

walking is the most economical gait at speeds below 1.04 m/s. Above this speed,

spring mass running was found to be optimal. These optimal motions are consistent

with results for a simple biped model [94] and with the way humans prefer to move

at different speeds [57]. However, simulation, no matter how detailed, is only an

approximation of the real world, and such results do not always translate to actual
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Hip Offset, lH 0.138 m
Thigh Length, lL2 0.200 m
Shank Length, lL3 0.264 m
Foot Radius, rfoot 0.028 m
Main Body Mass, m1 7.90 kg
Thigh Mass, m2 0.79 kg
Shank Mass, m3 0.57 kg
Left Hip Spring Constant, kα 74 Nm/rad

Right Hip Spring Constant, kα 74 Nm/rad

Left Knee Spring Constant, kβ 30 Nm/rad

Right Knee Spring Constant, kβ 32 Nm/rad

Table 3.1: RAMone Kinematic, Mass and Spring Properties

robots. For this reason, we have constructed a hardware platform to directly explore

the question of economical motion in the real world.

In this chapter, we introduce the hardware of RAMone, we describe a virtual

model controller which demonstrates stable walking across a range of body heights,

and we present a realistic simulation of the robot which is shown to agree with the

hardware results. In addition, we conduct an energy-economy study across body

height in both simulation and hardware, which shows that straighter-legged walking

is more economical for this robot.

3.2 Methods

3.2.1 RAMone Hardware

RAMone consists of a main body, two identical legs and a motion planarizer. A

schematic of the robot is shown in Fig. 1.1.

The main body is designed to be lightweight while maximizing its moment of

inertia. It mounts onto a carbon fiber tube that confines the motion to the sagittal

plane and serves as its pitch axis, which is offset from the legs’ hip axis. The main

body center of mass is located at the pitch axis.

Each leg is based on the ScarlETH design [44], with two joints, one each for

flexion/extension of the hip and knee. Each joint uses linear compression springs in

series with a Maxon EC60 motor mounted to a harmonic drive gearbox with a gear

ratio of 50:1. The hip has two pre-compressed springs in an antagonistic setup yielding

linear behaviour throughout the full range of motion. The knee places a unilateral

damper in series with a pre-compressed spring yielding a non-linear behaviour. Force
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control in the knee can only be achieved in one direction where compression of the

spring behaves linearly. The unilateral damper restricts spring deflection in the other

direction and passively attenuates undesired deflections. The motors and gearboxes

are mounted together in one component that comprises the hip axis which keeps the

overall center of mass near the hip and inertia of each leg segment to a minimum.

Chain and cable pulley systems are used to actuate the joints’ motion.

The motion planarizer is detailed in [33]. Separate horizontal and vertical sliders

carry the carbon fiber tube used for mounting the robot. A motor-driven cable pulley

system is able to catch the robot upon falling or provide a specified supporting force.

The controller for RAMone (see Section 3.2.2) is model-based. Thus it is impor-

tant to have accurate estimates of RAMone’s kinematic, mass, and spring properties

(Table 3.1). The kinematics of the robot were obtained through a mixture of CAD

values and direct measurement. Each link was weighed to identify its mass and

balancing measurements were used to estimate centers of gravity. The rotational in-

ertias were obtained from the natural frequency when swinging freely. Hip and knee

spring constants and knee spring pre-compression were measured separately for each

leg by ranging spring deflection and measuring resulting contact force with a force

transducer.

The motors are controlled with EPOS3 positioning controllers mounted on the

main body that use an optical encoder and a hall effect sensor integrated in the

motor to track the motor’s position and speed. The motor torque is also reported

by the motor controllers. High resolution single-turn absolute encoders are used to

measure hip position and pitch and incremental encoders are used to measure knee

deflection. Incremental linear encoders mounted to the planarizer are used to measure

the robot’s main body position (x and y).

Ground contact is sensed through a specially designed foot using limit switch

contacts. An air filled racquet ball is affixed to the foot and serves as the external

contact, providing cushioning and a high friction coefficient.

The motor controllers, sensors, motion planarizer and a treadmill are integrated

together in a Beckhoff TwinCAT 3 PC-based control system that uses the EtherCAT

network protocol. The motor controllers have built-in EtherCAT interfaces while

the other sensors are integrated through EtherCAT modules connected to the net-

work through an EtherCAT coupler. The EtherCAT modules and coupler, control

computer and main power are located off-board and connected through a tether.

Programming for RAMone is done with MATLAB/Simulink using MathWorks’ xPC

Target to create the real-time testing environment.
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3.2.2 Controller

In order to make RAMone walk steadily while maintaining a given main-body

height and forward speed, we designed a walking controller that is conceptually simple

while allowing for flexible parametrization. The controller resembles Pratt’s Turkey

Walk controller [74], with an added phase parametrization to govern stance transi-

tions. This high level controller sends its output to a set of low-level joint controllers,

which, in turn, send velocity commands to the EPOS3 motor controllers.

3.2.2.1 Low Level Motor Controllers

In order to safely control body position over uneven terrain as well as precisely

control foot position in the air, we use both position and force controllers at the joint

level. These low level controllers are similar to those described in [44].

For torque control, we regulate the extension of the series elastic elements in

the joints to achieve a desired force. This is done using a PD controller on spring

deflection, with feed-forward terms consisting of the joint angle velocities. Due to

the unilateral damping in the knees, our force control is only accurate above a knee

torque of 1.5 Nm. To account for this, we saturate the knee torques at this threshold.

We use similar PD controllers with feed-forward terms to govern our low level joint

position controllers. In the knee, the spring pre-compression keeps the joint pressed

against the motor for small torques which allows for the use of a motor position

controller to achieve a desired joint position. In the hip, we use a proportional state

feedback controller on the joint and motor position and joint velocity to achieve a

desired joint position.

3.2.2.2 Virtual Model Controller

The basis of our walking controller is a stance-dependent control target for the

main-body center of mass position. This control target is achieved using a set of

virtual forces acting on the main body: horizontal and vertical virtual forces F virt
x

and F virt
y , and the virtual torque F virt

φ about the main-body center of mass.

We use virtual forces to control body height y and pitch angle φ during both

double stance and single stance:

F virt
y = KP

y (ŷ − y)−KD
y (ẏ) +m1g

F virt
φ = KP

φ

(
φ̂− φ

)
−KD

φ

(
φ̇
)
.

(3.1)
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Here ŷ and φ̂ are the desired height and pitch respectively. Note that we add the

weight of the main body (m1g) to the vertical virtual force in order to offset gravita-

tional forces.

During double stance, in addition to the pitch and height control, we aim for zero

force in the horizontal direction:

F virt
x = 0. (3.2)

This approach differs from Pratt et al., who use a virtual damper [74] to control

the forward velocity of the robot during double stance. We instead control the forward

speed of the robot by adjusting the relative time spent by the main body behind or

in front of the stance foot during single stance. This indirectly controls the energy

added to the system during single stance. To adjust this, we heuristically tune the

parameter ∆x in the phase parametrization (see Sec. 3.2.2.3).

To achieve the desired virtual forces, we compute the required contact force in

each foot. These contact forces are mapped into desired joint torques using the

contact-point Jacobians. We then add compensation terms to the desired torques to

account for gravitational and coriolis forces and send the resulting values to the low

level torque controllers.

3.2.2.3 Phase Parametrization

In order to determine the timing of the transition from single to double stance

and from double to single stance, we define a phase variable θ that takes on values

from -1 to 1.

θ is given as a function of the horizontal distance from the body to the forward-

most stance foot; this function is piecewise linear during each step and is reset to

−1 at each touch-down. The function is determined by three parameters: xSS, ∆x,

and lstep, as shown in Fig. 3.1a. lstep is the desired step length of the robot, xSS is

the distance that the body will cover during single stance, and ∆x is the offset of the

single stance phase from being centered around the stance foot. The net acceleration

of the robot during single stance increases with the amount of time spent in front of

the stance foot. Therefore, increasing/decreasing ∆x leads to an increase/decrease in

the average forward velocity.

3.2.2.4 Swing Foot Trajectory

During single stance, the swing foot trajectory is parametrized by θ. The trajec-

tory is given as an elliptic arc which begins at the foot position after liftoff when θ= 0
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Figure 3.1: (a) Specification of the phase parameter θ. Between -1 and 0, and between
0 and 1, θ is a linear function of the horizontal distance from the forward-most stance
foot to the main body. Note that if the gait is periodic with step length lstep, the
duration of the double stance phase xDS is determined by xDS = lstep−xSS. The
parameter ∆x (negative as shown in the figure) is used to control the average walking
speed of the robot.
(b) Gait transition sequence. Beginning in double stance, θ becomes less negative as
the body moves forwards, triggering the liftoff phase when it crosses 0. In this phase,
the hip motor is held fixed and the knee motor retracts until contact is no longer
sensed in the swing foot. Now in single stance, θ continues to increase from 0 as the
body moves forward, until touchdown is initiated when θ crosses 1. Here the swing
foot is held at fixed distance in front of the body until contact is sensed. θ is then
reset to -1 and we enter double stance.

35



and ends on the ground at the desired step length when θ= 1. This trajectory is recal-

culated after each liftoff event in order to ensure continuity of the desired swing-foot

position with respect to time. The desired foot positions are mapped using inverse

kinematics into desired joint positions which are then sent to the low level position

controllers.

3.2.2.5 Contact Transitions

While implementing and tuning the controller on hardware, a consistent set of

issues arose when switching between position control (in swing) and torque control

(in stance) of the leg. When switching from double stance to single stance, delays in

unloading the joints would lead to foot scuffing, as the foot would be moved forward

along its swing trajectory before it had left the ground. When switching from single

to double stance, the swing foot contacting the ground while in position control mode

led to large disturbance forces. These difficulties are similar to challenges encountered

when implementing contact-dependent controllers on other walking robots [42].

To alleviate the effect of this switch in controllers, we added two transition phases

to the control of the robot, a lift-off phase when transitioning from double into single

stance, and a touchdown phase when transitioning from single into double stance (see

Fig. 3.1b). In the liftoff phase, the hip motor is held in position and the knee motor

retracts until contact is no longer sensed. In the touchdown phase, the foot is held

fixed with respect to the main body until contact is sensed.

3.2.3 Simulation

To facilitate development on the hardware, a realistic simulation of the robot

was developed. The simulation includes models of the links, springs, motors, motor

controllers, and planarizer, and uses a coulomb friction model of foot contact, with a

friction coefficient of 0.5.

The rigid body model of the robot and the models of the series elastic elements

are taken from [88]. The spring models include damping in the springs as well as

the unilateral spring-damper in the knees. A mass-damper model of the motors and

gearboxes was identified using data from the hardware, and the motor controller model

was validated against the same data. Some effects of the planarizer were captured

using Coulomb friction in the sliders and by adding mass to the x coordinate of the

robot. The friction coefficients and mass properties were identified through hardware

experiment.
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Simulation

Figure 3.2: Stills of the robot across stride percentage in both hardware and simula-
tion for a desired body height of 0.54 m and desired walking speed of 0.2 m/s.

3.3 Results

3.3.1 Walking Controller

3.3.1.1 Hardware Results

We achieved stable walking on the robot for desired heights ranging from 0.515 m

to 0.57 m (81.7% to 90.4% of the straight-leg standing height of the robot) at a desired

walking speed of 0.2 m/s (Froude number 0.0083), see Fig. 3.2. The parameter ∆x was

adjusted for each height but all other tuning parameters were fixed. At heights below

0.515 m, the controller had difficulty clearing the ground with the swing foot. At

heights above 0.57 m, the knees became nearly straight at the end of double stance,

leading to singularities in the controller and causing the robot to fall.

Fig. 3.3 shows the tracking of the control objectives during one stride of walking

at a desired height of 0.54 m. The controller keeps the main-body height within about

2 % of the desired value throughout the stride. A small rise during the transition from

single to double stance is caused by a sensing delay of ∼0.05 s in the foot contact

sensors. Because we adjust the desired contact force in the hind foot to account

for front foot forces only when contact is sensed, this delay causes the total normal

contact force to temporarily exceed the weight of the robot.

The body pitch of the robot is controlled to within 0.04 rad (2.3 deg) from the

vertical position. The largest pitch disturbances occur during left and right single

stance and are asymmetric: during left single stance the robot leans backwards, while

in right stance it leans forwards.

The main-body horizontal velocity shows significant variation, as it is not directly

controlled. The body decelerates while its center of mass is behind the stance foot,
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Figure 3.3: Tracking of controller objectives in simulation and hardware across stride
percentage for a desired body height of 0.54 m and desired speed of 0.2 m/s. Plotted
values are averaged over 30 strides, and one standard deviation is shaded in grey.
The color of each line corresponds to the current stance configuration of the robot.
In (a) we see that body height is maintained to within 5 mm of the desired value,
with a slight rise upon entering double stance that occurs in both simulation and
hardware. The horizontal body speed in (b) varies more significantly, as it is not
controlled directly. The pitch in (c) is controlled to within 0.04 rad in hardware, with
similar variation in simulation, however the phase and timing of the oscillations are
different between the two. In (d) and (e), we show the x and y coordinates of each
foot with respect to the ground. During swing phase, the desired trajectory of each
foot is shown as a thick dashed line.
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Figure 3.4: Trace of the foot trajectories with respect to the ground. We see significant
deflection of the foot during stance phase (represented by negative y position). Also
note that each foot slips slightly along the ground before liftoff in simulation, but not
in hardware.

and accelerates when moving ahead of the stance foot. The horizontal velocity shows

an asymmetry similar to the pitch: it diverges from the desired speed more during

right single stance than in left single stance.

In Figs. 3.3d, 3.3e, and 3.4, we show the desired and measured foot trajectories

of the robot. The effects of the soft feet are apparent here, as we see up to 1.4 cm

of foot compression during single stance. Additionally, there is a small phase lag in

the measured foot position behind its desired trajectory. Hence, the average stride

length of the robot (0.365 m) is shorter than the desired value of 2lstep = 0.4 m.

3.3.1.2 Simulation Results

To validate the accuracy of our model, an identical version of the walking controller

was implemented in simulation. We found stable periodic gaits for each of the desired

heights for which the physical robot walked. The simulated trajectories for the desired

height of 0.54 m are shown as dotted lines in Figs. 3.3 and 3.4.

Both the main-body height and velocity trajectories in simulation largely agree

with observations from hardware. The body height rises at the beginning of double

stance, although with a somewhat smaller magnitude compared to hardware. The

body velocity has a dip during single stance which is symmetric between left and

right stance, in contrast to hardware. The pitch behavior in simulation is noticeably

different from that in hardware: pitch oscillations have similar magnitudes, but differ

in timing and direction. The left-right asymmetry observed in hardware does not

occur for the pitch trajectories in simulation. We are uncertain of the cause of these

discrepancies.
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The simulated foot trajectories in Figs. 3.3d, 3.3e, and 3.4 show differences with

those observed in hardware. The simulated feet don’t penetrate the ground during

stance and the rear foot slides along the ground near the end of double stance in

simulation. Both of these effects can be attributed to inaccuracies in our foot contact

model.

Finally, the stride period is longer in simulation (2.30 s) than in hardware (1.96 s)

which results in the simulation having a lower average speed (0.174 m/s vs 0.196 m/s).

3.3.2 Cost of Transport

We characterize the energetic economy of gait in RAMone by computing the

normalized electrical cost of transport or CoT [27]:

CoT =
c

mg∆x
, (3.3)

where c is the electrical work used during a single stride, ∆x is the distance traveled

in the stride and mg is the total weight of the robot.

To compute the electrical work c, we integrate the instantaneous electrical power

needed to drive the motors over the course of each stride. Also, because all motors

on RAMone share an input voltage rail, electrical power generated from one motor

can be directly consumed by the other motors. The total power is thus the sum of

the mechanical power and the copper losses of all four motors i. Because the robot

has no means of storing excess electrical energy, any negative net power generated by

the motors is dissipated in the form of shunt losses. We thus ignore negative values

of the instantaneous electrical power when integrating over a full stride with period

tF :

c =

tF∫
0

max

{
4∑
i=1

Tiu̇i +
T 2
i

Smot
, 0

}
dt. (3.4)

Here Ti and ui are the on-board motor torque and velocity measurements of the

EPOS3 motor controllers, and Smot is the speed-torque gradient of the motors.

We computed the CoT from both the hardware and simulation data for a range

of desired body heights at a walking speed of 0.2 m/s (see Fig. 3.5). Both in hardware

and simulation, the CoT has a minimum at the height of 0.56 m. Below this height,

the CoT increases linearly as the height decreases, with a slope of about 3 1/m.

This trend in CoT is consistent with previous results showing that compass-gait

walking with straight legs (i.e. large body height) is the optimal motion at low speeds
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Figure 3.5: Cost of transport and nondimensionalized copper losses in the hips and
knees across desired body height in hardware and simulation. A minimum in the CoT
was observed in both simulation and hardware at a desired body heights of 0.56 m.
Below this height, the CoT decreased linearly with increasing body height, with a
slope of -2.835 1/m in hardware, and -3.08 1/m in simulation. The decrease can be
attributed to the decreased knee copper losses incurred by a straighter legged gait.
This is supported by the observation that on average, the knee copper losses decrease
with walking height while the hip copper losses remain comparatively constant.

for a model of RAMone [88]. This is also similar to the energetic benefit of straight

legs observed in human walking [32].

One explanation for the decrease in CoT with increasing heights is that straighter

knees require less torque to support the weight of the robot, which in turn leads to

lower copper losses in the knee motors. In Fig. 3.5, we plot normalized copper losses

both for the knees and hips, for different walking heights. In agreement with our

hypothesis, we see that the knee copper losses decrease for larger heights, while the

hip losses remain about constant. This trend is observed both in simulation and

hardware.

We also note that above the desired body height of 0.56 m, the CoT grows, until

failure occurs above 0.57 m. For these larger body heights, the observed gaits, both in

simulation and hardware, become irregular and unstable. Such instability is a result

of straighter knees generating near-singular contact Jacobians during force control.

Hence, the increase in CoT is likely due to greater control effort needed to stabilize

these irregular gaits.
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3.4 Discussion & Conclusion

This chapter introduced RAMone, a series elastic actuated planar bipedal robot

designed to study the energetics of various gaits in bipedal locomotion. RAMone’s

lightweight legs with high compliance series elastic joints allow for stable and econom-

ical locomotion. A walking controller based on virtual model control was designed

and tested on hardware and in simulation.

Stable walking gaits were found in hardware for a walking speed of 0.2 m/s over a

range of desired body heights from 0.515 m to 0.57 m. The body height was tracked

to within 2 % of the desired value and the pitch was kept within 0.04 rad (2.3 deg) of

upright. The body velocity showed larger variation. Additional observations showed

that these gaits were able to continue indefinitely and that the robot could walk over

small obstacles.

The controller used in hardware was tested on a simulation of RAMone. Using

the same tuning parameters from the robot, this controller led to stable walking gaits

at each of the desired heights for which stable walking was observed in hardware. The

qualitative behaviour of the simulation matched that of hardware, with similar trends

occurring in the body height, pitch, horizontal body velocity and foot trajectories.

Quantitatively, we found a cost of transport in simulation that was on average within

8.32 % of hardware measurements. The high fidelity of the simulation has proven

to be valuable during the development process. For instance, we were able to use

simulation to verify the hypothesis that delay in the foot contact sensor leads to the

rise in main body height observed after touchdown in hardware.

Some differences remain between simulation and hardware, the most notable of

which is the foot contact behaviour. Our current rigid contact model cannot account

for the significant deformation that occurs in the real stance feet and fails to replicate

the behaviour of the feet prior to liftoff.

Finally, we showed evidence that walking with straighter knees is energetically

beneficial for this robot. This effect is likely due to the reduced electrical loss in the

knee motors which results from needing smaller torques to support the robot. Even

without explicitly creating a controller to minimize the cost of transport, we observed

a minimum value of approximately 0.8 . This is comparable to the ∼ 0.6 CoT of the

robot ERNIE [109], which was achieved with an optimized controller.

The work here demonstrates the ability of RAMone to walk with a virtual model

controller. Before performing more challenging studies, we plan to test the robot

performance in several other basic tasks. These include: (i) walking steadily for a
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range of forward speeds; (ii) walking under various disturbances; (iii) hopping in

place. These tasks are stepping stones towards our long-term goal of economical and

robust locomotion with the robot RAMone.
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CHAPTER IV

Safety as a Constraint: Viability-based Control of

Hybrid Systems

In the preceding chapter, we observed that desirable behaviour (economical walk-

ing) can often occur near the boundary of failure (straight knees leads to unstable be-

haviour). To better negotiate the failure boundary, this chapter aims to re-formulate

the idea of avoiding falls as a constraint on the space of control inputs. By enforcing

this constraint, robots will be free to conduct a wider range of behaviour without fear

of falling. A regulator that enforces this constraint is demonstrated using a simple

4-dimensional compass-gait walking model.

4.1 Introduction

Failure can be catastrophic during the control of cyber-physical systems. Car

crashes or robot falls are examples of costly events that should be avoided whenever

possible. This is a challenging task for dynamical systems, which often contain states

that unavoidably lead to failure, regardless of input. Take for example a moving car

that is approaching an obstacle and moving too quickly to stop in time. In this case,

the car has not yet failed (collided with the obstacle), but no control action can keep

it safe.

Avoiding the set of all such states that inevitably fail (or the unsafe set) is a

necessary and sufficient condition for preserving safety. With a direct representation

of this unsafe set, a regulator can passively monitor the system state and take decisive

action only when the state is at risk of entering the set. Such a regulator would

guarantee safe operation, while allowing a secondary control system to remain flexible

as long as safety is not threatened. An example of this is an automatic braking

system, which acts if an accident is imminent, but otherwise does not impede the
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driver. We refer to this as semi-autonomous control, since the dynamical system is

autonomous when the regulator is active, but can be freely controlled when passive.

However, exact computation of this unsafe set is a challenging problem for nonlinear

and hybrid systems.

There are two broad approaches to computing the complement of the unsafe set,

which we refer to as the safe set : those based on reachability and those based on

viability. In reachability (or capturablity) analysis, safe sets are found by their ability

to reach a known safe target set. For a walking robot, this could be reaching a

stationary standing position [73, 71], or reaching a pre-computed periodic trajectory

[87, 96].

The reachability definition of a safe set requires a priori knowledge of the desired

safe target set. However, the appropriate target state is typically defined in a task

specific manner. Consider for instance a legged robot. For level ground walking, a

stationary standing state may be the most appropriate target set, since most safe

motions can reach standstill. Unfortunately this is not necessarily true on a hill,

where the robot may be unable to stop while safely running. If safety is defined

based on the ability to come to a stationary position, this running motion would still

be treated as unsafe, even though it would not produce a fall.

To avoid this unintended conservatism, this chapter explores a viability-based

analysis, in which a set is safe if each state can avoid failure states for all time [8].

For the walking robot example, these failed states could be all states that fall or

states that violate manually defined joint constraints [41, 65]. In legged robotics,

viability-based computational approach for finding safe sets are often based on barrier

functions [72, 41, 65]. These functions generate a boundary around failure sets, along

with a guarantee that this boundary cannot be crossed.

One method to generate barrier functions for control systems uses a backstepping

approach to enforce relative-degree n safety constraints under continuous dynam-

ics [41, 66, 65]. However, in hybrid systems, discrete changes in the state are not

accounted for. The state can thus escape the barrier function boundary at these

points, which eliminates the viability guarantee. An example of this would be a

walking robot that falls backwards due to energy lost through touchdown events.

An alternative method, which guarantees barrier function viability through discrete

events, is based on sums-of-squares programming [72]. This chapter extends these

methods to enable simultaneous control synthesis to enable semi-autonomous safe

control of hybrid systems.

Maintaining viability for a control system places a constraint on the control inputs.
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The premise of semi-autonomous safe control is that this constraint must always be

satisfied while other control objectives are approached. This trade-off is typically

posed in the form of a quadratic program that must be solved in real-time [41, 6].

Though convex, these programs may still be computationally taxing and may not

always have feasible solutions. This chapter presents an alternative method that

allows for direct computation of the control input. This scheme takes an arbitrary

user input, and modifies it only when viability is at risk. The resulting controller is

guaranteed to preserve viability.

The contributions of this chapter are three-fold: first, a computational formulation

for simultaneously generating hybrid barrier functions and safe controllers for hybrid

control systems with uncertainty; second, a method for constructing a smooth guar-

anteed safe semi-autonomous hybrid controller; and, finally, an implementation and

interactive demo of this guaranteed safe semi-autonomous controller on a compass

gait walking model.

The rest of this chapter is organized as follows: Section 4.2 formally defines the

two-part objective of this chapter. The first part (generating a viability certificate) is

then numerically formulated using barrier functions in Section 4.3, and solved compu-

tationally using methods presented in Section 4.4. The resulting viability certificate

is then used to generate a guaranteed safe semi-autonomous controller in Section 4.5.

The overall method is implemented on two example systems in Section 4.6: a Dubins

car and a compass gait walker.

4.2 Problem Statement

This section begins by formulating the problem that is solved in this chapter. We

first define some notation: Let {Ai}i∈I be a family of non-empty sets indexed by i,

the disjoint union of this family is
∐

i∈I Ai =
⋃
i∈I(Ai × {i}). The boundary of the

set X is denoted ∂X. For a matrix A, A � 0 represents A being positive semidefinite.

4.2.1 Dynamics

This chapter focuses on systems of the following form:

Definition IV.1. A controlled hybrid system with bounded disturbance is a tuple

H = (I, E ,X , U,D,F ,S,R), where:

• I is a finite set indexing the discrete states of H;

• E ⊂ I × I is a set of edges, forming a directed graph structure over I;
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• X =
∐

i∈I Xi is a disjoint union of domains, where each Xi is a compact subset

of Rni , and ni ∈ N;

• U is a compact subset of Rmu that describes the range of control inputs, where

mu ∈ N;

• D is a compact subset of Rmd that describes the range of disturbance inputs,

where md ∈ N;

• F = {Fi}i∈I is the set of vector fields, where each Fi : Xi×U ×D → Rni is the

vector field defining the dynamics of the system on Xi;

• S =
∐

e∈E Se is a disjoint union of guards, where each S(i,i′) ⊂ ∂Xi is a compact,

co-dimension 1 guard (with respect to Xi), defining a state-dependent transition

to Xi′ ;

• R = {Re}e∈E is a set of reset maps, where each map R(i,i′) : S(i,i′) → Xi′ defines

the transition from guard S(i,i′) to Xi′ .

We make the following assumptions about these systems:

Assumption 1. Each vector field Fi ∈ F is affine in control and disturbance. That

is: Fi(x, u, d) = f(x) + gu(x)u+ gd(x)d. Where f : Xi → Rni , gu : Xi → Rni×mu and

gd : Xi → Rni×md are Lipschitz functions.

Assumption 2. U = [−1, 1]mu , and D = [−1, 1]md .

The first assumption ensures existence and uniqueness of solutions while the second

assumption comes with limited loss of generality, as non-uniform control input and

disturbance constraints can be realized by scaling the functions gu and gd, respectively.

Next, we define Lie Derivatives :

Definition IV.2. Given a differentiable function v : Xi → R, the Lie Deriva-

tives : Lf , Lgu , and Lgd are linear functions of v that are defined as follows: Lfv =∑
i=1:n f

(i)(·) ∂v(·)
∂x(i)

, Lguv =
∑

i=1:n g
(i)
u (·) ∂v(·)

∂x(i)
, Lgdv =

∑
i=1:n g

(i)
d (·) ∂v(·)

∂x(i)
, where x(i) ∈ R

is the i′th element of x, f (i) : X → R is the i′th element of f , g
(i)
u : X → R1×nu is the

i′th row of gu and g
(i)
d : X → R1×nd is the i′th row of gd

Next, we define an execution of a hybrid system via construction in Algorithm 1

[15]. Step 1 initializes the execution at a given point (x0, i) at time t = 0. Step 3

defines φ to be the maximal integral curve of Fi under the control u beginning from

the initial point. Step 4 defines the execution on a finite interval as the curve φ with
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Require: t = 0, τ > 0, i ∈ I, (x0, i) ∈ X , u : R→ U , and d : R→ D, with u, d
Lebesgue measurable.

1: Set x(0) = (x0, i).
2: loop
3: Let I ⊂ [t, τ ] be an interval and φ : I → Xi be an absolutely continuous

function such that:

i φ̇(s) = Fi(φ(s), u(s), d(s)) for almost every s ∈ I with respect to the
Lebesgue measure on I with (φ(t), i) = x(t) and

ii for any other Î and φ̂ : Î → Xi satisfying (i), Î ⊂ I.

4: Let t′ = sup I and x(s) = (φ(s), i) for each s ∈ [t, t′).
5: if t′ = τ , or @(i, i′) ∈ E such that φ(t′) ∈ S(i,i′) then
6: Stop.
7: end if
8: Let (i, i′) ∈ E be such that φ(t′) ∈ S(i,i′).
9: Set x(t′) = R(i,i′) (φ(t′)), t = t′, and i = i′.

10: end loop
Algorithm 1: Execution of Hybrid System H

associated index i. As described in Steps 5 - 7, the trajectory terminates when it

either reaches the terminal time τ or hits ∂Xi\
⋃

(i,i′)∈E S(i,i′) where no transition is

defined. If the latter is true, we say that failure has occurred. Steps 8 and 9 define

a discrete transition to a new domain using a reset map where evolution continues

again as a classical dynamical system (Step 3).

Hybrid systems can suffer from Zeno executions, i.e. executions that undergo an

infinite number of discrete transitions in a finite amount of time. We do not consider

systems with Zeno executions, since the state of the trajectory may not be well defined

after Zeno [7]:

Assumption 3. H has no Zeno execution.

4.2.2 Safety

In this chapter, safety is defined as being able to choose a controller which ensures

that the continuous state of the hybrid system either stays within the interior of X or

transitions to another discrete state. To understand this definition, consider a walking

robot. The domain of the system can be defined as all kinematic configurations with

only feet touching the ground with hybrid transitions occurring when a foot impacts

the ground. Failure for this system would correspond to when the robot reaches the

edge of the domain without intersecting a guard, e.g. when something other than the
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foot hits the ground. This set of non-guard domain boundaries is referred to as the

Failure Domain.

Definition IV.3. The Failure Domain or XF is defined as the disjoint union of

Failure Sets
∐

i∈I X
F
i where XF

i = ∂Xi\
⋃

(i,i′)∈E S(i,i′).

To guarantee safety, this chapter finds a Viability Domain [8]:

Definition IV.4. A Viability Domain V =
∐

i∈I Vi is a disjoint union of domains

Vi ⊂ Xi, Vi
⋂
XF
i = ∅, which is forward control invariant. That is, there exists a state

feedback controller
∐

i∈I ui with ui : Xi → U Lipschitz, such that for every initial

condition (x0, i) ∈ V , and for every time varying disturbance signal d : R+ : D, the

execution of the system from the initial condition remains in V for all time τ ∈ [0,∞).

We refer to any feedback controller that is able to ensure that the system is forward

control invariant as an Autonomous Viable Controller.

Note that in this definition the control input relies on state feedback while the dis-

turbance input d is a time-varying signal. The feedback ensures that control input

is able to adapt to the effects of disturbance without having direct access to it. The

forward control invariance property ensures that any state that begins within a via-

bility domain V can be controlled to remain within the domain. Since V is strictly

contained within the system domain, we know that our safety criteria can be main-

tained by at least one controller for all states within V . Therefore we also refer to

viability domains as “safe sets.”

4.2.3 Semi-Autonomous Safe Control

In constructing a controller that maintains viability, we draw inspiration from the

Inertia Principle [8], which states that biological macrosystems maintain constant

inputs as long as viability is not at stake. This principle suggests the form of a

semi-autonomous, safety preserving controller: given an initial state within a viability

domain, a user defined control input is applied without modification to the system; the

state of the system is then continuously monitored and the control input is replaced by

an autonomous viable controller if the state approaches the boundary of the viability

domain. This regulation scheme is conceptually similar to the reference governor

approach [9], in which a reference input is tracked unless safety is at risk.

4.2.4 Goal

Using these definitions, we state our objective as:
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1. Find a viability domain and a corresponding autonomous viable controller. This

can be stated mathematically as the following optimization problem:

sup
Vi,ui, ∀i∈I

∑
i∈I

∫
Vi

dx (4.1)

s.t. V =
∐
i∈I

Vi is a Viability Domain

U =
∐
i∈I

ui is a Viable Controller

This problem is translated into a numerical representation in Section 4.3, and

is then solved in Section 4.4.

2. Use this domain and autonomous viable controller to construct a semi-autonomous

viable controller. To address this problem, we propose an interpolation scheme

in Section 4.5.

4.3 Numerical Formulation

To represent Problem 4.1 numerically, we use barrier functions as has been done

for hybrid systems in the literature [72]. Specifically, we represent each Vi as the zero

super-level set of a differentiable function vi : Xi → R:

Vi = {x | vi(x) ≥ 0} , (4.2)

and we represent our autonomous viable controller using the Lipschitz functions ui :

Xi → Rnu . We next describe how to translate the objective function and constraints

in (4.1) into numerical constraints on vi.

4.3.1 Constraints

Our first constraint ensures that: Vi
⋂
XF
i = ∅ (this is a necessary condition for

V to be a Viability Domain). To enforce this, we require the functions vi to satisfy

the following condition:

vi(x) < 0, ∀x ∈ XF
i (4.3)

The next constraint we enforce is the control input bounds:

−1 ≤ ui(x) ≤ 1 ∀x ∈ Xi (4.4)
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Given these constraints, a sufficient requirement to ensure that V =
∐

i∈I Vi is a

Viability Domain is satisfying the following two conditions:

Definition IV.5. The Continuous Invariance Condition for each i ∈ I is

Lfvi(x) + Lguvi(x)ui(x) + Lgdvi(x)d > 0 (4.5)

for all x ∈ ∂Vi and for all d ∈ D and ensures that the system state remains within

the Viability Domain during continuous evolution.

Definition IV.6. The Discrete Invariance Condition is:

vi′(R(i,i′)(x)) ≥ vi(x) ∀x ∈ S(i,i′), (4.6)

which ensures that the system state remains within the Viability Domain during

discrete updates.

Theorem 1. The disjoint union of the zero super-level sets of any collection of differ-

entiable functions that satisfy the Continuous and Discrete Invariance Conditions is

a Viability Domain.

Proof. Given a point x0 in mode i that satisfies vi(x0) > 0, suppose there exists an

execution time τ , mode j, and disturbance d such that the state of the hybrid system

under the feedback control beginning from x0 and under the disturbance d arrives at

a state xf ∈ XF
j at time τ . As a result of (4.3), vj(xf ) < 0.

Since the dynamics are Lipschitz and the barrier function is differentiable, the

value of the barrier function is discontinuous in time only when the execution passes

through a guard. (4.6) implies that the barrier function value can only increase at

these points, therefore we know that the value must cross zero in a continuous domain,

say mode k. Since the value of vk varies continuously in time at the moment of zero-

crossing, we know v̇ ≤ 0. However, this contradicts (4.5). Therefore no such execution

exists, and the zero super-levelset of the barrier function is a viability domain.

4.3.2 Objective Function

The objective function in (4.1) is difficult to compute exactly for an arbitrary poly-

nomial barrier function, since the domain of integration is given by a semi-algebraic

set. We propose an analytically tractable approximation to this objective:

∑
i∈I

∫
Xi

vi(x)dx, (4.7)
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1

vi

x0

Viability Domain

vi ≤ 0vi ≤ 0

vi ≤ 1

Figure 4.1: An illustration of how the objective function (4.7) approximates the
volume of the viability domain. Take a set of differentiable functions vi that satisfy
the constraints of the previous section. For every point x not in the set ∂Vi, the value
vi(x) is constrained only by (4.3) and vi(x) ≤ 1, ∀x ∈ Xi. This means that vi(x) can
increase to a value of 1 for points inside the set (x s.t. vi(x) > 0), and vi(x) increases
to a value of 0 for points outside this set. As a result, each vi approaches the indicator
function over Vi, and the integral in Eq. 4.7 approaches the original objective.

along with the constraint vi(x) ≤ 1,∀x ∈ Xi. Figure 4.1 illustrates how these con-

straints approximate the cost function in (4.1).

4.3.3 Numerical Optimization Problem

Combining these conditions, we can construct the following numerical optimiza-

tion problem over the space of differentiable functions to represent (4.1):

sup
vi,ui ∀i,i′∈I

∑
i∈I

∫
Xi

vi(x)dx (4.8)

s.t. vi(x) ≤ 1 ∀x ∈ Xi

vi(x) ≤ 0 ∀x ∈ ∂Xi

Lfvi(x) + Lguvi(x)ui(x)+ ∀x ∈ ∂Vi,

Lgdvi(x)d ≥ 0 ∀d ∈ D

− 1 ≤ ui(x) ≤ 1 ∀x ∈ Xi

vi′(R(i,i′)(x)) ≥ vi(x) ∀x ∈ S(i,i′)
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4.4 Computational Implementation

This section describes a numerical approach to solve (4.8).

4.4.1 Function Representation with Polynomials

To represent the space of differentiable functions, we choose a polynomial basis set

for the decision variables of (4.8) and additionally assume that the dynamics, reset

maps, domains, and guards can all be represented with polynomials for each i ∈ I:

Assumption 4. vi, ui are polynomial in state.

Assumption 5. f , gu, gd, and R(i,i′) are polynomial in state.

Assumption 6. Xi and S(i,i′) are semi-algebraic sets. That is there exist polynomial

functions hjXi , h
j
S(i,i′)

: Xi → R such that: Xi =
{
x ∈ Rni | hjXi(x) ≥ 0, ∀j

}
and

S(i,i′) =
{
x ∈ Rni | hjS(i,i′)

(x) ≥ 0, ∀j
}

.

4.4.2 Sums-of-Squares

The problem of finding polynomials that satisfy inequality constraints over sets

can be solved using a sums-of-squares approach [70, 53], which we briefly summarize

in this subsection. This approach replaces the constraint: p ≥ 0 with the requirement

that p is a sum-of-squares polynomial, i.e. p =
∑

i p
2
i where pi are polynomials. We

refer to this condition as p ∈ SoS. The constraint p ∈ SoS can be represented in

matrix form as:
p = mTAm

A � 0
(4.9)

Where m is a vector of monomials in x, and A is a matrix of scalars. An optimization

problem with constraints of this form and with a cost function that is a linear function

of the coefficients of a polynomial can be represented as a Semi-Definite Program

(SDP). These are a well-studied class of convex problems [14], which can be solved

to global optimality with a range of commercial solvers.

The constraint p ∈ SoS ensures that p is globally positive, i.e. p(x) ≥ 0, ∀x ∈
Rni . For the purpose of our problem, we instead enforce a local version of this

constraint: p(x) ≥ 0, ∀x ∈ K, with K = {x|h(x) ≥ 0}. To do this, we introduce a

slack polynomial s that is added to the decision variables to generate the modified

constraint: p− hs ∈ SoS and s ∈ SoS. One can show that under this constraint, the

local positivity requirement is satisfied [95, 53].
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4.4.3 Sufficient Invariance Conditions

Scaling is a major challenge in the sums-of-squares approach. The vector of mono-

mials m in (4.9) scales combinatorially with the dimension of the constraint space and

with the maximum polynomial degree [70]. This is particularly problematic in the

Continuous Invariance Condition ((4.5)), which is enforced over the space ∂Vi × D
This space has dimension ni + md, which is larger than that of the remaining con-

straints (dimension ni). To alleviate this, we construct a replacement condition of

dimension ni:

Definition IV.7. The Sufficient Continuous Invariance Condition for each i ∈ I is:

Lfvi(x) + Lguvi(x)ui(x)−
∑
j∈Ji

qij(x) + λi(x)vi(x) ≥ 0 ∀x ∈ Xi

qi(x)− Lgdvi(x) ≥ 0 ∀x ∈ Xi

qi(x) + Lgdvi(x) ≥ 0 ∀x ∈ Xi

(4.10)

where each λi is a polynomial, each qi is an md dimensional vector of polynomials,

and the last two lines are element-wise inequalities.

This reduced condition accomplishes two objectives: first it introduces the decision

variable λi, which allows us to enforce the constraint over the whole set Xi instead

of over ∂Vi (λi can slacken the constraint whenever vi 6= 0); and second, the reduced

condition places an upper bound on the effect of the disturbance using the functions

qi. This is formalized in the following theorem:

Theorem 2. If for each i ∈ I, vi, λi, ui, and qi meet the sufficient continuous invariance

condition, then vi and ui satisfy the continuous invariance condition.

Proof. Take any mode i and point x ∈ ∂Vi (i.e. vi(x) = 0), and take any d ∈ D.

Then the λi term drops out of the first condition in (4.10) giving us:

Lfvi(x) + Lguvi(x)ui(x)−
∑
j∈Ji

qij(x) ≥ 0 (4.11)

Now since D = [−1, 1]md , we know Lgdvi(x)d ≥ −
∑
|Lgdvi(x)|, where the absolute

value is performed element-wise, and the sum is over all vector elements. Since the

last two constraints of (4.10) imply that |Lgdvi(x)| < qi(x) we know Lgdvi(x)d >

−
∑

j∈Ji qij(x) giving us v̇i(x, ui(x), d) > 0.
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4.4.4 Bilinear Sums-of-Squares Problem

We replace the positivity constraints in (4.8) with sums-of-squares constraints,

and replace the Continuous Invariance Condition with the sufficient condition from

Section 4.4.3, which results in the following optimization problem:

sup
vi,ui,λi,qi

σ1i ,...,σ9i ∀i∈I

∑
i∈I

∫
Xi

vi(x)dx (4.12)

s.t. 1− vi − hXiσ1i ∈ SoS

− vi + hXiσ2i − hXiσ3i ∈ SoS

Lfvi + Lguviui +
∑
j∈Ji

qij + λivi − hXiσ4i ∈ SoS

qi − Lgdvi − hXiσ5i ∈ SoS

− qi(x) + Lgdvi − hXiσ6i ∈ SoS

ui(x) + 1− hXiσ7i ∈ SoS

− ui(x) + 1− hXiσ8i ∈ SoS

vi′(R(i,i′)(x))− vi(x)− hS(i,i′)
σ9i ∈ SoS

σ1i , . . . , σ9i ∈ SoS

Here σji are vectors of polynomials in xi described in Section 4.4.2. To express a

sum-of-squares problem as an SDP, all SoS constraints must be linear functions of

the decision variable polynomials. However, the above problem includes the terms

Lguviui and λivi which are bilinear in ui, vi and in λi, vi respectively. Problems of

this form are referred to as bilinear sums-of-squares problems. The bilinear nature

of the constraints means that these problems are non-convex, and we can no longer

guarantee a globally optimal solution to this problem. We use an alternation approach

to solve this problem as described in the next section.

4.4.5 Alternation

To solve the nonconvex bilinear sums-of-squares program (4.12) we solve a pair

of convex optimization SDPs. In each program one of the bilinear variables is kept

fixed while the other is optimized over. The variables that are optimized are then

fixed while the other pair of variables are optimized. If the final solution satisfies

the constraints of the original program, the solution is guaranteed to be a Viability
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Domain. Computationally, each SDP is formulated in spotless1 and solved using

Mosek.

4.4.5.1 Alternation Steps

We arrive at the alternation steps by splitting the non s-function decision variables

from (4.12) into two groups: (vi, qi) and (ui, λi). We use a separate set of s-functions

as decision variables for each step. Keeping the second group of decision variables

fixed, we arrive at the first convex sums-of-squares alternation step:

sup
vi,ui,λi,qi,

σa1i ,...,σa7i ∀i∈I

∑
i∈I

∫
Xi

vi(x)dx (4.13)

s.t. 1− vi − hXiσa1i ∈ SoS

− vi + hXiσa2i − hXiσa3i ∈ SoS

Lfvi + Lguviui +
∑
j∈Ji

qij + λivi − hXiσa4i + max(c, 0) ∈ SoS

qi − Lgdvi − hXiσa5i ∈ SoS

− qi(x) + Lgdvi − hXiσa6i ∈ SoS

vi′(R(i,i′)(x))− vi(x)− hS(i,i′)
σa7i ∈ SoS

σa1i , . . . , σa7i ∈ SoS

Keeping the first group fixed, the second convex step is:

inf
c,ui,λi,σb1i ,
σb2i ,σb3i ∀i∈I

c (4.14)

s.t. Lfvi + Lguviui +
∑
j∈Ji

qij + λivi − hXiσb1i + c ∈ SoS

ui(x) + 1− hXiσb2i ∈ SoS

− ui(x) + 1− hXiσb3i ∈ SoS

σb1i , σb2i , σb3i ∈ SoS

In each of these programs, the variable c is added to the decision variables from (4.12)

and is a slack variable that is used as an objective function in the second alternation

step. This choice of objective function in the second step encourages ui and λi to

relax the invariance constraint of the first step. Provided the satisfaction of the

1https://github.com/spot-toolbox/spotless
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additional condition c ≤ 0, any variables (vi, qi) , (ui, λi) that satisfy the constraints

of the alternation steps, also satisfy the constraints of (4.12).

4.4.5.2 Objective Function Augmentation

When using low order polynomials, the objective function (4.7) may be a poor

representation of the volume of the viable domain. For small viable domains, the

negative value of v in the unsafe regions exceeds the positive values in the safe set.

When the value of the integral becomes negative, it becomes optimal to scale the

value of v down to 0, and a safe set may not be found. This is especially problematic

in early steps of the optimization, before a large safe set is found.

To assist in conditioning during these early steps, we add a regularizing term to

the objective function of (4.13):

∑
i∈I

∫
Xi

vi(x)dx+ wtp
∑
j

vi(tpj) (4.15)

Where tpj are user chosen points that are known to be interior to the safe set, and wtp

is a weighting term. We call these points “tent-poles” since they bias the optimization

to lift the value of v at known safe points. The weight of the tent-poles can be

decreased as the optimization progresses, and the safe set becomes better represented.

4.4.5.3 Initialization, Alternation, and Convergence

To begin the alternation, the user must specify an initial choice of (ui, λi, c). In

practice, the most important tuning parameter of the optimization is the initial value

of c. Choosing a value larger than 0 relaxes the continuous invariance condition,

allowing for a non-empty Viability Domain to be found on the first step of the al-

ternation. Any pair of solutions to the alternation steps with c ≤ 0 is guaranteed to

satisfy the constraints of (4.8). The form of the alternation ensures the value of c

will not increase between steps. In practice if the initial value of c is too large, the

alternation stalls before c crosses 0, and no feasible solution is found.

Once the value of c is reduced below 0 in the alternation steps, subsequent steps

are guaranteed to not decrease the objective function of the first alternation. We

terminate the alternation once the relative increase decreases below a user-specified

threshold. Since the objective function is bounded from above by
∑

i∈I
∫
Xi
dx+ntpwtp,

the alternation is guaranteed to converge (once a solution with c ≤ 0 is found).
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Viability at Risk
(Safe Controller

Active)

Viability Not at Risk
(Safe Controller

Inactive)

Figure 4.2: Scaling weights between the user input u0 and the guaranteed safe con-
troller u. The weights satisfy w0 +ws = 1 and are used to form the semi-autonomous
controller um = w0u0 + wsu. When the barrier function value is above a threshold
value (i.e. vi(x) > vm), the user input is unmodified, as we are sufficiently removed
from the boundary of the safe set. When 0 ≤ vi(x) ≤ vm

2
, the safe controller is

fully active, keeping the state in the safe set. Between these regions, the controller is
smoothly interpolated with a cubic spline to ensure continuity of the semi-autonomous
controller.

4.5 Guaranteed Safe Semi-autonomous Controller

We use a feasible solution to the bilinear sums-of-squares (4.12) to generate a

guaranteed safe semi-autonomous controller. This controller modifies user input to

ensure that the constraints of (4.1) are always satisfied. The two constraints that

apply to the input ui for V to be a viability domain are the input bounds (4.4) and the

continuous invariance condition (4.5). Assuming that the user inputs are saturated

to always satisfy the input bounds, this leaves the continuous invariance condition.

Note that this condition is only active on the set ∂Vi, that is when vi(x) = 0. This

means that any controller is safe so long as it enforces the invariance condition in a

neighborhood of v(x) = 0.

Since a controller that is discontinuous on the boundary of the safe set would pose

difficulties for systems with finite bandwidth, we additionally must ensure that the

new controller is continuous near the boundary. To achieve this, we define a mask

that smoothly interpolates between the user input and the guaranteed safe controller

ui, which we know satisfies the safety condition on ∂Vi (Fig. 4.2).

4.6 Results

The method described in Sections 4.4 and 5.4.3 is applied to generate safe con-

trollers for two systems: a Dubins car and a compass gait walker. The two-state

Dubins car is used as a test case to verify and visualize the accuracy of the safety

guarantee. The four-state hybrid dynamics of the compass gait walker present a more
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complex example.

4.6.1 Dubins Car

We begin with a straight line lane-keeping task for a Dubins car model. The state

consists of the lateral position in the lane (y) and car angle (θ). The domain is defined

as: X =
{

(y, θ) | y ∈ [−0.5, 0.5], θ ∈ [−π
4
, π

4
]
}

. The dynamics of the model are given

by:
˙[
y

θ

]
=

[
10 sin (θ)

0

]
+

[
0

tan π
8

]
u+

[
1 g

(p)
d (x)

0 0

][
d(w)

d(p)

]
(4.16)

where u is the input to the model (tangent of the steering angle), d(w) is an external

disturbance in lateral car velocity (e.g. wheel slip), and the terms g
(p)
d (x) and d(p) are

used to bound the error in the Taylor expansion of the dynamics.

Since our methods require the dynamics to be in polynomial form, we Taylor ex-

pand the lane position dynamics about a car angle of 0. To avoid the computational

expense of high-order polynomial dynamics, we replace the term sin(θ) in (4.16) with

a low-order expansion f (l) and bound the approximation error with the disturbance

signal g
(p)
d (·)d(p). To compute this bound, we use the following sums-of-squares opti-

mization to find the minimum bounding polynomial of degree 5 between our low-order

(degree 5) dynamics and a high-order (degree 15) expansion, f (h):

inf
g
(p)
d ,σ1,σ2

∫
X

g
(p)
d (4.17)

s.t. g
(p)
d −

(
f (h) − f (l)

)
− hXσ1 ∈ SoS

g
(p)
d +

(
f (h) − f (l)

)
− hXσ2 ∈ SoS

σ1, σ2 ∈ SoS

With gd included in the dynamics, we computed a viability domain and semi-

autonomous controller using our method with degree 16 polynomials. The computa-

tion took approximately 1 minute. The resulting safe set is given in Fig. 4.3. For these

dynamics, we can compute the exact unsafe set by simulating the system backwards

in time from the corners of the failure set under maximal input and disturbance.

The result is shown in grey in Fig. 4.3, where we see that our method produces a

tight inner approximation to the true viability kernel. Additionally, we ran a pair of

simulations (one with the semi-autonomous controller inactive and another with it

active), illustrated in Fig. 4.3, of the system under a randomized input.
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0

0.5

Raw

Semi-Auton.

Figure 4.3: Visualization of the safe set for the Dubins car showing the 0 and 0.5
level sets of the barrier function v in light green and dark green, respectively. For
this example, we can compute the exact unsafe set (complement of the viability
kernel), shown here in light grey. Shown in the overlay are two simulated vehicle
trajectories, one (purple) uses a randomly generated input, the other (blue) combines
this input with a semi-autonomous controller (threshold value vm = 0.5). We see the
randomly generated controller drive off the road (fail), while the semi-autonomous
vehicle remains safe. The trajectories are also plotted in state space where we see
that the semi-autonomous vehicle diverges only once v = vm is reached.
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1 2

Reset Map

Failure Domain

Guard

Figure 4.4: Compass gait states (right) and domains (left). The walker has two
legs with mass and length parameters loosely chosen to correspond with the robot
RAMone [89] (see supplementary code2). There are two bounded control inputs: a
torque at the ankle and a torque between stance and swing legs. The robot has two
discrete states: pre-midstance (mode 1) and post-midstance (mode 2). There is a
transition defined from mode 1 to mode 2 and one defined from mode 2 to mode 1.
The hybrid guard from mode 1 to mode 2 is associated with an identity reset map.
The hybrid guard from mode 2 to 1 represents a touchdown event. The associated
reset maps the stance leg angle to the swing leg and vice versa.

4.6.2 Compass Gait Walker

To demonstrate our method in a hybrid setting, we implement it on a compass-

gait walker, shown in Fig. 4.4. The continuous and discrete dynamics of the walker

are derived using implicitly constrained Newton-Euler equations, in a fashion similar

to [88]. These dynamics have four continuous states representing the two leg angles

and their velocities ([θ, α, θ̇, α̇] = x), and two discrete modes as shown in Fig. 4.4.

There are two control inputs to this system: an ankle torque (τθ) and a hip torque

(τα), bounded to be within the intervals τθ ∈ [−1, 1]Nm, τα ∈ [−10, 10]Nm. Due to

space limitations, the derivation and expression of the dynamics is given in full detail

in the supplementary code2.

The full domain of the system (Fig. 4.4) is given by the set:

{(θ, α, θ̇, α̇) ∈ [−π/6, π/6]×[−π/3, π/3]×[0, 5]×[−10, 10]}\
{
x | (α < 2θ)

⋃
(θ > 0)

}
.

(4.18)

The domain can be understood as all states between the joint angle limits in which

2https://github.com/nilssmit/IROS_2018_Safe_Control
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either the swing foot is above the ground, or the hip has not yet reached apex. To

express this domain as a semi-algebraic set, we split it into into two separate modes,

along the line θ = 0. We add a guard in the first mode (θ ≤ 0) along θ = 0 with

an identity reset into the second mode (θ ≥ 0). Since θ̇ >= 0 for all points in the

state space, the state can only traverse from mode 2 to mode 1 along the touchdown

guard. This allows us to remove the negativity constraint, (4.3), on the θ = 0 border

of mode 2.

The dynamics (f, gu, gd) are approximated using 5th order Taylor expansions about

the origin. To capture the approximation error in the dynamics, we bound the differ-

ence to a 15th order expansion and add it as a disturbance in the dynamics similarly

to Section 4.6.1. The reset map is approximated using a 2nd order Taylor expansion

about the center of its domain. The low-order approximation is necessary because

the reset map takes the polynomial v as an input argument in the sums-of-squares

program. Since the degree of a composition of two functions is the product of their

degrees, a high-order expansion would result in a large computational penalty. The

approximation error that results from this low dimensional reset map cannot be ac-

counted for in our current formulation, but is something that we plan to explore

in future work. The Taylor expanded dynamics, resets and guards are given in the

supplementary code2.

Under these dynamics, our method takes approximately 2h to find a viability

domain and semi-autonomous controller using degree 4 polynomials. The resulting

safe set is visualized in Fig. 4.5. Additionally, a MATLAB application for simulating

the system under manual control input can be found in the supplementary code2.

4.7 Conclusion

This chapter presents a method to construct guaranteed safe semi-autonomous

controllers for hybrid systems. The resulting controller guarantees viability and allows

for arbitrary input when viability is not at risk. It can be computed directly, and does

not require real-time solution of optimization problems. The method is evaluated on

a compass gait walking model with 4 states and 2 hybrid modes. Safe interaction

with the physical world is a primary goal of robust control. Future work is aimed at

hardware evaluation. Remaining challenges to this end include increasing the model

complexity, and bounding dynamic uncertainty observed in physical data.
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Figure 4.5: Safe set (shown in green) for the compass gait walker visualized as a 3D
slice of the 4D state space with a stationary swing leg (α̇ = 0). The yellow plane
represents the touchdown guard, and the gray planes represent the edges of the failure
set, i.e. the state must stay within these boundaries to remain viable. The viable set
does not intersect the failure set, but does intersect the guard. Note that along the
guard, increasing θ̇ requires an increase in α for the state to be viable. This matches
the intuition that larger step lengths should be used for higher walking speeds [75].
Also note that the minimum stance leg speed is large for large stance leg angles. For
lower speeds, the stance leg torque is insufficient to get the walker over mid-stance.
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Figure 4.6: Two simulated trajectories for the compass gait model simulated using
the non-Taylor-expanded dynamics. The first, in purple, uses a random control input,
the other, in blue, uses our semi-autonomous controller in combination with this input
(threshold value vm = 0.2). In the trajectory stills we see that the raw trajectory fails
by falling backwards (θ̇ < 0), while the semi-autonomous trajectory keeps walking.
Also shown is the barrier function value (v(x)) over time. Note the semi-autonomous
controller deviates from nominal only once the threshold value (shown in light green)
is reached.
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CHAPTER V

Walking with Confidence: Safety Regulation for

Full Order Biped Models

This chapter aims to address the scaling limitations faced by the safety regulator of

the preceding section. By using a dimensionality-reduction approach based on hybrid

zero dynamics, this chapter scales the safety regulator to a 10-dimensional walking

model. The contents of this chapter have been accepted for publication in Robotics

and Automation Letters 2019 [90], and are presented here as originally published.

5.1 Introduction

Avoiding falls is a safety critical and challenging task for legged robotic systems.

This challenge is compounded by strong limits on the available actuation torques;

particularly at the ankle or ground contact point. These limits in actuation mean

that the motion of a legged robot is often dominated by its mechanical dynamics,

which are hybrid, nonlinear, and unstable. A consequence of these limitations is

that a controller might be required to take a safety preserving action well before the

moment a failure occurs.

Consider, for example, a bipedal robot that just entered single stance during a

fast walking gait. The robot is pivoting dynamically over the stance foot and can

only apply limited ankle torques to control its motion. To catch the robot again, the

swing foot needs to be brought forward rapidly and be placed well in front of the

robot. If the forward velocity of the robot and hence the pivoting motion is too fast,

there will not be enough time to complete this foot placement far enough in front of

the stance leg to slow the robot down [73]. As a result, the robot’s speed increases

further, leaving even less time for leg swing in the subsequent steps. The robot might

manage to complete another couple of strides, but at this point a fall is inevitable
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and no control action can prevent it.

Knowing the limits of safe operation is akin to knowing the set of states from

which falls, even in the distant future, can be avoided. Such knowledge is valuable for

many reasons. Knowing that a fall is inevitable is useful in itself, as it allows a robot

to brace for the imminent impact. Knowing the distance from the border of the safe

set could allow a robot to estimate the set of impulses that can be withstood without

failing. This would allow it to judge whether or not it can safely interact with the

environment in a given situation; for example, to push a cart while walking. Most

importantly, this knowledge is valuable due to the flexibility it can create. Rather

than stabilizing the robot motion along a specified trajectory, one could imagine

controllers that are adaptive to adjust to the environment, to maximize performance,

or to fulfill a secondary task such as pointing a sensor onto a target. Any of these

secondary tasks can be pursued as long as the state of the robot is within the safe

set.

In this context, a representation of the set of safe states enables the construction

of a regulator that monitors the system state and takes safety preserving actions

only when the robot is at risk of failure [106]. Such a regulator could guarantee safe

operation, while allowing a secondary control system to behave flexibly as long as

safety is not threatened.

Identifying such safety limits, however, is a challenging problem for nonlinear and

hybrid systems. A promising tool for identifying the safety limits of a legged robotic

system is sums-of-squares (SoS) optimization [70]. This approach uses semi-definite

programming to identify the limits of safety in the state space of a system as well as

associated controllers for a broad class of nonlinear [56, 37, 50] and hybrid systems [72,

87]. These safe sets can take the form of reachable sets (sets that can reach a known

safe state) [49, 87, 56] or invariant sets (sets whose members can be controlled to

remain in the set indefinitely) in state space [105, 72, 71]. However, the representation

of each of these sets in state space severely restricts the size of the problem that can

be tackled by these approaches. To accommodate this limitation, sums-of-squares

analysis has been primarily applied to reduced models of walking robots: ranging

from spring mass models [111], to inverted pendulum models [49, 96] and to inverted

pendulum models with an offset torso mass [71]. The substantial differences between

these simple models and real robots causes difficulty when applying these results to

hardware.

A contrasting approach to designing stable controllers for high dimensional, un-

deractuated robot models uses hybrid zero dynamics (HZD) [104]. In this approach,
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Figure 5.1: Generating safety guarantees for a high dimensional robot (illustrated on
Rabbit [18]). The state-space of the full robot is given in the top right figure, where
TQ is the tangent space on Q, S is the hybrid guard representing foot touchdown, and
∆ is the corresponding discrete reset map. Using feedback linearization, we restrict
our states to lie on a low-dimensional manifold Z, reducing the state-space dimension
to an amenable size for sums-of-squares analysis. This manifold is parameterized
by the underactuated degrees of freedom of the robot θ, as well as a set of shaping
parameters α. The shaping parameters can be modified in real-time by a control
input, allowing for a broad range of behaviours on Z. To guarantee safety on Z we
find the set of unsafe states ZF from which the state may leave the manifold (for
instance due to motor torque limits). We then use sums-of-squares tools [70] to find
a control invariant set V̂ ⊂ Z \ ZF . This control invariant set can be used to define
a semi-autonomous, guaranteed safe controller for the full robot dynamics.
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feedback linearization is used to drive the actuated degrees of freedom of the robot

towards a lower dimensional hybrid zero dynamics manifold. This manifold is spec-

ified as the zero levelset of a configuration-dependent output vector and represents

the motion of the robot in its underactuated degrees of freedom.

Significant progress has been made in the generation of safety certificates for HZD

controllers. Much of this work [4, 41, 66, 67, 68, 65] relies on the Poincaré stability of a

periodic limit cycle in order to generate safety guarantees. This reliance is restrictive,

as it precludes behaviors that would leave the neighborhood of the limit cycle. Recent

work has been done to extend the range of safe HZD behaviours beyond a single limit

cycle neighborhood [63, 101, 102, 5]. In [63, 101, 102], the controller is allowed to

discretely switch between a family of periodic gaits. Safety is then ensured using

a dwell time constraint that limits how frequently switching can occur. In [5], a

combination of HZD and finite state abstraction is used to safely regulate forward

speed of a fully-actuated bipedal robot. This method requires all robot degrees of

freedom to be actuated in order to construct safety certificates. Our approach shares

strong similarities with each of these works, but allows for continuous variation within

the family of behaviours, and applies to underactuated robotic systems.

In this chapter we build on these two broad approaches to safety and control

synthesis for legged robotic systems. To combine the full-model accuracy of hybrid

zero dynamics and the set-based safety guarantees of sums-of-squares programming,

we propose the following approach (Fig. 5.1). First, we use hybrid zero dynamics

to map the full order dynamics to a low dimensional hybrid manifold. We control

the dynamics on the manifold using a set of shaping parameters, which are modified

in continuous time to modify robot behaviour. We then use sums-of-squares pro-

gramming to find a subset of this manifold which can be rendered forward control

invariant. Once this subset is found on the low dimensional manifold, a regulator can

be constructed that allows for free control of the manifold dynamics when safety is

not at risk, but switches to a safety preserving controller when safety is threatened.

The approach is presented in a general form that extends to a large class of

underactuated bipedal robots. Throughout the chapter, an example implementation

is given for a 10-dimensional model of the robot Rabbit [18] and a tracking task is

used to illustrate semi-autonomous safe control. To the best of our knowledge, this

is the highest dimensional walking robot model for which set-based safety guarantees

have been generated thus far.

The rest of this chapter is organized as follows: Section 5.2 formally defines the as-

sumptions and objective of this chapter. The next two sections describe our method.
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Section 5.3 constructs a low dimensional zero dynamics manifold with control input.

In Section 5.4 we present a sums-of-squares optimization which finds a control invari-

ant subset of the manifold that avoids a designated set of unsafe states. Section 5.5

describes the results of our implementation on the robot Rabbit [18], and conclusions

are presented in Section 5.6.

5.2 Problem Setup

5.2.1 Robot Model

For simplicity, we apply similar modeling assumptions to those made in [104].

That is, the robot is modeled as a planar chain of rigid links with mass. Each joint

is directly torque actuated except for the point of contact with the ground, leading

to one degree of underactuation for a planar model. The full configuration of the

robot is given by the set of joint angles q = {q1, . . . , qnq} ∈ Q ⊂ Rnq . We next define

the set of feasible configurations Q̃ ⊂ Q (similarly to [105]):

Definition 1. A configuration is feasible if the joint angles satisfy actuator limits, and

only foot points are touching the ground (i.e. the robot has not fallen over).

Using the method of Lagrange, we can obtain a continuous dynamic model of the

robot during swing phase:

ẋ(t) = f(x(t)) + g(x(t))u(t). (5.1)

where x(t) = [q>(t), q̇>(t)]> ∈ TQ ⊂ R2nq denotes the tangent space of Q, u(t) ∈ U ,

U describes the permitted inputs to the system, and t denotes time.

We assume that an instantaneous and impulsive impact occurs each time the

swing foot hits the ground, with the stance leg leaving the ground immediately after

impact. As in [104], we can construct a reset map for the state after impact:

x(t+) := ∆(x(t−)) (5.2)

=

[
∆qq(t

−)

∆q̇(q(t
−))q̇(t−)

]
. (5.3)

Here the superscript plus indicates the time just after the event and the superscript

minus indicates the time just before the event. ∆ : TQ→ TQ is the reset map of the

robot state. ∆q ∈ Rnq×nq is a coordinate transformation matrix that swaps the swing

leg and the stance leg after impact. ∆q̇ : Q→ Rnq×nq , is the configuration-dependent
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reset map of the configuration velocities.

This equation holds true for all states in S ⊂ TQ, which is called the guard of the

hybrid system, and represents the states of the robot with zero swing foot height and

downwards swing foot velocity. Any time the state of the robot enters S, the reset

event must occur.

Example 1. The configuration q for Rabbit is shown in Figure 5.1 (top left). Q̃ is

the set of robot configurations in which only foot points intersect the ground and all

joints are within the limits: q1, q2, q4 ∈ [−π/2, π/2], q3, q5 ∈ [−π/2, 0]. When the swing

foot intersects with the ground, we enter the guard S. This causes an impulse to be

transmitted to the colliding foot, and the swing and stance feet swap. The impulse

and coordinate swap are given by ∆. The joint torques torques are saturated to take

values in the interval U = [−30 Nm, 30 Nm]4. All kinematic and inertial properties of

the model are given in [18].

5.2.2 Safety

In this chapter, safety is defined as keeping the configuration feasible for all time

(i.e. q(t) ∈ Q̃, ∀t). To guarantee safety, this chapter finds a viability domain [105]:

Definition 2. A viability domain V ⊂ R2nq is any set satisfying V ⊂ TQ̃ which is also

forward control invariant. That is, there exists a Lipschitz state feedback controller

us : TQ̃ → U , such that for every initial condition x0 ∈ V , the execution of the

system from the initial condition remains in V for all time t ∈ [0,∞). We refer to any

feedback controller that is able to ensure that the system is forward control invariant

as an Autonomous Viable Controller.

The forward control invariance property ensures that any state that begins within a

viability domain V can be controlled to remain within the domain. Since V contains

only feasible configurations (V ⊂ TQ̃), we know that safety can be maintained by at

least one controller from all states in V .

Once a viability domain is found, we use it to construct a semi-autonomous,

safety preserving controller. Given an initial state within V , a user defined control

input is applied without modification to the system. The state of the system is then

continuously monitored. If the state approaches the boundary of the viability domain,

the control input is overridden by an autonomous viable controller. This gives the

user full control over the system until safety is threatened, at which point, safety is

automatically enforced. Once safety is no longer at risk, control is returned to the

user.
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5.2.3 Goal

Using these definitions, we state our objective as:

1. Find a viability domain and a corresponding autonomous viable controller.

2. Use this domain and autonomous viable controller to construct a semi-autonomous

viable controller.

5.3 Controlled Hybrid Zero Dynamics Manifold

We intend to use sums-of-squares optimization to achieve these objectives. How-

ever, the state-space dimension of realistic robot models far exceeds the limits of this

tool. For instance, the state-space of the benchmark model Rabbit [18] has dimension

10, while many sums-of-squares problems become computationally challenging above

dimension 6 [71]. In this section, we show how the the state-space dimension can be

reduced to a feasible size using the idea of hybrid zero dynamics [104].

5.3.1 Shaping Parameters

The hybrid zero dynamics approach uses feedback linearization to drive the actu-

ated degrees of freedom onto a low-dimensional manifold specified by a set of user-

chosen outputs, which depend on the robot configuration q ∈ Q. We modify this

approach by making these outputs also depend on a set of time varying shaping

parameters α(t) ∈ A ⊂ Rnα . The shaping parameters α are used in this chapter

to provide an input within the manifold dynamics. By varying α continuously over

time, the user can change the hybrid zero dynamics manifold to modify the robot

behaviour in real-time. The idea of modifying the HZD manifold in real-time is simi-

lar to prior work [92, 63], where parameters are allowed to change discretely once per

robot step. In contrast, α can vary throughout the step, enabling a rapid response to

external input without waiting for the next discrete update.

We define the dynamics of α as:

ẋα(t) = fα(xα(t)) + gα(xα(t))uα(t), (5.4)

where xα(t) = [α>(t), α̇>(t)]> ∈ TA, uα(t) ∈ Uα ⊂ Rnα are the shaping parameter

inputs (with permitted values Uα), and t denotes time. We require that α has vector

relative degree two under these dynamics. We assume a trivial discrete update for

the shaping parameters when the robot state hits a guard: xα(t+) = xα(t−).
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Example 2. As shown in the bottom left of Figure 5.1, we use a single shaping param-

eter α(t) ∈ [−π/2, π/2] to modify the desired pitch angle of Rabbit. Note that this

choice is somewhat arbitrary; α could instead modify properties such as step length

or center of mass height. We define the dynamics of α as follows:

d

dt

[
α(t)

α̇(t)

]
=

[
α̇(t)

0

]
+

[
0

1

]
uα(t), (5.5)

where uα represents the user-controlled pitch acceleration.

5.3.2 Constructing the Manifold

In this subsection, we incorporate these shaping parameters in the construction

of the hybrid zero dynamics manifold described in [104]. Throughout the section, we

use Lxf and Lxg to represent the Lie derivatives in TQ with respect to f and g, and

Lxαfα and Lxαgα to represent the Lie derivatives in TA with respect to fα and gα (where

we drop the arguments).

We begin by using a set of outputs: h : Q × A → Rnu to implicitly define the

hybrid zero dynamics manifold as:

Z := {(q, q̇, α, α̇) ∈ TQ× TA |h(q, α) = 0,

(Lxfh)(q, α, q̇) + (Lxαfαh)(q, α, α̇) = 0} (5.6)

These outputs must satisfy hypotheses similar to HH 1-4 in [104], and the resulting

manifold Z must satisfy the hybrid invariance condition:[
∆(x(t−))

xα(t−)

]
∈ Z ∀

[
x(t−)

xα(t−)

]
∈ Z ∩ (S × A) . (5.7)

Provided these conditions are met, we can use the results in [85, Chapter 9.3.2] to

show that Z is a smooth submanifold in TQ×TA of dimension nz = 2(nq−nu+nα).

In addition, the control input u∗ : TQ× TA× Uα → U given by:

u∗(x, xα, uα) = −(Lxg(Lxfh+ Lxαfαh))−1
(
Lxf (Lxfh+ Lxαfαh)+

+ Lxαgα (Lxfh+ Lxαfαh)uα + Lxαfα (Lxfh+ Lxαfαh)
)

(5.8)

renders Z invariant under the hybrid dynamics of the robot (note the right hand side

arguments are suppressed to simplify presentation).
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As in hypothesis HH 3 in [104], we define a set of phasing coordinates θ : Q →
Rnq−nu which represent the underactuated degrees of freedom of the robot. Using

these coordinates, we can parameterize the on-manifold state of the robot x̂(t) ∈ Z
as: x̂(t) = [θ(q)>, θ̇(q, q̇)>, α>, α̇>]> (where we have suppressed the time dependence

on the right hand side). The continuous dynamics under this parameterization are

then:

˙̂x =

 θ̇

LxfLxfθ + LxgLxfθu∗

fα + gαuα

 = f̂(x̂) + ĝ(x̂)uα, (5.9)

where we have suppressed the time dependence. The discrete manifold dynamics are

given by:

x̂(t+) = ∆̂(x̂(t−)), ∀x̂(t−) ∈ Ŝ, (5.10)

where t− is the state before impact, and the manifold guard and reset (Ŝ and ∆̂) are

defined as:

Ŝ = Z ∩ (S × A) (5.11)

∆̂(x̂(t−)) =

 θ(∆q(q(t
−)))

∂θ
∂q

(∆q(q(t
−)))∆q̇(q(t

−))q̇(t−)

xα(t−)

 . (5.12)

Example 3. We begin by using the trajectory optimization toolbox FROST [38] to find

a time-varying, periodic walking trajectory: qFr : [0, tmax] → Q. For this trajectory,

the stance leg angle of the robot: θ(q) = −q1−q2− q3
2

is monotonic in time and varies

from θmin to θmax. This allows us to define a phasing function tθ : [θmin, θmax] →
[0, tmax] which satisfies qFr(tθ(θ(q

Fr(t)))) = qFr(t) (i.e. tθ maps from points in the

state space to points along the trajectory).

We modify the pitch angle of the FROST trajectory using the shaping parameter

α, giving us the output function:

h(q, α) =


q1 − qFr1 (tθ(θ(q)))− α
q3 − qFr3 (tθ(θ(q)))

q4 − qFr4 (tθ(θ(q))) + α

q5 − qFr5 (tθ(θ(q)))

+ hm(θ(q), α). (5.13)

Here we also added the function hm : Q × A → R4 which is chosen to ensure satis-
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faction of the hybrid invariance condition (5.7). This technique for ensuring hybrid

invariance is similar to the procedure given in [92]. See Appendix A for a more

detailed derivation of this condition.

The guard of our HZD manifold Z is given as Ŝ = {x̂ | θ = θmax, θ̇ > 0} and the

reset is defined as in (5.12).

5.3.3 Safety on the Manifold

We now revisit the safety criteria from Section 5.2.2 under the assumption that

our state is controlled to lie on Z. For the biped to be safe, we require that the

manifold state remains in the feasible set Q̃, and that the state does not leave the

manifold (either by leaving the manifold boundary, or by encountering actuator limits

when trying to stay on Z). We define the unsafe states ZF ⊂ Z as the union of:

• The infeasible states: ((TQ \ TQ̃)× TA) ∩ Z

• The states that leave the manifold boundary, i.e. all members of the boundary

set (∂Z = {x̂ ∈ Z | q0(x̂) ∈ ∂Q or α ∈ ∂A}) which do not lie on a guard, and

that have an outward velocity.

• The states requiring unattainable actuation to remain on Z, i.e. all states

(x, xα) ∈ Z for which u∗(x, xα, uα) /∈ U, ∀uα ∈ Uα.

Additionally we define the state-dependent set of realizable shaping parameter inputs

Û : TQ× TA→ 2Uα , as Û(x, xα) = {uα ∈ Uα |u∗(x, xα, uα) ∈ U} (where 2Uα denotes

the set of all subsets of Uα).

Provided we constrain the manifold state to avoid ZF , and constrain the shaping

parameter input to lie within Û , our safety criteria is maintained.

Our goal from Section 5.2.3 can now be re-stated as:

1. Find a viability domain on Z that does not intersect ZF , and an autonomous

viable controller ûs : Z → Û .

2. Use this domain and autonomous viable controller to construct a semi-autonomous

controller.

Example 4. For the Rabbit example, the set of states that leave the manifold boundary

are given by ZLMB = {x̂ | α = π/2, α̇ > 0}∪{x̂ | α = −π/2, α̇ < 0}. All other states

on the manifold boundary either lie on a guard (θ = θmax, θ̇ > 0), or flow inwards.
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We use sampling and fitting to find a region ZLim ⊂ Z where the actuator torque

limits can be satisfied for some uα. We then define our unsafe set (see Fig. 5.2):

ZF = (((TQ \ TQ̃)× TA) ∩ Z) ∪ ZLMB ∪ (Z \ ZLim). (5.14)

The set of attainable inputs Û is given by the minimum and maximum values of uα

at each sample point (x, xα) ∈ Z that satisfy u∗(x, xα, uα) ∈ U .

5.4 Hybrid Control Invariant Set

This section outlines how the low dimensional safety problem from Section 5.3.3

can be solved using sums-of-squares optimization [70]. Broadly, the sums -of-squares

approach enforces constraints of the form p ≥ 0 (where p is a function) by constraining

p to be a sum-of-squares polynomial, i.e. p =
∑

i p
2
i (where pi are polynomials). We

refer to this constraint as p ∈ SoS.

We begin by showing how the sets and dynamics from the preceding section can

be represented using polynomials. We next define a bilinear semi-definite program

for finding a viability domain, and describe the alternation used to solve it. Finally,

we construct a guaranteed safe semi-autonomous controller for the full robot, based

on this viability domain.

5.4.1 Polynomial Representation

For the dynamics of the system to be used inside our sums-of-squares program,

they must be represented in a polynomial form. In particular, we require polynomial

representations of the functions f̂, ĝ, ∆̂ and the sets Ŝ, ZF , Û . Since these sets and

functions can contain trigonometric as well as rational terms in their definition, we

rely on approximate representations. It is important to take care to ensure that the

safety guarantee is preserved under approximation.

To generate polynomial approximations and verify bounding relations, we use

sampling to obtain the exact function values over a dense grid in the state space. This

sampling approach is made tractable by the reduction in dimension of the previous

section. In our example, this reduces the dimension that must be sampled from 10

to 4. We use a 30× 30× 30× 30 sample grid to fit and bound the polynomials. The

bounds are then verified using a dense set of randomly generated test points.

We begin by sampling f̂ : Z → Rnz and ĝ : Z → Rnz×nα over our grid of points

in Z. Least-squares fitting can then be used to obtain the corresponding polynomial
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representations: f̂p and ĝp. To account for the approximation error in the continuous

dynamics functions, we introduce a set of error-bounding polynomials êp : Z → Rnz

which satisfy:

êp(x̂) ≥
∣∣∣f̂(x̂)− f̂p(x̂) + (ĝ(x̂)− ĝp(x̂)) û

∣∣∣ , (5.15)

for all x̂ ∈ Z and û ∈ Û where the inequality and absolute value are taken element-

wise. These polynomials can be found using a linear program that minimizes the

integral of êp subject to (5.15) enforced at our set of sample points.

To represent sets in polynomial form, we require them to take the form of semi-

algebraic sets (i.e. a set X ⊂ Y is defined as X = {y ∈ Y | hi(y) ≥ 0, ∀i =

1, . . . n}, where h : Y → Rn is a collection of polynomials). We use a bounding set to

approximate the reset map ∆̂ : Ŝ → Z in a conservative manner. That is, we find a

set Rp ⊂ Z × Z that bounds all possible reset behaviours:

(x̂, ∆̂(x̂)) ∈ Rp, ∀x̂ ∈ Ŝ. (5.16)

The sets Ŝ and ZF are represented with semi-algebraic outer approximations as fol-

lows: ZF
p ⊃ ZF , Ŝp ⊃ Ŝ. We define the sets Rp, Z

F
p , Ŝp using the respective polyno-

mials: hR : Z × Z → Rnhr , hF : Z → Rnhf , hS : Z → Rnhs . The space of feasible

inputs Û can be approximated using a state-dependent box constraint:

ûmin(x̂) ≤ û(x̂) ≤ ûmax(x̂), ∀x̂ ∈ Z \ ZF
p (5.17)

where ûmin, ûmax : Z \ ZF
p → Uα are polynomial input bounds, and the inequality is

taken element-wise. The set of inputs that satisfy this box constraint is denoted by

Ûp.

5.4.2 Optimization Formulation

We use an optimization similar to that of the previous chapter to find the largest

possible viability domain V̂ ⊂ Z \ ZF for our hybrid zero dynamics system. We

represent V̂ as the zero super-levelset of a polynomial function v̂ : Z → R (i.e.

V̂ = {x̂ ∈ Z | v̂(x̂) ≥ 0}), and represent the autonomous viable controller using

a polynomial function ûs : Z → Rnα . To enforce the viability of V̂ according to

Definition 2, we require v̂ and ûs to satisfy four conditions:

Viability Conditions.

1. V̂ does not intersect ZF (i.e. v̂(x̂) < 0, ∀x̂ ∈ ZF )
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2. All states that are contained in both the guard and V̂ must be mapped to a

state in V̂ (i.e. v̂(∆̂(x̂)) ≥ 0, ∀x̂ ∈ {x̂ ∈ Ŝ | v̂(x̂) ≥ 0})

3. At the boundary of V̂ (i.e. where v̂(x̂) = 0), the state flows inward under the

controller ûs (i.e. dv̂
dt
> 0)

4. The autonomous safe controller must satisfy the input bounds within the safe

set (i.e. ûs(x̂) ∈ Û, ∀x̂ ∈ V̂ )

Condition 1 ensures that states can not leave the viability domain by simply

leaving the space Z. Condition 2 ensures that states can not leave the viability

domain when traversing a guard. Condition 3 ensures that states cannot leave the

viability domain under the continuous dynamics of the system. Finally, Condition

4 ensures that our controller respects the robot torque constraints. Each of these

conditions are ensured with a corresponding sums-of-squares constraint, giving us:

SoS Constraint 1. (Viability Condition 1)

−v̂ − σ1hF ∈ SoS

Here σ1 : Z → R1×nhf ∈ SoS are sums-of-squares polynomials that relax the

positivity constraint outside ZF
p . We refer to such polynomials as s-functions.

SoS Constraint 2. (Viability Condition 2)

v̂+ − v̂− − σ2hR − σ3h
−
S ∈ SoS

Here σ2 : Z × Z → R1×nhr , σ3 : Z → R1×nhs ∈ SoS are s-functions. The su-

perscripts − and + indicate whether a function is evaluated using the first (−) or

second (+) argument of hR : Z × Z → Rnhr . That is, this constraint enforces:

v̂(x̂+)− v̂(x̂−)−hR(x̂−, x̂+)σ2(x̂−, x̂+)−hS(x̂−)σ3(x̂−) > 0, ∀(x̂−, x̂+) ∈ Z×Z. Note

that the addition of the σ3 term is not strictly necessary, since points in Ŝp must lie

in Rp. However, this term can help relax the constraint when points in Rp lie outside

Ŝp.

SoS Constraint 3. (Viability Condition 3)

Lx̂
f̂p
v̂ + Lx̂ĝp v̂ûs +

nz∑
j=1

qj + v̂λ+ σ4hF ∈ SoS

q − Lx̂êp v̂ + σ5hF ∈ SoS

q + Lx̂êp v̂ + σ6hF ∈ SoS
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Here σ4 : Z → R1×nhf ∈ SoS and σ5, σ6 : Z → Rnd×nhf are s-functions that relax

the constraint inside ZF
p , and λ : Z → R is a slack polynomial that can relax the

constraint whenever v̂ 6= 0. The polynomials q : Z → Rnz are used to bound the

effects of the dynamics error êp on the time derivative of v̂.

SoS Constraint 4. (Viability Condition 4)

ûs − ûmin + hFσ7 ∈ SoS

−ûs + ûmax + hFσ8 ∈ SoS

Here σ7, σ8 : Z → Rnα ∈ SoS are s-functions that relax the constraint inside ZF
p .

The desired objective of our optimization is to maximize the volume of V̂ . This vol-

ume is difficult to compute exactly for an arbitrary v̂, since the domain of integration

is given by a semi-algebraic set. We propose an analytically tractable approximation

to this objective: ∫
Z

v̂(x̂)dx̂. (5.18)

This objective is combined with the following constraint in order to approximate the

volume of V̂ :

SoS Constraint 5. (Objective Constraint)

1− v̂ ∈ SoS.

To understand how this objective and constraint approximate the volume of V̂ ,

take a continuous function v̂ that satisfies the constraints of the previous section. For

every point x̂ not in the set ZF , the value v̂(x̂) is constrained only by Constraint

(5). This means that v̂(x̂) can increase to a value of 1 for points inside V̂ , and v̂(x̂)

increases to a value of 0 for points outside this set. As a result, v̂ approaches the

indicator function over V̂ , and the integral in the objective function approaches the

volume of V̂ .

Combining the constraints and objective, we arrive at the following sums-of-

squares problem:
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sup
v̂,ûs,q,λ
σ1,...,σ6

∫
Z

v̂(x̂)dx̂ (5.19)

s.t. SoS Constraints 1−5,

σ1, . . . , σ8 ∈ SoS

To express this problem as a semi-definite program or SDP (which can be solved

with commercial solvers), all SoS constraints must be linear functions of the decision

variable polynomials. However, Constraint 3 in the above problem includes the terms

Lx̂ĝp v̂ûs and λv̂ which are bilinear in ûs, v̂ and in λ, v̂ respectively. Problems of this

form are referred to as bilinear sums-of-squares problems. The bilinear nature of

the constraints means that these problems are non-convex, and we can no longer

guarantee a globally optimal solution to this problem.

To solve this nonconvex bilinear sums-of-squares program we turn to a strategy

called alternation. This strategy breaks (5.19) into a pair of linear sums-of-squares

programs which can each be solved using a commercial solver. In each program one

of the bilinear variables is kept fixed while the other is optimized over. The variables

that were optimized are then fixed while the other pair of variables are optimized.

If the final solution satisfies the constraints of the original program, the solution is

guaranteed to be a viability domain. Computationally, each SDP is formulated in

spotless1 and solved using Mosek.

5.4.3 Guaranteed Safe Semi-autonomous Controller

We use a feasible solution to the above optimization problem to generate a guar-

anteed safe semi-autonomous controller. This controller modifies user input to ensure

that the Viability Conditions 3 and 4 are always satisfied. Condition 4 can be en-

forced by saturating the user inputs to always lie within the input bounds. To enforce

condition 3, we note that it is only active on the boundary of V̂ . This means that we

can ensure safety so long as we use the autonomous safe controller ûs when the state

lies on the boundary of V̂ , i.e. {x̂ ∈ Z|v̂(x̂) = 0}.
Since a controller that is discontinuous on the boundary of the safe set would

pose difficulties for systems with finite bandwidth, we additionally must ensure that

the new controller is continuous near the boundary. To achieve this, we smoothly

interpolate between the user input û0 and the guaranteed safe controller ûs (which

1https://github.com/spot-toolbox/spotless
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satisfies the safety condition when v̂(x̂) = 0) to get the regulated input ûr:

ûr = û0 + (ûs(x̂)− û0)ws(v̂(x̂), ε), (5.20)

where ûs and v̂ are computed using (5.19), ws : R → [0, 1] is a smooth step-like

function that satisfies ws(v, ε) = 0, ∀v ≥ ε, and ws(v, ε) = 0, ∀v ≤ ε/2, and ε ∈ (0, 1)

controls the smoothness of the interpolation.

When x̂ satisfies v̂(x̂) > ε, the user input is unmodified, as we are sufficiently

removed from the boundary of the safe set. When 0 ≤ v̂(x̂) ≤ ε/2, the safe controller

is fully active, keeping the state in the safe set.

5.5 Results

We used the proposed approach to compute a viability domain for the robot Rabbit

[18]. The viability domain is represented using a set of 8 degree-4 polynomials, each

covering an interval within the full range of θ. A two-dimensional slice of the viability

domain V̂ is shown in Fig. 5.2.

To demonstrate the semi-autonomous safe controller, we used it to ensure safety

while performing a reference following task. The task is to track a time-varying pitch

angle αd : [0,∞) → A. To follow the target, we set a desired pitch acceleration uα

using a ”näıve” PD controller:

udα(xα, t) = kp(αd(t)− α) + kd(α̇d(t)− α̇) + α̈d(t). (5.21)

We used the feedback controller (5.8) to map the desired acceleration to the four

motor torques of the Rabbit model.

For the feedback controller to respect Rabbit’s actuator torque limits, we first

saturated uα with a real-time Quadratic Program (QP) to get the input to our safety

regulator:

û0(x, xα, t) =min
uα

∣∣uα − udα(xα, t)
∣∣2 (5.22)

s.t. u∗(x, xα, uα) ∈ [−30 Nm, 30 Nm]4

Using a QP to satisfy the actuator constraints of the system is similar to many

state of the art approaches for high-dimensional robot control [41, 66, 68, 65] . A

major limitation of these approaches is the inability to guarantee the feasibility of the

QP. That is, for some states, there may not be an input that satisfies the actuator
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Ŝ

Δ̂

Z

(Actuator Limits Exceeded)
ZF

qFr

ZF (Falling Backwards)

Figure 5.2: A 2D slice (along α = α̇ = 0) of the four-dimensional viability domain
V̂ (shown in green) for Rabbit. The border at the right corresponds to the hybrid
guard Ŝ of foot touchdown, where the state is reset under the map ∆̂ to the left of
the figure. The unsafe set ZF is shown in red. We avoid the lower region (θ̇ < 0)
in order to conservatively prevent backwards falls. The upper region conservatively
approximates the region in which the control input (5.8) violates the torque limits
of the robot. By modifying the control input whenever Rabbit is at the edge of V̂ ,
ZF can be avoided indefinitely. Finally, the periodic trajectory used to generate
our targets qFr is shown in dashed black. Note that our viability domain is able to
guarantee robot safety even for states far away from this nominal trajectory.
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constraints (the set of such states is shown in red in Fig. 5.2).

Our approach guarantees the feasibility of (5.22) by constraining the state of

the robot to be within the QP-feasible region (i.e. outside of ZF in Fig. 5.2). To

maintain this state constraint, we modified the input û0 using the guaranteed safe

semi-autonomous controller defined in (5.20). In Fig. 5.3, we compare the results of

the näıve controller (5.21) and the safe controller (5.20) using a simulation of the full

dynamics of the robot Rabbit.

When tracking the backwards pitch target, the näıve controller slows to the point

of falling backwards, while the safe controller deviates slightly to maintaint forward

walking. For the forward pitch target, the näıve controller speeds up as it leans

forward. At a certain speed, it cannot longer stay on the low dimensional manifold

under the torque limits and falls. The safe controller recognizes this risk early and

deviates from the desired forward pitch before reaching this speed. The bottom-left

figure shows how the set of torque-limit satisfying control inputs disappears for the

näıve controller.

This task demonstrates that robot safety can be maintained even for states that

are far away from any periodic limit cycle. Indeed, the only periodic limit cycle used in

our approach keeps the body pitch relatively upright (α = 0). As such, our approach

broadens the set of real-time safe behaviours that can be executed by Rabbit, since

previous methods [4, 66, 65, 63] would all require a pre-computed limit cycle for each

new reference trajectory.

5.6 Conclusion

This chapter presents a method to construct a guaranteed safe semi-autonomous

controller for high-dimensional walking robots. The resulting controller guarantees

viability and allows for flexible input when viability is not at risk. The method is

evaluated on a model of the robot Rabbit, and a tracking task is used to illustrate its

capabilities. With a 10-dimensional state space, this model is larger than any known

model for which safety guarantees have been generated.

Despite this increase in model dimension, our example is still somewhat simplified:

the dynamics are two dimensional, the terrain is flat, and the range of behaviour is

limited to modifying the torso pitch angle. In contrast, bipedal robots in the world

must traverse three dimensional, varied terrain while performing a wide range of

tasks.

When extending our method to these cases, a trade-off arises between the degree
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Figure 5.3: Tracking performance of the safe (5.20) and näıve (5.21) controllers fol-
lowing two reference trajectories under the full rabbit dynamics. The pitch angles are
shown in the top left. For both references, the safe controller modifies the input before
safety is at risk, while the näıve controller follows the reference even as it leads to fail-
ure. Failure for the upper trajectory corresponds to stepping backwards, and in the
lower trajectory corresponds to moving too fast for the swing leg to reach its target.
The bottom left figure shows desired input udα and executed input for both naïıve and
safe tracking controllers following the second reference target. The state-dependent
region of inputs that satisfy the torque constraints are shown in grey. Note that under
the näıve controller, this region vanishes as the forward walking speed of the robot
becomes too high. Stills from the simulation trajectories are shown on the right. The
dotted line is the desired pitch, and the faded line is the nearest on-manifold state
q0(θ, α).
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of underactuation of the model, the genericity of the behaviour (i.e. the number of

shaping parameters), and the computational complexity of the optimization problem.

From Section 5.3.2, the dimension of the reduced order manifold (our state space) is

twice the sum of the degree of underaction and the number of shaping parameters.

In [71], the authors show that a 6 dimensional state space is tractable for similar

sums-of-squares programs. Our approach can thus currently handle a maximum of

three degrees of underactuation and/or shaping parameters.

Under this constraint, we can directly extend our method to 3D. For instance, take

the 3D biped with controlled steering given in [63]. This application has two degrees

of underactuation (pitch and yaw) and would have one shaping parameter controlling

yaw rate (i.e. turning left or right). Using our method, we could construct a safe

steering controller for the robot that avoids the risk of turning too quickly and falling.

An extension to rough terrain, however, will likely require improvements in scaling

of the sums-of-squares problem. Such scaling improvements are an active research

target [69, 1].

The core insight behind our approach is that sums-of-squares and hybrid zero

dynamics are remarkably complementary tools. Sums-of-squares analysis generates

the set based guarantees needed to render hybrid zero dynamics safe, and hybrid zero

dynamics provides the dimensionality reduction needed for sums-of-squares analysis

to be tractable. The key innovation for combining these two tools was the introduction

of a set of shaping parameters which control the dynamics on the manifold. The ability

to combine sums-of-squares and hybrid zero dynamics presents a promising path

forward for building guaranteed safe walking controllers for complex legged robots.

84



CHAPTER VI

Stepping Onto Rough Terrain: Reachability-based

Gait Selection

This chapter continues moving our safety regulation approach towards more real-

istic walking robot scenarios, namely walking over rough terrain. At the time of this

dissertation, the work presented here is still in progress. As a result, this section is

somewhat speculative: we propose our method in detail and discuss the limitations,

but have not yet generated results.

6.1 Introduction

In the previous chapter, we demonstrate how a 2D robot moving on flat terrain can

actively modify its torso angle in a guaranteed safe manner. This single behavioural

modification is however not sufficient to deal with uneven terrain or physical obstacles

as would be encountered in real-world environments. The first step towards practical

application of our approach must therefore be to increase the available selection of

guaranteed safe behaviours. This increased range of behaviours should include, for

example, stopping, acceleration/deceleration, and varied step length and step height.

In this chapter, we propose Reachabillity-based Gait Selection (RGS): a control

methodology that allows for an increased range of guaranteed safe behaviours. This

methodology is inspired by the Reachability-based Trajectory Design (RTD) approach

that is being developed for the safe control of autonomous vehicles [52, 100, 51]. In

the RTD approach, an outer approximation of the forward reachable set is computed

(using sums-of-squares) for a parametrized family of vehicle trajectories. This forward

reachable set is then intersected against potential obstacles in order to find the set of

safe trajectories. In real-time, the controller can then freely select between this set

of safe trajectories in order to achieve a higher-level objective (e.g. a lane change).
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If no safe trajectory exists, the controller switches to a stopping controller, which is

guaranteed to safely stop the vehicle without crashing.

RGS takes a similar approach. We first construct a standing controller, which

stabilizes the robot around a stationary standing position, and find an inner approxi-

mation to its region of attraction (ROA, the set of states which can be stabilized under

the standing controller). We then construct a family of two-step walking gaits, along

with their forward reachable sets (FRS, the set of possible outcome states after the

robot takes two steps). In real-time, the controller then selects between the walking

trajectories whose forward reachable set is contained within the region of attraction

of the stopping controller. This guarantees that the robot can always safely come to

a stop while selecting between behaviours.

When performing a sums-of-squares analysis over a large range of robot behaviours

(e.g. when computing forward reachable sets), the curse of dimensionality quickly be-

comes a major limitation. If we were to parametrize each class of behavior with a

continuously adjustable shaping parameter as in the last chapter, we would quickly

exceed the 6 dimensional capability of our sums-of-squares analysis. Indeed, as men-

tioned in Section 5.6, this approach would limit a control designer to a maximum of

2 behavioural modifiers for a robot with one degree of underactuation. However, to

compute our FRS for the two-step walking controller, we would need 4 behavioural

modifiers, one each for the height and length of both the first and the second step.

An alternative approach is therefore required.

We address this obstacle by decoupling the sums-of-squares analysis. Since finding

a single forward reachable set for all possible behaviours is computationally demand-

ing, we instead aim to break the analysis into two steps. In the first, we compute the

FRS of just the first step of the walking controller. In the second we find the set of

states that can be brought to a standstill in one step by computing the backwards

reachable set (BRS, the set of states that can reach the standing controller ROA in

one step) of our standing controller’s ROA. Provided that the ending configuration

of the first step is fixed to be the same as the starting configuration of the second

step, we can then freely mix and match the parameters of the first and second steps.

We can then ensure that the robot can stop in two steps by finding first and second

step parameters such that the FRS of the first step is within the second step BRS

of the standing ROA. This idea of composing multiple intersecting gaits to allow for

safe switching between behaviours bears strong similarity to the approach used in

[63, 101, 102].

Throughout this chapter we use a Rabbit model walking over rough terrain to
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illustrate the RGS approach (see Figure 6.1). This example bears strong resemblance

to the stepping stones example given in [64]. Our approach differs from this work, in

that it provides a guarantee that the velocity of the underactuated degree of freedom

of the robot remains within limits, even on very steep terrain.

Note that this chapter does not present a working implementation of the method,

which remains a work in progress at the time of this dissertation. Additionally, note

that this chapter uses the same notation introduced in Chapter V.

6.2 Reachability-based Gait Selection

An overview of the RGS approach for a Rabbit model walking over rough terrain

is given in Figure 6.1. The remainder of this section contains a discussion of the

standing controller and its region of attraction (Section 6.2.1), a discussion of the

mid-stance configuration (Section 6.2.2), a description of the first step controller and

the forward reachable set computation for this controller (Section 6.2.3), a description

of the second step stopping controller and its backwards reachable set to the standing

ROA (Section 6.2.4), and finally a description of the gait selector (Section 6.2.5).

6.2.1 Standing Controller and Region of Attraction

The goal of the standing controller is to stabilizes the robot around a stationary

standing position. Since Rabbit does not have ankles, the standing controller uses

the torso angle to stabilize the robot about a standing position. If we fix the swing

leg and only control the torso angle, the resulting robot is dynamically equivalent

to an acrobot [91]. Stabilizing the upright position of the acrobot is a well known

robotics problem which has many approaches. We chose to use the sums-of-squares

approach given in [55], as it additionally generates an inner approximation of the

region of attraction of the standing controller. The result of this process is a standing

configuration qs and a set of initial hip and pitch velocities which can be brought to

stable standing.

6.2.2 Mid-stance Configuration

At each mid-stance the controller switches discretely between gait parameters. In

order to smoothly execute this discrete transition in gait parameters, we require every

member of the family of walking gaits to share a common mid-stance configuration qm

and configuration velocity ∂qm
∂θ

. Note that we allow the mid-stance joint velocities q̇
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if
keep walking

else
activate stopping controller

Figure 6.1: Overview of the reachability-based gait selection approach for a Rabbit
model walking over rough terrain. The approach begins by constructing a standing
controller that stabilizes the robot about a stationary standing position. Next, we
specify a mid-stance configuration qm and configuration velocity ∂qm

∂θ
. We then gener-

ate a parametrized family of first steps (using interpolated FROST trajectories) that
start and end at the mid-stance configuration for a range of step-lengths (x1), step
heights (y1), and accelerations (a). Next we construct a stopping controller (using
the methods of the previous chapter) that brings the robot to a stop in one step (of
step-length x2 and step-height y2) by actively modifying the pitch angle. Finally,
we compute three set-based objects: a region of attraction (ROA) of the standing
controller, a forward reachable set (FRS) of the first-step controller, and a backwards
reachable set of the ROA using the second-step stopping controller. The FRS takes
in the current mid-stance velocity (θ̇0) and the discrete parameters of the first step
(β1), and returns a bound on the next mid-stance velocity (θ̇1). The BRS takes in
the parameters of the stopping step (β2), and returns the set of mid-stance velocities
that can safely be brought to a stop in one step. At each mid-stance event, the gait-
selector searches for discrete step parameters (β1, β2) that can bring the robot to a
stop in two steps (i.e. FRS(θ̇0, β1) ⊂ BRS(β2)). If the selector succeeds, the robot
takes the first step using parameters values β1, and the selection process repeats at
the next mid-stance. If the selector fails, the robot executes a stopping step using the
parameter values β2 from the previous mid-stance. Since the previous selection step
ensured that the robot state is within the BRS of the stopping controller, we know
that the robot can safely be brought to a stop.
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to scale linearly with the hip angle velocity at mid-stance θ̇. This constraint ensures

that the hybrid zero dynamics manifolds of each stepping controller gait intersect

smoothly at mid-stance.

The choice of mid-stance configuration is important, since the robot must pass

through this configuration at every step. If poorly chosen, this might limit the avail-

able behaviour of the robot. For instance, if the swing leg configuration is too far

behind the hip, the maximum walking speed might be reduced, since the leg can only

be brought forward after mid-stance has been reached.

It is likely that a metric exists over which this configuration should be optimized.

The form of such a metric, however, is still uncertain at the time of this dissertation.

We therefore suggest using a heuristic choice of mid-stance configuration, that can

be modified as limitations are encountered.

6.2.3 Stepping Controller and Forward Reachable Set

Once a mid-stance configuration has been selected, the next task is to construct

a stepping controller that moves the robot from one midstance to the next. Since the

robot is walking over rough terrain, this stepping controller must be able to accom-

modate a continuous range of step-lengths (x1) and step-heights (y1). Additionally,

in order to be able to regulate speed, this controller should be able to speed up and

slow down the robot using a desired acceleration (a1 = θ̇1
θ̇0

).

One example of a controller that can accommodate all of this variation is a hybrid

zero dynamics gait-library [21, 31]. We use this idea to construct a 3 dimensional gait

library parametrized by the discrete gait parameters: β1 = [x1, y1, a1]>. We briefly

describe the construction of the gait library here.

First, a series of trajectory optimizations are conducted over a coarse grid (ap-

proximately 10× 10× 10) of gait parameters. Each trajectory optimization searches

for a robot trajectory which satisfies the desired midstance configuration, step length,

step height, and acceleration, as well as a fixed midstance velocity. In order to pro-

mote smoothness of the resulting trajectories, a term is added to the cost function

which penalizes deviation from nearby trajectories. As in Example 3 from the previ-

ous chapter, we fit a phasing function to find a phase-dependent configuration target

for each trajectory.

Next a second-order-smooth interpolation is conducted over the grid of config-

uration targets to obtain a single configuration function (qFr(θ, β1)) that is depen-

dent on stance leg angle as well as gait parameter. The stepping controller then

smoothly tracks this configuration target using a PD position controller with feed-
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forward torques at each joint.

In order to safely bound the behaviour of the stepping controller when selecting

gaits, we must construct an outer approximation of the forward reachable set (FRS :

R4 → 2R). FRS is a set-valued function which takes as input the hip velocity at

midstance (θ̇0) as well as the step parameters of the next step (β1), and returns the

set of possible next-step mid-stance velocities (θ̇1). Note that for some combinations

of mid-stance velocity and step-parameter, the robot will fail before the next mid-

stance. We assign the value -1 to any failed trajectory (since stance hip position

is monotonic, a negative midstance velocity at the next step is impossible) when

constructing this set. We generate an outer approximation of this set using the

functions FRSmin : R4 → R and FRSmax : R4 → R, which satisfy:

FRS(θ̇0, β1) ⊂ [FRSmin(θ̇0, β1), FRSmax(θ̇0, β1)] (6.1)

One approach to find these bounding functions, is to use sampling. First, a

uniform 4D grid of initial velocities and step parameters is generated and simulated

forward to the next midstance using an ODE solver. Next, a linear program is run to

find the smallest upper bounding and largest lower bounding polynomial functions,

i.e. FRSmin and FRSmax.

Another approach to find these functions uses methods similar to those of Chapter

V. First a reduced order hybrid zero dynamics manifold is created for the set of

discrete parameters θ̇0 and β1 using the same methods as in Sec 5.3. Note that since

θ̇0 and β1 are stationary parameters, we don’t need to include their velocities in the

HZD manifold. The 5D state of the resulting manifold is given by:

x̂FRS =


θ

θ̇

θ̇0

β1

 (6.2)

Once this manifold is constructed, either sums-of-squares [52] or zonotopes [25]

are used to compute an outer approximation of the forward reachable set. In this

computation, the initial set is given by the plane {x̂FRS|θ = 0, θ̇ = θ̇0}. The result-

ing set can be translated into an outer approximating interval using a simple linear

program.
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6.2.4 Stopping Controller and Backwards Reachable Set

The goal of the second step stopping controller is to bring the robot from the

midstance configuration into the region of attraction of the standing controller in one

step. Additionally, we aim to find an inner approximation to the backwards reachable

set (BRS : R2 → 2R) of the stopping controller. The backwards reachable set takes

as input a step length and step height, and returns all midstance velocities that can

be brought to a standstill in one step.

The stopping controller bears strong similarities to the stepping controller in Sec-

tion 6.2.3. We begin by using FROST to generate a series of trajectories that begin

at qm and ends at qs for various step lengths (x2) and step heights (y2). This set of

step parameters is collected into the discrete stopping parameters β2 = [x2, y2]>. As

in the stepping controller, we use a second-order-smooth interpolation to generate a

hybrid zero dynamics manifold parametrized by β2.

Next, in order to add a degree of control to the manifold, we use the methods

of the previous chapter to add a continuous shaping parameter α2. This parameter

modifies the pitch angle continuously as in Section 5.3. The resulting 6D controlled

hybrid zero dynamics manifold is parametrized by the state:

x̂BRS =


θ

θ̇

β2

α2

α̇2

 (6.3)

With this manifold in hand, we can use sums-of-squares analysis [56] to find a feed-

back control law that guides the robot towards the region of attraction of the standing

controller. The sums-of-squares analysis also generates an inner approximation ofthe

backwards reachable set of this region of attraction. This inner approximation is

given as the zero super-levelset of a polynomial w : R3 → R. Any midstance velocity

θ̇1 and step parameters β2 satisfying w(θ̇1, β2) > 0 are in the backwards reachable set

of the standing controller. That is w satisfies:

w(θ̇1, β2) < 0, ∀θ̇1 ∈ BRS(β2) (6.4)

We additionally restrict the sums-of-squares to only find a convex backwards

reachable set by limiting the parametrization of w. By forcing the backwards reach-
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able set to be convex, we can verify the relation FRS(θ̇0, β1) ⊂ BRS(β2) by simply

checking that the endpoints of our FRS interval are within the convex inner ap-

proximation of BRS(β2). That is, we check that: w(FRSmin(θ̇0, β1), β2) > 0 and

w(FRSmax(θ̇0, β1), β2) > 0.

6.2.5 Gait Selector

The gait selector is the routine that selects between the gait parameters in order to

keep the robot from falling over. At each mid-stance event, the gait-selector searches

for discrete step parameters (β1, β2) that can bring the robot to a stop in two steps

(i.e. that satisfy FRS(θ̇0, β1) ⊂ BRS(β2)). Since there are likely many parameters

satisfying this constraint, the selector may also minimize some cost function in its

choice. If the selector succeeds in finding parameters that satisfy the safety constraint,

the robot takes the first step using parameters values β1, and the selection process

repeats at the next mid-stance. If the selector fails, the robot executes a stopping

step using the parameter values β2 from the previous mid-stance. Since the previous

selection step ensured that the robot state is within the BRS of the stopping controller,

we know that the robot can safely be brought to a stop.

Note that since we use a one-step stopping controller, and a one-step walking con-

troller, the selector has the ability to plan over a two step horizon. This is motivated

by observations from simple models [110], and from human experiments [58], which

indicate that planning two steps ahead is sufficient for stable walking over rough

terrain.

6.3 Discussion and Limitations

In this chapter, we proposed reachability-based gait selection: a control approach

that allows for a range of robot behaviour while explicitly ensuring the robot will not

fall over. We additionally propose an implementation of our approach that would

allow a Rabbit model to walk continuously over rough terrain without risk of falling.

While the RGS approach adds significant capability to the methods presented

in Chapter V, there is still much ground left to cover in moving towards a real-

world implementation. Remaining challenges include managing disturbance, model

uncertainty, and sensor noise, as well as extending to 3D.
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CHAPTER VII

Conclusions and Future Directions

In this dissertation, we have not made a robot that moves more efficiently than

Ranger [11], nor have we made a robot that moves more robustly than Atlas [24].

Instead, we have provided fundamental and novel approaches that can improve these

goals in principle. By doing so, our work can be directly applied to a wide range of

current and future robots.

These contributions are five-fold. The first points in the direction of energetic

economy, where we find the ideal energetically economical motions for a detailed

model of the robot RAMone in Chapter II. Next, we pivot this result towards robust-

ness in Chapter III, where we conduct an investigation into the energetic economy of

walking motions for the physical robot RAMone. In this chapter, we also encounter

an explicit trade-off between economy and robot safety. This trade-off motivates a

shift in our investigation towards robot safety as a constraint. The motivation be-

hind this shift is that enforcing safety as a constraint allows robot controllers to freely

maximize robot economy without risk of falling. In Chapter IV, we formally state

this safety constraint through the lens of viability analysis, and show how it can be

constructed and enforced for an actuated compass-gait walker. In order to scale this

approach to more realistic robot models, Chapter V presents a dimension-reducing

technique for our safety analysis, and shows how it can be used to generate a safety

constraint for a full model of the robot Rabbit. Finally, in Chapter VI, we propose

a path towards constructing safety constraints for a wider variety robot behaviour,

such as walking over rough terrain.

While several advances have been made in the course of this investigation, there

is significant ground left to cover. The aim of this chapter is to begin mapping out

the remaining ground. We first frame our contributions in their broader context in

Section 7.1. We then lay out three avenues for future development in Section 7.2.

Finally, we leave the reader with some concluding remarks.
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7.1 Discussion of Contributions

At its widest scope, this dissertation will help researchers analyze and improve

the energetic economy and robustness against falling of bipedal robots. Sufficient

improvements in these qualities will grant bipedal robots access to a host of previously

inaccessible domains. One potential application of this increased access is in search

and rescue robots that can assist in the location and retrieval of people stuck in rugged,

forested, and mountainous terrain. Other applications include home care robots that

can move from one floor to another or leave the house to pick up groceries, delivery

robots that can cover the last mile from distribution center to home, and patrol robots

that monitor construction sites or oil rigs.

More narrowly, each chapter of this work provides its own contribution to the field

of locomotion research.

By drawing parallels between robotic and biological gait, Chapter II provides new

insight for biologists and roboticists alike. From a biomechanical perspective, the

energetic optimality of biological templates for a detailed robotic system strengthens

the hypothesis that these templates are chosen as energetic minimizers for biological

systems. From a robotics perspective, the discrete difference between energetically

optimal motions at low speeds and high speeds suggests that locomotion controllers

could benefit from a discrete switch from walking to running as speed increases.

The impact of Chapter III is twofold. First, it strengthens the impact of the

previous aim by validating the results against reality. Second, it provides a hardware

demonstration of two principles of energetically economical locomotion: that bipeds

can derive benefit from straightening their legs while walking, and that economically

desirable motions can lie at the boundary of failure. These principles provide valuable

guidance when constructing future walking controllers.

Chapters IV-VI provide an approach that can be used by control designers to

conduct formal safety analysis and control synthesis for complex walking robot mod-

els. This approach will help move the question of walking robot safety away from

heuristic guesses and towards understandable guarantees with explicit assumptions.

Having such guarantees can free a control engineer to design for other tasks without

having to consider the implications on robot safety. These explicit guarantees also

open the door for learning based methods that would otherwise be too dangerous to

use on expensive robot hardware.
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Figure 7.1: The bipedal robot Cassie (left) and a realistic model (right). Image taken
from the video Cassie Sim Comparison released by Agility Robotics [80].

7.2 Future Directions

The ultimate aim of this work is to improve the robustness and energetic economy

of real walking robots in order to enable safe and efficient mobility across the wide

variety of terrain that is readily accessible on foot. Robot hardware is currently

being built that has the capacity for this mobility, including Agility Robotics’ Cassie

[79], and Boston Dynamics’ Atlas [23]. The control of these robots unfortunately

still comes up short, especially when compared to human mobility. These robots fall

often, even on smooth and flat terrain, and each new behaviour must be tested and

tuned extensively (with lots of falls involved in the process).

There is thus clear value in generating safety constraints for robots like Cassie and

Atlas, and we believe our tools can be extended towards this end. To get there, two

main extensions must be completed: the extension from 2 to 3 dimensions, and the

extension from simulation to reality. Additionally, once safety constraints have been

extended to reality, we can then safely conduct studies into the energetic economy

of real-world robots using guaranteed-safe online learning. We discuss each of these

three extensions briefly below.

7.2.1 Safety in 3 Dimensions

In order to find safety guarantees for real robots, we must first extend the results

of Chapters IV-VI from two to three dimensions. This extension will likely begin in

simulation, using a model similar to the Cassie model in Figure 7.1.
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One approach to this is to directly apply the methods of Chapter V, using two

degrees of underactuation in the Hybrid Zero Dynamics manifold: one for robot pitch,

and one for robot roll. If we include a single shaping parameter, e.g. controlling the

turning, we would have a six-dimensional sums-of-squares problem, which is at the

limit of computational feasibilty, but likely achievable (a 6-dimensional bilinear sums-

of-squares problem is solved in [71]). Further improvements may be made possible by

removing the lateral degree of underactuation from the manifold. To preserve safety,

we can use sampling to bound the effects of the lateral dynamics on sagittal motion

then treat the result as a disturbance in the sums-of-squares optimization.

7.2.2 From Model to Reality

The safety methods in this dissertation rely heavily on robot models with bounded

uncertainty in their dynamics. For our safety guarantees to extend to hardware,

we must first ensure that the model conservatively captures the behaviour of the

physical robot. This can be framed as a simulation relation [20], in that at least one

model trajectory within the bounded uncertainty must be able to exactly match each

hardware trajectory.

If we are able to densely sample the robot dynamics throughout its state-space,

such a relation can be obtain by fitting an uncertainty bound between the measured

and modeled robot trajectories. A similar approach has previously been shown to

successfully bound hardware behaviour for autonomous vehicles [100]. The high state-

space dimension and multiple degrees of underactuation of walking robots will make

them a more challenging target.

7.2.3 Guaranteed Safe Online Learning

Online learning is a valuable tool for achieving high performance behaviour in

physical systems when modelling accuracy is limited. This is particularly true for

legged robots due to the inherent difficulty of accurately modelling contact events.

However, such learning schemes are traditionally challenging for legged robots due

to the high cost of falling (which can require lengthy hardware repairs). As such,

successful learning implementations on walking robots have been largely limited to

hardware in which either the likelihood or the cost of falling is low [97, 48].

We see the safety constraints in this dissertation as a promising way to mitigate

this risk. By removing falling from the robot operation, we can safely explore the

landscape of walking behaviours to maximize a wide variety of performance metrics.

96



7.3 Concluding Remarks

During the 5 year course of this dissertation, the field of legged robots has made

enormous strides. Walking robots have begun to move into real-world environments,

promising to deliver packages [103], and monitor construction sites [36]. This push

towards commercialization comes with a new set of challenges. Heuristic, single-task

controllers that work well in lab environments must be generalized to handle a wider

variety of situations and environments. Robots must be able to reason about their

environment in real time as challenges arise, and construct safe and efficient strategies

to overcome these challenges. I strongly believe that methods based on modelling and

optimization, such as those presented in this dissertation, will remain to be vital tools

for achieving this generalization.
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APPENDIX A

Derivation of Hybrid Invariance for the Controlled

HZD Manifold

In this appendix, we first expand on the hybrid invariance condition of Section 5.3.

We next use the expanded condition to construct an analytic representation of the

modifying term hm from (5.13). This term guarantees that the outputs used in our

example satisfy the hybrid invariance condition.

A.1 Expanded Hybrid Invariance Condition

In this section, we translate the set based hybrid invariance condition of Section 5.3

into a set of equivalent conditions on the target functions. We will construct a set of

targets that meet these conditions in the next section.

We begin by observing that since the outputs of Section 5.3 are chosen to satisfy

hypothesis HH 3 from [104], we know that the map Φ : Q × A → Rnq+nα given by

Φ(q, α) := [h(q, α), θ(q), α]> is a diffeomorphism onto its image.

This map helps us define a coordinate transform from the manifold parameters to

the ambient space q0 : Z → Q as:

[
q0(θ, α)

α

]
:= Φ−1

[0, . . . , 0]T

θ

α

 , (A.1)

The output of this transform: q0(θ, α) is the full robot configuration associated with

the manifold state at coordinates: (θ, θ̇, α, α̇) ∈ Z.

99



For the zero dynamics manifold to be forward invariant for the hybrid system, it

must map onto itself through the guard and reset. This gives us the hybrid invariance

condition (5.7) which Z must satisfy.

That is, provided that the robot state is on Z immediately before the impact:[
q−(θ−, α−)

q̇−(θ−, α−, θ̇−, α̇−)

]
=

[
q0(θ−, α−)

∂q0
∂θ

(θ−, α−)θ̇− + ∂q0
∂α

(θ−, α−)α̇−

]

then the post-impact state must also be on Z (where the superscripts − and + are

used to indicate states immediately before and after the impact respectively). This

gives an alternate form of the hybrid invariance condition:

h(q+, α+) = 0 (A.2)

Lxfh(q+, q̇+, α+) + Lxαfαh(q+, α+, α̇+) = 0 (A.3)

Where the post-impact states are given by the reset map:
q+(θ−, α−)

q̇+(θ−, α−, θ̇−, α̇−)

α+(α−)

α̇+(α̇−)

 =


∆qq

−(θ−, α−)

∆q̇ (q−(θ−, α−)) q̇−(θ−, α−, θ̇−, α̇−)

α−

α̇−

 .

By substituting this post-impact state into (A.3), we obtain the following equiv-

alent condition to (A.3):

∂h

∂q
(q+, α−)∆q̇

(
q−
)(∂q0

∂θ
(θ−, α−)θ̇− +

∂q0

∂α
(θ−, α−)α̇−

)
+
∂h

∂α
(q+, α−)α̇− = 0, (A.4)

which must hold for all (θ−, θ̇−, α−, α̇−) ∈ Z (for notation’s sake we omitted the

arguments of the q+ and q− terms).

In summary, any targets satisfying (A.2) and (A.4) define a hybrid zero dynamics

manifold.
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A.2 Hybrid Invariant Targets

With these expanded conditions in hand, we now construct the hybrid invariant

targets (5.13) from Example 3 in Section 5.3. We re-write these targets as:

h(q, α) = h0(q, α) + hm(θ(q), α) =


q1 − qFr1 (tθ(θ(q)))− α
q3 − qFr3 (tθ(θ(q)))

q4 − qFr4 (tθ(θ(q))) + α

q5 − qFr5 (tθ(θ(q)))

+ hm(θ(q), α) (A.5)

The aim of this section is to construct the modifying term hm(θ, α).

In order to simplify the derivation, we begin by fixing the robot configuration

immediately before impact: q−. In this example, impact only happens when θ− =

θmax, and the configuration is fixed according to the FROST trajectory at impact

(along with a modified pitch angle) i.e.:

q−(α−) = q0(θ−, α−) = qFr(tmax) +


α−

−α−

0

−α−

0

 (A.6)

Note that for the targets in (5.13), this impact configuration is preserved so long as

hm(θmax, α) = 0, ∀α. (A.7)

We satisfy our first hybrid invariance condition (A.2) by fixing the post-impact

configuration of the robot. Since the FROST trajectory is periodic, we have qFr(0) =

∆qq
Fr(tmax). Therefore, (A.2) is satisfied so long as

hm(θmin, α) = 0, ∀α. (A.8)
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This gives us the post-impact configuration as

q+(α−) = q0(θ+, α−) = qFr(0) +


α−

−α−

0

−α−

0

 (A.9)

Next we look at the second hybrid invariance condition (A.4). Since this condition

must hold for all θ̇− and for all α̇−, we know that the following two equations must

be satisfied:

∂h

∂q
(q+, α−)∆q̇

(
q−
) ∂q0

∂α
(θ−, α−) +

∂h

∂α
(q+, α−) = 0 (A.10)

∂h

∂q
(q+, α−)∆q̇

(
q−
) ∂q0

∂θ
(θ−, α−) = 0 (A.11)

Where we have dropped the arguments of q+(α−) and q−(α−).

From (A.6), we have ∂q0
∂α

(θ−, α−) = [1,−1, 0,−1,−]>. Note that this vector is

perpendicular to the impact direction (since the swing foot position is unaffected by

pitch angle). Since velocities perpendicular to the impact direction are unaffected by

the impact impulse, we have the relation:

∆q̇

(
q−
) ∂q0

∂α
(θ−, α−) =

∂q0

∂α
(θ+, α−) =

∂q+

∂α
(α−) (A.12)

Next, from our prior assumptions, it is clear that h(q+(α−), α−) = 0. By taking

the derivative with respect to α− on both sides of this expression, we obtain:

∂h

∂q
(q+(α−), α−)

∂q+

∂α
(α−) +

∂h

∂α
(q+(α−), α−) = 0 (A.13)

Now substituting (A.12) into (A.13), we see that condition (A.10) is satisfied.

To satisfy condition (A.11), we follow an approach similar to [92]. We begin by

substituting (A.5) into (A.11) to obtain:(
∂h0

∂q
(q+, α−) +

∂hm
∂θ

(θ+, α−)
∂θ

∂q
(q+, α−)

)
∆q̇

(
q−
) ∂q0

∂θ
(θ−, α−) = 0 (A.14)

Re-arranging this we see that so long as ∂θ
∂q

(q+, α−)∆q̇ (q−) ∂q0
∂θ

(θ−, α−) 6= 0, then

condition (A.11) is satisfied so long as hm satisfies:
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∂hm
∂θ

(θ+, α−) = −
∂h0
∂q

(q+, α−)∆q̇(q
−)∂q0

∂θ
(θ−, α−)

∂θ
∂q

(q+, α−)∆q̇ (q−) ∂q0
∂θ

(θ−, α−)
(A.15)

Note that the term ∂q0
∂θ

(θ−, α−) can in general depend on the form of hm. In order

to remove this dependency, we force hm to satisfy the constraint:

∂hm
∂θ

(θmax, α) = 0, ∀α. (A.16)

Putting this all together, we have shown that condition (A.11) (and by extension

the hybrid invariance conditions) will be met, so long as hm satisfies constraints (A.7),

(A.8), (A.15) and (A.16). We satisfy these constraints by construction, chosing:

hm(θ, α) = −pm(θ)

∂h0
∂q

(q+, α)∆q̇(q
−)∂q0

∂θ
(θ−, α)

∂θ
∂q

(q+, α)∆q̇ (q−) ∂q0
∂θ

(θ−, α)
, (A.17)

where pm : [θmin, θmax] → R is a cubic spline satisfying: pm(θmin) = pm(θmax) =
dpm
dθ

(θmax) = 0, dpm
dθ

(θmin) = 1.
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