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ABSTRACT

Bipolar disorder is a chronic mental illness, affecting 4% of Americans, that is

characterized by periodic mood changes ranging from severe depression to extreme

compulsive highs. Both mania and depression profoundly impact the behavior of

affected individuals, resulting in potentially devastating personal and social conse-

quences. Bipolar disorder is managed clinically with regular interactions with care

providers, who assess mood, energy levels, and the form and content of speech. Recent

work has proposed smartphones for automatically monitoring mood using speech.

Much of the early work in speech-centered mood detection has been done in the

laboratory or clinic and is not reflective of the variability found in real-world conver-

sations and conditions. Outside of these settings, automatic mood detection is hard,

as the recordings include environmental noise, differences in recording devices, and

variations in subject speaking patterns. Without addressing these issues, it is diffi-

cult to move towards a passive mobile health system. My research works to address

this variability present in speech so that such a system can be created, allowing for

interventions to mitigate the life-changing effects of mood transitions.

However detecting mood directly from speech is difficult, as mood varies over the

course of days or weeks, while speech fluctuates rapidly. To address this, my thesis

explores how an intermediate step can be used to aid in this prediction. For example,

one of the major symptoms of bipolar disorder is emotion dysregulation - changes in

the way emotions are perceived and a lack of inhibition in their expression. My work

has supported the relationship between automatically extracted emotion estimates
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and mood. Because of this, my thesis explores how to mitigate the variability found

when detecting emotion from speech. The remainder of my thesis is focused on

employing these emotion-based features, as well as features based on language content,

to real-world applications. This dissertation is divided into the following parts:

• Part I: I address the direct classification of mood from speech. This is accom-

plished by addressing variability due to recording device using preprocessing

and multi-task learning. I then show how both subject-specific and population-

general information can be combined to significantly improve mood detection.

• Part II: I explore the automatic detection of emotion from speech and how to

control for the other factors of variability present in the speech signal. I use

progressive networks as a method to augment emotion with other paralinguistic

data including gender and speaker, as well as other datasets. Additionally, I

introduce a novel domain generalization method for cross-corpus detection.

• Part III: I demonstrate real-world applications of speech mood monitoring us-

ing everyday conversations. I show how the previously introduced generalized

model can predict emotion from the speech of individuals with suicidal ideation,

demonstrating its effectiveness across domains. Furthermore, I use these pre-

dictions to distinguish individuals with suicidal thoughts from healthy controls.

Lastly, I introduce a novel framework for intervention detection in individuals

with bipolar disorder. I then create a natural speech mood monitoring sys-

tem based on features derived from measures of emotion and automatic speech

recognition (ASR) transcripts and show effective intervention detection.

I conclude this dissertation with the following future directions: (1) Extending my

emotion generalization system to include multiple modalities and factors of variability;

(2) Expanding natural speech mood monitoring by including more devices, exploring

other data besides speech, and investigating mood rating causality.
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CHAPTER I

Introduction

1.1 Problem Statement

Bipolar disorder is a severe, chronic mental illness that typically begins in early

adulthood and is characterized by periodic and pathological mood changes ranging

from extreme lows (depression) to extreme highs (mania) [20]. It is among the top

10 leading causes of disability in the United States [132] with up to 20% of people

affected taking their own life [81]. Bipolar disorder has a core clinical expression

pattern related to emotion, energy, and psychomotor activity that can be monitored

to gauge the health and progress of the individual in treatment [20, 140]. Intense

clinical monitoring is effective at mitigating the severity of mood episodes, but is

unrealistic due to cost and the availability of skilled health care providers [15, 146].

The long-term goal of my research has been to create a system that is able to

use passively recorded smartphone conversations for mania and depression detection.

This will address the need for ongoing monitoring of bipolar disorder in a cost efficient

manner and could be used to augment traditional clinical treatment.

However, mood recognition from speech is challenging, as there are many other

sources of variability present in speech besides mood, obscuring its detection. These

factors of variability include those due to the demographics of the speaker, environ-

ment, and recording device [21]. Methods are needed to address these other factors
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of variability and produce a more robust representation of mood.

Furthermore, there is a relatively large temporal disconnect between mood and

speech. Mood varies on the order of days or weeks, while speech recordings vary at

a sub-second rate. An intermediate step is needed in order to improve mood clas-

sification. One potential candidate for this is emotion, as a hallmark symptom of

bipolar disorder is emotional dysregulation [83]. Individuals with bipolar disorder

may interpret neutral actions negatively, have reductions in emotional inhibitions,

and inappropriate intense emotional reactions [41, 83, 89, 152]. Psychological re-

search indicates that this is caused by a dysfunctional limbic system and prefrontal

brain network [83]. This lack of emotional control can result in issues in social and

professional settings.

Emotion can be automatically estimated from speech in order to determine an

individual’s level of emotional dysregulation. This would help to bridge the relative

temporal gap by first detecting emotion from speech and then using those predictions

as indicators of mood changes. However, speech emotion detection suffers from many

of the same issues as speech mood detection, due to the other factors of variability

present in speech. I argue that a real-world bipolar mood monitoring system is

possible by both addressing the different types of speech variability and using emotion

as a bridge for the speech-mood temporal disconnect.

1.2 Bipolar Disorder Overview

Bipolar disorder is classified into one of two categories - type I and type II [18]. The

main distinguishing factor between the two is the severity of the mania or hypomania.

Bipolar type II, involves what are called hypomanic states which last for times usually

shorter than mania and do not cause extreme feelings of grandiosity or hallucinations.

In contrast, patients with bipolar type I have had at least one episode of mania in

their life, involving more intense and longer lasting symptoms, sometimes including
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psychosis. Both diagnoses also require fluctuating mood states of depression, usually

lasting at least 2 weeks [154]. Bipolar disorder not otherwise specified (BP-NOS) and

cyclothymic disorder are two other types that are either outside the scope of the other

diagnoses or are less severe. Another possible form of the disorder is rapid-cycling

bipolar, which involves four or more episodes of mania, hypomania, depression, or

mixed states in a year at some point in the life of an individual.

Individuals with depression experience increased feelings of guilt and low self-

esteem, along with an overall loss of energy that can result in problems during work

and social activities [154]. In addition, it can manifest itself through changes in

appetite and sleep patterns and a slowing of psychomotor skills. Speech in individuals

with depression can be slowed, slurred, and disorganized, with an increase difficulty

in articulating. At its worst, individuals can experience strong thoughts of death or

even attempt suicide.

On the opposite end of the spectrum, individuals with mania and hypomania

experience heightened energy and self-esteem [154]. Additionally, the individual may

have difficulty weighing risks and may engage in impulsive and dangerous activities,

including issues managing money. They have racing thoughts, a lack of concentration,

and feel little need for sleep. Their speech is often more frequent, quicker, louder,

and difficult to interrupt. One issue with mania is that people often enjoy the feelings

as a sort of “high” and can have little insight into the negative consequences of non-

treatment during the episode [72].

The Hamilton Depression Rating Scale (HDRS/HamD) [90] and Young Mania

Rating Scale (YMRS) [218] use clinical observations of individuals to quantify the

severity of depression or mania and often used to gauge the progression of bipolar

disorder. Both are performed in an interview setting and are used to retrospectively

gauge the individual’s mood over a prior period of time. They both involve a series of

questions, related to the symptoms of mania and depression, as shown in Table 1.1.
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HDRS Topics YMRS Topics
Feelings of depression Elevated mood

Feelings of Guilt Increased motor activity
Thoughts of Suicide Overactive sex drive

Insomnia Decreased interest in sleep
Interest in work and activities Irritability during interview
Slowness of thought or speech Increased speaking rate

Agitation and anxiety Incoherence of speech
Loss of appetite Delusions
Lack of libido Aggressive behavior
Weight loss Physical appearance

Denial of illness Denial of illness

Table 1.1: Topics covered during the HDRS and YMRS interviews.

Each question contributes a certain number of points to a running total, depending

on their answer. This final total is called the individual’s HDRS or YMRS score and

is a continuous measure of depression or mania, respectively.

1.3 Sources of Variability in Mood and Emotion Recognition

The detection of mood and emotion from speech is difficult, as there are many

other sources of variability co-occurring with affect. This section explores different

types of speech variability and gives an overviews of methods to address each.

Subject Differences: Every individual has their own particular way of express-

ing affect. Physiological differences, such as variations in the the vocal tract and

sex can impact the dynamics of how speech is produced. Furthermore, psychological

differences, including gender expression, regional accents, dialects, and different lan-

guages can impact the manifestation of affect in speech. These differences can make

the detection of mood and emotion across individuals difficult, as available affect

datasets tend to include smaller numbers of participants [14]. Affect recognition sys-

tems can attempt to alleviate this by explicitly removing subject differences to form

a more generalized representation of affect. Techniques include feature normalization
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[185, 224], sample selection [187], decision fusion [188], and incorporating auxiliary

tasks [116, 161]. However, as more data becomes available for each individual over

time, it may be instead better to personalize the system to participants.

Linguistic Information: Another source of variability is the content of the

speech. The affect of an individual can effect both the acoustics of their speech

and the language used. These acoustic changes can vary across the different types

of phonemes - the smallest unit of linguistic information. Because of this, affect

recognition can be improved by compensating for the lexical variability [137]. Other

work has demonstrated effective mood detection by instead relying solely on the

speech content using transcripts [138]. However, these approaches only give half of

the full perspective. Recent work has demonstrated that a system considering both

the acoustic and linguistic facets of speech is more effective than either source alone

and indicates that both are needed [221].

Style: The underlying manner in which speech is prompted can also have an im-

pact on the way affect is manifested. Acted or improvisational speech can exaggerate

emotions, compared with natural speech. Prior work has shown that the perceived

naturalness of speech can be considered as an additional task to improve the recogni-

tion of emotion [116]. Additionally, datasets can contain speech read in a monologue

or conversations between multiple participants. In order to create an affect classifier

that works effectively across multiple datasets, it will be necessary to account for

these differences.

Recording Environment and Device: The ability to recognize emotion and

mood can also be diminished by variability in the recording of the speech. Background

noise and other conversations can obscure the subject’s speech, making affect recog-

nition challenging. Furthermore, the limitations of the recording device can introduce

noise and will effect the quality of the recording. For example, phone recordings are
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limited to an 8 kHz sampling rate. Autoencoders have been used to find a com-

pressed representation of speech that removes noise [53, 54]. However, these methods

typically rely on artificially introducing noise or relying on paired training example.

This is often not practical for many forms of real-world environmental variability. To

address this, adversarial methods have been recently introduced as a way to remove

the variability due to different recording conditions, without requiring paired samples

[1]. However, these methods can themselves introduce noise or have issues converging

to a consistent representation [1, 110].

1.4 Contributions

My research explores the automatic recognition of emotion and mood from speech.

This is often complicated in real-world circumstances, due to the many other con-

founding factors present in speech. Much of my work addresses this variability for

either mood or emotion (Parts I and II, respectively). The remainder of my work em-

ploys these and other techniques to develop applications for mood monitoring using

natural, unstructured speech (Part III). The contributions from my research are as

follows:

• Addressing Variability in Mood Recognition [75, 114]

– I demonstrated how a combination of signal processing and multi-task

learning could mitigate the variability of detecting mood from speech

recorded on different devices. These techniques produced significantly bet-

ter performance compared with simply concatenating the device data or

building specialist systems.

– I investigated the trade-off between subject-specific and population-general

information for the detection of depression from Bipolar speech collected
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in-the-wild. This fusion produced an overall better system than either

source of information alone.

• Addressing Variability in Emotion Recognition [74, 76]

– I conducted the first investigation into progressive neural networks for

automatic speech emotion recognition. I found that progressive nets could

augment the emotion recognition task with speaker, gender, and additional

datasets to improve over a system solely using emotion.

– I introduced a new approach for more generalized representation of emo-

tion for cross-corpus testing. While previous related methods have had

issues converging, these newly introduced methods follow a “meet in the

middle” paradigm for consistent convergence. I then demonstrated that

these methods significantly improve on traditional methods when both

laboratory and in-the-wild data are combined.

• Applications [73, 77]

– I demonstrated that the previously found generalized model could be used

to effectively classify emotion in a new domain - the natural speech of

individuals with suicidal thoughts. While most previous natural speech

emotion work required some amount of outside annotation, this work solely

relied upon the self-ratings of participants. I then examined these in-

the-wild predictions of speech emotion and found that decreased emotion

variability was indicative of suicidal ideation.

– I coordinated an outcome-based annotation of bipolar mood that identifies

the need for clinical interventions. I introduced a novel framing of bipolar

mood intervention in the context of anomaly detection. I then used this

technique, combined with a neural network, to detect anomalous mood

using both emotion and transcript-based features over natural speech.
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These works demonstrate the feasibility of emotion and mood detection using nat-

ural speech by either controlling for factors of variability or adapting to subject data.

The combination and extension of these works, as described in Chapter XI, will allow

for tracking mood entirely from natural conversations and greatly assist in the way

that mental health care is managed. Furthermore, the domain generalization method

introduced in Chapter VIII and the anomaly detection framework from Chapter X

have potential applications to other domains outside of speech affect monitoring.

1.5 Outline of Dissertation

This dissertation is outlined as follows. Chapter II provides background and

related works. Chapter III discusses the PRIORI dataset, which is used for all mood

experiments. Chapter IV describes each of the three emotion datasets used in this

work.

Part I explores how to address variability in mood recognition and also contains

two chapters. Chapter V covers my work on classifying mood when dealing with dif-

ferent types of recording devices. Chapter VI shows my investigation into leveraging

both individual and cohort information for mood.

Part II is focused on addressing variability in emotion recognition and is divided

into two chapters. Chapter VII describes my work using progressive neural networks

to augment emotion classification with gender and speaker information and additional

datasets. Chapter VIII details my work on domain generalization for emotion to

improve cross-corpus recognition.

Part III explores two real-world speech monitoring application for emotion and

mood. Chapter IX covers my work using the previously introduced domain generaliza-

tion model to detect emotion from natural speech within a new domain – individuals

with suicidal ideation. Chapter X investigates the importance of adapting a bipolar

mood monitoring system to each individual and demonstrates the detection of needed
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interventions using conversational speech.

Finally, Chapter XI summarizes the main findings in this dissertation and presents

possible future directions.
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CHAPTER II

Related Works

2.1 Methods for Speech Mood Recognition

There has been an extensive amount of speech research into the effects of depres-

sion on the psychomotor systems. Depressed speech has been described as lacking

energy, monotonic, slowed, and disorganized [18]. The perception of this type of

speech has been characterized by changes in the fundamental frequency, amplitude,

pitch, energy, shimmer, jitter, zero crossing rate (ZCR) and harmonic to noise ratio

(HNR) in the acoustics of the voice to objectively measure depression [12, 43, 48, 68,

87, 144, 150, 151, 169, 206]. Additionally, statistics on the speech and silence times

as well as more complicated rhythmic features such as total vocalization time, pause

variability, speaking rate, and the amounts of short pauses have proven effective [35,

70, 150, 151]. Another set of features that have been proposed are formants, which are

resonant frequencies resulting from the shape of the vocal tract. Statistics of the first

three formants and their coordination have also been demonstrated as a method of

detecting depression severity [48, 68, 144, 211]. Additionally, estimates of the glottal

source signal have been used as biomarkers successfully [144, 182]. Deviations from

the baseline vowel pronunciations have also shown to correlate with depression in

vowel space analysis [181]. Several methods have shown that the frequency domain

may carry important information with power spectral density analysis and MFCC
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statistics and their coordination as features [12, 48, 49, 68, 211]. The use of GMMs,

SVMs, ANNs, and Hierarchical Fuzzy Signatures (HFS) have been used to classify

depressed mood [11].

Manic speech is often characterized by being quicker, more frequent, louder, less

coherent, and more difficult to interrupt (known as pressure of speech) [18]. Work

has gone into determining the intensity of mania based on these rhythmic features

and coherence such as the amounts of short pauses in speech [70, 200]. Additionally,

some prior research implies that an increased pitch could be a sign of a hypomanic

mood state [87, 206]. Huang et al. differentiated BPD from unipolar depression by

detecting the presence of manic speech using an attention-based Long Short-Term

Memory (LSTM) classifier [102]. However, much of the work related to mania has

been at the level of differentiating it from other mental health illnesses, rather than

detecting its severity. These methods usually examine speech coherence, utterance

length, and total speech deviance [100, 166, 174, 199]. Because these methods do not

compare with a healthy control group, it is uncertain whether or not these features

will translate into mania severity determination.

2.2 Mobile Healthcare

The advent of the smartphone as a common personal device has greatly increased

the everyday access many individuals have to healthcare [135]. As of 2013, over half

of American adults owned smartphones [193]. Now with the use of various app stores,

people have access to thousands of apps to aid in maintaining their health [135]. Of

particular interest are apps that aid in the treatment of different mental health condi-

tions. For example, the Mobile Assessment and Treatment for Schizophrenia (MATS)

pilot study investigated the effect of text message interventions on schizophrenia [82].

The participants received and responded to multiple choice questions and most saw

improved drug adherence, social interaction, and reduced auditory hallucinations.
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Another study that developed the application StressSense found that is was possible

to accurately measure the amount of stress during everyday conversational situations

through audio analysis [134]. Some of the explored features were pitch, spectral cen-

troid, speaking rate, MFCCs, and the ratio of high frequencies. The app MoodHacker

has been developed to help individuals with depression through self tracking of mood

and suggestions including meditation and physical activity. A clinical study using the

app found significant effects on individuals’ depressed symptoms and decreased work

absences [23].

Several apps have also been created to help individuals with bipolar disorder. For

example, apps such as Mood 24/7 and T2 Mood Tracker provide individuals a method

of self-assessment [3]. Moodscope, another mood tracking app, monitors a user’s basic

interactions with their phone to improve the app’s estimation of mood in addition

to the self-recorded log [128]. Some of these monitored behaviors include the use of

email, SMS, web, and certain apps, as well as phone call contacts and GPS. It also

provides the ability to share mood ratings with family and friends to gain support.

Recent work has used smartphones to record speech and automatically monitor

bipolar disorder. Huang et al. focused on the detection of depression by asking

subjects to record their speech using an app in natural environments [105]. Despite

differences in noise characteristics due to device and environment, they were able

to detect depressed speech using both short utterances [105] and landmark bigrams

[104]. Pan et al. performed similar experiments for mania by using an app to record

a patient’s phone call with a psychiatrist [159, 223]. The call was conducted in a

noise-suppressed laboratory environment, with the call being conversational in tone.

2.3 MONARCA

Of particular interest is the MONARCA project, which aims to monitor bipolar

disorder using a system of sensors from wearable devices to smartphone apps [84,
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156]. In particular, they have explored the benefit of passively monitoring phone

speech for analysis and this section goes into further detail on these works.

Grünerbl et al. investigated the automatic recognition of changes in mood state,

rather than detecting individual moods [84]. Six total subjects were enrolled for 12

weeks each and used an app to passively record their phone conversations. Subjects

experienced between 1 to 3 state changes, resulting in 17 total state changes across

all subjects. The ground truth was attained from in-person interviews that occurred

every three weeks. Additionally, varying amounts of over the phone assessments were

performed, resulting in between 5 and 9 clinical assessments per subject. A set of

knowledge-based features were extracted over each day’s speech and a Naive Bayes

classifier was used to model mood state changes. The experiments were run on a per-

speaker basis and did not involve speaker independent testing. The result of their

speech-only classifier was 70% accuracy for within-subject recognition.

Faurholt-Jepson et al. improved on this work by demonstrating speaker indepen-

dent detection of bipolar mood from natural speech [65]. The dataset used in the

analysis was expanded to a total of 28 participants. Each participant was enrolled

for 12 weeks, given the MONARCA app, and asked to participate in the same as-

sessments as in [84]. The openSMILE emolarge set, including 6,552 knowledge-based

features, was used to extract speech-based statistics over all days with recordings.

These features were then modeled using speaker independent cross validation and a

random forest classifier. Their speech-only classifier attained an accuracy of 0.68 when

distinguishing between depressive and euthymic states and 0.74 when differentiating

mania and euthymic states.

The MONARCA project has clinically tested the effectiveness of their app, using

a combination of speech-based features, as well as other sensor data [63, 64]. These

other data include measures of phone usage, social activity, physical activity, and

mobility. Interventions ranged from calling the patient to give over-the-phone advice
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to contacting emergency services. Patients using the app reported improved quality

of life, reduced perceived stress, and a reduction in manic episodes. However, those

in the intervention group had a higher risk of depressive episodes. This indicates that

further work is needed to investigate both when and how interventions are conducted.

2.4 Linking Emotion and Mood

The relationship between emotion and mood has been recently gaining attention.

Stasak et al. investigated the utility of using emotion to detect depressed speech

[197], using the AVEC 2014 dataset [204]. However, these data were collected in

a controlled environment, potentially limiting their use “in the wild”. Carrillo et

al. identified a relationship between emotional intensity and mood in the context of

bipolar disorder [37]. However, they relied upon transcribed interviews, rather than

on acoustics directly. Further work is necessitated using the acoustics of real-world

conversations.

2.5 Methods for Speech Emotion Recognition

Much of the earlier work in emotion recognition followed in the footsteps of auto-

matic speech recognition (ASR) and used generative models, such as Hidden Markov

Models (HMMs) [129, 184] and Guassian Mixture Models (GMMs) [101]. Other

work took a discriminative route, and trained Support Vector Machines (SVMs) over

utterance-level features [101, 129, 158]. These features were often knowledge based

and have contributed to the formulation of feature sets, such as eGeMAPS [61] and

emobase [60].

More recent speech emotion research has focused on employing deep learning.

Initial work into deep learning used deep neural networks (DNNs) over the same

utterance-level features used in prior work [91]. However, deep learning is especially
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suited to learning deep representations over low-level features. For example, convo-

lutional neural networks, or CNNs, have recognized speech emotion using Mel filter

banks (MFBs) [7, 106, 220]. Trigeorgis et al. demonstrated that it was possible to

forgo features all together and successfully recognized speech emotion using recurrent

LSTM layers over the raw audio signal [202].

However, most of this work was trained and tested using a single dataset. Such

methods fail when unseen data are introduced. This can be due to differences in

recording conditions, microphone quality, elicitation strategy (acted versus natural),

and the distribution of labels [185]. Additionally, the demographics of subjects may

widely vary between datasets [14].

One of the earliest works in cross-corpus emotion by Schuller et al. examined

how acoustic and annotation differences can result in decreased performance [185].

They explored different techniques of feature normalization and found speaker-based

z-normalization to work best. Additionally, they demonstrated how differences in

selected sub-groups of emotions can cause large discrepancies in performance. This

indicated the importance of carefully selecting annotations across all datasets in a

multi-corpus experiment. Zhang et al. addressed the problem of dataset label mis-

match by creating a knowledge-based mapping between classes [224]. They further

explored feature normalization for utterance-level features and found that within-

corpus normalization with unlabelled data boosted performance. Additional work

by Schuller et al. explored how selecting only the most prototypical examples when

training cross-dataset systems can improve activation classification [187]. This sug-

gests that the most exemplar samples within datasets may also be those samples

most consistently represented across datasets. Later work demonstrated how fusing

the outputs of expert systems trained on individual datasets can outperform classi-

fiers of the agglomerated data [188]. However, this performance difference depended

heavily on the selected model.
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Further work by researchers began exploring more complex methods of adapting

features and models for more robust testing. Hassan et al. explored how previous

transfer learning methods, including Kernel Mean Matching (KMM), Unconstrained

Least-Squares Importance Fitting (uLSIF), and the Kullback-Leibler Importance Es-

timation Procedure (KLIEP), could be used to compensate for dataset differences

[94]. Song et al. investigated how dimensionality reduction algorithms could be used

to form a more generalized emotion feature space [195]. They found that Locality

Preserving Projections (LPP), introduced in [96], resulted in the best classification

performance. Abdelwahab et al. explored variations of SVMs for supervised adap-

tation with small amounts of target domain data [2]. Using just 9% of the data,

they were able to use Adaptive SVMs and Incremental SVMs to significantly improve

cross-corpus performance compared with no data.

Training deep networks over multiple tasks simultaneously has been shown to

improve performance when considering cross-corpus emotion. Parthasarathy et al.

explored jointly predicting activation, valence, and dominance with a DNN, con-

sidering one as the primary task and the others as auxiliary [161]. This method

significantly increased cross-corpus performance compared to a single task system,

especially for models with large layer sizes. Kim et al. investigated whether adding

additional non-emotion tasks, such as gender and the naturalness of the expression,

would improve cross-corpus performance [116]. They achieved better or comparable

performance when compared with systems not incorporating the additional tasks.
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CHAPTER III

PRIORI

3.1 Introduction

The long-term goal of my research is to be able to monitor the mood changes

of individuals with bipolar disorder. This could eventually allow for interventions

to attempt to mitigate the sometimes life-altering consequences of severe episodes.

Variations in speaking patterns have been shown to be indicative of bipolar mood

[154]. Smartphone conversations provide a realistic method of naturally capturing

speech without disrupting individuals’ everyday activities. However, there are no

publicly available datasets of phone conversations of individuals with bipolar disorder,

due to their sensitive nature. Because of this, it was necessary to undertake our

own dataset collection - the PRIORI (Predicting Individual Outcomes for Rapid

Intervention) bipolar mood dataset.

3.2 Data Collection

The PRIORI Dataset is an ongoing collection of smartphone conversational data

(reviewed and approved by the Institutional Review Board of the University of Michi-

gan, HUM00052163) [75, 111, 114, 115]. The participants are recruited from the HC

Prechter Longitudinal Study of Bipolar Disorder at the University of Michigan [121].
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Figure 3.1: The PRIORI app and mood prediction pipeline.

The inclusion criteria are: bipolar disorder type I or II, no medical or neurological

disease, and no active history of substance abuse. Participants are enrolled for six

to twelve months, for an average of 32±16 weeks. In total, there are currently 51

patients and 9 healthy controls in the dataset - 18 males and 42 females. Five of

the participants are African-American, three are Asian, two are American Indian or

Alaska Natives, 48 are White or Caucasian, and two have more than one race. Two

of the participants are in their 20’s, 11 are in their 30’s, 19 are in their 40’s, 16 are in

their 50’s, and 11 are in their 60’s.

All participants are provided an Android smartphone (Samsung Galaxy S3, S4,

or S5) with the secure recording application (PRIORI app) installed. The app runs

in the background and turns on whenever a phone call is made, recording only the

participant’s side of the dialog. The speech is encoded as 8 kHz wav files, encrypted

in real-time, stored on the phone, and then uploaded to a HIPAA-compliant server,

as depicted in Figure 3.1. The participants were asked to use the smartphone as their

primary device throughout their time on the study. The data include phone calls

collected only when an individual was not using the speaker phone, to ensure that

other people besides the participants are not recorded.

Participant mood is assessed weekly, over the phone, by a member of the study
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Figure 3.2: The distribution of HDRS and YMRS ratings in PRIORI.

team using the Hamilton Depression Rating Scale (HDRS) [90] and the Young Ma-

nia Rating Scale (YMRS) [218]. These calls are referred to as assessment calls and

are structured in an interview format. The dataset includes 1,268 recorded weekly

clinical assessments, out of 1,516 total assessments performed. This discrepancy is

due to participants calling in on a device other than the study phone, as well as

other recording issues. Of the recorded weekly assessments, 23 were transcribed for

algorithm development. All other calls outside the clinical context that make up a

participant’s everyday conversations are referred to as personal calls. The dataset in-

cludes 51,970 phone calls totalling 3,997 hours of recordings. We manually transcribe

a subset of 25 hours of speech for feature development.

The HDRS and YMRS scales are continuous measures of mood, ranging from a

score of 0 (not symptomatic) to 36 (highly symptomatic). Figure 3.2 depicts the

distribution of assessment ratings combinations from the 51 patients in the dataset.

In our earlier mood experiments, we treated the prediction problem as classification,

binning the HDRS and YMRS into categories of symptomatic (depressed or manic,
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Mood HDRS YMRS Number # Per Subject
Euthymic ≤6 ≤6 612 11.3 ± 7.8

Manic <10 ≥10 125 3.9 ± 3.9
Depressed ≥10 <10 416 9.5 ± 8.1
Excluded Else Else 363 8.1 ± 6.1

Table 3.1: Mood state categories defined by HDRS and YMRS measures, including
the number of total assessments and the mean and standard deviation of assessments
per subject.

respectively) and asymptomatic (euthymic). A call is labelled euthymic if it has a

score of six or less on both the HDRS and YMRS scales; manic if the score is ten or

greater on the YMRS and less than ten on the HDRS; and depressed if the score is

ten or greater on the HDRS and less than ten on the YMRS. All other assessments

are excluded from the classification experiments (Table 3.1). Experiments in Chapter

X instead use the continuous mood ratings and do not have the same restriction.

The large standard deviations seen in Table 3.1 demonstrate the widely varying

amounts of mood episodes between individuals with bipolar disorder. Additionally,

some individuals have disparities among the proportions of times spent in each mood.

For example, one participant experienced 27 weeks of euthymia and two weeks of

mania. This demonstrates the need for mood monitoring systems that learn from

and adapt to individuals, as explored in Chapter X.

3.3 Clinical Annotation

We created a new annotated subset of the PRIORI data, called the PRIORI An-

notated Mood dataset (PRAM) to better understand when and why interventions are

needed. We define interventions as changes in the treatment plan, such as emergency

room visits, hospitalizations, or drug modifications to negative mood events. This

definition corresponds to the concept of necessary clinical medication adjustments –

an important measure of illness stability as reflected in the number of alterations in

care considered necessary [24].

20



Clinical Summary: The University of Michigan electronic health record system

was accessed to review relevant health information available for each subject during

their time in PRIORI. This included all clinical notes and laboratory results from the

Michigan Medical system, as well as other health systems that shared their records.

Each subject’s data was summarized to include relevant information about subject

mood, clinical condition, or recent changes in either.

Flagging Application: We developed an application to review the clinical data

for each week of participation in the PRIORI study and identify decision-making

points for interventions (Figure 3.3). Annotation is divided into weeks based upon

the date of each YMRS and HDRS retrospective interview. The ratings are displayed

for each week, as well as the suicide sub-score from the interview and day-of mood

ratings, if available. The application allows annotators to browse all mood ratings and

clinical summaries up to and including the day of the assessment, but prevents seeing

future information. This ensures that annotators can only make decisions based on

the data that would have been available at the time when a decision to intervene

was made. The application allows the annotators to flag or not flag each week for

intervention and then rate their confidence on a 1-3 scale (weak to strong). Annotators

can indicate whether the intervention is urgent (needed within 24 hours) or a non-

urgent follow-up. Once the annotation for a given week has been submitted, the

application advances to the next week and previous submissions cannot be modified.

Annotation: Four clinically trained members (3 PhD and 1 MD) of the bipolar

research team annotated all available clinical and research data. Each session con-

sisted of a group of at least two annotators, who came to a consensus on the need

for intervention. Groups were given summaries of clinical data before each subject’s

enrollment in PRIORI to establish a baseline summary of their medical history. Anno-

tators were asked to complete subjects’ entire annotations in one session to maintain

consistency. Presently, 26 subjects totalling 555 weeks (71 with flagged interventions)
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Mania	and	Depression	Ratings
(Weekly	and	Daily)

Values	of	Mood	Ratings
Including	Suicide	Subscores

Drop-Down	Boxes	for	Flagging	/
Not	Flagging	and	Confidence

Buttons	for	Opening	a	New
Subject	and	Saving	Annotations

Clinical	Notes	and	Lab	Results
from	Selected	Week

Annotation	Notepad
Used	to	Remark	on	Rationale

Current	Week	for	Annotation

Progress	Bar	for	Annotating
Current	Subject

Figure 3.3: The application used to read clinical data and flag interventions for each
subject. The top of the application provides current and prior week-retrospective
and day-of YMRS and HDRS ratings. The middle displays any clinical notes or lab
results since the prior week. The user is able to click dates in the above graph to view
notes for other weeks. The bottom is used to mark whether or not to flag a week for
intervention and the confidence of the rating (1-3). The application advances to the
next week upon submission and entries cannot be modified afterwards.

have been annotated. Annotators were asked to provide reasons underlying the flag-

ging to learn contributing factors that led to intervention recommendations. Common

rationale used to flag for interventions include:

• High YMRS or HDRS, compared with personal baseline

• Lack of improvement from previous weeks

• Severity of clinical symptoms, e.g., suicidal thoughts

The PRAM dataset is further investigated in Chapter X to determine when inter-

ventions are warranted.
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CHAPTER IV

Emotion Datasets

4.1 IEMOCAP

The “Interactive Emotional Dyadic MOtion Capture Database” (IEMOCAP) was

created to explore the relationship between emotion, gestures, and speech. Ten actors

(five male and five female) were recorded over five sessions. Each session consisted

of a male and a female performing given either a series of scripts or improvisational

scenarios. During the session, motion capture markers were attached to just one of

the actors at a time. Once all scripts and improvisations were performed, the other

actor was given the motion capture markers and the whole process was repeated. The

audio was recorded using two high quality shotgun microphones at a 48 kHz sampling

rate and later downsampled to 16 kHz.

The data were segmented by speaker turn, resulting in 10,039 total utterances

(5,255 scripted turns, 4,784 improvised turns). Segments were then annotated for

emotion, including valence and activation on a 1 to 5 scale. Discrete emotions were

also annotated, including happiness, anger, sadness, frustration, excitement, disgust,

fear, surprise, and neutral. Between two and four annotations were performed per

utterance. Further information about the IEMOCAP dataset can be found in [31].
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4.2 MSP-Improv

The MSP-Improv dataset aims to capture more naturalistic emotion from impro-

vised scenarios, while also partially controlling for lexical content. The collection

involved a total of twelve actors (six male and six female). Like IEMOCAP, the

dataset is split into six sessions, each including interactions between one male actor

and one female actor. Each actor wore a collar microphone to record speech at 48

kHz (later downsampled to 44.1 kHz).

MSP-Improv controls for lexical content by including specific “target sentences”

with fixed lexical content that can be embedded into different emotional scenarios (i.e.,

angry, happy, sad, neutral). In each pair, one of the actors was tasked with ensuring

that the target sentence was spoken in each scenario. Once all target sentences and

scenarios were recorded, the actors switched roles and the second actor assumed this

responsibility. Using this method, the researchers were able to control for lexical

content, while still allowing for more natural emotion expression.

The data was divided into 652 target sentences, 4,381 improvised turns (the re-

mainder of the improvised scenario, excluding the target sentence), 2,785 natural

interactions (interactions between the actors in between recordings of the scenarios),

and 620 read sentences (emotional readings of the target sentences). This totaled

8,438 utterances over 8.9 hours. These utterances were then annotated for emotion

using crowd-sourcing on Amazon Mechanical Turk. Valence and activation were rated

on a scale from 1 to 5, as well as the discrete emotions of happiness, anger, sadness,

and neutral. There is a minimum of five annotators per utterance up to a maxi-

mum of 50 (median of 5). Please refer to [34] for additional information about the

MSP-Improv dataset.
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4.3 PRIORI Emotion

The PRIORI Emotion Dataset is an affect-annotated subset of the larger PRIORI

bipolar mood dataset, described in Chapter III. The goal of the annotation is to allow

for the exploration of the relationship between mood state and emotion expression,

as there were no other natural smartphone conversational speech datasets annotated

in this manner. The PRIORI Emotion Dataset contains manual valence/activation

annotations of both assessment and personal calls. We use a dimensional labeling

strategy [28], motivated by the concept of core affect [175]. This construct provides

a de-contextualized manner of considering emotion expression.

The PRIORI Emotion Dataset includes natural conversational speech from 12

subjects, seven females and five males, totaling 11,337 calls (928 hours). The selected

subjects are between 24 and 63 years old. We selected the subjects based on three

factors: (1) bipolar disorder diagnosis, which allows us to examine the link between

emotion and bipolar mood (future work will focus on healthy controls); (2) used

Samsung S5, which provides microphone consistency, lack of which was identified as

a challenge in our prior work [75]; (3) provided informed consent for annotation of

personal calls, which allows us to generate ground-truth emotion labels.

We then annotate a subset of these data using: (1) segmentation, (2) segment

selection, (3) segment inspection, and (4) segment annotation. We explain each in

the following sections.

Segmentation: Calls are segmented using a noise-robust method by Sadjadi and

Hansen [178] which compensates for variations in background noise. Their algorithm

extracts five representations of speech likelihood including: harmonicity, clarity, pre-

diction gain, periodicity, and perceptral spectral flux. Principal Component Analysis

(PCA) is performed to combine them into a single signal by taking the largest eigen-

value. We extend this approach by first converting this signal into contiguous speech

segments. We then smooth the signal with a Hanning window of 25ms and normalize
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it by subtracting by the 5th percentile over the call and dividing by the standard devi-

ation to ensure comparability between calls. Segments of 25ms are created whenever

this signal exceeds a 1.8 threshold. This forms a set of overlapping segments which

are merged, removing any silence less than 700ms. We determined these parameters

by validating over the transcribed assessments. Segments longer than 2s are further

divided into subsegments of 2s with 1s overlap. Constant segment size is used to

ensure that variations in features are only due to variations in rhythm [75].

Segment Selection: We identified a subset of segments for manual annotation

from the assessment and personal calls. Our first filter was for segment length, to

increase the likelihood that segments contained sufficient data to assess, but were not

so long that the emotion would vary over the course of the segment. We exclude

segments shorter than three seconds and longer than 30 seconds. Next, we sampled

from both personal calls and assessment calls. Assessment calls are important because

they are the only calls that are directly associated with mood labels. Personal calls are

important because they contain natural unstructured speech. Therefore, we sampled

from both to ensure a diversity of examples. For each assessment call, we select up

to ten random segments. For personal calls, we sample as a function of proximity

in time to assessment calls, preferring those that occurred closer to the assessments.

We select 1,200 segments randomly considering the weight of max(4 − d, 1), where

d is the number of days between the call and its future assessment day. Calls on

the day of assessment receive a weight of four (these are most closely linked to the

HDRS/YMRS score). Other calls receive a weight that reduces linearly up to 3 days

before assessment day, calls outside this range have a weight of one. This results in

17,237 segments, 2,837 and 14,400 segments from the assessment and personal calls,

respectively.

Segment Inspection: We manually inspected each segment prior to annotation

and removed those that were deemed inappropriate for the annotation task, if: (1)
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background noise dominates the speech signal, (2) speech content of the segment lasts

less than two seconds, (3) subject is not talking to the phone (e.g., talking to someone

else in the room), (4) emotion clearly varies over the course of the segment, and (5)

segment contains identifiable information (e.g., name, address, phone number, etc.).

This results in 13,611 segments (25.20 hours), 2,209 and 11,402 segments from the

assessment and personal calls, respectively.

Segment Annotation: We annotated the activation and valence of the 13,611

speech segments using the established pictorial manikins method across a 9-point

Likert scale (1: very low to 9: very high) [28]. There were 11 annotators (7 female, 4

male) aged between 21 and 34 and native speakers of English.

We conducted a training session for each annotator, including a training video and

manuscript, to introduce the annotation software and provide annotation examples.

In the training session, annotators were asked to consider two important points:

1. Although challenging, we asked that annotators to only consider the acoustic

characteristics of the recordings, not the lexical content. They were asked to

avoid letting speech content “color” their activation and valence labels.

2. We asked that annotators consider the subject-specificity of emotion expression.

When approaching a new subject, annotators were asked to spend some time

listening to a few segments without assigning a rating in order to get a better

sense of what that person’s baseline sounds like.

We further supported the assessment of subject-dependent emotion patterns by

providing individual context for each participant. The annotation software randomly

selected a participant and presented all segments of that participant, in random order,

to the annotator before moving on to the next participant’s segments. In this way,

annotators can consider participant-specific features to define emotion labels more

accurately.
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Figure 4.1: (a) Distribution of the number of labels annotated for the segments. (b)
Distribution of the activation and valence ratings in the PRIORI Emotion Dataset.
Categorical labels are provided only as reference points for the four quadrants.

We collected between two and six labels for each segment (3.83 ± 1.31 labels per

segment). Figure 4.1 shows the distribution of the number of annotations for each

segment. See Figure 4.1 for a distribution of the activation and valence labels defined

by the annotators. We found that the activation and valence values are significantly

correlated with a PCC of 0.46 (p < 0.01).

4.4 EMASS

The Ecological Measurement of Affect, Speech, and Suicide (EMASS) Dataset is

a collection of natural smartphone speech and momentary self-ratings. The collection

is ongoing, and the current snapshot includes 43 individuals, each enrolled for eight

weeks. Participants were divided into four groups - healthy controls (HC), psychiatric

controls (PC), and individuals that have experienced recent suicidal ideation (SI) or
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All HC PC SI SA

Subjects 43 19 7 12 4
Calls 4078 1780 761 1208 295
Hours 402 239 51 93 15

Table 4.1: The amounts of data from different groups of subjects, including healthy
controls (HC), psychiatric controls (PC), and individuals hospitalized for suicidal
ideation (SI) and attempts (SA). Subjects must contain at least five calls to be in-
cluded.

suicide attempts (SA). Individuals in the SI and SA groups were admitted to the

hospital for thoughts or behavior related to suicide. Individuals in the PC group

were admitted to the hospital for reasons other than suicide (e.g., substance use). All

groups, with the exception of HC, were enrolled in the study during their psychiatric

admission. Immediately following discharge, they were given a smartphone with the

PRIORI app, which securely records their end of phone conversations [111]. These

recordings are then encrypted and uploaded to our server for automatic analysis.

Table 4.1 shows the number of calls collected for each subject group, for a total of

4,078 calls over 402 hours.

In addition to PRIORI, the mEMA app by ilumivu was installed on the smart-

phone, which presented participants with three surveys throughout the day at random

times. They were also asked to initiate surveys if they experienced suicidal ideation or

behavior. In these surveys, participants were asked to report on their current affect,

using items from the Positive and Negative Affect Schedule (PANAS-X) [210]. Affect

was rated on a five point Likert Scale for 11 different categories, which are divided

into three groups, based on previous work [17]. The three groups are: (1) Positive

Emotion - Confident, Excited, Happy; (2) Negative Emotion - Sad, Guilty, Wor-

ried, Shame, Hopeless; (3) Anger/Irritability - Anger at Others, Anger at Self,

and Irritable. There are 3,359 surveys included in the dataset snapshot used in this

thesis.
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Part I

Addressing Variability in Mood

Recognition
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CHAPTER V

Mood Recognition: Device Variability

5.1 Introduction

While others have explored automatic bipolar mood recognition from speech with

some success, the experiments are often constrained in some way that doesn’t reflect

real-world conditions. Experiments may be performed in the laboratory or only use

one type of recording device. In this chapter, I present an investigation into automatic

speech analysis using mobile phone conversations as a way to predict mood, as well

as the complications that arise from the diversity of real world recordings on different

types of devices.

Research has demonstrated that speech patterns are affected by mood and con-

tribute to accurate clinical assessments [154]. For example, both the Hamilton De-

pression Rating Scale (HDRS) [90] and Young Mania Rating Scale (YMRS) [218]

use clinical observations of speech to determine the severity of depression or mania

[90, 218]. There is an opportunity to discover how speech cues can be automatically

processed to augment objective measures available in clinical assessments. Mobile

phones provide an effective platform for naturally monitoring these speech cues and

have shown promise for bipolar disorder [111, 128, 156]. However, changes in record-

ing quality between different types of phones can severely decrease the predictive

capabilities of a system. These include clipping, loudness, and background noise.
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Figure 5.1: Audio pipeline divided into three stages of preprocessing (Section 5.3),
feature extraction (Section 5.4), and data modeling (Section 5.5).

Much mood speech research has focused on identifying features for recognizing

depression. Among these, are pitch, energy, rhythm, and formants [48, 68, 70, 87,

169, 206]. Short pauses and increased pitch have been correlated with mania [70,

87, 166, 174, 206]. However, much of the work in identifying mania from speech has

focused on differentiating it from schizophrenia and cannot be directly applied [100,

199]. Many mood related studies collected their speech from controlled environments

[48, 87, 206] or used a single type of recording device [85, 128, 156] and do not

necessarily reflect the noise and microphone quality present in real world recordings.

As such, their models would be difficult to apply to a widely distributed mobile health

system.

In this chapter, I focus on one of the challenges associated with real-world dis-

tributed mood recognition: variability in recording. I examine the differences between

the two phones used in this study and analyze preprocessing and modeling methods

that allow us to build models of mood across the database as a whole. These meth-

ods include declipping [93], noise-robust segmentation [178], feature normalization

[48], and multi-task learning [58]. I provide evidence that mood-related changes in

speech are captured in this model using the structured assessment calls captured from

different phone types. Please see Figure 5.1 for a system overview.

The novelty of my approach is the investigation into acoustic variations caused by

recording with different types of phones and the preprocessing and modeling changes
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Mood Total # Per Subject % Per Subject
Euthymic 275 7.9±7.7 30%

Manic 107 3.1±4.0 12%
Depressed 247 7.1±7.5 28%

Mixed 95 2.7±3.6 13%
Excluded 175 5.0±4.7 17%

Table 5.1: Distribution of assessment classes of mood used in this chapter’s experi-
ments. The total number of observations of each mood class is given. The mean and
standard deviation of observations for each class per subject is shown, along with the
average percentage of each.

necessary to detect mood under these conditions. My results suggest that this pipeline

of methods including preprocessing, feature extraction, and data modeling can effec-

tively increase the performance of these types of mixed device systems. The results

show a significant increase in performance from AUCs of 0.57±0.25 and 0.64±0.14

for manic and depressed, respectively, to 0.72±0.20 and 0.75±0.14, highlighting the

importance of proper processing of acoustic data from multiple sources.

5.2 Data

The experiments in this chapter use an earlier snapshot of the PRIORI Bipolar

Dataset (explained in Chapter III). The snapshot contains 37 participants who have

made 34,830 calls over 2,436 hours. Each participant has been on the study for an

average of 29.2 weeks with a standard deviation of 16.4 weeks. Additionally, there

have been 780 recorded weekly clinical assessments. Only these structured calls are

used in this study. The distribution of assessment classes is shown in Table 5.1.

The Samsung Galaxy series of phones, including the S3, S4, and S5 are used by

participants. Only two of the participants were given S4s and their data are excluded

from this study. The distribution of subjects with S3s and S5s can be seen in Table

5.2. The two models of phone include model-specific microphones and processing.

One of the effects of this recording and processing is clipping. Clipping occurs most
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Phone #Subjects #Assess. %Clipped RMS SNRdB

S3 18 456 2.74% 0.397 21.2
S5 17 287 0.02% 0.066 25.1

Both 35 743 1.69% 0.269 23.1

Table 5.2: Differences in data amounts and acoustics between the Galaxy S3 and
S5. The percent clipped assessments (Assess.) and the mean percent of samples per
call clipped are shown. Root mean square (RMS) values are calculated to show the
loudness for each device microphone. Signal to noise ratio (SNR) is calculated as the
relative power in the speech verses silence regions in decibels (dB).

often in the S3, with an average of 2.74% of speech samples at maximum range. This

sensitivity is also demonstrated by the average root mean square value of 0.397 for

the S3. Additionally, the noise is much more pronounced, as seen in the lower signal

to noise ratio of 21.2 dB for the S3.

5.3 Preprocessing

The two phones used in this study have different acoustic properties. The S3,

compared to the S5, has more clipping, higher volume, and a sensitivity to background

noise. Because of this, it is necessary to carefully preprocess the data before feature

extraction using declipping, audio normalization, and noise-robust segmentation in

order to make calls from different devices more comparable.

Declipping: The declipping algorithm Regularlized Blind Amplitude Reconstruc-

tion (RBAR) [93] was used to approximate the original signal. This is a closed form

solution approximation of an algorithm called Constrained Blind Amplitude Recon-

struction (CBAR) [92]. Each algorithm extrapolates the clipped sections of audio

beyond their original values, while minimizing the second derivative of the signal,

and have been shown to improve the performance of automatic speech recognition

[92, 93]. Both algorithms ignore unclipped regions, beneficial for audio recordings

that have variable amounts of clipping, as seen in Table 5.2.

Audio Normalization: The audio signal is scaled by dividing by the maximum
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absolute value. This ensures that the signal ranges from -1 to 1, which is necessary

after running declipping, as it extrapolates the signal beyond these bounds. It also

ensures that the loudness between the two phone types, as seen in Table 5.2, is more

comparable.

Segmentation: Each call is segmented using an extension of Sadjadi and Hansen’s

algorithm [178], which is robust to variation in noise. This is necessary, given the dif-

ferences in SNR between the phones (Table 5.2). The algorithm extracts five signals

representative of speech likelihood, including: harmonicity, clarity, prediction gain,

periodicity, and perceptual spectral flux. These are then combined using principal

component analysis (PCA). The final signal is the largest eigenvalue. It is smoothed

by a Hanning window of 25ms and normalized by subtracting by the 5th percentile

over the call and dividing by the standard deviation. This ensures that signals from

different calls all share a similar silence baseline. Segments of 25ms are created wher-

ever the combo signal exceeds a 1.8 threshold. Overlapping segments are merged and

silences less than 700ms are removed. These parameters were found by validating over

the transcribed assessments for segment alignment. Segments are further divided into

subsegments of 2s with 1s overlap. Segments less than 2s are discarded. Constant

window sizes are used to ensure that variations in the features are not caused by

changes in segment size [201]. The full segmentation process is shown in Figure 5.2.

Audio:

4.25 seconds1.5 sec.Segments:
Subsegments: 2 seconds2 seconds2 seconds

Figure 5.2: Segments of speech are found. Segments of 2 seconds or longer are divided
into subsegments of 2 seconds in 1 second steps.
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5.4 Feature Extraction

Rhythm Features: Individuals in manic or depressed episodes exhibit changes

in the rhythm of their speech [81]. Rhythm features are calculated for each subseg-

ment by first extracting the voicing envelope. The envelope is used to calculate the

spectral power ratio and spectral centroid. The envelope is decomposed into two

intrinsic mode functions (IMF) using empirical mode decomposition [103]. Tilsen

and Arvaniti [201] empirically demonstrated that the extracted IMFs are reflective of

syllable- and word-level fluctuations. The IMFs are used to extract five segment-level

features: the power ratio between the two IMFs and the mean and standard deviation

of the instantaneous frequencies associated with each IMF.

Call-Level Statistics: The seven rhythm features are transformed into call-

level features by taking the mean, standard deviation, skewness, kurtosis, minimum,

maximum, range, and 1st, 10th, 25th, 50th, 75th, 90th, and 99th percentiles of the

subsegment measures. Additionally, the differences between the 50th and 25th, 75th

and 50th, 75th and 25th, 90th and 10th, and 99th and 1st percentiles are included. This

set is augmented with the percentage of the call that is above 10%, 25%, 50%, 75%,

and 90% of the range. Finally, the call-level feature trend is captured by fitting a

linear regression model to the features extracted over each segment (R2, mean error,

and mean squared error). This results in a total of 217 features.

Feature Normalization: Call-level features are Z-normalized either (1) globally,

using the mean and standard deviation of all training data, or (2) by subject, using

the mean and standard deviation of each subject’s own data. Previous research has

shown that normalization by subject can reduce the disparity between subject feature

distributions caused by speaker differences and aid in the detection of mood [48]. This

method may also help reduce some of the differences in subject feature distributions

due to differences in phones.
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5.5 Data Modeling

The classification goal is to identify if a given call is (1) from a manic or euthymic

episode or (2) from a depressed or euthymic episode. Subjects are only included in

analysis if they have at least six total assessments in order to ensure enough data to

process features by subject. Additionally, subjects must contain at least two euthymic

calls and two manic/depressed calls. This ensures that there is enough data to mea-

sure test performance. With these restrictions, 15 subjects are used when considering

mania (12 S3s and 3 S5s) and 18 subjects are used when considering depression (11

S3s and 7 S5s).

Support Vector Machines (SVM) [45] are used to classify the speech. SVMs learn

a decision boundary between two classes of data with an explicit goal of identifying a

boundary that maximally separates the two classes. The classifiers are implemented

using both linear and radial basis function (RBF) kernels. Euthymic samples are given

a weight equal to the number of manic/depressed samples divided by the number of

euthymic samples. Manic/depressed samples are given a weight of one. This ensures

that there is no bias towards the mood with more samples by increasing the penalty

for misclassification of minority labels. Multi-task SVMs [58] are also used for certain

experiments. This algorithm weights the kernel function using a parameter rho in

order to decrease the importance of data from a different task. In this case, the task

is considered to be the phone type. On one extreme, rho can be selected to behave

as a single-task SVM and consider the tasks to be equal. On the other extreme, the

selected rho can consider the tasks to be completely independent.

The models are trained using leave-one-subject-out cross-validation, ensuring that

there is no overlap between the speakers used to train and test the system. The

model parameters include: kernel type (RBF vs. linear), gamma (RBF only), number

of features with respect to a ranked list, cost parameter (C), and rho (multi-task

only). The parameter combination is chosen to optimize leave-one-training-subject-
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out cross-validation, where the contribution of each training subject is proportional

to his/her amount of data.

Features are ranked using a heuristic of Weighted Information Gain (WIG). The

heuristic was chosen due to the observed subject-specific label imbalance, which may

result in the identification of features that are tied to subject identity, rather than

mood. This can result in a classifier learning to associate all instances with a single

mood state from a biased subject. WIG allows for each sample to be ascribed an

importance that ensures both classes contribute equally from each subject. This is

implemented using the weighted entropy functions described in [192]. Each sample

is given a weight equal to the total number of samples in its subject divided by the

number of occurrences of its label in its subject. This ensures that minority and

majority samples are given equal weight over each subject, while subjects are given

weight proportional to their number of samples.

The performance was measured using Area Under the Receiver Operating Char-

acteristic Curve (AUC). AUC assesses the ability of a system to correctly rank pairs

of instances from opposing classes. It has a chance rating of 0.5 and ideal rating of 1.

5.6 Results and Discussion

In this section I demonstrate the ability to differentiate between euthymic and

symptomatic moods, despite using two types of mobile phones with different acoustics.

The results are presented in Table 5.3. In addition to reporting the combined test

performance of both phone types, results are broken down into individual types.

However, all phones from both types are always used to train models. A paired t-test

with a significance of 0.05 is used to compare results to baseline performance and a

significant difference is marked with an asterisk and bolded.

Baseline Performance: The baseline system uses global normalization and does

not include declipping. The results in Table 5.3a show an AUC of 0.64±0.14 for
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Model Manic AUC Depressed AUC
S3 0.52±0.22 0.66±0.17
S5 0.78±0.31 0.62±0.09

Both 0.57±0.25 0.64±0.14

(a) No Declipping and Global
Normalization (Baseline)

Model Manic AUC Depressed AUC
S3 0.68±0.16 0.62±0.14
S5 0.79±0.21 0.69±0.18

Both 0.70±0.17* 0.65±0.15

(b) RBAR Declipping and
Global Normalization

Model Manic AUC Depressed AUC
S3 0.73±0.22 0.74±0.10
S5 0.79±0.37 0.80±0.21

Both 0.74±0.24* 0.77±0.15*

(c) No Speech Segmentation
(Silence Included)

Model Manic AUC Depressed AUC
S3 0.66±0.15 0.73±0.15
S5 0.71±0.35 0.78±0.10

Both 0.67±0.19* 0.75±0.14*

(d) No Declipping and
Subject Normalization

Model Manic AUC Depressed AUC
S3 0.67±0.20 0.67±0.21
S5 0.72±0.41 0.65±0.11

Both 0.68±0.23* 0.66±0.18

(e) Multi-Task SVM Using
Baseline Preprocessing

Model Manic AUC Depressed AUC
S3 0.71±0.19 0.66±0.14
S5 0.78±0.23 0.79±0.13

Both 0.72±0.20* 0.71±0.15

(f) Multi-Task SVM Using
Best Preprocessing

Table 5.3: Classification results using various methods. Bolded* AUCs denote re-
sults significantly better than baseline (paired t-test, p=0.05).

depressed and a near chance performance of 0.57±0.25 AUC for manic. However, the

three S5s performed better than the S3s in the manic test with 0.78±0.31 AUC. This

could indicate that even though the S5 only makes up 20% of the phones, its higher

quality recordings allow for it to perform well in testing. Alternately, the speaker

population that makes up those subjects using the S5s could be more homogeneous.

The S5 continues to outperform the S3 in the rest of the manic experiments.

Evaluation of Declipping: Table 5.3b shows the results of declipping when

using global normalization. While the performance of the depressed tests remain

mostly unaffected, the manic test increases significantly to an AUC of 0.70±0.17. This

is due to the improvement in the S3, where larger amounts of clipping occurred, as seen

in Table 5.2. I hypothesize that the stronger improvement in manic tests, compared

with depressed tests, is due to the fact that manic S3 calls have significantly more
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clipping than euthymic and depressed S3 calls (unpaired t-test, p=0.05). The percent

of clipping in euthymic, manic, and depressed S3 calls are 2.73±1.25%, 3.21±1.13%,

and 2.41±1.07%, respectively.

Evaluation of Segmentation: The effect of segmentation was studied by elim-

inating the algorithm described in Section 5.3. Instead, the 2 second subsegments

were taken over the entire call - silences included. It performed the best of all tests

with significant increases from the baselines for both moods (Table 5.3c). However,

I hypothesize that this is actually due to the rhythm features indirectly capturing

information about the assessment structure. For example, an individual who is eu-

thymic would have more silence due to their brief interview answers. This highlights

one of the potential pitfalls to avoid when working with structured calls to train a

model to recognize acoustic aspects of mood. For this reason, it is necessary to use

accurate segmentation to avoid these misleading results.

Evaluation of Feature Normalization: Normalization by subject significantly

increased the performance of both manic and depressed tests from baseline, as shown

in Table 5.3d. This method has the ability to correct for different feature distributions

among speakers, as explained in [48]. These results demonstrate that this correction

can also benefit systems with variable recording devices of different quality.

Multi-task SVM Analysis: The use of a multi-task SVM can also control for

the variability in device types by giving lower weight to data from different phone

types and higher weight to data from the same phone types. Table 5.3e shows a

significant improvement in manic from baseline by selecting a low value for rho and

treating data from across different phone types as less informative. Depression does

not see much improvement, as a high rho value is selected, indicating that the data

is already comparable without preprocessing. This gives further evidence to the

reason preprocessing works well for manic speech but has little effect on depressed

speech. Another multi-task experiment was run using the preprocessing methods that
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worked best for each mood - RBAR declipping and subject normalization for manic

and subject normalization for depressed. These results can be seen in Table 5.3f, with

the highest manic AUC of 0.72±0.20, which is significantly better than baseline.

5.7 Conclusion

This chapter presents methods to improve the comparability of data collected from

across devices of different acoustics. This is essential for any mobile health system

using speech that aims to be widely distributed, as the prospect of varying audio

quality is unavoidable. My results demonstrate that through certain preprocessing,

feature extraction, and data modeling techniques it is possible to mitigate the effects

of differing amounts of clipping, loudness, and noise. This is best shown by the in-

crease in performance from the baseline AUCs of 0.57±0.25 for manic and 0.64±0.14

for depressed to the significantly higher AUCs of 0.72±0.20 and 0.75±0.14, respec-

tively. This excludes the results without segmentation, as those features capture the

structure of the mood interview instead of the characteristics of the speech. There

was not a comprehensive solution for both mood types, which indicates the need for

careful consideration of all steps along any pipeline.
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CHAPTER VI

Mood Recognition: Individual Versus Cohort

6.1 Introduction

Mood recognition systems need to control for other factors when considering real-

world data. While Chapter V explored the impact of recording device differences,

this chapter instead examines the contribution of individual subject characteristics.

I again use speech gathered from mobile phone conversations during the PRIORI

project (Chapter III) to predict depression in patients with bipolar disorder. The

proposed techniques exploit both population-general and subject-specific knowledge.

Speech is modulated by the mood of an individual [154]. In particular, the Hamil-

ton Depression Rating Scale (HDRS) [90], lists speech retardation as one of the indi-

cators of depression. Previous work showed that it is possible to augment the clinical

diagnosis of depression with objective rating by automatic detection from speech [47,

87, 206]. This could be used to help to better target care to those most in need and

help in areas with scarce resources [15]. However, variations in individual symptoms

make the adoption of such a system difficult.

Many computational models have been proposed to predict depression from speech

[11, 47, 85, 87, 98, 133, 142, 189, 206]. These models are normally trained to capture

common patterns in cohorts due to limitations in the size of available datasets. For

example, [11] explores the performance of common speaker-independent classifiers
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for detection of depression. Additionally, [98] compares Guassian Mixture Model

(GMM) and Support Vector Machine (SVM) classifiers using only formant frequencies

and their dynamics. Subject-independent systems using i-vectors have recently been

proposed for depression detection [47, 133, 142, 189]. One important issue of using

i-vectors for depression detection is the limited dataset available [46]. [47] proposes

an oversampling approach to increase the number of available utterances.

There are a limited number of systems that leverage speaker-specific information

in their classifiers. The work reported in [85] incorporates speech patterns along with

other sensor modalities collected from smartphone devices to predict mood using a

subject-specific classifier. Additionally, the work by Vanello’s group [87, 206] found

that jitter, pitch, and pitch contours were effective indicators of mood from a subject-

specific perspective. However, in order to detect mood effectively on a large scale it

is necessary to both understand population level indicators in addition to subject-

specific variations.

The PRIORI database is a longitudinal collection of cellphone speech data from

individuals with bipolar disorder (Chapter III). It contains a considerable amount

of data for each participant. This enables us to capture subject-specific as well as

population-general aspects of speech. In this chapter, I use an SVM trained with

rhythm to characterize population-general speech, as in Chapter V. I propose the

use of i-vectors [52] extracted over Mel-Frequency Cepstral Coeffiients (MFCC) to

capture mood variation at the subject-level using a speaker-dependent SVM. I lever-

age the large unlabeled subset of the data to circumvent the sparsity problems that

often accompany i-vector extraction. Further, I employ the Within-Class Covariance

Normalization (WCCN) technique [95] on the total variability subspace to alleviate

the undesirable effect of mobile phone channels.

The main novelty of my approach is the fusion of a subject-specific system using

unlabeled personal calls with a population-general system for the detection of de-
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Mood Total # Per Subject % Per Subject
Euthymic 306 7.1±6.5 36%
Depressed 266 6.2±6.8 27%
Excluded 361 8.4±7.0 37%

Table 6.1: Distribution of mood in the assessments. Shown are the total number of
observations, the mean and standard deviation of subject observations, and the mean
percentage of each.

pression from Bipolar speech. I compared this fusion with the baseline system from

Chapter V, which modeled rhythm features in a population-general manner. My

results showed significant improvement from the baseline with the Unweighted Av-

erage Recall (UAR) increasing from 0.66±0.11 to 0.73±0.09 and the Area Under the

receiver operating Curve (AUC) increasing from 0.69±0.15 to 0.78±0.12. This shows

the importance of using both cohort and subject-specific knowledge when modeling

mood.

6.2 Data

This chapter uses a later snapshot of the PRIORI dataset than the prior chap-

ter, and contains data from 43 participants with an average collection duration of

21.2±14.2 weeks per subject, including 39,445 calls and over 2,880 hours of speech.

All experiments, including the baseline, are performed on the dataset snapshot at this

time. This chapter focuses on depression and as such, all manic and mixed speech is

excluded. See Table 6.1 for the data distribution.

6.3 Features

6.3.1 Rhythm Features

The rhythm features are calculated for each subsegment using an algorithm by

Tilsen and Arvaniti [201]. The audio envelope is extracted and the spectral power

ratio and centroid are found. The first two Intrinsic Mode Functions (IMF) are then

44



extracted using empirical mode decomposition [103]. The power ratio between the

IMFs, as well as the mean and standard deviation of their instantaneous frequencies

are found. This forms a total of seven segment-level statistics that have shown to

be related to syllable- and word-level rhythm [201]. A total of 31 statistics are used

to form the call level feature vector of 217 dimensions. These include mean, stan-

dard deviation, skewness, kurtosis, minimum, maximum, and range. Additionally, I

calculated various percentiles and percentile ranges, the percentage of the call above

thresholds of the range, and linear regression coefficients and error. Please refer to

Chapter V for more information.

6.3.2 i-vectors

Subject-specific mood variation is captured using i-vector representation. Recent

works have demonstrated the efficacy of this technique for predicting depression over

a cohort [47, 133, 142, 189].

i-vector Formulation: Speech contains many sources of variability, including

identity [52], age [25], gender [25], and critically, mood [47]. These variations can

be captured using the i-vector technique. Its underlying assumption is that factors

of variation lie in a low-dimensional subspace spanned by the columns of the total

variability matrix T , a low-rank rectangular matrix. An arbitrary speech instance, u,

can be represented by a GMM mean supervector, M(u), which is modeled by:

M(u) = m+ Tw(u) (6.1)

where m is the supervector constructed from the Universal Background Model (UBM)

trained using all personal call data, w(u) ∼ N (0, I) is an utterance-dependent iden-

tity vector (i-vector) [52]. The total variability matrix is trained using an Expectation

Maximization (EM) algorithm introduced in [112].

Acoustic Features: 19 MFCCs and log energy are extracted using a 25ms Ham-
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Figure 6.1: Schematic block diagram of i-vector extraction.

ming window with 10ms step from the calls with longer than five seconds of speech.

They are normalized using utterance-level Cepstral Mean and Variance Normalization

(CMVN) [208] to compensate for background and channel noise. This 20-dimensional

feature vector is applied to a feature warping [163] with 3 second sliding window. The

final feature set contains the MFCCs/log energy, their ∆, and ∆∆.

i-vector Extraction: Figure 6.1 shows the system developed for extracting i-

vectors. I train the UBM (2048 Gaussians) and total variability matrix (400 dimen-

sions) using the acoustic features. Then I extract assessment i-vectors and apply

WCCN [95] on them to compensate for residual channel effect.

6.3.3 Feature Normalization:

Both feature sets are normalized using the mean and standard deviation of each

subject. Additionally, each fold is globally normalized so that a mean of zero and

standard deviation of one is attained across all subjects.
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6.4 Data Modeling

SVMs [45] are used to classify both types of features. SVMs find the boundary

that maximally separates two classes. I use either a linear or Radial Basis Function

(RBF) kernel. I weight the samples to accommodate for class imbalance. Finally, the

output score is the signed distance to the hyperplane.

Various divisions between training, testing, and validation folds are used in this

chapter and are defined below:

• Population-General Validation: One test subject is left out when training

the model. This builds a system that is generalized to work on previously

unseen individuals. I validate parameters by dividing the training subjects

into four folds. I require that subjects have at least six calls, including at

least two euthymic and two depressed, to ensure enough data for normalization

and performance metric calculation. This baseline system was presented in

Chapter V.

• Subject-Specific Validation: Only data from one subject is used. During

training one test call is left out. This produces a system that can adapt to the

features of an individual. Validation is performed over the training calls divided

into ten folds. Only subjects with at least four euthymic and four depressed

calls are used to ensure enough training data. This system is used for i-vectors

because they are suited to subject-specific modeling, as explained in Section 6.6.

• Hybrid Validation: A hybrid approach of the above two systems. Calls across

all subjects are used. I train the model by leaving one test call out. This system

uses information from both the subject of the test call and the population.

Validation is performed over training calls divided between 10 folds with calls

from all subjects distributed across folds. Only subjects with at least six calls,

including at least two euthymic and two depressed, are used.
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Figure 6.2: Diagrams of the system fusions. (a) Hybrid modeling with concatenated
features. (b) Constant, soft, and hard decision fusions (all in one figure).

The kernel type and parameters (cost, gamma) as well as feature set size are

selected during validation by maximizing UAR - the mean percentage of each class

correctly identified. UAR gives minority classes equal weight. Features are ranked

using a heuristic of Weighted Information Gain (WIG) to correct for subject label

imbalances. This is implemented by weighted entropy as described in [192]. Each

sample weight is set to the number of subject calls divided by the number of calls

in the subject with the same label. This ensures that the sum of subject weights is

proportional to its total number of samples, while also giving minority and majority

labels equal weight. Only the test performances of subjects used in all systems are

reported to make system results comparable.

To find the effect of combining cohort and person-specific knowledge, four fusion

methods are considered (Figure 6.2):

Feature Fusion: Rhythm and i-vectors are concatenated into one feature vector.

Hybrid validation is then performed.

Decision Fusion: I train a rhythm population-general model and an i-vector

subject-specific model. SVM outputs from both models are normalized using a sig-

48



moid to ensure they are comparable. I determine the ideal weight (λ) to combine

these systems for each test call using subject-specific validation. I find the population-

general scores (PG) for the system trained using all but the test subject. I determine

the subject-specific scores (SS) through validation by leaving one additional call out.

This is necessary because test subject data is used in the model. Equation 6.2 shows

the fusion scores (F ):

F = PG× λ + SS × (1− λ) (6.2)

A higher weight indicates a higher contribution from the population-general system.

Because score fusion is performed per call, each test call will have a different λ. During

validation, I determine the weight based on the following three methods:

• Constant: λ is set to 0.5.

• Soft: λ is chosen between 0% and 100% by validating over increments of 1%.

The best λ is selected by maximizing UAR measure. For subjects with fewer

scores, there are often many weights that achieve the maximum UAR perfor-

mance. A tie-breaking heuristic is used to determine which weight to choose

in this case. The largest contiguous range of weights producing the maximum

performance is found and the center weight is selected as λ. This mechanism

was chosen to increase the stability of the fusion by selected a weight that is

furthest from other weights that cause drops in performance.

• Hard: Same as soft, except λ is only allowed to be 0% or 100%. This results

in only one classifier being selected.
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System UAR AUC
Population-General (Rhythm) .66±.11 .69±.15
Subject-Specific (i-vector) .64±.17 .70±.18
Feature Fusion .71±.14 .76±.13*
Constant Decision Fusion .72±.15 .74±.16
Soft Decision Fusion .73±.09* .78±.12*
Hard Decision Fusion .71±.11 .76±.13

Table 6.2: Results for different systems (top) and fusions (bottom). Stared and
bolded results mark significantly better performance than population-general base-
line. (pairwise t-test, p<0.05).

6.5 Results

In addition to UAR, AUC is used in testing to compare the systems. AUC de-

termines the system’s ability to relatively rank test outputs. Unlike UAR, it does

not have a set threshold. It is calculated as the area under the curve defined by the

amount of true positives and false positives at all possible thresholds. Both measures

have a chance performance of 0.5 and an ideal performance of 1. Table 6.2 shows a

summary of results, including the two component systems and four fusions of systems.

Component Systems: The baseline system from Chapter V generalizes rhyth-

mic symptoms across individuals. The subject-specific i-vector system learns individ-

ual patterns in the voice. Between the two, rhythm has the lower standard deviation

of 0.11 UAR. Additionally, as seen in Table 6.3, no subjects perform worse than

chance when using the rhythm model, showing greater stability. I hypothesize that

this stability is due to the relatively larger number of samples across subjects used to

train the population-general model. This means that the model remains mostly con-

sistent between test subjects. Contrast this with the subject-specific i-vector system

where the entire model changes between subjects. This results in a standard devia-

tion of 0.17 UAR (Table 6.2) and four subjects performing below chance (Table 6.3).

However, the i-vector model performs better than the rhythm model for six subjects.

This difference in performance can be further quantified by the low correlation of
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Rhythm i-vector Fusion Mean λ #Eut. #Dep. #Per.
.544 .730 .730 .10 9 14 474
.549 .761 .752 .18 19 14 513
.531 .813 .698 .22 6 16 2832
.707 .829 .829 .30 7 10 327
.570 .750 .740 .47 25 10 1660
.757 .714 .786 .56 5 7 780
.519 .385 .596 .57 13 4 348
.607 .400 .636 .62 7 20 769
.762 .774 .690 .63 7 6 131
.769 .625 .923 .64 26 4 1382
.714 .477 .618 .82 11 10 814
.739 .578 .683 .93 10 9 1483
.833 .417 .792 .93 6 12 558

.66±.11 .64±.17 .73±.09 .54±.27 12±7 10±5 929±741

Table 6.3: Subject AUCs of Soft decision fusion and component systems, ordered
by mean weight (λ). The number of euthymic (Eut), depressed (Dep), and personal
(Per) calls are shown. The last row is the column means and standard deviations.
Highlighted rows show when soft decision performs best.

0.12 between SVM outputs of the two component systems. Prior work has shown

that uncorrelated systems are more effectively fused [67, 131]. This indicates that

fusing population-general rhythm and subject-specific i-vectors will likely produce

better results than either of its components.

Fusion: Soft decision fusion attained the best performance of all experiments with

a significant (paired t-test) improvement over baseline of 0.73±0.09 UAR (p=0.045)

and 0.78±0.12 AUC (p=0.020). I hypothesize that soft decision fusion works best,

because it allows for direct tuning of subject contributions from both features and

validation methodologies. There are strong correlations of 0.70 and -0.67 between the

respective rhythm and i-vector UARs and the mean selected weight. This demon-

strates its effectiveness at selecting the best performing component system, unlike

the constant decision version which is unable to moderate their contributions and

has less consistent subject results (not significant, p=0.14). Additionally, there are

four instances where the soft decision fusion performs better than both component
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Figure 6.3: t-SNE plot of i-vectors showing subject separability. Shapes represent
subjects, while the colors depict moods.

systems (highlighted in Table 6.3). This occurs when the weight is near 50% and

there is contribution from both systems. This demonstrates its main advantage over

the hard select technique - hard select can generally only perform as good as the best

component system for each subject.

6.6 Discussion

The spatial distribution of the extracted i-vectors provides insight into the effec-

tiveness of this feature at both the individual- and population-level. The i-vectors are

mapped to a two-dimensional space using t-Distributed Stochastic Neighbour Embed-

ding (t-SNE) [205], a dimensionality reduction algorithm that maps similar objects to

nearby points and dissimilar objects to distant points. Figure 6.3 shows the distribu-

tion of the euthymic and depressed calls (blue and red dots in the figure, respectively).

The individual groupings of the calls are at the subject-level. This separation at the

subject-level suggests that the technique is effective for differentiating between mood

within a speaker, but not between speakers due to the large speaker-effect. This
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speaker-effect would preclude the use of a population-general i-vector classification.

This effect can be mitigated using subject-specific normalization. However, this cre-

ates strong overlap between the two mood categories, suggesting that i-vectors may

be most effective at the individual, rather than population, level.

6.7 Conclusion

This chapter demonstrates the importance of capturing both cohort and subject-

specific variations in speech to effectively detect depression in bipolar disorder. This

is important for a mental health monitoring system that both aims to be able to

provide immediate help to new users and improved performance over time. This

chapter introduces a soft decision fusion of population-general rhythm detection and

subject-specific i-vector variation monitoring. The i-vectors are trained in a novel

manner by using the unlabeled personal calls of individuals to learn patterns in the

speech of subjects. This allows for a subject-specific system to be trained with rela-

tively few assessment calls to effectively model individual changes in depression. The

results show that the fusion significantly improves performance from the baseline of

population-general rhythm.

The fusion experiments concentrated on learning the weights in a subject-specific

manner because at least 4 samples of each label type were available. While this type of

system worked well for depression, it may be difficult to adapt to mania. On average,

subjects tend to be depressed three times more often than manic [141]. Due to this

lack of data it may be necessary to consider similar subjects with more data as part

of the fusion. However, this would require an investigation into subject similarities

between speech phenotypes and mood. This is becoming increasingly important as

I begin to model the personal calls, as population-general symptoms may be more

difficult to find outside of assessments.
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Part II

Addressing Variability in Emotion

Recognition
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CHAPTER VII

Emotion Recognition: Progressive Networks

7.1 Introduction

While Part I demonstrated methods to mitigate variability when detecting mood

directly from speech, there is still much room for improvement. It is difficult to

detect changes in mood solely relying on speech, due to the relatively large temporal

disconnect between each. Because of this, the remainder of this dissertation is devoted

to investigating and applying other high-level features for the automatic monitoring

of mood. Emotion dysregulation is another common symptom of bipolar disorder

[83]. As such, estimates of emotion could instead be used to augment predictions of

mood made directly from speech. Part II of my dissertation explores improving the

prediction of emotion from speech for eventual use in such a system.

Automatic emotion recognition has been actively explored by researchers for the

past few decades. However, as seen in Chapter IV, the sizes of emotion datasets

are relatively small when compared with other tasks such as automatic speech recog-

nition (ASR) or speaker verification. This makes it difficult to create models that

generalize beyond the recording conditions and subject demographics of a particular

dataset. One possible approach to alleviate this problem is to incorporate related

knowledge that can help in learning a better system. Many paralinguistic tasks are

closely related and dependent on one another. As a result, I hypothesize that emo-
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tion recognition models can be augmented with additional information from other

paralinguistic information, such as speaker ID and gender, to improve classification

performance. In this chapter, I explore transfer learning both as a method to lever-

age knowledge from other paralinguistic tasks and to augment an emotion model

with another model trained on a different emotion dataset. In particular, I show that

progressive neural networks are particularly well suited to achieve this transfer.

Previous work demonstrated that multi-task learning techniques (MTL) could be

used to jointly model both gender and emotion [125, 207, 209], resulting in consis-

tent performance increases compared to gender-agnostic models. Previous work also

showed that emotion recognition systems could be improved by incorporating speaker

identity as a feature, along with the other emotion-related features [191]. It has also

been demonstrated that some features (e.g., pitch) are not only valuable for predict-

ing emotions, but are also effective for detecting weight, height, gender, etc. [186].

Zhang et al. [222] explored MTL frameworks for leveraging data from different do-

mains (speech and song) and gender in emotion recognition systems. Xia et al. [214]

treated dimensional and categorical labels as two different tasks.

MTL is best suited to situations where it is possible to train with all data from

scratch. However, in some cases an existing model needs to be adapted to a new sit-

uation. Transfer learning provides a framework from which to address this problem.

The most common approach to transfer learning is to train a model in one domain

and fine-tune it in a related domain [50, 55, 155]. This pre-training and fine-tuning

(PT/FT) approach has been successful in cases where the available data for the source

domain is abundant in comparison the data in the target domain. For example, in

ASR, transfer learning is used to transfer knowledge from a richly-resourced language

to an under-resourced language [50]. In emotion recognition, Deng et al. [55] pre-

sented a sparse auto-encoder method for transferring knowledge between six emotion

recognition datasets. The authors used auto-encoders to transform a source domain
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and its features to a domain that is more consistent with the target domain. The au-

thors then used the transformed source domain to learn SVM classifiers of emotion in

the target domain. Ng et al. [155] studied transfer learning for facial expression recog-

nition. The authors first trained a model on a general large-scale dataset (ImageNet).

They then fine-tuned the trained model on four datasets that contain relevant facial

expressions similar to those in the target domain. Finally, the authors fine-tuned

the network using the target data. The authors found that the two-step fine tuning

approach provided improvements over one-step fine-tuning and no fine-tuning.

However, the PT/FT approach has a number of limitations. First, it is unclear

how to initialize a model given learned weights from a sequence of related tasks [176].

Second, when a model is fine-tuned using initial weights learned from a source task,

the end-model loses its ability to solve the source task, a phenomenon termed the

“forgetting effect” [62]. Finally, transferring learned parameters between networks

can be challenging if the networks have inconsistent architectures. In this work, I use

the PT/FT approach as the baseline for transfer learning.

Another recent approach for transfer learning is progressive neural networks (ProgNets)

[176, 177]. ProgNets train sequences of tasks by freezing the previously trained tasks

and using their intermediate representations as inputs into the new network. This

allows ProgNets to overcome the above-mentioned limitations associated with the

traditional method of PT/FT, including the challenge of initializing a model from a

sequence of models, at the expense of added parameters. Additionally, it prevents

the forgetting effect present in the PT/FT methods by freezing and preserving the

source task weights.

In this chapter, I investigate transfer learning between three paralinguistic tasks:

emotion, speaker, and gender recognition, with a focus on emotion recognition as

the target domain. In addition, I investigate the efficacy of transfer learning applied

between two emotion datasets: IEMOCAP [31] and MSP-IMPROV [32]. Finally,
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I study the effect of transfer learning between datasets when the target task has

limited amount of data available. In all cases, I investigate three methods: (1) deep

neural network (DNN); (2) DNN with PT/FT; and (3) progressive networks. The

results demonstrate significant improvements over the conventional PT/FT methods

when using ProgNets for transferring knowledge from speaker recognition to emotion

recognition tasks. Furthermore, the results suggest that ProgNets show promise as

a method for transferring knowledge from gender detection to emotion recognition

tasks, as well as transferring knowledge across datasets, with results significantly

better than a DNN without transfer learning.

7.2 Datasets

I use speech utterances from two datasets in this study: IEMOCAP [31] and

MSP-IMPROV [32], further explained in Chapter IV. Both datasets were collected to

simulate natural dyadic interactions between actors and have similar labeling schemes.

I use utterances with majority agreement ground-truth labels. I only consider utter-

ances with happy, sad, angry, and neutral labels.

IEMOCAP: I combine excitement and happiness utterances to form the happy

category, as in [31]. The final dataset contains 5531 utterances (1103 angry, 1708

neutral, 1084 sad, 1636 happy).

MSP-IMPROV: The final dataset contains 7798 utterances (792 angry, 3477

neutral, 885 sad, 2644 happy).

7.3 Features

I use the eGeMAPS [61] feature set designed to standardize features used in affec-

tive computing. The eGeMAPS feature set contains a total of 88 features, including

frequency, energy, spectral, cepstral, and dynamic information. The final feature

58



Figure 7.1: Deep Neural Network (DNN) used in the experiments. The arrows rep-
resent dense connections between each layer. The number of outputs (N) varies
depending on the experiment.

vectors for each utterance are obtained by applying the following statistics: mean,

coefficient of variation, 20-th, 50-th, and 80-th percentile, range of 20-th to 80-th per-

centile, mean and standard deviation of the slope of rising/falling signal parts, mean

of the Alpha Ratio, the Hammarberg Index, and the spectral slopes from 0–500Hz

and 500–1500Hz. I perform dataset-specific global z-normalization on all features.

7.4 Methods

I compare three methods in the context of transfer learning. As a baseline method,

I consider the performance of a DNN trained on the target task without any extra

knowledge. Additionally, I use the common transfer learning approach of pre-training

a DNN on the source task and fine-tuning on the target task (PT/FT). The underlying

assumption of PT/FT is that the target model can leverage prior knowledge present

in the source task. This approach has been effective in many applications, including

ASR [50] and natural language processing [148]. These two methods use the model

depicted in Figure 7.1.

Both these methods are compared to the recently introduced progressive neural
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Figure 7.2: Progressive Neural Network (ProgNet) used in the experiments. The ar-
rows represent dense connections between each layer. The black arrows show frozen
weights from the transferred representations. The number of outputs (N) varies de-
pending on the experiment.

networks (ProgNets) [176]. Instead of using learned parameters as a starting point for

training a model on a target task, ProgNets do the following: (1) freeze all parameters

of the old model; (2) add a new model that is initialized randomly; (3) add connections

between the old (frozen) model and the new model; (4) learn parameters of the new

model using backpropagation. ProgNets do not disrupt the learned information in

existing source tasks, which avoids the forgetting effect present in PT/FT [176]. The

ProgNet model is depicted in Figure 7.2.

In the construction of ProgNets, it is important to carefully select a method for

combining representations across network and to identify where these representations

will be combined. Adaptation layers can be included to transform from one task’s

representation to another. However, due to the small amount of data available for

training, I use ProgNets without adaptation layers. For the same reason, I simplify

the network by using an equal number of layers in each column and transfer the rep-
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Table 7.1: The hyperparameters used in the experiments.

Hyper-parameter Value
number of layers 4

layers width 256
hidden activation function sigmoid
output activation function softmax

dropout rate 0.5
learning rate 0.0005

maximum number of epochs 600

resentations between neighboring layers in a one-to-one fashion: the representations

produced at layer k from the frozen column is fed as an input to layer k + 1 of the

new column.

Table 7.1 shows the neural network parameters used by all experiments in this

chapter. These values were selected using a standard DNN without transfer learning

to determine the best structure suited to the data (Figure 7.1).

I report unweighted average recall (UAR) as the comparison measure. UAR is an

unweighted accuracy that gives the same weights to different classes and is a popular

metric for emotion recognition, used to account for unbalanced datasets [183]. I

evaluate the performance of the methods using a repeated ten-fold cross-validation

scheme, as used in [27]. The folds are stratified based on speaker ID. In each step of

cross-validation, one fold is used for testing, another is reserved for early stopping,

and the remaining eight folds are used for training. I repeat this evaluation scheme

ten times, resulting in ten UARs for each iteration. I calculate the mean and standard

deviation UAR within folds and report the mean of these statistics over all iterations.

I perform significance tests using a repeated cross-validation paired t-test with ten

degrees of freedom, as shown in [27], and note significance when p < 0.05.

61



7.5 Paralinguistic Experiments

7.5.1 Experimental Setup

In the first set of experiments, I investigate the effectiveness of transferring knowl-

edge from speaker or gender recognition to emotion recognition using the three meth-

ods mentioned above. In this section, I first report UAR of the systems on both

IEMOCAP and MSP-IMPROV. I analyze the learning curves to compare the con-

vergence behaviors of the systems. Prior work demonstrated that using the weights

of a pre-trained model to initialize a new model to be trained on a related task can

increase convergence speed [176].

7.5.2 Results

Table 7.2 summarizes the results obtained from speaker-emotion and gender-

emotion transfer learning. When transferring from speaker recognition to emotion

recognition, ProgNets significantly outperform both standard DNN (p = 2.6E-3)

and PT/FT (p = 2.0E-2) for IEMOCAP and both standard DNN (p = 8.8E-4) and

PT/FT (p = 1.2E-2) for MSP-IMPROV. The PT/FT system slightly outperforms the

standard DNN, but the improvement is not significant. This suggests that ProgNets

can efficiently incorporate representations learned by speaker recognition systems into

Table 7.2: Paralinguistic experimental results comparing different techniques for
transferring knowledge from speaker/gender to emotion. Mean and standard de-
viation UARs are given for each method. A cross shows a result is significantly better
than the other two methods for a given task, while an asterisk notes results signifi-
cantly better than a standard DNN. The mean within-fold standard deviations are
shown.

Source Method IEMOCAP MSP-IMPROV
N/A DNN 0.640±0.017 0.584±0.022

Speaker PT/FT 0.645±0.017 0.592±0.018
Speaker ProgNet 0.657±0.018∗† 0.605±0.021∗†

Gender PT/FT 0.640±0.016 0.586±0.021
Gender ProgNet 0.642±0.018 0.593±0.022∗
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(a) IEMOCAP (b) MSP-IMPROV

Figure 7.3: The learning curves of different methods when transferring representations
from speaker to emotion. The regions around each curve show the standard deviation
of the UARs found by averaging across the folds of each iteration.

emotion recognition ones, but PT/FT cannot leverage this knowledge as effectively.

The performance of transferring gender information using ProgNets is not con-

sistent between IEMOCAP and MSP-IMPROV. ProgNets significantly (p = 1.2E-2)

outperform the standard DNN when transferring knowledge from gender recognition

to emotion recognition in the case of MSP-IMPROV, but not IEMOCAP. I hypothe-

size that this is due to the stronger gender recognition performance on MSP-IMPROV.

Gender recognition UAR on MSP-IMPROV and IEMOCAP are 98.1% and 93.1%,

respectively. For both datasets, PT/FT is not effective at transferring gender infor-

mation and performs no better than the standard DNN.

Figure 7.3 shows learning curves of the three reported systems for the case of

transferring speaker knowledge to an emotion detection system. The figure shows that

the PT/FT system reaches its best solution faster than the other two methods. The

PT/FT system, however, achieves lower final performance than that of ProgNets. The

learning curves of both transfer learning systems start with a larger slope compared

to DNN. This slope vanishes quickly in PT/FT (after approximately 150 epochs), but

the slope for the ProgNet preserves a positive value up to approximately 400 epochs.

I hypothesize that this vanishing slope is due to PT/FT’s inability to effectively

incorporate representations learned for solving the source task.
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7.6 Cross-Dataset Experiments

7.6.1 Experimental Setup

In this set of experiments, I explore transfer learning as a way to improve emo-

tion recognition using an existing emotion model. In this experiment, the model is

trained on the source dataset and is then adapted (PT/FT and ProgNet) to the tar-

get dataset. The standard DNN is trained only on the target dataset. I examine

the impact of transfer learning when the target training data size is small by using

different subsets of the training folds: 8, 4, 2, and 1. Previous work has shown that

transferring knowledge from a large source data set to a smaller target datasets can

be beneficial [50]. The source model is always trained using the full source dataset

(all eight folds). I perform transfer learning by first treating IEMOCAP as the source

and MSP-IMPROV as the target and I reverse the source/target designations.

7.6.2 Results

Figure 7.4 shows a summary of the results when transferring across different cor-

pora. ProgNet significantly outperforms the standard DNN when transferring from

MSP-IMPROV to IEMOCAP for training fold sizes of 1 (p = 2.0E-3), 2 (p = 1.1E-

2), and 4 (p = 1.6E-2) and when transferring from IEMOCAP to MSP-IMPROV for

training fold sizes of 1 (p = 5.0E-3), 2 (p = 3.2E-2), and 8 (p = 3.6E-2). PT/FT only

achieves significant improvement versus the standard DNN baseline when transfer-

ring from MSP-IMPROV to IEMOCAP for training fold sizes of 1 (p = 7.1E-4) and

2 (p = 1.0E-2).

Because ProgNet has a larger number of weights to transfer knowledge, it is most

beneficial when the target dataset is larger, compared with PT/FT. I hypothesize

that this is what causes PT/FT to perform better in cases of smaller training fold

amounts (1 and 2) on a smaller target dataset (IEMOCAP). This indicates that in
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(a) Source: MSP-IMPROV; Target:
IEMOCAP

(b) Source: IEMOCAP; Target:
MSP-IMPROV

Figure 7.4: Cross-dataset experimental results under different amounts of training
folds used (out of 8 total available training folds). Each test is run for ten iterations
with different random folds to control for variations in selected data. All experiments
use emotion as the source and target label. The regions around each curve show the
standard deviation of the UARs found by averaging across the folds of each iteration.
Circles mark results that are statistically significantly better than DNN.

some cases of small data, PT/FT may still be the better choice. However, in cases

where the size of the target dataset is sufficient, ProgNet can effectively utilize the

previous task representation better than PT/FT.

7.7 Conclusion

Transfer learning provides a method for using additional paralinguistic data, such

as speaker ID, as well as a technique for combining models trained on different

datasets. This chapter demonstrates the usefulness of progressive neural networks

for this task. While pre-training a DNN on a source dataset has been previously

used for transferring knowledge between tasks, progressive neural networks provide

an alternative way of avoiding the forgetting effect by allowing the network to retain

representations learned for solving the original task. ProgNets significantly outper-

formed the standard DNN and PT/FT networks when transferring knowledge between

speaker identity and emotion. I also demonstrated that ProgNets can provide signif-

icant improvements for gender to emotion transfer tasks and dataset transfer tasks
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when compared to systems that do not utilize source information. This suggests the

importance of considering other factors including speaker, gender, and emotion for

improved speech emotion recognition.
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CHAPTER VIII

Emotion Recognition: Domain Generalization

8.1 Introduction

Speech emotion datasets are much smaller and less varied than their counterparts

in many other machine learning tasks, including automatic speech recognition (ASR)

[14]. As a result, even when an emotion model is successfully trained on one dataset,

it often fails when applied to another [185]. This has motivated researchers to explore

cross-corpus training methods to be able to utilize multiple datasets at once and to

create systems more robust to unseen data. Chapter VII addressed this by using

transfer learning to augment emotion with paralinguistic information and additional

datasets. In this chapter, I take a different approach by introducing and exploring

new methods for generalizing representations of speech for emotion by reducing the

effect of non-emotion factors differing across datasets.

Emotion is only one of several factors that impacts the acoustics of speech. Some

factors that change across datasets and can impact affect recognition include the

environmental noise [54], the spoken language [185], the recording device quality [75],

and the elicitation strategy (acted versus natural) [116]. Additionally, a mismatch

in subject demographics between datasets can result in misclassification, due to the

small numbers of participants common in speech emotion recognition datasets [14].

Early work in cross-corpus speech emotion recognition attempted to address these

67



differences with feature normalization [185, 224], sample selection [187], and decision

fusion [188]. Most modern techniques of cross-corpus speech emotion recognition use

deep learning to build representations over low-level acoustic features. Many of these

techniques incorporate tasks in addition to emotion to be able to learn more robust

representations [116, 161].

More recently, speech research has followed the popularization of adversarial meth-

ods, including Generative Adversarial Networks (GANs) [40, 80, 172, 179], Wasser-

steain GANS (WGANS) [16], and CycleGANs [110, 225, 226]. However, many of these

generative speech transfer models introduce noise, as explored by Kaneko et al. [110].

To get around this issue, some cross-corpus research has instead explored discrimina-

tive adversarial methods, including Adversarial Discriminative Domain Adaptation

(ADDA) [203] and Domain Adversarial Neural Networks (DANNs) [1, 5]. While

ADDA has seen effective application in image recognition [203], it has not yet been

successfully applied to speech emotion. This is likely because the target represen-

tation is learned independent of the output classifier and there is no guarantee that

a lower varying characteristic, like emotion, would be preserved. DANNs work by

using the GAN discriminator with the aim to ”unlearn” domain from a target repre-

sentation [5]. While this has been effectively applied to emotion, the authors note the

difficulty in getting the method to converge in certain cases [1]. All of these methods

are explained in greater detail in Section 8.2.

In this chapter, I investigate three models for speech emotion recognition across

datasets. My baseline model is a Convolutional Neural Network (CNN), which is

commonly employed in automatic speech emotion recognition [7, 106, 220]. CNNs

are able to learn temporal filters across features and distill an entire utterance down

into a static representation for more conventional fully connected layers to model.

However, this model does not explicitly capture the effects of dataset or incorpo-

rate unlabelled data. I introduce Adversarial Discriminative Domain Generalization
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(ADDoG) - a method for finding a more generalized intermediate representation for

speech emotion across datasets. The network implementation is similar to CNN,

except that an additional critic network is appended to the utterance-level represen-

tation layer. I adversarially train this network to iteratively move the different dataset

representations closer to one another. I demonstrate that this “meet in the middle”

approach always converges and improves upon previous, less stable, methods [1, 5].

Finally, I implement and explore Multiclass ADDoG, or MADDoG, which is able to

incorporate many datasets at a time and build an even more robust and generalized

representation.

I propose four sets of experiments to determine the effectiveness of the models

for cross-corpus testing under different conditions. My first experiment examines

the case of training on one dataset and testing on another, allowing ADDoG to also

incorporate the unlabelled test features for training. This mirrors the transductive

learning approach, seen in prior speech emotion work [194, 227]. I constrain the first

experiment to only consider datasets recorded in a laboratory environment. Experi-

ment 2 expands on this by introducing increasing amounts of labelled data available

from the target dataset. Experiment 3 explores the impact of training on a labo-

ratory dataset and testing on an in-the-wild dataset. I also look into incorporating

three total datasets into training simultaneously, and present MADDoG as especially

suited to this problem. Finally, Experiment 4 does the reverse of Experiment 3 and

investigates training on in-the-wild data and testing on more traditionally recorded

laboratory speech.

My results indicate that ADDoG consistently converges and is able to construct

a more generalized representation for cross-corpus testing. This affirms the iterative

“meet in the middle” approach to domain generalization. I find significant improve-

ments in performance versus the baseline systems in all experiments with no added

labelled target data. In addition to attaining higher performance, the ADDoG re-
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sults have lower variance across repeated experiments, indicating better stability,

when compared with CNN. Additional experiments show that ADDoG performs the

best in the majority of cases when labelled target data is available, especially when

the set is fairly small. However, the margin of improvement decreases with more

added target data, implying that there is a trade-off between building a generalized

model and specializing to the target domain. This trend holds true even with in-

the-wild target data, demonstrating the robustness of the ADDoG technique. I find

the improvement in performance to be at least as good as the benefit of doubling

the amount of labelled target data. Finally, I show that MADDoG is able to im-

prove further upon ADDoG when multiple source datasets are available by explicitly

modelling all dataset differences.

The novelty of this chapter’s work includes: (1) the ADDoG model, which allows

for better generalized representation convergence by “meeting in the middle”; (2)

the MADDoG method, which extends ADDoG to allow for many dataset differences

to be explicitly modelled; (3) an analysis of cross-corpus experiments where both

laboratory and in-the-wild data are trained and then tested on the other.

8.2 Related Works

Figure 8.1 gives a categorization of the main methods referenced in this chapter.

See Section 2.5 for other prior methods used in emotion recognition.

8.2.1 Adversarial Methods

With the introduction of Generative Adversarial Networks (GANs) [80], there has

been a large increase in the amount of adversarial methods for cross-corpus modelling.

GANs work by iteratively training a generator and a discriminator. The generator

aims to create data that matches a certain distribution of real examples from just a

random seed. The discriminator is trained to be able to tell apart these generated and
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CycleGAN [110, 225, 226]

DAA [53, 54]
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Figure 8.1: The main domain adaptation and domain generalization methods refer-
enced in this chapter, divided by generative and discriminative methods. Prior work
is listed with related citations and abbreviations defined in Section 8.2. Methods
introduced in this chapter are bolded and are explained in Section 8.5.

real examples. A well-trained discriminator can be used to improve the authenticity of

generated data by training a generator to fool the discriminator. To further expand on

GANs, Radford et al. introduced Deep Convolutional GANs (DCGANs) [172]. They

were able to improve convergence by using convolutions instead of fully connected

layers. Automatic speech emotion recognition has begun to take advantage of these

methods. Sahu et al. [179] explored how GANs could be used to augment utterance-

level features, while Chang et al. [40] used DCGANs to improve performance on

spectrograms.

The training of GANs can be unstable and relies on carefully tuned learning

rates and numbers of generator versus discriminator iterations for convergence [172].
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To address this issue, Arjovsky et al. introduced the Wasserstein GAN (WGAN)

and was able to improve the convergence of GANs with a few minor changes [16].

The discriminator is replaced with a critic by removing the sigmoid activation on the

output. Instead of trying to determine if examples are real or fake, like a discriminator,

it instead learns to approximate the Wasserstein, or earth-mover’s, distance between

the real and fake distributions. This allows the system to have less sensitivity to

over-training a discriminator, which often results in a saturated sigmoid function. It

accomplishes this by clipping the critic weights to small values every iteration. This

enforces the Lipschitz constraint and ensures that the output of the network does not

grow infinitely. Instead, the network can only increase the output by finding the most

succinct method of differentiating the real and fake examples. This allows a critic to

be trained for many iterations before training the generator, resulting in more reliable

gradients.

One of the first GAN-based methods to show promise for cross-domain applica-

tions was the CycleGAN by Zhu et al. [225]. This allowed for style transfer of images

by converting from the style of one domain to another, while preserving the over-

all structure. A CycleGAN consists of two DCGANs working in tandem to convert

from domain one to domain two and vice versa. Because CycleGANs can transfer in

both directions, they are able to be trained with an additional reconstruction term

that makes sure the overall structure of a transferred image is maintained. Zhu et

al. demonstrated that is was possible to augment a facial emotion dataset by using

CycleGANs to transfer between different emotions [226]. This allowed for training

with balanced classes by transferring all utterances to each class, regardless of the

original emotion. They found improved classification performance using this balacing

method. Kaneko et al. explored subject conversion for speech using CycleGANs with

some success, but found that there was still a large gap in quality for the real versus

transferred samples [110]. I was unable to find published work on CycleGANs for
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speech emotion recognition, possibly because of this lack of transfer quality.

To work around this transfer quality issue, some adversarial methods have in-

stead forgone generative methods for discriminative ones. For example, Tzeng et

al. explored the method Adversarial Discriminative Domain Adaptation (ADDA)

for transferring to a target domain [203]. In the first stage of learning, the source

domain data is encoded to an intermediate representation using a series of convolu-

tions. The representation is then passed through a classifier and both networks are

optimized based on the available labels. Next, a separate encoder is trained for the

target dataset, using a discriminator to ensure that the source and target represen-

tations are similar. Finally, the target encoder is appended to the classifier that was

trained on the source data and target predictions are output. This method produced

significantly better and more balanced class performance on cross-corpus testing of

numerical image datasets. However, this method makes the assumption that the rep-

resentation trained by the second encoder will still preserve structure meaningful to

the classifier.

8.2.2 Domain Generalization

Most of the prior cross-domain methods focus on transferring from one domain rep-

resentation to another (domain adaptation). Domain generalization instead focuses

on creating a middle-ground representation for all data [127]. Domain generalization

methods can be divided into generative methods (usually autoencoder based) and

discriminative methods.

One common method for finding a domain generalized representation is an autoen-

coder. Autoencoders work by converting the original features into a more compressed

representation using smaller layer sizes, sparsity, or other regularization methods.

Deng et al. examined the use of denoising autoencoders (DAAs) for cross-domain

speech emotion recognition [53, 54]. DAAs introduce noise to the input features and
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encourage the network to compress and reconstruct the features without the noise.

This allows for the intermediate representation to discover a more noise robust rep-

resentation that can work well across domains. Further work has examined different

variations of autoencoders for speech emotion recognition, including Variational Au-

toencoders (VAE) [57, 123], Adversarial Autoencoders (AAE) [57, 127, 180], and

Adversarial Variational Bayes (AVB) [57].

Another method that does not rely on autoencoders is Domain Adversarial Neural

Networks (DANNs), introduced by Ajakan et al. [5]. DANNs have three main compo-

nents: (1) feature extractor; (2) label classifier; (3) domain classifier. The input data

is passed through the feature extraction layers. The representation is then fed to both

the emotion classifier and the domain classifier. However, unlike multitask learning,

where the domain is just another task, a reversal gradient layer is applied to the input

of the domain classifier. This results in the network backpropagating a gradient to

correctly classify the label but to incorrectly classify the domain, generalizing the

intermediate representation. Abdelwahab et al. successfully applied this method to

cross-corpus speech emotion recognition and showed significant improvement versus

a model trained on the source dataset alone [1].

8.2.3 Transductive Learning

Another cross-domain framework that has been effectively applied within the

speech emotion community is transductive learning. Traditional inductive learning

first learns a model and then makes predictions on unseen data. Transductive learn-

ing instead aims to make predictions on a set of test data known in advance [157].

Because of this, it is possible to incorporate the unlabelled test data into the training

procedure. Zong et al. explored an extension of linear discriminate analysis (LDA) for

improving cross-corpus emotion recognition from speech [227]. Their method, called

sparse transductive transfer LDA, or STTLDA, achieved significant improvement over
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SVM. Further work by Song et al. demonstrated another extension of LDA, Transfer

Supervised Linear Subspace Learning (TSLSL), which again provided improvement

for speech emotion within the transductive framework [194].

8.2.4 Open Challenges

While many papers have explored cross-corpus speech emotion recognition, there

are many challenges remaining for the field. Adversarial methods, led by CycleGANs

[225], have shown promise for directly converting speech between datasets. Once

all utterances are converted to one domain, the differences should no longer need

to be considered during further modelling. However, there is much noise introduced

in the output, making this currently impractical [110]. Other generative methods,

such as autoencoders and their many variants, get around this by instead just using

the intermediate representation for classification. Yet, it is unclear that compressing

the representation preserves the emotion component of the signal, particularly given

emotion’s relatively slowly varying nature. In fact, prior work has shown that when

the speech signal is compressed, the emotion content can be lost (e.g., Principal

Component Analysis (PCA) [30, 117]).

Other discriminative methods have been introduced to avoid these issues, includ-

ing ADDA [203] and DANN [1]. ADDA relies on training a feature transformation

for the target dataset to match the mid-level representation for the source dataset.

Yet, again, there is no guarantee that this transformation will preserve the emotion

information present in the original example because the emotion classifier is trained

separately. This is related to a well known issue with GANs, known as mode col-

lapse, which results in the generator converging to just a few convincing examples,

regardless of the input [16]. Additionally, emotion is less likely to be preserved when

simply matching representation distributions, due to its relatively lower variability

when compared with the entire speech signal (again, see the issues with emotion and
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PCA [30, 117]). The DANN method improves on this by relying on a shared feature

representation [5]. However, the researchers noted that DANN had issues converging

on certain sets of parameters when training on speech emotion [1]. This could be due

to the fact that DANNs attempt to “unlearn” domain, producing an unclear gradi-

ent. Finally, along with most other previously referenced papers in speech emotion

recognition, the demonstration was on laboratory recorded datasets (IEMOCAP and

MSP-Improv) rather than in-the-wild corpora. Further work is needed to incorporate

more datasets simultaneously to improve generalization, as well as an exploration of

the challenges of working with in-the-wild data.

8.3 Datasets

In this work, I use all emotion datasets explained in Chapter IV, including IEMO-

CAP [31], MSP-IMPROV [32], and PRIORI Emotion [115]. The PRIORI Emotion

dataset is downsampled, selecting segments for which all assigned annotators were

able to provide a rating, resulting in a dataset with 11,402 utterances over 21.7 hours.

Table 8.1 gives a summary of the characteristics of each of the included datasets. Each

of the datasets are segmented and rated on a dimensional scale for valence and acti-

vation by multiple annotators. I use these dimensional ratings for emotion, instead

of discrete classes (as in Chapter VII), as I hypothesize they are more consistently

interpretable across datasets [175]. Further, I focus only on valence in this study,

as my preliminary experiments did not show a benefit to domain generalization for

activation.

I follow the method similar to [40] and [8] to convert the dataset annotator ratings

into a three bin vector for soft classification. The middle bin consists of valence ratings

equal to 3 for IEMOCAP and MSP-Improv and 5 for PRIORI Emotion. The other

two bins are valence ratings that fall below or above this midpoint. Each vector

is formed by counting each of the ratings belonging to the bins. These counts are
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Table 8.1: Summary of Emotion Datasets

IEMOCAP MSP-Improv PRIORI Emotion
Subjects 10 12 12

Male 5 6 5
Female 5 6 7

Environment Laboratory Laboratory Cell Phone Calls

Sample Rate 16 kHz 44.1 kHz 8 kHz

Valence Scale 1 - 5 1 - 5 1 - 9
Mean 2.79 3.02 4.86
Std. 0.99 1.06 1.12

Hours 12.4 9.6 21.7
Without Ties 8.6 8.9 16.4

Utterances 10039 8438 11402
Without Ties 6816 7852 8685
Low Valence 3181 2160 2809
Mid Valence 1641 2961 4779
High Valence 1994 2731 1097

Utterance Len.
Mean (sec.) 4.5 4.1 6.8
Std. (sec.) 3.1 2.9 4.4

then divided by the total number of ratings so that the vector sums to one. For

example, if three IEMOCAP annotators gave the ratings of 3, 4, and 5, the soft

vector representation would be [0.0, 0.33, 0.66]. However, unlike [8], I do not include

utterances with no clear majority bin to make the analysis more straightforward.

This matches other speech emotion work that only used majority agreement [168].

Additionally, this corresponds with the finding by Schuller et al. that prototypical

examples are more useful for cross-corpus speech emotion recognition [187].

The IEMOCAP dataset includes 3,181, 1,641, and 1,994 low, medium, and high

valence utterances, respectively. The MSP-Improv dataset includes 2,160 low, 2,961

middle, and 2,731 high valence utterances. The PRIORI dataset includes 2,809 low,

4,779 middle, and 1,097 high valence utterances.
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8.4 Features

I downsample the audio between datasets to match. For experiments involving

just IEMOCAP and MSP-Improv the sample rate is 16 kHz. If PRIORI data are

involved then all data are downsampled to 8 kHz. The audio is then normalized to

0dB FSD using the SoX command line tool [196]. I then extract 40 dimensional Mel

Filter Banks (MFBs) using the Kaldi speech recognition toolkit [167]. The default

options are used - a povey window with frame length of 25 ms, frame shift of 10 ms,

preemphasis coefficient of 0.97, low cutoff of 20 Hz, and outputting log filterbanks.

Because this produces features of different lengths for each utterance, batches have

their MFBs padded by zeros to the length of the longest utterance.

8.5 Classification Models

In this section, I present the three different classification models used in this

chapter: a simple Convolutional Neural Network (CNN), Adversarial Discriminative

Domain Generalization (ADDoG), and Multiclass ADDoG (MADDoG), which is an

extension of ADDoG that allows for more than one source dataset. All models con-

sider MFBs as the input feature set and valence binned into a three dimensional vector

as the output task. Each experiment will consist of labelled data from a source dataset

(SRC) and data from a target dataset (TAR), some of which is labelled and some is

not. TAR contains the test data and is available at train time without labels (trans-

ductive learning). The baseline CNN method is able to take advantage of the labelled

data from all datasets, but does not use unlabelled data. Both ADDoG and MAD-

DoG take advantage of the unlabelled test data to generalize the intermediate feature

representation across datasets. In all methods, I use the Adam optimizer [118] with

default parameters (α = 0.0001, β1 = 0.9, β2 = 0.999). All models described below

are implemented in PyTorch version 0.4.0 [162].
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8.5.1 CNN

Convolutional Neural Networks (CNN) have seen much success in speech emotion

recognition [7, 106, 220]. Figure 8.2 shows my CNN implementation. It consists of

two main components: (1) the feature encoder (convolutions + max pooling); (2) the

emotion classifier (fully connected layers + softmax).

It is difficult to validate multiple sets of hyperparameters when conducting cross-

dataset experiments, due to the lack of labelled data in the target domain. For this

reason, I select hyperparameters based on those found to be commonly selected in

prior work and keep them constant for all experiments. A channel size of 128 is used

for all convolutional and fully connected layers, as commonly selected in prior work

[113, 220]. ReLU is used as the activation function for all but the final layer, as it has

been show successful in the field and is computationally efficient [66, 220]. I select a

relatively large kernel size of 15 for the first convolutional layer, as previous work has

shown large initial layers to be beneficial to emotion recognition using MFBs [7, 220].

I apply an additional convolutional layer of length 5 dilated by a factor of 2 to further

extend the receptive field of the network. The global maximum is then taken over

this convolution output, resulting in an encoded representation of 128 for the entire

utterance. Previous work has shown that this is sufficient for recognizing emotion

over short utterances [7, 220]. Dropout (p=0.2) is then applied to help prevent over-

fitting. I next add three fully connected layers, with the final having three outputs for

each of the valence bins, as in [8]. Finally, a softmax layer is applied, allowing for the

output to be viewed as the probability distribution of valence. Biases are not used

for any layers. Coupled with the ReLU activation and max pooling, this minimizes

the effect of zero padding shorter utterances.

While older work in deep learning pretrained using autoencoders with unlabelled

data, this has mostly subsided with the introduction of the ReLU activation, dropout,

better initialization techniques, and larger datasets [78]. Because of this, the CNN
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Figure 8.2: Convolutional Neural Network (CNN). Consists of two main parts: (1)
feature encoder; (2) emotion classifier. The feature encoder uses a set of convolutions
and global pooling to create a 128-dimensional utterance level representation. The
emotion classifier then uses fully connected layers and a softmax layer to output the
three bin valence probability distribution.

model does not use the unlabelled data, and only the labelled data from both SRC

and TAR is used during training. Each epoch is divided into a total number of

batches equal to the amount of labelled data divided by the batch size. After the

MFBs are propagated through the network, I calculate loss using a weighted cross

entropy measure. The classes are weighted so that all valence bins are given equal

likelihood, regardless of class imbalance.

8.5.2 ADDoG

I introduce Adversarial Discriminative Domain Generalization (ADDoG), which

addresses the open challenges of producing a generalized dataset representation using

unlabelled target data, while still being able to consistently converge. Similar to CNN,

it builds an intermediate 128-dimensional encoding of the utterances after global max

pooling and dropout. However, in the case of ADDoG, there is a critic component,

as in WGANs [16], that encourages the representations of the different datasets to

be as close as possible. Unlike ADDA [203], the emotion classifier and database
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Figure 8.3: Adversarial Discriminative Domain Generalization (ADDoG) Network.
Consists of three main parts: (1) the feature encoder; (2) emotion classifier; (3) critic.
The critic learns to estimate the earth mover’s or Wasserstein distance between the
SRC and TAR dataset encoded feature representations. The emotion classifier ensures
that valence is also preserved in the generalized representation.

critic are iteratively trained, ensuring the presence of emotion in the intermediate

representation. I hypothesize that this creates a more generalized representation of

emotion that will perform better across datasets, compared with CNN. This is because

the representation will remove unrelated information that could mislead the emotion

classifier (environment noise, microphone quality, subject demographics). Figure 8.3

shows the network structure of ADDoG. It consists of three main components: (1)

the feature encoder (convolutions + max pooling); (2) the emotion classifier (fully

connected layers + softmax); (3) the critic (fully connected layers + linear output).

The ADDoG hyperparameters are identical to those used in CNN. The critic

network follows the same structure and hyperparameters as the emotion classifier.

The only difference is that the critic is a linear activation instead of a softmax layer

[16]. The training of the ADDoG network follows Algorithm 1 during each epoch.

The number of training iterations per epoch is equal to the number of utterances in

SRC divided by the batch size. Each iteration is divided into two main phases: (1)
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training the critic; (2) training the feature encoder and emotion classifier.

Training the critic: I freeze the weights in the feature encoder and emotion

classifier. First, unlabelled batches are sampled from SRC and TAR. Next, the MFBs

are passed through the feature encoder to get the intermediate representations. These

intermediate representations are then passed to the critic. I calculate the loss by

subtracting the mean TAR output from the mean SRC output. I use the Adam

optimizer on the critic weights with this loss to encourage TAR outputs to be as large

as possible and SRC outputs to be as small as possible, estimating the Wasserstein, or

earth mover’s, distance [16]. The critic weights are then clipped to a range between

-0.01 and 0.01, as in [16], to keep the outputs from growing infinitely. This critic

training process is repeated five times to fully converge the critic before training the

other systems, as in the original WGAN paper.

Training the feature encoder and emotion classifier: I freeze the critic

weights. Next, I sample batches from SRC, TAR, and the subset of TAR that is

labelled (if any). I then pass the MFBs through the entire network, getting outputs

from the emotion classifier and the critic. As in the CNN training method, I calculate

the emotion loss by weighted cross entropy using the SRC and labelled TAR sets. I

add an additional term to the loss function for the critic that aims to move the dataset

representations closer to one another. This is calculated by subtracting the mean SRC

output from the mean TAR output, inverting the Wasserstein distance.

This training procedure iteratively moves the two dataset representations closer

to one another, while following a clear gradient at each step. In contrast, DANNs

[5] attempt to make a more generalized representation by “unlearning” domain. I

attempted to implement DANN for my preliminary cross-corpus experiments, but

had issues with getting the results to converge, as alluded to in [1]. My method of

ADDoG gets around this by having a clear target at each step to ”meet in the middle”

and also utilizes the Wasserstein distance instead of a traditional discriminator.
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Algorithm 1 Train ADDoG for one epoch. I use the default values of ncritic = 5, c =
0.01,m = 32, α = 0.0001, β1 = 0.9, β2 = 0.999

Require: The number of critic iterations per generator/classifier iteration ncritic, the
critic clipping range c, the batch size m, Adam hyperparameters α, β1, β2.

Require: Generator parameters φ, critic parameters ψ, emotion classifier parameters
θ.

Require: Emotion class weights for SRC Sw, emotion class weights for labelled TAR
Lw

1: n← (Number of SRC samples) / m
2: for batch = 1, ..., n do
3: for t = 1, ..., ncritic do
4: Sample {S(i)

X }mi=1 a batch from SRC data

5: Sample {T (i)
X }mi=1 a batch from TAR data

6: SR ← Gφ(SX) . Encoded SRC
7: TR ← Gφ(TX) . Encoded TAR

8: loss← 1
m

∑m
i=1Cψ(S

(i)
R )− 1

m

∑m
i=1Cψ(T

(i)
R )

9: ψ ←Adam(∆ψ[loss], ψ, α, β1, β2)
10: ψ ← clip(ψ,−c, c) . Clip critic weights
11: end for
12: Sample {S(i)

X , S
(i)
y }mi=1 a batch from SRC data

13: Sample {T (i)
X }mi=1 a batch from all TAR

14: Sample {L(i)
X , L

(i)
y }mi=1 a batch from labelled TAR

15: SR ← Gφ(SX) . Encoded SRC
16: TR ← Gφ(TX) . Encoded TAR
17: LR ← Gφ(LX) . Encoded labelled TAR

18: lossC ← 1
m

∑m
i=1Cψ(T

(i)
R )− 1

m

∑m
i=1Cψ(S

(i)
R )

19: lossE ← − 1
m

∑m
i=1 S

(i)
y × log(Eθ(S

(i)
R ))× Sw

− 1
m

∑m
i=1 L

(i)
y × log(Eθ(L

(i)
R ))× Lw

20: φ←Adam(∆φ[lossC + lossE], φ, α, β1, β2)
21: θ ←Adam(∆θ[lossE], θ, α, β1, β2)
22: end for
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8.5.3 MADDoG

Multiclass Adversarial Discriminative Domain Generalization (MADDoG) expands

the ADDoG algorithm to allow for more than two datasets. The MADDoG network

structure is identical to ADDoG (Figure 8.3) except the critic has an output for each

dataset instead of a single output. This allows for the method to account for the

differences between all datasets while learning the representation. In contrast, AD-

DoG requires datasets to be grouped into target and source sets, not considering the

differences within the sets.

The training of the MADDoG network follows Algorithm 2 during each epoch.

The number of training iterations per epoch is equal to the number of utterances in

SRC and TAR divided by the batch size. This is because data are drawn from all

datasets simultaneously when training the critic instead of each separately. As in

ADDoG, each iteration is divided into two main phases: (1) training the critic; (2)

training the feature encoder and emotion classifier.

Training the critic: Training the critic is similar to ADDoG and begins with

freezing the weights in the feature encoder and emotion classifier. One unlabelled

batch is sampled from the combined SRC and TAR sets. The MFBs are then passed

through the network to get the critic outputs, which are then modified as follows:

1. I calculate the proportion of each dataset versus the occurrence of all other

datasets.

2. For each utterance in the batch, I flip the critic output corresponding to its

dataset and multiply it by the previously calculated one-versus-all weight.

This makes each critic output a one-versus-all dataset critic and weights each of them

so that samples from inside and outside the dataset are given equal total weight. The

critic loss is calculated as the mean of the critic outputs, causing all of them to trend

smaller. However, because the within dataset output is flipped, it is encouraged to
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Algorithm 2 Train MADDoG for one epoch. I use the default values of ncritic =
5, c = 0.01,m = 32, α = 0.0001, β1 = 0.9, β2 = 0.999, λ = 0.1

Require: The number of critic iterations per generator/classifier iteration ncritic, the
critic clipping range c, the batch size m, Adam hyperparameters α, β1, β2, the
dataset generalization parameter λ.

Require: Generator parameters φ, critic parameters ψ, emotion classifier parameters
θ.

Require: Emotion class weights for SRC Sw, emotion class weights for labelled TAR
Lw, dataset one-versus-all weights DSw

1: n← (Number of SRC and TAR samples) / m
2: for batch = 1, ..., n do
3: for t = 1, ..., ncritic do
4: Sample {X(i), ds(i)}mi=1 a batch from all data
5: R← Gφ(X) . Encoded data
6: D ← Cψ(R) . Get the 3 outputs of critic

7: D(:,ds) ← D(:,ds) ×−DS(ds)
w

8: loss← 1
m

1
3

∑m
i=1

∑3
j=1D

(i,j)

9: ψ ←Adam(∆ψ[loss], ψ, α, β1, β2)
10: ψ ← clip(ψ,−c, c) . Clip critic weights
11: end for
12: Sample {S(i)

X , S
(i)
y , S

(i)
ds }mi=1 a batch from SRC data

13: Sample {T (i)
X , T

(i)
ds }mi=1 a batch from all TAR

14: Sample {L(i)
X , L

(i)
y }mi=1 a batch from labelled TAR

15: SR ← Gφ(SX) . Encoded SRC
16: TR ← Gφ(TX) . Encoded TAR
17: LR ← Gφ(LX) . Encoded labelled TAR

18: lossC ← 1
m

∑m
i=1Cψ(T

(i)
R )× T (i)

ds

+ 1
m

∑m
i=1Cψ(S

(i)
R )× S(i)

ds

19: lossE ← − 1
m

∑m
i=1 S

(i)
y × log(Eθ(S

(i)
R ))× Sw

− 1
m

∑m
i=1 L

(i)
y × log(Eθ(L

(i)
R ))× Lw

20: φ←Adam(∆φ[λ× lossC + lossE], φ, α, β1, β2)
21: θ ←Adam(∆θ[lossE], θ, α, β1, β2)
22: end for
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be larger. The critic loss estimates the one-versus-all Wasserstein distance for each

dataset. As in ADDoG, the critic weights are clipped between -0.01 and 0.01 and the

whole process is repeated five times.

Training the feature encoder and emotion classifier: The critic weights are

first frozen. I then sample batches from SRC, TAR, and the subset of TAR that is

labelled (if any). The MFBs are passed through the network, providing the emotion

classifier and critic outputs. I calculate the emotion loss as before, using weighted

cross entropy over the SRC and labelled TAR sets. For each utterance, the contri-

bution to the critic loss is the critic output from the same dataset as the utterance

(ignoring the other outputs). This encourages the one-versus-all Wasserstein distance

to be reduced and the dataset to start looking like the others. Because this results

in a more complex learning procedure than before, in practice I need to provide a

weighting parameter λ=0.1 (found in preliminary experiments) to allow for the rep-

resentation to converge. The total loss is the emotion loss added to the critic loss

times λ.

The novelty of MADDoG is its ability to incorporate multiple datasets into its

generalization procedure while still maintaining a clearly defined target (the other

datasets) at each step. This creates cross-dataset representations that become more

similar as the system is trained and that continue to encode the emotion information

in the signal. As long as a sufficiently small learning rate is used, the intermediate

dataset representations should converge somewhere in the middle. If instead, SRC

datasets were considered as a group, the training procedure would not do anything to

generalize between the SRC datasets. MADDoG considers these differences to enforce

a more generalized representation that allows for better cross-corpus performance.
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8.6 Experimental Design

I design four sets of experiments to examine different types of cross-dataset emo-

tion classification. Each experiment examines the effect of the inclusion or absence of

labelled data in the target dataset. The final two experiments focus on incorporating

both laboratory and in-the-wild datasets.

All experiments begin by dividing the data into three folds: train, validation, and

test. I run each experiment for 30 epochs, recording validation performance and test

set predictions at each step. In this chapter, I use Unweighted Average Recall (UAR)

as the performance metric. This ensures that each valence class is given equal weight,

despite possible imbalance, and results in a chance performance of 0.33 UAR. Once

an experiment is complete, I record test predictions from the highest validation epoch

to prevent overfitting and calculate the UAR for each test subject. Each experiment

is repeated a total ten times (fifty times for Experiment 1, Section 8.6.1), resulting in

a final performance matrix of size (Number of Repeats × Number of Subjects). Folds

are kept consistent between different methods so that these performance matrices can

be compared. These experiments were split between two machines with GPUs - one

with four GeForce GTX 1080s and another with one GeForce GTX 1080 and two

Titan X’s.

8.6.1 Experiment 1: Cross-Dataset

I determine the effect of training and testing on different datasets when labelled

data is unavailable in the target dataset. Additionally, I constrain this initial ex-

periment to only consider data from similar environments - using IEMOCAP and

MSP-Improv, which were both recorded in a laboratory. I form the train and val-

idation sets by splitting the SRC data randomly on a 80:20 split, respectively. In

this experiment, I compare the effectiveness of a CNN versus ADDoG, which uses

the unlabelled test data in the training process to learn a more generalized represen-
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tation for emotion. I run each experiment for 50 total repeats, so that I get enough

per-epoch data to perform a convergence analysis.

8.6.2 Experiment 2: Increasing Target Labels

The next experiment augments the training data with varying amounts of labelled

examples from TAR. This experiment continues focusing on the laboratory recorded

datasets IEMOCAP and MSP-improv. I train the network with 0, 200, 400, 800,

1,600, and 3,200 labelled TAR utterances, in addition to the labelled SRC utterances

and unlabelled test utterances.

I follow the fold scheme shown in Figure 8.4 to get test predictions for all utterances

in TAR. The number of SRC utterances and test utterances is kept constant through

all experiments. SRC utterances are only used in the train set, unless no labelled

TAR data is available. In that case, the SRC data follows a random 80:20 split

between train and validation, as in Experiment 1. I split the TAR data randomly

in half to allow for some labelled data for training, while reserving the other half for

testing. If labelled data is used for an experiment, these samples are drawn from

one of the halves and split 80:20 between the train and validation sets. Figure 8.4

depicts the case of having 200 labelled TAR utterances, resulting in a validation set

of 40 labelled TAR and a train set including 160 labelled TAR and all of SRC. The

remaining TAR data in the fold is discarded so the amount of unlabelled data is kept

constant. This procedure results in test predictions for half of TAR. The TAR folds

are then swapped, a new model is trained, and test predictions on the other half are

output. Finally, I calculate the UARs for each subject in TAR using the concatenated

predictions.

ADDoG is able to use the unlabelled test data along with the labelled SRC and

TAR data during training for learning a more generalized dataset representation.

The baseline CNN method is provided labelled data from both SRC and TAR when
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Figure 8.4: Folds used for Experiments 2, 3, and 4 when 200 labelled TAR are
available. The SRC set is always used as part of the train set. The TAR set is split
in half - part for testing and part for randomly sampling the 200 labelled TAR. The
TAR data not selected in Fold 2 is discarded. After getting test predictions, the TAR
folds are swapped and the process is repeated.

available. I also introduce another baseline method that specializes (SP) on the

available labelled target data. SP uses the same network and training procedure as

CNN, but only uses labelled TAR. Because of this, it is unable to be trained when 0

labelled TAR utterances are provided. I run this an all other experiments using 10

total repeats.

8.6.3 Experiment 3: To In-the-Wild Data

I next examine the effect of training on a laboratory recorded dataset (IEMOCAP

and/or MSP-Improv) and testing on emotion in-the-wild (PRIORI Emotion). I ex-

pect this experiment to be more difficult than the previous two, due to the difference

in recording environment (combining lab and cellphone call), recording quality (pre-

viously 16 kHz, now 8 kHz), and elicitation strategy (combining acted and natural

conversation). I examine the effect of training on IEMOCAP or MSP-Improv alone,

as well as training on them together. Each test follows the same procedure as Ex-

periment 2, using the folds seen in Figure 8.4. I again compare the CNN, SP, and

ADDoG methods. The experiment combining IEMOCAP and MSP-Improv training
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data also employs the MADDoG method to take advantage of all three datasets.

8.6.4 Experiment 4: From In-the-Wild Data

My final experiment examines the reverse of Experiment 3 - training on in-the-wild

data (PRIORI Emotion) and testing on laboratory recorded emotion (IEMOCAP or

MSP-Improv). The experiment follows the same strategy as Experiment 2, using the

fold scheme seen in Figure 8.4. I use the CNN, SP, and ADDoG models. Unlike

Experiment 3, MADDoG is not used, as PRIORI Emotion is the only dataset used

for training.

8.7 Results

In all of the presented UARs, errors are calculated by first taking the mean subject

UAR within each repeat of an experiment. The reported errors are the standard

deviation of these means across all repeats, showing the stability of the findings.

Matplotlib [107] was used to generate all result plots with the error shown as shaded

error bands. Significance is determined using an analysis of variance in R [170] over

the matrix of subject UARs output by the compared methods, as explained in Section

8.6. Significant results in each experiment are indicated by dots on the plots and/or

bolded and starred values in the tables.

8.7.1 Experiment 1: Cross-Dataset

Table 8.2 shows the results of using IEMOCAP as SRC and MSP-Improv as TAR,

as well as the reverse experiment. Two different methods are compared, including the

Table 8.2: Experiment 1 Results

MSP-Improv to IEMOCAP IEMOCAP to MSP-Improv
CNN 0.439±0.022 0.432±0.012

ADDoG 0.474±0.009* 0.444±0.007*
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Figure 8.5: The test set mean subject UAR at different epochs when training on one
dataset and testing on another. In particular, Figure 8.5a demonstrates how ADDoG
reduces the variance of the output, improving cross-corpus testing, regardless of the
mismatched validation set.

CNN, which is trained only using the SRC data, and ADDoG, which is additionally

trained using the unlabelled TAR data, creating a more generalized intermediate

representation. I find that ADDoG significantly outperforms CNN in both cases,

implying that a more generalized representation can be used to improve cross-corpus

testing without added labelled data.

In addition, I note that the standard deviation across experiment repeats is much

lower for ADDoG versus CNN. This can also be seen in the convergence of results, as

seen in Figure 8.5. Figure 8.5a in particular shows ADDA with a much smaller error

at each epoch, compared with CNN. This is especially important for cross-corpus

testing where labelled data is not available in the target dataset for validation. Using

SRC data for validation is necessary in these experiments, but can still be unreliable,

due to the mismatch. This may be less of a problem for ADDoG because of the results

stability, contributing to the overall better performance.
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Figure 8.6: Results of training on either IEMOCAP or MSP-Improv and testing
on the other with increasing amounts of labels from the target dataset. Dots indi-
cate methods significantly different from ADDoG using an analysis of variance in R
(p=0.05).

8.7.2 Experiment 2: Increasing Target Labels

Figure 8.6 shows the results for Experiment 2, when I begin to incorporate labelled

TAR data into the training and validation methodology. The left most point on both

plots is the case when only unlabelled TAR data is available. This is slightly different

than Experiment 1, as only half the amount of unlabelled data is available due to

the fold structure shown in Figure 8.4. I find that ADDoG significantly improves

on the baseline method in all cases, although the margin of improvement decreases

with larger amounts of labelled target data. This may indicate that generalizing the

representation may have diminishing returns once there is sufficient labelled data in

the target domain. However, coupling even a small amount of labelled data and

ADDoG results in significant improvement over baseline methods.

Adding labelled data to the ADDoG method increases its performance in all but

one case - training on MSP-Improv and testing on IEMOCAP with only 200 labelled

IEMOCAP utterances. While still significantly better than CNN and SP with the

same amount of labelled data, better performance is actually attained using ADDoG

without labelled IEMOCAP data. This could be due to the relatively small validation
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set, only consisting of 20% of the labelled data, or 40 utterances. This may not

provide a reliable enough estimate of test performance, resulting in the larger error

band around the result. It may be better to instead incorporate some additional SRC

data in validation when very small amounts of TAR data are only available.

I also find that the SP method begins to outperform the CNN method when

training on IEMOCAP and testing on MSP-Improv once a large amount of MSP-

Improv labelled data is included. This may imply that appending SRC data to TAR

data only complicates the training when not considering the effect of dataset. This

is even more apparent when considering very different datasets, as seen in the next

section.

8.7.3 Experiment 3: To In-the-Wild Data

The results of Experiment 3 are shown Figure 8.7. Experiment 3 considers the

effect of training on a laboratory recorded data (IEMOCAP and/or MSP-Improv)

and testing on an in-the-wild set (PRIORI Emotion). Because all experiments use

the same test set, the y-axis (UAR) range is kept constant. The SP results are the

same between all figures, as it does not rely on the SRC data.

The first two figures 8.7a and 8.7b examine the case where just one laboratory

dataset is used to train the model. I find much lower performance than prior exper-

iments, due to the mismatch in recording conditions and elicitation strategy (acted

versus a natural phone conversation). Combining SRC and TAR data together with

the CNN method entirely fails, with the results consistently being the worst, due to

the extreme mismatch. However, ADDoG is still able to provide a significant im-

provement in performance when none or a small amount (800 or fewer) of labelled

TAR utterances are used. For these experiments with smaller labelled TAR data,

the advantage of using ADDoG is similar to that attained by doubling the amount of

labelled TAR data. However, this trend is broken with larger amount of labelled TAR
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Figure 8.7: Results of training on IEMOCAP and/or MSP-Improv and testing on
PRIORI Emotion with increasing amounts of labels from PRIORI Emotion. Dots
indicate methods significantly different from ADDoG in (a) and (b) and MADDoG
in (c) using an analysis of variance in R (p=0.05).

data where ADDoG no longer performs better and is in one case significantly worse

(IEMOCAP to PRIORI, 3200 labelled samples). Due to the mismatch in dataset, it

is better to specialize a model to the dataset characteristics, instead of generalizing,

once a certain critical mass is attained. Both CNN and ADDoG perform slightly bet-

ter when trained with MSP-Improv data, implying that it may be the more similar of

the two datasets to PRIORI Emotion. This could potentially be due to the included

more natural speech in the MSP-Improv dataset recorded in between scenarios.

Figure 8.7c shows the results for the last case where IEMOCAP and MSP-Improv

are both simultaneously considered as SRC datasets. Despite the added data, the
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CNN method is unable to perform better than with just MSP-Improv data, implying

that the additional dataset is just confusing the classifier. The ADDoG classifier

is able to take advantage of the additional data to at least perform the same as, if

not better than, the MSP-Improv ADDoG method. While the method is not hurt

by the addition of IEMOCAP, in most cases it does not help. However, MADDoG

performs better than all methods using labelled data (significantly in all cases but

ADDoG with 200 samples). This is likely due to the fact that it is able to effectively

integrate together information from all datasets and come up with an even more

generalized representation. ADDoG still seems to perform significantly better in the

case where there is no labelled TAR data. Perhaps the labels from the other two

datasets dominate the representation when none are available for MADDoG.

8.7.4 Experiment 4: From In-the-Wild Data

Because of my success in generalizing a representation across laboratory and in-

the-wild datasets, I was interested in cross-corpus testing in the reverse direction.

Figure 8.8 shows the results when training on PRIORI Emotion and testing on ei-

ther IEMOCAP or MSP-Improv. In these experiments I just use the CNN, SP,

and ADDoG methods, as there is only one SRC dataset included, making MAD-

DoG unnecessary. My results again show that the CNN method performs the worst,

demonstrating that appending together datasets does not work effectively when the

datasets are too different. ADDoG also behaves similarly to Experiment 3 with signif-

icant improvements in most cases without labelled data or small amounts of labelled

data. SP has similar or better performance than ADDoG once a substantial amount

of labelled TAR data is available, implying that a method that trades off between

generalization and specialization may instead be needed in these cases.
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Figure 8.8: Results of training on PRIORI Emotion and testing on another dataset
with increasing amounts of labels from the target dataset. Dots indicate methods
significantly different from ADDoG using an analysis of variance in R (p=0.05).

8.8 Discussion and Conclusion

In this chapter, I investigate methods of controlling for the unwanted factors

of variation when conducting cross-corpus experiments. These factors can include

environmental noise, recording device differences, elicitation strategies (acted versus

natural), and subject demographics. In cross-corpus speech emotion recognition,

these factors can distract from the underlying emotion and decrease performance,

especially because of the often smaller dataset sizes.

I introduce two new methods, ADDoG and MADDoG, which aim to generalize

the representation of speech emotion across datasets. Both methods iteratively move

their dataset representations closer to one another and have a clearly defined target at

each step, following a “meet in the middle” approach. Experiments 1 and 2 focus on

more traditional laboratory datasets to introduce the models and explore convergence.

Experiments 3 and 4 take advantage of the PRIORI Emotion Dataset to examine the

effect of training with in-the-wild data. Experiment 3 also explores training with

three simultaneous datasets using the MADDoG method.

My results indicate that ADDoG is able to consistently converge and produce a

more generalized representation across datasets, even when no labelled target data is
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available. Significant improvement is found with no added labelled data in all four

experiments, regardless of the number of datasets or whether they are laboratory

or in-the-wild recordings. These results reinforce the idea that the ”meeting in the

middle” approach of ADDoG can reach the same generalized representation as ”un-

learning”, seen with DANNs [1, 5]. However, convergence of the algorithm is easier to

attain because of the more straightforward training paradigm. This generalized rep-

resentation not only improves performance, but also decreases variance over different

repeats of the experiment with different data. Because of this stability, less emphasis

needs to be placed on validation. This is particularly important, since the validation

and test sets are mismatched when conducting cross-corpus experiments.

Further experiments demonstrate how to effectively use small amounts of target

labelled data when available. Simply combining the labelled data together from both

datasets performs reasonably well when the recording conditions closely match, such

as those in the two laboratory datasets - IEMOCAP and MSP-Improv. However, this

method fails when substantially different data is introduced, such as PRIORI Emo-

tion, demonstrated by the low CNN results in Experiments 3 and 4. ADDoG takes a

more elegant approach to combining these datasets by building a generalized model

and ensuring the representation is valid for the provided TAR data. Additionally, for

the case of more than two datasets, MADDoG is able to recognize the differentiating

factors in all SRC and take advantage of them. Next chapter will expand on MAD-

DoG’s ability to train a generalized emotion model for yet unseen domains and will

focus on detecting emotion in individuals with suicidal ideation.
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Part III

Applications
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CHAPTER IX

Emotion Recognition in Individuals with Suicidal

Ideation

9.1 Introduction

This chapter presents a real world application of emotion detection using MAD-

DoG – the prediction of emotion dysregulation in individuals with suicidal ideation.

Suicide is an increasingly serious public health issue, with the suicide rate increas-

ing from 10.46 to 14.48 deaths per 100,000 between 1999 and 2017 [38]. A recent

meta-analysis suggests that our ability to predict suicide is only slightly above chance

levels, and has not improved over the past 50 years [69]. Early detection of suicidal

ideation is crucial for prevention and intervention. However, relying on self-report

of suicide risk is problematic, as the majority of patients deny suicidal ideation and

intent in their last communication before their death by suicide [29, 108]. This points

to the need for additional, objective monitoring strategies to better know when to

intervene. Prior research has shown that individuals experiencing suicidal thoughts

manifest changes in their speech [46]. This presents an opportunity for effective mon-

itoring, as speech can be easily collected and relates to an individual’s underlying

condition.

Most prior work into automatically detecting suicidal or depressed speech has
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focused on laboratory collected datasets [10, 46, 122, 182]. However, these datasets

are not necessarily representative of the variations in environment and mood present

under real world conditions. Furthermore, characteristics of speech change at the

sub-second scale, while thoughts of suicide can be longer in duration [213] and vary

considerably [212].

Suicidal ideation is also related to the manner in which emotion is expressed and

prior work has examined this link [120, 124]. Self-reports of momentary suicidal

ideation have been strongly associated with negative affect among psychiatric inpa-

tients [17]. By first detecting emotional variations from speech, it may be possible

to use emotion as a predictor of suicide. This still requires emotion detection of real

world speech, which is a difficult task due to the confounding factors of environment,

noise, and subject differences. Furthermore, due to the sensitive nature of suicidal

data, there are no publicly available datasets linking naturally recorded speech, emo-

tion, and suicide.

In this chapter, I examine the Ecological Measurement of Affect, Speech, and Sui-

cide (EMASS) Dataset, introduced in Section 4.4. It contains recordings of natural

phone conversations, as well as regular self-reports of emotion, mood, and suicidal

thoughts using ecological momentary assessment (EMA) methods [26]. The partici-

pants include individuals with recent suicidal ideation or behavior, as well as psychi-

atric and clinical controls. The collection is ongoing, and the dataset is still relatively

small. I demonstrate how outside data can be used to generate emotionally salient

features. I then train a model to accurately predict a set of emotion measures, de-

spite restrictive real-world conditions and small amounts of data. These measures

were found to be indicative of suicidal ideation in prior work [17]. Finally, I show how

emotion predicted from speech can be used to separate healthy controls from those

with recent suicidal ideation. This system could eventually allow for the detection of

the onset of suicidal ideation, making early intervention possible.

100



0 12 24 36 48
Hours Before Survey

0

500

1000

1500

N
um

be
r o

f C
al

ls

Figure 9.1: Cumulative histogram of the hours from calls to the following survey.
There are a total of 239 calls with a survey within one hour afterwards (216 from
subjects with at least five).

9.2 Data

I associate EMASS phone call recordings and surveys to enable automatic pre-

diction (see Section 4.4). My initial experiments concluded that calls occurring after

surveys were less related to the rated emotions than calls occurring before surveys.

As such, call recordings are labelled with the emotion present in the closest following

survey. Furthermore, I hypothesize the more time that separates a call and a survey,

the weaker the certainty in the rated emotion. Because of this, I examine the impact

of cutting off the training and testing data at different hours of separation. Survey

separation is measured from the start of a call to the survey response. Figure 9.1

displays the number of calls present at different cutoffs ranging from one hour to two

days.

I require at least five calls to be within the cutoff for a subject to be included in

experiments (not necessarily from five unique surveys). Table 9.1 gives the amount
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All HC PC SI SA

Subjects 16 13 0 3 0
Calls 216 201 0 15 0
Hours 25 23 0 2 0

Table 9.1: The amounts of data for different groups of subjects, when considering
only those calls occurring within one hour before a survey.

of data available when considering a one hour cutoff. While this severely reduces the

data, it increases the certainty in the results. As such, I focus analysis on these 16

subjects and 216 calls from the HC and SI groups.

9.3 Features

Due to the relatively small dataset, I focus on three knowledge based, feature sets -

eGeMAPS, Rhythm Statistics, and Emotion Statistics. eGeMAPS is a state-of-the-art

emotion recognition feature set [61] and Rhythm Statistics have been used effectively

in prior work in mood recognition [201]. I compare the efficacy of these features with

Emotion Statistics - features generated by a deep learning system trained on existing

emotion corpora. My hypothesis is that Emotion Statistics will outperform the other

two, due to the small amount of data available for training emotion recognition in

the EMASS corpus.

All call recordings are segmented using the ComboSAD algorithm, introduced in

[178] and adapted for contiguous segments in [75]. The algorithm estimates the pres-

ence of speech using six signals - harmonicity, clarity, prediction gain, periodicity,

perceptual spectral flux, and energy. These are then combined using principle com-

ponent analysis (PCA) and then grouped into segments ranging from 2-30 seconds.

See Section 5.3 for more details. All calls must at least contain at least three speech

segments to ensure enough data for accurate feature extraction.
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9.3.1 eGeMAPS

The eGeMAPS feature set was introduced in [61] and is extracted using OpenS-

MILE [59]. Low level descriptors (LLDs) are extracted for frequency, energy, ampli-

tude, and spectral parameters in each segment and result in 23 values per frame.

9.3.2 Rhythm Statistics

Segments are subdivided into two second subsegments using a sliding window

with a one second step size. Seven-dimensional representations of rhythm are then

extracted for each subsegment, following the work by Tilsen and Arvaniti [201]. See

Section 5.4 for further details.

9.3.3 Emotion Statistics

I extract segment-level emotion using the previously trained MADDoG model,

introduced in [74] and described in Chapter VIII. This allows us to use outside data

to generate a set of features indicative of emotion fluctuations. Furthermore, the

training methodology results in a more generalized representation of emotion so that

the model can be used across yet unseen datasets.

In this work, I incorporate emotional speech from three other datasets - IEMO-

CAP [31], MSP-Improv [33], and PRIORI Emotion [115]. I then train two separate

MADDoG models for activation and valence using the three combined datasets. Seg-

ments from the EMASS dataset are then input to the models, resulting in three bins

of emotion for both activation and valence, or six values per segment.

9.3.4 Call-Level Statistics

I apply 31 statistics across the concatenated segments to produce call-level fea-

tures, as in [75]. These include the mean, standard deviation, skewness, kurtosis,

minimum, maximum, and range of the signal. I perform linear regression on the
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signal and use the fit parameters and error as statistics. I then extract the various

percentiles and percentile differences and calculate the percentage of the signal above

different thresholds.

9.4 Emotion Modeling

I compare all three feature sets using a DNN, trained to classify one of the 11

emotion measures in the EMASS dataset. The selected target emotion for each

experiment is converted from a five point Likert Scale to a fuzzy binary scale for

classification. The purpose of this scheme is to eventually allow for the system to dis-

tinguish between baseline and atypical emotion. The emotion baseline is estimated

with the median subject rating, which produces a baseline of 1, 2, or 3 for each of 11

emotions. Each emotion scale is binarized with a fuzzy value of 0.5 between baseline

and atypical values, as follows:

• Baseline of 1 or 3: 1 → 0.0 2 → 0.5 (3,4,5) → 1.0

• Baseline of 2: (1,2) → 0.0 3 → 0.5 (4,5) → 1.0

Each experiment begins by randomly dividing the subjects into five sets for cross

validation. One of the sets is reserved for testing, ensuring a subject-independent

analysis. Each of the remaining subjects has their data randomly divided between

training and validation, with 1/5 of their data used for validation. This process is

repeated 100 times for each subject, resulting in 100 splits. I calculate the standard

deviation of the target emotion within the two folds and use the split that maximizes

their product. This ensures enough emotion variability in each fold. I found that

applying Z-normalization was beneficial only for the eGeMAPS feature set and nor-

malize it based on train data. All experiments are repeated a total of 100 times with

different fold assignments to achieve more stable results.
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I use a DNN for classification with four hidden layers (widths of 1024, 512, 256,

and 256) using a RReLU activation function, found to work best in [215]. The output

layer employs a sigmoid activation function and is trained with binary cross entropy

loss. This loss is weighted by the inverse of the count of each emotion value (0.0, 0.5,

1.0) in the training set. The Adam optimizer [118] is used with a learning rate of

0.0001 and default parameters. This DNN was found to outperform random forest

and support vector machines (SVMs) in early experiments and is the focus of this

work. Training is performed over ten epochs with batches selected to contain all of one

subject’s data. This ensures the model focuses on learning within-subject variations

versus cross-subject biases. I determine the stopping epoch by maximizing Pearson’s

correlation of the actual emotion and predictions across all data in the validation set.

The test predictions are then estimated using the held-out subjects and selected

model. For each test subject, I calculate an Area Under the Receiver Operating

Characteristic Curve (AUC) as the performance measure. AUC represents the ability

of a system to correctly rank pairs of instances and has a chance rating of 0.5 and ideal

rating of 1. Subjects must have at least one negative instance (0.0) and one positive

instance (1.0) to be able to calculate a valid AUC. Instances with the fuzzy value of

0.5 are not used to calculate test AUC. Because of this, each emotion experiment will

have a different set of test subjects that have enough data for AUC calculation (see

Table 9.3).

9.5 Results

In this section, I explore speech emotion classification using different feature sets,

survey cutoffs, and emotion measures.

I first examine the effect of feature set choice and focus on only testing with calls

within one hour of a survey. I employ varying amounts of data in the training set

and allow for a cutoff of 1, 2, 4, 8, 16, 24, 36, or 48 hours. Table 9.2 gives the
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Features Best Cutoff Hr. AUC

eGeMAPS 8 0.53 ± 0.12
Rhythm Statistics 16 0.54 ± 0.09
Emotion Statistics 24 0.63 ± 0.10

Table 9.2: The results for each feature set on calls within one hour before surveys.
AUCs are averaged across iterations, subjects, emotions. The best hour cutoff is
found for each feature set. The AUC error is the standard deviation across subjects.

performance of each feature set averaged across all subjects, emotions, and iterations

using its best performing training cutoff. I find that the Emotion Statistics perform

substantially better than the others, which are close to chance. This is likely due

to the Emotion Statistics already containing estimates of emotion at the segment

level. This allows the model to overcome the lack of data, which makes classification

difficult for other feature sets. Because of this, the following analyses only focus on

the Emotion Statistics feature set.

Figure 9.2 shows the analysis of performance at different training set cutoffs, av-

eraged over subjects, iterations, and emotion measures. While a larger cutoff allows

for more training calls, it lowers the certainty in training labels. However, because

subjects usually participate in three surveys per day, the median separation between

calls and surveys is still only 4.03 hours even with a 48 hour cutoff. There are dimin-

ishing returns for the amount of added data with each increase in cutoff (Figure 9.1).

When testing on the newly added data at each increase in cutoff, I find decreased

performance. However, if I only test on the 216 calls within one hour of a survey, I

see performance increase with a maximum at 24 hours. This provides the most data

for classification without overly diluting the labels.

I lastly examine the model’s capability to detect different types of emotion using

the Emotion Statistics feature set, a 24 hour training cutoff, and the 216 test calls

within one hour of a survey. Table 9.3 presents the AUC for each emotion, averaged

over all iterations and subjects with enough data for testing. Due to the lack of data,
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Figure 9.2: Mean AUC over all emotions, subjects, and iterations using emotion
statistic features at different cutoffs. The error bands show the standard deviation
between iterations. The table displays the amount of data at each cutoff.

Emotion Subjects Calls AUC

Confident 7 66 0.64 ± 0.19
Excited 7 92 0.51 ± 0.19
Happy 7 87 0.63 ± 0.21

Sad 6 65 0.54 ± 0.08
Guilty 4 59 0.66 ± 0.25
Worried 4 50 0.62 ± 0.23
Shame 3 45 0.57 ± 0.12
Hopeless 2 21 0.72 ± 0.04

Anger at Others 8 89 0.78 ± 0.16
Anger at Self 5 65 0.60 ± 0.23
Irritable 3 24 0.69 ± 0.34

Table 9.3: Results on emotion measures using emotion statistic features with a 24
hour cutoff. Only calls with a survey within one hour afterwards are used in testing.
The amount of subjects and non-fuzzy calls available to calculate AUCs are shown.
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it is difficult to draw conclusions about individual measures. One exception is ”Anger

at Others”, which has the most subjects (8), highest AUC (0.78), and a relatively

small standard deviation between subjects (0.16). In total, 8/11 emotions have an

AUC of at least 0.6, demonstrating an overall trend in the model’s ability to capture

emotion in natural speech.

9.6 Suicidal Ideation Analysis

In this section, I explore the relationship between suicidal ideation and emotion

estimated from speech. I focus on HC and SI subjects, as they are the groups with

the most data (19 and 12 subjects, respectively). Emotion measures are extracted

from the 2,988 HC and SI calls using the previously trained DNNs. Each estimate

is only taken from models where the subject was unused during training. I exclude

measures of Excited, Sad, and Shame, as they were previously predicted with less

than 0.6 AUC. I calculate the within-subject standard deviation of each emotion to

gauge each emotion’s variability.

Figure 9.3 shows the overall variability of the two groups across the different

emotions. I consistently find that subjects with SI have lower levels of emotional

variability. I then use those emotions with significant differences (Guilty, Hopeless,

Anger at Others, Anger at Self, Irritable) to classify HC versus SI. I average each of

the five emotion standard deviations for subjects and use this as an estimate. Using

this method, I attain a performance of 0.79 AUC.

These findings, though preliminary, are inconsistent with existing research on af-

fective instability and suicide. One study found that heightened affective instability

was associated with suicidal behaviors [217], while another found no link [130]. How-

ever, individuals in these samples were recruited based on a borderline personality

disorder diagnosis and were not compared to healthy controls, unlike the present anal-

ysis. It is possible that self-reported affect differs from more objective measures (i.e.
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speech), or that the experiments consider too few subjects.

9.7 Conclusions

In this work, I introduced the EMASS dataset, which allows for an investigation

into the relationship between speech from natural conversations, emotion fluctuations,

and suicidal ideation. I successfully detected emotion using the still relatively small

EMASS dataset by first generating features representative of emotion dynamics on

outside data. This shows that the MADDoG algorithm is capable of training suffi-

ciently general representations for use in real-world applications. Finally, I examined

how emotion fluctuations detected from speech are able to distinguish subjects with

recent suicidal ideation from healthy controls, linking speech, affect, and suicidality.

Collection of the EMASS dataset is currently ongoing and extracted features will

be made available through the NIH Data Archive. While this work focused on the

momentary ratings of affect, the participant surveys also include questions related to
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mood and suicidal ideation. Furthermore, the EMASS dataset includes weekly clin-

ical assessments, which could give a more reliable indication of subject progression.

Future work will aim to detect the onset of suicidal ideation and explore this inter-

play between self-assessed and clinician-assessed mood. The emotion dysregulation

features introduced in this work will be key to making this future analysis possible.

Furthermore, I will explore the usefulness of these features in other domains, including

bipolar disorder.
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CHAPTER X

When to Intervene: Detecting Abnormal Mood

using Everyday Smartphone Conversations

10.1 Introduction

Previous efforts in bipolar mood monitoring have focused on predicting the inten-

sity of mania and depression symptoms. However, symptom severity thresholds alone

are insufficient. Different individuals may have different levels of symptom severity

considered healthy, which we refer to as their baseline, and this baseline may change

over time. More nuanced information is needed in order to make clinical adjustments

or interventions for disease management [6]. This may include the specific charac-

teristics of an individual [139]. This chapter investigates techniques to predict the

need for clinical intervention based on deviations from a subject’s estimated mood

baseline.

Intervention prediction requires intervention labels, or knowledge of when a clin-

ician would choose to act. These labels were obtained by annotating a subset of

the PRIORI corpus, referred to as the PRIORI Annotated Mood dataset (PRAM).

The collection of the PRAM dataset is described in Section 3.3. I found that clini-

cians typically identified interventions based on symptom severity ratings that were

abnormally high compared to an individual’s baseline mood.
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The PRAM labels were used to create an intervention detection system that could

personalize over time, using techniques from the anomaly detection literature, which

we refer to as Temporal Normalization, or TempNorm. TempNorm initializes with a

baseline (a description that captures the range of typical behavior) for the general user

population. As the system receives information from an individual, it first transforms

these ratings into a continuous value indicative of the abnormality of the symptom

severity. It then updates the baseline to personalize to the patterns of each individ-

ual. I validate the TempNorm framework on the intervention dataset. In particular,

we investigate the trade-off between a conservative model that slowly adapts to each

subject’s baseline and one that instead reacts more strongly to recent mood. I show

that TempNorm can be used to transform the symptom severity ratings to effectively

predict if an intervention should occur. TempNorm significantly improves on a sys-

tem using only a single population threshold, achieving an unweighted average recall

(UAR) of 0.93±0.04, versus a UAR of 0.80±0.15.

I next investigated the ability of the system to automatically predict interventions

from speech, rather than the clinician-assessed symptom severity measures. I com-

bined a neural network with a middle layer consisting of TempNorm. I achieved a

UAR of 0.70±0.14 and 0.68±0.12 for clinical and personal conversations, respectively.

I find that transcript features perform best for the clinical calls, most likely due to

their structured format, while both transcript and emotion features work well for

natural speech. These results establish the first results for detecting interventions

using clinically-collected and, critically, unstructured natural speech.

The novelty of this work includes: (1) An outcome-based annotation of bipolar

mood that identifies the need for clinical interventions; (2) The first work framing

bipolar mood intervention detection in the context of anomaly detection using Temp-

Norm; (3) The detection of anomalous mood solely from unstructured, natural speech,

enabling real-world applications.
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10.2 Related Works

10.2.1 Shortcomings in Speech Mood Recognition

My prior work in Chapter VI has shown that mood recognition can be improved

by adapting a system to subject data, allowing it to pick up on subject-specific symp-

tomatology. However, this requires labeled data for all subjects, making the scaling

of such systems difficult. Another approach from affect prediction is to use speaker

normalization to reduce differences between subjects [9, 173, 185]. While this doesn’t

require labeled data, it often breaks causality by using all data to calculate the nor-

malization parameters, thus using future subject data in forming the predictions

of earlier samples. In a practical system, this would require an enrollment period

to determine normalization parameters before being able to make predictions. En-

rollment may also need to be carefully constrained to certain types of speech (e.g.,

non-symptomatic) or else the system may learn incorrect parameters.

The bipolar speech monitoring research explored in Section 1.2 are all steps in the

right direction, but most works still require some sort of active participation from the

subjects. One of the challenges in mobile health engagement is app fatigue – individ-

uals tire of interactions with programs over time or ignore requests to complete eval-

uations [190, 198]. Passive techniques are likely to be more successful in longer-term

monitoring. These techniques should also be able to work in a variety of environ-

ments to facilitate continuous monitoring. Faurholt-Jepson et al. demonstrated the

feasibility of detecting bipolar mood in everyday phone conversations [65]. Matton

et al. reported transcript-based features extracted with Automatic Speech Recogni-

tion (ASR) are indicative of depression in bipolar disorder using natural speech [138].

However, these and other methods have not shown that interventions could be au-

tomatically triggered. This limits their use in intervention-driven applications, since

the predictions are not directly related to clinical action. The output and evaluation

113



of such systems should instead match their proposed clinical use [56].

Researchers have used reinforcement learning (RL) to explore this concept of inter-

pretable and actionable systems for interventions. Typical supervised machine learn-

ing requires pairing predictions with ground truth labels. However, this is not always

feasible when there is an unclear relationship between single actions and meaningful

outcomes. RL instead defines and optimizes for long-term goals using domain-specific

reward functions. For example, work in epilepsy has been evaluated using a reward

function that penalizes the occurrence of seizures and learns the optimal pattern of

deep brain stimulation [86]. Research in sepsis has employed a reward function tied

to patient mortality and proposes the ideal personalized clinical intervention strategy

[119]. Work in HIV has used a reward function based on changes in blood test mea-

sures and selected the best combination of drugs for therapy [160]. This work differs

from that in RL in that our ground truth directly pairs each sample of speech with

an indication of the need for intervention.

10.2.2 Anomaly Detection

Anomaly detection identifies unusual measures in data, with common applica-

tions including outlier removal and fraud detection [39]. Basic methods of anomaly

detection can take advantage of the distribution of data and designate points above

a certain standard deviation or other measure as anomalies. For example, different

forms of the moving average (MA) and variance can be used to de-trend and scale

sequential data, as in [22, 99, 153]. Autogressive (AR) models are commonly used

in sequence anomaly detection to forecast the likely value of the next sample using a

certain number of prior samples [88]. Anomalies can then be designated as a devia-

tion of an actual data-point from the predicted value. Autoregressive-moving-average

models, or ARMA, combine both the MA and AR models, and are effective at de-

tecting anomalies in a variety of fields [109, 143, 165]. All of these models may take
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into account prior knowledge about the domain, such as seasonal trends and and the

base rate of occurrence of anomalies.

Recent work has used neural networks to detect anomalies in data with unknown

distributions. Autoencoders learn a compressed representation of the data, with

anomalies identified by higher reconstruction error [13]. Malhotra et al. trained an

LSTM to forecast time series predictions and then classified deviations from actual

values as anomalies [136]. Generative adversarial networks, or GANs, learn a latent

space where anomalous data is more clearly distinguished [219]. These methods

are unsupervised and focus on capturing aspects of the input with higher variance.

Similar approaches have been ineffective at representing affect, as emotion and mood

have a much lower varying nature when compared to other aspects of speech [30, 117].

Supervised anomaly detection is typically trained using standard classification

methods with one category for normal data and one for anomalous data [39]. The

main difference from typical classification problems is that the label distribution is

strongly unbalanced and biased against anomalies. This bias can result in being

unable to learn a robust representation for anomalies, due to a lack of examples.

Additionally, it may be difficult to find clear representative samples of anomalies

[79]. This is because anomalies are not necessarily defined by the presence of cer-

tain attributes, but are instead defined by the amount of deviation from a typical

distribution. Modelling the problem as regression instead of classification can help

avoid this issue by defining a continuous label for the abnormality of each sample

[39]. However, previous work has not yet examined mood monitoring in the context

of anomaly detection, leaving the definition of mood abnormality undefined. This

work establishes this definition using the exponential moving average (EMA) and

exponential moving variance (EMVar), similar to [22, 99, 153], to track typical mood

for subjects. I then define mood abnormality as a mood rating’s deviation from this

continuously updated baseline, as discussed in the following section.
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10.3 Temporal Normalization

During clinical annotation of the PRAM dataset (Section 3.3), the most common

rationale for flagging an intervention was mood ratings substantially above a subject’s

baseline. Because of this, we focus on how to model a subject’s baseline using the

YMRS and HDRS ratings to best predict anomalous mood and the need for inter-

ventions. In order to be successful, our system should be able to do the following:

(1) estimate a baseline for subject mood, (2) predict anomalies based on a deviation

from this baseline, (3) produce actionable predictions, even when little subject data

has been seen. This section presents an example of how to model bipolar mood,

motivated by these goals and conversations with our clinical collaborators.

I formalize the problem as anomaly detection, using the EMA and EMVar, similar

to [22, 99, 153]. This converts the problem from contextual anomaly detection to an

easier point anomaly detection. For simplicity, we denote this procedure as Temporal

Normalization (TempNorm) 1. I ground TempNorm in its application to the YMRS

and HDRS ratings. The full process is described in Algorithm 3 and shown in Figure

10.2, with each step explained in the following text.

I first subtract the YMRS and HDRS ratings by six and divide by four, based

on an initial estimate of mean and standard deviation. These values were selected

to closely match the within-subject rating means and standard deviations. This

normalization also maps a rating of ten to one standard deviation from the mean.

This is desirable, as ten was the threshold used in previous PRIORI experiments in

the definition of a symptomatic state [75, 114]. Because the mood ratings should now

have an approximate mean of zero and standard deviation of one, we initialize the

EMA to zero and the EMVar to one. This establishes a subject’s starting baseline as

the population’s baseline. I call this initial state the population prior.

1An interactive demonstration of Temporal Normalization is available at
http://www.johngideon.me/projects/TempNorm/
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Algorithm 3 Temporal Normalization (TempNorm)

Input: X, the 1d array to be normalized
Input: t1/2, the half-life parameter
Output: Y , the 1d normalized output array

1: λ← 1.0 −
t1/2
√

0.5 . Get decay from half-life
2: µ← 0 . Initialize EMA to 0
3: σ2 ← 1 . Initialize EMVar to 1
4: for i = 1, ..., length(X) do . Loop through all samples
5: ∆← X[i]− µ . Get sample and EMA delta
6: Y [i]← ∆/σ . Normalize current sample
7: β ← λ×∆ . Scale delta based on decay
8: µ← µ+ β . Update EMA
9: σ2 ← (1.0− λ)× (σ2 + (β ×∆)) . Update EMVar

10: end for

I then approximate each subject’s baseline over time using the EMA and EMVar.

I normalize new data points by subtracting the EMA and dividing by the EMVar

before updating these running statistics using the new values. This results in the

first sample being unchanged because the original population prior is EMA=0 and

EMVar=1. As the system sees new samples, the mood baseline and subsequent

normalization adapts to that subject’s patterns. TempNorm does not require the

data to be sampled at a fixed rate, which is beneficial as subjects periodically have

missing clinical assessments.

TempNorm requires one parameter, half-life (t1/2), in order to control the contri-

bution of new data to the running mean and variance. Half-life is described in units of

the number of new samples needed to diminish the weight of old data to 50% (Figure

10.1). As half-life increases, the baseline takes longer to adapt to subject mood and

remains conservatively closer to the original population prior. A half-life of infinity

results in a system that only relies on the population prior and does not adapt to

subject mood ratings. This makes it comparable to a system without TempNorm –

one that has a single threshold across all subjects. Conversely, decreasing the half-life

results in a system that concentrates more on recent data. A half-life of zero would
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Figure 10.1: The contribution of the original population prior distribution for different
half-lives after certain numbers of samples have been observed.

only use the newest sample to calculate mean and variance. This would always re-

sult in a baseline variance of zero and produce divide-by-zero numerical issues in the

normalization. Because of this, we restrict half-life to be any value greater than zero.

Much of this work is focused on investigating the impact of half-life, as the model is

heavily affected by its choice. I determine the weight of new samples, λ, using the

following equation:

λ = 1.0 −
t1/2
√

0.5

The EMA and EMVar are updated with each new sample, weighted by λ. This

causes a hybrid global/speaker normalization of the data, depending on the half-life

parameter and how many samples have been observed. This has the desired quality

of gradually adapting to the most recent subject data, while also providing a measure

of how anomalous a sample is versus the baseline.

The mood ratings are normalized separately, as the intensity of each subject’s
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baseline mania and depression may differ. Furthermore, different subjects may have

different correlations between these ratings. So for simplicity, we assume that both

mood ratings are independent and model them with two separate TempNorms. This

assumption will be later validated using the PRAM dataset.

I select a lower threshold of one standard deviation to represent a subject’s typ-

ical mood. This matches the threshold for symptomatic mood used in our previous

work [75, 114]. TempNormed YMRS and HDRS below this threshold are considered

typical. I define an upper limit of two standard deviations as atypical mood, based

on conversations with our clinical team. I define a mood anomaly as a sample with a

TempNormed YMRS or HDRS above the upper limit. I leave the range between one

and two standard deviations undefined, focusing only on regions with clear behav-

iors as in [71]. This work presents just one example of how to model bipolar mood

anomalies. Future work will investigate alternative models.

I validate our model using the PRAM annotations. I hypothesize that weeks

flagged for intervention are weeks that our model should designate as anomalous (over

two standard deviations from the EMA), while weeks marked without an intervention

should be typical (within one standard deviation of the EMA). I do not assess model

performance in the undefined region. It is important to note that the anomalous

and typical category changes with half-life: TempNorm transforms the mood ratings

based on this value (see Table 10.1).

I evaluate performance using unweighted average recall (UAR), an average of the

recall over each category. This is desirable, since the distribution of the annotations

is biased toward non-interventions. I sweep through different half-lives to gain insight

into how annotators balance historical and new mood symptom information. I only

consider subjects that have at least one typical and one anomalous week so that a

valid UAR can be calcuated. As a result, the number of available subjects varies with

half-life (see Table 10.1).
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Table 10.1: TempNorm Mood Ratings Compared with Annotation. Ratings below
one are typical ; those above two are anomalies ; ratings between one and two are
unused. The number of samples flagged for intervention in each region is shown in
parentheses. Relying only on the global prior (t1/2 =∞) results in a system with many
false positives. Highlighted results are not significantly different from one another.

Number Number Samples UAR
t1/2 Subjects Typical Unused Anomaly Mean ± Std.
1 13 322 (22) 94 (24) 136 (25) 0.72 ± 0.19
2 11 352 (20) 113 (26) 87 (25) 0.83 ± 0.13
4 11 366 (16) 116 (28) 70 (27) 0.87 ± 0.12
8 12 339 (11) 117 (25) 71 (35) 0.90 ± 0.07
16 13 317 (6) 126 (18) 84 (47) 0.93 ± 0.04
32 13 282 (2) 146 (16) 99 (53) 0.91 ± 0.07
64 13 268 (2) 131 (5) 128 (64) 0.89 ± 0.09
∞ 13 263 (2) 71 (1) 193 (68) 0.80 ± 0.15

I fit a linear mixed-effect (LME) model in R [19, 171] to determine if the UAR of

different half-lives are significantly different. I treat half-life as the fixed effect and

subject as the random effect. All tests use a 0.05 significance threshold. I perform

an analysis of variance (ANOVA) over the LME model to determine if there is any

significant effect of half-life. I then perform a post-hoc pairwise comparison test with

Tukey weighting using the emmeans package [126].

My findings in Table 10.1 indicate that a half-life of 16 provides the best match

to clinical annotation, with 0.93 ± 0.04 UAR, although multiple half-lives achieve

comparable performance. I highlight half-lives that are not significantly different

from one another. The rows that are not highlighted (1 and infinity) are significantly

worse than at least one of the highlighted rows.

I show the full TempNorm procedure for two subjects using the half-life of 16 in

Figure 10.2. Figure 10.2a shows a subject on which TempNorm performs well, while

Figure 10.2b presents a difficult case (the subject in Figure 10.2b has particularly un-

stable mood). Figure 10.2a demonstrates how TempNorm can detect mood anomalies

even given an increasing depression baseline (the turquoise lines). Blue markers out-

side the shaded regions indicate false positives, while red markers in the middle-most
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(a) Subject with good TempNorm
performance
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(b) Subject with difficult ratings for
TempNorm

Figure 10.2: TempNorm using a half-life of 16 samples for two subjects. Each gives
four plots. (1) Depicts the original mood ratings and flags for intervention on the
maximum of the mania or depression rating. The right y-axis gives the initial popu-
lation normalized mood. The dashed lines and shaded regions depict the upper and
lower mood thresholds of one and two standard deviations, respectively. These are
used to differentiate typical and anomalous mood. (2) Gives the running scaled mean
mood rating. (3) Gives the running scaled standard deviation of the mood rating. (4)
Shows the TempNorm output with similar thresholds to the first plot. Normalized
mood ratings below zero are truncated to zero.
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region are false negatives. The top plot shows the population prior system, which

only relies on a fixed threshold and does not adapt to the increasing baseline. This

results in 12 false positives, while TempNorm (shown at the bottom) decreases this

to just four. Figure 10.2b gives an example of a subject with highly fluctuating mood

and many intervention flags. The system normalizes many weeks to between one and

two standard deviations because of the frequency with which this subject experiences

heightened mood. This highlights the importance of clinical judgment in determining

an intervention threshold – with this individual potentially benefiting from a lower

cutoff. Despite this, TempNorm makes distinguishing extreme examples easier. The

population prior with a fixed threshold results in eight false positive and two false

negatives. TempNorm removes all false positives at the expense of two additional

false negatives, but with a large increase in uncertain mood predictions (between one

and two standard deviations).

This section has demonstrated the first advantage of TempNorm – it transforms

the ground truth to resemble anomaly detection and creates more actionable predic-

tions. While this section introduced TempNorm in the context of the YMRS and

HDRS mood ratings, it would be easy to extend the procedure to other sequential

data. The remainder of the work explores the other two main benefits of TempNorm:

(1) It initially behaves as a hybrid global/speaker normalization. After sufficient

data, depending on the selected half-life, it acts like speaker normalization, providing

the performance benefits of speaker normalization, without a requiring an enrollment

period. (2) Each subject’s mood ratings are self-normalizing, removing individual

biases and resulting in reduced biases between subjects. This balances the dataset,

making the learning of both typical and anomalous mood more straightforward.

122



10.4 Features and Preprocessing

I now focus on predicting the need for intervention from speech. In particular, we

are interested in two different types of experiments, predicting mood anomalies from:

(1) recorded clinical assessment calls, or (2) personal calls (non-clinical) from the same

day as each assessment. I denote these as the assessment and day-of experiments,

respectively. Note that the assessment calls themselves are never included in the day-

of experiments. In this work, we focus only on calls from the day of the assessment

because we hypothesize that they are most associated with the assessment label.

Previous research has demonstrated that recency bias affects retrospective recall,

causing clinical ratings to be strongly impacted by the most recent events [4]. For

each experiment, we use different combinations of two speech feature sets – emotion

and transcript.

10.4.1 Emotion Features

I have previously shown that there is a connection between fluctuations in emotion

and mood in Chapter IX. In this Chapter, we validate this hypothesis by extracting

measures of emotion and relating statistics derived from these measures to the clinical

mood measures. I estimate emotion from the recorded speech using the MADDoG

model introduced in Chapter VIII. MADDoG allows the model to learn emotion,

while also finding a representation that is similar across different datasets. I train

MADDoG using the same three emotion datasets as in Chapter VIII – PRIORI

Emotion, IEMOCAP, and MSP-Improv.

Using this MADDoG model, we extract features for the final mood analysis. These

features consist of binned segment-level estimates of both activation and valence that

represent emotion dynamics over each assessment or day. However, we are interested

in ensuring that no emotion labels are used in the eventual test set. To accomplish

this, we train six different MADDoG models. The first five models are trained and
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tested in a round-robin manner using five folds and produces test predictions for all

labelled data. One additional model is trained with all the 13,611 emotion-annotated

segments and used to predict the remaining unlabeled segments. This results in three

activation bins and three valence bins per PRIORI segment, or six total dimensions.

I hypothesize that the distribution of emotion over the course of an assessment

or day is indicative of mood. To quantify this, we first concatenate all segments

over the course of an assessment or day, depending on the experiment. I then take

31 statistics across the segments, which we previously demonstrated were related to

mood [73]. This results in a final 186-dimensional feature set. This includes the

mean, standard deviation, skewness, kurtosis, minimum, maximum, and range of the

emotion bin predictions. I extract different percentiles (1, 10, 25, 50, 75, 90, 99) and

percentile differences (25-50, 50-75, 25-75, 10-90, 1-99). I perform linear regression

on the segment emotion estimates and incorporate the fit parameters and error (R2,

mean error, MSE) as features. Finally, we determine the percentage of the binned

predictions above various thresholds (10%, 25%, 50%, 75%, 90% of the range).

10.4.2 Transcript Features

I transcribe the calls using an ASR model, which was implemented in Kaldi, an

open-source, freely available speech recognition toolkit [167]. The model was built

following the ‘nnet2’ recipe and was trained on the Fisher English Corpus [42]. When

tested on the transcribed subset of the PRIORI dataset, it obtained a word error rate

of 39.7%. I recognize that this is high. However, our data consists of unconstrained,

natural speech in the presence of noise, so we expect imperfect transcriptions. Previ-

ous work showed that transcript-based features extracted from the ASR transcripts

were useful [138].

I extract call-level features from the assessment transcripts to use in our assess-

ment experiments. For our day-of experiments, we concatenate the transcripts of
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all personal calls made on the day-of an assessment for each subject and assessment

date (this excludes assessment calls). I extract day-level features from these merged

transcripts. This results in a 208-dimensional feature set, which I divide into five

categories. See [138] for more details.

I employ the Linguistic Inquiry and Word Count (LIWC) tool [164], a psycholin-

guistic analysis resource used in previous work to detect mental health states [44,

51], to compute the percentage of words belonging to 63 different language cate-

gories. Some of these categories are measures of semantic content and are related

to psychological constructs (e.g. affect, biological processes) and personal concerns

(e.g. work, death). The other categories measure aspects of linguistic style; these

include 18 part of speech (POS) categories, three verb tense categories, and swear

word, non-fluency, and filler categories. I extract 22 supplemental measures of lin-

guistic style, including five additional POS categories, five POS ratios (e.g. adjec-

tives:verbs), and 12 measures of speech complexity and verbosity (e.g. mean words

per speech segment).

I apply speech graph analysis, introduced by Mota et al. to quantify thought

disturbances in individuals with mania and schizophrenia [36, 147], as our final means

of measuring linguistic style. I form speech graphs by representing each unique word

as a node and inserting an edge for every pair of words uttered consecutively within

the same speech segment. I create three graphs from each transcript that: (1) use

the words directly, (2) use the lemmatized form of each word, and (3) represent each

word as its associated POS. I extract 12 measures per graph, including average degree,

density, diameter, the size of connected components, and loop, node, and edge counts

(see [147] for a full list). I also include a version of each feature that is normalized by

total word count, providing us with 72 total graph measures.

I use Kaldi to generate aligned word and phone timing annotations for each tran-

script. From this output, we extract 43 features that quantify speaker timing
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patterns. I extract the same features for words, phones, and pauses: (1) statistics

(mean, median, standard deviation, min, max) applied to the durations of all in-

stances (e.g. mean word duration), (2) statistics (same set) applied to the per second

timing within all segments (e.g. mean words per second across segments), (3) total

count, and (4) per second timing over the whole transcript. I also extract total call

duration, total subject speaking duration, ratio of subject speaking duration to total

duration, total pause duration, ratio of pause duration to total duration, segment

count, segments per minute, count of short utterances (lasting less than 1-second),

and short utterances per minute, some of which were motivated by [149].

I use ASR confidence scores as measures of speaker intelligibility based on the

idea that ASR has higher confidence for well enunciated speech. I apply statistics

(mean, median, standard deviation, min) to the segment-level confidence scores to

obtain four features (max was not used because it was almost always 1). Lastly, we

quantify the presence of non-verbal expressions by extracting counts of instances

of laughter and noise detected by the ASR model, normalized by word count.

10.4.3 Data Selection

I reduce our dataset to the highest quality data subset in order to focus on the

impact of TempNorm on bipolar mood ratings (Table 10.2). I first remove all healthy

controls to ensure the model specializes in individuals with bipolar disorder. I then

remove subjects with phones other than the Samsung Galaxy S5s, as prior work has

highlighted challenges with the other phone models [75]. I require data to have at least

five segments, 100 words, and valid ASR transcripts (as in [138]). Finally, we require

subjects to have at least eight samples (assessments/days), as this work focuses on

adapting to a subject’s baseline over time. This results in a total of 23 subjects and

533 samples (calls) for the assessment experiments and 17 subjects and 369 samples

(days) for the day-of experiments. Note that removing data changes the ground truth
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Table 10.2: Restrictions causing the reduction of data for both the assessment and
day-of experiments.

Number of Samples
Restriction Assessment Day-of

None 1515 1515
No healthy controls 1319 1319
Only S5 devices 680 680
5 segments, 100 words, Valid ASR 556 417
Subjects need 8 samples 533 369

because those samples no longer contribute to the baseline used in TempNorm (see

Section 10.3).

10.5 Modelling

The goal of the model is to predict the abnormality of the mood (TempNorm

symptom severity) and to use this prediction to determine whether or not an inter-

vention is needed. I use the same model and training methodology on the assessment

and day-of experiments. I train two unimodal systems (i.e., only transcript and only

emotion) and a multimodal early fusion system, resulting in a total of six systems,

three for assessment and three for day-of.

I use a dense neural network (DNN), which has been effectively employed for mood

recognition from static features [216]. It consists of six fully connected layers with

Randomized Leaky Rectified Linear Activation (RReLU) activations after the hidden

layers, as seen in Figure 10.3. The output layer has a linear activation and predicts

Temporally Normalized YMRS and HDRS ratings.

I perform TempNorm in the feature space to match the label space. This makes

both the labels and features relative to a subject baseline and allows for the de-

tection of anomalies in both. Preliminary experiments without feature TempNorm

had poor performance because the feature and label baselines drifted apart. I ap-
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Figure 10.3: The DNN used to predict mood abnormality, modified with a TempNorm
Layer after the third hidden layer to learn a feature baseline.

ply a TempNorm Layer to the 256-dimensional representation after the third fully

connected layer. This applies TempNorm independently for each of the third layer’s

inputs using the same half-life parameter as the one used for the mood ratings. The

feature model adapts to each subject’s samples and, over time, performs subject-

normalization over the mid-level representation. The model requires valid features

to ensure that the label and feature EMA and EMVar remain synchronized. Future

work will explore how to handle missing data (features or labels) and the placement

of the TempNorm Layer.

The model is trained and tested in a round robin manner with five folds. Folds

are kept subject independent by randomly assigning each subject to one fold. Data

from each of the remaining subjects are split randomly with one fifth of samples used

for development and the rest used for training.

Samples are batched by subject and are randomly reordered for data augmentation

when training. Reordering the samples changes the baseline produced by the model

and the ground truth at each time step, effectively increasing the amount of training

data. Prior work has shown that mood changes in bipolar disorder are Markovian

and that current mood is the most predictive of mood at the next assessment [145].

Due to the lack of long-term connection, we hypothesize that this reordering is an

acceptable trade-off to augment the training data.

I fit the model using a weighted mean squared error (WMSE) loss to compensate
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for the relative rarity of anomalous mood. I calculate this WMSE loss for each mood

output and sum them to form the total loss. The model makes the assumption that

our measure of mood abnormality approximately follows a standard normal distri-

bution. I examine this assumption further in Section 10.7.2. Given this assumption,

we set the weight of a sample to be inversely proportional to the probability density

function (PDF) of the ground truth value. This gives higher weight to less common

moods. I cap this weight at a maximum of 25 since the PDF increases rapidly for

higher values, making rare samples dominate if unchecked. This method results in

each sample having a different weight each epoch, depending on its order of appear-

ance after randomization. This is because the abnormality (and weight) of samples

is determined from the context of what comes before.

I train for 50 epochs. The first 10 epochs are used to pre-train the model without

TempNorm. The next 40 epochs use TempNorm and validate to find the best stopping

epoch for testing. The validation performance is also evaluated using WMSE. The

WMSE takes the maximum of the two output mood predictions and the maximum of

the TempNorm ground truth. This estimates the ability of the system to measure the

abnormality of samples – focusing on the most extreme of the two moods. I found

that this method of validation more closely matched the test setup and provided

better performance.

Each subject’s test performance is measured in UAR. I denote typical mood as

TempNorm rating under one standard deviation, an anomaly as above two standard

deviations, and unused as between one and two standard deviations. This strategy is

similar to one by Georgiou et al., where they predict the amount of blame expressed

in speech recordings of couple’s therapy and just focus on the upper and lower 20%

of samples [71]. The amount of prototypical data and available test subjects varies

for each half-life, as discussed in Section 10.3.

It is important to note that although the test data we evaluate are only in the
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range of typical or anomalous, it is possible that our system will predict values in

the unused range. I binarize the unused range to calculate UAR by introducing a

threshold at 1.5 standard deviations. I assign estimates below 1.5 to typical mood

and those above to anomalous mood.

For each of the two main experiments (assessment and day-of), we examine three

combinations of features: (1) emotion, (2) transcript, (3) an early fusion of both.

My initial experiments found that applying global normalization (z-normalization

using all training data) to transcript features worked best. No normalization was

necessary for emotion. As such, we apply global normalization to the transcript

features, in both the unimodal and early fusion sets. I run each experiment for a

total of 100 iterations, each with a different random seed. This helps to compensate

for the randomness of selecting subjects for different folds and the neural network

initialization. This produces a final UAR matrix of size 100×#Subjects for each if

the six tested methods.

10.6 Results

UAR measures our ability to judge the need for interventions. The performance is

given as the UAR averaged over all subjects with enough data for the experiment (at

least one typical and one anomalous sample). The number of subjects and samples

changes depending on the half-life (see Section 10.3).

I test for the significance of each feature set and half-life on UAR by fitting a

linear mixed-effect model, similar to Section 10.3. I consider feature set and half-life

as fixed effects and subject and random seed as random effects. All tests use a 0.05

significance threshold. I first perform an analysis of variance (ANOVA) to determine

if there is any significant effect of either feature set or half-life and find significance

for both in each experiment. Next, we perform a post-hoc pairwise comparison, as in

Section 10.3. I denote significantly better results than the emotion feature set with
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Table 10.3: Assessment and day-of experiment results. The amount of subjects,
typical samples, and anomalous samples is shown. Highlighted results show half-lives
that do not produce significantly different results, given a certain feature set. An
asterisk indicates results significantly better than the emotion features for the same
half-life.

(a) Assessment Results (533 total assessment calls)

Total Number Feature Set UAR (Mean ± Std.)
t1/2 Subjects Typical Anomalous Emotion Transcript Fusion
1 23 312 117 0.49 ± 0.09 0.61 ± 0.10* 0.59 ± 0.09*
2 21 320 72 0.58 ± 0.14 0.67 ± 0.10* 0.68 ± 0.12*
4 21 326 59 0.61 ± 0.12 0.68 ± 0.13* 0.70 ± 0.14*
8 19 293 68 0.59 ± 0.11 0.66 ± 0.13* 0.68 ± 0.12*
16 19 270 78 0.60 ± 0.09 0.68 ± 0.13* 0.69 ± 0.14*
32 19 245 93 0.59 ± 0.12 0.68 ± 0.13* 0.70 ± 0.14*
64 19 237 124 0.57 ± 0.10 0.67 ± 0.12* 0.70 ± 0.15*
∞ 19 223 174 0.54 ± 0.07 0.67 ± 0.12* 0.68 ± 0.13*

(b) Day-of Results (369 total days)

Total Number Feature Set UAR (Mean ± Std.)
t1/2 Subjects Typical Anomalous Emotion Transcript Fusion
1 17 216 86 0.53 ± 0.08 0.55 ± 0.08 0.56 ± 0.09
2 17 231 55 0.59 ± 0.10 0.61 ± 0.11 0.63 ± 0.13*
4 17 223 49 0.59 ± 0.12 0.64 ± 0.13* 0.65 ± 0.11*
8 15 192 43 0.63 ± 0.14 0.66 ± 0.12 0.68 ± 0.12*
16 15 176 61 0.62 ± 0.11 0.63 ± 0.12 0.65 ± 0.11
32 15 166 76 0.57 ± 0.10 0.60 ± 0.12* 0.61 ± 0.13*
64 15 159 96 0.54 ± 0.07 0.59 ± 0.13* 0.59 ± 0.13*
∞ 16 163 127 0.51 ± 0.05 0.56 ± 0.11* 0.56 ± 0.13*

an asterisk in Table 10.3.

There were no significant differences between the transcript and fusion sets in

either the clinical or the day-of calls. I describe the patterns in more detail in the

following sections. I highlight the best performing half-lives for each feature set that

are not significantly different from one another in Table 10.3.
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10.6.1 Assessments

The assessment results are given in Table 10.3a. Regardless of half-life, the tran-

script and fusion feature sets significantly outperform emotion. There are no signifi-

cant differences when appending the emotion features to transcript features (fusion).

Assessment calls consist of the YMRS and HDRS interviews, and as such have a

structure not present in natural speech. Because of this, the transcript features likely

capture aspects of the questionnaires, giving them an advantage.

The performance of mood anomaly detection is mostly insensitive to half-life.

The only exception is for a half-life of one. I find that a half-life of one changes

the baseline too rapidly and results in significantly worse performance, using both

emotion and fusion features. However, all half-lives between two and infinity provide

stable results, and are not significantly different from one another. This stability

is particularly evident in the transcript features. Again, this is likely due to the

close relationship between the transcript features and the answers to the interview

questions.

10.6.2 Day-of

The day-of results are given in Table 10.3b. The performance of the transcript

features decreased, relative to the assessment experiment. This demonstrates how

the efficacy of transcript features change when the assumptions of interview structure

are no longer present – a result also shown recently in [138].

The emotion features attained similar performance in the two experiments. The

similarity of the performance of emotion features between experiments indicates that

they are capable of capturing mood-related aspects of speech present in both struc-

tured and natural conversations. In fact, the transcript features now only significantly

outperform the emotion features in about half of the results.

I find that the day-of experiment is more sensitive to different half-lives, when
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compared to the assessments. When working with non-clinical conversations it is

especially important to establish a clear baseline. While a small half-life devalues

old data too quickly, an overly large half-life takes too long to converge to subject

normalization. In effect, the large half-lives result in systems that depend on the

population prior distribution. This causes each subject’s mood ratings to be biased,

depending on how closely the population prior distribution matches the subject’s

actual distribution. This mismatch of subject mood distributions can complicate

classification and result in worse performance.

10.7 Discussion

The choice of half-life has a strong effect on the outcome of most results in this

work. Figure 10.4 shows the UAR from the annotation experiment, as well as the

assessment and day-of experiments. Assessment and day-of experiments use the fusion

features and the shaded error represents the standard deviation between iterations.

Because there are no iterations for the annotation experiment, no error is shown.

While the assessments are mostly insensitive to half-life (see Section 10.6.1), the half-

lives of 8 and 16 provide the highest UAR for the day-of experiment and annotations,

respectively. This section explores two factors that contribute to their performance:

(1) enrollment length and (2) the distribution of the normalized ratings.

10.7.1 Enrollment Length

TempNorm begins with a population prior distribution and eventually learns a

subject baseline. After sufficient samples it behaves like subject normalization, favor-

ing recent data. Because of this, half-life controls both how quickly to disregard the

population prior and the effective window length constructing a subject baseline. A

half-life of 16 versus 8 will effectively incorporate double the samples into the subject

baseline, but should also take about twice as long to converge.

133



1 2 4 8 16 32 64
Half-Life (Samples)

0.50

0.60

0.70

0.80

0.90

1.00

U
A

R

Annotation Assess. Day-of

Figure 10.4: Summary of experiment results. Assessment and day-of experiments
use fusion features with the shaded region showing the standard deviation between
random iterations.
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Figure 10.5: The performance of the day-of fusion experiment, considering different
enrollment periods and half-lives.

I examine our day-of results after differing enrollment periods to see the change

in performance during the adaptation process. For example, an enrollment period of

four samples uses those samples to calculate the initial subject baseline, but not to
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make predictions. The remaining samples both continue to adapt the baseline and

are the sole focus of the UAR calculation. I focus only on those seven subjects with

enough data to consider an enrollment period of 12 weeks, so that the subjects stay

the same with increasing enrollment amounts.

Figure 10.5 shows how the mean subject UAR changes as the system accumulates

subject data. The figure shows two half-lives, eight (purple) and 16 (orange). As

before, we see that a half-life of eight provides the best performance when there

is no enrollment data (enrollment of 0). However, it tends to worse performance

when the subject baseline is initialized with enrollment data. Conversely, a half-

life of 16 produces results that are fairly stable with enrollment periods of up to

ten samples. This stability is likely associated with the broader effective window

length for a half-life of 16. It then sharply increases in performance. While the

method takes longer to achieve higher performance, the wider window provides a

better subject baseline for comparison, versus a half-life of eight with no enrollment

restriction. This demonstrates that higher half-lives can be beneficial – but only after

sufficient data. Because there is not sufficient time for a half-life of 16 to reach its full

potential, a half-life of eight provides better overall performance when considering no

enrollment restrictions in the personal call experiment (see Table 10.3b).

10.7.2 Distribution of the Normalized Mood Ratings

While subject adaptation is one potential improvement caused by TempNorm,

another is the self-normalization of the ground truth. Once a subject’s baseline is

determined, the mood is de-biased and scaled so that it has a mean of zero and a

standard deviation of one. As explained in Section 10.5, our model makes the assump-

tion that the ground truth during training should have a unit normal distribution.

Given this assumption, we weight each sample’s loss inversely with respect to the unit

normal PDF evaluated at the ground truth mood rating.
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Table 10.4: Mean and Standard Deviation of Normalized Mood Ratings.

Mania Depression
t1/2 Mean Std. R2 Mean Std. R2

1 0.92 23.79 0.03 0.07 1.87 0.98
2 0.08 2.48 0.38 0.09 1.38 0.99
4 -0.06 1.25 0.82 0.13 1.20 0.98
8 -0.14 1.12 0.86 0.21 1.15 0.98
16 -0.20 1.14 0.85 0.34 1.17 0.97
32 -0.24 1.22 0.83 0.49 1.23 0.97
64 -0.27 1.31 0.82 0.62 1.32 0.97
∞ -0.28 1.57 0.78 0.96 1.69 0.94
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Figure 10.6: Mood Rating Distribution After TempNorm (t1/2 = 8).

In order to verify if this assumption is valid, we evaluated the distribution of the

TempNorm mood at different half-lives. Table 10.4 shows the calculated means and

standard deviations, as well as the R2 value from a normal probability plot. I find

that decreasing the half-live down to eight consistently causes the mean to trend

toward zero, the standard deviation to trend to one, and the R2 to get closer to one.

However, this trend does not hold with very small half-lives. In particular, a half-life

of one causes the standard deviation of normalized mania to increase sharply and the
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R2 value to approach zero. Because the effective window of the EMVar becomes so

small, only a few identical values in a row can cause it to approach zero. This is

particularly a problem for mania because the distribution is skewed toward ratings

of zero (Figure 3.2). After a few weeks with no mania symptoms, the next week with

relatively higher mania symptoms will be substantially scaled upwards.

The compromise half-life between these two trends is at eight, whose normal-

ized mood distribution is shown in Figure 10.6. This produces ratings that are self-

normalizing, while still having a large enough window to prevent near-zero standard

deviations when the original mood distribution is biased.

10.8 Conclusion

In this work, we investigate not only how to estimate mood from natural speech,

but also how to make meaningful predictions for each subject. In order to accomplish

this, we collected the PRIORI Annotated Mood dataset – a set of annotations indi-

cating when an intervention was needed, based on a variety of clinical factors. I then

framed the problem of intervention detection as anomaly detection using TempNorm

to transform mood ratings into a more actionable measure. This framework allows

us to measure mood abnormality in clinical and natural speech using emotion and

transcript features. Across all experiments, we determined that a half-life of eight or

16 provided the best compromise between subject baseline stability and adaptation.

These half-lives allowed the model to learn a baseline quickly enough so that the

mood ratings were transformed to a unit normal distribution – balancing the dataset

and increasing classification performance.

The results of this study could form the basis for an intervention-driven clinical

trial. TempNorm detects a continuous rating of mood abnormality and allows for

variable thresholds at a personal level. For example, individuals experiencing app

fatigue could have their anomaly threshold raised, while individuals with elevated
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mood instability may require a lower limit. Additionally, data from medical records

may be used to more effectively initialize the system in a subject-specific manner.

This would reflect actual clinical monitoring which takes into account any clinical

history to better target interventions.
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CHAPTER XI

Conclusions and Future Directions

In this dissertation, I have investigated methods of addressing variability in speech

when automatically detecting emotion and mood. I have also introduced two applica-

tions of emotion and mood monitoring relying solely on natural, unstructured speech.

This section highlights the key findings of these works and also proposes future work

that further extends these applications.

11.1 Main Results and Contributions

Part I of the dissertation explored methods of reducing speech variability when

classifying mood. In Chapter V, I explored how mood recognition from speech can be

complicated when the speech is recorded on different types of devices. This is due to

the quality of the microphone in different devices sometimes dramatically varying. I

demonstrated how preprocessing techniques including declipping, normalization, and

noise-robust segmentation could be used to lessen the impact of device variability.

Additionally, I showed how multi-task learning could be employed to attain signif-

icantly better performance, compared with simply concatenating device data. In

Chapter VI, I investigated how the previously introduced system trained across an

entire cohort of individuals could be specialized using subject-specific modeling. In

particular, I found that a soft weighted fusion between a population-general model
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and a subject-specific model provided the best recognition of depressed speech. This

allowed for subjects with more data to rely more heavily on a specialized model and

attain better performance.

Part II of the dissertation investigated methods of reducing speech variability

when classifying emotion. In Chapter VII, I investigated how to augment speech

emotion classification with additional paralinguistic information (speaker an gender)

and datasets. I used conducted the first speech emotion experiments using progressive

neural networks and demonstrated how they improved on the standard pre-train/fine-

tune method when testing in a subject-dependent manner. In Chapter VIII, I intro-

duced MADDoG – a new approach for more generalized representation of emotion for

cross-corpus testing. While previous related methods, such as DANNs [1, 5], have had

issues converging, MADDoG follows a “meet in the middle” paradigm for consistent

convergence. I then demonstrated that MADDoG was significantly better than tradi-

tional methods when combining differing amounts of labeling and unlabeled data from

across different emotion datasets. In particular, I demonstrated how MADDoG was

able to combine laboratory recordings with the newly introduced PRIORI Emotion

dataset for improved in-the-wild speech emotion recognition.

Part III of the dissertation introduced two different real-world speech monitoring

applications for individuals with mental disorders. Both applications used emotion

features extracted using the MADDoG model from Chapter VIII, validating its ability

to generate a robust representation of speech emotion. In Chapter IX, I demonstrated

that MADDoG could be used to classify self-rated emotion in individuals with sui-

cidal ideation. While most prior speech emotion work has required time-consuming

annotation of data, this work solely relied upon these participant self-ratings. I then

predicted the speech emotion of all phone calls in the EMASS dataset and found

that individuals with suicidal ideation had a lower amount of emotion variability,

compared with healthy controls. In Chapter X, I investigated how to create an ac-
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tionable bipolar mood monitoring system using only natural conversations (PRIORI

personal calls). I coordinated the collection of the PRAM dataset – an annotated

subset of the PRIORI corpus that identifies the need for clinical interventions. I then

examined how TempNorm could be used to convert mood symptom severity ratings

to a continuous value representative of the abnormality of mood, taking into account

each subject’s baseline. I then combined TempNorm with a neural network, to de-

tect anomalous mood using emotion and transcript-based features over unstructured,

natural speech. This prediction of mood abnormality will enable future applications

to better monitor bipolar mood and detect when intervention is needed.

11.2 Future Work

The work given in this dissertation aims to address the variability of speech to

allow for real-world detection of emotion and mood. In particular, I accomplish this

by either removing these factors of variability (Chapters V and VIII) or adapting

using subject data (Chapters VI and X). Future work will expand on both of these

approaches and combine techniques explored across this dissertation.

11.2.1 MADDoG for Multiple Modalities and Factors of Variability

The MADDoG algorithm introduced in Chapter VIII and further validated in

Chapter IX demonstrated an emotion recognition system capable of working effec-

tively across datasets. It accomplished this by building a representation of speech

emotion based on MFB features that removed the variability due to differences in

dataset. I propose future work that extends the MADDoG algorithm to include

additional features sets and controls for multiple factors of variability simultaneously.

Additional features will be added to the MADDoG model using different types of

fusion techniques. For example, other low-level descriptors shown effective in emotion

classification, such as those in the eGeMAPS set [61], could be combined with MFBs.
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Work will explore whether to use early or mid-fusion and whether to apply a separate

critic for each feature set. The transcript-based features used in Chapter X and

introduced by Matton et al. in [138] could also be employed. However, these features

operate on call-level recordings instead of at the segment-level and will need to be

adapted to the shorter length emotion ground truth time scale.

I also propose experiments investigating the use of MADDoG for controlling other

types of speech variability – device, gender, noise, and speaker. Augmenting the sys-

tem to control for device, gender, or noise variability would be relatively straightfor-

ward by adding an additional critic for each. Including environmental noise variability

in the analysis would either require either using a dataset with different types of noise

annotated or artificially introducing noise to the recordings. The critic for each type

of variability would require one output for category considered. For example, the de-

vice variability critic would require three outputs if considering three different device

types. However, a different approach would likely be needed for speaker variability

because there are no clearly defined categories and the number of speakers is only

limited by the size of the dataset. Instead, the critic training process would need

to be changed to a pairwise method, as commonly used in speaker verification [97].

The training procedure would instead estimate and minimize the distance between

paired subject representations. By explicitly reducing these other factors of variabil-

ity, MADDoG should be able to produce even more robust representations of speech

emotion capable of working on unseen data.

11.2.2 Extensions to Natural Speech Mood Monitoring

Chapter X introduced a speech mood monitoring system capable of detecting the

need for interventions in everyday speech. However, my analysis required a reduction

of the data in order to first focus on the higher quality samples (see Section 10.4.3).

Future work will address additional factors of variability to increase the usable data
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and make the system more versatile.

For example, I excluded healthy controls from this work to focus on mood in

individuals with BPD. However, future work will include healthy controls by allowing

for a separate set of parameters. These will presumably be within the normal range of

human behavior and should not require interventions. Additionally, techniques will be

employed to control for speech variability to allow for more devices and no longer limit

the data to S5 recordings [74, 75]. This will include the declipping and normalization

techniques explored in Chapter V, as well by using the improved MADDoG model

for emotion features, as proposed in Section 11.2.1.

Future work will also investigate other feature sets and incorporate other modal-

ities to ensure that lack of speech does not result in an inability to detect mood

anomalies. To facilitate this, the newest version of the PRIORI app captures move-

ment and location data, in addition to information representative of phone usage

(battery and data). Finally, future work will explore causal models to take advantage

of any data occurring between mood ratings, in addition to day-of features. While

previous work has shown a lack of causality for bipolar mood, this was on a week-to-

week basis and may not apply to daily mood dynamics [145]. These improvements

will allow us to increase the scope of PRIORI and get closer to an application capable

of real-world use.

11.3 Work Published

The work presented in this dissertation was published in the following papers:

• Part of Chapters III and V, in John Gideon, Emily Mower Provost, and Melvin

McInnis. ”Mood State Prediction from Speech of Varying Acoustic Quality for

Individuals with Bipolar Disorder.” ICASSP. 2016. (oral presentation)

• Part of Chapters III and VI, in Soheil Khorram, John Gideon, Melvin McIn-
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nis, and Emily Mower Provost. ”Recognition of Depression in Bipolar Dis-

order: Leveraging Cohort and Person-Specific Knowledge.” INTERSPEECH.

2016. (oral presentation)

• Part of Chapters IV and VII, in John Gideon, Soheil Khorram, Zakaria

Aldeneh, Dimitrios Dimitriadis, and Emily Mower Provost. ”Progressive Neu-

ral Networks for Transfer Learning in Emotion Recognition.” INTERSPEECH.

2017. (oral presentation)

• Part of Chapters I - IV, in Soheil Khorram, Mimansa Jaiswal, John Gideon,

Melvin McInnis, Emily Mower Provost. “The PRIORI Emotion Dataset: Link-

ing Mood to Emotion Detected In-the-Wild.” INTERSPEECH. 2018. (oral

presentation)

• Part of Chapters I - IV and VIII, in John Gideon, Melvin McInnis, and Emily

Mower Provost. “Barking up the Right Tree: Improving Cross-Corpus Speech

Emotion Recognition with Adversarial Discriminative Domain Generalization

(ADDoG).” IEEE Transactions on Affective Computing. 2018. (accepted)

• Part of Chapters IV and IX, in John Gideon, Heather T Schatten, Melvin

G McInnis, Emily Mower Provost. “Emotion Recognition from Natural Phone

Conversations in Individuals With and Without Recent Suicidal Ideation.” IN-

TERSPEECH. 2019. (poster presentation)

• Part of Chapters II, III, X, and XI in John Gideon, Katie Matton, Melvin

G McInnis, Emily Mower Provost. “When to Intervene: Detecting Abnormal

Mood in Everyday Smartphone Conversations.” IEEE Transactions on Affective

Computing. 2019. (in submission)
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[192] M. Śmieja. “Weighted approach to general entropy function”. In: IMA Journal
of Mathematical Control and Information (2014), dnt044.

[193] A. Smith. “Smartphone ownership–2013 update”. In: Pew Research Center:
Washington DC (2013).

[194] Peng Song. “Transfer linear subspace learning for cross-corpus speech emotion
recognition”. In: IEEE Transactions on Affective Computing (2017).

[195] Peng Song et al. “Speech emotion recognition using transfer learning”. In:
IEICE TRANSACTIONS on Information and Systems 97.9 (2014), pp. 2530–
2532.

[196] SoX, Sound eXchange (v14.4.1). http://sox.sourceforge.net/.

[197] Brian Stasak et al. “An Investigation of Emotional Speech in Depression Clas-
sification.” In: Interspeech. 2016, pp. 485–489.

[198] Emelyn Sue Qing Tan and Yuen Jien Soo. “Creating Apps: A Non-IT Educa-
tor’s Journey Within a Higher Education Landscape”. In: Mobile Learning in
Higher Education in the Asia-Pacific Region. Springer, 2017, pp. 213–238.

[199] M. Taylor, R. Reed, and S. Berenbaum. “Patterns of speech disorders in
schizophrenia and mania.” In: The Journal of Nervous and Mental Disease
182.6 (1994), pp. 319–326.

[200] P. Thomas et al. “Speech and language in first onset psychosis differences be-
tween people with schizophrenia, mania, and controls.” In: The British Journal
of Psychiatry 168.3 (1996), pp. 337–343.

[201] S. Tilsen and A. Arvaniti. “Speech rhythm analysis with decomposition of
the amplitude envelope: characterizing rhythmic patterns within and across
languages”. In: The Journal of the Acoustical Society of America 134.1 (2013),
pp. 628–639.

162

http://sox.sourceforge.net/


[202] George Trigeorgis et al. “Adieu features? end-to-end speech emotion recogni-
tion using a deep convolutional recurrent network”. In: 2016 IEEE interna-
tional conference on acoustics, speech and signal processing (ICASSP). IEEE.
2016, pp. 5200–5204.

[203] Eric Tzeng et al. “Adversarial discriminative domain adaptation”. In: Com-
puter Vision and Pattern Recognition (CVPR). Vol. 1. 2. 2017, p. 4.

[204] Michel Valstar et al. “Avec 2014: 3d dimensional affect and depression recog-
nition challenge”. In: Proceedings of the 4th International Workshop on Au-
dio/Visual Emotion Challenge. ACM. 2014, pp. 3–10.

[205] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”.
In: Journal of Machine Learning Research 9.2579-2605 (2008), p. 85.

[206] N. Vanello et al. “Speech analysis for mood state characterization in bipolar
patients”. In: Proceedings of the International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC). 2012, pp. 2104–2107.

[207] Dimitrios Ververidis and Constantine Kotropoulos. “Automatic speech clas-
sification to five emotional states based on gender information”. In: Signal
Processing Conference, 2004 12th European. IEEE. 2004, pp. 341–344.

[208] Olli Viikki and Kari Laurila. “Cepstral domain segmental feature vector nor-
malization for noise robust speech recognition”. In: Speech Communication
25.1 (1998), pp. 133–147.
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